AU2012202838A1 - Method and apparatus for resource management in handover operation - Google Patents

Method and apparatus for resource management in handover operation Download PDF

Info

Publication number
AU2012202838A1
AU2012202838A1 AU2012202838A AU2012202838A AU2012202838A1 AU 2012202838 A1 AU2012202838 A1 AU 2012202838A1 AU 2012202838 A AU2012202838 A AU 2012202838A AU 2012202838 A AU2012202838 A AU 2012202838A AU 2012202838 A1 AU2012202838 A1 AU 2012202838A1
Authority
AU
Australia
Prior art keywords
message
access network
3gpp
access
gtp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2012202838A
Inventor
Kamel Shaheen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2008268549A external-priority patent/AU2008268549A1/en
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to AU2012202838A priority Critical patent/AU2012202838A1/en
Publication of AU2012202838A1 publication Critical patent/AU2012202838A1/en
Abandoned legal-status Critical Current

Links

Abstract

A method and apparatus for resource management during handover operation includes initiating a handover from a first access network to a second access network. A policy update message is sent and a policy update confirmation message is received. A general packet radio service (GPRS) tunneling protocol (GTP) message and a radio access bearer (RAB) release message Sis sent and a GTP and RAB release acknowledgment is received. Connectivity is established for uplink and downlink transmission in the second access network. 30PP TRUSTEDIN D WTRU ACCESS 130NON-30PP 140 5 SERV[G N HSS/ PCRF IF ACCESS SARWSA W M 110 UPLINK AND DQWNLINK PAYLOAD A 1 60 170 180 190 PDUs TRAVERSE SOURCE SGSN WTRU lNLTIATES 810 800 HANDOVER TO 815 NON-3GPP 4 NON-3GPP SPECIFIC 825 ACCESS PROCEDURE ACCESS AUTHENTICATION AND AUTHORIZATION L3_ATTAC _TRIGGE PROXY BINDING UPDATE { PMIIPv6 TUNNEL 45POLICY UPDATE 45(NEW oW) -855 860 POLICY UPDATE POLICY INFORMATION UPDATE NEW OW CONFIRM 870 R O LICY UPDATE CONFIRM 865 OTF ~U]v TUNELNNEL __ RELEASE GTP TUNNEL ENDPOINTS AND RAB RESOURCES FIG.8A TO FIG.8B

Description

[0001] METHOD AND APPARATUS FOR RESOURCE MANAGEMENT IN FJANDOVER OPERATION [0002] FIELD OF INVENTION [0003] This application is related to wireless communications. [0004] BACKGROUND [0005] A wireless transmit/receive unit (WTRU), which in some cases may be a user equipment (UE), often undergoes handover during communication. The handover may occur from a trusted non-Third Generation Partnership Project (non-3GPP) Internet protocol (IP) access system to a 3GPP access system (evolved universal terrestrial radio access network (E-UTRAN)), and from a 3GPP access system (E-UTRAN) to a trusted non-3GPP IP access system. [0006] In addition, the handover may occur during a roaming or non roaming scenario. Figure 1 shows an example network architecture 100. As defined in Figure 1 and hereafter, the following reference points apply: [0007] S 2 a: Provides the user plane with related control and mobility support between trusted non 3GPP IP access and the packet data network (PDN) Gateway (GW). [0008] S2b: Provides the user plane with related control and mobility support between the evolved packet data gateway (ePDG) and the PDN GW. [0009] S2c: Provides the user plane with related control and mobility support between a WTRU and the PDN GW. This reference point is implemented over trusted and/or untrusted non-3GPP Access, and/or 3PP access. [0010] SS: Provides user plane tunneling and tunnel management between Serving GW and PDN GW. It is used for Serving GW relocation due to mobility and in case the Serving GW needs to connect to a non-collocated PDN GW for the required PDN connectivity. [0011] S6a: This interface is defined between mobility management entity (MME) and home subscriber server (HSS) for authentication and authorization. -1- [0012] S6c: The reference point between PDN GW in a home public land mobile network (HPLMN) and a 3GPP authentication, authorization and accounting (AAA) server for mobility related authentication if needed. This reference point may also be used to retrieve and request storage of mobility parameters. [0013] S~d: The reference point between the Serving Gateway in a visited public land mobile network (VPLMN) and a 3GPP AAA Proxy for mobility related authentication if needed. This reference point may also be used to retrieve and request storage of mobility parameters. [0014] 87: Provides transfer of quality of service (QoS) policy and charging rules from policy and charging rules function (PCRF) to policy and charging enforcement point (PCEF), The allocation of the PCEF is for further study (FFS). [00151 S8b: The roaming interface in case of roaming with home routed traffic. It provides the user plane with related control between Gateways in the VPLMN and the HPLMN. [0016] 89: Indicates the roaming variant of the S7 reference point for the enforcement in the VPLMN of dynamic control policies from the HPLMN, [0017} SGi: The reference point between the PDN Gateway and the packet data network. The packet data network may be an operator external public or private packet data network or an intra operator packet data network, e.g. for provision of IP multimedia subsystem (IMS) services. This reference point corresponds to Gi and Wi functionalities and supports any 3GPP and non-3GPP access systems. [0018] Wa*: Connects the untrusted non-3GPP IP access with the 3GPP AA server/proxy and transports access authentication, authorization and charging-related information in a secure manner. [0019] Ta*: Connects the trusted non-3GPP IP Access with the 3GPP AAA server/proxy and transports access authenticatin, authorization, mobility parameters and charging-related information in a secure manner. [0020] Wd*: Connects the 3GPP AAA proxy, possibly via intermediate networks, to the 3GPP AAA server. Differences compared to Wd are FFTS. -2- [00211 Wm*: This reference point is located .between 3GPP AAA Server/Proxy and ePDG and is used for AAA signaling, (transport of mobility parameters, tunnel authentication and authorization data). [0022] Wn*: This is the reference point between the untrusted Non-3GPP IP Access and the ePDG. Traffic on this interface for an initiated tunnel has to be forced towards ePDG. [0023] Wx*: This reference point is located between 3GP? AAA Server and HSS and is used for transport of authentication data. [0024] Usage of S6, S8 and S9 for providing a visited network with static/dynamic policies is under consideration. It is also under consideration if the two depicted S7 interfaces are different. The SI interface for the E-UTRANis the same for both the architectures. [0025] Figure 2 is a signal diagram 200 of a conventional handover from a 3GPP Access UTRAN to a trusted non-3GPP IP Access network. The handover scenario involves the S2a reference point and includes scenarios using PMTPv6 and mobile IP4 (MIP4) with foreign agent care-of-address (FACoA). For the FACoA mode of MIPv4, it may be considered that the S2a runs between the FA in the non-3GPP system and the PDN GW in the HPLMN. While the WTRU is connected in the 3GPP access system, PMIPv6 or general packet radio service (GPRS) tunneling protocol (GTP) is used over S5. The dual stack mobile IPv6 (DSMIPv6) protocol used over S2c is compliant to the DSMIPv6 specification over the S2a interface with PMIPv6 for a non-roaming scenario. The signaling is as follows: 1. The WTRU discovers the trusted non-3GPP IP access and decides to initiate handover from the currently used UTRAN access to the discovered trusted non-GSUP IP access system. The mechanism that aids the WTRU to discover trusted non-3GPP IP access, are specified in section on Network Discovery and Selection. At this point both uplink and downlink user data is transmitted via the following: Bearers between WTRU and source access network, GTP tunnel(s) between source 3GPP access network, Serving GW and PDN GW. -3- 2. The initial Non-3GPP access specific L2 procedures are performed. These procedures are Non-3GPP access specific and are outside the scope of 3GPP. 3. The EAP authentication procedure is initiated and performed involving the WTRU, trusted Non-3GQPP IP Access and the SGPP AAA Server, In the roaming case, there may be several AAA proxies involved. As part of the authentication procedure, the IP address of the PDN GW that needs to be used is conveyed to PMA in the trusted Non-3GPP IP Access. 4. After successful authentication and authorization, the L3 attach procedure is triggered. 5, PMA function of trusted Non-SGPP IP Access sends Proxy Binding Update message to PDN GW. 6. The PDN GW processes the proxy binding update and creates a binding cache entry for the WTEU. The PDN GW allocates IP address for the WTRU. The PDN GW then sends a proxy binding acknowledgement to the PMA function in Trusted Non-SGPP IP Access, including the IP address(s) allocated for the WTRU. The IP address allocated is same as that was assigned to WTRU before over 3GPP access. 7. The PMIPv6 tunnel is set up between the Trusted Non-3GPP IP Access and the PDN GW. 8. L3 attach procedure is completed. IP connectivity between the WTRU and the PDN GW is set for uplink and downlink direction over the trusted non 3GPP IP access. 9. Resource clean up for the source SGPP access is initiated by performing the necessary procedures based on the procedures specified in the 3GPP standard. PDN GW should retain the IP connectivity for the WTRU. [00261 Figure 3 is a signal diagram 300 of a conventional trusted non-3GPP IP access to E-UTRAN with PMIPv6 handover for a non-roaming scenario. The signaling is as follows: 1. The UE uses a trusted non-3GPP access system and is being served by PDN GW. -4- 2. The UE discovers the E-UTRAN access system and determines to transfer its current sessions, (i.e., handover), from the currently used non-3GPP access system to the discovered E-UTRAN access system. The mechanisms that aid the UE to discover the E-UTRAN access system. 3. The UE sends an Attach Request which is routed by E-UTRAN to an MME instance in the EPS, 4. The MME contacts the HSS and authenticates the UE. As part of the authentication procedure, the IP address of the PDN GW that needs to be used is conveyed to the MIME. 5. After successful authentication, the MME performs a location update procedure with the HSS. 6. The MME selects a serving GW and sends a Create Default Bearer Request (ISI, MME Context ID) message to the selected Serving GW. It also includes the IP address of the PDN GW which was provided by the HSS. 7. Based on tbe Create Default Bearer Request from the MIME, the Serving GW initiates the PMIPv6 registration procedure towards the PDN GW by sending a Proxy Binding 'Update. 8. The PDN GW responds with a Proxy Binding ACK and updates its mobility binding which effectively switches the PMIPv6 tunnel from the non 3GPP access network to the Serving GW. In the proxy Binding ACK, the PDN GW replies with the same IP address or prefix that was assigned to the UE earlier. A PMI Pv6 tunnel exists now between PDN GW and Serving GW. 9. The Serving GW returns a Create Default Bearer Response message to the ME. This message also includes the IP address of the UE. This message also serves as an indication to the MME that the binding has been successful. 10. The MME sends an Attach Accept message to UE through E-UTRAN. 11 Radio-bearer and S1-U bearer is setup. 12. The UE resumes data communication over E-UTRAN. [0027] Figure 4 is a signal diagram 400 of a conventional E-UTRAN to trusted non-3GPP IP access with PMIPv6 handover for a non-roaming scenario. The signaling is as follows: -5- 1. The UE uses a trusted non-3GPP access system and is being served by PDN GW. 2. The UE discovers the E-UTRAN access system and determines to transfer its current sessions (i.e. handover) from the currently used non-3GPP access system to the discovered E-UTRAN access system. The mechanisms that aid the UE to discover the E-UTRAN access system are specified in the 3GPP standards. 3. The UE sends an Attach Request which is routed by E-UTRAN to an MMVIE instance in the EPS as specified in TS 23.401. 4. The ME contacts the HSS and authenticates the UE. As part of the authentication procedure, the IP address of the PDN GW that needs to be used is conveyed to the lMME. 5. After successful authentication, the ME performs a location update procedure with the HSS. 6. The MME selects a serving GW and sends a Create Default Bearer Request (IMSI, MME Context ID) message to the selected Serving GW. It also includes the IP address of the PDN GW which was provided by the HSS. 7. Based on the Create Default Bearer Request from the MME, the Serving GW initiates the PMIPv6 registration procedure towards the PDN GW by sending a Prozy Binding Update. 8. The PDN GW responds with a Proxy Binding ACK and updates its mobility binding which effectively switches the PMIPv6 tunnel from the non 3GPP access network to the Serving GW. In the proxy Binding ACK, the PDN GW replies with the same IP address or prefix that was assigned to the UE earlier. A PMIPv6 tunnel exists now between PDN GW and Serving GW. 9. The Serving GW returns a Create Default Bearer Response message to the MME. This message also includes the IP address of the UE, This message also serves as an indication to the MME that the binding has been successful. 1.0. The MME sends an Attach Accept message to UE through E-UTRAN. 11. Radio-bearer and S1-U bearer is setup. 12. The UE resumes data communication over E-UTRAN. -6- [00281 Figure 5 is a signal diagram 500 of a conventional procedure for implementing a handover from a trusted non-3GPP IP access system with DSMIPv6 over 2e to a 3G-PP access system in a conventional non-roaming scenario. In this scenario, the session starts in a trusted non-3GPP access system, (e.g., E-UTRAN), using DSMIPv6 in a non roaming scenario. Subsequently, the session hands over to a 3GPP access system. The signaling is as follows: 1. The 'UE uses a trusted non-SGPP access system. It has a DSMIPv6 session with the PDN GW. 2. The UE discovers the 3GPP access system and determines to handover from the currently used trusted non- 3GPP access system to the discovered 3GPP access system. The mechanisms that aid the UE discover the 3GPP access system are specified in the 3GPP standards. 3. The UE sends an Attach Request which is routed by 3GPP to an MME instance in the EPC. 4. The MME contacts the HSS / 3GPP AAA and authenticates the UE. As part of the authentication procedure, the TP address of the PDN GW that needs to be used in 3GPP access is conveyed to the NME. 5. After successful authentication, the lVME performs the location update procedure with H1SS. 6. The MME selects a Serving GW and sends a Create Default Bearer Request (including IMSI, MME Context ID, and PDN GW IP address) message to the selected Serving GW. 7. a) For IETF based S5, the Serving GW initiates the PMIPv6 registration procedure towards the PDN GW by sending a Proxy Binding Update. If the NAI of the user is not included in step 6, the Serving GW has to derive it by other means. b) For GTP based S5, the Serving GW sends a Create Bearer Request message to the PDN GW. 8. a) For IETF based S5, the PDN GW responds with a Proxy Binding Ack and updates its mobility binding which effectively switches the DSMJIPv6 -7tunnel from the non-3GPP access network to the PMIPv6 tunnel to the Serving GW. In the proxy Binding Ack, the PDN GW includes the same IP address or prefix that was assigned to the UE earlier. b) For GTP based S5, the PDN GW responds with a Create Bearer Response message to the Serving GW. The Create Bearer Response contains the same IP address or prefix that was assigned to the UE earlier. 9. The Serving GW returns a Create Default Bearer Response message to the MME. This message also includes the IP address of the UE. This message also serves as an indication to the MME that the binding has been successful. 10. The MIME sends an Attach Accept message to UE through 3GPP access. The 3GPP access system initiates the radio bearer setup procedure. The 3GP access system responds with. an Attach Complete message. 11. The UE may send a BU to the PDN GW to de-register its DSMIPv6 binding that was created while the UE was in non-3GPP access system. [0029] Figure 6 is a signal diagram 600 of a conventional procedure for implementing a handover from a 3GPP access system to a trusted Non-3G PP IP access system with DSMIPv6 over 92c in a non-roaming scenario. In this scenario, the session starts in 3GPP access, (e.g., E-UTRAN), using PMIPv6 or GTP over S5 or no SE is used (co-located Serving GW and PDN GW). The session hands over to the trusted non-3GPP access system that does not use PMIPv6 where the UE will receive a different prefix than the one it was using in SGPP access system. The UE subsequently initiates DSMIPv6 with the same PDN GW to maintain the IP session. The signaling is as follows: L, The UE uses a SGPP access system. It has an IP address that is supported over 5 interface. 2. At this point the UE decides to initiate non-3GPP access procedure. The decision is based on any number of reasons e.g. local policies of the UE. 3. The UE performs access authentication and authorization in the non 3GPP access system. The 3GPP AAA server authenticates and authorizes the UE for access in the non-3GPP system. Note that PDN GW selection and retrieval for host based mobility is still an FFS. -8- 4. The non-3GPP access system is not PMIPv6 capable or it decides not to use PMIPv6. Therefore, the UE gets an IP address that is different from the IP address it was using in SGPP access system. Since the UE obtains an IP address that is not the same as the address from 3GPP system, the UE decides to initiate DSMIPv6 procedures to maintain its IP sessions. 5. The UE may discover PDN G(W address using MIPv6 bootstrapping procedures. 6. The UE may also perform IKEv2 and IPSec SA establishment with the PDN GW that was discovered at step 5. This happens if RFC 4877 is used to establish SA between the UE and the PDN GW. This step may involve authentication and authorization by the 3GPP AAA system. 7. The UE sends a DSMIPv6 BU message to the PDN GW to register its CoA, The PDN GW authenticates and authorizes the UE sends back a BA including the IP address (home address) which the UE was using in the 3GPP access. 8. The UE continues with IP service using the same IP address. [0030] It would therefore be beneficial to provide a method and apparatus that manages system resources after a successful handover. [0031] SUMMARY [0032] A method and apparatus for resource management during handover operation are disclosed. The method includes initiating a handover from a first access network to a second access network. A policy update message is sent and a policy update confirmation message is received. A general packet radio service (GPES) tunneling protocol (GTP) message and a radio access bearer (RAB) release message is sent and a GTP and RAB release acknowledgment is received. Connectivity is established for uplink and downlink transmission in the second access network. -9- [0033] BRIEF DESCRIPTION OF THE DRAWINGS [0034] A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein: [0035] Figure 1 shows an example network architecture; [0036] Figure 2 is a signal diagram of a conventional handover from a 3GPP Access UTRAN to a trusted non-3GPP IP Access network; 10037] Figure 3 is a signal diagram of a conventional trusted non-3GPP IP access to E-UTRXN with PMIPv6 handover for a non-roaming scenario; [0038] Figure 4 is a signal diagram of a conventional E-TJ"fRAN to trusted non-3GPP IP access with PMTPv6 handover for a non-roaming scenario; [0039] Figure 5 is a signal diagram of a conventional procedure for implementing a handover from a trusted non-3GPP IP access system with DSMIPv6 over S2c to a 3GPF access system in a conventional non-roaming scenario; [0040) Figure 6 is a signal diagram of a conventional procedure for implementing a handover from a 3GPP access system to a trusted Non-3GPP IP access system with DSMIPv6 over S2c in a non-roaming scenario; [0041] Figure 7 is an example functional block diagram of a WTRU and a base station in wireless communication with one another; [0042] Figures 8A-8B are a signal diagram of a handover from a 3GPP Access (UTRAN) to trusted non-3GPP IP access network over S2a With PMIPv6; [0043] Figures 9A-9B are a signal diagram of a handover from a trusted non-3GPP IP access network to an E-UTRAN with PMIPv6; [0044] Figure 10A-10B are a signal diagram of a handover from an E UTRAN to trusted non-SGPP IP access network with PMIPv6; [0045] Figure 11A-11B are a signal diagram of a handover from a trusted non-3GP IP access network with DSMIPv6 over S2c to a 3GPP access network; [0046] Figures 12A-12B are a signal diagram of a handover from a 3GP access network to a trusted non-3GPP IP access network with DSMIPv6 over S2c; and -10- [0047] Figure 13 is a signal diagram of an LTERA update procedure. [0048] DETAILED DESCRIPTION [0049] When referred to hereafter, the terminology "wireless transmit/receive unit (WTRU)" includes but is not limited to a user equipment (UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital. assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment. When referred to hereafter, the terminology "base station" includes but is not limited to a Node-B, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment. [0050] Figure 7 is an example functional block diagram 700 of a WTRU 110 and a base station 120. As shown in Figure 7, the WTRU 110 is in communication with the base station 120. [0051] In addition to the components that may be found in a typical WTRU, the WTRU 110 includes a processor 115, a receiver 116, a transmitter 117, and an antenna 118. The receiver 116 and the transmitter 117 are in communication with the processor 115. The antenna 118 is in communication with both the receiver 116 and the transmitter 117 to facilitate the transmission. an.d reception of wireless data. The processor 115 of the WTRU 1.10 is configured to perform handovers. [0052] In addition to the components that may be found in a typical. base station, the base station 120 includes a processor 125, a receiver 126, a transmitter 127, and an antenna 128. The receiver 126 and the transmitter 127 are in communication with the processor 125. The antenna 128 is in communication with both the receiver 126 and the transmitter 127 to facilitate the transmission and reception of wireless data. The processor 125 of the base station is configured to perform handovers. [0053] Figures 8A-8B are a signal diagram 800 of a handover from a 3GPP Access (EUTRAN) to trusted non-3GPP IP access network over S2a with PMIPv6. The devices communicating in the signal diagram 800 include a WTRU -11- 110, a 3GPP access device 130, a trusted non-3GPP access network 140, an SGSN 150, a serving SAE GW 160, a PDN SAE GW 170, an. HSS/AAA server 180, and a PCRF 190. [0054] The WTRU 110 discovers the trusted non-3GPP IP access network 140 and decides to initiate handover from the currently used UTRAN access to the discovered trusted non-3GPP IP access network (815). At this point, both uplink and downlink user data is transmitted via bearers between the WTRU 110 and source access network, a GTP tunnel, or tunnels, between the source 3GPP access network 130, the serving SAE GW160 and the PDN SAE GW 170 (810). [0055] The initial Non-3GPP access specific L2 procedures are then performed between the WTRU 110 and the trusted non-3GPP IP access network 140 (820), These procedures are Non-3GPP access specific and are outside the scope of 3GPP. [0056] The EAP authentication and authorization procedure is initiated and performed involving the WTRU 1 10, trusted Non-3GPP IP Access network 140 and the 3GPP HSS/AAA server 180 (825). In a roaming situation, there may be several AAA proxies involved. As part of the authentication procedure, the IP address of the PDN SAE GW 170 to be used may be conveyed to the proxy mobile IP agent (PMA) in the trusted Non-3GPP IP Access network 140. [0057] After successful authentication and authorization, the layer three (L3) attach procedure is triggered (830). The PMA function of the trusted Non 3GPP IP Access network sends a Proxy Binding Update message (835) to the PDN SAE GW 170, which processes the proxy binding update message and creates a binding cache entry for the WTRU 110. The PDN SAE GW 170 then allocates an IP address for the WTRU 110 and sends a proxy binding acknowledgement (ACK) message (840) to the PMA function in the trusted Non 3GPP IP Access network 140. The proxy binding ACK message (840) may include the IP address, or addresses, allocated for the WTR'U 110. The IP address allocated may be the same as what was assigned to the WTRU 110 before handover from the 3GPP access network 130. -12- [0058] The PMIPv6 tunnel is set up between the trusted Non-SQPP IP Access network 140 and the PDN SAE GW 170 (845). A policy update message (850) is sent from the PDN SAE GW 170 to the PCRF 190, indicating the new GW. The PCRF 190 then sends a policy update confirmation message 855 to the PDN SAE GW 170. The PCRF 190 sends a policy information update message (860) to the trusted non-3GPP access network 140, which includes the new GW. The trusted non-3GPP access network 140 sends a policy update confirmation message (865) to the PCRF 190. [0059] In step 870, GTP tunnel endpoints and radio access bearer (RAB) resources are to be released. The PDN SAE GW 170 sends a GTP and RAB release message (875) to the SGSN 150, wbich forwards the RAB release message (876) to the 3GPP access network 130 to release tunnel endpoints and radio resources. The 3GPP access network 130 then sends an RAB release ACK message (877) to the SGSN 150, which forwards it in the form of a GTP and RAB release ACK message (878) to the PDN SAE GW 170. [0060] At this stage, the L3 attach procedure is completed (step 880). IP connectivity between the WTRU 110 and the PDN SAE GW 170 is set for both the uplink and downhnk directions over the trusted non-3GPP IP access network 140 (885). Resource clean up for the source 3GPP access network 130 is then initiated by performing the necessary 3GPP release procedure (890). The PDN SAE GW 170 should retain the IP connectivity for the WTRU 110 at this point. [0061] Figures 9A-9B are a signal diagram 900 of a handover from a trusted non-FGPP IP access network to an E-UTRAN with PMIPv6. The devices communicating in the signal diagram 900 include a WTVRU 110, a trusted non SGPP access network 135, an E-UTRAN 145, a mobility management entity (MME) 155, a serving GW 165, and old MME 175, a PDN GW 185, an HSS/AAA server 186, and a PCRF 190. [0062] In this scenario, the WTRU 110 begins with using the trusted non 3GPP access network 135 and is being served by the PDN GW 185 over a PMIPv6 tunnel (step 910). The WTRU 110 discovers the LTE E-UTRAN access network 145 and determines to transfer its current sessions, via handover, from -13the currently used non-3GPP access system to the discovered E-UTRAN access network (step 915). [0063] The WTRU 110 sends an Attach Request message (920), which is routed by the E-UTRAN access network 145 to the MME 155, which in turn contacts the HSS!AAA 186 and authenticates the WTRU 110 (step 925). As part of the authentication procedure, the IP address of the PDN GW 185 is conveyed to the MME 155. After successful authentication, the MME 155 performs a location update procedure with the HSSIAAA 186, that includes subscriber data retrieval (step 926). [0064] The MME 155 selects a serving GW 165 and sends a Create Default Bearer Request (IMSI, MME Context ID) message (930) to the selected Serving GW 165 that includes the IP address of the PDN GW 185 was provided by the HSS/AAA 186. [00651 Based on the Create Default Bearer Request from the MME 155, the Serving GW 165 initiates the PMiPv6 registration procedure towards the PDN GW 185 by sending a Proxy Binding Update (BU) message (935). The PDN GW 185 responds with a Proxy Binding ACK (935) and updates its mobility binding, effectively switching the PMIPv6 tunnel from the trusted non-3GPP access network 1.35 to the Serving GW 165. In the proxy Binding ACK message (936), the PDN GW 185 replies with the same IP address or prefix that was assigned to the WTRU 110 earlier. A PMIPv6 tunnel exists now between the PDN GW 185 and Serving GW 165. [0066] The Serving GW 165 returns a Create Default Bearer Response message (940) to the MME 1.55 that includes the IP address of the WTRU 110. In addition, this message also serves as an indication to the MiME 155 that the binding has been successful. [00671 The PDN GW 1.85 sends a policy update message (941) to the PCRF 190 which replies by sending a policy update confirmation message (942) to the PDN GW 185. -14- [0068] The MIME 155 sends an Attach Accept message (943) to the WPRU 110 through the E-UTRAN 145. The attach accept message (943) includes the IP address of the WTRU 110, [0069] The PCRF 190 then sends a policy information update message (950) to the serving GW 165 with information on the new GW, and Radio-bearer and Si bearer is setup (step 955) and the serving GW sends a policy update confirmation message (956) to the PCRF 190. [0070] To complete the handoff, the PDN GW 185 sends a request to release the tunnel endpoints and the radio resources message (960) to the trusted non-3GPP IP access entity 135, which returns a release acknowledgement (ACK) message (965) of the release to the PDN GW 185. The radio and S1 bearer are then setup (step 970) and the PMIPv6 tunnel iq established (step 975). [0071] Figure IA- 10B are a signal diagram 1000 of a handover from an E UTRAN to trusted non-SGPP IP access network with PMIPv6. The devices communicating in the signal diagram 1000 include a WTRU 110, a trusted non 3GPP access network 135, an E-UTRAN 145, an MME3 155, a serving GW 165, a PDN GW 185, an HSS/AAA server 186, and a PCRF 190. In this scenario, both uplink and downlink user data is transmitted via the following: radio and SI Bearers between the WTRU 110 and source access network (1011), and GTP tunnel(s) between the source 3GPP access network, Serving GW 165 and PDN GW 185 (1010). [0072] The WTRU 11.0 discovers the trusted non-3GPP IP access system 135 and decides to initiate handover from the currently used EUTRAN access network 145 to the discovered trusted non-3GPP IP access system 135 (step 1015). The initial Non-3GPP access specific L2 procedures are performed (step 1020). [0073] The EAP authentication procedure is initiated and performed (step 1025), involving the WTRU 110, trusted Non-3GPP IP Access system 135 and the 3OPP HSS/AAA Server 186. In the roaming case, there may be several AAA proxies involved. As part of the authentication and authorization procedure, the IP address of the PDN GW 1025 to be used is conveyed to PMA in the trusted -15- Non-SGPP IP Access system 135. After successful authentication and authorization, the L3 attach procedure is triggered (step 1030). [0074] The PMA function of trusted Non-3GPP IP Access system 135 sends Proxy Binding Update message (1035) to the PDN GW 185, which processes the prosy binding update and creates a binding cache entry for the WTRU 110 and allocates and IP address for the WTRU 110. The PDN GW 185 then sends a proxy binding acknowledgement message (1040) to the PAD&A function in Trusted Non-3GPP IP Access system 136 that includes the IP address, or addresses, allocated for the WTRU 110. The IP address allocated is the same as that assigned to the WTRU 110 over 3GPP access. [0075] The PMIPv6 tunnel is set up between the Trusted Non-3GPP IP Access system 135 and the PDN GW 185 (step 1045). [0076] The PDN GW 185 sends a policy update message (1046) to the PCRF 190, which responds with a policy update confirmation message (1047). The PCRF 1.90 then sends a policy information update message (1048) to the trusted non-SQPP IP access entity 135 with information on the new GW. The trusted non-3GPP IP access entity sends a policy update confirmation message (1050) back to the PCRF 190. [0077] To complete the handoff, the PDN GW 185 sends a request to release the tunnel endpoints and the radio resources message (1055) to the serving GW 165, which forwards a GPRS tunnel protocol (GTP) and radio access bearer (RAB) release request message (1060) to the MME 155 that is forwarded to the E-UTRAN 145. The E-UTRAN 145 sends a GTP and RAB release ACK message 1065 to the MME 155 which forwards the release ACK message (1070) to the PDN GW 185. At this point, the L3 attach procedure is completed (step 1075). IP connectivity between the WTRU 110 and the PDN GW 185 is set for uplink and downlink direction over the trusted non- 3GPP IP access entity 135. [0078] Figures 11A-11B are a signal diagram 1100 of a handover from a trusted non-3GPP IP access network with DSMIPv6 over S2c to a SGPP access network. The devices communicating in the signal diagram 1100 include a WTRU 110, a trusted non-3GPP access network 135, an E-UTRAN 145, a mobility -16management entity (MME) 155, a serving GW 165, and old IME 175, a PDN GW 185, an ISS/AAA server 186, and a PCRF 190. [0079] In this scenario, the session starts in a trusted non-3GPP access system, (e.g. E-UTRAN), using DSMIPv6 in a non roaming scenario via a DSMIPv6 tunnel 1110 between the WTRU 110 and the PDN G-W 185. [0080] In step 1115, the WTRU 110 discovers the 3GPP access system and determines to handover from the currently used trusted non-3GPP access system 135 to the discovered 3GPP access system. The WTRU 110 sends an, Attach Request message (1120) which is routed by the 3GPP access system to the MME 155. The MME 155 contacts the ISS/AAA server 186 and authenticates the WTRU 110 (step 1125), As part of the authentication procedure, the IP address of the PDN GW 185 used in SGPP access is conveyed to the MME 155. After successful authentication, the MME 1.55 performs location update procedure with the IISS/AAA server 186 (step 1130). [0081] The MME 155 selects a Serving GW 165 and sends a Create Default Bearer Request (including IMSI, MME Context ID, and PDN GW IP address) message (1135) to the selected Serving GW 165. [0082] For IETF based S5, the Serving GW 165 Initiates the PMIPv6 registration procedure towards the PDN GW 185 by sending a Proxy Binding Update message (1140). If the NAI of the user is not included, the Serving GW 165 may derive it. The PDN GW 185 responds with a Proxy Binding ACK message (1145) and updates its mobility binding which effectively switches the DSMIPv6 tunnel from the non-3GPP access network to the PMIPv6 tunnel to the Serving GW 165. In the proxy Binding Ack message (1145), the PDN GW 185 includes the same IP address or prefix that was assigned to the WTRU 110 earlier. [0083] For GTP based S5, the Serving GW 165 sends a Create Bearer Request message (1146) to the PDN GW 185, which responds with a Create Bearer Response message (1147) to the Serving CAW 165. The Create Bearer Response message (1147) contains the same IP address or prefix that was assigned to the WTRU 110 earlier. -17- [0084] The Serving GW 165 returns a Create Default Bearer Response message (1155) to the MME 155. This message also includes the IP address of the WTRU 110. This message also serves as an indication to the MME 155 that the binding has been successful. A policy update message (1150) indicating a new GW is sent from the PDN GW 185 to the PCRF 190. The PCRF 190 sends a policy update confirmation message 1156 to the PDN GW 185. [0085] The PCRF 190 the sends a policy information update message 1157 to the serving GW 165, which responds with a policy update confirmation message 1159. [0086] In step 1158, radio bearer (RBI) and S1-U bearer establishment is performed and attachment in EUTRAN is completed. This may occur with the MME 155 sending an Attach Accept message to the WTRU 110 through 3GPP access and the 3GPP access system initiating the radio bearer setup procedure. The SGP? access system may respond with an Attach Complete message. The radio and SI bearer are then setup up (step 1160), and a PMIPv6/GTP tunnel is established between the serving GW 1.65 and the PCRF 190 (step 1161). [00871 The PDN GW 185 sends a release resources message (1165) to the trusted non-3GPP IP access system 135, and the trusted non-SGPP IP access system 135 sends a release acknowledgement message 1170 to the PDN GW 185. [0088] At this point, the WTRU 110 may send a BU to the PDN GW 185 to de-register its DSMIPv6 binding that was created while the WTRU 110 was in the non-3GPP access system (step 11.75). [0089] Figures 12A-12B are a signal diagram 1200 of a handover from a 3PP access network to a trusted non-3GPP IP access network with DSMIPv6 over S2c. The devices communicating in the signal diagram 1100 include a WTRU 110, a trusted non-SGPP access network 135, an E-UTRAN 145, a mobility management entity (MME) 155, a serving GW 165, and old MME 175, a PDN GW 1,85, an HSS/AAA server 186, and a PORF 190. In this scenario, the session starts in 3GPP access, (e.g., E-UTRAN) using PMIPv6 or GTP over S5. Alternatively, S5 is not used, such as where the serving GW 165 and the PDN OW 185 are co-located. The session hands over to the trusted non-3GPP access -18system 135 that does not use PMIPv6 where the WTRU 10 receives a different prefix than the one it was using in 3GPP access system. The WTRU 110 subsequently initiates DSMIPv6 with the same PDN GW 185 to maintain the IP session. [0090] In step 1210, the WTRU 110 uses a 3GPP access system and has an IP address that is supported over the 85 interface. A PMIPv6/GTP tunnel exsts between the serving GW 165 and the PDN GW 185. [0091) The WTRU 110 discovers the trusted non-3GPP access system 135 and initiates the non--3GPP access procedure (step 1215). The decision may be 'based on a number of reasons, such as the local policies of the WTRU 110. [0092] In step 1220, the WTRU 110 performs access authentication and authorization in the non-SGPP access system. The 3GPP HSS/AAA server 186 authenticates and authorizes the WTRU 110 for access in the non-3GPP system. [0093] A CoA configuration (step 1225) occurs between the WTRU 110 and the trusted non-SGPP IP access system 135. The non-3GPP IP access system 135 may not be PMIPv6 capable or it may not use PMIPv6. Therefore, the WTRU 110 may receive an IP address that is different from the IP address it was using in 3GPP access system. Since the WTRU 110 obtains an IP address that is not the same as the address from the 3GPP system, the WTRU 110 may initiate DSMIPv6 procedures to maintain its IP sessions. [0094] In step 1230, the WTRU 110 may discover the PDN GW 185 address using MIPv6 bootstrapping procedures. Additionally, the WTRU 110 may also perform IKEv2 and IPSec SA establishment with the PIN GW (step 1235). This happens if .PC 4877 is used to establish SA with between the WTRU 110 and the PDN GW 185. This may also involve authentication and authorization by the 3GPP T-ISS/AAA system 1.86 (step 1236). [0095] The WTRU 110 then sends a DSMiPv6 BU message (1240) to the PDN GW 185 to register its CoA. The PDN GW 185 authenticates and authorizes the WTRU 110 sends back a BA including the IP address, or home address, which the WTRU 110 was using in the 3GPP access system. A policy update message (1245) indicating a new GW is sent from the PDN GW 1.85 to the -19- PCRF 190, which responds with a policy update confirmation message to the PDN GW 185. [0096] The PCRF 190 then sends a policy information update message (1246) to the trusted non-3GPP IP access system 135. The trusted non-3GPP IP access system 135 sends a policy update confirmation message to the PCRF 190. [0097] A DSMIPv6 tunnel is established (step 1250), and GTP tunnel endpoints and RAB resources are released (step 1255). This may be accomplished by the PDN GW 185 sending a release GTP tunnel endpoints and RAB resources message 1260 to the serving GW 165, which in turn forwards the RAB release message 1261 to the E-UTRAN 1.45. The E-UTRAN 145 sends an RAB release acknowledgement message 1265 to the serving GW 1.65, which forwards a GTP and RAB release ACK message 1270 to the PDN GW 185. At this point, the WTRU 110 may continue with IP service using the same IP address. [0098] Figure 13 is a signal diagram 1300 of anLTERA update procedure. The devices communicating in Figure 13 are an LTE WTRU 110, an eNode-B 120, and an LTE MME/UPE 155. [00991 The moving LTE WTRU 110 is in anLTEIDLE state (CELLPCH) in step 1310. The LTE WTRU 110 enters a new LTE-RA, (i.e., changes its cell), camps on a new BCC and receives the system information broadcast (CELLID) to determine the new LTERA the cell belongs to (step 1315) [00100] In step 1340, the LTE WTRU 110 is in the LTE-active state (CELLDCH) and performs LTERA update procedures by sending an LTERA update message (1325) containing the temporary identity of the LTE WTRU 110. The new eNode-B 120 determines the target MME[UPE 155 (stop 1330) and routes the LTERA update message (1335) to the correct MME / UPE 155. In step 1340, the LTE MME/TUPE 155 recognizes that the LTE WTRU 110 is in the LTE-active state (CELLDCH) and sends an LTERA update confhrmation message 1345, which assigns the LTE WTRU 110 to a new LTERA and orders it back to the LTE JDLE state. -20- [00101] The LTE WTRU 110 sends an LTERA update complete message (1.350) to the LTE MME/UPE 1.55. The LTE WTRU 1.10 then re-enters the LTE IDLE state (CELLPCH) (step 1360). A reduction of network attachments may occur as a result of the multi-to-multi relationship between the eNode-B 120 and -the LTE MME I UPE 155. [00102] Although features and elements are described above in particular combinations, each feature or element can be used alone without the other features and elements or in various combinations with or without other features and elements. The methods or flow charts provided herein may bo implemented in a computer program, software, or firmware incorporated in a computer readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory (ROM), a random access memory (RAM), a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-,optical media, and optical media such as CD-ROM disks, and digital versatile disks (DVDs). [00103] Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor (DSP), a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs) circuits, any other type of integrated circuit (IC), and/or a state machine. [00104] A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (CE), terminal, base station, radio network controller (RNC), or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth@ module, a frequency modulated (FM) radio unit, a liquid crystal display (LCD) display unit, an organic light-emitting diode (OLED) display unit, -21a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network (WLAN) or Ultra Wide Band (UWB) module, [00105] Embodiments: 1. A method for resource management during handover operation. 2. The method of embodiment 1, further comprising initiating a handover from a first access network to a second access network. 3. A method as in any preceding embodiment, further comprising sending a policy update message. 4. A method as in any preceding embodiment, further comprising receiving a policy update confirmation mes-sage. 5. A method as in any preceding embodiment, further comprising sending a general packet radio service (GPRS) tunneling protocol (GTP) and radio access bearer (RAB) release message. 6. A method as in any preceding embodiment, further comprising receiving a GTP and RAB release acknowledgment (ACIQ. 7. A method as in any preceding embodiment, further comprising establishing connectivity for uplink and down):ink transmission in the second access network. S. A method as in any preceding embodiment, wherein the policy update message includes information relating to a gateway (GW) in the second access network. 9. A method as in any preceding embodiment, further comprising releasing resources in the first access network. 10. A method as in any preceding embodiment, wherein the first network is a third generation partnership project (3GPP) access network and the second network is a trusted non-3GPP Internet protocol (IP) access network. 11, A method as in any preceding embodiment, wherein the policy update message, policy update confirmation message, GTP and RAB release message, and/ox GTP and RAB release ACK are sent over an S5 interface. -22- 12. A method as in any preceding embodiment, wherein the first network is a trusted non- third generation partnership project (3GPP) Internet protocol (IP) access network access network and the second network is a long term evolution (LTE) evolved universal terrestrial radio access network (E UTRAN). 13. A method as in any preceding embodiment, wherein the policy update message, policy update confirmation message, GTP and RAB release message, and/or GTP and RAB release ACK are sent over an S2c interface. 14. A method as in any preceding embodiment, further comprising initiating a handover from a first access network to a second access network. 15. A method as in any preceding embodiment, further comprising receiving a policy update message. 16. A method as in any preceding embodiment, further comprising sending a policy update confirmation message. 17. A method as in any preceding embodiment, further comprising sending a policy information update message. 18. A method as in any preceding embodiment, further comprising receiving a policy information update confirmation message. 19. A method as in any preceding embodiment, wherein the policy update message includes information relating to a gateway (GW) in the second access network. 20. A method as in any preceding embodiment, wherein the policy information update message includes information relating to a gateway (GW) in the second access network. 21, A method as in any preceding embodiment, wherein the policy update message, policy update confirmation message, policy information update message, and/or policy information update confirmation message are sent over an S5 interface. 22. A method as in any preceding embodiment, wherein the first network is a third generation partnership project (3QPP) access network and the second network is a trusted non-3GPP Internet protocol (IP) access network. -23- 23. A base station configured to perform a method as in any preceding embodiment. 24, The base station of embodiment 24, further comprising a receiver. 25. A base station as in any of embodiments 23-24, further comprising a transmitter. 26. A base station as in any of embodiments 23-25, further comprising a processor in. communication with the receiver and the transmitter, the processor configured to perform any of the following functions: send a policy update message, receive a policy update confirmation message, send a general-packet radio service (GPRS) tunneling protocol (GTP) and radio access bearer (RAB) release message, receive a GTP and RAB release acknowledgment (ACI), and/or establish connectivity for uplink and downlink transmission in the second access network. 27. A base station as in any of embodiments 23-26, wherein the policy update message includes information relating to a gateway (GW) in the second access network. 28. A base station. as in any of embodiments 23-27, wherein the processor is further configured to release resources in the first access network. 29. A base station as in any of embodiments 23-28, wherein the policy update message, policy update confirmation message, GTP and RAB release message, and/or GTP and RAB release ACK are sent over an 5 interface. -24-

Claims (15)

1. A method for resource management during handover operation froim a first access network to a second access network, comprising: sending a policy update message; receiving a policy update confirmation message; establishing Internet protocol (IP) connectivity for uplink and downlink transmission over the second access network; and releasing resources associated with the first access network.
2. The method of claim 1. wherein the policy update message includes information relating to a gateway (GW) in the second access network.
3. The method of claim 1, further comprising: sending a general packet radio service (GPRS) tunneling protocol (GTP) and radio access bearer (RAB) release message; and receiving a GTP and RAB release acknowledgment (ACK).
4. The method of claim 1 wherein the first network is a third generation partnership project (3GPP) access network and the second network is a trusted non-3GPP Internet protocol (IP) access network.
5. The method of claim 3 wherein the policy update message, policy update confirmation message, general packet radio service (G.PRS) tunneling protocol (GTP) and radio access bearer (RAB) release message, and GTP and RAB release acknowledgment (ACK) are sent over an S5 interface.
6. The method of claim 1 wherein the first network is a trusted non-third generation partnership project (3GPP) Internet protocol (IP) access network access network and the second network is a long term evolution (LTE) evolved universal terrestrial radio access network (E-UTRAN). 26
7. The method of claim 6 wherein the policy update message, policy update confirmation message, GTIP and RAB release message, and GTP and RAB release ACK are sent over an S2c interface.
8. A method for resource management during handover operation, comprising receiving a policy update message; sending a policy update confirmation message; sending a policy information update message; and receiving a policy information update confirmation message.
9. The method of claim 8 wherein the policy update message includes information relating to a gateway (GW) in the second access network.
10. The method of claim 8 wherein the policy information update message includes information relating to a gateway (GW) in the second access network.
11. The method of claim 8 wherein the first network is a third generation partnership project (3GPP) access network and the second network is a trusted non-3GPP Internet protocol (IP) access network.
12. An apparatus for resource management during handover operation from a first access network to a second access network, comprising: a receiver; a transmitter; and a processor in communication with the receiver and the transmitter, the processor, receiver and transmitter configured to: send a policy update message receive a policy update confirmation message; 27 establish Internet protocol (IP) conneebivity fbr uplink transmission and downlink transmission, respectively, over the second access network; and release resources associated with the first access network.
13, The apparatus of claim 12 wherein the policy update message includes information relating to a gateway (GW) in the second access network,
14. The apparatus of claim 12, wherein the processor, receiver and transmitter is further configured to: send a general packet radio service (GPRS) tunneling protocol (GTP) and radio access bearer (RAB) release message; and receive a GTP and RAB release acknowledgment (ACK).
15. The apparatus of claim 12 wherein the policy update message, policy update confirmation message, GTP and RAB release message, and GTP and RAB release ACK are sent over an S5 interface. INTERDIGITAL TECHNOLOGY CORPORATION WATERMARK PATENT & TRADE MARK ATTORNEYS P32725AUU0
AU2012202838A 2007-06-22 2012-05-16 Method and apparatus for resource management in handover operation Abandoned AU2012202838A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012202838A AU2012202838A1 (en) 2007-06-22 2012-05-16 Method and apparatus for resource management in handover operation

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US60/945,642 2007-06-22
US60/945,676 2007-06-22
US60/946,164 2007-06-26
AU2008268549A AU2008268549A1 (en) 2007-06-22 2008-06-20 Method and apparatus for resource management in handover operation
AU2012202838A AU2012202838A1 (en) 2007-06-22 2012-05-16 Method and apparatus for resource management in handover operation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2008268549A Division AU2008268549A1 (en) 2007-06-22 2008-06-20 Method and apparatus for resource management in handover operation

Publications (1)

Publication Number Publication Date
AU2012202838A1 true AU2012202838A1 (en) 2012-07-05

Family

ID=46642767

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2012202817A Withdrawn AU2012202817A1 (en) 2007-06-22 2012-05-15 Method and apparatus for resource management in handover operation
AU2012202838A Abandoned AU2012202838A1 (en) 2007-06-22 2012-05-16 Method and apparatus for resource management in handover operation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2012202817A Withdrawn AU2012202817A1 (en) 2007-06-22 2012-05-15 Method and apparatus for resource management in handover operation

Country Status (1)

Country Link
AU (2) AU2012202817A1 (en)

Also Published As

Publication number Publication date
AU2012202817A1 (en) 2012-06-14

Similar Documents

Publication Publication Date Title
US8817741B2 (en) Method and apparatus for resource management in handover operation
US9301220B2 (en) Resource management for mobility between different wireless communications architectures
JP5248597B2 (en) Apparatus and method for providing gateway relocation
US8526952B2 (en) Method and apparatus for supporting handoff from GPRS/GERAN to LTE EUTRAN
RU2461981C2 (en) Method and apparatus for resource management in handover operation
AU2012202838A1 (en) Method and apparatus for resource management in handover operation

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted