AU2012202258B2 - Wireless communication system and wireless terminal device - Google Patents

Wireless communication system and wireless terminal device Download PDF

Info

Publication number
AU2012202258B2
AU2012202258B2 AU2012202258A AU2012202258A AU2012202258B2 AU 2012202258 B2 AU2012202258 B2 AU 2012202258B2 AU 2012202258 A AU2012202258 A AU 2012202258A AU 2012202258 A AU2012202258 A AU 2012202258A AU 2012202258 B2 AU2012202258 B2 AU 2012202258B2
Authority
AU
Australia
Prior art keywords
frequency
terminal
information
wireless
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2012202258A
Other versions
AU2012202258A1 (en
Inventor
Takayoshi Ode
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2011201686A external-priority patent/AU2011201686B2/en
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to AU2012202258A priority Critical patent/AU2012202258B2/en
Publication of AU2012202258A1 publication Critical patent/AU2012202258A1/en
Application granted granted Critical
Publication of AU2012202258B2 publication Critical patent/AU2012202258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

WIRELESS COMMUNICATION SYSTEM AND WIRELESS TERMINAL DEVICE Abstract A wireless communication system, comprising: a category designation unit capable of designating a terminal category using at least one of frequency bandwidth and receiving frequency bandwidth available between the system and a 10 wireless terminal device.

Description

S&F Ref: 904868D4 AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address Fujitsu Limited, of 1-1, Kamikodanaka 4-chome of Applicant: Nakahara-ku, Kawasaki-shi, Kanagawa, 2118588, Japan Actual Inventor(s): Takayoshi Ode Address for Service: Spruson & Ferguson St Martins Tower Level 35 31 Market Street Sydney NSW 2000 (CCN 3710000177) Invention Title: Wireless communication system and wireless terminal device The following statement is a full description of this invention, including the best method of performing it known to me/us: 5845c(6211214_1) WIRELESS COMMUNICATION SYSTEM AND WIRELESS TERMINAL DEVICE 5 Technical Field The present invention relates to the technology of wireless communications using a terminal device having at least one of a first frequency bandwidth for use in an up link and its central frequency and a second frequency bandwidth for use 10 in an down link and its central frequency is variable. Background Art Recently, a higher communication speed is demanded in the wireless communications. In a mobile communication service 15 such as a mobile telephone etc., a high-speed broad band communication system has been studied at the demand or a higher speed communication. A W-CDMA (wideband-code division multiple access) system has been studied and standardized in a 3GPP (3rd generation partnership project) as one of the 20 communication systems. Described below is an example of the W-CDMA system. The W-CDMA system is configured by a terminal device (UE: user equipment) such as a mobile telephone, a vehicle-mounted telephone, etc., a plurality of wireless base station (node B) 25 for communicating with the terminal device (hereinafter referred to as a "terminal") , and a radio network controller (RNC: radio network controller) for controlling the plurality of wireless base station (hereinafter referred to as "base station") (FIG. 5). 30 In the above-mentioned W-CDMA system, communications can be realized in a higher speed by broad bands using FDD (frequency division duplex) or TDD (time division duplex) , and an independent frequency resource is respectively assigned to the up/down link in the FDD mode. The frequency band available for 35 the uplink (up link frequency band), and the frequency band regulated by laws (the Radio Law etc.). For example, in the service of the 2GHz band provided in Japan, the bandwidths are fixed to 5.0 MHz, and the frequency difference between the up 5 and down bands is 190 MHz constantly. Therefore, in the W-CDMA method using the W-CDMA system, when one of the up and down link frequency bands is selected, the other can be determined from the frequency difference. That is, a terminal is to be informed of the determined down link frequency (band) only. 10 FIG. 1 is an explanatory view of the frequency information transmitted and received between the base station and the terminal regulated in the non-patent document 3 as one of the specifications of the W-CDMA system. As illustrated in FIG. 1, a notification of the down link frequency information 15 (represented as "UARFCN downlink (Nd) " in FIG. 1. UARFCN is short for UTRA absolute radio frequency channel number). to the mobile communication device is necessary (MP) , and the up link frequency information (represented as "UARFCN uplink (Nu)" in FIG. 1) is optional (OP) . When the frequency difference is not 20 constant (fixed), a notification of the up link frequency information is required (MP) . The down link frequency is determined by the radio network controller, and reported to the terminal through the base station. Since the information about the up link frequency is Nu, 25 the information about the down link frequency is Nd, and the setting range is 0 through 16383, 14 bits are required for the representation. Therefore, a 14-bit control signal is transmitted to the terminal. The frequency information Nu, and Nd is regulated in the 30 non-patent document 1, and generated by the following equations. Nu = 5 x (FUL - FULoffset) (1) Nd = 5 x (FDL - FDL_offset) (2) where FUL and FDL are determined frequencies, and FUL offset 35 and FDLoffset are offset frequencies regulated in FIG. 2. 2 each frequency band, and is a table described in the non-patent document 1 with additional columns of the central frequency of the up and down link bands and the difference between the up 5 and down link frequencies. The "i" through "ix" in FIG. 2 indicate the respective frequency band numbers. Thus, FIG. 2 illustrates the bands assigned to the uplink (UL: link transmitted from the terminal (UE) to the base station (node B)) and the downlink (DL: link 10 transmitted from the base station to the terminal)) for each frequency band, and the frequency difference between the bands. The frequency information Nu and Nd are calculated as follows by using the equations above when the up link frequency is 1922.4 MHz and the down link frequency is 2112.4 MHz. 15 Nu = 5 x (FUL - FUL offset) = 5 x (1922.4 - 0) = 9612 (3) Nd = 5 x (FDL - FDL_offset) = 5 x (2112.4 - 0) = 10562 (4) In the W-CDMA system, the capability (terminal capability) of a terminal is categorized. A terminal capability refers to essential information for communications 20 such as the number of wireless channels available for a broadcast. By classifying the capability into categories using the information, the capability can be more easily managed. For example, FIG. 3 is an explanatory view of categorizing the capability in the conventional HSDPA (high-speed downlink 25 packet access) system described in the non-patent document 3, and FIG. 4 is an explanatory view of categorizing the capability in the HSUPA (high-speed uplink packet access) system described in the non-patent document 3. The HSDPA and the HSUPA systems are operated at a higher speed than the W-CDMA system. FIG. 30 3 illustrates for each category the determined maximum number of HS-DSCH (high-speed downlink shared channels) that can be simultaneously received, minimum transmission time interval (minimum inter-TTI interval) that can be intermittently received, maximum number of bits of the HS-DSCH transmission 35 blocks, and total number of bits of soft channels. FIG. 4 3 E-DCH (enhanced-dedicated channels) that can be simultaneously transmitted, minimum SF (spreading factor), transmitting time interval (TTI) (TTI is 10, and 2 ms) of the supported E-DCH, S maximum number of bits of E-DCH transmission blocks transmitted at the TTI of 10 ms, and maximum number of bits of E-DCH transmission blocks transmitted at the TTI of 2 ms. As described above, a category is inevitable information for appropriately perform communications between a base station 10 and a termin-al. Accordingly, category information (for example, a category number) or terminal capability information is notified from a terminal to a base station. The notification is reflected by the scheduling for selecting a communication partner and determining a transmitting method. 15 Recently proposed is a communication system having practically available frequency bandwidth (hereinafter referred to as an "up bandwidth") and down link frequency bandwidth (hereinafter. referred to as a "down bandwidth") not only separate from each other but also variable depending on 20 the terminal capability. For example, it is an E3G (evolved 3G also referred to as S3G (super 3G)) system studied for specifications in the 3GPP system. The frequency difference between the up and down links in the E3G system depends on the assignment of each bandwidth 25 and the central frequency of each band. Therefore, unlike the conventional W-CDMA system, it cannot automatically select the up link frequency by selecting the down link frequency. That is, the settings of the up and down frequencies are to be separately performed, thereby requiring a larger volume of 30 necessary control information, complicating the controlling operation, and forcing the base station to notify the terminal of the control information about the up and down frequencies. Since the frequency setting can be changed even during communications by a propagation environment, scheduling, etc., 35 it is necessary to set a frequency at a high speed. To set a 4 frequency at a high speed, it is important to realise at least one of the process of reducing the number of pieces of control information to be transmitted and received, or the process of simplifying the control. Since 14 bits are 5 required for the notification of each of the frequency information Nu and Nd obtained by the equations (1) and (2) above, it is conventionally considered that the frequency information Nu and Nd are to be transmitted to the terminal by a smaller number of bits. 10 Patent Document 1: Japanese Laid-open Patent Publication No. 2005-341432 Patent Document 2: Japanese Laid-open Patent Publication No. 2000-69544 15 Patent Document 3: Japanese Laid-open Patent Publication No. 2000-175254 Non-patent Document 1: 3GPP TS 25.101 V7.4.0 (2006-06) Non-patent Document 2: 3GPP TS 25.306 V6.8.0 (2006-06) Non-patent Document 3: 3GPP TS 25.331 V6.10.0 (2006-06) 20 Disclosure An aspect of the present invention provides a wireless communication system for exchange of information between a wireless terminal device and a wireless base station, the 25 wireless communication system comprising: a terminal category setting unit configured to identify a terminal category for the wireless terminal device based on at least one of frequency bandwidth and receiving frequency bandwidth as a terminal capability between the wireless base station 30 and the wireless terminal device. Another aspect of the present invention provides a wireless terminal device for exchange of information between the wireless terminal device and a wireless base station, 35 the wireless terminal device comprising: a terminal category setting unit configured to identify a terminal category for oIA nAo r the wireless terminal device based on at least one of frequency bandwidth and receiving frequency bandwidth as a terminal capability between the wireless base station and the wireless terminal device. 5 Another aspect of the present invention provides a wireless base station for exchange of information between a wireless terminal device and the wireless base station, the wireless base station comprising: a terminal category 10 setting unit configured to identify a terminal category for the wireless terminal device based on at least one of frequency bandwidth and receiving frequency bandwidth as a terminal capability between the wireless base station and the wireless terminal device. 15 Another aspect of the present invention provides a wireless communication method for exchange of information between a wireless terminal device and a wireless base station, the wireless communication method comprising: 20 identifying, by a terminal category setting unit, a terminal category for the wireless terminal device based on at least one of frequency bandwidth and receiving frequency bandwidth as a terminal capability between the wireless base station and the wireless terminal device. 25 [NEXT PAGE IS PAGE 14] Q1~A LCOA A Brief Description of the Drawings 5 FIG. 1 is an explanatory view of frequency information conventionally transmitted and received between a base station and a terminal; FIG. 2 is an explanatory view of a frequency difference for each frequency band; 10 FIG. 3 is an explanatory view of a conventional categorizing process in the HSDPA (high-speed downlink packet access) system; FIG. 4 is an explanatory view of a conventional categorizing process in the HSUPA (high-spe'ed uplink packet 15 access) system; FIG. 5 illustrates a configuration of a wireless communication system according to the first embodiment of the present invention; FIG. 6 illustrates the configuration of the wireless 20 communication device mounted in a terminal capable of using the wireless communication system according to the first embodiment of the present invention; FIG. 7 illustrates the configuration of the device setting control unit of the wireless communication device 25 mounted in a terminal capable of using the wireless communication system according to the first embodiment of the present invention; FIG. 8 illustrates the configuration of the wireless communication device mounted in a base station configuring the 30 wireless communication system according to the first embodiment of the present invention; FIG. 9 illustrates the configuration of the link setting unit the wireless communication device mounted in a base station configuring the wireless communication system according to the 35 first embodiment of the present invention; 14 information associated with the terminal category according to the first embodiment of the present invention; FIG. 11 illustrates the configuration of a variation of 5 the wireless communication device mounted in a terminal capable of using the wireless communication system according to the first embodiment of the present invention; FIG. 12 illustrates the configuration of the wireless communication device mounted in a terminal capable of using the 10 wireless communication system according to the second embodiment of the present invention; FIG. 13 illustrates the configuration of the wireless communication device mounted in a base station configuring the wireless communication system according to the second 15 embodiment of the present invention; FIG. 14 illustrates the configuration of the wireless communication device wireless communication device mounted in a terminal capable of using the wireless communication system according to the fourth embodiment of the present invention; 20 FIG. 15 illustrates the configuration of the wireless communication device mounted in a base station configuring the wireless communication system according to the fourth embodiment of the present invention; FIG. 16 illustrates an example of numbering to the 25 subcarriers; FIG. 17 is an explanatory view of grouping a subcarrier; FIG. 18 is an explanatory view of a variation of the terminal capability information associated with the terminal category according to the first embodiment of the present 30 invention; and FIG. 19 is an explanatory view of the state in which an available frequency band is moved. Best Mode for Carrying Out the Invention 35 The embodiments of the present invention are described 15 <First Embodiment> FIG. 5 illustrates a configuration of a wireless communication system according to the first embodiment of the 5 present invention. The wireless communication system corresponds to, for example, the E3G system, that is, realizes a mobile communication service corresponding to the OFDMA (orthogonal frequency division multiple access). As illustrated in FIG. 5, a plurality of wireless base stations 10 (node B hereinafter referred to simply as a "base station") 51 for communicating with a mobile terminal device (UE (user equipment) hereinafter referred to simply as a "terminal") are provided to control the terminal 52 by a radio network controller (RNC) 53. 15 FIG. 6 illustrates the configuration of the wireless communication device mounted in the terminal. As illustrated in FIG. 6, the wireless communication device includes: an antenna 61, two wireless units 62 and 63, a coding/modulating unit 64, a demodulating/decoding unit 65, a terminal capability 20 information storage unit 66 storing terminal capability information, a terminal information signal generation unit 67, a control signal extraction unit 68, and a device setting control unit 69. Hereafter, it is represented with "66" to clarify the storage for the terminal capability information. 25 The transmission data to be transmitted is encoded and modulated by the coding/modulating unit 64. An RF signal obtained by the modulation is transmitted from the antenna 61 through the wireless unit 62. On the other hand, only the signal portion of the down 30 bandwidth selected by the wireless unit 63 of the RF signal received by the antenna 61 is extracted, and transmitted to the demodulating/decoding unit 65. The demodulating/decoding unit 65 demodulates and decodes the RF signal from the wireless unit 63, and the obtained data is output as received data. 35 FIG. 7 illustrates the configuration of the device 16 setting control unit 69 includes a modulation/demodulation method and coding/decoding method calculation unit 71, a transmission/reception frequency calculation unit 72, a 5 transmission/reception bandwidth calculation unit 73, a demodulating method and decoding method setting unit 74, a receiving use frequency setting unit 75, a receiving use bandwidth setting unit 76, a transmitting use bandwidth setting unit 77, a transmitting use frequency setting unit 78, and a 10 modulating method and coding method setting unit 79. FIG. 8 illustrates the configuration of the wireless communication device mounted in the base station. As illustrated in FIG. 8, the condition device includes an antenna 81, two wireless units 82 and 83, a demodulating/decoding unit 15 85, a coding/modulating unit 84, a terminal information extraction unit 86, and a control signal generation unit 88. A link setting unit 87 and a terminal category setting unit 101 are prepared at the base station 51 (at the wireless communication system), but can be mounted in any of the base 20 station 51 and the radio network controller 52. The wireless communication system according to the present embodiment can be realized by preparing the wireless communication.device illustrated in FIG. 8. The transmission data to be transmitted is encoded and 25 modulated by the coding/modulating unit 85. An RF signal obtained by the modulation is transmitted from the antenna 81 through the wireless unit 83 On the other hand, the RF signal received by the antenna 81 is extracted by the wireless unit 83 for each of the frequency 30 bandwidth, and transmitted to the demodulating/decoding unit 84 - The demodulating/decoding unit 84 demodulates and decodes the RF signal from the wireless unit 83. The obtained data is output as received data. FIG. 9 illustrates the configuration of the link setting 35 unit. As illustrated in FIG. 9, the link setting unit 87 17 method calculation unit 91, a transmission/reception frequency calculation unit 92, a transmission/reception bandwidth calculation unit 93, a modulating method and coding method 5 setting unit 94, a transmitting use frequency setting unit 95, a transmitting use bandwidth setting unit 96, a receiving use bandwidth setting unit 97, a receiving use frequency setting unit 98, and a demodulating method and decoding method setting unit 99. 10 The terminal 52 is classified by a terminal category corresponding to the E3G. The actually used up link frequency bandwidth (hereinafter referred to as a "up bandwidth") and down link frequency bandwidth (hereinafter referred to as a "down bandwidth") can be separately set. Since the up link frequency 15 band and the down link frequency band depend on their bandwidths, the information about the bands is required for each band in addition to the information about each bandwidth. Accordingly, as compared with the case where each bandwidth is constant, necessary control information increases, thereby complicating 20 the control. In the present embodiment, the complicated control can be suppressed as follows. As the information about bands, the central frequency of the each band is conveniently assumed. The information can be varied if the frequency band can be designated. For example, it can be the minimum or maximum 25 frequency. FIG. 10 is an explanatory view of the terminal capability information associated with the terminal category according to the present embodiment of the invention. In the present embodiment, as illustrated in FIG. 10, a 30 modulation system, a down bandwidth, an up bandwidth, and a maximum frequency difference between the bands are determined with the terminal category associated. In the terminal 52, at least one of a modulation system, an up bandwidth, a down bandwidth, and the maximum frequency difference is prepared as 35 the terminal capability information 66, and the information 66 18 signal) by the terminal information signal generation unit 67, and transmitted to the base station 51 using a predetermined channel. In this example, the information illustrated in FIG. S 10 is conveniently referred to as integrated terminal category information The number of contents of each piece of the associated information as illustrated in FIG. 10 is 2 for the modulation system, and 3 for each of the up/down bandwidth and the maximum 10 frequency difference. Therefore, the terminal capability information 66 of the modulation system can be transmitted as 1-bit information. Other information can be transmitted as 2-bit information. As illustrated in FIG. 7, the demodulating/decoding unit 15 65 includes a demodulation unit 65a and a decoding unit 65b. The coding/modulating unit 64 includes a modulation unit 64a and a coding unit 64b. The terminal capability information 66 is transmitted to each of the calculation units 71 through 73 configuring the device setting control unit 69. Thus, the 20 modulation/demodulation method and coding/decoding method calculation unit 71 determines a demodulating method and a decoding method from the terminal capability information 66, controls the demodulation unit 65a and the decoding unit 65b through the demodulating method and decoding method setting 25 unit 74, determines a modulating method and a coding method, and controls the modulation unit 64a and the coding unit 64b through the modulating method and coding method setting unit 79. Similarly, the transmission/reception frequency calculation unit 72 calculates the down link frequency 30 (receiving use frequency (central frequency of available down link frequency band)) and the up link frequency (central frequency of available up link frequency band). The receiving use frequency setting unit 75 generates a setting signal of an oscillation frequency of the local oscillator in the wireless 35 unit 63, and controls the wireless unit 63, by based on the 19 the basis of the up link frequency calculation result, the transmitting use frequency setting unit 78 generates a setting signal of the oscillation frequency of the local oscillator in 5 the wireless unit 62, andcontrols the wireless unit 62, by based on the calculation result of the up link frequency. The transmission/reception bandwidth calculation unit 73 calculates a down bandwidth and an up bandwidth from the control signal. On the basis of the calculated reception bandwidth, 10 the receiving use bandwidth setting unit 76 calculates the setting signal of the filter of the wireless unit 63 and the filter in the demodulation unit 65a, and controls wireless unit 63 and the demodulation unit 65a. Furthermore, the setting signal of the FFT in the demodulation unit 65a is calculated, 15 and the demodulation unit 65a is controlled. On the basis of the similarly calculated transmission bandwidth, the transmitting use frequency setting unit 78 calculates the setting signal of the firmware in the modulation unit 64a in the wireless unit 62, and controls the setting signal of the 20 FFT unit in the modulation unit 64a and controls the modulation unit 64a. As illustrated in FIG. 8, the terminal capability information 67 transmitted to the base station 51 through the terminal information signal generation unit 67 is received and 25 demodulated and decoded, and output as received data by the demodulating/decoding unit 84. The terminal information extraction unit 86 extracts the terminal capability information 66 stored in the received data, and transmits the information to the terminal category setting unit 101. The setting unit 30 101 includes a storage unit storing integrated terminal category information as illustrated in FIG. 10. Therefore, by referring to the integrated terminal category information using the extracted terminal capability information 66, the terminal category to which the terminal 52 that has transmitted the 35 terminal capability information 66 belongs is designated, and 20 setting unit 87 sets a link for the terminal 52 according to the notified terminal category, and generates a control signal by notifying the control signal generation unit 88 of the 5 control information to be transmitted to the terminal 52, and transmits the signal. As illustrated in FIG. 9, the coding/modulating unit 85 includes a modulation unit 85a and a coding unit 85b, and the demodulating/decoding unit 84 includes a demodulation unit 84a 10 and a decoding unit 84b. The link setting unit 87 has basically the same configuration as the device setting control unit 69 illustrated in FIG. 7. The terminal category designated by the terminal category setting unit 101 is transmitted to each of the calculation units 91 through 93 configuring the link setting 15 unit 87. Thus, the modulation/demodulation method and coding/decoding method calculation unit 91 determines a demodulating method and a decoding method from the terminal category, controls the modulation unit 85a and the coding unit 85b through the modulating method and coding method setting unit 20 94, determines the demodulating method and the decoding method, and controls the demodulation unit 84a and the decoding unit 84b through the demodulating method and decoding method setting unit 99. Similarly, the transmission/reception frequency calculation unit 92 determines a down link frequency (receiving 25 use frequency (central frequency of available down link frequency band)) and an up link frequency (transmitting use frequency (central frequency of available up link frequency band)), thereby controlling the wireless unit 83 through the transmitting use frequency setting unit 95, and controlling the 30 wireless unit 82 through the receiving use frequency setting unit 98. The transmission/reception bandwidth calculation unit 93 determines the down bandwidth and the up bandwidth, thereby controlling the wireless unit 93 and the modulation unit 85a through the transmitting use bandwidth setting unit 96, and 35 controlling the wireless unit 82 and the demodulation unit 84a 21 Each of the calculation units 91 through 93 notifies the control signal generation unit 88 of the information about the determined contents as control information. Thus, the control 5 information necessary for communications is transmitted to the terminal 52. As illustrated in FIG. 7, the control information transmitted from the base station 51 is received, demodulated and decoded, and output as received data from the 10 demodulating/decoding unit 65. The control signal extraction unit 68 extracts the control information stored in the received data and transmitted to the device setting control unit 69. Thus, after receiving the control information, the device setting control unit 69 controls each unit according to the 15 control information. As described above, according to the present embodiment, a terminal category is associated with information not originally included, and the associated information is reflected by the link setting. The contents of the associated 20 information are limited to the scope of the classification by the terminal category. Therefore, the management of the terminal can be more easily performed, and the control can be simplified. As a result, frequency setting such as link setting etc. can be performed at a higher speed. 25 In the present embodiment, the terminal capability information 66 is transmitted to the base station 51, but a terminal category can be notified instead of the terminal capability information 66. The notification can be realized by, as illustrated in FIG. 11, preparing a terminal category 30 setting unit 111 for designating and setting a terminal category from the terminal capability information 66, and controlling the terminal information signal generation unit 67 and the device setting control unit 69. A number of combinations of up/down bandwidths is large. 35 For example, when 1.25 MHz, 2.5 MHz, and 5.0 MHz are assumed 22 down bandwidths, and down 20 MHz and up 5 MHz are assumed as the bandwidth of the entire system, the following 63 combinations can be assumed in the 2 GHz. 5 4 x (4 + 2 + 1) + 2 x (4 + 2 + 1) + 1 x (4 + 2 + 1) = 9 x 7 = 63 In Japan, as illustrated in FIG. 2, there are three available frequency bands. Therefore, with the number of bands taken into account, the number of combinations is 189 (63 x 3) . 10 When categorizing process is performed to realize all combinations, the number of categories is too large, and the management is complicated, thereby incurs an increasing number of pieces of necessary control information. To avoid this, the present embodiment suppresses the number of categories as 15 illustrated in FIG. 10. In the equation above, "4", "2", and "1" respectively indicate that there can be four positions at 1.25 MHz, two positions at 2.5 MHz, and one position at 5.0 MHz in the up bandwidth, for example. MIMO is one of the wireless techniques. The MIMO is short 20 for multiple input multiple output, and data is transmitted/received through a plurality of antennas. Thus, as the information associated with a terminal category, as illustrated in FIG. 8, at least one of the MIMO transmission information indicating whether or not the transmission using 25 the MIMO can be performed and the MIMO reception information indicating whether or not the reception using the MIMO can be performed can be added as MIMO information. Otherwise, it can be added for other type of information. <Second Embodiment> 30 In the mobile communications, a mobile object (terminal) can move into an'area covered by a different base station. To cope with the movement, handover is carried out. When the handover is performed, at least one assignment of the frequency resources, that is, up/down frequencies, and their bandwidths 35 can be changed. The second embodiment suppresses the number 23 change the assignment of the frequency resources during the handover. During the handover, a terminal has already communicated 5 with one or more base stations. That is, the up/down frequencies and their bandwidths have already been assigned. With the situation taken into account, the second embodiment is designed to reduce the necessary number of bits for control information and shorten the time required to transmit the 10 control information. The configurations of the terminal and the base station according to the second embodiment are basically the same as in the first embodiment. Therefore, the same or basically the same components as in the first embodiment are assigned the same 15 reference numerals, and only components different from those in the first embodiment are described below in detail. FIG. 12 illustrates the configuration of the wireless communication device mounted in the terminal according to the second embodiment. As illustrated in FIG. 12, further provided 20 in addition to the configuration according to the first embodiment are: a received electric field strength measurement unit 121 for measuring the received electric field strength from the received data for each base station 51; and a received electric field strength information generation unit 122 for 25 notifying the base station 51 of the measurement result by the measurement unit 121. The generation unit 122 transmits the measurement result to the base station 51 as the received electric field strength information. The wireless terminal device according to the second embodiment is realized by 30 mounting in the terminal 52 the wireless communication device illustrated in FIG. 12. It is the same in other embodiments described later. On the other hand, as illustrated in FIG. 13, in addition to the configuration according to the first embodiment, the base 35 station 51 is provided with: a received electric field strength 24 electric field strength information received from the terminal 52 from received data; and a handover control unit 132 for determining the necessity to perform handover according to the 5 received electric field strength information extracted by the extraction unit 131. The handover control unit 132 is provided for the base station 51 or the radio network controller 53. By referring to the received electric fieldstrength information transmitted 10 for each base station 51, the necessity of the handover is determined, and the determination result is notified to the link setting unit 87. On the basis of the notification, the base station 51 having the largest received electric field strength is allowed to communicate with the terminal 52. Upon receipt 15 of the notification of the necessity of the handover, the link setting unit 87 sets a link to the terminal 52 to communicate with, designates a terminal category according to the terminal capability information 66 about the terminal 52, and sets the link. If the contents of the link setting are different from 20 the preceding contents, the control information to be transmitted to the terminal 52 is transmitted to the control signal generation unit 88, and a control signal is transmitted.. The following cQntrol signal is transmitted. When the identification about the down link frequency is 25 Nd, the down link frequency information Nd is generated by the equation (2) above. Similarly, when the information about the up link frequency is Nu, the up link frequency information Nu is generated by the following equation using the down link 30 frequency FDL and the determined up link frequency FUL Nu = 5 x (FDL - FUL) (5) The down link frequency information Nd requires 14 bits as described above. However, since the up link frequency information Nu is calculated by the following equation although 35 the up/down link frequency differences are UMTS 1.7/2.1 of the 25 difference of 490 MHz as illustrated in FIG. 2, the information can be represented by 12 bits. Nu = 5 x 490 = 2450 5 Therefore, as compared with the case where the up link frequency information Nu is generated using the equation (2) above, the number of bits can be reduced. By the reduction, the frequency setting accompanied with the link setting etc. can be performed at a high speed. Each piece of the up link 10 frequency information Nu and Nd is calculated by the transmission/reception frequency calculation unit 92. Each piece of the up link frequency information Nu and Nd is transmitted as a control signal to the terminal 52, and extracted by the control signal extraction unit 68. The device 15 setting control unit 69 calculates the up link frequency FUL from the up/down link frequency information Nu and Nd, and then calculates the down link frequency FDL. Thus, a setting is performed according to the control signal transmitted from the base station 51. The calculation of the frequencies FOL and FDL 20 is performed by the transmission/reception frequency calculation unit 72 illustrated in FIG. 7. In the present embodiment, the information generated using the equation (5) is transmitted as the down link frequency information Nd with the up link frequency information Nu, but 25 the inverse operation is acceptable. That is, the up link frequency information Nu is generated using the equation similar to the equation (2), and the down link frequency information Nd can be generated using the equation similar to the equation (5). In addition, it is also possible for a base 30 station to determine one of the up and down frequencies, notifies the 52 of the determination, and the terminal 52 can determine the other with reference to the integrated terminal category information as illustrated in FIG. 10 and transmit a notification. 35 <Third Embodiment> 26 least one of the up and down frequencies is notitiea oirectly from the base station 51 to the terminal 52. In the third embodiment, at least one of the up and down frequencies is 5 predetermined as a reference, and the up and down frequencies are notified using the determined frequency of the reference so that the necessary number of bits for transmitting control information (signal) can be smaller. The configurations of the terminal and the base station 10 according to the third embodiment are basically the same as in the first embodiment. Therefore, the same or basically the same components as in the first embodiment are assigned the same reference numerals, and only components different from those in the first embodiment are described below in detail. In this 15 example, as illustrated in FIG. 2, the up/down link frequency bands and the frequency difference between the bands are predetermined. In the link setting unit 87 of the base station 51, the down link frequency to be assigned to the terminal 52 is 20 determined with the link use status etc. taken into account. In this case, a control signal is generated using at least one of a predetermined frequency band number or its central frequency and a difference between the central frequency and an actually determined up and down link frequency. Since the 25 central frequency is used as a reference, it is hereinafter referred to as a "reference frequency". The frequency band numbers 1 through 9 can be represented by 4 bits. The difference between the reference frequency and the up link frequency can be represented by 8 bits although 70 30 MHz is used as the maximum system bandwidth. In this example, the reference frequency is expressed by fsDL, the determined down link frequency by fDL, the down link frequency information indicating the difference between the frequencies by Nd, and the frequency information Nd is generated using the following 35 equation. 27 Thus, the control information indicating the down link frequency can be represented by a total of 12 bits. Therefore, the control information can be transmitted by a smaller number 5 of bits. As a result, it can be set at a speed higher than the frequency setting. Actually, if a down link frequency band is determined on the basis of UMTS 800 (frequency band number vi) with the central frequency of 877.5 MHz, and the control information is generated 10 using 2.5 MHz as a difference from 877.5 MHz with the reference frequency of 880 MHz as the central frequency, then the band number is "0110" as 6, and 2.5 MHz is "000000101" by the equation (6), and the result is "0110000000101". In the present embodiment, the control information is 15 generated on the basis of the band number + the difference of reference frequency, but the order can be inverse. Although the difference is obtained between the reference frequency and the down link frequency, it can be obtained between the reference frequency and the up link frequency. The difference 20 can be generated using the following equation where Nu indicates the frequency information, fsUL indicates the up reference frequency, and fUL indicates the determined up link frequency. Nu = 2 x (fSUL - fUL) (7) Since the necessary number of bits can be reduced for the 25 frequency information Nd and Nu, any of them can be transmitted. The number of reference frequency band or the reference frequency can be stored in advance in a storage device. <Fourth Embodiment> In the mobile (wireless) communication, it is common that 30 a scheduling process is performed by selecting a destination and determining a transmitting method. The fourth embodiment is designed to devise the scheduling. The configurations of the terminal and the base station according to the fourth embodiment are basically the same as 35 in the first embodiment. Therefore, as with the second and 28 as in the first embodiment are assigned the same reference numerals, and only components different from those in the first embodiment are described below in detail. 5 FIG. 14 illustrates the configuration of the wireless communication device mounted in the terminal according to the fourth embodiment. As illustrated in FIG. 14, in addition to the configuration according to the first embodiment, the device further includes a CQI (channel quality indicator) measurement 10 unit 141 for measuring transmission power and interference power upon receipt of a pilot signal transmitted from the base station 51, calculating a SIR, and measuring a CQI information, and a CQI generation unit 142 for transmitting the measurement result to the base station 51. The CQI generation unit 142 15 transmits the measurement result of the CQI information as CQI information to the base station 51. It is transmitted on the HS-DPCCH (dedicated physical control channel (uplink) for HS-DSCH). On the other hand, as illustrated in FIG. 15, in addition 20 to the configuration according to the first embodiment, the device further includes a CQI information extraction unit 151 for extracting the CQI information received from the terminal 52 from the received data, and a scheduler unit 152 for performing scheduling according to the CQI information 25 extracted by the extraction unit 151. The scheduler unit 152 selects the terminal 52 for transmission with reference to the CQI information extracted for each terminal 52 by the CQI information extraction unit 151, and selects a modulation system, a coding rate, a data length, 30 a bandwidth, and an available frequency from a terminal category. The terminal category is notified as a terminal information signal from the terminal 52 to the base station 51, or notified from the terminal category setting unit 101 according to the terminal capability information 66 transmitted by the terminal 35 52. By transmitting the selection result to the control signal 29 signal to the corresponding terminal 52. Tomanage the terminal 52 by the terminal category (terminal capability information 66) as described above, as with the first embodiment, the 5 control is simplified. The simplified process realize s a frequency setting at a higher speed. <Fifth Embodiment> In the OFDMA, as it is well known, all subcarriers are shared by all users (terminals 52) , and a subcarrier having high 10 transmission characteristic for each user is assigned, thereby improving the frequency use efficiency. The firth embodiment generates control information by regarding the subcarriers. The configurations of the terminal and the base station according to the fifth embodiment are basically the same as in 15 the first embodiment. Therefore, as with the second through fourth embodiments, the same or basically the same components as in the first embodiment are assigned the same reference numerals, and only components different from those in the first embodiment are described below in.detail. 20 FIG. 16 illustrates an example of numbering to the subcarriers. In the present embodiment, as illustrated in FIG. 16, a subcarrier having a lower frequency is assigned a smaller number. The number assigned to a subcarrier having the lowest frequency is 1. In this example, it is assumed that the base 25 station 51 and the terminal 52 share a subcarrier numbers, the frequency of the subcarrier associated with each number, and a subcarrier bandwidth. The link setting unit 87 at the base station Slrefers to the integrated terminal category information (FIG. 10) using 30 a terminal category designated by the terminal capability information 66 received from the terminal 52, and determines up and down bandwidths to be assigned, up and down frequencies, etc., that is, a group. In this case, for example, the number of subcarrier positioned at the center of the group from the 35 determined down link frequency, and designates the number of 30 subcarrier number and the number of subcarriers is similarly performed for the up link frequency and the up bandwidth. The thus designated subcarrier number and number of subcarriers are 5 notified and transmitted as control information to the control signal generation unit 88. The designation of the subcarrier number is performed by the transmission/reception frequency calculation unit 92, and the designation of the number of subcarriers is performed by the transmission/reception 10 bandwidth calculation unit 93. On the other hand, the control signal extraction unit 68 of the terminal 52 extracts the control information (signal) received from the base station 51 from the received data, and notifies the device setting control unit 69 of the information. 15 The subcarrier number and the number of subcarriers in the control signal are transmitted to the transmission/reception frequency calculation unit 72 and the transmission/reception bandwidth calculation unit 73 respectively. Thus, the transmission/reception frequency calculation unit 72 20 calculates the frequency corresponding to the subcarrier number, and the transmission/reception bandwidth calculation unit 73 calculates the bandwidth corresponding to the number of subcarriers. The subcarrier number and the number of subcarriers are 25 recognized as control information (signal) so that the resources can be arbitrarily assigned to each subcarrier. The necessary number of bits in representing the subcarrier number and number of subcarriers depends on the total number of subcarriers. However, since the frequency and the bandwidth 30 can be separately managed by the subcarrier number and the number of subcarriers, control can be easily performed. Thus, the frequency setting can be performed at a high speed. In the present embodiment, the combination of the subcarrier number and the number of subcarriers is transmitted 35 as a control signal, but another combination is available. For 31 Otherwise, as in the third embodiment, a reference frequency is predetermined, and a difference from the reference frequency can be adopted. In addition, as illustrated in FIG. 17, a 5 plurality of subcarriers can be grouped, each group is assigned a unique number, and a combination of a subcarrier number and a group number can be transmitted as a control signal. Since the frequency bandwidth assigned to each group and the position on the frequency axis are normally unique, only the group number 10 can be transmitted as a control signal. Although only the group number is notified, the frequency bandwidth and the information for designation of the position can be prepared at the terminal 52 for each group, thereby allowing the terminal 52 to designate the corresponding frequency bandwidth and the position 15 according to the group information. Thus, the information adopted as a control signal can come in variations. The control signal can be transmitted during link setting, and also can be transmitted when a transmission terminal is determined by scheduling. 20 <Sixth Embodiment> In the mobile communications, a cell can be selected during link setting and during handover, and synchronization can be performed during standby using the central frequency of a bandwidth available in a base station. In this case, a 25 predetermined frequency (for example, the central frequency of a system frequency band hereinafter referred to as a "initial use frequency") is used for a CPICH (common pilot channel) for transmitting a common pilot signal from a base station, a SCH (synchronization channel) for transmitting a synchronization 30 signal, a PCH (paging channel) for transmittingastandby signal, a BCH (broadcast channel) for transmitting system information, and a PICH (paging indicator channel) for notifying the presence/absence of a received signal. A predetermined bandwidth (hereinafter referred to as a "initial use frequency 35 band") is used for a transmission from a base station to a 32 information with the consideration above. The configurations of the terminal and the base station according to the sixth embodiment are basically the same as in 5 the first embodiment. Therefore, as with the second through fifth embodiments, the same or basically the same components as in the first embodiment are assigned the same reference numerals, and only components different from those in the first embodiment are described below in detail. 10 The frequency and the bandwidth used in transmitting each of the above-mentioned signals are transmitted from the base station 51 to the terminal 52 using the PCH etc. The transmission is performed by generating a control signal as described above with reference to the second embodiment. The 15 initial use frequency and the initial use bandwidth can be stored at the terminal in advance. When a frequency band is moved after establishing a wireless channel, the central frequency of a frequency band is used in transmitting the signal before the movement. In the 20 sixth embodiment, a control signal is generated and transmitted by using the central frequency as a reference frequency as in the third embodiment. Thus, a frequency can be easily set at a high speed by reducing the necessary number of bits for a control signal. FIG. 19 is an explanatory view of the state 25 in which an available frequency band is moved. In the present embodiments (first through. sixth embodiments) , the link setting unit 87 and the scheduler unit 152 at the base station 51 (wireless communication system) and the device setting control unit 69 of the terminal 52 are 30 realized by a CPU for executing a program or a DSP etc. In some existing wireless communication systems or terminals, the present invention can be applied by changing the program executed by a CPU, a DSP, etc. Thus, a program for realizing the wireless communication system or the terminal according to 35 the present invention can be prepared, and the program can be 33 and then distributed. It can be distributed through a communication network. 34

Claims (4)

1. A wireless communication system for exchange of information between a wireless terminal device and a 5 wireless base station, the wireless communication system comprising: a terminal category setting unit configured to identify a terminal category for the wireless terminal device based on at least one of frequency bandwidth and 10 receiving frequency bandwidth as a terminal capability between the wireless base station and the wireless terminal device.
2. A wireless terminal device for exchange of information 15 between the wireless terminal device and a wireless base station, the wireless terminal device comprising: a terminal category setting unit configured to identify a terminal category for the wireless terminal device based on at least one of frequency bandwidth and 20 receiving frequency bandwidth as a terminal capability between the wireless base station and the wireless terminal device.
3. A wireless base station for exchange of information 25 between a wireless terminal device and the wireless base station, the wireless base station comprising: a terminal category setting unit configured to identify a terminal category for the wireless terminal device based on at least one of frequency bandwidth and 30 receiving frequency bandwidth as a terminal capability between the wireless base station and the wireless terminal device. QI~A LCOA
4. A wireless communication method for exchange of information between a wireless terminal device and a wireless base station, the wireless communication method comprising: 5 identifying, by a terminal category setting unit, a terminal category for the wireless terminal device based on at least one of frequency bandwidth and receiving frequency bandwidth as a terminal capability between the wireless base station and the wireless terminal device. 10 Fujitsu Limited 15 Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON QI~AnA IC A
AU2012202258A 2006-11-10 2012-04-18 Wireless communication system and wireless terminal device Active AU2012202258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012202258A AU2012202258B2 (en) 2006-11-10 2012-04-18 Wireless communication system and wireless terminal device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2006350677 2006-11-10
AU2011201686A AU2011201686B2 (en) 2006-11-10 2011-04-14 Wireless communication system and wireless terminal device
AU2012202258A AU2012202258B2 (en) 2006-11-10 2012-04-18 Wireless communication system and wireless terminal device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2011201686A Division AU2011201686B2 (en) 2006-11-10 2011-04-14 Wireless communication system and wireless terminal device

Publications (2)

Publication Number Publication Date
AU2012202258A1 AU2012202258A1 (en) 2012-05-10
AU2012202258B2 true AU2012202258B2 (en) 2014-05-15

Family

ID=46640450

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2012202258A Active AU2012202258B2 (en) 2006-11-10 2012-04-18 Wireless communication system and wireless terminal device
AU2012211425A Active AU2012211425B2 (en) 2006-11-10 2012-08-08 Wireless communication system and wireless terminal device

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2012211425A Active AU2012211425B2 (en) 2006-11-10 2012-08-08 Wireless communication system and wireless terminal device

Country Status (1)

Country Link
AU (2) AU2012202258B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054536A1 (en) * 1999-03-08 2000-09-14 Nokia Networks Oy Method for establishing a communication between a user equipment and a radio network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006217173A (en) * 2005-02-02 2006-08-17 Matsushita Electric Ind Co Ltd Base station device and resource allocating method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054536A1 (en) * 1999-03-08 2000-09-14 Nokia Networks Oy Method for establishing a communication between a user equipment and a radio network

Also Published As

Publication number Publication date
AU2012211425B2 (en) 2014-09-18
AU2012211425A1 (en) 2012-08-30
AU2012202258A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
US10003961B2 (en) Wireless communication system and wireless terminal device
JP5392341B2 (en) Wireless communication system
AU2012202258B2 (en) Wireless communication system and wireless terminal device
CA2787127C (en) Wireless communication system and wireless terminal device
AU2015243028B2 (en) Wireless communication system and wireless terminal device
AU2014204545B2 (en) Wireless communication system and wireless terminal device
AU2011201686B2 (en) Wireless communication system and wireless terminal device

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)