AU2012203932B2 - New indications for anti-IL-I-beta therapy - Google Patents
New indications for anti-IL-I-beta therapy Download PDFInfo
- Publication number
- AU2012203932B2 AU2012203932B2 AU2012203932A AU2012203932A AU2012203932B2 AU 2012203932 B2 AU2012203932 B2 AU 2012203932B2 AU 2012203932 A AU2012203932 A AU 2012203932A AU 2012203932 A AU2012203932 A AU 2012203932A AU 2012203932 B2 AU2012203932 B2 AU 2012203932B2
- Authority
- AU
- Australia
- Prior art keywords
- antibody
- amino acid
- patient
- acid sequence
- ser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
This invention relates to a novel use of IL-1 0-ligand/IL- I receptor disrupting compounds (herein referred to as "IL-1 beta Compounds"); such as small molecular compounds disrupting IL-1 0 ligand - IL-1 receptor interaction, IL-1 P antibodies or IL-1 receptor antibodies, e.g. IL-l I0 binding molecules described herein, e.g. antibodies disclosed herein, e.g. IL-1 p binding compounds or IL-I receptor binding compounds, and/or RNA compounds decreasing either IL-i 0 ligands or IL-1 receptor protein levels, in the treatment and/or prevention of auto-inflammatory syndromes, e.g. Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and to methods of treating and/or preventing auto-inflammatory syndromes, e.g. Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome, in mammals, particularly humans.
Description
Australian Patents Act 1990 - Regulation 3.2A ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title New indications for anti-IL-1-beta therapy " The following statement is a full description of this invention, including the best method of performing it known to me/us: C:\Nial.rbl\lCC\REC\4450503_3.DOCs 5/7/12 NEW INDICATIONS FOR ANTI-IL-1-BETA THERAPY This application is a divisional of Australian Patent Application No. 2008257520, the entire content of which is incorporated herein by reference. This invention relates to a novel use of IL- 1 p-ligand/IL- 1 receptor disrupting compounds (herein referred to as "IL-lbeta Compounds"); such as small molecular compounds disrupting IL-IP ligand - IL-1 receptor interaction, IL-1$ antibodies or IL-1 receptor antibodies, e.g. IL- 13 binding molecules described herein, e.g. antibodies disclosed herein, e.g. IL-10 binding compounds or IL-1 receptor binding compounds, and/or RNA compounds decreasing either IL- 1p ligand or IL- 1 receptor protein levels, in the treatment and/or prevention of auto-inflammatory syndromes, e.g. Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and to methods of treating and/or preventing auto inflammatory syndromes, e.g. Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome, in mammals, particularly humans. Interleukin-lp (IL-lbeta or IL-ip or Interleukin-lp have the same meaning herein) is a potent immuno-modulator which mediates a wide range of immune and inflammatory responses. Inappropriate or excessive production of IL-1 is associated with the pathology of various diseases and disorders, such as septicaemia, septic or endotoxic shock, allergies, asthma, bone loss, ischemia, stroke, traumatic brain injury, rheumatoid arthritis and other inflammatory disorders. Antibodies to IL-1l have been proposed for use in the treatment of IL-1 mediated diseases and disorders; see for instance, WO 95/01997 and the discussion in the introduction thereof and WO 02/16436, the content of which is incorporated by reference. In accordance with the present invention, it has now surprisingly been found that IL-I beta compounds are useful in the prevention and treatment of Auto-Inflammatory Syndromes in patients such as in mammals, particularly humans. Auto-Inflammatory Syndromes according to the inventions are e.g., but not limited to, a group of inherited disorders characterized by recurrent episodes of inflammation, that in contrast to the auto-immne -1diseases lack high-titer autoantibodies or antigen specific T cells. Furthermore, Auto inflammatory Syndromes according to the inventions show increased IL-1beta secretion (loss of negative regulatory role of pyrin which seems mutated in said diseases), NFkB activation and impaired leukocyte apoptosis). Auto-inflammatory Syndromes according to the inventions are Muckle-Wells syndromes (MWS), LADA (Latent Autoimmune Diabetes in Adults), familial cold auto-inflamrnmatory syndrome (FCAS), Cryopyrin associated periodic syndromes (CAPS), neonatal-onset multisystem inflammatory syndrome (NOMID), chronic infantile neurological, cutaneous, articular (CINCA) syndrome, familial Mediterranean fever (FMF) and/or certain form of juvenile arthritis such as systemic onset juvenile idiopathic arthritis (SJIA), certain form of -lAjuvenile.rheumatoid arthritis such as systemic onset juvenile idiopathic.rheumatoid arthritis and/or certain form of adult rheumatoid arthritis. The IL-I beta compounds may also be useful in the treatment of type 2 diabetes, where clinical and preclinical studies show improved islet function by IL-1 blockade. IL-1 beta compounds are also be useful in the treatment of various diabetes related pathologies such as retinopathy, wound healing, vascular diseases, (incl. arterial restenosis after stenting or angioplasty), renal dysfunction, chronic kidney disease and metabolic syndrome and obesity, The IL-1 beta compounds may also be useful in the treatment of migraine, synovitis, gout, pseudogout I gouty arthritis or chondrocalcinosis, chronic obstructive pulmonary disease (COPD), ventilation induced lung damage, various pain conditions, such as morphine resistant pain, neuropathic pain, pre-term birth pain, discogenic pain, inflammatory pain, headache, or migraine. IL-1beta is involved in pain perception and amplifies neurogenic signals. Furthermore iL-1beta compounds of the invention are useful in the treatment of atherosclerosis, actue renal colic, biliary colic and pain related to these disorders. The IL-1 beta compounds may be useful in the treatment of Periodic Fever Syndromes: Familial Mediterranean Fever (FMF), Tumor Necrosis Factor Receptor Associated Periodic Syndrome (TRAPS), Hyperimmunoglobulin D syndrome (HIDS), also called Mevalonate Kinase Associated Periodic Fever Syndrome. Familial Cold auto inflammatory syndrome and Periodic fever, Aphthous-stomatitis, Pharyngitis, Adenitis (PFAPA) Syndrome, where IL-1 beta is a dominant cytokine. Other diseases wherein IL-1beta is a dominant cytokine and that can be treated with IL-1 beta compounds according to the invention comprise Anti-synthetase syndrome, Macrophage activation syndrome MAS, Beheet Disease, Blau's syndrome, PAPA syndrome. Schnizler's syndrome, Sweet's syndrome. IL-1 beta ligand - receptor blocking and IL 1 beta compounds of the invention may also be used to treat Vasculitides; Giant-cell arteritis (GCA), Henoch-Schoenlein purpura, Primary systemic vasoulitis, Kawasaki disease (mucocutaneous lymph node syndrome), Takayasu arteritis, Polyarteritis nodosa, Essential cryoglobulinemic vasculitis, microscopic polyangiitis (MPA) and Churg-Strauss syndrome (CSS), urticarial vasculitis. Furthermore IL-Ibeta compounds of the invention are useful in the treatment of autoimmune diseases like sarcoidosis, pemphygus, ankylosing spondylitis, Alzheimer disease, amyloidosis, secondary amyloidosis and adult onset Still disease (AOSD). IL-1 beta compounds of the invention may be used to treat HLA-B27 associated diseases such as but not limited to psoriatica, spondylitis ankylosans, Morbus Reiter and enteropathic arthritis. IL-1beta compounds according to the invention may be used to treat rheumatic fever, polymyalgia rheumatica and giant cell artheriltis. Finally IL-I1beta compounds of the invention may be used to treat infections, in particular bacterial infections and viral infections, more in particular bacterial infections associated with arthritic symptoms or observations, such as but not limited to hematogenic osteomyelitis, infectious arthritis, tuberculotic arthritis. 2 C:WRPonbrDCC \N890970_I.DOC-02/20 3 Preferably the IL-I beta Compounds are useful in the prevention and treatment of Juvenile rheumatoid arthritis and adult rheumatoid arthritis and/or Muckle Wells Syndrome. In accordance with the particular findings of the present invention, the following embodiments are provided: The present invention concerns compositions and methods for the prevention and treatment of Auto-Inflammatory Syndromes in mammals, including humans. Accordingly, the IL-1 beta Compounds are also useful to prepare medicines and medicaments for the treatment of Auto-Inflammatory Syndromes. In a specific aspect, such medicines and medicaments comprise a therapeutically effective amount of IL-I beta Compounds with a pharmaceutically acceptable carrier. In one aspect the present invention provides a method of treating an auto-inflammatory syndrome in a patient, the method comprising administering to a patient in need thereof an antibody comprising a human IL-I beta binding antibody, the antibody comprising: a first domain having an amino acid sequence as shown in SEQ ID NO: I and a second domain having an amino acid sequence as shown in SEQ ID NO:2, wherein said auto-inflammatory syndrome is type 2 diabetes and/or diabetes related pathologies such as retinopathy, wound healing, vascular diseases, and arterial restenosis after stenting or angioplasty, and wherein said antibody is parenterally administered at a dose between 0.1-50 mg of said antibody per kg body weight of the patient. In one aspect the present invention provides use of an IL-1 beta binding antibody comprising: a first domain having an amino acid sequence as shown in SEQ ID NO:I and a second domain having an amino acid sequence as shown in SEQ ID NO:2, and in the manufacture of a medicament for the treatment of an auto-inflammatory syndrome in a patient, wherein the antibody is formulated for administration parenterally in a patient at a -3- C:\fRPortb\DCC\AhM4890970_. DOC-l/M2/2013 dose between 0.1-50 mg of said antibody per kg body weight of the patient, and wherein said auto-inflammatory syndrome is type 2 diabetes and/or diabetes related pathologies such as retinopathy, wound healing, vascular diseases, and arterial restenosis after stenting or angioplasty. In another embodiment, the invention provides the use of an antibody which specifically binds to any of the above or below described polypeptides, e.g. IL-1p ligand or IL-1p receptor, preferably IL-lp ligand, in the prevention and/or treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or other Auto Inflammatory Syndromes and/or Muckle Wells Syndrome. Optionally, the antibody is a monoclonal antibody, humanized antibody, antibody fragment or single-chain antibody. In one aspect, the present invention concerns an isolated antibody which binds a IL- 1 ligand. In another aspect, the antibody inhibits or neutralizes the activity of a IL-1p ligand (an antagonist antibody). In another aspect, the antibody is a monoclonal antibody, which has either a human or nonhuman complementarily determining region (CDR) residues and human framework region (FR) residues. The antibody may be labelled and may be immobilized on a solid support. In a further aspect, the antibody is an antibody fragment, a monoclonal antibody, a single-chain antibody, or an anti-idiotypic antibody. In yet another embodiment, the present invention provides a composition comprising an anti- IL-lp ligand or IL-1p receptor antibody, preferably an anti- IL-Ip ligand antibody, in a mixture with a pharmaceutically acceptable carrier. In one aspect, the composition comprises a therapeutically effective amount of the antibody. Preferably, the composition is sterile. The composition may be administered in the form of a liquid pharmaceutical formulation, which may be preserved to achieve extended storage stability. Alternatively, the antibody is a monoclonal antibody, an antibody fragment, a humanized antibody, or a single-chain antibody. In another embodiment, the invention provides the use of IL-1 beta Compounds, e.g. IL-i beta antibody, which are capable to interrupt the positive IL-i beta feedback loop in vivo; in the prevention and/or treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis and/or - 3A other Auto-Inflammatory Syndromes and/or Muckle Wells Syndrome. This-positive feedback in vivo leads to self-sustained overproduction of IL-Ib in these patients, In another embodiment, the invention provides the use of an IL-1beta Compounds, e.g. IL 1beta antibody, in diseases with a mutation in the MEFV gene, located on chromosome lop13 and which codes for the protein pyrin (also known as marenostrin). Pyrin is expressed in granulocytes, monocytes and synovial fibroblasts. Pyrin is involved in IL-1beta processing. In a further embodiment, the invention concerns an article of manufacture, comprising: (a) a composition of matter comprising an anti- IL-1 beta ligand or IL-1beta receptor antibody, preferably an anti- IL-1 ligand antibody; (b) a container containing said composition; and (c) a label affixed to said container, or a package insert included in said container referring to the use of said anti- IL-1p P ligand or IL-1 p receptor antibody, preferably an anti- IL-1 P ligand antibody, in the treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis and/or other Auto Inflammatory Syndromes and/or Muckle Wells Syndrome. The composition may comprise a therapeutically effective amount of an anti- IL-1P ligand or IL-1P receptor antibody, preferably an anti- IL-1P ligand. In yet a further embodiment, the invention provides a method or use as defined above, comprising co-administration of a therapeutically effective amount of IL-1beta Compounds in free form or salt form, preferably in a pharmaceutically acceptable delivery form such as intravenously or subcutaneously, and a second drug substance, said second drug substance being an Anti-inflammatory Compound in free form or salt form. In yet a further embodiment, an IL-1 beta Compounds used according to the invention is an IL 1p binding molecule which comprise an antigen binding site comprising at least one immunoglobulin heavy chain variable domain (NH) which comprises in sequence hypervariable regions CDR1, CDR2 and CDR3, said CDR1 having the amino acid sequence Val-Tyr-Gly-Met Asn, said CDR2 having the amino acid sequence lle-Ile-Trp-Tyr-Asp-Gly-Asp-Asn-Gln-Tyr-Tyr Ala-Asp-Ser-Val-Lys-Gly, and said CDR3 having the amino acid sequence Asp-Leu-Arg-Thr Gly-Pro; and direct equivalents thereof. In yet a further embodiment, an IL-1beta Compound used according to the invention is an [L-11 binding molecule which comprise at least one immunoglobulin light chain variable domain (V) which comprises in sequence hypervariable regions CDRV, CDR2' and CDR3', said CDR1' having the amino acid sequence Arg-Ala-Ser-Gln-Ser-ile-Gly-Ser-Ser-Leu-His said CDR2' 4.
having the amino acid sequence Ala-Ser-Gin-Ser-Phe-Ser and said CDR3' having the amino acid sequence His-Gln-Ser-Ser-Ser-Leu-Pro and direct equivalent thereof. In yet a further embodiment, an IL-1beta Compound used according to the invention is a single domain IL-1beta binding molecule comprising an isolated immunoglobulin heavy chain comprising a heavy chain variable domain (V) as defined above, e.g. for the preparation of a medicament for the treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or other Autoinflammatory Syndromes, preferably Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or Muckle Wells Syndrome. In yet a further embodiment, an IL-1beta Compound used according to the invention is an tL-1p binding molecule comprising both heavy (VH) and light chain (VL) variable domains in which said IL-1 binding molecule comprises at least one antigen binding site comprising: a) an immunoglobulin heavy chain variable domain (VH) which comprises in sequence hypervariable regions CDRI, CDR2 and CDR3, said CDR1 having the amino acid sequence Val-Tyr-Gly-Met-Asn, said CDR2 having the amino acid sequence lle-Ile-Trp Tyr-Asp-Gly-Asp-Asn-Gln-Tyr-Tyr-Ala-Asp-Ser-Val-Lys-Gly, and said CDR3 having the amino acid sequence Asp-Leu-Arg-Thr-Gly-Pro, and b) an immunoglobulin light chain variable domain (VL) which comprises in sequence hypervariable regions CDR1', CDR2' and CDR3', said CDR1' having the amino acid sequence Arg-Ala-Ser-Gin-Ser-Ile-Gly-Ser-Ser-Leu-His, said CDR2' having the amino acid sequence Ala-Ser-Gin-Ser-Phe-Ser, and said CDR3' having the amino acid sequence His-Gin-Ser-Ser-Ser-Leu-Pro; and direct equivalents thereof. Unless otherwise indicated, any polypeptide chain is herein described as having an amino acid sequence starting at the N-terminal extremity and ending at the C-terminal extremity. When the antigen binding site comprises both the V and VL domains, these may be located on the same polypeptide molecule or, preferably, each domain may be on a different chain, the VH domain being part of an immunoglobulin heavy chain or fragment thereof and the V being part of an immunoglobulin light chain or fragment thereof. By "L-1JP binding molecule" is meant any molecule capable of binding to the IL-1 P ligand either alone or associated with other molecules. The binding reaction may be shown by standard methods (qualitative assays) including, for example, a bioassay for determining the inhibition of IL-1@ binding to its receptor or any kind of binding assays, with reference to a negative control test in which an antibody of-unrelated specificity but of the same isotype, e.g an-ani-CD25 antibody, is used. Advantageously, the binding of the IL-10 binding molecules of the invention to IL-10 may be shown in a competitive binding assay. Examples of antigen binding molecules include antibodies as produced by B-cells or hybridomas and chimeric, CDR-grafted or human antibodies or any fragment thereof, e.g. F(ab') 2 and Fab fragments, as well as single chain or single domain antibodies. A single chain antibody consists of the variable domains of the heavy and light chains of an antibody covalently bound by a peptide linker usually consisting of from 10 to 30 amino acids, preferably from 15 to 25 amino acids. Therefore, such a structure does not include the constant part of the heavy and light chains and it is believed that the small peptide spacer should be less antigenic than a whole constant part. By "chimeric antibody" is meant an antibody in which the constant regions of heavy or light chains or both are of human origin while the variable domains of both heavy and light chains are of non-human (e.g. murine) origin or of human origin but derived from a different human antibody. By "CDR-grafted antibody" is meant an antibody in which the hypervariable regions (CDRs) are derived from a donor antibody, such as a non-human (e.g. murine) antibody or a different human antibody, while all or substantially all the other parts of the immunoglobulin e.g. the constant regions and the highly conserved parts of the variable domains, i.e. the framework regions, are derived from an acceptor antibody, e.g. an antibody of human origin, A CDR-grafted antibody may however contain a few amino acids of the donor sequence in the framework regions, for instance in the parts of the framework regions adjacent to the hypervariable regions. By "human antibody" is meant an antibody in which the constant gd variable regions of both the heavy and light chains are all of human origin, or substantially identical to sequences of human origin, not necessarily from the same antibody and includes antibodies produced by mice in which the murine immunoglobulin variable and constant part genes have been replaced by their human counterparts, e.g. as described in general terms in EP 0546073 B1, USP 5545806, USP 5569825, USP 5625126, USP 5633425, USP 5661016, USP 5770429, EP 0 438474 B1 and EP 0 463151 B1. The phrase direct equivalents encompasses any molecule, antibody or functional fragment thereof having the properties of an IL-1 beta binding molecule of the invention as provided in this description, including antibodies of various species and isotypes, Fab2, Fab and scFv fragments and mutants comprising 1, 2, 3, 4, 5, 6, 7, 8, 9. 10 or more point mutations in the CDR regions or outside the CDR regions of SEQ ID No's 1 and 2.
Particularly preferred IL-1 binding molecules of the invention are human antibodies especially the ACZ 885 antibody as hereinafter described in the Examples and in WO 02/16436. Thus in preferred antibodies of the invention, the variable domains of both heavy and light chains are of human origin, for instance those of the ACZ 885 antibody which are shown in SEQ ID NO:I and SEQ ID NO:2. The constant region domains preferably also comprise suitable human constant region domains, for instance as described in "Sequences of Proteins of Immunological Interest", Kabat E.A. et al, US Department of Health and Human Services, Public Health Service, National Institute of Health. Hypervariable regions may be associated with any kind of framework regions, though preferably are of human origin. Suitable framework regions are described in Kabat EA et al, ibid. The preferred heavy chain framework is a human heavy chain framework, for instance that of the ACZ 885 antibody which is shown in SEQ ID NO:. It consists in sequence of FRI, FR2, FR3 and FR4 regions. In a similar manner, SEQ ID NO:2shows the preferred ACZ 885 light chain framework which consists, in sequence, of FRI, FR2', FR3' and FR4' regions. Accordingly, the invention also provides an lL-1) binding molecule which comprises at least one antigen binding site comprising either a first domain having an amino acid sequence substantially identical to that shown in SEQ ID NO: starting with the amino acid at position I and ending with the amino acid at position 118 or a first domain as described above and a second domain having an amino acid sequence substantially identical to that shown in SEQ ID NO:2, starting with the amino acid at position 1 and ending with the amino acid at position 107. Monoclonal antibodies raised against a protein naturally found in all humans are typically developed in a non-human system e.g. in mice, and as such are typically non-human proteins. As a direct consequence of this, a xenogenio antibody as produced by a hybridoma, when administered to humans, elicits an undesirable immune response which is predominantly mediated by the constant part of the xenogenic immunoglobulin. This clearly limits the use of such antibodies as they cannot be administered over a prolonged period of time. Therefore it is particularly preferred to use single chain, single domain, chimeric, CDR-grafted, or especially human antibodies which are not likely to elicit a substantial allogenic response when administered to humans. In view of the foregoing, a more preferred IL-1D binding molecule of the invention is selected from a human anti IL-1 antibody which comprises at least 7 a) an immunoglobulin heavy chain or fragment thereof which comprises (i) a variable domain comprising in sequence the hypervariable regions ODR1, CDR2 and CDR3 and (ii) the constant part or fragment thereof of a human heavy chain; said CDR1 having the amino acid sequence Val-Tyr-Gly-Met-Asn, said CDR2 having the amino acid sequence lle-IIe-Trp-Tyr-Asp-Gly-Asp-Asn-Gin-Tyr-Tyr-Ala-Asp-Ser-Val-Lys-Gly, and said CDR3 having the amino acid sequence Asp-Leu-Arg-Thr-Gly-Pro and b) an immunoglobulin light chain or fragment thereof which comprises (i) a variable domain comprising in sequence the hypervariable regions and optionally also the CDR1'. CDR2', and CDR3' hypervariable regions and (ii) the constant part or fragment thereof of a human light chain, said CDR1' having the amino acid sequence Arg-Ala-Ser-GIn-Ser-lIe-Gly-Ser Ser-Leu-His, said CDR2' having the amino acid sequence Ala-Ser-Gln-Ser-Phe-Ser, and said CDR3' having the amino acid sequence His-Gln-Ser-Ser-Ser-Leu-Pro; and direct equivalents thereof. Alternatively, an IL-1$ binding molecule of the invention may be selected from a single chain binding molecule which comprises an antigen binding site comprising a) a first domain comprising in sequence the hypervariable regions CODR1, CDR2 and CDR3, said CDR1 having the amino acid sequence Val-Tyr-Gly-Met-Asn, said CDR2 having the amino acid sequence Ile-lle-Trp-Tyr-Asp-Gly-Asp-Asn-GIn-Tyr-Tyr-Ala-Asp Ser-Val-Lys-Gly, and said CDR3 having the amino acid sequence Asp-Leu-Arg-Thr-Gly Pro, b) A second domain comprising the hypervariable regions CDR1', CDR2' and CDR3', said CDR1' having the amino acid sequence Arg-Ala-Ser-Gln-Ser-lle-Gly-Ser-Ser-Leu-His, said CDR2' having the amino acid sequence Ala-Ser-Gln-Ser-Phe-Ser, and said CDR3' having the amino acid sequence His-Gln-Ser-Ser-Ser-Leu-Pro and c) a peptide linker which is bound either to the N-terminal extremity of the first domain and to the C-terminal extremity of the second domain or to the C-terminal extremity of the first domain and to the N-terminal extremity of second domain; and direct equivalents thereof. As it is well known, minor changes in an amino acid sequence such as deletion, addition or substitution of one, a few or even several amino acids may lead to an allelic form of the original protein which has substantially identical properties. Thus, by the term "direct equivalents thereof" is meant either any single domain IL-1p binding molecule (molecule X) 8 (i) in which the hypervariable regions CDRI, CDR2 and CDR3 taken as a whole are at least 80% homologous, preferably at least 90% homologous, more preferably at least 95% homologous to the hypervariable regions as shown above and, (ii) which is capable of inhibiting the binding of IL-1 to its receptor substantially to the same extent as a reference molecule having framework regions identical to those of molecule X but having hypervariable regions CDR1, CDR2 and CDR3 identical to those shown in above, or any IL-1 P binding molecule having at least two domains per binding site (molecule X') (i) in which the hypervariable regions CDR1, CDR2, CDR3, CDR1', CDR2' and CDJR3" taken as a whole are at least 80% homologous, preferably at least 90% homologous, more preferably at least 95, 98 or 99 % homologous, to the hypervariable regions as shown above and (ii) which is capable of inhibiting the binding of IL-1$3 to its receptor substantially to the same extent as a reference molecule having framework regions and constant parts identical to molecule X, but having hypervariable regions CDRl, CDR2, CDR3, CDR1', CDR2' and CDR3', identical to those shown above. In a further aspect the invention also provides an IL-1 beta binding molecule comprising both heavy (VH) and light chain (V) variable domains in which said IL-ibeta binding molecule comprises at least one antigen binding site comprising: a) an immunoglobulin heavy chain variable domain (V) which comprises in sequence hypervariable regions CDR1, CDR2 and CDR3, said CDR1 having the amino acid sequence Ser-Tyr-Trp-lle-Gly, said CDR2 having the amino acid sequence lle-lie-Tyr Pro-Ser-Asp-Ser-Asp-Thr-Arg-Tyr-Ser-Pro-Ser-Phe-Gln-Gly, and said CDR3 having the amino acid sequence Tyr-Thr-Asn-Trp-Asp-Ala-Phe-Asp-Ile, and b) an immunoglobulin light chain variable domain (V 1 ) which comprises a CDR3' hypervariable region having the amino acid sequence Gin-Gln-Arg-Ser-Asn-Trp-Met Phe-Pro; and direct equivalents thereof.
In further aspect the invention provides an IL-1beta binding molecule comprising both heavy (VH) and light (VL) chain variable domains in which said IL-1 beta binding molecule comprises at least one antigen binding site comprising: a) an immunoglobulin heavy chain variable domain (VH) which comprises in sequence hypervariable regions CDR1, CDR2 and CDR3, said CDR1 having the amino acid sequence Ser-Tyr-Trp-lle-Gly, said CDR2 having the amino acid sequence Ile-Ile-Tyr Pro-Ser-Asp-Ser-Asp-Thr-Arg-Tyr-Ser-Pro-Ser-Phe-Gn-Gly, and said CDR3 having the amino acid sequence Tyr-Thr-Asn-Trp-Asp-Ala-Phe-Asp-Ile, and b) an immunoglobulin light chain variable domain (VL) which comprises in sequence hypervariable regions CDR1', CDR2' and CDR3', said CDR1' having the amino acid sequence Arg-Ala-Ser-Qln-Ser-Val-Ser-Ser-Tyr-Leu Ala, said CDR2' having the amino acid sequence Asp-Ala-Ser-Asn-Arg-Ala-Thr, and said CDR3' having the amino acid sequence Gin-Gln-Arg-Ser-Asn-Trp-Met-Phe-Pro; and direct equivalents thereof. In the present description amino acid sequences are at least 80% homologous to one another if they have at least 80% identical amino acid residues in a like position when the sequence are aligned optimally, gaps or insertions in the amino acid sequences being counted as non identical residues. The inhibition of the binding of IL-10 to its receptor may be conveniently tested in various assays including such assays are described in WO 02116436, By the term "to the same extent' is meant that the reference and the equivalent molecules exhibit, on a statistical basis, essentially identical IL-1P binding inhibition curves in one of the assays referred to above. For example, in IL-I - binding molecules of the invention typically have IC50s for the inhibition of the binding of IL-10 to its receptor which are within +/-x5 of that of, preferably substantially the same as, the IC0 of the corresponding reference molecule when assayed as described above. For example, the assay used may be an assay of competitive inhibition of binding of IL-1 P by soluble IL-1 receptors and the IL-1p binding molecules of the invention Most preferably, the IL-1 P binding molecule for use according to the invention is an human IL-1 antibody which comprises at least a) one heavy chain which comprises a variable domain having an amino acid sequence substantially identical to that shown in SEQ ID NO:1 starting with the 10 -amino acid at position 1 and ending with the amino acid at position 118 and the constant part of a human heavy chain; and b) one light chain which comprises a variable domain having an amino acid sequence substantially identical to that shown in SEQ ID NO;2 starting with the amino acid at position I and ending with the amino acid at position 107 and the constant part of a human light chain. Most preferably, the IL-1 binding molecule for use according to the invention is ACZ885 (see Example), The constant part of a human heavy chain may be of the 7i, 7, Y3p4, t, U 1 , a 2 , 8 or e type, preferably of the y type, more preferably of the y1 type, whereas the constant part of a human light chain may be of the K or X type (which includes the %1, k 2 and ? subtypes) but is preferably of the w type. The amino acid sequences of all these constant parts are given in Kabat et al ibid. An IL-1 P binding molecule of the invention may be produced by recombinant DNA techniques as e.g. described in WO 02/16436. In yet another embodiment of the invention, IL-1 beta Compounds may be antibodies which have binding specificity for the antigenic epitope of human IL-I 1p which includes the loop comprising the Glu 64 residue of mature human IL-1P (Residue Glu 64 of mature human IL-1 correspond to residue 180 of the human IL-1 beta precursor). This epitope is outside the recognition site of the IL-1beta receptor and it is therefore most surprising that antibodies to this epitope, e.g. the ACZ 885 antibody, are capable of inhibiting the binding of IL-1 P to its receptor. Thus the use of such antibodies for the treatment of Juvenile rheumatoid arthritis and adult rheumatoid arthritis and/or Auto-Inflammatory Syndromes and/or Muckle Wells Syndrome is novel and are included within the scope of the present invention. Thus in a further aspect the invention includes the use of an antibody to IL-1D which has antigen binding specificity for an antigenic epitope of human IL-1 P which includes the loop comprising residue Glu 64 of mature human IL-1 3 and which is capable of inhibiting the binding of IL-1 P to its receptor for the treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis and/or Auto-Inflammatory Syndromes and/or Muckle Wells Syndrome. :11 In yet further aspects the invention includes: i) use of an antibody to IL-I0, which has antigen binding specificity for an antigenic epitope of mature human IL- P which includes the loop comprising GIu 64 and which is capable of inhibiting the binding of IL-1D to its receptor, for the prevention and/or treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis andfor Auto-Inflammatory Syndromes and/or Muckle Wells Syndrome, ii) a method for the prevention and/or treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis and/or Auto-Inflammatory Syndromes and/or Muokle Wells Syndrome in a patient which comprises administering to the patient an effective amount of an antibody to IL-1 [ which has antigen binding specificity for an antigenic epitope of mature human IL- P which.includes the loop comprising Glu 64 and which is capable of inhibiting the binding of IL-1P to its receptor; iii) a pharmaceutical composition comprising an antibody to IL-10. which has antigen binding specificity for an antigenic epitope of mature human IL-1P which includes the loop comprising Glu 64 and which is capable of inhibiting the binding of IL-1 0 to its receptor, in combination with a pharmaceutically acceptable excipient, diluent or carrier; for the treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or Auto-Inflammatory Syndromes and/or Muckle Wells Syndrome. iv) use of an antibody to IL-1D. which has antigen binding specificity for an antigenic epitope of mature human iL-1 which includes the loop comprising Glu 64 and which is capable of inhibiting the binding of IL-1$ to its receptor, for the preparation of a medicament for the treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or Auto-Inflammatory Syndromes and/or Muckle Wells Syndrome. For the purposes of the present description an antibody is "capable of inhibiting the binding of IL-1 " if the antibody is capable of inhibiting the binding of IL- [ to its receptor substantially to the same extent as the ACZ 885 antibody, i.e. has a dissociation equilibrium constant (Kr) measured e.g. in a standard BlAcore analysis as disclosed in the Example of 1OnM or lower, e.g. 1nM or lower, preferably 100 pM or lower, more preferably 50 pM or lower. 12 Thus in a yet further aspetf the invention provides the use of an antibody to IL-1p which has a K, for binding to IL-10 of about 10 nM, i nM, preferably 100 pM, more preferahly fi pM nr IAs for the treatment of Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or Auto-Inflammatory Syndromes. This aspect of the invention also includes uses methods and compositions for such high affinity antibodies, as described above for antibodies to IL-1 P have binding specificity for an antigenic determinant of mature human IL-1p which includes the loop comprising Glu 64. In the present description the phrase "Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or Auto-Inflammatory Syndromes "encompasses all diseases and medical conditions which are part of Juvenile rheumatoid arthritis or adult rheumatoid arthritis syndrome and/or Auto-Inflammatory Syndromes, whether directly or indirectly, in the disease or medical condition, including the causation, development, progress, persistence or pathology of the disease or condition. In the present description the phrase "Muckle Wells Syndrome" (also "MWS") encompasses all diseases and medical conditions which are part of "Muckle Wells Syndrome", whether directly or indirectly, in the disease or medical condition, including the causation, development, progress, persistence or pathology of the disease or condition. The compounds of formula I may be administered as the sole active ingredient or in conjunction with, e.g. as an adjuvant to, other drugs e.g. immunosuppressive or immunomodulating agents or other anti-inflammatory agents, e.g. for the treatment or prevention of allo- or xenograft acute or chronic rejection or inflammatory or autoimmune disorders, or a chemotherapeutic agent, e.g a malignant cell anti-proliferative agent. For example, the antibodies according to the invention may be used in combination with a calcineurin inhibitor, e.g. cyclosporin A or FK 506; a mTOR inhibitor, e.g. rapamycin, 40..O-(2.hydroxyethyl)-rapamycin, CC1779, ABT57G, AP23573, AP23464, AP23675, AP23841, TAFA-93. biolimus-7 or biolimus-9; an ascomycin having immunosuppressive properties, e.g. ABT-281, ASM981, etc.: corticosteroids; cyclo phosphamide; azathioprene: methotrexate; leflunomide; mizoribine; mycophenolic acid or salt: mycophenolate mofetil; 1 5-deoxyspergualine or an immunosuppressive homologue, analogue or derivative thereof; a PKC inhibitor, e.g. as disclosed in WO 02/38561 or WO 03/82859, e.g. the compound of Example 66 or 70; a JAK3 kinase inhibitor, e.g. N-benzyl-3,4-dihydroxy benrylidene-cyanoacetamide -oyano-(3,4-dihydroxy)-]N-benzylcinnamamnide (Tyrphostin AG 490), prodigiosin 25-C (PNU156804), [4-(4'-hydroxyphenyl)-amino-6,7-dimethoxyquinazoline] (WHi-P131), [4-(3'-bromo-4'-hydroxylphenyl)-amino-6,7-dimethoxyquinazollne] (WHI-P154), [4 13 (3',5'-dibromo-4'..hydroxylphenyl)-amino-6,7-dimethoxyquinazoline] WHI-P97, KRX-211, 3 ((3R,4R)-4-methyl-3-[methyl-(7H-pyrrolo[2,3-d]pyrimidin-4-yI)-amino]-piperidin-1 -yl)-3-oxo propionitrile, in free form or in a pharmaceutically acceptable salt form, e.g. mono-citrate (also called CP-690,550), or a compound as disclosed in WO 04/052359 or WO 05/066156; immunosuppressive monoclonal antibodies, e.g., monoclonal antibodies to leukocyte receptors, e-g., MHC, CD2, CD3, CD4, CD7, CD8, CD25, CD20, 0D40, CD45, CD52, CD58, CD80, CD86 or their ligands; other immunomodulatory compounds, e.g. a recombinant binding molecule having at least a portion of the extracellular domain of CTLA4 or a mutant thereof, e.g. an at least extracellular portion of CTLA4 or a mutant thereof joined to a non-CTLA4 protein sequence, e.g. CTLA4Ig (for ex. designated ATCC 68629) or a mutant thereof, e.g. LEA29Y; adhesion molecule inhibitors, e.g. LFA-1 antagonists, ICAM-1 or -3 antagonists, VCAM-4 antagonists or VLA-4 antagonists; or a chemotherapeutic agent, e.g. peactaxel, gemcitabine, cisplatinum, doxorubicin or 5-fluorouracil; or an anti-infectious agent. Immunomodulatory drugs which are prone to be useful in combination with a compound of the present invention include e4. - mediators, e.g. inhibitors, of mTOR activity, including rapamycin of formula 41 HO,4 H3 CO 39 36 CH3 4 CH, 3 HaHa H3 0 CH H C H 24 and rapamycin derivatives, e.g. including 40-O-alkyl-rapamycin derivatives, such as 40-O-hydroxyalkyl-rapamycin derivatives, such as 40-0-(2-hyd roxy)-ethyi-rapamycin (everolimus), 32-deoxo-rapamycin derivatives and 32-hydroxy-rapamycin derivatives, such as 32 deoxcorapamycin, 16-0-substituted rapamycin derivatives such as 16-pent-2..ynyloxy-32-deoxcrapamycin, 16 pent-2-ynyloxy-32 (S or R) -dihydro-rapamycin. 16-pent-2-yniyloxy-32(S or R)-dihydro-40-O (2-hydroxyethyl)-rapamycin, 14 rapaMycin derivatives which are acylated at the oxygen group in position 40, e.g. 4043 hydroxy-2-(hydroxy-methyl)-2-methylpropanoatej-rapamycin (also known as CC1779), rapamycin derivatives which are substituted in 40 position by heterocyclyl, e.g. 40-epi (tetrazolyl)-rapamycin (also known as ABT578), the so-called rapalogs, e. g. as disclosed in W09802441, WO01 14387 and W0D364383, such as AP23573, and compounds disclosed under the name TAFA-93 and biolimus (biolimus A9). The IL-1 beta compounds according to the invention may be administered as the sole active ingredient or in conjunction with bisphosphonates, sequential, simultaneous or combined in one formulation. Bisphosphonates to be used in conjunction with the IL-1 beta molecules of the invention comprise etidronate, clodronate, tiludronate, pamidronate, neridronate, olpadronate, alendronate, ibandronate, risedronate, zoledronate, and any salt, acid, polymorph or derivative thereof. IL-1 beta compounds on the invention may advantageously be combined with Protein Kinase C Inhibitors and/or suppressors of T cell activation, in particular indolytmaleimide derivatives such as sotrastaurin (3-(1.H.-indol-3-yl)-4-[2-(4-methyl-piperazin-1-yl)-quinazolin-4-yl]-pyrrole-2,5 dione), for instance in order to inhibit the adaptive immune system and thereby further enhancing the therapeutic effects of IL- beta compounds, IL-1beta compounds of the invention may also advantageously be combined with anti-cytokines and/or anti-interleukins, in particular 1L-17 binding compounds disclosed in W02006/013107, optionally in combination with sotrastaurin. I-Tbeta compounds of the invention may advantageously be combined with anti TNFalpha compounds such as etanercept, adalimumab, infliximab, for instance in the treatment of RA and other (auto)-inflammatory diseases, In the present description the terms "treatment or "treat" refer to both prophylactic or preventative treatment as well as curative or disease modifying treatment, including treatment of patient at risk of contracting the disease or suspected to have contracted the disease as well as patients who are ill or have been diagnosed as suffering from a disease or medical condition, and includes suppression of clinical relapse. A successful treatment according to the invention also includes remissions of all reparable symptoms but no remissions of irreparable symptoms. E.g. one of the symptoms of Mucke-Wells is the progressive nerve deafness which is normally irreparable and thus there is no expectation that this symptom may be treated. However, other reparable symptoms of Muckle-Wells such as skin rash, muscle pain fever, fatigue and conjunctivitis may be completely disappear in a successful treatment according to 15 the invention. Another measure of a successful treatment is the decrease of relevant biomarkers for Auto-Inflammatory Syndromes, e.g. Mucile-Wells, i.e. the decrease of serum amyloid protein (SAA) and c-reactive protein (CRP) to normal range, i.e. < 10 mg per L serum in patients. In the present description, the disease "Muckle-Wells" is among others (molecular pathology) determined according to its clinical symptoms which are acute febrile inflammatory episodes of arthritis and urticaria, progressive nerve deafness and optionally long term multi organ amyloidosis (about 25% of cases). Molecular pathology is caused by one or several mutations in the MEFV gene, located on chromosome 16p13, which codes for the protein named pyrin. IL-1j0 binding molecules as defined above, in particular IL-1p binding molecules according to the first and second aspects of the invention antibodies which have binding specificity for the antigenic epitope of mature human IL-1p which includes the loop comprising Glu 64, in particular antibodies which are capable of inhibiting the binding of IL-11p to its receptor; and antibodies to IL-1 P which have a Kp for binding to IL-1p3 of about about 10 nM, I nM, preferably 100 pM, more preferably 50 pM or less are herein referred to as Antibodies of the Invention. In yet another embodiment of the invention, the further uses of the IL-1 beta Compounds, e.g. the Antibodies of the Invention are as follows: Prevention and treatment of Inflammatory Bowl Disease (IBD), Juvenile arthritis, reactive arthritis, ankylsoing spondylitis, coronary syndrome, arterial restenosis, cystic fibrosis, Alzheimer's disease, multiple myeloma, arteriosclerosis, pulmonary fibrosis, Muckle-Wells and Chronic Obstructive Pulmonary Disease (COPD). For all indications disclosed herein this description (Indications of the inventions), the appropriate dosage will, of course, vary depending upon, for example, the particular IL-1beta Compounds, e.g. the Antibody of the Invention to be employed, the host, the mode of administration and the nature and severity of the condition being treated. However, in prophylactic use, satisfactory results are generally indicated to be obtained at dosages from about 0.05 mg to about 10 mg per kilogram body weight more usually from about 0.1 mg to about 5 mg per kilogram body weight. Antibody of the Invention is conveniently administered parenterally, intravenously, e.g. into the anteoubital or other peripheral vein, intramuscularly, or subcutaneously. 16 In yet another embodiment. the invention concerns a surprising frequency of dosing for therapeutic uses, i.e. the treatment schedule with IL-1 beta Compounds, preferably IL-1lbeta antibodies, more preferably ACZ885 (at a typical dose, e.g. between about 0.1 mg to about 50 mg, more preferably between 0.5 mg to 20 mg, even more preferably from 1 mg to 10 mg, of ACZ885 per kg body weight of the patient) may be once every week or less frequently, more preferably once every 2 weeks or less frequently, more preferably once every 3 weeks or less frequently, more preferably once every month or less frequently, more preferably once every 2 months or less frequently, more preferably once every 3 months or less frequently, even more preferably once every 4 months or less frequently, even more preferably once every 5 months or less frequently, or even more preferably once every 6 months or less frequently. Most preferred Is once every month. Pharmaceutical compositions of the invention may be manufactured in conventional manner. A composition according to the invention is preferably provided in lyophilized form. For immediate administration it is dissolved in a suitable aqueous carrier, for example sterile water for injection or sterile buffered physiological saline, If it is considered desirable to make up a solution of larger volume for administration by infusion rather as a bolus injection, it is advantageous to incorporate human serum albumin or the patient's own heparinised blood into the saline at the time of formulation. The presence of an excess of such physiologically inert protein prevents loss of antibody by adsorption onto the walls of the container and tubing used with the infusion solution. If albumin is used, a suitable concentration is from 0.5 to 4.5% by weight of the saline solution. The invention is further described by way of illustration in the following Examples. 17 EXAMPLES Example 1: ACZ885 Structure and making of ACZ885 are e.g. described in WO 02/16436. In short, the amino terminal sequences of heavy and light chain variable domains and the corresponding DNA sequences are given in SEQ ID NO:1 and SEQ ID NO:2 below, in which the CDRs are shown in Italic and underlined type. ACZ885 Heavy chain variable region SEQ ID NO:1 TCAG Q - 1 GTGCAGCTGGTGGAGTCTGGGGGAGGCGTGGTCCAGCCTGGGAGGTCCCTGAGACTCTCC V O L V E S G G G VV Q P G R S L R L S -21 TGTGCAGCGTCTGGATTCACCTTCAGTGTTTATGGOCATAACTGGGTCCGCCAGGCTCCA C A A 5 G F T F S V YG N W V R Q A P -41 CGCAAGGGGCTGGAGTGGGTGGCAATTATTTGCTATGATGGAGATAATCAATACTATGCA G K G L E W V A I I W Y D G D N Q Y YA -461 GACTCCGTGAAGGGCCGATTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTG S V K G R F T I 5 RON 0 K V T L Y L -81 CAAATGAACGGCCTGAGAGCCGAGGACACGGCTGTGTATTATTGTGCGAGAGLATCTTAGG Q M 0 G L R AE D T A V Y Y C A R D L R -101 ACTGGGCCTTTTGACTACTGGGGCCAGGCAACCCTGGTCACCGTCTCCTC P'5F F D Y W 0 Q G T L V T V 5 3 118 ACZ865 Light chain variable region SEQ ID NQ:2 TGAA E - 1 ATTGTGCTGACTCAGTCTCCAGACTTTCAGTCTGTGACTCCAAAGGAGAAAGTCACCATC I V L T Q S P D O Q S V T P K E K V T I -21 ACCTGCCGGGCCAGTCAGAGCATTGGTAGTAGCTTACACTGGTACCAGCAGAAACCAGAT T C R A SQ S I C S S L H W Y Q Q K P D -41 CAGTCTCCAAAGCTCCTCATCAAGTATGCTTCCCAGTCCTTCTCAGGGGTCCCCTCGAGG P X L L I K Y A S S SG V P S R -61 TTCAGTGGCAGTGGATCTGGGACAGATTTCACCCTCACCATCAATAGCCTGGAACCTGAA FS G S G S G T D F T L T I N S L E A E -81 GATGCTGCAGCTATTACTGTCATCAGAGTAGTAGTTTACCATTCACTTTCGGCCCTGGG D A A A Y Y C M Q S S L P F T F G P G -101 ACCAAAGTGGATATCAAA - 107 T X V D I K is Example 2: Biochemical and Biological Data of AC2885 The monoclonal antibody AC7 885 q foiinr tn nAitrslir thAAr.tivity of interleuikin-1p in vitm The monoclonal antibody is further characterized for its binding to recombinant human IL-10 by surface plasmon resonance analysis. The mode of neutralization is assessed by competitive binding studies with soluble IL-1 receptors. The biological activity of the antibody AOZ 885 towards recombinant and naturally produced IL-1p is determined in primary human cell, responsive to stimulation by IL-1p. Determination of dissociation equilibrium constant The association and dissociation rate constants for the binding of recombinant human IL-1 beta to ACZ885 are determined by surface plasmon resonance analysis. ACZ885 is immobilized, and binding of recombinant IL-1 beta in a concentration range from 1 to 4 nM is measured by surface plasmon resonance. The chosen format represents a monovalent interaction and thus permits treating the binding event of IL-1 beta to ACZ885 according to a 1:1 stoichiomery. Data analysis is performed using the BlAevaluation software. kon k, K . E_ [14MS] [10 IS] [pM1 ACZ885 11.0 +/- 0.23 3.3+/-0.27 30.5+1-2.6 n=22 Conclusion: ACZ85 binds to recombinant human IL-lbeta with vety high affinity. Example 3: Clinical trial with ACZ885 in order to asses the suitability of an IL-1beta Compound, e.g. ACZ885, an open-label, single center dose titration study of ACZ885 (human anti-IL-1beta monoclonal antibody) to assess the clinical efficacy, safety, pharmacokinetics and pharmacodynamics in patients with MW syndrome, characterized by NALP3 mutations, is conducted. Patients are treated by a single dose infusion of ACZ885 (10 mg/kg iv.). Clinical response is measured by improvement of symptoms (e.g., skin rash, muscle pain, fever, fatigue) and by lowering of acute phase proteins serum amyloid protein (SAA) and c-reactive protein (CRP). In addition, response to treatment is assessed by the analysis of mRNA obtained from peripheral blood cells, A second treatment (1 mg/kg iLv.) is given after re-appearance of clinical symptoms. Results: Clinical remission of symptoms (fever, rash, conjunctivitis) within 3 days, and decrease of CRP and SAA to normal range (< 10 mg/L) in patients. Clinical remission of symptoms with 19 first infusion lasts for at least 134 days, typically between 160 and 200 days. upon second treatment with lower dose, patients respond with improvement of symptoms and normalization of acute phase proteins. Analysis of mRNA obtained from peripheral blood cells demonstrates downregulation of the transcription of IL-lb and IL-lb-induced genes within 24h upon treatment with ACZ885. This suggests that ACZ885 is capable to interrupt a positive feedback loop in vivo which leads to self-sustained overproduction of IL-lb in these patients. This contention is also supported by initial characterization of PD/PD effects of ACZ885 which demonstrates the blockade of production of IL-lb upon treatment with ACZ885 in these patients. This particular ability of ACZS85 may contribute (be causal) for its long-lasting clinical affect. Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates - 20 -
Claims (10)
1. A method of treating an auto-inflammatory syndrome in a patient, the method comprising administering to a patient in need thereof an antibody comprising a human IL-I beta binding antibody, the antibody comprising: a first domain having an amino acid sequence as shown in SEQ ID NO: I and a second domain having an amino acid sequence as shown in SEQ ID NO:2, wherein said auto-inflammatory syndrome is type 2 diabetes and/or diabetes related pathologies such as retinopathy, wound healing, vascular diseases, and arterial restenosis after stenting or angioplasty, and wherein said antibody is parenterally administered at a dose between 0.1-50 mg of said antibody per kg body weight of the patient.
2. Method according to claim 1, wherein said antibody is ACZ885.
3. Method according to claim 1 or claim 2, wherein said antibody is administered at a dose between 0.5-20 mg of said antibody per kg body weight of the patient.
4. Method according to any one of claims I to 3, wherein said antibody is administered at a dose between 1-10 mg of said antibody per kg body weight of the patient.
5. Method according to any one of claims 1 to 4, wherein said antibody is administered once every week or less frequently.
6. Method according to any one of claims 1 to 5, wherein said antibody is administered once every month or less frequently.
7. Method according to any one of claims 1 to 6, wherein said antibody is administered to the patient subcutaneously.
8. Method according to any one of claims 1 to 7, wherein said antibody is administered to the patient intraveneously. 21 H:\amntntcnvovcn\NRPortbl\DCC\AMh6081367_.DOC-7/03/2014
9. Use of an IL-I beta binding antibody comprising: a first domain having an amino acid sequence as shown in SEQ ID NO: 1 and a second domain having an amino acid sequence as shown in SEQ ID NO:2, and in the manufacture of a medicament for the treatment of an auto-inflammatory syndrome in a patient, wherein the antibody is formulated for administration parenterally in a patient at a dose between 0.1-50 mg of said antibody per kg body weight of the patient, and wherein said auto-inflammatory syndrome is type 2 diabetes and/or diabetes related pathologies such as retinopathy, wound healing, vascular diseases, and arterial restenosis after stenting or angioplasty.
10. Method according to claim 1 or use according to claim 9, substantially as hereinbefore described with reference to any of the examples. 22
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2012203932A AU2012203932B2 (en) | 2007-05-29 | 2012-07-05 | New indications for anti-IL-I-beta therapy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07109084.9 | 2007-05-29 | ||
AU2008257520A AU2008257520B2 (en) | 2007-05-29 | 2008-05-28 | New indications for anti- IL-I-beta therapy |
AU2012203932A AU2012203932B2 (en) | 2007-05-29 | 2012-07-05 | New indications for anti-IL-I-beta therapy |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2008257520A Division AU2008257520B2 (en) | 2007-05-29 | 2008-05-28 | New indications for anti- IL-I-beta therapy |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2012203932A1 AU2012203932A1 (en) | 2012-07-26 |
AU2012203932B2 true AU2012203932B2 (en) | 2014-04-24 |
Family
ID=46651006
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2012203932A Active AU2012203932B2 (en) | 2007-05-29 | 2012-07-05 | New indications for anti-IL-I-beta therapy |
AU2012203931A Active AU2012203931B2 (en) | 2007-05-29 | 2012-07-05 | New indications for anti-IL-I-beta therapy |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2012203931A Active AU2012203931B2 (en) | 2007-05-29 | 2012-07-05 | New indications for anti-IL-I-beta therapy |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU2012203932B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117024587A (en) * | 2019-03-07 | 2023-11-10 | 瑞阳(苏州)生物科技有限公司 | Human IL-1beta protein binding molecule, encoding gene and application thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007050607A2 (en) * | 2005-10-26 | 2007-05-03 | Novartis Ag | Novel use of il-1beta compounds |
-
2012
- 2012-07-05 AU AU2012203932A patent/AU2012203932B2/en active Active
- 2012-07-05 AU AU2012203931A patent/AU2012203931B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007050607A2 (en) * | 2005-10-26 | 2007-05-03 | Novartis Ag | Novel use of il-1beta compounds |
Also Published As
Publication number | Publication date |
---|---|
AU2012203932A1 (en) | 2012-07-26 |
AU2012203931B2 (en) | 2014-04-24 |
AU2012203931A1 (en) | 2012-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10968272B2 (en) | Methods of treating a crystal induced arthropathy using IL-1beta antibodies | |
AU2012203932B2 (en) | New indications for anti-IL-I-beta therapy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |