AU2012202108A1 - Cell cycle genes and related methods of using - Google Patents

Cell cycle genes and related methods of using Download PDF

Info

Publication number
AU2012202108A1
AU2012202108A1 AU2012202108A AU2012202108A AU2012202108A1 AU 2012202108 A1 AU2012202108 A1 AU 2012202108A1 AU 2012202108 A AU2012202108 A AU 2012202108A AU 2012202108 A AU2012202108 A AU 2012202108A AU 2012202108 A1 AU2012202108 A1 AU 2012202108A1
Authority
AU
Australia
Prior art keywords
plant
seq
nucleic acid
wood
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2012202108A
Inventor
Marie B. Connett
Sarah Jane Emerson
Richard L. S. Forster
Murray Robert Grigor
Colleen M. Higgins
Robert John Kodrzycki
Steven Troy Lund
Andreas Magusin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arborgen Inc
Original Assignee
Arborgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004311384A external-priority patent/AU2004311384B2/en
Application filed by Arborgen Inc filed Critical Arborgen Inc
Priority to AU2012202108A priority Critical patent/AU2012202108A1/en
Publication of AU2012202108A1 publication Critical patent/AU2012202108A1/en
Abandoned legal-status Critical Current

Links

Abstract

The present specification relates to plant cell cycle genetic regulation. The invention specifically provides cell cycle polynucleotide and polypeptide sequences from Eucalyptus and Pinus that are, related to phenotypic characteristics such as wood stiffness, strength, density, fiber dimensions, coarseness, cellulose and lignin content, and extractives content. The genes and polynucleotides encode proteins that may be a cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl prolyl cis-trans isomerase, retinoblastoma-related protein, WEEl-like protein or WD40 repeat protein.

Description

P/00/011 Regulation 3.2 Australia Patents Act 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Name(s) of Applicant(s): ArborGen Inc. Title of Invention: 'Cell cycle genes and related methods of using' The following is a full description of this invention, including the best method known to the Applicant(s) of performing the invention: WO 2005/065339 PCT/US2004/043804 CELL CYCLE GENES AND RELATED METHODS OF USING CROSS REFERENCE TO RELATED APPLICATION [00011 This application claims priority to U.S. provisional application serial number 60/533,036, filed on December 30, 2003, which is specifically incorporated in its entirety herein by reference. FIELD OF THE INVENTION [00021 The present invention relates generally to the field of plant cell cycle genes and polypeptides encoded by such genes, and the use of such polynucleotide and polypeptide sequences for regulating a plant cell cycle. The invention specifically provides cell cycle polynucleotide and polypeptide sequences isolated from Eucalyptus and Pinus and sequences related thereto. BACKGROUND OF THE INVENTION [0003] Cell growth and division are controlled by the temporal expression of different sets of genes, allowing the dividing cell to progress through the different phases of the cell cycle. Continued growth and organogesis in plants requires precise function of the cell cycle machinery. Plant development, which is directly affected by cell division rates and patterns, also is influenced by environmental factors, such as temperature, nutrient availability, light, etc. See Gastal and Nelon, Plant Physiol. 105:191-7 (1994), Ben-Haj-Sahal and Tardieu, Plant Physiol. 109:861-7 (1995), and Sacks et al., Plant Physiol. 114:519-27 (1997). Plant development and phenotype are connected with the cell cycle, and altering expression of the genes involved in the cell cycle can be a useful method of modifying plant development and altering plant phenotype. [00041 The ability to alter expression of cell cycle genes is extremely powerful because the cell cycle drives plant development, including growth rates, responses to environmental cues, and resulting plant phenotype. Control of the plant cell cycle and phenotypes associated with alteration of cell cycle gene expression, in 1 WO 2005/065339 PCT/US2004/043804 the vascular cambium, in particular, has applications for, inter alia, alteration of wood properties and, in particular, lumber and wood pulp properties. For example, improvements to wood pulp that can be effected by altering cell cycle gene expression include increased or decreased lignin and cellulose content, and altered length, diameter, and lumen diameter of cells. Manipulating the plant cell cycle, and in particular the cambium cell cycle (i.e. the rate and angle of cell division), can also engineer better lumber having increased dimensional stability, increased tensile strength, increased shear strength, increased compression strength, increased shock resistance, increased stiffness, increased or decreased hardness, decreased spirality, decreased shrinkage, and desirable characteristics with respect to weight, density, and specific gravity. A. Cell Cycle Genes and Proteins 1. Cyclin dependent protein kinase [0005] Progression through the cell cycle is regulated primarily by cyclin dependent kinases (CDKs). CDKs are a conserved family of eukaryotic serine/threonine protein kinases, which require heterodimer formation with a cyclin subunit for activity. For review see, e.g. Joubes et al., Plant Mol. Biol. 43: 607-20 (2000), Stals and Inze, Trends Plant Sci. 6:359-64 (2001), and John et al., Protoplasma 216: 119-42 (2001). [00061 The are five subclasses of CDK's, each having a different cyclin binding consensus sequence. In CDK type A the cyclin binding consensus sequence is PSTAIRE. Id. The cyclin binding consensus sequence in CDK types B-1, B-2, and C are PPTTLRE, PPTALRE, and PITAIRE, respectively. Joubes et al, Plant Physiol, 126: 1403-15 (2001). [00071 Cell cycle progression is directed, in part, by changes in CDK activity. CDK activity is modulated by a number of different cell cycle protein components, such as changes in the abundance of individual cyclins due to changing rates of biosynthesis and proteolysis. Fluctuations in cyclin concentrations result in commensurate fluctuations in CDK activity. Cyclin accumulation is especially 2 WO 2005/065339 PCT/US2004/043804 important in terminating the G1 phase of the cell cycle because DNA replication is initiated by an increase in CDK activity. [00081. Activation of CDK also requires phosphorylation of a threonine residue within the T-loop of CDK by a CDK-activating kinase (CAK). Umeda et al., Proc. Nat'l Acad. Sci. U S. A. 97: 13396-400 (2000). It was suggested by Yamaguchi et al., Plant J. 24: 11-20 (2000), that cyclin H is a regulatory subunit of CAK. CDK activity is further regulated by interaction with a CDK regulatory subunit, a small (70 100 AA) protein involved in cell cycle regulation. [0009] A cell must exit the cell cycle in order to commit to differentiation, senescence or apoptosis. This process involves the down-regulation of CDK activities. CDK inhibitors (CKI) are low molecular weight proteins, which are important for cell cycle regulation and development. CKIs bind stoichiometrically to CDK and down-regulate the activity of CDKs. [0010] Many biochemical properties of ICKI, the first plant CKI to be identified from Arabidopsis thaliana, are known. Wang et al., Nature 386:451-2 (1997) Wang et al., Plant J 24: 613-23 (2000). ICK1 is expressed at low levels in many tissue types, and there can be a threshold level of ICK1 that must be overcome before a cell can enter the cell cycle. Wang et al., Plant J. 24: 613-23 (2000). ICK1 is induced by the plant growth regulator abscisic acid (ABA), which inhibits cell division by blocking DNA replication. When the expression of ICKI increases, there is a corresponding decrease in Cdc2-like HI histone activity. ICKI has been shown to bind in vitro with the cyclins C2c2a and CycD3, and deletion experiments have identified different domain regions for these two interactions. [00111 Altering the expression of CDK regulatory protein or a subunit thereof is known to cause changes in plant phenotype. Overexpression of the Arabidopsis CDK regulatory subunit, CKS 1 At, resulted in a reduction of leaf size, root growth rates and meristem size. Additionally, overexpression of CKS 1 At resulted in inhibition of cell-cycle progression, with an extension in the duration of the G1 and G2 phases of the cell cycle. 3 WO 2005/065339 PCT/US2004/043804 2. Cyclins [00121 Cyclins are positive regulatory subunits of cyclin-dependent kinase (CDK) enzymes and are required for CDK activity. Fowler et al., Mol. Biotech. 10, 123, 126. Cyclins and CDK complexes provide temporal regulation of transition through the cell cycle. Evidence also suggests that cyclins provide spatial regulation of specific CDK activity, differentially targeting the cytoskeleton, spindle, phragmoplast, nuclear envelope, and chromosomes. [0013] Plant cyclins are classified into five major groups: A, B, C, D, and H. Renaudin et al., Plant Mol. Biol. 32: 1003-18 (1996) and Yamaguchi et al., (supra 2000). Cyclins can be divided into mitotic cyclins (A and B) and G, cyclins. [00141 The mitotic cyclins possess a consensus sequence (R-x-x-L-x-x-I-x N) located at the N-terminal region, termed a destruction box, adjacent to a lysine-rich region. The destruction box and lysine-rich region target the mitotic cyclins for ubiquitin-dependent proteolysis during mitosis. Stals, supra at 361, and Fowler, supra at 126. The destruction box in A versus B cyclins differs slightly and this difference is thought to result in slightly different timing of degradation of A versus B cyclins. Fowler, supra at 126. A-type cyclins accumulate during the S, G2, and early M phase of the cell cycle, whereas B-type cyclins accumulate during the late G2 and early M phase. Mironov et al., Plant Cell 11: 509-22 (1999). Three subgroups of A type cyclins are known in plants, but only one is known in animals. Cyclin Al (cycAl;zm; 1 from Zea cans) is most concentrated during cytokinesis at the microtubule-containing phragmoplast. Expression of cyclin A2 is upregulated by auxins in roots, and by cytokinins in the sioot apex. Abrahams et al., Biochim. Biophys. Acta 28: 1-2 (2001). [0015] D-type cyclins, of which five subgroups are known, are thought to control the progression through the G1 phase in response to growth factors and nutrients. Riou-Khamlichi et al., Mol. Cell Biol, 20: 4513-21 (2000). For example, the expression of D-type cyclins is upregulated by sucrose as shown by an increase in cycD2 mRNA 30 minutes after sucrose exposure, and an increase in cycD3 four hours 4 WO 2005/065339 PCT/US2004/043804 after sucrose exposure. This timing corresponds to early G-phase and late G1-phase, respectively. Cockcroft et al., Nature 405: 575-9 (2000). Furthermore, in Arabidopsis, a D3 cyclin was shown to be upregulated by the brassinosteroid, epi brassinolide. [0016] Cyclin D2 proteins bind with CDKA to produce an active complex, which binds to and phosphorylates retinoblastoma-related protein (Rb). This process is found in actively proliferating tissue, suggesting it plays an important function during late Gl- and early S-phase. Three different D3-type cyclins are active during tomato fruit development. These proteins all contain a retinoblastoma binding motif and a PEST-destruction motif. There are differences in the spatial and temporal expression of these D3 cyclins, inferring different roles during fruit development. [0017] Overexpression of cyclin D was shown to increase overall growth rate. Over-expression of cyclin D2 in tobacco increases causes shortening the G1 phase which producing a faster rate of cell cycling. [00181 C- and H-type cyclins were characterized in poplar (Populus tremula x tremuloides) and rice (Oryza sativa) but their exact function is still unclear. Putative cyclins with a lesser degree of peptide sequence conservation have also been identified. For example, Arabidopsis CycJl 8 has only 20% identity with homologues over the cyclin box domain. CycJl8 is expressed predominantly in young seedlings. Arabidopsis F309.13 protein also has similarity to the cyclin family. 3. Histone acetyltransferase/deacetyltransferase [0019] Histone acetyltransferase (HA) and histone deacetyltransferase (HAD) control the net level of acetylation of histones. Histone acetylation and deacetylation are thought to exert their regulatory effects on gene expression by altering the accessibility of nucleosomal DNA to DNA-binding transcriptional activators, other chromatin-modifying enzymes or multi-subunit chromatin remodeling complexes capable of displacing nucleosomes. Lusser et al., Nucleic Acids Res. 27: 4427-35 (1999). Therefore, in general, the HDAs are involved in the repression of gene expression, while HAs are correlated with gene activation. 5 WO 2005/065339 PCT/US2004/043804 [00201 HA effects acetylation at the s-amino group of conserved lysine residues clustered near the amino terminus of core histones which up-regulates gene expression. [00211 HDAs remove acetyl groups from the core histones of the nucleosome. There are numerous family members in the HDA group, many of which are conserved throughout evolution. Lechner et al., Biochim Biophys Acta 5:181-8 (1996). HDAs function as part of multi-protein complexes facilitating chromatin condensation. [00221 HDAs and HAs recognize highly distinct acetylation patterns on the nucleosome. It is thought that different types of HDAs interact with specific regions of the genome, to influence gene silencing. [00231 Schultz et al., Genes Dev. 15: 428-43 (2001), demonstrated that the superfamily of Kruppel-associated-box zinc finger proteins (KRAB-ZFPs) are linked to the nucleosome remodelling and histone deacetylation complex via the PHD (plant homeodomain) and bromodomains of co-repressor KAP-1, to form a cooperative unit that is required for transcriptional repression. A maize HDAC (HD2) has been identified that has no sequence homology to other eukaryotic HDACs, but instead contains sequence similarity to peptidyl-prolyl cis-trans isomerases (PPIases). 100241 The effects of interfering with histone deacetylation are discussed in e.g. Tian and Chen, Proc. Nat'l Acad. Sci. USA 98: 200-5 (2001). 4. Peptidyl prolyl cis-trans isomerase [0025] Peptidylprolyl isomerases (e.g., peptidylprolyl cis-trans isomerase, peptidyl-prolyl cis-trans isomerase, PPIase, rotamase, cyclophilin) catalyze the interconversion of peptide bonds between the cis and trans conformations at proline residues. Sheldon and Venis, Biochem J. 315: 965-70 (1996). This interconversion is thought to be the rate limiting step of protein folding. PPIases belong to a conserved family of proteins that are present in animals, fungi, bacteria and plants. PPlases are implicated in a number of responses including the response to environmental stress, 6 WO 2005/065339 PCT/US2004/043804 calcium signals, transcriptional repression, cell cycle control, etc. Viaud, et al., Plant Cell 14: 917-30 (2002). 5. Retinoblastoma-related protein [00261 Retinoblastoma (Rb)-related protein putatively regulates progression of the cell cycle through the G1 phase and into S phase. Xie et al., EMBO J. 15: 4900-8 (1996) and Ach et al., Mol. Cell Biol. 17: 5077-86 (1997). [00271 Although Rb is well-characterized in mammalian systems, the role of Rb-related proteins in regulation of G1 phase progression and S phase entry is not well characterized in plants. It is known, however, that RB-related protein functions through its association with various other cellular proteins involved in cell cycle regulation, such as the cyclins, WD40 proteins, Soni et al., Plant. Cell. 7:85-103 (1995); Grafi et al., Proc. Nati. Acad. Sci. US.A. 93:8962 (1996); Ach et al., Plant Cell 9:1595-606 (1997); Umen and Goodenough, Genes Dev. 15:1652-61 (2001); Mariconti et al., J. Biol. Chem. 277:9911-9 (2002). 6. WD40 repeat protein 100281 WD40 is a common repeating motif involved in many different protein-protein interactions. The WD40 domain is found in proteins having a wide variety of functions including adaptor/regulatory modules in signal transduction, pre mRNA processing and cytoskeleton assembly. Goh et al., Eur. J. Biochem. 267: 434 49 (2000). [00291 The WD40 domain, which is 40 residues long, typically contains a GH dipeptide 11-24 residues from the N-terminus and the WD dipeptide at the C terminus. Id. Between the GH dipeptide and the WD dipeptide lies a conserved core which serves as a stable platform where proteins can bind either stably or reversibly. The core forms a propeller-like structure with several blades. Each blade is composed of a four-stranded anti-parallel D-sheet. Each WD40 sequence repeat forms the first three strands of one blade and the last strand in the next blade. The last C-terminal WD40 repeat completes the blade structure of the first WD40 repeat to create the 7 WO 2005/065339 PCT/US2004/043804 closed ring propeller-structure. The residues on the top and bottom surface of the propeller are proposed to coordinate interactions with other proteins and/or small ligands. [00301 Studies in yeast demonstrated that Cdc20, which contains the WD40 motif, is required for the proteolysis of mitotic cyclins. This process is mediated by an ubiquitin-protein ligase called anaphase-promoting complex (APC) or cyclosome. Following ubiquitination and proteolysis by the 26S proteasome, the cell can segregate chromosomes, and exit from mitosis. Cdc20 also contains a destruction box domain. 7. WEEl-like protein [00311 WEEl controls the activity of cyclin-dependent kinases. WEE1 itself is a serine/threonine kinase. Sorrell et al., Planta 215: 518-22 (2002). The enzymatic activity of these protein kinases is controlled by phosphorylation of specific residues in the activation segment of the catalytic domain, sometimes combined with reversible conformational changes in the C-terminal autoregulatory tail. This process is conserved among eukaryotes, from fungi to animals and plants. Similarly, there is a high degree of homology between WEEI proteins from various organisms. For example, there is 50% identity between the protein kinase domains of the human and maize WEE1 proteins. [00321 Expression of WEEl is shown to occur only in actively dividing tissues and is believed to inhibit cell division by acting as a negative regulator of mitosis. WEE1 is believed to prevent entry from G2 to M by protecting the nucleus from cytoplasmically-activated cyclin B 1 -complexed CDC2 before the onset of mitosis. For example, over-expression of AtWEE1 (from Arabidopsis) and ZmWEEI (from Zea cans) in fission yeast inhibits cell division which results in elongated cells. Sun et al., Proc. Nat'l Acad. Sci. U S A 96: 4180-5 (1999). 8 WO 2005/065339 PCT/US2004/043804 B. Expression Profiling and Microarray Analysis in Plant Development [00331 The multigenic control of plant phenotype presents difficulties in determining the genes responsible for phenotypic determination. One major obstacle to identifying genes and gene expression differences that contribute to phenotype in plants is the difficulty with which the expression of more than a handful of genes can be studied concurrently. Another difficulty in identifying and understanding gene expression and the interrelationship of the genes that contribute to plant phenotype is the high degree of sensitivity to environmental factors that plants demonstrate. 100341 There have been recent advances using genome-wide expression profiling. In particular, the use of DNA microarrays has been useful to examine the expression of a large number of genes in a single experiment. Several studies of plant gene responses to developmental and environmental stimuli have been conducted using expression profiling. For example, microarray analysis was employed to study gene expression during fruit ripening in strawberry, Aharoni et al., Plant Physiol. 129:1019-1031 (2002), wound response in Arabodopsis, Cheong et al., Plant Physiol. 129:661-7 (2002), pathogen response in Arabodopsis, Schenk et al., Proc. Nat'l Acad Sci. 97:11655-60 (2000), and auxin response in soybean, Thibaud-Nissen et al., Plant Physiol. 132:118. Whetten et al., Plant Mol. Biol. 47:275-91 (2001) discloses expression profiling of cell wall biosynthetic genes in Pinus taeda L. using cDNA probes. Whetten et al. examined genes which were differentially expressed between differentiating juvenile and mature secondary xylem. Additionally, to determine the effect of certain environmental stimuli on gene expression, gene expression in compression wood was compared to normal wood. 156 of the 2300 elements examined showed differential expression. Whetten, supra at 285. Comparison of juvenile wood to mature wood showed 188 elements as differentially expressed. Id. at 286. [0035] Although expression profiling and, in particular, DNA microarrays provide a convenient tool for genome-wide expression analysis, their use has been limited to organisms for which the complete genome sequence or a large cDNA 9 WO 2005/065339 PCTIUS2004/043804 collection is available. See Hertzberg et al., Proc. Nat'l Acad Sci. 98:14732-7 (2001a), Hertzberg et al., Plant J., 25:585 (2001b). For example, Whetten, supra, states, "A more complete analysis of this interesting question awaits the completion of a larger set of both pine and poplar ESTs." Whetten et al. at 286. Furthermore, microarrays comprising cDNA or EST probes may not be able to distinguish genes of the same family because of sequence similarities among the genes. That is, cDNAs or ESTs, when used as microarray probes, may bind to more than one gene of the same family. [00361 Methods of manipulating gene expression to yield a plant with a more desirable phenotype would be facilitated by a better understanding of cell cycle gene expression in various types of plant tissue, at different stages of plant development, and upon stimulation by different environmental cues. The ability to control plant architecture and agronomically important traits would be improved by a better understanding of how cell cycle gene expression effects formation of plant tissues, how cell cycle gene expression causes plant cells to enter or exit cell division, and how plant growth and the cell cycle are connected. Among the large number of genes, the expression of which can change during development of a plant, only a fraction are likely to effect phenotypic changes during any given stage of the plant development. SUMMARY 100371 Accordingly, there is a need for tools and methods useful in determining the changes in the expression of cell cycle genes that occur during the plant cell cycle. There is also a need for polynucleotides useful in such methods. There is a further need for methods which can correlate changes in cell cycle gene expression to phenotype or stage of plant development. There is a further need for methods of identifying cell cycle genes and gene products that impact plant phenotype, and that can be manipulated to obtain a desired phenotype. 10 WO 2005/065339 PCT/US2004/043804 [0038] In one aspect, the present invention provides an isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof. [0039] In another aspect, the present invention provides a DNA construct comprising at least one polynucleotide having the sequence of any one of SEQ ID NOs: 1-237 and conservative variants thereof. [0040] Another aspect of the invention is a plant cell transformed with a DNA construct of comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof. [0041] A further aspect of the invention is a transgenic plant comprising a plant cell transformed with a DNA construct comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof. [0042] Another aspect of the invention is an isolated polynucleotide comprising a sequence encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 261-497, wherein the polynucleotide encodes a polypeptide having the activity of said polypeptide selected from any one of SEQ ID NOs: 261-497. [00431 A further aspect of the invention is a method of making a transformed plant comprising transforming a plant cell with a DNA construct comprising at least one polynucleotide having the sequence of any of SEQ ID NOs: 1 237; and culturing the transformed plant cell under conditions that promote growth of a plant. [00441 In another aspect, the invention provides a wood obtained from a transgenic tree.
WO 2005/065339 PCTIUS2004/043804 [00451 In a further aspect, the invention provides a wood pulp obtained from a transgenic tree which has been transformed with the DNA construct of the invention. [00461 Another aspect of the invention is a method of making wood, comprising transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 237 and conservative variants thereof; culturing the transformed plant under conditions that promote growth of a plant; and obtaining wood from the plant. [0047] The invention further provides a method of making wood pulp, comprising transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: I - 237 and conservative variants thereof; culturing the transformed plant under conditions that promote growth of a plant; and obtaining wood pulp from the plant. [0048] In another aspect, the invention provides an isolated polypeptide comprising an amino acid sequence encoded by the isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1 - 237 and conservative variants thereof. [00491 The invention also provides, an isolated polypeptide comprising an amino acid sequence selected from the group consisting of 261-497. [0050] The invention further provides a method of altering a plant phenotype of a plant, comprising altering expression in the plant of a polypeptide encoded by any one of SEQ ID NOs: 1-237. [00511 In another aspect, the invention provides a polynucleotide comprising a nucleic acid selected from the group comprising of SEQ ID NOs: 471-697. [00521 An aspect of the invention is a method of correlating gene expression in two different samples, comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group 12 WO 2005/065339 PCT/US2004/043804 consisting of SEQ ID NOs: 1-237 and conservative variants thereof in a first sample; detecting a level of expression of the one or more genes in a second sample; comparing the level of expression of the one or more genes in the first sample to the level of expression of the one or more genes in the second sample; and correlating a difference in expression level of the one or more genes between the first and second samples. 100531 A further aspect of the invention is a method of correlating the possession of a plant phenotype to the level of gene expression in the plant of one or more genes comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof in a first plant possessing a phenotype; detecting a level of expression of the one or more genes in a second plant lacking the phenotype; comparing the level of expression of the one or more genes in the first plant to the level of expression of the one or more genes in the second plant; and correlating a difference in expression level of the one or more genes between the first and second plants to possession of the phenotype. [00541 In a further aspect, the invention provides a method of correlating gene expression to a stage of the cell cycle, comprising detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof in a first plant cell in a first stage of the cell cycle; detecting a level of expression of the one or more genes in a second plant cell in a second, different stage of the cell cycle; comparing the level of the expression of the one or more genes in the first plant cells to the level of expression of the one or more genes in the second plants cells; and correlating a difference in expression level of the one or more genes between the first and second samples to the first or second stage of the cell cycle. [0055] An aspect of the invention is a combination for detecting expression of one or more genes, comprising two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237. 13 WO 2005/065339 PCTIUS2004/043804 [0056] Another aspect of the invention is a combination for detecting expression of one or more genes, comprising two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237. [00571 The invention further provides a microarray comprising a combination for detecting expression of one or more genes, comprising two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 or wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237, wherein each of said two or more oligonucleotides occupies a unique location on said solid support. [0058] In another aspect, the invention provides a method for detecting one or more genes in a sample, comprising contacting the sample with two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 under standard hybridization conditions; and detecting the one or more genes of interest which are hybridized to the one or more oligonucleotides. [0059] The invention also provides a method for detecting one or more nucleic acid sequences encoded by one or more genes in a sample, comprising contacting the sample with two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 under standard hybridization conditions; and detecting the one or more nucleic acid sequences which are hybridized to the one or more oligonucleotides. [00601 The invention further provides a kit for detecting gene expression comprising the microarray of the invention together with one or more buffers or reagents for a nucleotide hybridization reaction. 14 WO 2005/065339 PCT/US2004/043804 [00611 Other features, objects, and advantages of the present invention are apparent from the detailed description that follows. It should be understood, however, that the detailed description, while indicating preferred embodiments of the invention, are given by way of illustration only, not limitation. Various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from the detailed description. BRIEF DESCRIPTION OF THE DRAWINGS [00621 Figure 1: Exemplary microarray sampling parameters. [00631 Figure 2: Plasmid map for pWVK202. [00641 Figure 3: Plasmid map for pGrowthi4. [00651 Figure 4: Plasmid map for pGrowthl5. [00661 Figure 5: Plasmid map for pGrowthl6. [0067] Figure 6: Plasmid map for pGrowthl8. [0068] Figure 7: Plasmid map for pGrowth19. [00691 Figure 8: Plasmid map for pGrowth2O. List of Tables [00701 Table 1: shows genes having greater than doubled signal with any one sample as compared to the mean signal of the other three samples. [00711 Table 2: identifies plasmid(s), genes, and Genesis ID numbers for constructs described in Example 17. [0072] Table 3: Rooting medium for Populus deltoids. [00731 Table 4: pGrowth information. 15 WO 2005/065339 PCTIUS2004/043804 [0074] Table 5: shows genes having greater than doubled signal with any one sample as compared to the mean signal of the other three samples. [00751 Table 6: Differentially expressed cDNAs. [00761 Table 7: Consensus ID information. [00771 Table 8: pGrowth information. [0078] Table 9: Eucalyptus grandis cell cycle genes and proteins. [0079] Table 10: Pinus radiata cell cycle genes and proteins. [00801 Table 11: Annotated peptide sequences of the present invention. [00811 Table 12: Eucalyptus in silico data. [00821 Table 13: Pine in silico data. 100831 Table 14: Oligo table. [0084] Table 15: Peptide table. [0085] Table 16: BLAST sequence alignment table. DETAILED DESCRIPTION [0086] The inventors have discovered novel isolated cell cycle genes and polynucleotides useful for identifying the multigenic factors that contribute to a phenotype and for manipulating gene expression to affect a plant phenotype. These genes, which are derived from plants of commercially important forestry genera, pine and eucalyptus, are involved in the plant cell cycle and are, at least in part, responsible for expression of phenotypic characteristics important in commercial wood, such as stiffness, strength, density, fiber dimensions, coarseness, cellulose and lignin content, and extractives content. Generally speaking, the genes and polynucleotides encode a protein which can be a cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans 16 WO 2005/065339 PCT/US2004/043804 isomerase, retinoblastoma-related protein, WEEl-like protein, or WD40 repeat protein, or a catalytic domain thereof, or a polypeptide having the same function, and the invention further includes such proteins and polypeptides. [00871 The methods of the present invention for selecting cell cycle gene sequences to target for manipulation will permit better design and control of transgenic plants with more highly engineered phenotypes. The ability to control plant architecture and agronomically important traits in commercially important forestry species will be improved by the information obtained from the methods, such as which genes affect which phenotypes, which genes affect entry into which stage of the cell cycle, which genes are active in which stage of plant development, and which genes are expressed in which tissue at a given point in the cell cycle or plant development. [00881 Unless indicated otherwise, all technical and scientific terms are used herein in a manner that conforms to common technical usage. Generally, the nomenclature of this description and the described laboratory procedures, including cell culture, molecular genetics, and nucleic acid chemistry and hybridization, respectively, are well known and commonly employed in the art. Standard techniques are used for recombinant nucleic acid methods, oligonucleotide synthesis, cell culture, tissue culture, transformation, transfection, transduction, analytical chemistry, organic synthetic chemistry, chemical syntheses, chemical analysis, and pharmaceutical formulation and delivery. Generally, enzymatic reactions and purification and/or isolation steps are performed according to the manufacturers' specifications. Absent an indication to the contrary, the techniques and procedures in question are performed according to conventional methodology disclosed, for example, in Sambrook et al., MOLECULAR CLONING A LABORATORY MANUAL, 2d ed. (Cold Spring Harbor Laboratory Press, 1989), and CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1989). Specific scientific methods relevant to the present invention are discussed in more detail below. However, this discussion is provided as an example only, and does not limit the manner in which the methods of the invention can be carried out. 17 WO 2005/065339 PCTIUS2004/043804 A. Plant Cell Cycle Genes and Proteins 1. Cell Cycle Genes, Polynucleotide and Polypeptide Sequences [0089] One aspect of the present invention relates to novel plant cell cycle genes and polypeptides encoded by such genes. As used herein, the term "plant cell cycle genes" refers to genes encoding proteins that function during the plant cell cycle, and the term "plant cell cycle proteins" refers to proteins that function during the plant cell cycle. There are several known families of plant cell cycle proteins, including cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans isomerase, retinoblastoma-related protein, WEE l -like protein, and WD40 repeat protein. Although there is significant sequence homology within each gene and protein family, each member of each family can display different biochemical properties and altering the expression of at least one of these genes can result in a different plant phenotype. [00901 The present invention provides novel plant cell cycle genes and polynucleotides and novel cell cycle proteins and polypeptides. In accordance with one embodiment of the invention, the novel plant cell cycle genes are the same as those expressed in a wild-type plant of a species of Pinus or Eucalyptus. Exemplary novel plant cell cycle gene sequences of the invention are set forth in Tables 9 and 10, which depict Eucalyptus grandis sequences and Pinus radiata sequences, respectively. Corresponding gene products, i.e., oligonucleotides and polypeptides, are also listed in Tables 14, 15, and 16. The Sequence Listing in APPENDIX I provides the sequences of these aspects of the invention. [00911 The sequences of the invention have cell cycle activity and encode proteins that are active in the cell cycle, such as proteins of the cell cycle families discussed above. As discussed in more detail below, manipulation of the expression of the cell cycle genes and polynucleotides, or manipulation of the activity of the encoded proteins and polypeptides, can result in a transgenic plant with a desired phenotype that differs from the phenotype of a wild-type plant of the same species. 18 WO 2005/065339 PCT/US2004/043804 [00921 Throughout this description, reference is made to cell cycle gene products. As used herein, a "cell cycle gene product" is a product encoded by a cell cycle gene, and includes both nucleotide products, such as RNA, and amino acid products, such as proteins and polypeptides. Examples of specific cell cycle genes of the invention include SEQ ID NOs: 1-237. Examples of specific cell cycle gene products of the invention include products encoded by any one of SEQ ID NOs: 1 237. Reference also is made herein to cell cycle proteins and cell cycle polypeptides. Examples of specific cell cycle proteins and polypeptides of the invention include polypeptides encoded by any of SEQ ID NOs: 1-237 or polypeptides comprising the amino acid sequence of any of SEQ ID NOs: 261-497. One aspect of the invention is directed to a subset of these cell cycle genes and cell cycle gene products, namely SEQ ID NOs: 1-12, 14-58, 60-62, 64-70, 72-75, 77-83, 85-86, 88-91, 93-119, 121 130, 132-148, 150-156, 158-191, 193-207, 209-218, 220-221, 223-231, 233-237, their respective conservative variants (as that term is defined below), and the nucleotide and amino acid products encoded thereby. Another aspect of the invention is directed to a subset of the cell cycle genes and cell cycle gene products, namely SEQ ID NOs: 1-12, 14, 16-26, 30-37, 40-41, 43-76, 78-103, 106, 108-113, 116-121, 124-125, 128 147, 150-152, 154-155, 161-162, 164-172, 174, 177-183, 185-191, 193-197, 200-204, 208-213, and 215-234 their respective conservative variants, and the nucleotide and amino acid products encoded thereby. A further aspect of the invention is directed to a subset of the cell cycle genes and cell cycle gene products, namely SEQ ID NOs: 1 12, 14, 16-26, 30-37, 40-41, 43-58, 60-62, 64-70, 72-75, 78-83, 85-86, 88-91, 93-103, 106, 108-113, 116-119, 121, 124-125, 128-130, 132-147, 150-152, 154-155, 161-162, 164-172, 174, 177-183, 185-191, 193-197, 200-204, 209-213, 215-218, 220-221, 223 231, and 233-234 their respective conservative variants, and the nucleotide and amino acid products encoded thereby. [00931 The present invention also includes sequences that are complements, reverse sequences, or reverse complements to the nucleotide sequences disclosed herein. 19 WO 2005/065339 PCT/US2004/043804 [0094] The present invention also includes conservative variants of the sequences disclosed herein. The term "variant," as used herein, refers to a nucleotide or amino acid sequence that differs in one or more nucleotide bases or amino acid residues from the reference sequence of which it is a variant. [0095] Thus, in one aspect, the invention includes conservative variant polynucleotides. As used herein, the term "conservative variant polynucleotide" refers to a polynucleotide that hybridizes under stringent conditions to an oligonucleotide probe that, under comparable conditions, binds to the reference gene the conservative variant is a variant of. Thus, for example, a conservative variant of SEQ ID NO: 1 hybridizes under stringent conditions to an oligonucleotide probe that, under comparable conditions, binds to SEQ ID NO: 1. One aspect of the invention provides conservative variant polynucleotides that exhibit at least about 75% sequence identity to their respective reference sequences. 10096] "Sequence identity" has an art-recognized meaning and can be calculated using published techniques. See COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, ed. (Oxford University Press, 1988), BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, ed. (Academic Press, 1993), COMPUTER ANALYSIS OF SEQUENCE DATA, PART I, Griffin & Griffin, eds., (Humana Press, 1994), SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, Von Heinje ed., Academic Press (1987), SEQUENCE ANALYSIS PRIMER, Gribskov & Devereux, eds. (Macmillan Stockton Press, 1991), and Carillo & Lipton, SIAMJ. Applied Math. 48: 1073 (1988). Methods commonly employed to determine identity or similarity between two sequences include but are not limited to those disclosed in GUIDE To HUGE COMPUTERS, Bishop, ed., (Academic Press, 1994) and Carillo & Lipton, supra. Methods to determine identity and similarity are codified in computer programs. Preferred computer program methods to determine identity and similarity between two sequences include but are not limited to the GCG program package (Devereux et al., Nucleic Acids Research 12: 387 (1984)), BLASTP, BLASTN, FASTA (Atschul et al., J. Mol. Biol. 215: 403 (1990)), and FASTDB (Brutlag et al., Comp. App. Biosci. 6: 237 (1990)). 20 WO 2005/065339 PCT/US2004/043804 [0097] The invention includes conservative variant polynucleotides having a sequence identity that is greater than or equal to 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, or 60% to any one of SEQ ID NOs: I to 237. In such variants, differences between the variant and the reference sequence can occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence. [0098] Additional conservative variant polynucleotides contemplated by and encompassed within the present invention include polynucleotides comprising sequences that differ from the polynucleotide sequences of SEQ ID NO: 1-237, or complements, reverse complements or reverse sequences thereof, as a result of deletions and/or insertions totaling less than 10% of the total sequence length. [00991 The invention also includes conservative variant polynucleotides that, in addition to sharing a high degree of similarity in their primary structure (sequence) to SEQ ID NOs: 1 to 237, have at least one of the following features: (i) they contain an open reading frame or partial open reading frame encoding a polypeptide having substantially the same functional properties in the cell cycle as the polypeptide encoded by the reference polynucleotide, or (ii) they have nucleotide domains or encoded protein domains in common. The invention includes conservative variants of SEQ ID NOs: 1-237 that encode proteins having the enzyme or biological activity or binding properties of the protein encoded by the reference. polynucleotide. Such conservative variants are functional variants, in that they have the enzymatic or binding activity of the protein encoded by the reference polynucleotide. [0100] In accordance with the invention, polynucleotide variants can include a "shuffled gene" such as those described in e.g. U.S. Patent Nos. 6,500,639, 6,500,617 6,436,675, 6,379,964, 6,352,859 6,335,198 6,326,204, and 6,287,862. A variant of a nucleotide sequence of the present invention also can be a polynucleotide 21 WO 2005/065339 PCT/US20041043804 modified as disclosed in U.S. Patent No. 6,132,970, which is incorporated herein by reference. [01011 In accordance with one embodiment, the invention provides a polynucleotide that encodes a cell cycle protein from one of the following families: cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans isomerase, retinoblastoma-related protein, WEEl-like protein, or WD40 repeat protein. SEQ ID NOs: 1-237 provide examples of such polynucleotides. [01021 In accordance with another embodiment, a polynucelotide of the invention encodes the catalytic or protein binding domain of a polypeptide encoded by any of SEQ ID NOs: 1-237 or of a polypeptide comprising any of SEQ ID NOs: 261-497. The catalytic and protein binding domains of the cell cycle proteins of the invention are known in the art. The conserved sequences of these proteins are shown in Entries 1-195 as underlined, bold, and/or italicized text. [01031 The invention also encompasses as conservative variants polynucleotides that differ from the sequences discussed above but that, as a consequence of the degeneracy of the genetic code, encode a polypeptide which is the same as that encoded by a polynucleotide of the present invention. The invention also includes as conservative variants polynucleotides comprising sequences that differ from the polynucleotide sequences discussed above as a result of substitutions that do not affect the amino acid sequence of the encoded polypeptide sequence, or that result in conservative substitutions in the encoded polypeptide sequence. [0104] The present invention also includes an isolated polypeptide encoded by a polynucleotide comprising any of SEQ ID NOs: 1-237 or any of the conservative variants thereof discussed above. The invention also includes polypeptides comprising SEQ ID NOs: 261-497 and 495-497 and conservative variants of these polypeptides. Another aspect of the invention include polypeptides comprising SEQ ID NOs: 261-272, 274-318, 320-322, 324-330, 332-335, 337-343, 345-346, 348-351, 353-379, 381-390, 392-408, 410-416, 418-451, 453-467, 469-478, 480-481, 483-491, 22 WO 2005/065339 PCT/US2004/043804 and 493-494 and conservative variants thereof. A further aspect of the invention includes polypeptides comprising SEQ ID NOs: 261-272, 274, 276-286, 289, 290 297, 300-301, 303-345, 347-363, 366, 368-373, 376-381, 384-385, 388-407, 410-412, 414-415, 420-422, 424-432, 434, 437-443, 445-451, 453-457, 460-464, 468-473, and 475-494 and conservative variants thereof. Another aspect of the invention includes polypeptides comprising SEQ ID NOs: 261-272, 274, 276-286, 290-297, 300-301, 303-318, 320-322, 324-330, 332-335, 337-343, 345, 348-351, 353-363, 366, 368-373, 376-381, 384-385, 388-390, 392-407, 410-412, 414-415, 421-422, 424-432, 434, 437 443, 445-451, 453-457, 460-464, 469-473, 475478, 480-481, 483-491, and 493-494 and conservative variants thereof. [01051 In accordance with the invention, a variant polypeptide or protein refers to an amino acid sequence that is altered by the addition, deletion or substitution of one or more amino acids. [0106] The invention includes conservative variant polypeptides. As used herein, the term "conservative variant polypeptide" refers to a polypeptide that has similar structural, chemical or biological properties to the protein it is a conservative variant of. Guidance in determining which amino acid residues can be substituted, inserted, or deleted can be found using computer programs well known in the art such as Vector NTI Suite (InforMax, MD) software. In one embodiment of the invention, conservative variant polypeptides that exhibit at least about 75% sequence identity to their respective reference sequences. [0107] Conservative variant protein includes an "isoform" or "analog" of the polypeptide. Polypeptide isoforms and analogs refers to proteins having the same physical and physiological properties and the same biological function, but whose amino acid sequences differs by one or more amino acids or whose sequence includes a non-natural amino acid. [01081 Polypeptides comprising sequences that differ from the polypeptide sequences of SEQ ID NO: 261-497 as a result of amino acid substitutions, insertions, 23 WO 2005/065339 PCT/US2004/043804 and/or deletions totaling less than 10% of the total sequence length are contemplated by and encompassed within the present invention. 10109] One aspect of the invention provides conservative variant polypeptides that have the same function in the cell cycle as the proteins of which they are variants, as determined by one or more appropriate assays, such as those described below. The invention includes variant polypeptides that function as cell cycle proteins, such as those having the biological activity of cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans isomerase, retinoblastoma-related protein, WEE 1-like protein, and WD40 repeat protein, and are thus capable of modulating the cell cycle in a plant. As discussed above, the invention includes variant polynucleotides that encode polypeptides that function as cell cycle proteins. [0110] The activities and physical properties of cell cycle proteins can be examined using any method known in the art. The following examples of assay methods are not exhaustive and are included to provide some guidance in examining the activity and distinguishing protein characteristics of cell cycle protein variants. [01111 CDK activity can be assessed using roscovitine as described in Yamaguchi et al., Proc. NatL. Acad. Sci. U.S.A. 100:8019 (2003). CDK histone kinase activity can be assayed using autoradiography to detect histone HI phosphorylation by CDK as described in Joubds et al., Plant Physiol. 121:857 (1999). [0112] CKI activity can be assayed using a variation of the method described in Zhou et al., Planta. 6:604 (2003). The modified method can employ co transformation or subsequent transformations to identify the interaction of CKI and cyclins in vivo. For example, in the first transformation pine tissue can be transformed using the method described in U.S. Patent Application Publication No. 2002/0100083 using geneticin selection to obtain transgenic plants possessing cycD3 and cdc2a homologs. The second transformation can be performed using alpha methyltryptophan as a selectable marker to obtain transformants having an ICKI homologue as described in U.S. Provisional Application No. 60/476,189. Tissue 24 WO 2005/065339 PCT/US2004/043804 capable of growing on both on geneticin and on alpha-methyltryptophan contains the ICKI homologue and the cycD3 and cdc2a homologues. The CKI activity is determined by comparison of the phenotype of transformants having the cycD3 and cdc2a homologues to the transformants having ICK1 homologue and the cycD3 and cdc2a homologs. [0113] Histone deacetylase activity can be assessed by complementation of the Arabidopsis mutants described in Tian et al., Genetics 165:399 (2003). Histone acetyltransferase activity can be assayed using anacardic acid as described in Balasubramanyam et al., J. Biol. Chem. 278:19134 (2003). Histone acetyltransferase also can be assayed using trichostatin A-treated plant lines as is described in Bhat et al., Plant J. 33:455 (2003). The plant lines described in Bhat et al., supra, also can be used to assay retinoblastoma-related proteins using the co-precipitation method described in Rossi et al., Plant Mol. Biol. 51:401 (2003). [0114] Peptidyl-prolyl isomerase can be assayed as described in Edvardsson et al., FEBS Lett. 542:137 (2003). WD40 proteins can be evaluated based on the possession of the WD40 motif as well as their ability to interact with cdc2. WEE-1 can be assayed using any kinase activity assay known in the art. 2. Methods of Using Cell Cycle Genes, Polynucleotide and Polypeptide Sequences [01151 The present invention provides methods of using plant cell cycle genes and conservative variants thereof. The invention includes methods and constructs for altering expression of plant cell cycle genes and/or gene products for purposes including, but not limited to (i) investigating function during the cell cycle and ultimate effect on plant phenotype and (ii) to effect a change in plant phenotype. For example, the invention includes methods and tools for modifying wood quality, fiber development, cell wall polysaccharide content, fruit ripening, and plant growth and yield by altering expression of one or more plant cell cycle genes. [0116] The invention comprises methods of altering the expression of any of the cell cycle genes and variants discussed above. Thus, for example, the invention 25 WO 2005/065339 PCTfUS2004/043804 comprises altering expression of a cell cycle gene present in the genome of a wild type plant of a species of Eucalyptus or Pinus. In one embodiment, the cell cycle gene comprises a nucleotide sequence selected from SEQ ID NOs: 1-237, from the subset thereof comprising SEQ ID NOs: SEQ ID NOs: 1-12, 14-58, 60-62, 64-70, 72 75, 77-83, 85-86, 88-91, 93-119, 121-130, 132-148, 150-156, 158-191, 193-207, 209 218, 220-221, 223-231, and 233-237, from the subset thereof comprising SEQ ID NOs: 1-12, 14, 16-26, 30-37,40-41, 43-76, 78-103, 106, 108-113, 116-121, 124-125, 128-147, 150-152, 154-155, 161-162, 164-172, 174, 177-183, 185-191, 193-197, 200 204, 208-213, and 215-234, from the subset thereof comprising SEQ ID NOs: 1-12, 14, 16-26, 30-37, 40-41, 43-58, 60-62, 64-70, 72-75, 78-83, 85-86, 88-91, 93-103, 106, 108-113, 116-119, 121, 124-125, 128-130, 132-147, 150-152, 154-155, 161-162, 164-172, 174, 177-183, 185-191, 193-197, 200-204, 209-213, 215-218, 220-221, 223 231, and 233-234, or the conservative variants thereof, as discussed above. [01171 Techniques which can be employed in accordance with the present invention to alter gene expression, include, but are not limited to: (i) over-expressing a gene product, (ii) disrupting a gene's transcript, such as disrupting a gene's mRNA transcript; (iii) disrupting the function of a polypeptide encoded by a gene, or (iv) disrupting the gene itself. Over-expression of a gene product, the use of antisense RNAs, ribozymes, and the use of double-stranded RNA interference (dsRNAi) are valuable techniques for discovering the functional effects of a gene and for generating plants with a phenotype that is different from a wild-type plant of the same species. [01181 Over-expression of a target gene often is accomplished by cloning the gene or cDNA into an expression vector and introducing the vector into recipient cells. Alternatively, over-expression can be accomplished by introducing exogenous promoters into cells to drive expression of genes residing in the genome. The effect of over-expression of a given gene on cell fumction, biochemical and/or physiological properties can then be evaluated by comparing plants transformed to over-express the gene to plants that have not been transformed to over-express the gene. 10119] Antisense RNA, ribozyme, and dsRNAi technologies typically target RNA transcripts of genes, usually mRNA. Antisense RNA technology involves 26 WO 2005/065339 PCT/US2004/043804 expressing in, or introducing into, a cell an RNA molecule (or RNA derivative) that is complementary to, or antisense to, sequences found in a particular mRNA in a cell. By associating with the mRNA, the antisense RNA can inhibit translation of the encoded gene product. The use of antisense technology to reduce or inhibit the expression of specific plant genes has been described, for example in European Patent Publication No. 271988, Smith et al., Nature, 334:724-726 (1988); Smith et. al., Plant Mol. Biol., 14:369-379 (1990)). [01201 A ribozyme is an RNA that has both a catalytic domain and a sequence that is complementary to a particular mRNA. The ribozyme functions by associating with the mRNA (through the complementary domain of the ribozyme) and then cleaving (degrading) the message using the catalytic domain. [0121] RNA interference (RNAi) involves a post-transcriptional gene silencing (PTGS) regulatory process, in which the steady-state level of a specific mRNA is reduced by sequence-specific degradation of the transcribed, usually fully processed mRNA without an alteration in the rate of de novo transcription of the target gene itself. The RNAi technique is discussed, for example, in Elibashir, et al., Methods Enzymol. 26: 199 (2002); McManus & Sharp, Nature Rev. Genetics 3: 737 (2002); PCT application WO 01/75164; Martinez et al., Cell 110: 563 (2002); Elbashir et al., supra; Lagos-Quintana et al., Curr. Biol. 12: 735 (2002); Tuschl et al., Nat. Biotechnol. 20:446 (2002); Tuschl, Chembiochem. 2: 239 (2001); Harborth et al., J. Cell Sci. 114: 4557 (2001); et al., EMBO J. 20:6877 (2001); Lagos-Quintana et al., Science. 294: 8538 (2001); Hutvagner et al., loc cit, 834; Elbashir et al., Nature. 411: 494 (2001). 10122] The present invention provides a DNA construct comprising at least one polynucleotide of SEQ ID NOs: 1-235 or conservative variants thereof, such as the conservative variants discussed above. Any method known in the art can be used to generate the DNA constructs of the present invention. See, e.g. Sambrook et al., supra. 27 WO 2005/065339 PCT/US2004/043804 [0123] The invention includes DNA constructs that optionally comprise a promoter. Any suitable promoter known in the art can be used. A promoter is a nucleic acid, preferably DNA, that binds RNA polymerase and/or other transcription regulatory elements. As with any promoter, the promoters of the invention facilitate or control the transcription of DNA or RNA to generate an mRNA molecule from a nucleic acid molecule that is operably linked to the promoter. The RNA can encode a protein or polypeptide or can encode an antisense RNA molecule or a molecule useful in RNAi. Promoters useful in the invention include constitutive promoters, inducible promoters, temporally regulated promoters and tissue-preferred promoters. [01241 Examples of useful constitutive plant promoters include: the cauliflower mosaic virus (CaMV) 35S promoter, which confers constitutive, high level expression in most plant tissues (Odel et al. Nature 313:810(1985)); the nopaline synthase promoter (An et al. Plant Physiol. 88:547 (1988)); and the octopine synthase promoter (Fromm et al., Plant Cell 1: 977 (1989)). It should be noted that, although the CaMV 35S promoter is commonly referred to as a constitutive promoter, some tissue preference can be seen. The use of CaMV 35S is envisioned by the present invention, regardless of any tissue preference which may be exhibited during use in the present invention. [0125] Inducible promoters regulate gene expression in response to environmental, hormonal, or chemical signals. Examples of hormone inducible promoters include auxin-inducible promoters (Baumann et al. Plant Cell 11:323 334(1999)), cytokinin-inducible promoters (Guevara-Garcia, Plant Mol. Biol. 38:743 753(1998)), and gibberellin-responsive promoters (Shi et al. Plant Mol. Biol. 38:1053-1060(1998)). Additionally, promoters responsive to heat, light, wounding, pathogen resistance, and chemicals such as methyl j asmonate or salicylic acid, can be used in the DNA constructs and methods of the present invention. [01261 Tissue-preferred promoters allow for preferred expression of polynucleotides of the invention in certain plant tissue. Tissue-preferred promoters are also useful for directing the expression of antisense RNA or siRNA in certain plant tissues, which can be useful for inhibiting or completely blocking the expression 28 WO 2005/065339 PCT/US2004/043804 of targeted genes as discussed above. As used herein, vascular plant tissue refers to xylem, phloem or vascular cambium tissue. Other preferred tissue includes apical meristem, root, seed, and flower. In one aspect, the tissue-preferred promoters of the invention are either "xylem-preferred," "cambium-preferred" or "phloem-preferred," and preferentially direct expression of an operably linked nucleic acid sequence in the xylem, cambium or phloem, respectively. In another aspect, the DNA constructs of the invention comprise promoters that are tissue-specific for xylem, cambium or phloem, wherein the promoters are only active in the xylem, cambium or phloem. [01271 A vascular-preferred promoter is preferentially active in any of the xylem, phloem or cambium tissues, or in at least two of the three tissue types. A vascular-specific promoter is specifically active in any of the xylem, phloem or cambium, or in at least two of the three. In other words, the promoters are only active in the xylem, cambium or phloem tissue of plants. Note, however, that because of solute transport in plants, a product that is specifically or preferentially expressed in a tissue may be found elsewhere in the plant after expression has occurred. [01281 In another embodiment, the promoter is under temporal regulation, wherein the ability of the promoter to initiate expression is linked to factors such as the stage of the cell cycle or the stage of plant development. For example, the promoter of a cyclin D2 gene may be expressed only during the Gl and early S-phase, and the promoters of particular cyclin genes may be expressed only within the primary vascular poles of the developing seedling. [01291 Additionally, the promoters of particular cell cycle genes may be expressed only within the cambium in developing secondary vasculature. Within the cambium, particular cell cycle gene promoters may be expressed exclusively in the stem or in the root. Moreover, the cell cycle promoters may be expressed only in the spring (for early wood formation) or only in the summer. [0130] A promoter may be operably linked to the polynucleotide. As used in this context, operably linked refers to linking a polynucleotide encoding a structural gene to a promoter such that the promoter controls transcription of the structural gene. 29 WO 2005/065339 PCT/US2004/043804 If the desired polynucleotide comprises a sequence encoding a protein product, the coding region can be operably linked to regulatory elements, such as to a promoter and a terminator, that bring about expression of an associated messenger RNA transcript and/or a protein product encoded by the desired polynucleotide. In this instance, the polynucleotide is operably linked in the 5'- to 3'- orientation to a promoter and, optionally, a terminator sequence. [0131] Alternatively, the invention provides DNA constructs comprising a polynucleotide in an "antisense" orientation, the transcription of which produces nucleic acids that can form secondary structures that affect expression of an endogenous cell cycle gene in the plant cell. In another variation, the DNA construct may comprise a polynucleotide that yields a double-stranded RNA product upon transcription that initiates RNA interference of a cell cycle gene with which the polynucleotide is associated. A polynucleotide of the present invention can be positioned within a t-DNA, such that the left and right t-DNA border sequences flank or are on either side of the polynucleotide. [0132] It should be understood that the invention includes DNA constructs comprising one or more of any of the polynucleotides discussed above. Thus, for example, a construct may comprise a t-DNA comprising one, two, three, four, five, six, seven, eight, nine, ten, or more polynucleotides. [0133] The invention also includes DNA constructs comprising a promoter that includes one or more regulatory elements. Alternatively, the invention includes DNA constructs comprising a regulatory element that is separate from a promoter. Regulatory elements confer a number of important characteristics upon a promoter region. Some elements bind transcription factors that enhance the rate of transcription of the operably linked nucleic acid. Other elements bind repressors that inhibit transcription activity. The effect of transcription factors on promoter activity can determine whether the promoter activity is high or low, i.e. whether the promoter is "strong" or "weak." 30 WO 2005/065339 PCT/US2004/043804 [0134] A DNA construct of the invention can include a nucleotide sequence that serves as a selectable marker useful in identifying and selecting transformed plant cells or plants. Examples of such markers include, but are not limited to, a neomycin phosphotransferase (nptll) gene (Potrykus et al., Mol. Gen. Genet. 199:183-188 (1985)), which confers kanamycin resistance. Cells expressing the nptLI gene can be selected using an appropriate antibiotic such as kanamycin or G418. Other commonly used selectable markers include a mutant EPSP synthase gene (Hinchee et al., Bio/Technology 6:915-922 (1988)), which confers glyphosate resistance; and a mutant acetolactate synthase gene (ALS), which confers imidazolinone or sulphonylurea resistance (European Patent Application 154,204, 1985). [01351 The present invention also includes vectors comprising the DNA constructs discussed above. The vectors can include an origin of replication (replicons) for a particular host cell. Various prokaryotic replicons are known to those skilled in the art, and function to direct autonomous replication and maintenance of a recombinant molecule in a prokaryotic host cell. [0136] In one embodiment, the present invention utilizes a pWVR8 vector as described in U.S. Application No. 60/476,222, filed June 6, 2003, or pART27 as described in Gleave, Plant Mol. Biol, 20:1203-27 (1992). [01371 The invention also provides host cells which are transformed with the DNA constructs of the invention. As used herein, a host cell refers to the cell in which a polynucleotide of the invention is expressed. Accordingly, a host cell can be an individual cell, a cell culture or cells that are part of an organism. The host cell can also be a portion of an embryo, endosperm, sperm or egg cell, or a fertilized egg. In one embodiment, the host cell is a plant cell. [0138] The present invention further provides transgenic plants comprising the DNA constructs of the invention. The invention includes transgenic plants that are angiosperms or gymnosperms. The DNA constructs of the present invention can be used to transform a variety of plants, both monocotyledonous (e.g. grasses, corn, grains, oat, wheat and barley), dicotyledonous (e.g., Arabidopsis, tobacco, legumes, 31 WO 2005/065339 PCT/US2004/043804 alfalfa, oaks, eucalyptus, maple), and Gymnosperms (e.g., Scots pine; see Aronen, Finnish Forest Res. Papers, Vol. 595, 1996), white spruce (Ellis et al., Biotechnology 11:84-89, 1993), and larch (Huang et al., In Vitro Cell 27:201-207, 1991). [0139] The plants also include turfgrass, wheat, maize, rice, sugar beet, potato, tomato, lettuce, carrot, strawberry, cassava, sweet potato, geranium, soybean, and various types of woody plants. Woody plants include trees such as palm oak, pine, maple, fir, apple, fig, plum and acacia. Woody plants also include rose and grape vines. [0140] In one embodiment, the DNA constructs of the invention are used to transform woody plants, i.e., trees or shrubs whose stems live for a number of years ,and increase in diameter each year by the addition of woody tissue. The invention includes methods of transforming plants including eucalyptus and pine species of significance in the commercial forestry industry such as plants selected from the group consisting of Eucalyptus grandis and its hybrids, and Pinus taeda, as well as the transformed plants and wood and wood pulp derived therefrom. Other examples of suitable plants include those selected from the group consisting of Pinus banksiana, Pinus brutia, Pinus caribaea, Pinus clausa, Pinus contorta, Pinus coulteri, Pinus echinata, Pinus eldarica, Pinus ellioti, Pinusjeffreyi, Pinus lambertiana, Pinus massoniana, Pinus monticola, Pinus nigra, Pinus palustris, Pinus pinaster, Pinus ponderosa, Pinus radiata, Pinus resinosa, Pinus rigida, Pinus serotina, Pinus strobus, Pinus sylvestris, Pinus taeda, Pinus virginiana, Abies amabilis, Abies balsamea, Abies concolor, Abies grandis, Abies lasiocarpa, Abies magnfica, Abies procera, Chamaecyparis lawsoniona, Chamaecyparis nootkatensis, Chamaecyparis thyoides, Juniperus virginiana, Larix decidua, Larix laricina, Larix leptolepis, Larix occidentalis, Larix siberica, Libocedrus decurrens, Picea abies, Picea engelmanni, Picea glauca, Picea mariana, Picea pungens, Picea rubens, Picea sitchensis, Pseudotsuga menziesii, Sequoia gigantea, Sequoia sempervirens, Taxodium distichum, Tsuga canadensis, Tsuga heterophylla, Tsuga mertensiana, Thuja occidentalis, Thujaplicata, Eucalyptus alba, Eucalyptus bancroftii, Eucalyptus botryoides, Eucalyptus bridgesiana, Eucalyptus calophylla, Eucalyptus 32 WO 2005/065339 PCT/US2004/043804 camaldulensis, Eucalyptus citriodora, Eucalyptus cladocalyx, Eucalyptus coccifera, Eucalyptus curtisii, Eucalyptus dairympleana, Eucalyptus deglupta, Eucalyptus delagatensis, Eucalyptus diversicolor, Eucalyptus dunnii, Eucalyptus ficifolia, Eucalyptus globulus, Eucalyptus gomphocephala, Eucalyptus gunnii, Eucalyptus henryi, Eucalyptus laevopinea, Eucalyptus macarthurii, Eucalyptus macrorhyncha, Eucalyptus maculata, Eucalyptus marginata, Eucalyptus megacarpa, Eucalyptus melliodora, Eucalyptus nicholii, Eucalyptus nitens, Eucalyptus nova-angelica, Eucalyptus obliqua, Eucalyptus occidentalis, Eucalyptus obtusiflora, Eucalyptus oreades, Eucalyptus pauciflora, Eucalyptus polybractea, Eucalyptus regnans, Eucalyptus resinifera, Eucalyptus robusta, Eucalyptus rudis, Eucalyptus saligna, Eucalyptus sideroxylon, Eucalyptus stuartiana, Eucalyptus tereticornis, Eucalyptus torelliana, Eucalyptus urnigera, Eucalyptus urophylla, Eucalyptus viminalis, Eucalyptus viridis, Eucalyptus wandoo, and Eucalyptus youmanni. [0141] As used herein, the term "plant" also is intended to include the fruit, seeds, flower, strobilus, etc. of the plant. A transformed plant of the current invention can be a direct transfectant, meaning that the DNA construct was introduced directly into the plant, such as through Agrobacterium, or the plant can be the progeny of a transfected plant. The second or subsequent generation plant can be produced by sexual reproduction, i.e., fertilization. Furthermore, the plant can be a gametophyte (haploid stage) or a sporophyte (diploid stage). [0142] As used herein, the term "plant tissue" encompasses any portion of a plant, including plant cells. Plant cells include suspension cultures, callus, embryos, meristematic regions, callus tissue, leaves, roots, shoots, gametophytes, sporophytes, pollen, seeds and microspores. Plant tissues can be grown in liquid or solid culture, or in soil or suitable media in pots, greenhouses or fields. As used herein, "plant tissue" also refers to a clone of a plant, seed, progeny, or propagule, whether generated sexually or asexually, and descendents of any of these, such as cuttings or seeds. [0143] In accordance with one aspect of the invention, a transgenic plant that has been transformed with a DNA construct of the invention has a phenotype that is different from a plant that has not been transformed with the DNA construct. 33 WO 2005/065339 PCT/US2004/043804 [0144] As used herein, "phenotype" refers to a distinguishing feature or characteristic of a plant which can be altered according to the present invention by integrating one or more DNA constructs of the invention into the genome of at least one plant cell of a plant. The DNA construct can confer a change in the phenotype of a transformed plant by modifying any one or more of a number of genetic, molecular, biochemical, physiological, morphological, or agronomic characteristics or properties of the transformed plant cell or plant as a whole. [0145] In one embodiment, transformation of a plant with a DNA construct of the present invention can yield a phenotype including, but not limited to any one or more of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests, enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, and production of novel proteins or peptides. [0146] In another embodiment, the affected phenotype includes one or more of the following traits: propensity to form reaction wood, a reduced period of juvenility, an increased period of juvenility, self-abscising branches, accelerated reproductive development or delayed reproductive development, as compared to a plant of the same species that has not been transformed with -the DNA construct. [0147] In a further embodiment, the phenotype that is different in the transgenic plant includes one or more of the following: lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, 34 WO 2005/065339 PCT/US2004/043804 formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. [01481 Phenotype can be assessed by any suitable means. The plants can be evaluated based on their general morphology. Transgenic plants can be observed with the naked eye, can be weighed and their height measured. The plant can be examined by isolating individual layers of plant tissue, namely phloem and cambium, which is further sectioned into meristematic cells, early expansion, late expansion, secondary wall formation, and late cell maturation. See, e.g., Hertzberg, supra. The plants also can be assessed using microscopic analysis or chemical analysis. [01491 Microscopic analysis includes examining cell types, stage of development, and stain uptake by tissues and cells. Fiber morphology, such as fiber wall thickness and microfibril angle of wood pulp fibers can be observed using, for example, microscopic transmission ellipsometry. See Ye and Sundstr6m, Tappi .J, 80:181 (1997). Wood strength, density, and grain slope in wet wood and standing trees can be determined by measuring the visible and near infrared spectral data in conjunction with multivariate analysis. See, U.S. Patent Application Publication Nos. 2002/0107644 and 2002/0113212. Lumen size can be measured using scanning electron microscopy. Lignin structure and chemical properties can be observed using nuclear magnetic resonance spectroscopy as described in Marita et al., J. Chem. Soc., Perkin Trans. 12939 (2001). [0150] The biochemical characteristic of lignin, cellulose, carbohydrates and other plant extracts can be evaluated by any standard analytical method known including spectrophotometry, fluorescence spectroscopy, HPLC, mass spectroscopy, and tissue staining methods. [01511 As used herein, "transformation" refers to a process by which a nucleic acid is inserted into the genome of a plant cell. Such insertion encompasses stable introduction into the plant cell and transmission to progeny. Transformation also refers to transient insertion of a nucleic acid, wherein the resulting transformant 35 WO 2005/065339 PCT/US2004/043804 transiently expresses the nucleic acid. Transformation can occur under natural or artificial conditions using various methods well known in the art. Transformation can be achieved by any known method for the insertion of nucleic acid sequences into a prokaryotic or eukaryotic host cell, including Agrobacterium-mediated transformation protocols, viral infection, whiskers, electroporation, microinjection, polyethylene glycol-treatment, heat shock, lipofection, and particle bombardment. Transformation can also be accomplished using chloroplast transformation as described in e.g. Svab et al., Proc. NatlAcad. Sci. 87:8526-30 (1990). [0152] In accordance with one embodiment of the invention, transformation in Eucalyptus is performed as described in U.S. Patent Application No. 60/476,222 (supra) which is incorporated herein by reference in its entirety. In accordance with another embodiment, transformation of Pinus is accomplished using the methods described in U.S. Patent Application Publication No. 2002/0100083. [0153] Another aspect of the invention provides methods of obtaining wood and/or making wood pulp from a plant transformed with a DNA construct of the invention. Methods of producing a transgenic plant are provided above and are known in the art. A transformed plant can be cultured or grown under any suitable conditions. For example, pine can be cultured and grown as described in U.S. Patent Application Publication No. 2002/0100083. Eucalyptus can be cultured and grown as in, for example, Rydelius, et al., GROWING EUCALYPTUS FOR PULP AND ENERGY, presented at the Mechanization in Short Rotation, Intensive Culture Forestry Conference, Mobile, AL, 1994. Wood and wood pulp can be obtained from the plant by any means known in the art. [0154] As noted above, the wood or wood pulp obtained in accordance with this invention may demonstrate improved characteristics including, but not limited to any one or more of lignin composition, lignin structure, wood composition, cellulose polymerization, fiber dimensions, ratio of fibers to other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, rate of growth, rate of root formation ratio of root to branch 36 WO 2005/065339 PCT/US2004/043804 vegetative development, leaf area index, and leaf shape include increased or decreased lignin content, increased accessibility of lignin to chemical treatments, improved reactivity of lignin, increased or decreased cellulose content increased dimensional stability, increased tensile strength, increased shear strength, increased compression strength, increased shock resistance, increased stiffness, increased or decreased hardness, decreased spirality, decreased shrinkage, and differences in weight, density, and specific gravity. B. Expression Profiling of Cell Cycle Genes [0155] The present invention also provides methods and tools for performing expression profiling of cell cycle genes. Expression profiling is useful in determining whether genes are transcribed or translated, comparing transcript levels for particular genes in different tissues, genotyping, estimating DNA copy number, determining identity of descent, measuring mRNA decay rates, identifying protein binding sites, determining subcellular localization of gene products, correlating gene expression to a phenotype or other phenomenon, and determining the effect on other genes of the manipulation of a particular gene. Expression profiling is particularly useful for identifying gene expression in complex, multigenic events. For this reason, expression profiling is useful in correlating gene expression to plant phenotype and formation of plant tissues and the interconnection thereof to the cell cycle. [01561 Only a small fraction of the genes of a plant's genome are expressed at a given time in a given tissue sample, and all of the expressed genes may not affect the plant phenotype. To identify genes capable of affecting a phenotype of interest, the present invention provides methods and tools for determining, for example, a gene expression profile at a given point in the cell cycle, a gene expression profile at a given point in plant development, and a gene expression profile a given tissue sample. The invention also provides methods and tools for identifying cell cycle genes whose expression can be manipulated to alter plant phenotype or to alter the biological activity of cell cycle gene products. In support of these methods, the invention also provides methods and tools that distinguish expression of different genes of the same family. 37 WO 2005/065339 PCT/US2004/043804 [0157] As used herein, "gene expression" refers to the process of transcription of a DNA sequence into an RNA sequence, followed by translation of the RNA into a protein, which may or may not undergo post-translational processing. Thus, the relationship between cell cycle stage and/or developmental stage and gene expression can be observed by detecting, quantitatively or qualitatively, changes in the level of an RNA or a protein. As used herein, the term "biological activity" includes, but is not limited to, the activity of a protein gene product, including enzyme activity. 101581 The present invention provides oligonucleotides that are useful in these expression profiling methods. Each oligonucleotide is capable of hybridizing under a given set of conditions to a cell cycle gene or gene product. In one aspect of the invention, a plurality of oligonucleotides is provided, wherein each oligonucleotide hybridizes under a given set of conditions to a different cell cycle gene product. Examples of oligonucleotides of the present invention include SEQ ID NOs: 471-697. Each of the oligos of SEQ ID NOs 471-697 hybridizes under standard conditions to a different gene product of one of SEQ ID NOs: 1-237. The oligonucleotides of the invention are useful in determining the expression of one or more cell cycle genes in any of the above-described methods. 1. Cell, Tissue, Nucleic Acid, and Protein Samples [01591 Samples for use in methods of the present invention may be derived from plant tissue. Suitable plant tissues include, but are not limited to, somatic embryos, pollen, leaves, stems, calli, stolons, microtubers, shoots, xylem, male strolbili, pollen cones, vascular tissue, apical meristem, vascular cambium, xylem, root, flower, and seed. [01601 According to the present invention "plant tissue" is used as described previously herein. Plant tissue can be obtained from any of the plants types or species described supra. [01611 In accordance with one aspect of the invention, samples are obtained from plant tissue at different stages of the cell cycle, from plant tissue at different 38 WO 2005/065339 PCT/US2004/043804 developmental stages, from plant tissue at various times of the year (e.g. spring versus summer), from plant tissues subject to different environmental conditions (e.g. variations in light and temperature) and/or from different types of plant tissue and cells. In accordance with one embodiment, plant tissue is obtained during various stages of maturity and during different seasons of the year. For example, plant tissue can be collected from stem dividing cells, differentiating xylem, early developing wood cells, differentiated spring wood cells, and differentiated summer wood cells. As another example, gene expression in a sample obtained from a plant with developing wood can be compared to gene expression in a sample obtained from a plant which does not have developing wood. [01621 Differentiating xylem includes samples obtained from compression wood, side-wood, and normal vertical xylem. Methods of obtaining samples for expression profiling from pine and eucalyptus are known. See, e.g., Allona et al., Proc. Nat'l Acad Sci. 95:9693-8 (1998) and Whetton et al., Plant Mol. Biol. 47:275 91, and Kirst et al., INT'L UNION OF FORESTRY RESEARCH ORGANIZATIONS BIENNIAL CONFERENCE, S6.8 (June 2003, Umea, Sweden). {01631 In one embodiment of the invention, gene expression in one type of tissue is compared to gene expression in a different type of tissue or to gene expression in the same type of tissue in a difference stage of development. Gene expression can also be compared in one type of tissue which is sampled at various times during the year (different seasons). For example, gene expression in juvenile secondary xylem can be compared to gene expression in mature secondary xylem. Similarly, gene expression in cambium can be compared to gene expression in xylem. Furthermore, gene expression in apical meristems can be compared to gene expression in cambium. [01641 In an alternative embodiment, differences in gene expression are determined as cells from different tissues advance during the cell cycle. In this method, the cells from the different tissues are synchronized and their gene expression is profiled. Methods of synchronizing the stage of cell cycle in a sample are known. These methods include, e.g., cold acclimation, photoperiod, and aphidicoline. See, 39 WO 2005/065339 PCT/US2004/043804 e.g., Nagata et al., Int. Rev. Cytol. 132:1-30 (1992), Breyne and Zabeau, Curr. Opin. Plant Biol. 4:136-42, 140 (2001). A sample is obtained during a specific stage of the cell cycle and gene expression in that sample is compared to a sample obtained during a different stage of the cell cycle. For example, tissue can be examined in any of the phases of the cell cycle, such as mitosis, G1, GO, S, and G2. In particular, one can examine the changes in gene expression at the G1, G2, and metaphase checkpoints. [0165] In another embodiment of the invention, a sample is obtained from a plant having a specific phenotype and gene expression in that sample is compared to a sample obtained from a plant of the same species that does not have that phenotype. For example, a sample can be obtained from a plant exhibiting a fast rate of growth and gene expression can be compared with that of a sample obtained from a plant exhibiting a normal or slow rate of growth. Differentially expressed genes identified from such a comparison can be correlated with growth rate and, therefore, useful for manipulating growth rate. [01661 In a further embodiment, a sample is obtained from clonally propagated plants. In one embodiment the clonally propagated plants are of the species Pinus or Eucalyptus. Individual ramets from the same genotype can be sacrificed at different times of year. Thus, for any genotype there can be at least two genetically identical trees sacrificed, early in the season and late in the season. Each of these trees can be divided into juvenile (top) to mature (bottom) samples. Further, tissue samples can be divided into, for example, phloem to xylem, in at least 5 layers of peeling. Each of these samples can be evaluated for phenotype and gene expression. See Entry 196. [0167] Where cellular components may interfere with an analytical technique, such as a hybridization assay, enzyme assay, a ligand binding assay, or a biological activity assay, it may be desirable to isolate the gene products from such cellular components. Gene products, including nucleic acid and amino acid gene products, can be isolated from cell fragments or lysates by any method known in the art. 40 WO 2005/065339 PCTIUS2004/043804 [0168] Nucleic acids used in accordance with the invention can be prepared by any available method or process, or by other processes as they become known in the art. Conventional techniques for isolating nucleic acids are detailed, for example, in Tijssen, LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY: HYBRIDIZATION WITH NUCLEIC ACID PROBES, chapter 3 (Elsevier Press, 1993), Berger and Kimmel, Methods Enzymol. 152:1 (1987), and GIBCo BRL & LIFE TECHNOLOGIES TRIZOL RNA ISOLATION PROTOCOL, Form No. 3786 (2000). Techniques for preparing nucleic acid samples, and sequencing polynucleotides from pine and eucalyptus are known. See, e.g., Allona et al., supra and Whetton et al., supra, and U.S. Application No. 60/476,222. [01691 A suitable nucleic acid sample can contain any type of nucleic acid derived from the transcript of a cell cycle gene, i.e., RNA or a subsequence thereof or a nucleic acid for which an mRNA transcribed from a cell cycle gene served as a template. Suitable nucleic acids include cDNA reverse-transcribed from a transcript, RNA transcribed from that cDNA, DNA amplified from the cDNA, and RNA transcribed from the amplified DNA. Detection of such products or derived products is indicative of the presence and/or abundance of the transcript in the sample. Thus, suitable samples include, but are not limited to, transcripts of the gene or genes, cDNA reverse-transcribed from the transcript, cRNA transcribed from the cDNA, DNA amplified from the genes, and RNA transcribed from amplified DNA. As used herein, the category of "transcripts" includes but is not limited to pre-mRNA nascent transcripts, transcript processing intermediates, and mature mRNAs and degradation products thereof. [0170] It is not necessary to monitor all types of transcripts to practice the invention. For example, the expression profiling methods of the invention can be conducted by detecting only one type of transcript, such as mature mRNA levels only. 10171] In one aspect of the invention, a chromosomal DNA or cDNA library (comprising for example, fluorescently labeled cDNA synthesized from total cell mRNA) is prepared for use in hybridization methods according to recognized methods in the art. See Sambrook et al., supra. 41 WO 2005/065339 PCT/US2004/043804 [01721 In another aspect of the invention, mRNA is amplified using, e.g., the MessageAmp kit (Ambion). In a further aspect, the mRNA is labeled with a detectable label. For example, mRNA can be labeled with a fluorescent chromophore, such as CyDye (Amersham Biosciences). [01731 In some applications, it may be desirable to inhibit or destroy RNase that often is present in homogenates or lysates, before use in hybridization techniques. Methods of inhibiting or destroying nucleases are well known. In one embodiment of the invention, cells or tissues are homogenized in the presence of chaotropic agents to inhibit nuclease. In another embodiment, RNase is inhibited or destroyed by heat treatment, followed by proteinase treatment. [01741 Protein samples can be obtained by any means known in the art. Protein samples useful in the methods of the invention include crude cell lysates and crude tissue homogenates. Alternatively, protein samples can be purified. Various methods of protein purification well known in the art can be found in Marshak et al., STRATEGIES FOR PROTEIN PURIFICATION AND CHARACTERIZATION: A LABORATORY COURSE MANUAL (Cold Spring Harbor Laboratory Press 1996). 2. Detecting Level of Gene Expression [01751 For methods of the invention that comprise detecting a level of gene expression, any method for observing gene expression can be used, without limitation. Such methods include traditional nucleic acid hybridization techniques, polymerase chain reaction (PCR) based methods, and protein determination. The invention includes detection methods that use solid support-based assay formats as well as those that use solution-based assay formats. [01761 Absolute measurements of the expression levels need not be made, although they can be made. The invention includes methods comprising comparisons of differences in expression levels between samples. Comparison of expression levels can be done visually or manually, or can be automated and done by a machine, using for example optical detection means. Subrahmanyam et al., Blood. 97: 2457 (2001); Prashar et al., Methods Enzymol. 303: 258 (1999). Hardware and software for 42 WO 2005/065339 PCT/US2004/043804 analyzing differential expression of genes are available, and can be used in practicing the present invention. See, e.g., GenStat Software and GeneExpress@ GX ExplorerTM Training Manual, supra; Baxevanis & Francis-Ouellette, supra. [0177] In accordance with one embodiment of the invention, nucleic acid hybridization techniques are used to observe gene expression. Exemplary hybridization techniques include Northern blotting, Southern blotting, solution hybridization, and S1 nuclease protection assays. [01781 Nucleic acid hybridization typically involves contacting an oligonucleotide probe and a sample comprising nucleic acids under conditions where the probe can form stable hybrid duplexes with its complementary nucleic acid through complementary base pairing. For example, see PCT application WO 99/32660; Berger & Kimmel, Methods Enzymol. 152: 1 (1987). The nucleic acids that do not form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. The detectable label can be present on the probe, or on the nucleic acid sample. In one embodiment, the nucleic acids of the sample are detectably labeled polynucleotides representing the mRNA transcripts present in a plant tissue (e.g., a cDNA library). Detectable labels are commonly radioactive or fluorescent labels, but any label capable of detection can be used. Labels can be incorporated by several approached described, for instance, in WO 99/32660, supra. In one aspect RNA can be amplified using the MessageAmp kit (Ambion) with the addition of aminoallyl UTP as well as free UTP. The aminoallyl groups incorporated into the amplified RNA can be reacted with a fluorescent chromophore, such as CyDye (Amersham Biosciences) [01791 Duplexes of nucleic acids are destabilized by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under low stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA:DNA, RNA:RNA or RNA:DNA) will form even where the annealed sequences are not perfectly complementary. Thus, specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., 43 WO 2005/065339 PCT/US2004/043804 higher temperature and/or lower salt and/or in the presence of destabilizing reagents) hybridization tolerates fewer mismatches. [01801 Typically, stringent conditions for short probes (e.g., 10 to 50 nucleotide bases) will be those in which the salt concentration is at least about 0.01 to 1.0 M at pH 7.0 to 8.3 and the temperature is at least about 30*C. Stringent conditions can also be achieved with the addition of destabilizing agents such as formamide. [0181] Under some circumstances, it can be desirable to perform hybridization at conditions of low stringency, e.g., 6 x SSPE-T (0.9 M NaCl, 60 mM NalH 2 P0 4 , pH 7.6, 6 mM EDTA, 0.005% Triton) at 37*C, to ensure hybridization. Subsequent washes can then be performed at higher stringency (e.g., 1 x SSPE-T at 37*C) to eliminate mismatched hybrid duplexes. Successive washes can be performed at increasingly higher stringency (e.g., down to as low as 0.25x SSPE-T at 37*C to 50*C) until a desired level of hybridization specificity is obtained. [0182] In general, standard conditions for hybridization is a compromise between stringency (hybridization specificity) and signal intensity. Thus, in one embodiment of the invention, the hybridized nucleic acids are washed at successively higher stringency conditions and read between each wash. Analysis of the data sets produced in this manner will reveal a wash stringency above which the hybridization pattern is not appreciably altered and which provides adequate signal for the particular oligonucleotide probes of interest. For example, the final wash may be selected as that of the highest stringency that produces consistent results and that provides a signal intensity greater than approximately 10% of the background intensity. a. Oligonucleotide Probes [0183] Oligonucleotide probes useful in nucleic acid hybridization techniques employed in the present invention are capable of binding to a nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing via hydrogen bond formation. A probe can include natural bases (i.e., A, G, U, C or T) or modified bases (7-deazaguanosine, 44 WO 2005/065339 PCT/US2004/043804 inosine, etc.). In addition, the nucleotide bases in the probes can be joined by a linkage other than a phosphodiester bond, so long as it does not interfere with hybridization. Thus, probes can be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. [0184] Oligonucleotide probes can be prepared by any means known in the art. Probes useful in the present invention are capable of hybridizing to a nucleotide product of cell cycle genes, such as one of SEQ ID NOs: 1-237. Probes useful in the invention can be generated using the nucleotide sequences disclosed in SEQ ID NOs: 1-237. The invention includes oligonucleotide probes having at least a 2, 10,15, 20, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, or 100 nucleotide fragment of a corresponding contiguous sequence of any one of SEQ ID NOs: 1-237. The invention includes oligonucleotides of less than 2, 1, 0.5, 0.1, or 0.05 kb in length. In one embodiment, the oligonucleotide is 60 nucleotides in length. [01851 Oligonucleotide probes can be designed by any means known in the art. See, e.g., Li and Stormo, Bioinformatics 17: 1067-76 (2001). Oligonucleotide probe design can be effected using software. Exemplary software includes ArrayDesigner, GeneScan, and ProbeSelect. Probes complementary to a defined nucleic acid sequence can be synthesized chemically, generated from longer nucleotides using restriction enzymes, or can be obtained using techniques such as polymerase chain reaction (PCR). PCR methods are well known and are described, for example, in Innis et al. eds., PCR PROTOCOLS: A GUIDE TO METHODS AND APPLICATIONS, Academic Press Inc. San Diego, Calif. (1990). The probes can be labeled, for example, with a radioactive, biotinylated, or fluorescent tag. Optimally, the nucleic acids in the sample are labeled and the probes are not labeled. Oligonucleotide probes generated by the above methods can be used in solution or solid support-based methods. [0186] The invention includes oligonucleotide probes that hybridize to a product of the coding region or a 3' untranslated region (3' UTR) of a cell cycle gene. In one embodiment, the oligonucleotide probe hybridizes to the 3'UTR of any one of SEQ ID NOs: 1-237. The 3' UTR is generally a unique region of the gene, 45 WO 2005/065339 PCT/US2004/043804 even among members of the same family. Therefore, the probes capable of hybridizing to a product of the 3' UTR can be useful for differentiating the expression of individual genes within a family where the coding region of the genes likely are highly homologous. This allows for the design of oligonucleotide probes to be used as members of a plurality of oligonucleotides, each capable of uniquely binding to a single gene. In another embodiment, the oligonucleotide probe comprises any one of SEQ ID NOs: 471-697. In another embodiment, the oligonucleotide probe consists of any one of SEQ ID NOs:471-697. b. Oligonucleotide Array Methods [01871 One embodiment of the invention employs two or more oligonucleotide probes in combination to detect a level of expression of one or more cell cycle genes, such as the genes of SEQ ID NOs: 1-237. In one aspect of this embodiment, the level of expression of two or more different genes is detected. The two or more genes may be from the same or different cell cycle gene families discussed above. Each of the two or more oligonucleotides may hybridize to a different one of the genes. [01881 One embodiment of the invention employs two or more oligonucleotide probes, each of which specifically hybridize to a polynucleotide derived from the transcript of a gene provided by SEQ ID NOs: 1-237. Another embodiment employs two or more oligonucleotide probes, at least one of which comprises a nucleic acid sequence of SEQ ID NOs: 471-697. Another embodiment employs two or more oligonucleotide probes, at least one of which consists of of SEQ ID NOs: 471-697. [0189] The oligonucleotide probes may comprise from about 5 to about 60, or from about 5 to about 500, nucleotide bases, such as from about 60 to about 100 nucleotide bases, including from about 15 to about 60 nucleotide bases. [01901 One embodiment of the invention uses solid support-based oligonucleotide hybridization methods to detect gene expression. Solid support-based methods suitable for practicing the present invention are widely known and are 46 WO 2005/065339 PCT/US2004/043804 described, for example, in PCT application WO 95/11755; Huber et al., Anal. Biochem. 299: 24 (2001); Meiyanto et al., Biotechniques. 31: 406 (2001); Relogio et al., Nucleic Acids Res. 30:e51 (2002). Any solid surface to which oligonucleotides can be bound, covalently or non-covalently, can be used. Such solid supports include filters, polyvinyl chloride dishes, silicon or glass based chips, etc. [0191] One embodiment uses oligonucleotide arrays, i.e. microarrays, which can be used to simultaneously observe the expression of a number of genes or gene products. Oligonucleotide arrays comprise two or more oligonucleotide probes provided on a solid support, wherein each probe occupies a unique location on the support. The location of each probe may be predetermined, such that detection of a detectable signal at a given location is indicative of hybridization to an oligonucleotide probe of a known identity. Each predetermined location can contain more than one molecule of a probe, but each molecule within the predetermined location has an identical sequence. Such predetermined locations are termed features. There can be, for example, from 2, 10, 100, 1,000, 2,000 or 5,000 or; more of such features on a single solid support. In one embodiment, each oligonucleotide is located at a unique position on an array at least 2, at least 3, at least 4, at least 5, at least 6, or at least 10 times. [01921 Oligonucleotide probe arrays for detecting gene expression can be made and used according to conventional techniques described, for example, in Lockhart et al., Nat'l Biotech. 14: 1675 (1996), McGall et al., Proc. Nat'l Acad. Sci. USA 93: 13555 (1996), and Hughes et al., Nature Biotechnol. 19:342 (2001). A variety of oligonucleotide array designs is suitable for the practice of this invention. [01931 In one embodiment the one or more oligonucleotides include a plurality of oligonucleotides that each hybridize to a different gene expressed in a particular tissue type. For example, the tissue can be developing wood. [01941 In one embodiment, a nucleic acid sample obtained from a plant can be amplified and, optionally labeled with a detectable label. Any method of nucleic acid amplification and any detectable label suitable for such purpose can be 47 WO 2005/065339 PCTIUS2004/043804 used. For example, amplification reactions can be performed using, e.g. Ambion's MessageAmp, which creates "antisense" RNA or "aRNA" (complementary in nucleic acid sequence to the RNA extracted from the sample tissue). The RNA can optionally be labeled using CyDye fluorescent labels. During the amplification step, aaUTP is incorporated into the resulting aRNA. The CyDye fluorescent labels are coupled to the aaUTPs in a non-enzymatic reaction. Subsequent to the amplification and labeling steps, labeled amplified antisense RNAs are precipitated and washed with appropriate buffer, and then assayed for purity. For example, purity can be assay using a NanoDrop spectrophotometer. The nucleic acid sample is then contacted with an oligonucleotide array having, attached to a solid substrate (a "microarray slide"), oligonucleotide sample probes capable of hybridizing to nucleic acids of interest which may be present in the sample. The step of contacting is performed under conditions where hybridization can occur between the nucleic acids of interest and the oligonucleotide probes present on the array. The array is then washed to remove non specifically bound nucleic acids and the signals from the labeled molecules that remain hybridized to oligonucleotide probes on the solid substrate are detected. The step of detection can be accomplished using any method appropriate to the type of label used. For example, the step of detecting can accomplished using a laser scanner and detector. For example, on can use and Axon scanner which optionally uses GenePix Pro software to analyze the position of the signal on the microarray slide. [0195] Data from one or more microarray slides can analyzed by any appropriate method known in the art. [0196] Oligonucleotide probes used in the methods of the present invention, including microarray techniques, can be generated using PCR. PCR primers used in generating the probes are chosen, for example, based on the sequences of SEQ ID NOs:1-237, to result in amplification of unique fragments of the cell cycle genes (i.e., fragments that hybridize to only one polynucleotide of any one of SEQ ID NOs: 1-237 under standard hybridization conditions). Computer programs are useful in the design of primers with the required specificity and optimal hybridization properties. For example, Li and Stormo, supra at 1075, discuss a 48 WO 2005/065339 PCT/US2004/043804 method of probe selection using ProbeSelect which selects an optimum oligonucleotide probe based on the entire gene sequence as well as other gene sequences to be probed at the same time. [01971 In one embodiment, oligonucleotide control probes also are used. Exemplary control probes can fall into at least one of three categories referred to herein as (1) normalization controls, (2) expression level controls and (3) negative controls. In microarray methods, one or more of these control probes may be provided on the array with the inventive cell cycle gene-related oligonucleotides. [0198] Normalization controls correct for dye biases, tissue biases, dust, slide irregularities, malformed slide spots, etc. Normalization controls are oligonucleotide or other nucleic acid probes that are complementary to labeled reference oligonucleotides or other nucleic acid sequences that are added to the nucleic acid sample to be screened. The signals obtained from the normalization controls, after hybridization, provide a control for variations in hybridization conditions, label intensity, reading efficiency and other factors that can cause the signal of a perfect hybridization to vary between arrays. In one embodiment, signals (e.g., fluorescence intensity or radioactivity) read from all other probes used in the method are divided by the signal from the control probes, thereby normalizing the measurements. [0199] Virtually any probe can serve as a normalization control. Hybridization efficiency varies, however, with base composition and probe length. Preferred normalization probes are selected to reflect the average length of the other probes being used, but they also can be selected to cover a range of lengths. Further, the normalization control(s) can be selected to reflect the average base composition of the other probes being used. In one embodiment, only one or a few normalization probes are used, and they are selected such that they hybridize well (i.e., without forming secondary structures) and do not match any test probes. In one embodiment, the normalization controls are mammalian genes. 49 WO 2005/065339 PCT/US2004/043804 [02001 Expression level controls probes hybridize specifically with constitutively expressed genes present in the biological sample. Virtually any constitutively expressed gene provides a suitable target for expression level control probes. Typically, expression level control probes have sequences complementary to subsequences of constitutively expressed "housekeeping genes" including, but not limited to certain photosynthesis genes. [0201] "Negative control" probes are not complementary to any of the test oligonucleotides (i.e., the inventive cell cycle gene-related oligonucleotides), normalization controls, or expression controls. In one embodiment, the negative control is a mammalian gene which is not complementary to any other sequence in the sample. [0202] The terms "background" and "background signal intensity" refer to hybridization signals resulting from non-specific binding or other interactions between the labeled target nucleic acids (i.e., mRNA present in the biological sample) and components of the oligonucleotide array. Background signals also can be produced by intrinsic fluorescence of the array components themselves. [02031 A single background signal can be calculated for the entire array, or a different background signal can be calculated for each target nucleic acid. In a one embodiment, background is calculated as the average hybridization signal intensity for the lowest 5 to 10 percent of the oligonucleotide probes being used, or, where a different background signal is calculated for each target gene, for the lowest 5 to 10 percent of the probes for each gene. Where the oligonucleotide probes corresponding to a particular cell cycle gene hybridize well and, hence, appear to bind specifically to a target sequence, they should not be used in a background signal calculation. Alternatively, background can be calculated as the average hybridization signal intensity produced by hybridization to probes that are not complementary to any sequence found in the sample (e.g., probes directed to nucleic acids of the opposite sense or to genes not found in the sample). In microarray methods, background can be calculated as the average signal intensity produced by regions of the array that lack any oligonucleotides probes at all. 50 WO 2005/065339 PCT/US2004/043804 c. PCR-Based Methods [0204] In another embodiment, PCR-based methods are used to detect gene expression. These methods include reverse-transcriptase-mediated polymerase chain reaction (RT-PCR) including real-time and endpoint quantitative reverse-transcriptase-mediated polymerase chain reaction (Q-RTPCR). These methods are well known in the art. For example, methods of quantitative PCR can be carried out using kits and methods that are commercially available from, for example, Applied BioSystems and Stratagene@. See also Kochanowski, QUANTITATIVE PCR PROTOCOLS (Humana Press, 1999); Innis et al., supra.; Vandesompele et al., Genome Biol. 3: RESEARCH0034 (2002); Stein, Cell Mol. Life Sci. 59: 1235 (2002). [02051 Gene expression can also be observed in solution using Q RTPCR. Q-RTPCR relies on detection of a fluorescent signal produced proportionally during amplification of a PCR product. See Innis et al., supra. Like the traditional PCR method, this technique employs PCR oligonucleotide primers, typically 15-30 bases long, that hybridize to opposite strands and regions flanking the DNA region of interest. Additionally, a probe (e.g., TaqMan@, Applied Biosystems) is designed to hybridize to the target sequence between the forward and reverse primers traditionally used in the PCR technique. The probe is labeled at the 5' end with a reporter fluorophore, such as 6-carboxyfluorescein (6-FAM) and a quencher fluorophore like 6-carboxy-tetramethyl-rhodamine (TAMIRA). As long as the probe is intact, fluorescent energy transfer occurs which results in the absorbance of the fluorescence emission of the reporter fluorophore by the quenching fluorophore. As Taq polymerase extends the primer, however, the intrinsic 5' to 3' nuclease activity of Taq degrades the probe, releasing the reporter fluorophore. The increase in the fluorescence signal detected during the amplification cycle is proportional to the amount of product generated in each cycle. [0206] The forward and reverse amplification primers and internal hybridization probe is designed to hybridize specifically and uniquely with one nucleotide derived from the transcript of a target gene. In one embodiment, the 51 WO 2005/065339 PCT/US2004/043804 selection criteria for primer and probe sequences incorporates constraints regarding nucleotide content and size to accommodate TaqMan@ requirements. [02071 SYBR Green@ can be used as a probe-less Q-RTPCR alternative to the Taqman@-type assay, discussed above. ABI PRISM@ 7900 SEQUENCE DETECTION SYSTEM USER GUIDE APPLIED BIOSYSTEMS, chap. 1-8, App. A F. (2002). [02081 A device measures changes in fluorescence emission intensity during PCR amplification. The measurement is done in "real time," that is, as the amplification product accumulates in the reaction. Other methods can be used to measure changes in fluorescence resulting from probe digestion. For example, fluorescence polarization can distinguish between large and small molecules based on molecular tumbling (see U.S. patent No. 5,593,867). d. Protein Detection Methods [02091 Proteins can be observed by any means known in the art, including immunological methods, enzyme assays and protein array/proteomics techniques. [02101 Measurement of the translational state can be performed according to several protein methods. For example, whole genome monitoring of protein -- the "proteome" -- can be carried out by constructing a microarray in which binding sites comprise immobilized, preferably monoclonal, antibodies specific to a plurality of proteins having an amino acid sequence of any of SEQ ID NOs: 261-497 or proteins encoded by the genes of SEQ ID NOs: 1-237 or conservative variants thereof. See Wildt et al., Nature Biotechnol. 18: 989 (2000). Methods for making polyclonal and monoclonal antibodies are well known, as described, for instance, in Harlow & Lane, ANTIBODIES: A LABORATORY MANUAL (Cold Spring Harbor Laboratory Press, 1988). [0211] Alternatively, proteins can be separated by two-dimensional gel electrophoresis systems. Two-dimensional gel electrophoresis is well-known in 52 WO 2005/065339 PCT/US2004/043804 the art and typically involves isoelectric focusing along a first dimension followed by SDS-PAGE electrophoresis along a second dimension. See, e.g., Hames et al, , GEL ELECTROPHORESIS OF PROTEINS: A PRACTICAL APPROACH (IRL Press, 1990). The resulting electropherograms can be analyzed by numerous techniques, including mass spectrometric techniques, western blotting and immunoblot analysis using polyclonal and monoclonal antibodies, and internal and N-terminal micro-sequencing. 3. Correlating Gene Expression to Phenotype and Tissue Development [02121 As discussed above, the invention provides methods and tools to correlate gene expression to plant phenotype. Gene expression may be be examined in a plant having a phenotype of interest and compared to a plant that does not have the phenotype or has a different phenotype. Such a phenotype includes, but is not limited to, increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests, enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, and production of novel proteins or peptides. [02131 In another embodiment, the phenotype includes one or more of the following traits: propensity to form reaction wood, a reduced period of juvenility, an increased period of juvenility, self-abscising branches, accelerated reproductive development or delayed reproductive development. [0214] In a further embodiment, the phenotype that is differs in the plants compares includes one or more of the following: lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, other plant components, plant 53 WO 2005/065339 PCT/US2004/043804 cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. 10215 Phenotype can be assessed by any suitable means as discussed above. [02161 In a further embodiment, gene expression can be correlated to a given point in the cell cycle, a given point in plant development, and in a given tissue sample. Plant tissue can be examined at different stages of the cell cycle, from plant tissue at different developmental stages, from plant tissue at various times of the year (e.g. spring versus summer), from plant tissues subject to different environmental conditions (e.g. variations in light and temperature) and/or from different types of plant tissue and cells. In accordance with one embodiment, plant tissue is obtained during various stages of maturity and during different seasons of the year. For example, plant tissue can be collected from stem dividing cells, differentiating xylem, early developing wood cells, differentiated spring wood cells, differentiated summer wood cells. [0217] It will be apparent to those skilled in the art that various modifications and variations can be made in the methods and compositions of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. [02181 The following examples are given to illustrate the present invention. It should be understood, however, that the invention is not to be limited to the specific conditions or details described in these examples. Throughout the specification, any and all references to a publicly available document, including a U.S. patent, are specifically incorporated by reference. 54 WO 2005/065339 PCT/US2004/043804 [02191 EXAMPLES Example 1 [0220] Example 1 illustrates a procedure for RNA extraction and purification, which is particularly useful for RNA obtained from conifer needle, xylem, cambium, and phloem. [0221] Tissue is obtained from conifer needle, xylem, cambium or phloem. The tissue is frozen in liquid nitrogen and ground. The total RNA is extracted using Concert Plant RNA reagent (Invitrogen). The resulting RNA sample is extracted into phenol:chloroform and treated with DNase. The RNA is then incubated at 65 *C for 2 minutes followed by centrifugation at 4 *C for 30 minutes. Following centrifugation, the RNA is extracted into phenol at least 10 times to remove contaminants. [0222] The RNA is further cleaned using RNeasy columns (Qiagen). The purified RNA is quantified using RiboGreen reagent (Molecular Probes) and purity assessed by gel electrophoresis. [0223] RNA is then amplified using MessageAmp (Ambion). Aminoallyl UTP and free UTP are added to the in vitro transcription of the purified RNA at a ratio of 4:1 aminoallyl-UTP-to-UTP. The aminoallyl-UTP is incorporated into the new RNA strand as it is transcribed, The amino-allyl group is then reacted with Cy dyes to attach the colorimetric label to the resulting amplified RNA using the Amersham procedure modified for use with RNA. Unincorporated dye is removed by ethanol precipitation. The labeled RNA is quantified spectrophotometrically (NanoDrop). The labeled RNA is fragmented by heating to 95 *C as described in Hughes et al., Nature Biotechnol. 19:342 (2001). Example 2 [0224] Example 2 illustrates how cell cycle genes important for wood development in Pinus radiata can be determined and how oligonucleotides which uniquely bind to those genes can be designed and synthesized for use on a microarray. 55 WO 2005/065339 PCT/US2004/043804 [0225] Pine trees of the species Pinus radiata are grown under natural light conditions. Tissue samples are prepared as described in, e.g., Sterky et al., Proc. Nat'lAcad. Sci. 95:13330 (1998). Specifically, tissue samples are collected from woody trees having a height of 5 meters. Tissue samples of the woody trees are prepared by taking tangential sections through the cambial region of the stem. The stems are sectioned horizontally into sections ranging from juvenile (top) to mature (bottom). The stem sections separated by stage of development are further separated into 5 layers by peeling into sections of phloem, differentiating phloem, cambium, differentiating xylem, developing xylem, and mature xylem. Tissue samples, including leaves, buds, shoots, and roots are also prepared from seedlings of the species Pinus radiata. [02261 RNA is isolated and ESTs generated as described in Example 1 or Sterky et al., supra. The nucleic acid sequences of ESTs derived from samples containing developing wood are compared with nucleic acid sequences of genes known to be involved in the plant cell cycle. ESTs from samples that do not contain developing wood are also compared with sequences of genes known to be involved in the plant cell cycle. An in silico hybridization analysis is performed using BLAST (NCBI). Sequences from among the known cell cycle genes that show hybridization in silico to ESTs made from samples containing developing wood, but that do not hybridize to ESTs from samples not containing developing wood are selected for further examination. [0227] cDNA clones containing sequences that hybridize to the genes showing wood-preferred expression are selected from cDNA libraries using techniques well known in the art of molecular biology. Using the sequence information, oligonucleotides are designed such that each oligonucleotide is specific for only one cDNA sequence in the library. The oligonucleotide sequences are provided in Table 14. 60-mer oligonucleotide probes are designed using the method of Li and Stormo, supra or using software such as ArrayDesigner, GeneScan, and ProbeSelect. 56 WO 2005/065339 PCT/US2004/043804 [02281 The oligonucleotides are then synthesized in situ described in Hughes et al., Nature Biotechnol. 19:324 (2002) or as described in Kane et al., Nucleic Acids Res. 28:4552 (2000) and affixed to an activated glass slide (Sigma-Genosis, The Woodlands, TX) using a 5' amino linker. The position of each oligonucleotide on the slide is known. Example 3 [02291 Example 3 illustrates how cell cycle genes important for wood development in Eucalyptus grandis can be determined and how oligonucleotides which uniquely bind to those genes can be designed and synthesized for use on a microarray. [0230] Eucalyptus trees of the species Eucalyptus grandis are grown under natural light conditions. Tissue samples are prepared as described in, e.g., Sterky et al., Proc. Nat'l Acad. Sci. 95:13330 (1998). Specifically, tissue samples are collected from woody trees having a height of 5 meters. Tissue samples of the woody trees are prepared by taking tangential sections through the cambial region of the stem. The stems are sectioned horizontally into sections ranging from juvenile (top) to mature (bottom). The stem sections separated by stage of development are further separated into 5 layers by peeling into sections of phloem, differentiating phloem, cambium, differentiating xylem, developing xylem, and mature xylem. Tissue samples, including leaves, buds, shoots, and roots are also prepared from seedlings of the species Pinus radiata. [0231] RNA is isolated and ESTs generated as described in Example 1 or Sterky et al., supra. The nucleic acid sequences of ESTs derived from samples containing developing wood are compared with nucleic acid sequences of genes known to be involved in the plant cell cycle. ESTs from samples that do not contain developing wood are also compared with sequences of genes known to be involved in the plant cell cycle. An in silico hybridization analysis is performed as described in, for example, Audic and Claverie, Genome Res. 7:986 (1997). Sequences from among the known cell cycle genes that show hybridization in silico to ESTs made from 57 WO 2005/065339 PCT/US2004/043804 samples containing developing wood, but do not hybridize to ESTs from samples not containing developing wood are selected for further examination. [02321 cDNA clones containing sequences that hybridize to the genes showing wood-preferred expression are selected from cDNA libraries using techniques well known in the art of molecular biology. Using the sequence information, oligonucleotides are designed such that each oligonucleotide is specific for only one cDNA sequence in the library. The oligonucleotide sequences are provided in Table 14. 60-mer oligonucleotide probes are designed using the method of Li and Stormo, supra or using software such as ArrayDesigner, GeneScan, and ProbeSelect. [02331 The oligonucleotides are then synthesized in situ described in Hughes et al., Nature Biotechnol. 19:324 (2002) or as described in Kane et al., Nucleic Acids Res. 28:4552 (2000) and affixed to an activated glass slide (Sigma-Genosus, The Woodlands, TX) using a 5' amino linker. The position of each oligonucleotide on the slide is known. Example 4 [0234] Example 4 illustrates how to detect expression of Pinus radiata cell cycle genes which are important in wood formation using an oligonucleotide microarray prepared as in Example 2. This is an example of a balanced incomplete block designed experiment carried out using aRNA samples prepared from mature phase phloem (P), cambium (C), expanding xylem found in a layer below the cambium (Xl) and differentiating, lignifying xylem cells found deeper in the same growth ring (X2). In this example, cell cycle gene expression is compared among the four samples, namely P, C, X1, and X2. [02351 In the summer, plants of the species Pinus radiata are felled and the bark of the main stem is immediately pulled gently away to reveal the phloem and xylem. The phloem and xylem are then peeled with a scalpel into separate containers of liquid nitrogen. Needles (leaves) and buds from the trees are also harvested with a scalpel into separate containers of liquid nitrogen. RNA is subsequently isolated from 58 WO 2005/065339 PCT/US2004/043804 the frozen tissue samples as described in Example 1. Equal microgram quantities of total RNA are purified from each sample using RNeasy Mini columns (Qiagen, Valencia, CA) according to the manufacturers instructions. [0236] Amplification reactions are carried out for each of the P, C, X1, and X2 tissue samples. Amplification reactions are performed using Ambion's MessageAmp kit, a T7-based amplification procedure, following the manufacturer's instructions, except that labeled aaUTP is added to the reagent mix during in the amplification step. aaUTP is incorporated into the resulting antisense RNA formed during this step. CyDye fluorescent labels are coupled to the aaUTPs in a non enzymatic reaction as described in Example 1. Labeled amplified antisense RNAs are precipitated and washed, and then assayed for purity using a NanoDrop spectrophotometer. These labeled antisense RNAs, corresponding to the RNA isolated from the P, C, Xl, and X2 tissue samples, constitute the sample nucleic acids, which are referred to as the P, C, X1, and X2 samples. [0237] Normalization control samples of known nucleic acids are added to each sample in a dilution series of 500, 200, 100, 50, 25 and 10 pg/pl for quantitation of the signals. Positive controls corresponding to specific genes showing expression in all tissues of pine, such as housekeeping genes, are also added to the plant sample. [02381 Each of four microarray slides is incubated with 125 pL of a P, C, X1 or X2 sample under a coverslip at 42 "C for 16-18 hours. The arrays are washed in 1x SSC, 0.1% SDS for 10 minutes and then in 0.1 x SSC, 0.1% SDS for 10 minutes and the allowed to dry. [02391 The array slides are scanned using an Axon laser scanner and analyzed using GenePix Pro software. Data from the microarray slides are subjected to microarray data analysis using GenStat SAS or Spotfire software. Outliers are removed and ratiometric data for each of the datasets are normalized using a global normalization which employs a cubic spline fit applied to correct for differential dye bias and spatial effects. A second transformation is performed to fit control signal 59 WO 2005/065339 PCT/US2004/043804 ratios to a mean log 2 = 0 (i.e. 1:1 ratio). Normalized data are then subjected to a variance analysis. [0240] Mean signal intensity for each signal at any given position on the microarray slide is determined for each of three of P, C, X1, and X2 sample microarray slides. This mean signal/probe position is compared to the signal at the same position on sample slide which was not used for calculating the mean. For example, a mean signal at a given position is determined for P, C, and Xl and the signal at that position in the X2 microarray slide is compared to the P, C, and X1 mean signal value. [02411 Table 1 shows genes having greater than doubled signal with any one sample as compared to the mean signal of the other three samples. [02421 Table 1. Gene PvCX12 PvX12 CvX12 WD40 repeat protein A -1.24 -0.88 -1.07 CDC2 -1.09 -0.78 -0.92 CYCLIN -1.08 -1 -0.26 WD-40 repeat protein B -1.01 -0.87 -0.42 CDC2 -0.83 -0.49 -1.01 P = Phloem C = Cambium X1 = xylem layer-1 X2 = xylem layer-2 PvCX12 = Ratio of the signal for Phloem target versus mean signal for Cambium, Xylem1, and Xylem2 targets [0243] The data shows that WD40 repeat protein A encodes a WD40 repeat protein is less highly expressed in cambium than in developing xylem, while WD40 60 WO 2005/065339 PCT/US2004/043804 repeat protein B encodes a WD40 repeat protein that is more highly expressed in phloem than in the other tissues. [02441 Signal data are then verified with RT-PCR to confirm gene expression in the target tissue of the genes corresponding to the unique oligonucleotides in the probe. Example 5 [02451 Example 5 demonstrates how one can correlate cell cycle gene expression with agronomically important wood phenotypes such as density, stiffness, strength, distance between branches, and spiral grain. [02461 Mature clonally propagated pine trees are selected from among the progeny of known parent trees for superior growth characteristics and resistance to important fungal diseases.' The bark is removed from a tangential section and the trees are examined for average wood density in the fifth annual ring at breast height, stiffness and strength of the wood, and spiral grain. The trees are also characterized by their height, mean distance between major branches, crown size, and forking. [02471 To obtain seedling families that are segregating for major genes that affect density, stiffness, strength, distance between branches, spiral grain and other characteristics that may be linked to any of the genes affecting these characteristics, trees lacking common parents are chosen for specific crosses on the criterion that they exhibit the widest variation from each other with respect to the density, stiffness, strength, distance between branches, and spiral grain criteria. Thus, pollen from a plus tree exhibiting high density, low mean distance between major branches, and high spiral grain is used to pollinate cones from the unrelated plus tree among the selections exhibiting the lowest density, highest mean distance between major branches, and lowest spiral grain. It is useful to note that "plus trees" are crossed such that pollen from a plus tree exhibiting high density are used to pollinate developing cones from another plus tree exhibiting high density, for example, and pollen from a tree exhibiting low mean distance between major branches would be used to pollinate 61 WO 2005/065339 PCT/US2004/043804 developing cones from another plus tree exhibiting low mean distance between major branches. [0248] Seeds are collected from these controlled pollinations and grown such that the parental identity is maintained for each seed and used for vegetative propagation such that each genotype is represented by multiple ramets. Vegetative propagation is accomplished using micropropagation, hedging, or fascicle cuttings. Some ramets of each genotype are stored while vegetative propagules of each genotype are grown to sufficient size for establishment of a field planting. The genotypes are arrayed in a replicated design and grown under field conditions where the daily temperature and rainfall are measured and recorded. [02491 The trees are measured at various ages to determine the expression and segregation of density, stiffness, strength, distance between branches, spiral grain, and any other observable characteristics that may be linked to any of the genes affecting these characteristics. Samples are harvested for characterization of cellulose content, lignin content, cellulose microfibril angle, density, strength, stiffness, tracheid morphology, ring width, and the like. Samples are also examined for gene expression as described in Example 4. Ramets of each genotype are compared to ramets of the same genotype at different ages to establish age:age correlations for these characteristics. Example 6 [0250] Example 6 demonstrates how the stage of plant development and responses to environmental conditions such as light and season can be correlated to cell cycle gene expression using microarrays prepared as in Example 4. In particular, the changes in gene expression associated with wood density are examined. [02511 Trees of three different clonally propagated Eucalyptus grandis hybrid genotypes are grown on a site with a weather station that measures daily temperatures and rainfall. During the spring and subsequent summer, genetically identical ramets of the three different genotypes are first photographed with north south orientation marks, using photography at sufficient resolution to show bark 62 WO 2005/065339 PCT/US2004/043804 characteristics of juvenile and mature portions of the plant, and then felled as in Example 4. The age of the trees is determined by planting records and confirmed by a count of the annual rings. In each of these trees, mature wood is defined as the outermost rings of the tree below breast height, and juvenile wood as the innermost rings of the tree above breast height. Each tree is accordingly sectored as follows: NM - NORTHSIDE MATURE SM - SOUTHSIDE MATURE NT - NORTHSIDE TRANSITION ST - SOUTHSIDE TRANSITION NJ - NORTHSIDE JUVENILE SJ - SOUTHSIDE JUVENILE [02521 Tissue is harvested from the plant trunk as well as from juvenile and mature form leaves. Samples are prepared simultaneously for phenotype analysis, including plant morphology and biochemical characteristics, and gene expression analysis. The height and diameter of the tree at the point from which each sector was taken is recorded, and a soil sample from the base of the tree is taken for chemical assay. Samples prepared for gene expression analysis are weighed and placed into liquid nitrogen for subsequent preparation of RNA samples for use in the microarray experiment. The tissues are denoted as follows: P - phloem C - cambium X1 - expanding xylem X2 - differentiating and lignifying xylem 63 WO 2005/065339 PCT/US2004/043804 [02531 Thin slices in tangential and radial sections from each of the sectors of the trunk are fixed as described in Ruzin, Plant Microtechnique and Microscopy, Oxford University Press, Inc., New York, NY (1999) for anatomical examination and confirmation of wood developmental stage. Microfibril angle is examined at the different developmental stages of the wood, for example juvenile, transition and mature phases of Eucalyptus grandis wood. Other characteristics examined are the ratio of fibers to vessel elements and ray tissue in each sector. Additionally, the samples are examined for characteristics that change between juvenile and mature wood and between spring wood and summer wood, such as fiber morphology, lumen size, and width of the S2 (thickest) cell wall layer. Samples are further examined for measurements of density in the fifth ring and determination of modulus of elasticity using techniques well known to those skilled in the art of wood assays. See, e.g., Wang, et al., Non-destructive Evaluations of Trees, EXPERIMENTAL TECHNIQUES, pp. 28-30 (2000). [0254] For biochemical analysis, 50 grams from each of the harvest samples are freeze-dried and analyzed, using biochemical assays well known to those skilled in the art of plant biochemistry for quantities of simple sugars, amino acids, lipids, other extractives, lignin, and cellulose. See, e.g., Pettersen & Schwandt, J. Wood Chem. & Technol. 11:495 (1991). [02551 In the present example, the phenotypes chosen for comparison are high density wood, average density wood, and low density wood. Nucleic acid samples are prepared as described in Example 3, from trees harvested in the spring and summer. Gene expression profiling by hybridization and data analysis is performed as described in Examples 3 and 4. [02561 Using similar techniques and clonally propagated individuals one can examine cell cycle gene expression as it is related to other complex wood characteristics such as strength, stiffness and spirality. 64 WO 2005/065339 PCT/US2004/043804 Example 7 102571 Example 7 demonstrates the ability of the oligonucleotide probes of the invention to distinguish between highly homologous members of a family of cell cycle genes. Hybridization to a particular oligonucleotide on the array identifies a unique WD40 gene that is expressed more strongly in a genotype having a higher density wood than in observed in other genotypes examined. The WD40 gene is also expressed more strongly in mature wood than in juvenile wood and more strongly in summer wood than in spring wood. This gene is not found to be expressed at high levels either in leaves or buds. [02581 The gene expression pattern is confirmed by RT-PCR. This gene, the putative "density-related" gene, is used for in situ hybridization of fixed radial sections. The density-related WD40 gene hybridizes most strongly to the vascular cambium in regions of the stem where the xylem is comprised primarily of fibers with few vessel elements and few xylem ray cells. [02591 These results suggest that the WD40 gene product functions in radial cell division, which occurs in the cambium and results in diameter growth, rather than in axial cell division such as may be important in the apex or leaves. Such a gene would be difficult to identify by cDNA microarrays or other traditional hybridization means because the highly conserved regions present in the gene would result in confusing it with genes encoding enzymes having similar catalytic functions, but acting in axial or radial divisions. Furthermore, from the sequence similarity-based annotation suggesting a function of this gene product in cell division and the observation of this microarray hybridization pattern, confirmed by RT-PCR and in silico hybridization, this gene product functions specifically in developing secondary xylem to guide the cell division patterns of fibers, such that higher expression of this gene results in greater fiber production relative to vessel element or ray production. The fiber content is correlated with a principal components analysis (PCA) variable that accounts for at least 10% of the variation in basic density. 65 WO 2005/065339 PCT/US2004/043804 Example 8 [02601 Example 8 demonstrates how the use of oligonucleotide probes of the invention can be used to identify one wood "density related" WD40 repeat protein gene and its promoter from among the family of homologous genes. Further, this example demonstrates how a promoter sequence identified using this method is used to transform other hardwood species to result in increased diameter growth rates as compared to wild-type plants of the same species. [0261] The sequence of the WD40 gene is used to probe a Genome Walker library in order to isolate 5' flanking sequences comprising a promoter region. The promoter region is then operably linked to a beta-glucuronidase reporter gene and cloned into a binary vector for transformation into Eucalyptus using the method described in U.S. Application Ser. No. 60/476,222. Regenerated transgenic tobacco and Eucalyptus plants are then sectioned and stained using X-gluc, demonstrating that the microarray data results in isolation of a promoter capable of highly cambial specific expression solely in those portions of the stem that develop more fibers than vessel elements or xylem rays. [0262] Using techniques well known to those skilled in the art of molecular biology, the promoter is then operably linked to a cell division promoting gene and this construct placed in a binary vector for transformation into hardwood plants such as Sweetgum and Populus, such that the cell division promoting gene is expressed more strongly than normally in the vascular cambium. This results in increased diameter growth rate in the transgenic hardwood plants relative to control hardwood plants. Example 9 [0263] Example 9 demonstrates how a density related polypeptide can be linked to a tissue-preferred promoter and expressed in pine resulting in a plant with increased wood density. 66 WO 2005/065339 PCT/US2004/043804 [02641 A density-related polypeptide, which is more highly expressed during the early spring, is identified by the method described in Example 7. A DNA construct having the density-related polypeptide operably linked to a promoter is placed into an appropriate binary vector and transformed into pine using the method of Connett et al. (U.S. Patent Application Nos. 09/973,08 8 and 09/973,089). Pine plants are transformed as described in Connett et al., supra, and the transgenic pine plants are used to establish a forest planting. Increased density even in the spring wood (early wood) is observed in the transgenic pine plants relative to control pine plants which are not transformed with the density related DNA construct. Example 10 [02651 Using techniques well known to those skilled in the art of molecular biology, the sequence of the putative density-related gene isolated in Example 7 is analyzed in genomic DNA isolated from alfalfa. This enables the identification of an orthologue in alfalfa whose sequence is then used to create an RNAi knockout construct. This construct is then transformed into alfalfa. See, e.g., Austin et al.,. Euphytica 85, 381 1995. The regenerated transgenic plants show lower fiber content and increased ray cells content in the xylem. Such properties improved digestability which results in higher growth rates in cattle fed on this alfalfa as compared to wild type alfalfa of the same species. Example 11 [02661 Example 11 demonstrates how gene expression analysis can be used to find gene variants which are present in mature plants having a desirable phenotype. The presence or absence of such a variant can be used to predict the phenotype of a mature plant, allowing screening of the plants at the seedling stage. Although this example employs eucalyptus, the method used herein is also useful in breeding programs for pine and other tree species. [02671 The sequence of a putative density-related gene is used to probe genomic DNA isolated from Eucalyptus that vary in density as described in previous examples. Non-transgenically produced Eucalyptus hybrids of different wood 67 WO 2005/065339 PCTIUS2004/043804 phenotypes are examined. One hybrid exhibits high wood density and another hybrid exhibits lower wood density. A molecular marker in the 3' portion of the coding region is found which distinguishes a high-density gene variant from a lower density gene variant. [0268] This molecular marker enables tree breeders to assay non-transgenic Eucalyptus hybrids for likely density profiles while the trees are still at seedling stage, whereas in the absence of the marker, tree breeders must wait until the trees have grown for multiple years before density at harvest age can be reliably predicted. This enables selective outplanting of the best trees at seedling stage rather than an expensive culling operation and resultant erosion at thinning age. This molecular marker is further useful in the breeding program to determine which parents will give rise to high density outcross progeny. [02691 Molecular markers found in the 3' portion of the coding region of the gene that do not correspond to variants seen more frequently in higher or lower wood density non-transgenic Eucalyptus hybrid trees are also useful. These markers are found to be useful for fingerprinting different genotypes of Eucalyptus, for use in identity-tracking in the breeding program and in plantations. Example 12 [0270] This Example describes microarrays for identifying gene expression differences that contribute to the phenotypic characteristics that are important in commercial wood, namely wood appearance, stiffness, strength, density, fiber dimensions, coarseness, cellulose and lignin content, extractives content and the like. [02711 As in Examples 2-4, woody trees of genera that produce commercially important wood products, in this case Pinus and Eucalyptus, are felled from various sites and at various times of year for the collection and isolation of RNA from developing xylem, cambium, phloem, leaves, buds, roots, and other tissues. RNA is also isolated from seedlings of the same genera. 68 WO 2005/065339 PCT/US2004/043804 [0272] All contigs are compared to both the ESTs made from RNA isolated from samples containing developing wood and the sequences of the ESTs made from RNA of various tissues that do not contain developing wood. Contigs containing primarily ESTs that show more hybridization in silico to ESTs made from RNA isolated from samples containing developing wood than to ESTs made from RNA isolated from samples not containing developing wood are determined to correspond to possible novel genes particularly expressed in developing wood. These contigs are then used for BLAST searches against public domain sequences. Those contigs that hybridize with high stringency to no known genes or genes annotated as having only a "hypothetical protein" are selected for the next step. These contigs are considered putative novel genes showing wood-preferred expression. [0273] The longest cDNA clones containing sequences hybridizing to the putative novel genes showing wood-preferred expression are selected from cDNA libraries using techniques well known to those skilled in the art of molecular biology. The cDNAs are sequenced and full-length gene-coding sequences together with untranslated flanking sequences are obtained where possible. Stretches of 45-80 nucleotides (or oligonucleotides) are selected from each of the sequences of putative novel genes showing wood-preferred expression such that each oligonucleotide probe hybridizes at high stringency to only one sequence represented in the ESTs made from RNA isolated from trees or seedlings of the same genus. [0274] Oligomers are then chemically synthesized and placed onto a microarray slide as described in Example 3. Each oligomer corresponds to a particular sequence of a putative novel gene showing wood-preferred expression and to no other gene whose sequence is represented among the ESTs made from RNA isolated from trees or seedlings of the same genus. [0275] Sample preparation and hybridization are carried out as in Example 4. The technique used in this example is more effective than use of a microarray using cDNA probes because the presence of a signal represents significant evidence of the expression of a particular gene, rather than of any of a number of genes that may contain similarities to the cDNA due to conserved functional domains or 69 WO 2005/065339 PCT/US2004/043804 common evolutionary history. Thus, it is possible to differentiate homologous genes, such as those in the same family, but which may have different functions in phenotype determination. [0276] Thus hybridization data, gained using the method of Example 4, enable the user to identify which of the putative novel genes actually has a pattern of coordinate expression with known genes, a pattern of expression consistent with a particular developmental role, and/or a pattern of expression that suggests that the gene has a promoter that drives expression in a valuable way. [0277] The hybridization data thus using this method can be used, for example, to identify a putative novel gene that shows an expression pattern particular to the tracheids with the lowest cellulose microfibril angle in developing spring wood (early wood). The promoter of this gene can also be isolated as in Example 8, and operably linked to a gene that has been shown as in Example 9 to be associated with late wood (summer wood). Transgenic pine plants containing this construct are generated using the methods of Example 9, and the early wood of these plants is then shown to display several characteristics of late wood, such as higher microfibril angle, higher density, smaller average lumen size, etc. Example 13 [02781 Example 13 demonstrates the use of a cambium-specific promoter functionally linked to a cell cycle gene for increased plant biomass. [0279] Cambium-specific cell cycle transcripts are identified via array analyses of different secondary vasculature layers as described in Example 4. Candidate promoters linked to the genes corresponding to these transcripts are cloned from pine genomic DNA using, e.g., the BD Clontech GenomeWalker kit and tested in transgenic tobacco via a reporter assay(s) for cambium specificity/preference. The cambium-specific promoter overexpressing a cell cycle gene involved in secondary xylem cell division is used to increased wood biomass. A tandem cambium-specific promoter is constructed driving the cell cycle ORE. Boosted transcript levels of the candidate cell cycle gene result in an increased xylem biomass phenotype. 70 WO 2005/065339 PCT/US2004/043804 Example 14 Isolation and Characterization of cDNA Clones from Eucalyptus grandis [0280] Eucalyptus grandis cDNA expression libraries were prepared from mature shoot buds, early wood phloem, floral tissue, leaf tissue (two independent libraries), feeder roots, structural roots, xylem or early wood xylem and were constructed and screened as follows. [0281] Total RNA was extracted from the plant tissue using the protocol of Chang et al. (Plant Molecular Biology Reporter 11:113-116 (1993). mRNA was isolated from the total RNA preparation using either a Poly(A) Quik mRNA Isolation Kit (Stratagene, La Jolla, CA) or Dynal Beads Oligo (dT) 25 (Dynal, Skogen, Norway). A cDNA expression library was constructed from the purified mRNA by reverse transcriptase synthesis followed by insertion of the resulting cDNA clones in Lambda ZAP using a ZAP Express cDNA Synthesis Kit (Stratagene), according to the manufacturer's protocol. The resulting cDNAs were packaged using a Gigapack II Packaging Extract (Stratagene) using an aliquot (1 - 5 cd) from the 5 pl ligation reaction dependent upon the library. Mass excision of the library was done using XL 1-Blue MRF' cells and XLOLR cells (Stratagene) with ExAssist helper phage (Stratagene). The excised phagemids were diluted with NZY broth (Gibco BRL, Gaithersburg, MD) and plated out onto LB-kanamycin agar plates containing X-gal and isopropylthio-beta-galactoside (IPTG). [02821 Of the colonies plated and selected for DNA miniprep, 99% contained an insert suitable for sequencing. Positive colonies were cultured in NZY broth with kanamycin and cDNA was purified by means of alkaline lysis and polyethylene glycol (PEG) precipitation. Agarose gel at 1% was used to screen sequencing templates for chromosomal contamination. Dye primer sequences were prepared using a Turbo Catalyst 800 machine (Perkin Elmer/Applied Biosystems Division, Foster City, CA) according to the manufacturer's protocol. 71 WO 2005/065339 PCT/US2004/043804 [0283] DNA sequence for positive clones was obtained using a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer. cDNA clones were sequenced first from the 5' end and, in some cases, also from the 3' end. For some clones, internal sequence was obtained using either Exonuclease III deletion analysis, yielding a library of differentially sized subclones in pBK-CMV, or by direct sequencing using gene-specific primers designed to identified regions of the gene of interest. 102841 The determined cDNA sequences were compared with known sequences in the EMBL database using the computer algorithms FASTA and/or BLASTN. Multiple alignments of redundant sequences were used to build reliable consensus sequences. Based on similarity to known sequences from other plant species, the isolated polynucleotide sequences were identified as encoding transcription factors, as detailed herein. The predicted polypeptide sequences corresponding to the polynucleotide sequences are also depicted therein. Example 15 Isolation and Characterization of cDNA Clones from Pinus radiata [0285] Pinus radiata cDNA expression libraries (prepared from either shoot bud tissue, suspension cultured cells, early wood phloem (two independent libraries), fascicle meristem tissue, male strobilus, root (unknown lineage), feeder roots, structural roots, female strobilus, cone primordia, female receptive cones and xylem (two independent libraries) were constructed and screened as described above in Example 14. [02861 DNA sequence for positive clones was obtained using forward and reverse primers on a Perkin Elmer/Applied Biosystems Division Prism 377 sequencer and the determined sequences were compared to known sequences in the database as described above. [0287] Based on similarity to known sequences from other plant species, the isolated polynucleotide sequences were identified as encoding transcription factors, as 72 WO 2005/065339 PCT/US2004/043804 detailed herein. The predicted polypeptide sequences corresponding to the polynucleotide sequences are also depicted therein. Example 16 5' RACE Isolation [0288] To identify additional sequence 5' or 3' of a partial cDNA sequence in a cDNA library, 5' and 3' rapid amplification of cDNA ends (RACE) was performed. using the SMART RACE cDNA amplification kit (Clontech Laboratories, Palo Alto, Calif.). Generally, the method entailed first isolating poly(A) mRNA, performing first and second strand cDNA synthesis to generate double stranded cDNA, blunting cDNA ends, and then ligating of the SMART RACE. Adaptor to the cDNA to form a library of adaptor-ligated ds cDNA. Gene-specific primers were designed to be used along with adaptor specific primers for both 5' and 3' RACE reactions. Using 5' and 3' RACE reactions, 5' and 3' RACE fragments were obtained, sequenced, and cloned. The process may be repeated until 5' and 3' ends of the full length gene were identified. A full-length cDNA may generated by PCR using primers specific to 5' and 3' ends of the gene by end-to-end PCR. [02891 For example, to amplify the missing 5' region of a gene from first strand cDNA, a primer was designed 5'-+3' from the opposite strand of the template sequence, and from the region between -100-200 bp of the template sequence. A successful amplification should give an overlap of-100 bp of DNA sequence between the 5' end of the template and PCR product. [0290] RNA was extracted from four pine tissues, namely seedling, xylem, phloem and structural root using the Concert Reagent Protocol (Invitrogen, Carlsbad, CA) and standard isolation and extraction procedures. The resulting RNA was then treated with DNase, using I OU/ul DNase I (Roche Diagnostics, Basel, Switzerland). For 100 pg of RNA, 9 pl lOx DNase buffer (Invitrogen, Carlsbad, CA), 10 pl of Roche DNase I and 90 p1 of Rnase-free water was used. The RNA was then incubated at room temperature for 15 minutes and 1/10 volume 25mM EDTA is 73 WO 2005/065339 PCT/US2004/043804 added. A RNeasy mini kit (Qiagen, Venlo, The Netherlands) was used for RNA clean up according to manufacturer's protocol. [0291] To synthesize cDNA, the extracted RNA from xylem, phloem, seedling and root was used and the SMART RACE cDNA amplification kit (Clontech Laboratories Inc, Palo Alto, CA) was followed according to manufacturer's protocol. For the RACE PCR, the cDNA from the four tissue types was combined. The master mix for PCR was created by combining equal volumes of cDNA from xylem, phloem, root and seedling tissues. PCR reactions were performed in 96 well PCR plates, with 1 p.1 of primer from primer dilution plate (1OmM) to corresponding well positions. 49 sl of master mix is aliquoted into the PCR plate with primers. Thermal cycling commenced on a GeneAmp 9700 (Applied Biosystems, Foster City, CA) at the following parameters: 94 0 C (5 sec), 72 0 C (3 min), 5 cycles; 94 0 C (5 sec), 70 0 C (10 sec), 72 0 C (3 min), 5 cycles; 94 0 C (5 sec), 68 0 C (10 sec), 72 0 C (3min), 25 cycles. [02921 cDNA was separated on an agarose gel following standard procedures. Gel fragments were excised and eluted from the gel by using the Qiagen 96-well Gel Elution kit, following the manufacturer's instructions. [02931 PCR products were ligated into pGEMTeasy (Promega, Madison, W) in a 96 well plate overnight according to the following specifications: 60-80 ng 74 WO 2005/065339 PCT/US2004/043804 of DNA, 5 l 2X rapid ligation buffer, 0.5 sl pGEMT easy vector, 0.1 l DNA ligase, filled to 10 pl with water, and incubated overnight. [0294] Each clone was transformed into E.coli following standard procedures and DNA was extracted from 12 clones picked by following standard protocols. DNA extraction and the DNA quality was verified on an 1% agarose gel. The presence of the correct size insert in each of the clones was determined by restriction digests, using the restriction endonuclease EcoRI, and gel electrophoresis, following standard laboratory procedures. Example 17 Curation of an EST sequence. [0295] During the production of cDNA libraries, the original transcripts or their DNA counterparts may have features that prevent them from coding for functional proteins. There may be insertions, deletions, base substitutions, or unspliced or improperly spliced introns. If such features exist, it is often possible to identify them so that they can be changed. Similar curation can be performed on any other sequences that have homology to sequences in the public databases. [02961 After determination of the DNA sequence, BLAST analysis shows that it is related to an Arabidopsis gene on the publicly available Arabidopsis genome sequence). However, instead of coding for an approximately 240 amino acid polypeptide, the consensus being curated is predicted to code for a product of only 157 amino acid residues, suggesting an error in the DNA sequence. To identify where the genuine coding region might be, the DNA sequence to the end of each EST is translated in each of the three reading frames and the predicted sequences are aligned with the Arabidopsis gene's amino acid sequence. It is found that the DNA segment in one portion of the EST codes for a sequence with similarity to the carboxyl terminus of the Arabidopsis gene. Therefore, it appears that an unspliced intron is present in the EST. 75 WO 2005/065339 PCT/US2004/043804 [02971 Unspliced introns are a relatively minor issue with regard to use of a cloned sequence for overexpression of the gene of interest. The RNA resulting from transcription of the cDNA can be expected to undergo normal processing to remove the intron. Antisense and RNAi constructs are also expected to function to suppress the gene of interest. On other occasions, it may be desirable to identify the precise limits of the intron so that it can be removed. When the sequence in question has a published sequence that is highly similar, it may be possible to find the intron by aligning the two sequences and identifying the locations where the sequence identity falls off, aided by the knowledge that introns start with the sequence GT and end with the sequence AG. [02981 When there is some doubt about the site of the intron because highly similar sequences are not available, the intron location can be verified experimentally. For example, DNA oligomers can be synthesized flanking the region where the suspected intron is located. RNA from the source species, either Pinus or Eucalyptus, is isolated and used as a template to make cDNA using reverse transcriptase. The selected primers are then used in a PCR reaction to amplify the correctly spliced DNA segment (predicted size of approximately 350 bp smaller than the corresponding segment of the original consensus) from the population of cDNAs. The amplified segment is then subjected to sequence analysis and compared to the consensus sequence to identify the differences. [02991 The same procedure can be used when an alternate splicing event (partial intron remaining, or partial loss of an exon) is suspected. When an EST has a small change, such as insertion or deletion of a small number of bases, computer analysis of the EST sequence can still indicate its location when a translation product of the wrong size is predicted or if there is an obvious frameshift. Verification of the true sequence is done by synthesis of primers, production of new cDNA, and PCR amplification as described above. 76 WO 2005/065339 PCT/US2004/043804 Example 18 [0300] Transformation of Populus deltoides with constructs containing cell cycle genes. [03011 Constructs made as described in the preceding example and shown in Table 2 below were each inoculated into Agrobacterium cultures by standard techniques. [0302] Table 2 identifes plasmid(s), genes, and Genesis ID numbers for constructions described in Example 17. [0303] Table 2 Plasmid(s) Gene Genesis ID pGrwl4 Cyclin A prga001823 pGrwl5 Cyclin A prpeOO1264 pGrwl6 Cyclin D prxa004540 pGrwl8 Cyclin D prx1006271 PGrwl9 Cyclin D prpbO19661 PGrw20 WEEl-like protein prrd041233 [0304] Populus deltoides stock plant cultures were maintained on DKW medium (Driver and Kuniyuki, 1984, McGranahan et al. 1987, available commercially from Sigma/Aldrich) with 2.5 uM zeatin in a growth room with a 16h photoperiod. For transformation, petioles were excised aseptically using a sharp scalpel blade from the stock plants, cut into 4-6mm lengths, placed on DKW medium with 1 ug/ml BAP and 1 ug/ml NAA immediately after harvest, and incubated in a dark growth chamber (28 degrees) for 24 hours. [03051 Agrobacterium cultures containing the desired constructs were grown to log phase, indicated by an OD600 between 0.8-1.0 A, then pelleted and resuspended in an equal volume of Agrobacterium Induction Medium (AIM), which contains Woody Plant Medium salts (Lloyd, G., and McCown, B., 1981. Woody plant 77 WO 2005/065339 PCT/US2004/043804 medium. Proc. Intern. Plant Prop. Soc. 30:421, available commercially from Sigma/Aldrich), 5 g/L glucose and 0.6 g/L MES at pH 5.8, with the addition of 1 ul of a 100 mM stock solution of acetosyringone per ml of AIM. The pellet was resuspended by vortexing. The bacterial cells were incubated for an hour in this medium at 28 degrees C in an environmental chamber, shaking at 100 rpm. [03061 After the induction period, Populus deltoides explants were exposed to the Agrobacterium mixture for 15 minutes. The explants were then lightly blotted on sterile paper towels, replaced onto the same plant medium and cultured in the dark at 18-20 degrees C. After a three-day co-cultivation period, the explants were transferred to DKW medium in which the NAA concentration was reduced to 0.1 ug/ml and to which was added 400mg/L timentin to eradicate the Agrobacterium. [0307] After 4 days on eradication medium, explants were transferred to small magenta boxes containing the same medium supplemented with timentin (400mg/L) as well as the selection agent geneticin (50 mg/L). Explants were transferred every two weeks to fresh selection medium. Calli that grow in the presence of selection were isolated and sub-cultured to fresh selection medium every three weeks. Calli were observed for the production of adventitious shoots. [03081 Adventitious shoots were normally observed within two months from the initiation of transformation. These shoot clusters were transferred to DKW medium to which no NAA was added, and in which the BAP concentration was reduced to 0.5 ug.ml, for shoot elongation, typically for about 14 weeks. Elongated shoots were excised and transferred to BTM medium (Chalupa, Communicationes Instituti Forestalis Checosloveniae 13:7-39, 1983, available commercially from Sigma/Aldrich) at pH5.8, containing20 g/l sucrose and 5 g/l activated charcoal. See Table 3 below. 78 WO 2005/065339 PCTIUS2004/043804 [0309] Table 3. Rooting medium for Populus deltoids. BTM-1 Media Components mg/L
NH
4
NO
3 412
KNO
3 475 Ca (NO 3 ) 2. 4H 2 0 640 CaCl2.2H 2 0 440* MgSO 4 .7H 2 0 370
KH
2
PO
4 170 MnSO 4 . H 2 0 2.3 ZnSO 4 . 7H 2 0 8.6 CuSO 4 .5H20 0.25 CoC1 2 .6H 2 0 0.02 KI 0.15
H
3 B0 3 6.2 Na 2 MoO 4 .2H 2 0 0.25 FeSO 4 .7H 2 0 27.8 Na 2 EDTA.2H 2 0 37.3 Myo-inositol 100 Nicotinic acid 0.5 Pyridoxine HC1 0.5 Thiamine HC1 1 Glycine 2 Sucrose 20000 Activated Carbon 5000 [0310] After development of roots, typically four weeks, transgenic plants were propagated in the greenhouse by rooted cutting methods, or in vitro through axillary shoot induction for four weeks on DKW medium containing 11.4 uM zeatin, after which the multiplied shoots were separated and transferred to root induction medium. Rooted plants were transferred to soil for evaluation of growth in glasshouse and field conditions. 79 WO 2005/065339 PCT/US2004/043804 Example 19 [0311] Production of disproportionately large leaves mediated by ectopic expression of certain cyclin D genes [0312] Approximately 100 explants of Populus deltoides per construct were transformed with pGRW16 and pGRW 19, which contain genes that are normally show preferred expression in the vasculature, driven by a constitutive promoter (the Pinus radiata superubiquitin promoter). Upon regeneration, many of the ramets of many of the translines were observed to have disproportionately large leaves relative to control plants. The leaves were both longer and broader than those of control plants. [03131 Disproportionately large leaves could be a very useful early indicator of growth potential. large leaf size and thus high growth potential. Lage leaf size can be a function of either increased numbers of leaf cells or increased leaf cell size or both. Example 20 [03141 Production of unusual vascular development mediated by ectopic expression of a cyclin D gene. [0315] Approximately 100 explants of Populus deltoides per construct were transformed with pGRW18. Multiple transgenic lines regenerated from this experiment showed a very unique pleiotropic phenotype. Leaves of these transgenic lines symmetrically folded on both sides of the midrib down the entire length of the leaf. Many petioles of these lines spiraled, and in many cases turned 360 degrees, in a right-handed fashion towards the leaf. The stem showed some thickening and slight bending near the middle. [03161 One ramet of the transgenic line TDL002534 showing these phenotypes was sacrificed to investigate these aberrancies at the tissue level. Transverse sections of a curling petiole stained with toluidine blue revealed retardation of vascular development, but the presence of additional vascular cylinders 80 WO 2005/065339 PCT/US2004/043804 developing as indicated by the black arrows. The xylem and phloem within the vascular cylinders of the curling petiole appeared to be developmentally similar and spatially oriented correctly. Longitudinal sections of straight and curled petioles may offer an explanation for the spiraling phenomenon. Curled petioles showed more elongated cells on the outside turn of the curl and more compressed cells on the opposite side of the petiole. [0317] Perhaps the most striking phenotype was identified in the leaves. As with the petioles, aberrant vascular development was noted, comprising additional forming vascular cylinders lateral to the larger midrib. In some sections almost fully formed veins could be seen immediately adjacent to the midrib. In all instances where the folding phenotype was noted, this type of leaf configuration was associated with the phenotype. [03181 The development of additional vascular cylinders in the space where normally a small number of vascular bundles or a single midrib are seen is indicative of unusual cell division activity at the level of early vascular development. Thus, this gene expressed under the control of a vascular-preferred promoter rather than a constitutive promoter could have utility in increasing cell division in later vascular development, creating additional wood. Example 21 [03191 This example illustrates how polynucleotides important for wood development in P. radiata can be determined and how oligonucleotides which uniquely bind to those genes can be designed and synthesized for use on a microarray. [03201 Open pollinated trees of approximately 16 years of age are selected from plantation-grown sites, in the United States for loblolly pine, and in New Zealand for radiata pine. Trees are felled during the spring and summer seasons to compare the expression of genes associated with these different developmental stages of wood formation. Trees are felled individually and trunk sections are removed from the bottom area approximately one to two meters from the base and within one to two meters below the live crown. The section removed from the basal end of the trunk 81 WO 2005/065339 PCTfUS2004/043804 contains mature wood. The section removed from below the live crown contains juvenile wood. Samples collected during the spring season are termed earlywood or springwood, while samples collected during the summer season are considered latewood or summerwood (Larson et al., Gen. Tech. Rep. FPL-GTR-129. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. p. 42). [03211 Tissues are isolated from the trunk sections such that phloem, cambium, developing xylem, and maturing xylem are removed. These tissues are collected only from the current year's growth ring. Upon tissue removal in each case, the material is immediately plunged into liquid nitrogen to preserve the nucleic acids and other components. The bark is peeled from the section and phloem tissue removed from the inner face of the bark by scraping with a razor blade. Cambium tissue is isolated from the outer face of the peeled section by gentle scraping of the surface. Developing xylem and lignifying xylem are isolated by sequentially performing more vigorous scraping of the remaining tissue. Tissues are transferred from liquid nitrogen into containers for long term storage at -70 until RNA extraction and subsequent analysis is performed. Example 22 [03221 This example illustrates a procedure for RNA extraction and purification, which is particularly useful for RNA obtained from conifer needle, xylem, cambium, and phloem. [0323] Tissue is obtained from conifer needle, xylem, cambium or phloem. The tissue is frozen in liquid nitrogen and ground. The total RNA is extracted using Concert Plant RNA reagent (Invitrogen). The resulting RNA sample is extracted into phenol:chloroform and treated with DNase. The RNA is then incubated at 65 *C for 2 minutes followed by centrifugation at 4 *C for 30 minutes. Following centrifugation, the RNA is extracted into phenol at least 10 times to remove contaminants. 82 WO 2005/065339 PCT/US2004/043804 [03241 The RNA is further cleaned using RNeasy columns (Qiagen). The purified RNA is quantified using Riboireen reagent (Molecular Probes) and purity assessed by gel electrophoresis. [03251 RNA is then amplified using MessageAmp (Ambion). Aminoallyl-UTP and free UTP are added to the in vitro transcription of the purified RNA at a ratio of 4:1 aminoallyl-UTP-to-UTP. The aminoallyl-UTP is incorporated into the new RNA strand as it is transcribed. The amino-allyl group is then reacted with Cy dyes to attach the colorimetric label to the resulting amplified RNA using the Amersham procedure modified for use with RNA. Unincorporated dye is removed by ethanol precipitation. The labeled RNA is quantified spectrophotometrically (NanoDrop). The labeled RNA is fragmented by heating to 95 *C as described in Hughes et al., Nature Biotechnol. 19:342 (2001). Example 23 [03261 This Example illustrates how genes important for wood development in P. radiata can be determined and how oligonucleotides which uniquely bind to those genes can be designed and synthesized for use on a microarray. [03271 Pine trees of the species P. radiata are grown under natural light conditions. Tissue samples are prepared as described in, e.g., Sterky et al., Proc. Nat'l Acad Sci. 95:13330 (1998). Specifically, tissue samples are collected from woody trees having a height of 5 meters. Tissue samples of the woody trees are prepared by taking tangential sections through the cambial region of the stem. The stems are sectioned horizontally into sections ranging from juvenile (top) to mature (bottom). The stem sections separated by stage of development are further separated into 5 layers by peeling into sections of phloem, differentiating phloem, cambium, differentiating xylem, developing xylem, and mature xylem. Tissue samples, including leaves, buds, shoots, and roots are also prepared from seedlings of the species P. radiata. [0328] RNA is isolated and ESTs generated as described in the Example above or Sterky et al., supra. The nucleic acid sequences of ESTs derived from samples 83 WO 2005/065339 PCT/US2004/043804 containing developing wood are compared with nucleic acid sequences of genes known to be involved in polysaccharide synthesis. ESTs from samples that do not contain developing wood are also compared with sequences of genes known to be involved in the plant cell cycle. An in silico hybridization analysis is performed using BLAST (NCBI) as follows. Example 24 Eucalyptus in silico data [03291 In silico gene expression can be used to determine the membership of the consensi EST libraries. For each library, a consensus is determined from the number of ESTs in any tissue class divided by the total number of ESTs in a class multiplied by 1000. These values provide a normalized value that is not biased by the extent of sequencing from a library. Several libraries were sampled for a consensus value, including reproductive, bud reproductive, bud vegetative, fruit, leaf, phloem, cambium, xylem, root, stem, sap vegetative, whole plant libraries. [03301 As shown below, a number of the inventive sequences exhibit vascular preferred expression (more than 50% of the hits by these sequences if the databases were searched at random would be in libraries made from developing vascular tissue) and thus are likely to be involved in wood-related developmental processes. The data are shown in Table 12. Example 25 Pinus in silico data [0331] In silico gene expression can be used to determine the membership of the consensi EST libraries. For each library, a consensus is determined from the number of ESTs in any tissue class divided by the total number of ESTs in a class multiplied by 1000. These values provide a normalized value that is not biased by the extent of sequencing from a library. Several libraries were sampled for a consensus value, including needles, phloem, cambium, xylem, root, stem and, whole plant libraries. 84 WO 2005/065339 PCT/US2004/043804 [0332] As shown below, a number of the inventive sequences exhibit vascular preferred expression (more than 50% of the hits by these sequences if the databases were searched at random would be in libraries made from developing vascular tissue) and thus are likely to be involved in wood-related developmental processes. The data are shown in Table 13. Example 26 [0333] Sequences that show hybridization in silico to ESTs made from samples containing developing wood, but that do not hybridize to ESTs from samples not containing developing wood are selected for further examination. [03341 cDNA clones containing sequences that hybridize to the genes showing wood-preferred expression are selected from cDNA libraries using techniques well known in the art of molecular biology. Using the sequence information, oligonucleotides are designed such that each oligonucleotide is specific for only one cDNA sequence in the library. The oligonucleotide sequences are provided in Table 14. 60-mer oligonucleotide probes are designed using the method of Li and Stormo, supra or using software such as ArrayDesigner, GeneScan, and ProbeSelect. [0335] The oligonucleotides are then synthesized in situ described in Hughes et al., Nature Biotechnol. 19:324 (2002) or as described in Kane et al., Nucleic Acids Res. 28:4552 (2000) and affixed to an activated glass slide (Sigma-Genosis, The Woodlands, TX) using a 5' amino linker. The position of each oligonucleotide on the slide is known. Example 27 [03361 This example illustrates how to detect expression of Pinus radiata genesof the instant application which are important in wood formation using an oligonucleotide microarray prepared as described above. This is an example of a balanced incomplete block designed experiment carried out using aRNA samples prepared from mature-phase phloem (P), cambium (C), expanding xylem found in a layer below the cambium (XI) and differentiating, lignifying xylem cells found 85 WO 2005/065339 PCT/US2004/043804 deeper in the same growth ring (X2). In this example, cell cycle gene expression is compared among the four samples, namely P, C, X1, and X2. [0337] In the summer, plants of the species Pinus radiata are felled and the bark of the main stem is immediately pulled gently away to reveal the phloem and xylem. The phloem and xylem are then peeled with a scalpel into separate containers of liquid nitrogen. Needles (leaves) and buds from the trees are also harvested with a scalpel into separate containers of liquid nitrogen. RNA is subsequently isolated from the frozen tissue samples as described in Example 1. Equal microgram quantities of total RNA are purified from each sample using RNeasy Mini columns (Qiagen, Valencia, CA) according to the manufacturers instructions. [03381 Amplification reactions are carried out for each of the P, C, X1, and X2 tissue samples. Amplification reactions are performed using Ambion's MessageAmp kit, a T7-based amplification procedure, following the manufacturer's instructions, except that labeled aaUTP is added to the reagent mix during in the amplification step. aaUTP is incorporated into the resulting antisense RNA formed during this step. CyDye fluorescent labels are coupled to the aaUTPs in a non enzymatic reaction as described in Example 1. Labeled amplified antisense RNAs are precipitated and washed, and then assayed for purity using a NanoDrop spectrophotometer. These labeled antisense RNAs, corresponding to the RNA isolated from the P, C, Xl, and X2 tissue samples, constitute the sample nucleic acids, which are referred to as the P, C, Xl, and X2 samples. [03391 Normalization control samples of known nucleic acids are added to each sample in a dilution series of 500, 200, 100, 50, 25 and 10 pg/ 1 for quantitation of the signals. Positive controls corresponding to specific genes showing expression in all tissues of pine, such as housekeeping genes, are also added to the plant sample. [03401 Each of four microarray slides is incubated with 125 pL of a P, C, Xl or X2 sample under a coverslip at 42 *C for 16-18 hours. The arrays are washed in 1x SSC, 0.1% SDS for 10 minutes and then in 0.1 x SSC, 0.1% SDS for 10 minutes and the allowed to dry. 86 WO 2005/065339 PCT/US2004/043804 [03411 The array slides are scanned using an Axon laser scanner and analyzed using GenePix Pro software. Data from the microarray slides are subjected to microarray data analysis using GenStat SAS or Spotfire software. Outliers are removed and ratiometric data for each of the datasets are normalized using a global normalization which employs a cubic spline fit applied to correct for differential dye bias and spatial effects. A second transformation is performed to fit control signal ratios to a mean log 2 = 0 (i.e. 1:1 ratio). Normalized data are then subjected to a variance analysis. [0342] Mean signal intensity for each signal at any given position on the microarray slide is determined for each of three of P, C, X1, and X2 sample microarray slides. This mean signal/probe position is compared to the signal at the same position on sample slide which was not used for calculating the mean. For example, a mean signal at a given position is determined for P, C, and X1 and the signal at that position in the X2 inicroarray slide is compared to the P, C, and X1 mean signal value. [03431 Table 5 shows genes having greater than doubled signal with any one sample as compared to the mean signal of the other three samples. [03441 Table 5 Gene PvCX12 PvX12 CvX12 WD40 repeat protein A -1.24 -0.88 -1.07 CDC2 -1.09 -0.78 -0.92 CYCLIN -1.08 -1 -0.26 WD-40 repeat protein B -1.01 -0.87 -0.42 CDC2 -0.83 -0.49 -1.01 P = Phloem C = Cambium X1 = xylem layer-1 X2 = xylem layer-2 PvCX1 2 = Ratio of the signal for Phloem target versus mean signal for Cambium, Xylem 1, and Xylem2 targets 87 WO 2005/065339 PCT/US2004/043804 [03451 The data shows that WD40 repeat protein A encodes a WD40 repeat protein is less highly expressed in cambium than in developing xylem, while WD40 repeat protein B encodes a WD40 repeat protein that is more highly expressed in phloem than in the other tissues. [0346] Signal data are then verified with RT-PCR to confirm gene expression in the target tissue of the genes corresponding to the unique oligonucleotides in the probe. Example 28 103471 This example illustrates how RNAs of tissues from multiple pine species, in this case both P. radiata and loblolly pine P. taeda trees, are selected for analysis of the pattern of gene expression associated with wood development in the juvenile wood and mature wood forming sections of the trees using the microarrays derived from P. radiata cDNA sequences described in Example 4. [0348] Open pollinated trees of approximately 16 years of age are selected from plantation-grown sites, in the United States for loblolly pine, and in New Zealand for radiata pine. Trees are felled during the spring and summer seasons to compare the expression of genes associated with these different developmental stages of wood formation. Trees are felled individually and trunk sections are removed from the bottom area approximately one to two meters from the base and within one to two meters below the live crown. The section removed from the basal end of the trunk contains mature wood. The section removed from below the live crown contains juvenile wood. Samples collected during the spring season are termed earlywood or springwood, while samples collected during the summer season are considered latewood or summerwood. Larson et al., Gen. Tech. Rep. FPL-GTR-129. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory. p. 42. [0349] Tissues are isolated from the trunk sections such that phloem, cambium, developing xylem, and maturing xylem are removed. These tissues are collected only from the current year's growth ring. Upon tissue removal in each case, 88 WO 2005/065339 PCT/US2004/043804 the material is immediately plunged into liquid nitrogen to preserve the nucleic acids and other components. The bark is peeled from the section and phloem tissue removed from the inner face of the bark by scraping with a razor blade. Cambium tissue is isolated from the outer face of the peeled section by gentle scraping of the surface. Developing xylem and lignifying xylem are isolated by sequentially performing more vigorous scraping of the remaining tissue. Tissues are transferred from liquid nitrogen into containers for long term storage at -70 "C until RNA extraction and subsequent analysis is performed. Example 29 [0350] This example illustrates procedures alternative to those used in the example above for RNA extraction and purification, particularly useful for RNA obtained from a variety of tissues of woody plants, and a procedure for hybridization and data analysis using the arrays described in Example 4. [0351] RNA is isolated according to the protocol of Chang et al., Plant Mol. Biol. Rep. 11:113. DNA is removed using DNase I (Invitrogen, Carlsbad, CA) according to the manufacturer's recommendations. The integrity of the RNA samples is determined using the Agilent 2100 Bioanalyzer (Agilent Technologies, USA). [0352] 10pg of total RNA from each tissue is reverse transcribed into cDNA using known methods. [0353] In the case of Pinus radiata phloem tissue, it can be difficult to extract sufficient amounts of total RNA for normal labelling procedures. Total RNA is extracted and treated as previously described and 1 0Ong of total RNA is amplified using the OvationTM Nanosample RNA Amplification system from NuGENTM (NuGEN, CA, USA). Similar amplification kits such as those manufactured by Ambion may alternatively be used. The amplified RNA is reverse transcribed into cDNA and labelled as described above. [0354] Hybridization and stringency washes are performed using the protocol as described in the US Patent Application for "Methods and Kits for 89 WO 2005/065339 PCT/US2004/043804 Labeling and Hybridizing cDNA for Microarray Analysis" (supra) at 42 C. The arrays (slides) are scanned using a ScanArray 4000 Microarray Analysis System (GSI Lumonics, Ottawa, ON, Canada). Raw, non-normalized intensity values are generated using QUANTARRAY software (GSI Lumonics, Ottawa, ON, Canada). [03551 A fully balanced, incomplete block experimental design (Kerr and Churchill, Gen. Res. 123:123, 2001) is used in order to design an array experiment that would allow maximum statistical inferences from analyzed data. [0356] Gene expression data is analyzed using the SAS@ Microarray Solution software package (The SAS Institute, Cary, NC, USA). Resulting data was then visualized using JMP@ (The SAS Institute, Cary, NC, USA). [03571 Analysis done for this experiment is an ANOVA approach with mixed model specification (Wolfinger et al., J. Comp. Biol. 8:625-637). Two steps of linear mixed models are applied. The first one, normalization model, is applied for global normalization at slide-level. The second one, gene model, is applied for doing rigorous statistical inference on each gene. Both models are stated in Models (1) and (2). 1og 2 (ykis)=Oy+Dk+S,+DS +Ukis (1) R(9 = P +D +S + DS ( + SS (f + C .g (2) [0358] Yijkl, represents the intensity of the s spot in the l* slide with the k'h dye applying the jh treatment for the ith cell line. Oij, Dk, Si, and Dski represent the mean effect of the jth treatment in the ith cell line, the kth dye effect, the 1* slide random effect, and the random interaction effect of the kth dye in the l* slide. O)ijkl, is the stochastic error term. represent the similar roles as Oij, Dk, Si, and DskI except they are specific for the gth gene. Rfg represents the residual of the g* gene from model (1). pf9, Dk, Sf, and DSlf) represent the similar roles as 0y, Dk, St, and DSkl except they are specific for the g" gene. ssff) represent the spot by slide random effect for the g* gene. eg represent the stochastic error term. All random terms are assumed to be normal distributed and mutually independent within each model. 90 WO 2005/065339 PCT/US2004/043804 [0359] According to the analysis described above, certain cDNAs, some of which are shown in Table 6 below, are found to be differentially expressed. [0360] Table 6 Gene corresponding to SEQ ID Oligo ID Gene Family Expression steady state RNA higher in xylem than 162 Pra_0001710_4 Peptidylprolyl isomerase cambium steady state RNA lower in xylem than 164 Pra_001480_0_3 Peptidylprolyl isomerase cambium RIBONUCLEOSIDE-bIPHOSPHATE steady state RNA REDUCTASE LARGE CHAIN lower in xylem than control Pra_000218_0_2 (EC1.17.4.1) . cambium steady state RNA lower in xylem than control Pra_000193_0_2 PUTATIVE SURFACE PROTEIN. cambium [03611 The involvement of these specific genes in wood development is inferred through the association of the up-regulation or down-regulation of genes to the particular stages of wood development. Both the spatial continuum of wood development across a section (phloem, cambium, developing xylem, maturing xylem) at a particular season and tree trunk position and the relationships of season and tree trunk position are considered when making associations of gene expression to the relevance in wood development. Example 30 [03621 This example demonstrates how one can correlate polysaccharide gene expression with agronomically important wood phenotypes such as density, stiffness, strength, distance between branches, and spiral grain. [0363] Mature clonally propagated pine trees are selected from among the progeny of known parent trees for superior growth characteristics and resistance to important fungal diseases. The bark is removed from a tangential section and the trees are examined for average wood density in the fifth annual ring at breast height, 91 WO 2005/065339 PCTIUS2004/043804 stiffness and strength of the wood, and spiral grain. The trees are also characterized by their height, mean distance between major branches, crown size, and forking. [0364] To obtain seedling families that are segregating for major genes that affect density, stiffness, strength, distance between branches, spiral grain and other characteristics that may be linked to any of the genes affecting these characteristics, trees lacking common parents are chosen for specific crosses on the criterion that they exhibit the widest variation from each other with respect to the density, stiffness, strength, distance between branches, and spiral grain criteria. Thus, pollen from a tree exhibiting high density, low mean distance between major branches, and high spiral grain is used to pollinate cones from the unrelated plus tree among the selections exhibiting the lowest density, highest mean distance between major branches, and lowest spiral grain. It is useful to note that "plus trees" are crossed such that pollen from a plus tree exhibiting high density are used to pollinate developing cones from another plus tree exhibiting high density, for example, and pollen from a tree exhibiting low mean distance between major branches would be used to pollinate developing cones from another plus tree exhibiting low mean distance between major branches. [03651 Seeds are collected from these controlled pollinations and grown such that the parental identity is maintained for each seed and used for vegetative propagation such that each genotype is represented by multiple ramets. Vegetative propagation is accomplished using micropropagation, hedging, or fascicle cuttings. Some ramets of each genotype are stored while vegetative propagules of each genotype are grown to sufficient size for establishment of a field planting. The genotypes are arrayed in a replicated design and grown under field conditions where the daily temperature and rainfall are measured and recorded. [0366] The trees are measured at various ages to determine the expression and segregation of density, stiffness, strength, distance between branches, spiral grain, and any other observable characteristics that may be linked to any of the genes affecting these characteristics. Samples are harvested for characterization of cellulose content, lignin content, cellulose microfibril angle, density, strength, stiffness, 92 WO 2005/065339 PCT/US2004/043804 tracheid morphology, ring width, and the like. RNA is then collected from replicated samples of trees showing divergent stiffness and density, or other characteristics, from genotypes that are otherwise as similar as possible in growth habit, in spring and fall so that early and late wood development is assayed. These samples are examined for gene expression similarly as described in above examples. 103671 Table 7. Concensus ID Information. Patent app SEQ ID Gene Family ConsensusID Expression up in early spring control Ribonucleoside- xylem vs late diphosphate reductase pinusRadiata_000218 summer xylem up in juvenile developing wood vs Cell Cycle 168 Peptidylprolyl mature developing isomerase pinusRadiata_001692 xylem up mature developing xylem - control vs juvenile Nitrite transporter pinusRadiata_016801 cambium [03681 Ramets of each genotype are compared to ramets of the same genotype at different ages to establish age:age correlations for these characteristics. Example 31 [03691 Example 8 demonstrates how responses to environmental conditions such as light and season alter plant phenotype and can be correlated to polysaccharide synthesis gene expression using microarrays. In particular, the changes in gene expression associated with wood density are examined. [03701 Trees of three different clonally propagated E. grandis hybrid genotypes are grown on a site with a weather station that measures daily temperatures and rainfall. During the spring and subsequent summer, genetically identical ramets of the three different genotypes are first photographed with north-south orientation marks, using photography at sufficient resolution to show bark characteristics of juvenile and mature portions of the plant, and then felled. The age of the trees is 93 WO 2005/065339 PCT/US2004/043804 determined by planting records and confirmed by a count of the annual rings. In each of these trees, mature wood is defined as the outermost rings of the tree below breast height, and juvenile wood as the innermost rings of the tree above breast height. Each tree is accordingly sectored as follows: NM - NORTHSIDE MATURE SM - SOUTHSIDE MATURE NT - NORTHSIDE TRANSITION ST - SOUTHSIDE TRANSITION NJ - NORTHSIDE JUVENILE SJ - SOUTHSIDE JUVENILE [0371] Tissue is harvested from the plant trunk as well as frorn juvenile and mature form leaves. Samples are prepared simultaneously for phenotype analysis, including plant morphology and biochemical characteristics, and gene expression analysis. The height and diameter of the tree at the point from which each sector was taken is recorded, and a soil sample from the base of the tree is taken for chemical assay. Samples prepared for gene expression analysis are weighed and placed into liquid nitrogen for subsequent preparation of RNA samples for use in the microarray experiment. The tissues are denoted as follows: P - phloem C - cambium X1 - expanding xylem X2 - differentiating and lignifying xylem [0372] Thin slices in tangential and radial sections from each of the sectors of the trunk are fixed as described in Ruzin, PLANT MICROTECHNIQUE A.ND 94 WO 2005/065339 PCT/US2004/043804 MICROSCOPY, Oxford University Press, Inc., New York, NY (1999) for anatomical examination and confirmation of wood developmental stage. Microfibril angle is examined at the different developmental stages of the wood, for example juvenile, transition and mature phases of Eucalyptus grandis wood. Other characteristics examined are the ratio of fibers to vessel elements and ray tissue in each sector. Additionally, the samples are examined for characteristics that change between juvenile and mature wood and between spring wood and summer wood, such as fiber morphology, lumen size, and width of the S2 (thickest) cell wall layer. Samples are further examined for measurements of density in the fifth ring and determination of modulus of elasticity using techniques well known to those skilled in the art of wood assays. See, e.g., Wang, et al., Non-destructive Evaluations of Trees, EXPERIMENTAL TECHNIQUES, pp. 28-30 (2000). [03731 For biochemical analysis, 50 grams from each of the harvest samples are freeze-dried and analyzed, using biochemical assays well known to those skilled in the art of plant biochemistry for quantities of simple sugars, amino acids, lipids, other extractives, lignin, and cellulose. See, e.g., Pettersen & Schwandt, J. Wood Chem. & Technol. 11:495 (1991). [0374] In the present example, the phenotypes chosen for comparison are high density wood, average density wood, and low density wood. Nucleic acid samples are prepared as described in Example 3, from trees harvested in.the spring and summer. Gene expression profiling by hybridization and data analysis is performed as described above. [03751 Using similar techniques and clonally propagated individuals one can examine polysaccharide gene expression as it is related to other complex wood characteristics such as strength, stiffness and spirality. 95 WO 2005/065339 PCT/US2004/043804 Example 32 [03761 Example 32 demonstrates the use of a vascular-preferred promoter functionally linked to one of the genes of the instant application. [0377] A vascular-preferred promoter is then linked to one of the genes in the instant application and used to transform tree species. Boosted transcript levels of the candidate gene in the xylem of the transformants results in an increased xylem biomass phenotype. [0378] In another example, a vascular-preferred promoter such as any of those in ArborGen's November 2003 patent applications is then linked to an RNAi construct containing sequences from one of the genes in the instant application and used to transform a tree of the genus from which the gene was isolated. Reduced transcript levels of the candidate gene in the xylem of the transformants results in an increased xylem biomass phenotype. Example 33 [0379] The vector pARB476 was developed using the following steps. The Bluescript vector (Stratagene, La Jolla, CA) was modified by adding the Superubiquitin 3'UTR and nos 3'terminator sequence at the KpnI and ClaI sites to produce the vector pARB005 (SEQ ID NO. 773). To this vector the P. radiata superubiquitin promoter with intron was added. The promoter/intron sequence was first amplified from the P. radiata superubiquitin sequence identifed in U.S. patent No. 6,380,459 using standard PCR techniques and the primers of SEQ ID NOS 774 and 775. The amplified fragment was then ligated into pARB005 using Xbal and PstI restriction digestion to produce the vector pARB 119 (SEQ ID NO. 776). [0380] The poplus tremuloises UDB Glucose binding domain gene (patent WO 0071670, ptCeLA Genbank number AF072131) was amplified using standard PCR techniques and primers including and ATG and a Clal site as part of the 5' primer and a TGA and a Clal site as part of the 3' primer. The amplified fragment was then cloned into the Clal site of pARB 119 to produce the vector pARB476 (SEQ ID NO. 777). 96 WO 2005/065339 PCT/US2004/043804 [0381] The NotI cassette containing the P. radiata superubiquitin promoter with intron::UDP Glucose Binding domain::3'UTR: nos terminator from pARB476 was removed and cloned into the NotI site of pART29 to produce the vector pARB483. The binary vector pART29 is a modified pART27 vector (Gleave, Plant Mol. Biol. 20:1203-1207, 1992) that contains the Arabidopsis thaliana ubiquitin 3 (UBQ3) promoter instead of the nos5' promoter and no lacZ sequences. [03821 SEQ ID 773 CGATGGGTGTTATTTGTGGATAATAAATTCGGGTGATGTTCAGTGTTTGTCGTATTTCTCACGAATAAA TTGTGTTTATGTATGTGTTAGTGTTGTTTGTCTGTTTCAGACCCTCTTATGTTATATTTTTCTTTTCGT CGGTCAGTTGAAGCCAATACTGGTGTCCTGGCCGGCACTGCAATACCATTTCGTTTAATATAAAGACTC TGTTATCCGTGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGAT TGAATC CTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACA TGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACG CGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGT TACTAG ATCGCGGCCGCATTTAAATGGTACCCAATTCGCCCTATAGT GAGTCGTATTACGCGCGCTCACTGGCCG TCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCC CTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAGTTGCGCAGCCTGA ATGGCGAATGGGACGCGCCCTGTAGCGGCGCATT AAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGA CCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCG CCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACC TCGACCCCAAAAAACT T GAT TAGGGT GAT GGTTCACGTAGT GGGCCATCGCCCTGATAGACGGT TT T T C GCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACC CTATCTCGGTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGC TGATTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTTCG GGGAAATGTGCGCGGAACCCCTATTT GT T TATTT TTCTAAATACATTCAAATATGTATCCGC TCAT GAG ACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATT TCCGTGT CGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGT AAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGAT CCTTGAGAGT TT TCGCCCCGAAGAACGTTTTCCAAT GAT GAGCACTTTTAAAGTTCTGCTAT GTGGCGC GGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTT GGTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTAT GCAGTGC TGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCT AACCGCTTTTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGA AGCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA-AACTATT AACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGC AGGACCACTTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCG GTGAGCG TGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACAC GACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCAC TGATTAA GCATTGGTAACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATT TTTAATT TAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGT TTTCGTT CCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGC GCGTAAT CTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGC TACCAAC TCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTA GTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGT TACCAGT GGCTGCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGC GCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACT GAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCC GGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTA TAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGG GGCGGAG CCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTG CTCACAT 97 WO 2005/065339 PCTIUS2004/043804 GTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGC TCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAA ACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGC GGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTAT GCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCA TGATTACGCCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAGCTGGGGCCGCTCTAGAACTAGTG GATCCCCCGGGCTGCAGGAATTCGTCCAGCAGTTGTCTGGAGCTCCACCAGAAATCTGGAAGCTTAT [0383] SEQ ID 774 AAATCTAGAGGTACCATTTAAATGCGGCCGCAAAACCCCTCACAATACATAA [0384] SEQ ID 775 TTTCTGCAGCTTGAAATTGAAATATGACTAACGAAT [0385] SEQ D 776 tctagaggtaccatttaaatgcggccgcaaaacccctcacaaatacataaaaaaaattctttatttaat tatcaaactctccactacctttcccaccaaccgttacaatcctgaatgttggaaaaaact aactacatt gatataaaaaaactacattacttcctaaatcatatcaaaattgtataaatatatccactcaaaggagtc tagaagatccacttggacaaattgcccatagttggaaagatgttcaccaagtcaacaagatttatcaat ggaaaaatccatctaccaaacttactttcaagaaaatccaaggattatagagtaaaaaat ctatgtatt attaagtcaaaaagaaaaccaaagtgaacaaatattgatgtacaagtttgagaggataagacattggaa tcgtctaaccaggaggcggaggaattccctagacagttaaaagtggccggaatcccggtaaaaaagatt aaaatttttttgtagagggagtgcttgaatcatgttttttatgatggaaatagattcagcaccatcaaa aacattcaggacacctaaaattttgaagtttaacaaaaataacttggatctacaaaaatccgtatcgga ttttctctaaatataactagaattttcataactttcaaagcaactcctcccctaaccgtaaaacttttc ctacttcaccgttaattacattccttaagagtagataaagaaataaagtaaataaaagtattcacaaac caacaatttatttcttttatttacttaaaaaaacaaaaagtttatttattttacttaaat ggcataatg acatatcggagatccctcgaacgagaatcttttatctccctggttttgtattaaaaagtaatttattgt ggggtccacgcggagttggaatcctacagacgcgctttacatacgtctcgagaagcgtgacggatgtgc gaccggatgaccctgtataacccaccgacacagccagcgcacagtatacacgtgtcatttctctattgg aaaatgtcgttgttatccccgctggtacgcaaccaccgatggtgacaggtcgtctgttgtcgtgtcgcg tagcgggagaagggtctcatccaacgctattaaatactcgccttcaccgcgttacttctcatcttttct cttgcgttgtataatcagtgcgatattctcagagagcttttcattcaaaggtatggagttttgaagggc tttactcttaacatttgtttttctttgtaaattgttaatggtggtttctgtgggggaagaatcttttgc caggtccttttgggtttcgcatgtttatttgggttattttctcgactatggctgacattactagggct ttcgtgctttcatctgtgttttcttcccttaataggtctgtctctctggaatatttaattttcgtatgt aagttatgagtagtcgctgtttgtaataggctcttgtctgtaaaggtttcagcaggtgtttgcgtttta ttgcgtcatgtgtttcagaaggcctttgcagattattgcgttgtactttaatattttgtctccaacctt gttatagtttccctcctttgatctcacaggaaccctttcttctttgagcattttcttgtggcgttctgt agtaatattttaattttgggcccgggttctgagggtaggtgattattcacagtgatgtgctttccctat aaggtcctctatgtgtaagctgttagggtttgtgcgttactattgacatgtcacatgtcacatattttc ttcctcttatccttcgaactgatggttctttttctaattcgtggattgCtggtgccatattttatttct attgcaactgtattttagggtgtctctttctttttgatttcttgttaatatttgtgttcaggttgtaac tatgggttgctagggtgtctgccctcttcttttgtgcttctttcgcagaatctgtccgttggtctgtat ttgggtgatgaattatttattccttgaagtatctgtctaattagcttgtgatgatgtgcaggtatattc gttagtcatatttcaatttcaagcgatcccccgggctgcaggaattcgtccagcagttgtctggagctc caccagaaatctggaagcttatcgatgggtgttatttgtggataataaattcgggtgatgttcagtgtt tgtcgtatttctcacgaataaattgtgtttatgtatgtgttagtgttgtttgtctgtttcagaccctct tatgttatatttttcttttcgtcggtcagttgaagccaatactggtgtcctggccggcatgcaatacc atttcgtttaatataaagactctgttatccgtgagctcgaatttccccgatcgttcaaacatttggcaa taaagtttcttaagattgaatcctgttgccggtcttgcgatgattatcatataatttctgttgaattac gttaagcatgtaataattaacatgtaatgcatgacgttatttatgagatgggtttttatgattagagtc ccgcaattatacatttaatacgcgatagaaaacaaaatatagcgcgcaaactaggataaattatcgcgc gcggtgtcatctatgttactagatcgcggccgcatttaaatggtacccaattcgccctatagtgagtcg tattacgcgcgctcactggccgtcgttttacaacgtcgtgactgggaaaaccctggcgttacccaactt 98 WO 2005/065339 PCT/1US2004/043804 aatcgccttgcagcacatccccctttgccagctggcgtaatagcgaagaggcccgcaccgatcgccct tcccaacagttgcgcagcctgaatggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggt gtggtggttacgcgcagcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttc ccttcctttctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttc cgatttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtagtgggcca tcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaatagtggactcttgttc caaactggaacaacactcaaccctatctcggtctattcttttgatttataagggattttgccgatttcg gcctattggttaaaaaatgagctgatttaacaaaaatttaacgcgaattttaacaaaatattaacgctt acaatttaggtggcacttttcggggaaatgtgcgcggaacccctatttgtttatttttctaaatacatt caaatatgtatccgctcatgagacaataaccctgataaatgcttcaataatattgaaaaaggaagagta tgagtattcaacatttccgtgtcgcccttattcccttttttgcggcattttgccttcctgtttttgctc acccagaaacgctggtgaaagtaaaagatgctgaagatcagttgggtgcacgagtgggttacatcgaac tggatctcaacagcggtaagatccttgagagttttcgccccgaagaacgttttccaatgatgagcactt ttaaagttctgctatgtggcgcggtattatcccgtattgacgccgggcaagagcaactcggtcgccgca tacactattctcagaatgacttggttgagtactcaccagtcacagaaaagcatcttacggatggcatga cagtaagagaattatgcagtgctgccataaccatgagtgataacactgcggccaacttacttctgacaa cgatcggaggaccgaaggagctaaccgcttttttgcacaacatgggggatcatgtaactcgccttgatc gttgggaaccggagctgaatgaagccataccaaacgacgagcgtgacaccacgatgcctgtagcaatgg caacaacgttgcgcaaactattaactggcgaactacttactctagcttcccggcaacaattaatagact ggatggaggcggataaagttgcaggaccacttctgcgctcggcccttccggctggctggtttattgctg ataaatctggagccggtgagcgtgggtctcgcggtatcattgcagcactggggccagatggtaagccct cccgtatcgtagttatctacacgacggggagtcaggcaactatggatgaacgaaatagacagatcgctg agataggtgcctcactgattaagcattggtaactgtcagaccaagtttactcatatatactttagattg atttaaaacttcatttttaatttaaaaggatctaggtgaagatcctttttgataatctcatgaccaaaa tcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttcttgag atcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtt tgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaata ctgtccttctagtgtagccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcg ctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaa gacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttgg agcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaag ggagaaaggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttccag ggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgatttttgt gatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggcct tttgctggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtattaccg cctttgagtgagctgataccgctcgccgcagccgaacgaccgagcgcagcgagtcagtgagcgaggaag cggaagagcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacg acaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattagg caccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttc acacaggaaacagctatgaccatgattacgccaagcgcgcaattaaccctcactaaagggaacaaaagc tggggccgctctag [0386] SEQ ID 777 TCTAGAGGTACCATTTAAATGCGGCCGCAAAACCCCTCACAAATACATAAAAAAAATTCTTTATTTAAT TATCAAACTCTCCACTACCTTTCCCACCAACCGTTACAATCCTGAATGTTGGAAAAACTAACTACATT GATATAAAAAAACTACATTACTTCCTAAATCATATCAAAATTGTATAAATATATCCACTCAAAGGAGTC TAGAAGATCCACTTGGACAAATTGCCCATAGTTGGAAAGATGTTCACCAAGTCAACAAGATTTATCAAT GGAAAAATCCATCTACCAAACTTACTTTCAAGAAAATCCAAGGATTATAGAGTAAAAAATCTATGTATT ATTAAGTCAAAAAGAAAACCAAAGTGAACAAATATTGATGTACAAGTTTGAGAGGATAAGACATTGGAA TCGTCTAACCAGGAGGCGGAGGAATTCCCTAGACAGTTAAAAGTGGCCGGAATCCCGGTAAAAAAGATT AAAATTTTTTTGTAGAGGGAGTGCTTGAATCATGTTTTTTATGATGGAAATAGATTCAGCACCATCAAA AACATTCAGGACACCTAAAATTTTGAAGTTTAACAAAAATAACTTGGATCTACAAAAATCCGTATCGGA TTTTCTCTAAATATAACTAGAATTTTCATAACTTTCAAAGCAACTCCTCCCCTAACCGT AACTTTTC CTACTTCACCGTTAATTACATTCCTTAAGAGTAGATAAAGAAATAAAGTAAATAAAAGTATTCACAAAC CAACAATTTATTTCTTTTATTTACTTAAAAAAACAAAAAGTTTATTTATTTTACTTAAATGGCATAATG ACATATCGGAGATCCCTCGAACGAGAATCTTTTATCTCCCTGGTTTTGTATTAAAAAGTAATTTATTGT 99 WO 2005/065339 PCTJUS2004/043804 GGGGTCCACGCGGAGTTGGAATCCTACAGACGCGCTTTACATACGTCTCGAGAAGCGTGACGGATGTGC GACCGGATGACCCTGTATAACCCACCGACACAGCCAGCGCACAGTATACACGTGTCATTTCTCTATTGG AAAATGTCGTTGTTATCCCCGCTGGTACGCAACCACCGATGGTGACAGGTCGTCTGTTGTCGTGTCGCG AGCGGGAGMGGGTCTCATCCAACGCTATTAAATACTCGCCTT CACCGCGTTACTTCTCATCTTTTCT CTTGCGTTGTATAATCAGTGCGATATTCTCAGAGAGCTTTTCATTCAAAGGTATGGAGTTTTGAAGGGC TTTACTCTTAACATTTGTTTTTCTTTGTAAATTGTTAATGGTGGTTTGTGTGGGGGAAGAATCTTTTGC CAGGTCCTTTTGGGTTTCGCATGTTTATTTGGGTTATTTTTCTCGACTATGGCTGACATTACTAGGGCT TTCGTGCTTTCATCTGTGTTTTCTTCCCTTMTAGGTCTGTCTCTCTGGAATATTTAATTTTCGTATGT AAGTTATGAGTAGTCGCTGTTTGTAATAGGCTCTTGTCTGTAMAGGTTTCAGCAGGTGTTTGCGTTTTA TTGCGTCATGTGTTTCAGAAGGCCTTTGCAGATTATTGCGTTGTACTTTAATATTTTGTCTCCMACCTT GTTATAGTTTCCCTCCTTTGATCTCACAGGAACCCTTTCTTCTTTGAGCATTTTCTTGTGGCGTTCTGT AGTAATATTTTAATTTTGGGCCCGGGTTCTGAGGGTAGGTGATTATTCACAGTGATGTGCTTTCCCTAT AAGGTCCTCTATGTGTAAGCTGTTAGGGTTTGTGCGTTACTATTGACATGTCACATGTCACATATTTTC TTCCTCTTATCCTTCGAACTGATGGTTCTTTTTCTAATTCGTGGATTGCTGGTGCCATATTTTATTTCT ATTGCAACTGTATTTTAGGGTGTCTCTTTCTTTTTGATTTCTTGTTAATATTTGTGTTCAGGTTGTAAC TATGGGTTGCTAGGGTGTCTGCCCTCTTCTTTTGTGCTTCTTTCGCAGAATCTGTCCGTTGGTCTGTAT TTGGGTGATGAATTATTTATTCCTTGAAGTATCTGTCTAATTAGCTTGTGATGATGTGCAGGTATATTC GTTAGTCATATTTCAATTTCAAGCGATCCCCCGGGCTGCAGGAATTCGTCCAGCAGTTGTCTGGAGCTC CACCAGAAATCTGGAAGCTTATCGATATGGATCAGTTCCCCAAGTGGAATCCTGTCAATAGAGMAACGT ATATCGAAAGGCTGTCGGCAAGGTATGAAAGAGAGGGTGAGCCTTCTCAGCTTGCTGGTGTGGATTTTT TCGTGAGTACTGTTGATCCGCTGAAGGAACCGCCATTGATCACTGCCAATACAGTCCTTTCCATCCTTG CTGTGGACTATCCCGTCGATAAAGTCTCCTGCTACGTGTCTGATGATGGTGCAGCTATGCTTTCATTTG MTCTCTTGTAGAAACAGCTGAGTTTGCAAGGAAGTGGGTTCCGTTCTGCAAAAAATTCTCAATTGAAC CAAGAGCACCGGAGTTTTACTTCTCACAGAMATTGATTACTTGAAAGACAAGGTTCACCTTCTTTCG TGAMAGAACGTAGAGCAATGAAAAGGGATTATGAAGAGTACAAAGTCCGAGTTAATGCCCTGGTAGCAA AGGCTCAGAAAACACCTGAAGAAGGATGGACTATGCAAGATGGAACACCTTGGCCTGGGAATACACAC GTGATCACCCTGGCATGATTCAGGTCTTCCTTGGAAATACTGGAGCT CGTGACATTGAAGGAAATGAAC TACCTCGTCTAGTATATGTCTCCAGGGAGAAGAGACCTGGCTACCAGCACCACAAAGGCTGGTGCAG AAAATGCTCTGGTGAGAGTGTCTGCAGTACTCACAAATGCTCCCTACATCCTCAATGTTGATTGTGATC ACTATGTAAACAATACCAAGGCTGTTCGAGAGGCAATGTGCATCCTGATGGACCCACAAGTAGGTCGAG ATGTATGCTATGTGCAGTTCCCTCAGAGGTTTGATGGCATAGATAAGAGTGATCGCTACGCCAATCGTA ACGTAGTTTTCTTTGATGTTAACATGAAAGGGTTGGATGGCATTCAAGGACCAGTATACGTAGGMACTG GTTGTGTTTTCAACAGGCAGCACTTTACGGCTACGGGCCTCCTTCTATGCCCAGCTTACGCAGAGAA AGGATTCTTCATCCTGCTTCTCATGTTGCTGCCCCTCAAGAAGAJAGCCTGCTCAGATCCAGCTGAGG TATACAGAGATGCAAAAAGAGAGGATCTCAATGCTGCCATATTTAATCTTACAGAGATTGATAATTATG ACGAGCATGAAAGGTCAATGCTGATCTCCCAGTTGAGCTTTGAGAAM.CTTTTGGCTTATCTTCTGTCT TCATTGAGTCTACACTATGGAGAATGGAGGAGTACCCGAGTCTGCCACTCACCAACACTCATCAAGG AAGCAATTCATGTCATCGGCTGTGGCTATGAAGAGAAGACTG.TGGGGAAAGAGATTGGTTGGATAT ATGGGTCAGTCACTGAGGATATCTTAAGTGGCTTCAAGATGCACTGCCGAGGATGGAGATCA6TTTACT GCATGCCCGTAAGGCCTGCATTCAAAGGATCTGCACCCATCAACCTGTCTGATAGATTGCACCAGGTCC TCCGATGGGCTCTTGGTTCTGTGGAAATTTTCTTTAGCAGACACTGTCCCCTCTGGTACGGGTTTGGAG GAGGCCGTCTTAAATGGCTCCAAAGGCTTGCGTATATAAACACCATTGTGTACCCATGAATCGATGGGT GTTATTTGTGGATAATAAATTCGGGTGATGTTCATGTTTGTCGTATTTCTCACGATATTGTGTTT ATGTATGTGTTAGTGTTGTTTGTCTGTTTCAGACCCTCTTATGTTATATTTTTCTTTTCGTCGGTCAGT TGAAGCCAATACTGGTGTCCTGGCCGGCACTGCAATACCATTTCGTTTATATWAGACTCTGTTATCC GTGAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTMGATTGAATCCTGTTGCC GGCTCAGTACTTATCGTATAGTACTTAATACTTAG ATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCATTATACATTTATACGCGATAGAA AACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCGCGGC CGCATTTAA6ATGGTACCCAATTCGCCCTATAGTGAGTCGTATTACGCGCGCTCACTGGCCGTCGTTTTA CAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCCTTTCGCC AGTGGATGGAAGCGACACCCTCACGTCCGCGAGCA TGGGACGCGCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACA CTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTT CCCCGTCAAGCTCTAMTCGGGGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCC AAAAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTG ACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTTGTTCCAACTGGACACACTCACCCTATCTCG 100 WO 2005/065339 PCT/US2004/043804 GTCTATTCTTTTGATTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGATTTAA CAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTAGGTGGCACTTTTCGGGGAAATG TGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAAC CCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTA TTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATG CTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGA GTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTAT CCCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGT ACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAA CCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTT TTTTGCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATAC CAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAACTATTAACTGGCG AACTACTTACTCTAGCTTCCCGGCAACAATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCAC TTCTGCGCTCGGCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTCTC GCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGTAGTTATCTACACGACGGGGA GTCAGGCAACTATGGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGT AACTGTCAGACCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGA TCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTT AACGTGAGTTTTCGTTCCACTGAG CGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCT TGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTC CGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCC ACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCTGCTG CCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGT CGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACC TACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCG GCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTG TCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGA AAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTC CTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCA GCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCTC TCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTG AGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGG CTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTATGACCATGATTACG CCAAGCGCGCAATTAACCCTCACTAAAGGGAACAAAAGCTGGGGCCGCTCTAG [03871 Table 8. pGrowth Information. CW AR Plasmid(s) Promoter Gene Genesis ID 88 pGrowth14 SUBIN Cyclin A prga001823 88 pGrowth15 SUBIN Cyclin A prpe001264 88 pGrowth16 SUBIN Cyclin D prxa004540 88 pGrowthl8 SUBIN Cyclin D prx1006271 88 pGrowthl9 SUBIN Cyclin D prpb019661 88 pGrowth20 SUBIN WEEl-like protein prrd041233 [0388] To make the growthlOO plasmids, an acceptor vector (pWVK202) was built by first inserting the NotI-SUBIN::UDPGBD::nos term-NotI cassette from pARB483a into plasmid pWVK147 at Noti. Next, the UDPGBD gene was removed using restriction sites PstI and Clal. A polylinker containing the restriction sites PstI, 101 WO 2005/065339 PCT/US2004/043804 NheI, AvrII, ScaI, and Clal was inserted in place of the UDPGBD gene. Sites AvrIl and NheI are both compatible with Spel, a site found often in the plasmids provided by Genesis. Scale is blunt, so any fragment can be blunted and then inserted at that position into the acceptor vector. Plasmids were received from Genesis and analyzed to determine which restriction sites would be most suitable for subcloning into the acceptor vector pWVK202. After the ligations were performed, the resulting products were checked by extensive restriction digest analysis to make sure that the desired plasmid had been created. [0389] Table 9. Eucalyptus grandis Cell Cycle Genes and Proteins. DNA SEQ ID Protein SEQ ID NO Sequence Identifier Patent Patent NO ORF ORF start stop 1 236 eucalyptusSpp_003910 387 1820 2 237 eucalyptusSpp_019213 99 1007 3 238 eucalyptusSpp_036800 120 1004 4 239 eucalyptusSpp_040260 23 937 5 240 eucalyptusSpp_041965 149 1033 6 241 eucalyptusSpp_002906 199 1116 7 242 eucalyptusSpp_001518 41 992 8 243 eucalyptusspp_008078 291 2042 9 244 eucalyptusSpp_009826 107 2236 10 245 eucalyptusSpp_010364 82 1749 11 246 eucalyptusSpp_011523 151 1560 12 247 eucalyptusSpp_024358 82 1644 13 248 eucalyptusSpp_039125 626 2782 14 249 eucalyptusSpp_005362 13 1467 15 250 eucalyptusSpp_044857 113 1558 16 251 eucalyptusSpp_001743 187 1686 17 252 eucalyptusSpp_012405 238 1653 18 253 eucalyptusSpp_003739 235 1539 19 254 eucalyptusSpp_022338 158 1618 20 255 eucalyptusSpp_028605 205 1530 21 256 eucalyptusSpp_041006 174 1499 22 257 eucalyptusSpp_006643 94 1332 23 258 eucalyptusSpp_045338 176 1342 24 259 eucalyptusspp_046486 150 1283 25 260 eucalyptusSpp_012070 101 367 26 261 eucalyptusSpp_006617 9 1352 27 262 eucalyptusSpp_007827 89 1486 28 263 eucalyptusSpp_008036 80 1477 29 264 010212EGLA007017HT 160 1062 102 WO 2005/065339 PCT/JUS2004/043804 DNA SEQ ID Protein SEQ ID NO Sequence Identifier Patent Patent NO 03 OR start stop 30 265 eucalyptusSpp_001596 172 1077 31 266 eucalyptusSpp_005870 66 989 32 267 eucalyptusSpp_006901 111 1541 33 268 eucalyptusSpp_006902 116 1615 34 269 eucalyptusSpp_007440 155 1453 35 270 eucalyptusSpp_008994 228 2033 36 271 eucalyptusSpp_024580 110 1258 37 272 eucalyptusSpp_037831 50 1462 38 273 eucalyptusSpp_034958 176 739 39 274 001209EGXC004488HT 150 1529 40 275 010310EGXD012820HT 247 1971 41 276 010310EGX0013036HT 136 1644 42 277 010316EGXF999037HT 48 836 43 27B 010324EGXFOO2118HT 49 822 44 279 011019EGKA001923HT 185 751 45 280 eucalyptusSpp_000966 103 621 46 281 eucalyptusSpp_001037 41 559 47 282 eucalyptusSpp_004603 127 693 48 283 eucalyptusSpp_005465 28 639 49 284 eucalyptusSpp_006571 135 812 50 285 eucalyptusSpp_006786 119 613 51 286 eucalyptusSpp_007057 38 562 52 287 eucalyptusSpp_008670 109 1872 53 288 eucalyptusSpp_009137 74 1159 54 289 eucalyptusSpp_010285 54 2045 55 290 eucalyptusSpp_010600 53 1879 56 291 eucalyptusSpp_011551 7 690 57 292 eucalyptusSpp_020743 83 601 58 293 eucalyptusSpp_023739 125 535 59 294 eucalyptusSpp_024103 55 573 60 295 eucalyptusSpp_031985 147 842 61 296 eucalyptusSpp_032025 167 487 62 297 eucalyptusSpp_032173 195 890 63 298 eucalyptusSpp_033340 68 586 64 299 eucalyptusSpp 009143 182 3265 65 300 eucalyptusSpp_000349 165 1145 66 301 eucalyptusSpp 000575 529 1569 67 302 eucalyptusSpp_000804 156 1136 68 303 eucalyptusSpp_000805 90 1073 69 304 eucalyptusSpp_000806 66 1049 70 305 eucalyptusSpp_002248 277 1512 71 306 eucalyptusspp_003203 33 1076 72 307 eucalyptusSpp_003209 65 973 73 308 eucalyptusSpp_004429 82 1047 103 WO 2005/065339 PCT/US2004/043804 DNA SEQ ID Protein SEQ ID NO Sequence Identifier Patent Patent NO ORF ORi start stop 74 309 eucalyptusSpp_004607 43 1101 75 310 eucalyptusS~pp 004682 142 1095 76 311 eucalyptusSpp_005786 61 1257 27 312 eucalyptusSpp_005887 193 1527 78 313 eucalyptusSpp_005981 109 1155 79 314 eucalyptusSpp_006766 71 1213 80 315 eucalyptusSpp_006769 109 1785 81 316 eucalyptusSpp_00 6907 364 2685 82 317 eucalyptusSpp_007518 96 1412 83 318 eucalyptusSpp_00 7717 116 1702 84 319 eucalyptusSpp_007718 46 1101 85 320 eucalyptusSpp_007741 23 '-1258 86 321 eucalyptusSpp 0 0 2 884 404 2644 87 322 eucalyptusSpp_008258 107 2383 88 323 eucalyptusSpp_008465 243 1625 89 324 eucalyptusSpp_008616 126' 1127 90 325 eucalyptusSpp_008 69 0 257 1390 91 326 eucalyptusSpp_008708 178 1632 92 327 eucalyptusSpp_008850 290 2917 93 328 eucalyptisSpp_009072 148 1197 94 329 eucalyptusspp0094 6 5 140 1567 95 330 eucalyptusSpp_009 472 376 1737 96 331 eucalyptusSpp_009 5 50 69 1010 97 332 eucalyptusspp_01028 4 149 1423 98 333 eucalyptusSpp_010595 365 2677 99 334 eucalyptusSpp_01065 7 24 923 100 335 eucalyptusSpp_01 2636 221 3598 101 336 eucalyptusSp_01 2748 44 1447 102 337 eucalyptusSpp_012879 196 1314 103 338 eucalyptusSpp_015515 193 1668 104 339 eucalyptuSspp_015 724 78 1634 105 340 eucalyptusSpp_0161 67 85 2826 106 341 eucalyptuspp_01 6633 74 1246 107 342 eucalyptusSpp_01 748 5 100 4377 108 343 eucalyptusSpp_01800 7 58 2439 109 344 eucalyptusSpp_020 77 5 159 1064 110 345 eucalyptusSpp_023132 11 1665 111 346 eucalyptusSpp_0 23 569 57 1628 112 347 eucalyptusSpp_023611 250 1566 113 348 eucalyptusSpp_02 4 93 4 106 1434 114 349 eucalyptusSpp_025546 190 1917 115 350 eucalyptusspp_030134 102 2942 116 351 eucalyptusSpp_031787 75 1079 117 352 eucalyptusSpp_034435 99 1148 104 WO 2005/065339 PCT/US2004/043804 DNA SEQ ID Protein SEQ ID NO Sequence Identifier Patent Patent NO ORF ORF start stop 118 353 eucalyptusSpp_034452 232 1806 119 354 eucalyptusSp_035789 72 1124 120 355 eucalyptusspp_035804 315 2069 121 356 eucalyptusSpp_043057 145 1968 122 357 eucalyptusSpp_046741 130 1488 123 358 eucalyptusSpp_047161 269 1693 698 718 eucalyptusSpp_008994 699 719 eucalyptusSpp_009143 700 720 eucalyptusSpp_006 366 701 721 eucalyptusspp_006907 702 722 eucalyptusSpp_01 2636 703 723 eucalyptusSpp_015724 704 724 eucalyptusSpp_016167 705 725 eucalyptusSpp_01 74 85 706 726 eucalyptusSpp_030134 707 727 eucalyptusSpp_046 7 41 708 728 eucalyptusSpp_047161 709 729 eucalyptusSpp_017378 105 WO 2005/065339 PCT/US2004/043804 [0390] Table 10. Pinus radiata cell cycle genes and proteins. DNA SEQ ID Protein SEQ ID Sequence Identifier Patent Patent NO NO ORF ORF start stop 124 359 pinusRadiata_001766 1163 2545 125 360 pinusRadiata_002927 152 1582 126 361 990309PRCA009171HT 389 1297 127 362 pinusRadiata_013714 38 946 128 363 pinusRadiata_016332 180 1088 129 364 pinusRadiata_021677 40 948 130 365 pinusRadiata_027562 229 1134 131 366 pinusRadiata_001504 105 2642 132 367 pinusRadiata_015211 187 2580 133 366 pinusRadiata_020421 220 1749 134 369 pinusRadiata_003187 4J8 1748 135 370 pinusRadiata_015661 240 1631 136 371 pinusRadiata_013874 252 1604 137 372 pinusRadiata_014615 261 1817 138 373 pinusRadiata_004578 167 1576 139 374 pinusRadiata_023387 183 1598 140 375 pinusRadiata_006970 98 1126 141 376 pinusRadiata_010322 148 894 142 377 pinusRadiata_022721 287 1363 143 378 pinusRadiata_023407 251 1348 144 379 pinusRadiata_001945 229 510 145 380 pinusRadiata_008233 92 409 146 381 pinusRadiata_008234 64 381 147 382 pinusRadiata_022054 68 349 148 383 pinusRadiata_012137 125 1849 149 384 pinusRadiata_012582 70 1602 150 385 pinusRadiata_015285 140 1465 151 386 pinusRadiata_017229 628 2565 152 387 pinusRadiata_020724 55 1818 153 388 pinusRadiata_004555 259 1710 154 389 pinusRadiata_004556 356 1807 155 390 pinusRadiata_005729 261 1298 156 391 pinusRadiata_007395 365 2251 157 392 pinusRadiata_009503 156 1454 158 393 pinusRadiata_011283 203 1348 159 394 pinusRadiata_012322 229 1644 160 395 pinusRadiata_018671 156 1454 161 396 pinusRadiata_023236 27 2222 162 397 pinusRadiata_000171 71 1759 163 398 pinusRadiata_000172 358 2040 164 399 pinusRadiata_001480 238 756 106 WO 2005/065339 PCTUS2004/043804 DNA SEQ ID Protein SEQ ID Sequetice Identifier Patent Patent NO No ORF ORF start stop 165 400 pinusRadiata 001481 285 803 166 401 pinusRadiata_001483 190 708 167 402 pinusRadiata_001484 156 674 168 403 pinusRadiata_001692 176 1912 169 404 pinusRadiata_005313 64 765 170 405 pinusRadiata_006362 93 881 171 406 pinusRadiata_006493 372 1070 172 407 pinusRadiata_006983 28 594 173 408 pinusRadiata_006984 34 648 174 409 pinusRadiata_007665 481 1611 175 410 pinusRadiata_012196 93 584 176 411 pinusRadiata_013382 250 1869 177 412 pinusRadiata_016461 84 422 178 413 pinusRadiata_017611 128 1213 179 414 pinusRadiata_019776 265 837 180 415 pinusRadiata_020659 38 781 181 416 pinusRadiata_022559 38 526 182 417 pinusRadiata_024188 37 115B 183 418 pinusRadiata_027973 61 768 184 419 pinusRadiata_001353 421 2172 185 420 pinusRadiata_001978 163 1647 186 421 pinusRadiata_002810 192 1172 187 422 'pinusRadiata_002811 131 1111 188 423 pinusRadiata_002812 149 1726 189 424 pinusRadiata_003514 948 2228 190 425 pinusRadiata_004104 332 1465 191 426 pinusRadiata_005595 232 1590 192 427 pinusRadiata_005754 207 1550 193 428 pinusRadiata_006463 221 1171 194 429 pinusRadiata_006665 221 3679 195 430 pinusRadiata_006750 269 1252 196 431 pinusRadiata_007030 214 1242 197 432 pinusRadiata_007854 119 2065 198 433 pinusRadiata_007917 186 1550 199 434 pinusRadiata_007989 244 3671 200 435 pinusRadiata_008506 163 1431 201 436 pinusRadiata_008692 155 1081 202 437 pinusRadiata_008693 537 1463 203 438 pinusRadiata_009170 284 1909 204 439 pinusRadiata_009408 610 1659 205 440 pinusRadiata_009522 241 1452 206 441 pinusRadiata_009734 223 1173 207 442 pinusRadiata_009815 251 1777 208 443 pinusRadiata_010670 367 1419 -107 WO 2005/065339 PCT/US2004/043804 DNA SEQ ID Protein SEQ ID Sequence Identifier Patent Patent NO NO ORF ORF start stop 209 444 pinusRadiata_011297 284 1303 210 445 pinusRadiata_013098 684 1784 211 446 pinusRadiata_013172 336 2738 212 447 pinusRadiata_013589 81 1622 213 448 pinusRadiata_013608 399 1460 214 449 pinusRadiata_014299 207 1673 215 450 pinusRadiata_014498 263 1309 216 451 pinusRadiata_014548 232 2529 217 452 pinusRadiata_014610 56 2950 218 453 pinusRadiata_015460 56 1234 219 454 pinusRadiata_016090 193 2577 220 455 pinusRadiata_016722 187 1233 221 456 pinusRadiata_016785 51 1436 222 457 pinusRadiata_017094 525 2351 223 458 pinusRadiata_017527 152 1099 224 459 pinusRadiata_017591 470 4114 225 460 pinusRadiata_017769 196 2007 226 461 pinusRadiata_018047 214 1323 227 462 pinusRadiata_018414 68 2146 228 463 pinusRadiata_018986 874 3705 229 464 pinusRadiata_019479 360 1754 230 465 pinusRadiata_020144 185 1384 231 466 pinusRadiata_022480 241 1533 232 467 pinusRadiata_023079 230 1435 233 468 pinusRadiata_026739 101 2857 234 469 pinusRadiata 026951 43 1548 235 470 pinusRadiata_026529 206 1657 710 730 pinusRadiata_000888 711 731 pinusRadiata_004578 712 732 pinusRadiata_007989 713 733 pinusRadiata_009522 714 734 pinusRadiata_014610 715 735 pinusRadiata_017591 716 736 pinusRadiata_017769 717 737 pinusRadiata_026951 108 WO 2005/065339 PCT/US2004/043804 [0391] Table 11. Annotated Peptide Sequences of the Present Invention. Entry Sequence Description Annotated Peptide Sequence MGDGSLGSGGRGNSGGGGGGGSRPEWLQQYDLIGKIGEG TYGLVFLARIKHPSTNRGKYIAIKKFKQSKDGDGVSPTA IREIMLLREISHENVVKLVNVHINPVDMSLYLAFDYADH DLYEIIRHHRDKVNQAINPYTVkSLLWQLLNGLNYLHSN The amino acid sequence of SEQ ID WIIHNDLKPSNILVMGEGEEQGVVKIADFGLARVYQAPL 261. The conserved eukaryotic KPLSDNGVVVTIWYRAPELLLGAKHYTSAVDMWAVGCIF 1 protein kinase domain is AELLTLKPLFQGQEVKANPNPF9LDQLDKIFKVLGHPTQ underlined and the EkWPMLVNLPHWQSDVQH'IQRHKYDDNALGNVVRLSSKN serine/threonine protein kinases ATFDLLSKMLEYDPQKRITAAQALEHEYFRMEPLPGRNA active-site signature is in bold. LVPSSPGDKVNYPTRPVDTTTDIEGTTSLQPSQSASSGN AVPGNMPGPHVVTNRPMPRPMHMVGMQRVPASGMAGYNL NPSGMGGGMNPSGIPMQRGVANQAQQSRRKDPGMGMGGY PPQQKQRRF -The amino acid sequence of SEQ ID MEKYQQLAKIGEGTYGIVYAKDKKSGELLA3.KKIRLEA 262. The conserved eukaryotic EDEGIPSTAIREISLLKQLQHPNIVRLYDVVHTEKKLTL protein kinase domain is VFEFLDQDLKKYLDACGDNGLEPYTVKSFLYQLLQGIAF underlined and the protein kinases CHEHRVLHRDLKPQLLIN4EGELKLADFGLARAFGIPV 2 ATP-binding region and RNYTHEVVTLWYRAPDVLMGSRKYSTQVDIWSVGCIFAE serine/threonine protein kinases MVNGRPLFPGSSEQDQLLRIFKTLGTPSLKTWPGMAELP active-site signatures are in DFKDNFPKYVVQSFKKICPKKLDKTGLDLLSRMLQYDPA bold. KRISAEUAMGHPYFKDLKLRKPKAAGPGP The amino acid sequence of SEQ ID MDQYEKIEKIGEGTYGVVYEAIDRSTNETIALKKIRLEQ 263. The conserved eukaryotic EDEGVPSTAIREISLLKEMQHGNIVKLQDVVHSERRLYL protein kinase domain.is VFEYLDLDLKKHMDSCPEFSKDTHTIKMFLYQILRGISY underlined and the protein kinases CHSHRVLHRDLKPQNLLLDRRTNSLKLADFGLARAFGIP ATP-binding region and VRTFTHEVVTLWYRAPEILLGSRHYSTPVDVWSVGCIFA serine/threonine protein kinases EMVNRRPLFPGDSEIDELFKIFRIMGTPNEDSWPGVTSL active-site signatures are in PDFKSTFPKWASQDLKTVTPTVDPAGIDLLSKMLCMDPR bold. RRITAKVALEHEYFKDVGVIP The amino acid sequence of SEQ ID MVMKSKLDKYEKLEKLGEGTYGVVYEAQDKTTKEIYALK 264. The conserved eukaryotic KIRLESEDEGIPSTAIREIALLKELQHPNVVRIHDVIHT protein kinase domain is NKKLILVFEFVDYDLKKFLHNFDKGIDPKIVKSLLYQLV underlined and the protein kinases RGVAHCHQQKVLHRDLKPQNLLVSQEGILKLGDFGLARA ATP-binding region and FGIPVKNYTNEVVTLWYRAPDILLGSKNYSTSVDIWSIG serine/threonine protein kinases CIFVEMLNQKPLFPGSSEQDQLKKIKIt4GTPDATKWPG active-site signatures are in IAELPDWKPENFEKYPGEPLNKVCPKMDPDGLDLLDKML bold. KCNPSERIAAKNAMSHPYFKDIPDNLKKLYN The amino acid sequence of SEQ ID MDQYEKVEKIGEGTYGVVYKAIDRLTNETIALKKIRLEQ 265. The conserved eukaryotic EDEGVPSTAIREISLLKEMQHGNIVRLQDVVHSENRLYL protein kinase domain is VFEYLDLDLKKHMDSSPDFAKDPRLVKIFLYQILRGIAY underlined and the protein kinases CHSHRVLHRDLKPQNLLIDRRTNALKLADFGLARAFGIP ATP-binding region and VRTFTHEVVTLWYRAPEILLGSRHYSTPVDVWSVGCIFA serine/threonine protein kinases EMVNQRPLFPGDSEIDELFKIFRILGTPNEDTWPGVTAL active-site signatures are in PD1FKSAFPKWPAKNLQDMVPGLNSAGIDLLSKMLCLDPS bold. KRITARSALEHEYFKDIGVP MEKYEKLEKVGEGTYGKVYKAKDKATGQLVALKKTRLEM The amino acid sequence of SEQ ID DEEGVPPTALREVSLLQLLSQSLYVVRLLSVEHVDGGSK 266. The conserved eukaryotic RKAAN.AAEGGGGEAHGGGAVGGGKPMLYLVFEYLDTD protein kinase domain is LKKFIDSHRKGPNPRPVPAATVONFLYQLLKGVAHCHSH underlined and the protein kinases GVLHRDLKPQNLLVDKEKGILKIADLGLGRAFTVPLKSY 6 ATP-binding region and THEVEAFLAILLWRSEGESAADFDSXFRVSPVQVVTLWY serine/threonine protein kinases RAPEVLLGSAHYSIGVDMWSVGCIFAEMVRRQALFPGDS active-site signatures are in EFQQLLHIFRLLGTPTEKQWPGVTTLRDWHVYPQWEPQN bold. LARAVPSLGPDGVDLLSKMLKYDPAERISAKAALDHPFF DSLDKSQF 109 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MERPATAAVSAMEAFEKLEKVGEGTYGKVYRAREKATGK The amino acid sequence of SEQ ID IVALKKTRLHEDEEGVPPTTLREISILRMLSRDPHIVRL 267. The conserved eukaryotic MDVKQGQNKEGKTVLYLVFEYMETDLKKYIRGFRSSGES protein kinase domain is IPVNIVKSLMYQLCKGVAFCHGHGVLHRDLKPHNLLMDK 7 underlined and the protein kinases KTLTLKIADLGLARAFTVPIKKYTHEILTLWYRAPEVLL ATP-binding region and GATHYSTAVDMWSVGCIFAELVTKQALFPGDSELQQLLH serine/threonine protein kinases IFRL'LGTPNEKMWPGVSSLMNWHEYPQWKPQSLSTAVPN active-site signatures are in LDKDGLDLLSQMLHYEPSRRISAKAAMEHPYFDDVNKTC bold. L MGCVLGREVSSGIVTESKGRDSSEVETSKRDDSVAAKVE GEGKAEEVRTEETOKKEKVEDDQQSREQRRRSKPSTKLG NLPKHIRGEQVAAGWPSWLSDICGEALNGWIPRRANTFE KIDKIGQGTYSNVYKAKDLLTGKIVALKKVRFDNLEPES VRFMAREI'LILRHLDHNVVKLEGLVTSRMSCSLYLVFE The amino acid sequence of SEQ ID YMEDLAGLAASPAIKFTEPQVKCYMHQLLSGLEHCHNR 268. The conserved eukaryotic RVLHRDIKGSNLLIDNGGVLKIGDFGLASFYDPDHKHRM protein kinase domain is TSRVVTLWYRPPELLLGANDYGVGIDLWSAGdILAELLA underlined and the GKPIMPGRTEVEQLHKIYKL'CGSPSEEYWKKYKLPNATL serine/threonine protein kinases FKPREPYRRCIRETFKDFPPSSLPLIETLLAIDPAERGT active-site signature is in bold. ATDALQSEFFRTEPYACEPSSLPQYPPSKEMDAKKRDDE ARRLPAASKGQADGSKKERTRDRRVRAVPAPEANAELQH NIDRRRLISHANAKSKSEKFPPPHQDGALGFPLGASHRF DPAVVPPDVPFTSTSFTSSKEHDQTWSGPLVDPPGAPRR KKHSAGGQRESSKLSMGTNKGRRADSHLKAYESKSIA MYSKSSAVDDSRESPKDRVSSSRRLSEVKTSRLDSSRRE NGFRARDKVGDVSVMLIDKKVNGSARFCDDQIEKKSDRL QKQRREBAEAAAADHPGAGRVPKAVEGEQVAAGWPVWL SAVAGEAIKGWLPRRADTFEKLDKIGQGTYSSVYKARDV TNNKIVALKRVRFDNLDTESVkF(EMAREIHILRMLDHPNV IKLEGLITSRMSCSLYLVFEYMEHDLTGLASRPDVKFSE PQIKCYMKQLLSGLDHCHKHGVLERDIKGSNLLIDNNGI The amino acid sequence of SEQ ID LKIADFGLASVFDPHQTAPLTSRVVTLWYRPPELLLGAS 269. The conserved eukaryotic RYGVEVDLWSTGCILGELYTGKPILPGKTEVEQLHKIFK protein kinase domain is LCGSPSDDYWRRLHLPHAAVFKPPQPYRRCVAEIFKELP underlined and the PVALGLLETtISVDPSQRGTAAFALRSEFFTASPLPCDP aerine/treonintproein ina bold SSLPKYPPSKEIDMKLREEEARRRGAAGGKNELEKRGTK active-site signature is in bold. DSRTNSAYYPNAGQLQVKQCHSNANGRSEIFGPYQEKTV SGFLVAPPKQARVSKETRKDYAEQPDRASFSGPLVPGPG FSKAGKELGHSITVSRNTNLSTLSSLVTSRTGDNKQKSG PLVSESANQASRYSGPIREMEPARKQDRRSHVRTNIDYR SREDGNSSTKEPALYGRGSAGNKIYVSGPLLVSSNNVDQ MLKEHDRRIQEHARRARFDKARVGNNHPQAAVDSKLVSV HDAG MGCIPTIISDGRRRSAAPDKRRPRPRRSSSEGEAPPHAT AAGSEGGESARGAPGKERPEPAPRFVVRSPQGWPPWLVA AVGHAIGEFVPRCADSFRKLAKIGEGTYSNVYKARDLVT GKTVALKKVRFDNLEAESIKFMAREILVLTRLNHPNVIK LEGPVTSRMSSGLYLAFEYMEHDLSGIAARQNGKFTEPQ The amino acid sequence of SEQ ID VKCFMRQLLSGLEHCHNHDVLHRDIKCSNLLIDNEGNLK 270. The conserved eukaryotic IADFGLATFYDPERKQVMTNRVVTLWYRAPELLLGATSY 10 protein kinase domain is GIGIDLWSAGCILAELLYGKPIMPGRTEVEQLHKIFKLC underlined and the GSPSEAYWNKFKLPNANIFKPPQPYARCIAETFKDFPPS serine/threonine protein kinase ALPLLETLLS'IDPDERGTATTALNSEFFAAEPHACEPSS active-site is in bold LPKYPPSiKEMDLKLIKEKTRRDSSKRPSAIHGSRRDGIH DRAGRVIPAPEATAENQATLHRPRAMKKANPMSRSEKFP PAHMDGVVGSSANAWLSGPASNAAPDSRRHRSLNQNPSS SVGKASTGSSTTQETLKVAPELLQVGSSSLHPCHRMLVY GSNLTIRSK 110 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MGCICAKQADRGPASPGSGILTGAGTGTGTRSSKIPSGL FEFEKSGVKEHGGRSGELRKLEEKGSLSKRLRLELGFSH RYVEAEQAAAGWPSWLTAVAGDAIQGLVPLKADSFEKLE KIGQGTYSSVFRARELANGRMVALKKVRFDNFQPESIQF The amino acid sequence of SEQ ID MAREISILRRLDHPNIMKLEGIITSRMSNSIYLVFEYME 271. The conserved protein kinase HDLYGLISSPQVKFSDAQVKCYMKQLLSGIEHCHQHGVI 11 family domain is underlined, and HRDVKSSNILVNNEGILRIGDFGLANILNPKDRQQLTSH the serine/threonine protein VVTLWYRPPELLMGSTSYGVTVDLWSVGCVFAELMFRKP kinases active-site signature is ILRGRTEVEQLHKIFKLCGSPPDGYWKMCKVPQATMFRP in bold RHAYECTLRERCKGIATSAMKLMETFLSIEPHKRGTASS ALISEYFRTVPYACDPSSLPKYPPNKEIDAKHREEARRK KARSRVREAEVGKRPTRIHRASQEQGFSSNIAPKEKRSY A MAVAAPGHLNVNESPSWGSRSVDCFEKLEQIGEGTYGQV YMAfEKKTGEIVALKKIRMDNEREGFPITAIREIKILKK LHHENVIKLKEIVTSPGPEKDEQGRPEGNKYKGGIYMVF The amino acid sequence of SEQ ID EYMDHDLTGLADRPGMRFSVPQIKCYMRQLLTGLHYCHI 272. The conserved eukaryotic NQVtERDIKGSNLLIDNEGNLKLADFGLARSFSNDHNAN protein kinase domain is LTNRVITLWYRPPELLLGATKYGPAVDMWSVGCIFAELL underlined and the protein kinases HGKPIFPGKDEPEQLNKIFELCGAPDEINWPGVSKIPWY 12 ATP-binding region and NNFKPTRPMKRRLREVFRHFDRHALELLERMLTLDPSQR serine/threonine protein kinases ISAKDALDAEYFWADPLPCDPKSLPKYESSHEFQTKKKR active-site signatures are in QQQRQHEETAKRQKLQHPPQHPRLPPVQQSGQAHAQMRP bold. GPNQLMHGSQPPVATGPPGHHYGKPRGPSGGAGRYPSSG NPGGGYNHPSRGGQGGSGGYNSGPYPPQGRAPPYGSSGM PGAGPRGGGGNNYGVGPSNYPQGGGGPYGGSGAGRGSNM MGGNRNQQYGWQQ MGCICTKGILPAHYRIKDGGLKLSKSSKRSVGSLRRDEL AVSANGGGNDAADRLISSPHEVENEVEDRKNVDFNEKLS KSLQRRATMDVASGGHTQAQLKVGKVGGFPLGERGAQVV AGWPSWLTAVAGEAINGWVPRRADSFEKLEKIGQGTYSS VYRARDLETNTIVALKKVRFANMDPESVRFMAREIIIMR KLDHPNVMKLEGLITSRVSGSLYLVFEYMDHDLAGLAAT PSIKLTESQIKCYMQQLLRGLEYCHSHGVLHRDIKGSNL The amino acid sequence of SEQ ID LVDNNGNLKIGDFGLATFFRTNQKQPLTSRVVTLWYRPP 273. The conserved ELLLGSSDYGASVDLWSSGCILAELFAGKPIMPGRTEVE 13 serine/threonine protein kinase QLHKIFKLCGSPSEEYWKKSKLPHATIFKPQQPYKRCLL domain is underlined, and the ETFKDFPSSALGLLDVLLAVEPECRGTASSALQNEFFTS serine/threonine protein kinase NPLPSDPSSLPKYPSSKEFDARLRDEEARKHKATAGKAR active-site signature is in bold. GLESIRKGSKESKVVPTSNANADLKASIQKRQEQSNPRS TGEKPGGTTQNNFILSGQSAKPSLNGSTQIGNANEVEAL IVPDRELDSPRGGAELRRQRSFMQRRASQLSRFSNSVAV GGDSHLDCSREKGANTQWRDEGFVARCSHPDGGELAGKH DWSHHLLHRPISLFKKGGEHSRRDSIASYSPKKGRIHYS GPLLPSGDNLDEMLKEHERQIQNAVRKARLDKVKTKREY ADHGQTESLLCWANGR MDPDPSPDPDPPKSWSIHTRREIIARYEILERVGSGAYS DVYRGRRLSDGLAVALKEVHDYQSAFREIEALQILRGSP HVVLLHEYFWREDEDAVLVLEFLRSDLAAVIADASRRPR DGGGGGAAALRAGEVKRWMLQVLEGVDACHRNSIVHRDL The amino acid sequence of SEQ ID KPGNZLIEEGVLIADFGQARILLDDGNVAPDYEPESF 274. The conserved protein kinase EERSSEQADILQQPETMEADTTCPEGQEQGAITREAYLR 14 family domain is underlined and EVDEFKAKNPRHEIDKETSIFDGDTSCLATCTTSDIGED the serine/threonine protein PFKGSYVYGAEEAGEDAQGCLTSCVGTRWFRAPELLYGS kinases active-site signature is TDYGLEVDLWSLGCIFAELLTLEPLFPGISDIDQLSRIF in bold. NVLGNLSEEVWPGCTKLPDYRTISFCKIENPIGLESCLP NCSSDEVSLVRRLLCYDPAARATPMELLQDKYFTEEPLP VPISALQVPQSKNSHDEDSAGGWYDYNDMDSDSDFEDFG PLKFTPTSTGFSIQFP 111 WO 2005/065339 PCTIUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MDPDPSPSPDPPKSWSIHTRREIIARYEILERVGSGAYS DVYRGRRLSDGLAVALKEVHDYQSAFREIEALQILRGSP HVVLLHEYFWREDEDAVLVLEFLRSDLAAVIADASRRPR GGGVAPLRAGEGKRWMLQVLEGVDACHRNSIVHRDLKPG The amino acid sequence of SEQ ID NLLISEEGVLKIADFGQARILLDDGNVAPDYEPESFEER 275. The conserved SSEQADILQQPETMEADTTCPEGQEQGAITREAYLREVD 15 serine/threonine protein kinase EFKAKNPRHEIDKETSIYDGDTSCLATCTTSDIGEDPFK domain is underlined, and the GSYVYGAEEAGEDAQGSLTSCVGTRWFRAPELLYGSTDY serine/threonine protein kinase GLEVDLWSLGCIFAELLTLEPLFPGISDIDOLSRIFNVL active-site signature is in bold. GNLSEEVWPGCTKLPDYRTISFCKIENPIGLESCLPNCS SDEVSLVRRLLCYDPAARATPMELLQDRYFTEEPLPVPI SALQVPQSKNSHDEDSAGGWYDYNDMDSDSDFEDFGPLK FTPTSTGFSIQFP MSNQHRRSSFSSSTTSSLAKRHASSSSSSLENAGKAFAA AAVPSHLAKKRAPLGNLTNLKAGDGNSRSSSAPSTLVAN ATKLAKTRKGSSTSSSIMGLSGSALPRYASTKPSGVLPS VNPSIPRIEIAVDPMSCSMVVSPSRSDMQSVSLDESMST The amino acid sequence of SEQ ID CESFKSPDVEYIDNEDVSAVDSIDRKTFSNLYISDAAAK 276. The conserved cyclin and TAVNICERDVLMEMETDEKIVNVDDNYSDPQLCATIACD 16 cyclin C-terminal domains are IYQHLRASEAKKRPSTDFMDRVQKDITASMRAILIDWLV underlined and the cyclins EVAEEYRLVPDTLYLTVNYIDRYLSGNVMNRQRLQLLGV signature is in bold. ACMMIAAKYEEICAPQVEEFCYITDNTYFKEEVLQMESS VLNYLKFEMTAPTVKCFLRRFVRAAQGVNEVPSLQLECM ANYIAELSLLEYOMLCYAPSLVAASAIFLAKFVITPSKR PWDPTLQHYTIYQPSDLGNCVKDLHRLCFNNHGSTLPAI REKYSQHKYKYVAKKYCPPSIPPEFFHNLVY MNKENAVGTKSEAPTIRITRSRSKALGTSTGMLPSSRPS FKQEQKRTVRANAKRSASDENKGTMVGNASKQHKKRTVL NDVTNIFCENSYSNCLNAAKAQTSRQGRWSMKKDRDVH QSGAVQIMQEDVQAQFVEESSKIKVAESMEITIPDKWAK The amino acid sequence of SEQ ID RENSEHSISMKDTVAESSRKPQEFICGEKSAALVQPSIV 277The minaciseqence ofd SDIDSKLEDPQACTPYALDIYNYKRSTELERRPSTIYMET 17 277. The conserved cyclin and LQKDVTPNMRGILVDWLVEVSEEYKLVPDTLYLTVNLID cycling C-terminal domains are RSLSQKFIEKQRLQLLGVTCMLIASKYEEICPPRVEEFC underlined. FITDNTYTSLEVLKMESRVLNLLHFQLSVPTVKTFLRRF VQAAQVSSEVPSVELEYLANYLELTLVEYSFLKFLPSL MAASAVLLARWTLNQSDNPWNLTLEHYTKYKASELKAAV LALEDLQLNTSCSTLNAIREKYRQQKVNYSLLIHSKANH EIL MAGSDENNPGVVGGAHVQEGLRVGAGKMGAGNVQQRRAL SNINSNIIGAPPYPCAVNKRVLSEKNVNSENDLLNAAHR PITRQFAAQMAYKQQLRPEENKRTTQSVSNPSKSEDCAI LDVDDDKMADDFPVPMFVQHTEAMLEEIDRMEEVEMEDV The amino acid sequence of SEQ ID AEEPVTDIDSGDKENOLAVVEYIDDLYMFYKAEASSCV 278. The conserved cyclin N- and PPNYMDRQQINERMGIIDWLIEYKELMETLYL 18 C-terminal family domains are TVNIDRLQLVGVTAMLLACKYEEVSVP underlined and the cyclins VVEDLILISDRAYSRKEVLEMERLMVNTLHFNMSVPTPY signature is in bold. VFMRRFLKAAQSD KLELLSFFIIELSLVEYDMLKFPPS LLAASAIYTALSTITRTKQWSTTCEWHTSYSEEQLLECA RLIMVTE'HQRAGSGKLTGVHRKiSTSKFGHAARTEPANFL LDFRL MASRPIVPVQARGEAAIGGGAGKAAIGGGAGKQQKKNGA AEGRNRKALGDIGNLVTVRGIEGKVQPHRPITRSFCAQL LANAQAAAAAENNKKQAVVNVNGAPSILDVPGAGKRAEP TAWA VAKAAQKKVVKPKQKAEVIDLTSDSEERSRPR The amino acid sequence of SEQ ID RSNNIMSLRRRKERNHREGICPLSLRSSLLEARLVDWLI 19 279. The conserved cyclin and EIHNKFDLMPETLYLTINIIDRFLSVKAVPRRELQLLGM cyclin C-terminal domains are GALFTASkYEEIWAPEVNDLVCIADRAYSHEQVLAMEKT underlined, ILGKLEWTLTVPTHYVFLVRFIKASLGDRKLENMVYFLA ELGVMNYATLTYCPSMVAASAVYAARCTLGLTPLWNDTL KLHTGFSESQLMDCARLLVGYHAKAKENKLQVVYKKYSS SQREGVALIPPAKALLCEGGGLSSSSSLASSS 112 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MGLPDENNAALSKPTNLQVGGLEIGGRKFGQEIRQTRRA LSVINQNLVGDRAYPCHVVNKRGHSKRDAVCGKDQVDPV HRPLTRKFAAQTASTQQHCIEEAKKPRTAVQERNEFGDC IFVDVEDCQPSSENQPVPMFLEIPESRLDDDMEEVEMED The amino acid sequence of SEQ ID IVEEEEEEPIMDIDGRDKKNPLAVVDYIEDIYANYRRTE 280. The conserved cyclin and NCSCVSANYMAQQADINEKMRSILIDWLIEVRDKFDLMH 20 cyclin C-terminal domains are ETLFLTVNLIDRFLARQSVVRKKLQLVGLVAMLLACKYE underlined and the cyclins EVSVPVVGDLILISDKAYTRRNVLEMESLMLNSLQFNMS signature is in bold. VPTPYVFMRRFLKAAESDKKLEVLSFFLIELSLVEYEMV KFPPSLLAAAAIFTAOCTLYGFKQWTKTCEWHSNYTEDQ LLECARMMVGFHQKAATGKLTGVHRKYGTSKFGYTSKCE PANFLLGEMKNP MGLPDENNAALSKPTNLQVGGLEIGGRKFGQEIRQTRRA LSVINQNLVGDRAYPCHVVNKRGHSKRDAVCGKDQVDPV HRPLTRKFAAQTASTQQHCIEEAKKPRTAVQERNEFGDC IFVDVEDCQPSSENQPVPMFLEIPESRLDDDMEEVEMED The amino acid sequence of SEQ ID IVEEEEEEPIMDIDGRDKKNPLAVVDYIEDIYANYRRTE 281. The conserved cyclin and NCSCVSANYMAQQADINEKMRSILIDWLIEVHDKFDLMH 21 cyclin C-terminal domains are ETLFLTVNLIDRFLARQSVVRKKLOLVGLVAMLLACKYE underlined and the cyclins EVSVPYVGDLILISDKAYTRKEVLEMEKLMLNSLQFNMS signature is in bold. VPTPYVFMRRFLKAAESDKKLEVLSFFLIELSLVEYEMV KFPPSLLAAAAIFTAQCTLYGFKOWTKTCEWHSNYTEDQ LLECARMMVGFHQKAATGKLTGVHRKYGTSKFGYTSKCE AANFLLGEMKNP MAMVQRQGHDPSSPQEQEDGPSSFLSDDALYCEEGRFEE DDGGGGGQVDGIPLFPSQPADRQQDSPWADEDGEEKEEE EAELQSLFSKERGARPELAKDDGGAVAARREAVEWMLMV RGVYGFSALTAVLAVDYLDRFLAGFRLORDNRPWMTOLV The amino acid sequence of SEQ ID AVACLALAAKVEETDVPLLVELQEVGDARYVFEAKTVQR 22 282. The conserved cyclin N- and MELLVLSTLGWEMHPVTPLSFVHHVARRLGASPHHGEFT C-terminal family domains are HWAFLRRCERLLVAAVSDARSLKHLPSVLAAAAMLRVIE underlined. EVEPFRSSEYKAQLLSALHMSQEMVEDCCRFILGIAETA GDAVTSSL'DSFLKRKRRCGHLSPRSPSGVIDASFSCDDE SNDSWATDPPSDPDDNDDLNPLPKKSRSSSPSSSPSSVP DKVLDLPFMNRIFEGIVNGSPI MEASYQPHHHG'HLRQHDPSSSQQEEQVPFDALYCSEEHW GEEDEEEGLASDGLLSEERDHRLLSPRALLDQDLLWEDE ELASLFSKEEPGGMRLNLENDPSLADARREAVEWIMRVH The amino acid sequence of SEQ ID AHYAFSALTALLAVNYWDRFTCSFALQEDKPWMTQLSAV 283. The conserved cyclin and ACLSLAAKVEETQVPLLIDFQVEDSSPVFEAKNIQRMEL 23 cyclin C-terminal domains are LVLSSLEWKMNPVTPLSFLDYMTRRLGLTGHLCWEFLRR underlined. CENVLLSVISDCRFTCYLPSVIAASTMLHVINGLKPRLD VEDQTQLLGILAMGNDKIDACYKLIDDDHALRSQRYSHN KRKFGS VPGSPRGVMELCFSSDGSNDSWSVAASVSSSPE PHSKKSRAGEEAEDRLLRGLEGEEDDPASADIFSFPH MALQEEDTRRHYPTAPPFSPDGLYCEDETFG'EDL'ADNAC EYAGGGARDGLCEIKDPTLPPSLLGQDLFWEDGELASLV SRETGTHPCWDELISDGSVALARKDAVGWILRVHGHYGF The amino acid sequence of SEQ ID RPLTAMLAVNYLDRFFLSRSYORDRPWISOLVAVACLSV 284. The conserved cyclin and AAKVEETQVPILLDL9VANAKFVFESRTIQRMELLLMST 24 cyclin C-terminal domains are LDWRnNSVTPISFFDHILRRFGLTTNLHRQFFWMCERLL underlined. LSVVADVRLASFLPSVVATAAMLYVNKEIEPCICSEFLD QLLSLLKINEDRVNECYELILELSIDHPEILNYKHKRKR GSVPSSPSGVIDTSFSCDSSNDSWGVASSVSSSLEPRFK RSRFQDQQMGLP S tVNVSSMGVLNSSY The amino acid sequence of SEQ ID 285. The conserved cyclin dependent kinases regulatory MGQIQYSEKYFDDTYEYRHVVLPPDVAKLLPKNRLLSEN 25 subunit domain is underlined and EWRAIGVQQSRGWVHYAIHRPEPHIMLFRRPLNYQQQQE the cyclin-dependent kinases NQAQQNMLAK regulatory subunits signature 1 is in bold. 113 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MGSIDPPKAEQNGTAAAAVADPGQKPGAGDAMPPPPPVK HSNGTAAEPDVATKRRRMSVLPLEVGTRVMCRWRDGKYH PVKVIERRKLNPGDPNDYEYYVHYTEFNRRLDEWVKLEQ LDLNSVETVVDEKVEbKVTGLKMTRHQKRKIDETHVEGH The amino acid sequence of SEQ ID EELDAASLREHEEFTKVKNIATIELGRYEIETWYFSPFP 286. The conserved chromo domain PEYNDCSKLYFCEFCLNFMKRKEQLQRHMKKCDLfHPPG 26 is underlined and the MOZ/SAS-like DEIYRSGTLSMFVDGKKNKVYGQNLCYLAKLFLDCTL protein domain is in bold/italics. YXDVDLFLE7VLCECDDRGCIWGYFSKEKSEESYNLA CILTLPPYQRKGYGarLIATSYELSEIGKVGTPRPLS DLGLLSYKGYWRVLLDILQKKAKRNSIKLSDNTAICA DDXLNTLQSLDLXQYRKGQBVICADPKVLDRHLKAAGRG GLEVDVSKLIWTPYREQG MDTGGNSLPSGPDGVKRKVCYFYDPEVGNYYLLQHMQVL KPVPARDRDLCRFHADDYVAFLRSITPETQQDQLRQLKR FNVGEDCPVFDGLHSFCQTYAGGSVGGAVKLNHGLCDIA INWAGGLHHAKKCEASGFCYVNDIVLGILELLKQHERVL YVDIDIHHGDGVEEAFYTTDRVMTVSFHKFGDYFPGTGD The amino acid sequence of SEQ ID IRDIGYGKGKYYSLNVPLDDGIDDESYHSLFKPIIGKVM 27 292. The conserved histone EVFKPGAVVLQCGADSLSGDRLGCFNLSIKGHAECVRYM deacetylase family domain is RSFNVPVLLLGGGGYTIRNVARCWCYETGVALGLEVDDK underlined. MPQHEYYEYFGPDYTtHVAPSNMENKNSRQLLEEIRSKL LENLSKLQHAPSVPFQERPPDTELPEADEDQEDPDERWD PDSDMDVDEDRKPLPSRVKRELIVEPEVKDQDSQKASID HGRGLDTTQEDNASIKVSDMNSMITDEQSVKMEQDNVNK PSEQIFPK MDTGGNSLPSGPDGVKRKVCYFYDPEVGNYYYGQGHPMK PHRIRMTHALLAHYGLLQHMQVLIKPVPARDRDLCRFHAD UYVAFLRSITPETQQDQLRQLKRFNVGEDCPVFDGLHSF CQTYAGGSVGGAVKLNHGLCDIAINWAGGLHHAKKCEAS GFCYVNDIVLGILELLKQHERVLYVDIDIHHGDGVEEAF The amino acid sequence of SEQ ID YTTD1(VMTVSFHKFGDYFPGTGDIRDIGYGKGKYYSLNV 28 293. The conserved histone PLDDGIDDESYHSLFKPIIGKVMEVFKPGAVVLQCGADS deacetylase family domain is LSGDRLGCFNLSIKGRAECVRYMRSFNVPVLLLGGGGYT underlined.' IRNVARCWCYETGVALGLEVDDKMPQHEYYEYFGPDYTL HVAPSNMENKNSRQLLEDIRSKLLENLSKLQRAPSVPFQ ERPPDTELPEADEDQEDPDERWDPDSDMDVDEDRKPLPS RVKRELIVEPEVRDQDSQKASIDHGRGLDTTQEDNASIK VSDMNSMITDEQSVKMEQDNVNKPSEQIFPK MRPKDRISYFYDGDVGSVYFGPNHPMKPHRLCMTHHLVL SYELHTKMEIYRPHKAYPAELAQFHSPDYVEFLHRITPD TQHLFPNDIAKYNLGEDCPVFENLFEFCQIYAGGTIDAA RRLNNQLCDIAINWAGGLHHAKKCEASGFCYINDLVLGI LELLKYHARVLYIDIDVHHGDGVEEAFYFTDRVMTVSFH The amino acid sequence of SEQ ID KFGDMFFPGTGDVKEIGGKEGKFYAINVPLKDGIDDTSF 29 294. The conserved histone TRLFKAIISKVVTYQPGAIVLQCGADSLAGDRLGCFNL decetylase domain is underlined. SIDGHSECVRFVKKFNLPLLVTGGGGYTKENVARCWVVE TGVLLDTELPNEIPENEYFKYFAPDYSLKIFRGNIVLEN LNSKSYLSAIKVQVLENLRNIQRAPSVQMQEVPPDFYIP DFDEDEQNPDERMDQHTQDKQIQRDDEYYDGDNDNDHNM DD MTVAEDFHVNNRSKMVSQATPESRLTGGEDDNSLHNQVD ELLCQELPERQVILEFEGTRPKPYFSDHNGGENSALGVR ATEDDLNSDVEAEEKQKEMTLEDMYKNDGTLYDDDEDDS DWEPVKRQVELMRWFCTNCTMVNVEDVFLCDICGEHRDS GILRHGFYASPFMQDVGAPSVEAEVQESREDHARSSPPS SSTVVGFDEKMLLHSEVEMKSHPHPERADRLQAIAASLA The amino acid sequence of SEQ ID TAGIFPGRCRSLPVREITKEELQMVHSSEHVDAVEMTSH 295. The conserved histone MFSSYFTPDTYANEHSARAARIAAGLCADLASTIISGRS 30 deacetylase family domain is KNGFALVRPPGHHAGIKHAMGFCLHNNAAVAALAAQGAG underlined and the Zinc finger AKKVLIVDWDVHHGNGTQEIFDGNKSVLYISLHRHEGGN RanBP2-type profile is in bold. FYPGTGAAHEVGTMGAEGYCVNIPWSRRGVGDNDYVFAF HHIVLPIASAFAPDFTIISAGFDAARGDPLGCCDVTPAG YAQMTHMLSALSGGKLLVILEGGYNLRSISSSAVAVIKV LLGDSPISEIADAVPSKAGLRTVLEVLKIQRSYWPSLES IFWELQSQWGMFLVDNRRKQIRKRRRVLVPIWWKWGRKS VLYHLLNGHLHVKTKR 114 WO 2005/065339 PCT/US2004/043804 Entry sequence Description Annotated Peptide Sequence MAAAPSSPPTNRVDVFWHDGMLSHDTGRGVFDTGSDPGF LDVLEKHPENPDRVRNMVSILKRGPISPFISWHTATPAL ISQLLSFHSPEYINELVEADKNGGKVLCAGTFLNPGSWD The amino acid sequence of SEQ ID AALLAAGNTLSAMKYVLDGKGKIAYALVRPPGHHAQPSQ 31 296. The conserved histone ADGYCFLNNAGLAVRLALDSGCKRVVVVDIDVHYGNGTA deacetylase family domain is EGFYQSSDVLTISLHMNHGSWGPSHPQSGSVDELGEDEG underlined. YGYNMNIPLPNGTGDRGYEYAVTELVVPAVESFKPEMVV LVVGQDSSAFDPNGRQCLTMDGYRAIGRTIRGLADRHSG GRILIVQEGGYHVTYSAYCLHATVEGILDLPDPLLADPI AYYPEDEAFPVKVVDSIKRYLVDKVPFLKEH MVESSGGASLPSVGQDARKRRVSYFYEPTIGDYYYGQGH PMKPHRIRMAHNLIVHYYLHRRMEISRPFPAATTDIRRF HSEDYVTFISSVTPETVSDPAFSRQLKRFNVGEDCPVFD GIFGFCQASAGGSMGAAVKLNRGDSDIALNWAGGLHHAK KSEASGFCYVNDIVLGILELLKVHKRVLYVDIDVHHGDG The amino acid sequence of SEQ ID VEEAFYTTDRVMTVSFHKFGDFFPGSGHIKDTGAGPGKN 32 297. The conserved histone. YAINVPLNDGIDDESFRGMFRPIIQKVMEVYQPDAVVLQ deacetylase family domain is CGADSLSGDRLGCFNLSVKGHADCLRFLRSFNVPLMVLG underlined. GGGYTMRNVARCWCYETAVAVGVEPENDLPYNEYYEYFG PDYTLHVEPCSMENLNAPKDLERIRNMLLEQLSRIPHAP SVPFQMTPPITQEPEEAEEDMDERPKPRIWNGEDYESDA EEDKSQHRSSNADALHDENVEMRDSVGENSGDKTREDRS PS MAAIISCHHYHSCCSSLIASKWVGARIPTSCFGRSSTQS NNAASVRQFVTRCSSSPSSRGQWQPHQNGEKGRSFSLRE CAISIALAVGLVTGVPSLDMSTGNAYAASPALPDLSVLI SGPPIKDPEALLRYALPINNKAIREVQKPLEDITDSLKV The amino acid sequence of SEQ ID AGLRALDSVERNVROASRVLKQGKNLIVSGLAESKKDHG 299. The conserved cyclophilin- VELLDKLEAGMDELQQIVEDGNRDAVAGKQRELLNYVGG 33 type peptidyl-prolyl cis-trans VEEDMVDGFPYEVPEEYKNMPLLKGRAAVDMKVKVKDNP isomerase family domain is NLEECVFRIVLDGYNAPVTAGNFVDLVERHFYDGMEiQR underlined. ADGFVVQTGDPEGPAESFIDPSTEKPRTIPLEIMVDGEK APVYGATLEELGLYKAQTKLPFNAFGTMAMARDEFEDNS ASSQIFWLLKESELTPSNANILDGRYAVFGYVTENQDFL ADLKVGDVIESVQVVSGLDNLANPSYKIAG MAGEDFDIPPADEMNEDFDLPDDDDDAPVMKAGDEKEIG KQGLKKKLVKEGDAWETPDNGDEVEVHYTGTLLDGTQFD SSRDRGTPFKFTLGQGQVIKGWDQGIKTMKGENAIFTI The amino acid sequence of SEQ ID PPELAYGEAGSPPTIPPNATLQFDVELLSWTSVKDICKD 300. The conserved FKBP-type GGIFKKILVEGEKWENPKDLDEVLVKYEFLEDGTTIAR peptidylprolyl isomerase domains SDGVEFTVKEGHFCPAVAKAVKTMKKGEKVLLTVKPQYG are underlined. The FKBP-type FGEKGKPASGDEGAVPPNATLQITLELVSWKTVSEVTDD 34 peptidyl-prolyl cis-trans KKVIKKILKEGEGYERPNEGAVVEVKLIGKLQDGTVFVK isomerase signature 1 is in bold KGHDDCEELFKFKIDEEQVVDGDKAVMNMKGGEVALLT and the FKBP-type peptidyl-prolyl VAPEYAFGSSESKQDLAVVPPSSTVYYEVELVSFVKDKE cis-trans isomerase signature 2 is SWDMNTEEKIEAAGKKKEEGNVIFKAGKYAKASKRYEKA in bold/italics. VKYIEYDTSFSEDEKKQAKALKVACNLNDAACKLKLKDY NQAEKLCTKVLELDSRNVKALYRRAQAYIELSDLDLAEF DIKKALEIDPHNRDVKLEYKVLKEKVKEFNKKDAKFYGN MFAKMSKLEPVEKTAAKEPEPMSIDSKA MSTVYVLEPPTKGKVVLNTTHGPLDVELWPKEAPKAVRN FVQLCLEGYYDNTIFHRIIKDLVQGGDPTGSGTGGESI YGDAFSDEFHSRLRFKHRGLVACANAGSPHSNGSQFFIT The amino acid sequence of SEQ ID LDRCDWLDRKNTIFGKITGDSIYNLSGLAEVETDKSDRP 301. The conserved cyclophilin- LDPPPKIISVEVLWNPFEDIVPRAPVRSLVPTVPDVQNK type peptidyl-prolyl cia-trans EPKKKAVKKLNLLSFGEEAEEEEKALVVVKQKIKSSHDV 35 isomerase family domain is LDDPRLLKEHIPSKQVDSYDSKTARDVQSVREALSSKKQ underlined and the cyclophilin- ELQKESGAEFSNSFREIADDEDDDDDDASFDARMRRQIL type peptidyl-prolyl cis-trans QKRKELGDLPPKPKPKSRDGISARKERETSISRDKDDDD isomerase signature is in bold. DDDQPRVEKLSLKKKGIGSEARGERMANADADLQLLNDA ERGRQLQKQKKHRLRGREDEVLTKLETFKASVFGKPLAS SAKVGDGDGDLSDWRSVKLKFAPEPGKDRMTRNEDPNDY VVVDPLLEKGKEKFNRMQAKEKRRGREWAGKSLT 115 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence The amino acid sequence of SEQ ID MASAISMHSSGLLLLQGTNGKDVTEMGKAPASSRVANMQ 302. The conserved cyclophilin- QRKYGATCCVARGLTSRSHYASSLAFKQFSKTPSIKYDR type peptidyl-prolyl Cis-trans MVEIKAMATDLGLQAKVTNKCFFDVEIGGEPAGRIVIGL 36 isomerase family domain is FGDDVPKTVENFRALCTGEKGFGYKGCSFHRIIKDFMIQ underlined and the cyclophilin- GGDFTRGNGTGGKSIYGSTFEDENFALKHVGPGVLSMAN type peptidyl-prolyl cis-trans AGPSTNGSQFFICTVKTPWLDNRHVVFGQVVDGMDVVQK isomerase signature is in bold. LESQETSRSDVPRQPCRIVNCGELPLDG MAASFTALSNVGSLSSPRNGSEIRRFRPSCNVAASVRPP PLKAGLSASSSSSFSGSLRLIPLSSSPQRKSRPCSVRAS The amino acid sequence of SEQ ID AEAAAAQSKVTNKVYLDISIGNPVGKLVGRIVIGLYGDD 37 303. The conserved cyclophilin- VPQTAENFRALCTGEKGFGYKGSTVHRVIKDFMIQGGDF type peptidyl-prolyl cis-trans DKGNGTGGKSIYGRTFKDENFKLSHVGPGVVSMANAGPN isomerase signature is underlined. TNGSQFFICTVKTPWLDQRHVVFGQVLEGMDIVRLIESQ ETDRGDRPRKRVVVSDCGELPVV The amino acid sequence of SEQ ID 304. The conserved FKBP-type MAEAIDLTGDGGVMKTIVRIAAKPDAVSPSETLPLVDVRY peptidyl-prolyl cis-trans EGVLAETGEVFDSTHEDNTLFSFEIGKGSVISAWDTALR 38 isomerase signature is underlined TMKVGEVAKITCKPEYAYGSTGSPPDIPPDATLIFEVEL and the FKBP-type peptidyl-prolyl VACKPCKGFSVTSVTEDKARLEELKKQREIAAATKEEEK cis-trans isomerase signature 2 is KRREEAKAAAAARVQAKLDAKKGHGKGKGKAK in bold. The amino acid sequence of SEQ ID 305. The conserved cyclophilin- MGNPKVFFDMSIGGQPAGRIVMELYADVVPRTAENFRAL type peptidyl-prolyl cis-trans CTGEKGAGRSGKPLHYKGSSFHRVXPGPMCQGGDFTAGN 39 isomerase family domain is GTGGESIYGSKFADENFVKKHTGPGVLSMANAGPGTNGS underlined and the cyclophilin- QFFVCTAKTEWLDGKHVVFGQIVDGMDVVKAIEKVGSSS type peptidyl-prolyl cis-trans GRTSKPVVVADCGQLS isomerase signature is in bold. The amino acid sequence of SEQ ID 306. The conserved cyclophilin- MPNPKVFFDMTIGGAAAGRVVMELYADTTPRTAENFRAL type peptidyl-prolyl cis-trans CTGEKGVGRSKKPLHYKGSKFHRVIPSFMCQGGDFTAGN 40 isomerase signature is underlined GTGGESIYGVKFADENFIKKHTGPGILSMANAGPGTNGS and the cyclophilin-type peptidyl- QFFICTTKTEWLDGKHVVFGKVVEGMEVVKAIEKVGSSS prolyl cis-trans isomerase GRTSKPVVVADCGQLP signature is in bold. The amino acid sequence of SEQ ID 307. The conserved FKBP-type MAEAIDLTGDGGVMKTIVRRAKPDAVSPSETLPLVDVRY peptidyl-prolyl cis-trans EGVLAETGEVFDSTHEDNTLFSFEIGKGSVISAWDTALR 41 isomerase signature is underlined TMKVGEVAKITCKP$YAYGSTGSPPDIPPDATLIFEVEL and the FKBP-type peptidyl-prolyl VACKPCKGFSVTSVTEDKARLEELKKQREIAAATKEEEK cis-trans isomerase signature 2 is KRREEAKAAAAARVQAKLDAKKGHGKGKGKAK in bold. The amino acid sequence of SEQ ID MATARSFFLCALLLLATLYLAQAKKSEDLKEVTHKVYFD 308. The conserved cyclophilin- VEIAGKPAGRIVMGLYGKAVPKTAENFRALCTGEKGTGK type peptidyl-prolyl cis-trans SGKPLHYKGSSFHRIIPSFMLQGGDFTLGDGRGGESIYG 42 isomerase signature is underlined EKFADENFKLKHTGPGLLSMANAGPDTNGSQFFITTVTT and the cyclophilin-type peptidyl- SWLDGRHVVFGKVLSGMDVVYKVEAEGROSGTPKSKVVI prolyl cis-trans isomerase ADSGELPL signature is in bold. The amino acid sequence of SEQ ID MMRREISVLLQPRFVLAFLALAVLLLVFAFPFSRQRGDQ 309. The conserved cyclophilin- VEEEPEITHRVYLDVDIDGQHLGRIVIGLYGEVVPRTVE type peptidyl-prolyl cis-trans NFRALCTGEKGKSANGKKLHYKGTPFHRIIsGFMIQ.GCD 43 isomerase family domain is VIYGDGKGYESIYGGTFADENFRIKHSHAGIISMVNSGP underlined and the cyclophilin- DSNGSQFFITTVKASWLDGEHVVFGRVIQGMDTVYAIEG type peptidyl-prolyl cis-trans GAGTYNGKPRKKVIIADSGEIFKSKWDEER isomerase signature is in bold. 116 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence The amino acid sequence of SEQ ID 310. The conserved cyclophilin- MWATAEGGPPEVTLETSMGSFTVELYFKHAPRTSRNFIE type peptidyl-prolyl cis-trans LSRRGYYDNVKFHRIIKDFIVQGGDPTGTGRGGESIYGK 44 isomerase family domain is KFEDEIKPELKHTGAGILSMANAGPNTNGSQFFITLAPC underlined and the cyclophilin- PSLDGKHTIFGRVCRGMEIIKRLGSVQTDNNDRPIHDVK type peptidyl-prolyl cis-trans ILRTSVKD isomerase signature is in bold. The amino acid sequence of SEQ ID 311. The conserved cyclophilin- MSNPKVFFDILIGKMKAGRVVMELFADVTPKTAENFRAL type peptidyl-prolyl cis-trans CTGEKGIGRSGKPLHYKGSTFHRIIPNFMCQGGDFTRGN 45 isomerase family domain is GTGGESIYGMKFADENFKIKHTGLGVLSMANAGPDTNGS underlined and the cyclophilin- QFFICTEKTPWLDGKHVVFGKVIDGYNVVKEMESVGSDS type peptidyl-prolyl cis-trans GSTRETVAIEDCGQLSEN isomerase signature is in bold. MDDDFEFPASSNVENDDDDGMDMDDMGGDVPEEEDPVAS PAVLKVGEEREIGKAGFKKKLVKEGEGWETPSSGDEVEV HYTGTLLDGTKFDSSRDRGTPFKFKLGRGQVIKGWDEGI The amino acid sequence of SEQ ID K2MKGENAFTIPPELAYGESGSPPTIPPNATLQFDVE 312. The conserved FKBP-type LLSWSSVKDICKDGGILKKVLVEGEKWDNPKDLDEVFVK peptidylprolyl isomerase domains YEASLEDGTLISKSDGVEFTVGDGYFCAALAKAVKTMKK are underlined. The FEBP-type GEKVLLTVMPQYAFGETGRPASGDEAAVPPDASLQIMLE 46 peptidyl-prolyl cis-trans LVSWKTVSDVTKDKKVLKKTLKEGEGYERPNDGAAVQVR isomerase signature 1 is in bold LCGKLODGTVFVKEDDEEPFEFKIDEEQVDGLDRAVEN and the FKBP-type peptidyl-prolyl )oGGEVALVTXQPEYAmGPTESQQDLAVVPANSTVYYEV cis-trans isomerase signature 2 is ELLSFVKEKESWEMNNQEKIEAAARKKEEGNAAFKAGKY in bold/italics. The TPR repeat VRASKRYEKAVRFIEYDSSFSDEEKQQAKTLKNTCNLND is in italics. AACKLKLKDFKEAEKLCTKVLEGDGKNVKALYRRAQAYI QLVDLDLAEQDIKKALEIDPNNRDVKLEYKILKEKVREY NKRDAQFYGNMFAKMNKLEHSRTAGMGAKHEAAPMTIDS KA MAKPRCFMDISIGGELEGRIVGELYTDVAPKTAENFRAL The amino acid sequence of SEQ ID CTGEKGIGPHTGAPLHYKGVRFHRVIKGFMVQGGDISAG 313. The conserved cyclophilin- DGTGGESIYGLKFEDENFDLKHERKGMLSMANSGPNTNG type peptidyl-prolyl cis-trans SQFFITTTRTSHLDGKHVVFGRVVKGMGVVRSVEHVTTA isomerase family domain is AGDCPTVDVVIADCGEIPAGADDGIRNFFKDGDTYPDWP underlined and the cyclophilin- ADLDESPAELSWWMDAVDSIKAFGNGSYKKQDYKMALRK type peptidyl-prolyl cis-trans YRKALRYLDICWEKEGIDEVESSSLRKTKSQIFTNSSAC isomerase signature is in bold. KLKLCDLKGALLDAEFAVRDGENNAKAYERQGQAWMELN The TPR repeat is in bold/italics. DIDAAAESFSKALELEPRDVGIKKELNAAKKKIFERREQ EKRAYRKMFL MTKRKNPLVFLDVSIDGDPVERIVIELFADTVPRTAENF RSLCTGEKGVGKTTGKPLHYKGSYFHRI IKGFMAQGGDF SNGNGTGGESIYGGKFADENFKLAHDGPGLLSMANGGPN TNGSQFFIIFKRQPHLDGKHVVFGKVMRGMEVVKKIEQV GSANGKPLQPVKIVDCGETSETGTQDAVVEEKSKSATLK The amino acid sequence of SEQ ID AKKKRSARDSSSESRGKRRQRKSRKERTRKRRRYSSSDS 314. The conserved cyclophilin- YSSESSDSDSESYSSDTESESKSHSESSVSDSSSSDGRR type peptidyl-prolyl cis-trans RKRKSTKREKLRRQRGKDSRGEQKSARYDKKSRHKSADS 48 isomerase signature is underlined SSDSESESSSRSRSRDDKKKSSRRESARSVSKLKDAEAN and the cyclophilin-type peptidyl- SPENLESPRDREIKKVEDNSSHEEGEFSPKNDVQHNGHG prolyl cis-trans isomerase TDAKFGKYDDQRPRSDGSKKSSGSMRDSPKRLANSVPQG signature is in bold. SPSSSPAHKASEPSSSIRARNPSRSPAPDGNSKRIRKGR GFTERFSYARRYRTPSPEDVTYRPYHYGRRNFHDRRNDR YSNYRSYSERSPHRRYRSPPRGRSPPRYQRRRSRSRSVS RSPGGNKGRYRGRDQSRSRSRSRSRSPRRGSSPANKQLP LSERLKSRLGTRVDEHSPRRRRSSSRSHDSSRSRSPDEV PDKHEGKAAPVSPARSRSSSPSGRGLVSYGDASPDSGIN 117 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MSVLLVTSLGDIVVDLHADRCPLTCKNFLKLCRIKYYNG CVFHTVQKDFTAQTGbPTGTGTGGDSVYKFLYGDQARFF MDEIHLDLKHSKTGTVAMASGGENLNASQFYFTLRDDLD iLDGKHTVFGEVAEGLETLTRINEAYVDEKGRPYKNIRI The amino acid sequence of SEQ ID RHTYILODPF6DPPQLAELIPDASPEGKPKDEVVDDVRL 315. The conserved cyclophilin- EDDWVPLDEQLGPALEEAIRAKEAHSRAVVLESIGDIP type peptidyl-prolyl cis-trans DAEIKPPDNVLFVCKLNPVTDEDLHTXFSRFGTVVSAD isomerase signature is underlined. VXRDFKTGDSLCYAFIEENhDSCEQAYKaDNAL.DDR The CCHC type zinc finger is in RIKVDFSQSVAKLWSQFKRKDSQAAKGKGCFKCGAPDHM bold and the RNA-binding region ARECPGSSTRQPLSKYILKEDNAQRGGDDSRYEMVFDED RNP-1 (RNA recognition motif) is APESPSHGKKRRGRDDRDDRHKMSRQSVEETKFNDREGG in bold/italics. HSVDKHRQSERSKHREDEMSRDSKASEAGRRRIDRDFPE EERDGEKYTESHRDRDGKRGDYRDYRKGRADVQTHGDRR GDENYRRKSAAYDDGHEGAGAARRKDSNDDHHAYBRGYG DSRKGTRDEDDDGRGRRDDPSYRRSSGHKDSSNGGREEQ KYRSGETDGKSHPERSHRGDRRR MRPFNGGSSIACLVLVIAAGALAESQGPHLGSARVVFQT The amino acid sequence of SEQ ID NYGDIEFGFFPGVAPRTVDHIFKLVRLGCYNTNHFFRVD 316. The conserved cyclophilin- KGFVAQVADVANGRTAPMNDEQRTEAEKTIVGEFSNVKH 50 type peptidyl-prolyl cis-trans VRGILSMGRYDDPDSAQSSFSILLGDAPHLDGKYAIFGR isomerase signature is underlined. VTKGDETLKKLEQLPTRREGMFVMPTERITILSSYYYDT GAESCEEENSTLRRRLAASAVEVERQRMKCFP The amino acid sequence of SEQ ID 317. The conserved cyclophilin- MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRAL type peptidyl-prolyl cis-trans CTGEKGTGRSGKPLHFKGSSFHRVIPGMCQGGDFTRGN 51 isomerase signature is underlined GTGGESIYGEKFADENFVKKHTGPGILSMANAGPNTNGS and the cyclophilin-type peptidyl- QFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGS prolyl cis-trans isomerase GRTSKPVVIADSGQLA signature is in bold. The amino acid sequence of SEQ ID 318. The conserved FKBP-type MRFTSITSAIALFAAAASALDKPLDIKVDKAVECSRKTK peptidyl-prolyl cis-trans AGDKIQVHYRGTLEADGSEFDASYKRGQPLSFHVGKGQV 52 isomerase signature is underlined IKGWD-GLLDMCPGEKRTLTIQPDWGYGSRGMGPIPANS and the FKBP-type peptidyl-prolyl VLIFETELVEIAGVAREEL cis-trans isomerase signature 2 is in bold. The amino acid sequence of SEQ ID 319. The conserved cyclophilin- MGNPKVFFDMSIGGQPAGRIVMELYADVVPRTAENFRAL type peptidyl-prolyl cis-trans CTGEKGAGRSGKPLHYKGSSFHRVIPGFMCQGGDFTAGN 53 isomerase signature is underlined GTGGESIYGSKFADENFVKKHTGPGVLSMANAGPGTNGS andThe cyclophilin-type peptidyl- QFFVCTAKTEWLDGKHVVFGQIVDGMDVVKAIEKVGSSS prolyl cis-trans isomerase GRTSKPVVVADCGQLS signature 2 is in bold. The amino acid sequence of SEQ ID MAVATRSRWVAMSVAWILVLFGTLALIQNRLSDTGASSD 320. The conserved FKBP-type PKLVHRKVGEEKKEPDDLEEVTHKVFFDVEIGGKPAGRI peptidyl-prolyl cis-trans VMGLFGKTVPKTVENFRALCTGEKGIGKSGKPLNYKGSQ 54 isomerase signature is underlined FHRIIPKMQGGDFTLGDGRGGESIYGNKFSoPNFKLK and the Cyclophilin-type peptidyl- HTDAGRLSKMTNAGPDTNGSQFFITVTTSWLDGRHVVFG prolyl cis-trans isomerase KVLSGMDVVHKIEAEGGQSGQPKSIVVISDSGELDL signature is in bold. The amino acid sequence of SEQ ID MAVTLHTNLGDIKCEIFCDEVPKAAEHNARGILSMANSG 55 321. The conserved cyclophilin- PNTNGSQFFIAYAKQPHLNGLYTIFGRVIHGFEVLDIME type peptidyl-prolyl cis-trans KTQTGPGDRPLAEIRLNRVTIHANPLAG isomerase domain is underlined 118 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence The amino acid sequence of SEQ ID MAVATRSRWVAMSVAWILVLFGTLALIONRLSDTGASSD 322. The conserved FKBP-type PKLVHRKVGEEKKKPDDLEEVTHKVFFDVEIGGKPAGRI peptidyl-prolyl cis-trans VMGLFGKTVPKTVENFRALCTGEKGIGKSGKPLNYKGSQ 56 isomerase signature is underlined PHRIIPKFMIGGDFTLGDGRGGSIYGNKFSDENFKLK and the Cyclophilin-type peptidyl- HTDAGRLSMANAGPDTNGSQFFITTVTTSWLDGRHVVFG prolyl cis-trans isomerase KViSGMDVVHKIEAEGGQSGQPKSIVVISDSGELDL signature is in bold. The amino acid sequence of SEQ ID 323. The conserved cyclophilin- MGNPKVFFDMSIGGQPAGRIVMELYADVVPRTAENFRAL type peptidyl-prolyl cis-trans CTGEKGAGRSGKPLHYKGSSFHRVIPGFMCQGGDFTAGN 57 isomerase signature is underlined GTGGESIYGSKFADENFVKKHTGPGVLSMANAGPGTNGS andThe cyclophilin-type peptidyl- QFFVCTAKTEWLDGKHVVFGQIVDGMDVVKAIEKVGSSS prolyl cis-trans isomerase GRTSKPVVVADCGQLS signature 2 is in bold. MSPVAANAMEEAAEPEVPAPVTPSKDDADTDAAVSRFLG FCKSKLGLAEGNCVQSSTLLRKTAHVLRSSGTVIGTGTA EEAERYWFAFVLYTVRRVGERKAEDEQNGSDETEVPLSR ILKASVLNLIDFFKEIPQFVIKAGAIVSGIYGANWDSRL EAREMQTNYVHLCILCKFYKRICGEFFILNDAKDDMKSA DSSTSDPVIMYQPFGWLLFLALRIHALSRFKDLVSSTNA LVSVLAILIIHLPTRFRKFSISDSSQLVKRSEKGVDLVG SLAYRYDTSEDEIKRTLEKANNVIAEILGITPPPASECK AENLENVDTDGLIYFGNLMEETSLSSILSTLEKIYEDAT RNDSEFDERVFINDDDSLLVSGSLSGAAINLTGAKRKYD SFASPAKTITRPLSPSRSPASHINGIIGGTNLRITATPV The amino acid sequence of SEQ ID ATAMTTAKWLRTFVSPLPSKPSTDLQGFLASCDRDVTSD 324. The conserved A-box of the VIRRANIILEAIFPNSPIGERTVTGGLQNANLMDNMWAE 58 Retinoblastoma-associated protein QRRLEALKLYYRVLEAMCRAEAQILHSNNLTSLLTNERF is underlined and the B-box of the HRCMLACSAELVLATHKTVTMLFPAVLERTGITAFDLSK Retinoblastoma-associated protein VIESFVRHEETLPRELRRHLNTLEERLLENMVWERGSSM is in bold. YNSLVVARPALAPEINRLGLLPEPMPSLDAIALLINFSS SGLPQSPVQKHEASPGQNGDIRSPKRISTEYRSVLVERN FTSPVKDRLLALSNIKSKLPPPPLQSAFASPTRPHPGGG GETCAETAIHIFFSKITKLAAVRINAMLERLQLSQQIKE GVYCLFQQILSQRTNLFFNRHIDQVILCCFYGVAKINQI NLTFREIIYNYRKQPQCKPQVFRNVFVDWSTRRNGKAGN EHVDIISFYNEIFIPSVKPLLVELGPTGATTRTNRTSEV GNKNDAQCPGSPKISSFPTLPDMSPKKVSASHNVYVSPL RSSKMDASISHSSKSYYACVGESTHAYQSPSKDLVAINS RLNGNRKVRGTLNFDDVDAGLVSDSMVANSLYLQNGSSM SSSTAKSSEK MRPILMKGHERPLTFLEYNREGDLLFSCAKDHTPTVWFA DNGERLGTYRGHNGAVWCCDVSRDSMRLITGSADTTAKL WSVQNGTQLFTFNFDSPARSVDFSIGDKLAVITTDPFME The amino acid sequence of SEQ ID LPSAIHVKRIARDPADQASESVLVLRGHQGRIARAVWGP 59 325. The conserved G-protein beta LNKTIISAGEDAVIRIWDSETGKLLRESDKETGHKKAVT WD-40 repeat domains are SLMKSVDGSHFVTGSQDKSAKLWDIRTLTLIKTYVTERP underlined. VNAVTMSPLLDHVVLGGGQDASAVTMTDHRAGKFEAKFF DKILQEEIGGVKGHFGPINALAFNPDGKSFSSGGEDGYV RLHHFDPDYFNIKI MDKKRTVVPLVCHGHSRPVVDLFYSPITPDGiTLISASK DSSPMLRNGETGDWIGTFEGHKGAVWSCCLDTNALRAAS GSADFSAKLWDALSGDELHSFEHKHIVRSCAFSEDTHLL The amino acid sequence of SEQ ID LTGGVEKILRIFDLNRPDAPPREVDNSPGSIRTVAWLHS 60 326. The conserved G-protein beta DQTILSSCTDIGGVRLWDVRSGKIVQTLETKSPVTSSEV domain is underlined and the WD-40 SQDGRYITTADGSTVKFWDANHFGLVKSYNMPCNIESAS repeat domains are in bold LEPKLGNKFIAGGEDMWVHIFDFHTGEEIGCNKGHHGPV HCVRFSPGGESYASGSEDGTIIWQTGPANNVEGDANPS NGPVTGKAKVGADEVTRKVEDLQIGKEGKDWREG 119 WO 2005/065339 PCTIUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MAEGLILKGTMRAHTDMVTAIAIPIDNSDMVVTSSRDKS IILWHLTKEERVYGVPRRRLTGHSHFVQDVVLSSDGQFA LSGSWDGELRLWDLATGVSARRFVGHTKDVLSVAFSIDN The amino acid sequence of SEQ ID RQIVSASRDRTIKLWNTLGECKYTIQEGEAHTDWVSCVR 61. 327. The conserved G-protein beta FSPNTLQPTIVSASWDRTIKVWNLTNCKLRNTLAGHNGY WD-40 repeat domains are VNTVAVSPDGSLCASGGKDGVILLWDLAEGKRLYNLEAG underlined. AIIHSLCFSPNRYWLCAATENSIKIWDLESKSIVEDLRV DLKNEADKTDGTTTAASNKKVIYCTSLNWSADGSTLFSG YNDGVIRVWGTGRY MAEGLHLKGTMKAHTDMVTAIAVPIDNADMIVTSSRDKS IILWHLTKEDKVYGVPRRRLTGHSHFVQDVVLSSDGQFA LSGSWDGELRLWDLATGVSARRFVGHTEDVLSVAFSIDN 328. The conserved G-protein beta RQIVSASRDRTIKLWNTLGECKYTIQEGEAHNDWVSCVR 62 WD-40 re eat domains are FSPNTLQPTIVSASWDRTVKVWNLTNCKLRNTLQGHSGY ndereeado s VNTVAVSPDGSLCASGGkDGVILLWDLAEGKKLYSLEAG underlined. AIIHSLCFSPNRYWLCAATENSIKIWDLESKSIVEDLRV DLKNEADMSDGTTGAMSSNKKVIYCTSLNWSADGSTLFS GYNDGVIRVWGIGRY MAEGLHLKGTMKAHTDMVTAIAVPIDNADMIVTSSRDKS IILWHLTKEDKVYGVPRRRLTGHSHFVQDVVLSSDGQFA The amino acid sequence of SEQ ID LSGSWDGELRLWDLATGVSARRFVGHTKDVLSVAFSIDN 329. The conserved G-protein beta RQIVSASRDRTIULWNTLGECKYTIEGF.AHNDWVSCVR 63 WD-40 repeat domains are FSPNTLQPTIVSASWDRTVKVWNLTNCKLRNTLQGHSGY underlined and the Trp-Asp (WD) VNTVAVSPDGSLCASGGKDGVILLWDLAEGKKLYSLEAG repeats signature is in bold. AIIHSLCFSPNRYWLCAATENSIKIWDLESKSIVEDLRV DLKNEADMSDGTTGAMSSNKKVIYCTSLNWSADGSTLFS GYNDGVIRVWGIGRY MSGVPAPPFATTTPENGTMSSNSPAFHRDSDDDDDQGEV FLDDSDIIHEVAVDDEDLPDADDEADEAEEADDSLHIFT GHNGEVYSLACSPTDATLVATGAGDDKGFLWRIGHGDWA The amino acid sequence of SEQ ID VELQGHKDSISSLAFSLDGQLLASGSLDGVIQIWDVPSG 330The minacidseqed G of Sea I NLKGTLDGPGGGIEWIRWHPKGHIILAGSEDSTVWMWNA 64 330. The conserved G-protein beta DKMAYLNMFSGHGNSVTCGDFTPDGKTICTGSDDATLRI WD-40 repeat domains are WNPKSGENIHVVKGHPYHAEGLTSMAISSDSGLAITGAK underlined. DGSVRIVNISSGRVVSSLDAHADSVEFVGLALSSPWAAT GSLDOQKLIIWDLQHSSPRATCDHEDGVTCLSWVGASRFL ASGCVDGKVRVWDSLSGDCVRTFHGHSDAIQSLSVSANE EFLVSVSIDGTARVFEIAEFH MGTSQHQLSSCLQLLPRRRGNKNLIFRRTMASGGAAAVA PPPGYKPYRHLKTLTGHVAAVSCVKFSNDGTLLASASLD KTLIIWSSAALSLLHRLVGHSEGVSDLAWSSDSHYICSA The amino acid sequence of SEQ ID SDDRTLRIWSSRSPFDCLKTLRGHTDFVFCVNFNPQSSL 65 331. The conserved G-protein beta IVSGSFDETIRIWEVKTGRCLNVIRAHSMPVTSVHFNRD Wd-40 repeat domains are GSLIVS'GSHDGSCKIWDTKNGACLKTLIDDTVPAVSFAK underlined. FSPNGKFILVATLNDTLKLWNYATGKFLKIYTGHKNSVY CLTSTFNVTNGKYIVSGSEDRCICIWDLQGKNLIQKLEG HSDTVISVTCHPSENKIASAGLDSDRTVRIWLQDA MPSQKIETGHQDIVHDVAMDYYGKRVATASSDTTIKIIG VSNSSGSQHLASLSGHKGPVWQVAWAHPKFGSILASCSY The amino acid sequence of SEQ ID DGQVILWKEGNQNDWAQAHVFNDHKSSVNSIAWAPHELG 66 332. The conserved G-protein beta LCLACGSSDGNISVFTARPDGGWDTTRIEQAHPVGVTSV WD-40 repeat domains are SWAPSMAPGALVGSGLLDPVQKLASGGCDNTVKVWKLYN underlined. GTWKMDCFPALQMHSDWVRDVAWAPNLGLPKSTIASASQ DGTVVIWTVAKEGEQWQGKVLKDFKTPVWRVSWSLTGNL LAVADGNNNVTLWNEAVDGEWQQVTTVEP MKIAGLKSVENAHDESVWAAAWVPATESRPALLLTGSLD ETVKLWRPDELALERTNAGHFLGVVSVAAHPSGVIAASA The amino acid sequence of SEQ ID SIDSFVRVFDVDTNATIATLEAPPSEVWQMQFDPKGTTL 333. The conserved G-protein beta AVAGGGSASIKLWDTATWELNATLSIPRPEQPKPSEKGN 67 WD-40 repeat domains are KKFVLSVAWSPDGRRLACGSMDGTISIFDVARAKFLHHL underlined and the Trp-Asp (WD) EGHFMPVRSLVFSPVEPRLLFSASDDAHVHMYDSEGKSL repeats signature is in bold. VGStSGHASWVLSVDVSPDGAALATGSSDRTVRLWDLSM RAAVQTMSNHSDQVWGVAFRPMAGAGVRAGGRLASVSDD KSISLYDYS 120 WO 2005/065339 PCTJUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MEIDLGNLAFDVDFHPSEQLVASGLITGDLLLYRYGDGS SPEKLLEVRAHGESCRAVRFINDGKAILTGSPDCSILAT DVETGSVVARVENAHEAAVNRLVNLTESTIATGDDNGCI The amino acid sequence of SEQ ID KVWDTRQRSOCNTFSAHEDFISDMTFASDSMKLVVTSGD 334. The conserved G-protein beta GTLSVCNLRSNKVQTRSEFSEDELLSVVIMKNGRKVVCG 68 WD-40 repeat domains are TQSGTLLLYSWGFFKDCSDRFVDLSPSSVDALLKLDEDR underlined and the Trp-Asp (WD) IIAGTENGLISLIGILPNRIIQPIAEHSDHPIERLAFSH repeats signature is in bold. DKKFLGSISHDQTLKLWDLNDILGSEDSPSSQAAIDDSD SDEMDVDANPPDSSKGNKKKHSGKGNDVGNANNFFADLG D MSQQPSVILATASYDHTIRFWEAKSGRCYRTIQYPDSQV NRLEITPHKRYLAVAGNPSIRLFDVNSNTPQPVMSFDSH The amino acid sequence of SEQ ID TNNVMAVGFQYDGNWMYSGSEDGTVRIWDLRARGCQREY 335. The conserved G-protein beta ESRGAVNTVVLHPNQTELISGDQNGNIRVWDLTANSCSC 69 WD-40 repeat domains are ELVPEVDTAVRSLTVMWDGSLVVAANNNGTCYVWRLLRG underlined and the Trp-Asp (WD) SQTMTNFEPLHKLQAHNGYILKCLLSPEFCEPHRYLATA repeats signature is in bold. SSDHTVKIWNVEGFTLEKTLIGHQRWVWDCVFSVDGAYL ITASSDTTARLWSMSTGQDIRVYQGHHKATTCCALHDGA EGSPG MEDAMDMEVEVEVEAEEHSPSSSNPSGSSFRRFGLKNSI QTNFGSDYVFEITPKFDWSLMGVSLSSNAVKLYSPTTG_ YCGECRGHSDTVNGISFSGPSSPHVLHSCSSDGTIRAWD TRSFKEVSCISAGPSgEIFSFSFGGSSDSLLSAGCKSQI The amino acid sequence of SEQ ID LFWDWRNKKQVACLEDSHVDDVTQVCFVPHHQNKLISAS 70 336. The conserved G-protein beta VDGLICIFDTAGDINDDEHMESVINVGTSIGKVGIFGQT WD-40 repeat domains are FEKLWCLTHIETLSVWDWKEGTNEANFEDARKLASDSWS underlined. LDHIDYFVDCHSAEEGEGLWVIGGTNAGTLGYFPVKYKG GAAIGSPEAVLGGGHSDVVRSVLPMSGMAGTTSKTRGIF GWTGGEDGRLCCWLSDDSSATSRSWMSSNLVLKSSRSHH KKNRHQPY MSQHQEYPMEYAADDYDVGEVEDDMYFHERVMGDSDTDE DEEYDHLDNKITDTSAADARRGKDIQGIPWERLSVTREK YRRTRIEQYKNYENVPQSGESSEKDCKPTRKGGNYYEFW RNTRSVKSTILHFQLRNLVWSTTKHDVYLMSHFSIIHWS The amino acid sequence of SEQ ID SLTCKKTEVLDVYGHVAPREKHPGSLLEGFTQTQVSTLA 337. The conserved G-protein beta VRDKLLIAGGFQGELICKNLDRPGVSYCCRTTYDDNAIT domain is underlined and the WD-40 NAVEIYDYPSGAVHFMASNNDCGVRDFDMEKFELSRHFT repeat domains are in bold FPWPVNHTSLSPDGKLLVIVGDNPEGIVVDSQRGKTIRP LQGHLDFSFASAWHPDGHIFATGNQDKTCRIWDIRNLSK SVAVLKGNLGARSIRFTSDGRFbMAMPADFVHVYDVK SGYEKEQEIDFFGEISGVSFSPDTESLFVGVWDRTYGSL LQYNRCRNYSYLDSM MGASSDPNPDVSDEHQKRSEIYTYEAPWHIYAMNWSVRR DKKYRLAIASLLDHPAAAAAVPNRVEIVQLDDSTGEIRA DPNLSFDHPYPATKAAFVPDKDCQRADLLATSSDFLRIW The amino acid sequence of SEQ ID RIADDSSRVDLRSFLNGNKNSEFCRPLTSFDWNEAEPKR 72 338. The conserved G-protein beta IGTSSIDTTCTIWDIERETVDTQLIAHDKEVYDIAWGGV WD-40 repeat domains are SVFASVSADGSVRVFDLRDKEHSTIIYESSEPDTPLVRL underlined. GWNKQOPRYMATIIMDSAKVVVLDIRYPTMPVVELQRHQ ASVNAIAWAPHSSCHICTAGDDSQALIWDLSSMAQPVEG GLDPILAYTAGAEIEQLQWSSSQPDWVAIAFSLKLQ MRGGGGGGDATGWDEDAYRESVLKEREVQTRTVFRAAFA PSPSPSPSPDAVVVASSDGSVASYSISACLSDHRLQSLR FADAKSQNVLEAEPACFLQGHDGPAYDVKFYGEGEDSLL The amino acid sequence of SEQ ID LSCGDDGRIRGWMWRDITSSEAHDHSQGNSAKPVLDLVN 339. The conserved G-protein beta PQSRGPWGALSPIPENNALAVDVKRGSIYAAAGDSCAYC WD-40 repeat domains are WDVECGKIKTVFKGHSDYLHCIAARNSSSQIITGSEDGT underlined. ARIWDCRSGKCVQVIDPDKDHKKGFFASVSCLALDASES WLVCGRGRDLSVWSISASDCIAKISTNAPAQDVLFDDNQ ILLVGAEPLISRLDMNGAVLSQIHCAPQSVFSVSLHQSG VTAVGGYGGLVDVISQFGSHLCTFRCKCI 121 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MEAPIIDPLQGDFPEVIEEYLEHGIMKCIAFNRRGTLLA AGCTDGSCIIWDFETRGVAKELRDKECTAAITSVCWSKY GHRILVSASDKSLILWDVLSGEKIAHTTLQHTVLQACLH PGSSTPSICLACPFSSAPMIVDLNTGSTTALPVLTADVS NGATPLSRNKTSDTSVTYSPCNACFNKHGDLVYAGTSKG EILIIDHKNVRVCAIVLVSGGAVIKNVVFSRNGQYMLTN The amino acid sequence of SEQ ID SNDRLIRIYKNLLPPKDGLkMLDELNESFNESDDVEKLK 74 340. The conserved G-protein beta AIG KCLELLHEFQDSITRVQWKAPCFSGDGEWVIGGAA WD-40 repeat domains are SRGEHKIYIWDRAGHLVKILEGPKEALMDLAWHPVHPII underlined. ISVSLTGLVYIWAKDYTENWSAFAPDFKELEENEEYVER EDEFDLVPETEKVKGLDVHEDDEVDVLTVERDSVFSDSD MSQEELCFLPAVPCLDIPEQQDKCVGSCSKLPDGNHSGS PLSVEAGQNGNASNHNSSPLEPMENSTADDTDGVRLKRK RKPSEKGLELQAEKVKKPVKPLKSSGRLSKTNKPVIDPD SSNGVYGDDGSD MRGVSWPEDGNNPSTSSSSQRNQQQAHAPRAVSGHAASH PSASNIFKLLVQREVSPRSKHSSKKLWREASKCQPYPFQ QSCEAVRDVRQGLISWVESASLRHLSAKYCPLVPPPRST IAAAFSPDGKILASTHGDHTVKLIDSQTGSCLKVLRGHR RTPWVVRFHPLYPEILASGSLDHEVRLWDANTAECIGSR NFYRPIASIAFHARGELLAVASGHKLYIWHYNRRGETSS PTIVLRTQRSLBAVHFHPHAAPFLLTAEVNDLDSADSAM TLATSPGYLHYPPPTVYFADAHSHERSRLADELPLMPLP The amino acid sequence of SEQ ID LLMWPSFTRDDGRVPLQRIDGDVGLNGQQRVDSSSSVRL 75 341. The conserved G-protein beta WTYSTPSGQYELLLSPVESGNSPSMPEETGNNAFSSAVE WD-40 repeat domains are AEVSQSAMDTVEDMEVQPEERNTQFFSFSDPRFWELPLL underlined. HGWLVGQTQAGPRSVRQSSPGDIETQSAFGEVASVSPIT SGVMPVSMDPSRFGGRSGSRYRSPGSRGVHVTGPNNDGP RDENDPQSVVSKLRSELAASLAAAASTELPCTVKLRIWP HDVKDPCAQLDLESCRLTIPHAVLCSEMGAHFSPCGRFL AACVACVLPHLESDPGLHGQVNQDVTGVATSPTRHPISA HQIMYELRIYSLEEATFGIVLASRPVRAAHCLTSIQFSP TSEHLLLAYGRRHSSLLKSIVIDGENTVPIYTILEVYRV SDMELVRVLPSAEDEVNVACFHPSVGGGLIYGTKEGKLR ILHYDSSHGLNLKSSGFLDENVPEVQTYALEC MDSAVAIAALSLVVGAAIALLFFGNYFRKRRSEVVAMAE ADLQPHPKNPSRPPPQPAAKKVHAKSHAHGADKDKNKRH HPLDLNTLKGHGDSVTGLCFASDGRSLATACADGVVRVF The amino acid sequence of SEQ ID KLDDASNKSFKFLRINLPAGGHPTAVAFGDGVSSVIVAS 342 The conserved G-protein beta QHLSGCSLYMYGEEKPTNLDSNKQQTKLPMPEIKWEHHK 76 WD-40 repeat domains are VHEKAILTLSGAAANYDSGDGSTIIASCSEGTDIIIWH underlined and the Trp-Asp (WD) AKTGKILGNVDTNQLKNTMSAISPNGRFIAAAAFTADVK underlinadte isp (D bold. VWEIVYSKDGSVKGVTKVMQLKGHKSAVTWLCFTPNSEQ repeats signature is in bold. -IVTASKDGSIRIWNINVRYHLDEDTKTLKVFPIPLQDSS GTTLHYERLSLSPDGKILAATHGSMLQWLCIETGKVLDT AEKAHDGDITCMSWAPQSIPTGDKKVNVLATASGDKKVK LWAAPPLPS MEVEPKKASKTFPVKPKLKPKPRTPSGKTPESKYWSSFK TTHPLDNLSFSVPSLAFSPSPPHLLAAAHSATVSLFSPH RTTISSFSDVVSSLSFRSDGQLLAASDLSGLIqvFDVRS RT'PLRRLRSHARPVRFVRYPVLDKLHtVSGGDDALVKYW DVAGESVVSELRGHKDYVRCGDCSPADANCFVTGSYDHV The amino acid sequence of SEQ ID VKLWDVRVRDGNRAATEVNHGSPVQDVIFLPSGSLVATA 343. The conserved G-protein beta GGNSVKIWDLIGGGRMVYSMESHNKTVTSICVGTMGAQQ WD-40 repeat domains are SGEGVQLRILSVGLDGYMKVFDYSRMKVTHSMRFPAPL underlined. LSIGFSPDSNVRAIGTSNGILYVGKRKAKENAEGGANGI LGLGSVEEPRRRVLKPSFYRYFHRGQSEKPSEGDYLVMR PKKVKLAEHDKLLKKFQHENALISVLGGNDPEKVVAVME ELVARRALLKCVLNLDADELGLILTFLHKNSTVPRYSSL LLGLAKKVIDLRLEDIRASDALKGHIRNLKRSVDEEIRI QEGLQEIQGMVSPLLRIAGRR 122 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MQGGSSGVGYGLKYQARCISDVKADTDHTSFLTGTLSLK EENEVHLLRLSSGGTELICEGLFSHPSEIWDLSSCPFDQ RIFSTVFSTGESYGAAVWQIPELYGQLNSPQLEKIASLD The amino acid sequence of SEQ ID AHSRKISCVLWWPSGRHDKLVSIDEENIFLWGLDCSKKS 78 344. The conserved G-protein beta AQVSQESAGMLHNLSGGAWDPHDVNTVAATCESSIQFW WD-40 repeat domains are DLRTMKKANSLESVHARDLDYDMRKKHLLVTSEDESGVR underlined' VWDLRMPKAPIQEFPGHTHWTWAVRCNPDYEGLILSAGT DSAVNLWWSSTASSDELISERLIDSPTRKLDPLLHSYND YEDSVYGLAWSSREPWIFASLSYDGRVVVESVKPFLSRK MAEEEGSAELEQQLEEEFAVWKKNTPILYDLLISHALEW PSLTVHWAPLLPQPSSSAAAAAGDPSLAAHRLVLGTHTS DGAPNFLILADALLPSSESDHCGDDAVLPKVEISQKIRV The amino aciLd sequence of SEQ ID DGEVNRARFMPQNHNIVGAKTNGCEVYVFDCSKQAAKQH 34.The minaciseqed of Seta ID DGGFDPDLRLTGHDGEGYGLSWSPLKENYLLSASHDKKI 345. The conserved G-protein beta CLWDISAAAQDKVLGAMHVFEAHEGAVGDASWHSKNDNL WD-40 repeat domains are FGSAGDDCQLMIWDLRTNKAQQCVKAHEKEVNSVSNSY underlined. NDWILATASSDTTVGLFDMRKLTTPLHVFSSHEGEVLQV EWDPNHEAVLASSSEDRRVMVWDLNRIGDEQQEGDASDG PAELLFSHGGHKAKISDFSWNKNEPWVISSVAEDNSVQV WQMAESICGDDDDMQAMEGYI MGNYGEEDEDQYFDALEETASVSDRGSNSSDCCSSGSGL DENVLDSLGFEFWTKFPESVRARRNRFLMLTGLGIEANS VDKEDAFPPSCNEIEVYTCKVTRDDGAVQRSLDSYNCIS LLQSSTSIRSNQEVESLRGDSLLSSFRGRSKESDDLTEL CGMGCPESKRNAVSEFGSVSQGSIEELRRIVASSPLVHP LLHRKLEYERELIETKQKMGAGWLRKFGSATCISGROGD TWSDPDDLEITAGMKMRRVRAHSSKKKYKELSSLYAAQE FLAHEGSISTMKFSMDGQYLASAGEDTVVRVWKVTEEDR The amino acid sequence of SEQ ID SERVNVTVDPSCLYFALNESTQLASLNTNKEHIGKAKTF 346. The conserved G-protein beta QRSSDSSCVILPLKVFQITEKPWHEFKGHNGEVLDLSWS 80 WD-40 repeat domains are SKGYLLSSSTDKTVRLWRVGCDRCQRVYSHNDYVTCISF underlined. NPVNENFFISGSIDGKVRIWNVFGGQVVAYIDCREIVSA VCYRSDGKGAIVGTMTGNCLFYSIKDNHLMDAQVYLHG KKKSPGKRITGFQFPPNDPGKLMITSADSVIRVLSGLDV VCKLKGPRNSGGPMIATFTSDGKHVISASEDSNVYIWNY AGQDKTSSRVKKIWSCESFWSSNASVALPWCGIRTVPEA LAPPSRSEERRASCAENGENHHMLEEYFQKMPPYSPDCF SLSRGFFLELLPKGSATWPEEKLSDTSPPTVSSQAISKL EYKFLKSACHSVLSSAHMWGLVIVTAGWDGRIRTYHNYG LPVRS MDIDFKEYRLRCELRGHEDDVRGVCVCGDGSIGTSSRDR TVRLWAPSAGERREYVARVLLGHKSFVGPLAWVPPSEE LPEGGIVSGGMDTLVMAWDLRNGEAQTLKGHQLQVTGIV LDGGDIVSASVDCTLIRWKNGQLTEHWEAHKAPIQAVIR LPSGELVTGSSDTTLKLWRGKTCTQTFVGHTDTVRGLAV MPDLGILSASHDGSIRLWAVSGECLMEMVDHTSIVYSVD SHASGLIVSGSEDRFAKIWKDGVCFQSIEHPGCVWDVKF LEDGDIVTACSDGTIRIWTNQEDRMANSTELELFDLELS The amino acid sequence of SEQ ID SYKRSRKRVGGLKLEELPGLEALQVPGTSDGQTKVIREG 347. The conserved G-protein beta DNGVAYAWNSTELKWDKIGEVVDGPEDSMNRPALDGVQY 61 WD-40 repeat domains are DYVFDVDIGDGEPTRKLPYNRSDNPYDTADKWLLKENLP underlined. LSYRQQIVEFILANSGQRDFNLDPSFRDPYTGSSAYVPG APSQLAAKQARPTFKHIPKKGMLVFDAAQFDGILKKINE FNNTLLSNQEKKNLSLTDIEISRLGAVVKILKDTSHYHS SKFADADFDLMLKLLESWPYEMMFPVIDIFRMVILHPDG ADGLLRHQEDKKDVLMESIKRATGNPSVPANFLTSIRAV TNLFKNSAYYSWLQKHRSEMLDAFSSCSSSSNKNLOLSY ATLLLNYAVLLIEKKDEEGQSQVLSAALELAENESLEVD ARYRALVAIGSLMLDGLVKRIALDFDVEHIAKAARTSKE AKIAEVGADIELLIKQS 123 WO 2005/065339 PCT/US2004/043804 Entry sequence Description Annotated Peptide Sequence MEFTEAYKQSGPCCFSPNARFIAVAVDYRLVIRDTLSLK VVQLFSCLDKISYIEWALDSEYILCGLYKRPMIQAWSLI QPEWTCKIDEGPAGIAYARWSPDSRHILTTSDFQLRLTV WSLVNTACVHVQWPKHASKGVSFTRDGKFAAICTRHDCK The amino acid sequence of SEQ ID DYINLLSCHNWEIMGVFAVDTLDLADIQWSPDDSAIVIW 82 348. The conserved G-protein beta DSPLEYKVLVYSPDGRCLFKYQAYESGLGVKSVSWSPCG domain is underlined and the WD-40 QFIAVGSYDQMLRVLSHLTWKTFAEFTHLSNVRAPCCAA repeat domains are in bold IFKEVDEPLQIDMSELSLSDDYMQGNSGDAPEGHYRVRY DVTEVPITLPCQKPPADRPNPKQGIGLMSWSNDSQYICT RNDSMPTILWIWDMRHLELAAILVQKDPIRAAVWDPTGT RLVLCTGSSHLYMWTPSGAYCVSVPLSQFNITDLKWNSD GSCLLLKDKESFCCAAAPLPPDESSDYSSDD MATIAALDDDMVRSMSIGAVFSDFVGKLNSLDFHRKDDI LVTAGEDDSVRLYDIANARLLKTTFHKKHGTDRVCFTHH PNSLICSSTKNLDTGESLRYISMYDNRSLRYFKGHKQRV The amino acid sequence of SEQ ID VSLCMSPINDSFMSGSLDHSVRMWDLRVNACQGILRLRG 83 349. The conserved C-protein beta RPTVAYDQQGLVFAVAMEGGAIKLFDSRSYDKGPFDAFL WD-40 repeat domains are VGGDTSEVCDIKFSNDGKSVLLSTTNNNIYVLDAYAGDK underlined. QCGFNLEPSPSTPIEASFSPDGQYVVSGSGDGTLHAWNI SRRNEVACWNSHIGVASCLKWAPRRAMFVAASTVLTFWI PNSEPELASAKGEAGVPPEQV MSVAELKERHRAATETVNSLRERLKQKRVQLLDTDVAGY ARTQGKTPVTFGATDLVCCRTLQGHTGKVYSLDWTPERN The amino acid sequence of SEQ ID RIVSVSQDGRFIVWNALTSQKTHAIRLPCAWVMTCAFAP 350The minacidseqed G of Sea I NGQSVACGGLDSVCSIFNLNSPVDRDGNLPVSRMLSGHK 84 350. The conserved -protein beta GYVSSCQYVPDGDAHLITGSGDQTCVLWDITTGLRTSVF 4 WD-40 repeat domains are GEFQSGHTADVLSVSINGSSPRIFVSGSCDSTARMWDT underlined and the beta G-protein RVASRAVRTYHGHEGDVNAVKFFPDGNRFGTGSDDGTCR (transducin) is in bold. LFDIRTGRELQVYYQQRGIDEIPHVTSIAFSISGRLLIA GYSNGDCFVWDTLLAQVVLNLGSLQNSHEGRISCLGVSA DCSALCTGSWDTNLKIWAFGGIRRVT MKKRPRGASLDQAVVDIRRREVGGLSGLSFARRLAASEG LVLRLDIYNKLKGHRGCVNTVGFNLDGDIVISGSDDRHV KLWDWQTGKVKLSFDSGHLSNVFQAKIMWYTDDRSIVTC AADGQARRAQILEGGQVQTMLLAKHRGRAMKAIDPGSP HIVTTCGEDGLVQRLDLRSNTARELFTCREVYGTHVEVV The amino acid sequence of SEQ ID LIADPRNPNLFVIGGSDEYARVDIRNYKWNGSHN 85 351. The conserved C-protein beta FGRSANYFCPSHLIGEAYVGITGLAFSCQSELLVSYNDE domain is underlined and the WD-40 SIYLFTQEMGLGPDPLSASTKSVDSNSSEVTSPTAVNVD repeat domains are in bold DNVTPQVYKGHRNCETVKCVGFFGPKCEYVVSGSDCGRI FIWEKKGGQLIRVMAADKHVVNCIEPHPHIPALASSGIE NDIKIWTPKAIERATLPMNVEQLKPKARGWMNRISSPRQ LLLQLYSLERWPEHGGETSSGLAAGQEELTELFFALSAN GNGSPDGGGDPSGPLL MSpRGYKLQEFVAHSSNVNCLSIGKKACRLFLTGGDDCK VNLWAIGKPNSLMSLCGHTNAVESVAFDSAEVLVLAGAS SGVIKLWDVEEAKLVRGLTGHRSNCTAMEFHPFGEFFAS GSTDTNLKIWDIRKKGCIHTYKGHTRGISTIRFSPDGRW VVSGGNDNVVKVWDLTAGKLLHDFKFHENHIRSIDFHPL EFLLATGSADRTVKFWDLETFELIGSSRPEAAGVRAIAF HPDGRTLFCGLEDSLKVYSWEPVICHDGVDMGWSTLADL CIHDGKLLGCSYYQSSVGVWVADASLIEPYGTNVKPQQK DSGDDEIEHQESRPSAKVGTTIRSTSIMRCASPDYETKD The amino acid sequence of SEQ IDI IKNIYVDTASGNPVSSQRVGTTNFAKVTQPLDFNDTPNL 352. The conserved G-protein beta TLRRQGLVTETPDGLSGHVPSKSITQPKVVSRDSPDGKD 86 WD-40 repeat domains are SSRRESITFSRTKPGMLLRPAHSRRPSSTKYDVDRLSAC underlined and the Trp-Asp (WD) AEIGVLSSAKSGSESLVDSFLNIKVAPEDGARNGCEDNH repeats signature is in bold. SSVKNVSVESEKVLPLQTPKTEKCDQTVGFKEEINSVKF VNGVAVVPGRTRTLVEKFEKREKLNSTEDQTINTPENPT LDKTPPPSLAENEEKSDRLNIVERKATRMSSHMVTAEDR TPVTLVGSPEDQSTVMAPQRELPADESSKTPPLPVEDLE IHHGSNVSEDKATILSSQTVSEEDSKRSTLIRNFRRRDR FKSTEGRSPVMATORKLPTDESGKTSSLPMEDLEIKGGL NVSEDKATSFSSRAPPREDRAHSALVRNVRKRDKFKSTN DTITVMVHQRGLSTDEASTVSVERVERRQLSNNVENPLN NLPPHSVPPTTTRGEPQYVGSESDSVNHEDVTELLLGNH EVFLSTLRSRLTKLQVV 124 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MSTFLTGTALSNPNPNKSYEVVQPPNDSVSSLSFNPKAN FLVATSWDNQVRCWEIVRSGTSLGTTPKASISHDQPVLC STWKDDGTTVFSGGCDKQVKMWPLSGGQPMTVAMHDAPI The amino acid sequence of SEQ ID KEISWIPEMNLLVTGSWDKTLRYWDTRQANPVHIQQLPE 87 353. The conserved G-protein beta RCYAtTVRHPLMVVGTADRNLIIYNLQSPQTEFKRISSP WD-40 repeat domains are LKYQTRCLAAFPDQQGFLVGSIEGRVGVHHLDDSQQSKN underlined. FTFKCHREGSEIYSVNSLNFHPVHHTFATAGSDGAFNFW DKDSKQRLKAMSRCSQPIPCSTFNNDGSIFAYSACYDWS KGAENHNPATAKTYIFLHLPQESEVKGKPRLGTTGRK MEVEAQQRDVNNVMCQLVDPEGTTLGPPMYLPQDVGPQQ LQQMVNKLLSNEDKLPYTFYISDQELVVPLESYLQKNKV SVEKVLSIVYQPQAIFRIRPVNRCSATIAGHSEAVLSVA FSPDGKQLASGSGDTTVRLWDLSTQTPMFTCKGHKNWVL The amino acid sequence of SEQ ID SIAWSPDGKHLVSGSKAGEIQCWDPLTGQPSGNPLVGHK 354. The conserved G-protein beta KWITGISWEPVHLSSPCRRFVSSSKDGDARIWDVTLRRC 88 WD-4C repeat domains are VICLSGHTLAVTCVKWGGDGVIYTGSQDCTIKVWETSQG underlined and the Trp-Asp (WD) KLIRELK'GHGHWVNSLALSTEYVLRTGAFDHTGKQYSSA repeats signatures are in bold. EEMKQVALERYKKMKGNAPERLVSGSDDFTMFLWEPSVS KHPKTRMTGHQQLVNHVYFSPDGQWVASASFDKSVLWN GITGKFVAAFRGHVGPVYQI'SWSADSRLLLSGSHDSTLK IWDIRTKKLKPDIPGHADEVFAVDWSPDGEKV/SGGKDK VLKLWMG MDAGSAHSSSNMKTQSRSPLQEQFLORRNSRENLDRFIP NRSAMDFDYAHYMLTEGRKGKENPAVSSPSREAYRKQLA ETLNMNRTRILAFKNKPPTPVELIPHELTSAQPAKPTKT RRYIPQTSERTLDAPDLLDDYYLNLLDWGSSNVLSIALG The amino acid sequence of SEQ ID NTVYLWNASDGSTSELVTIDDETGPVTSVSWAPDGRHIA 355. The conserved G-protein beta VGLNNSDVQLWDSADNRLLRTLRGGHRSRVGSLAWNNHI 89 WD-40 repeat domains are LTTGGMDGLIVNNDVRVRSHIVDTYRGHTQEVCGLKWSA underlined. SGQQLASGGNDNILHIWDRSTASSNSPTQWLHRLEEHTA AVKALAWCPFQGNLLASGGGGGDRTIKFWNTHTGACLNS VDTGSQVCALLWNKNERELLSSHGFTQNQLTLWKYPSMV KIAELTGHTSRVLFMAQSPDGCTVASAAGDETLRFWNVF GVPEVAKPAPKANPEPFAHLNRIR MEEAIPFKNLPSREYQGHKKKVHSVAWNCTGTKLASGSV DQTARVWHIEPHGHGKVKDIELKGHTDSVDQLCWDPKHA The amino acid sequence of SEQ ID DLIATASGDKTVRLWDARSGKCSQQAELSGENINITYKP 356. The conserved G-protein beta DGTHVAVGNRDDELTILDVRKFKPIHKRKFNYEVNEIAW 90 WD-40 repeat domains are NMSGEMFFLTTGNGTVEVLAYPSLRPVDTLMAHTAGCYC underlined and the Trp-Asp (WD) IAIDPVGRYFAVGSADSLVSLWDISEMLCVRTFTKLEWP repeats signature is in bold. VRTISFNHTGDYVASASEDLFIDISNVQTGRTVHQIPCR AAMNSVEWNPKYNLLAYAGDDKNKYQADEGVFRIFGFES A MGKDEEEMRGEIEERLINEEYKVWKNTPFLYDLVITHA LEWPSLTVEWLPDREEPPGKDYSVQKLVLGTHTSENEPN YLMLAQVQLPLEDAENDARHYDDDRADVGGFGCANGKVQ The amino acid sequence of SEQ ID IIQQINHDGEVNRARYMPQNSFIIATKTVSAEVYVFDYS 357. The conserved G-protein beta KHPSKPPLDGACSPDLRLRGHSTEGYGLSWSKFKQGHLL 91 357. The oeve Gre SGSDDAQICLWDINATPKNKSLDAMQIFKVHEGVVEDVA WD-40 repeat domains are WHLRHEYLFGSVGDDQYLLIWDLRTPSVTKPVQSVVAHQ underlined. SEVNCLAFNPFNEWVVATGSTDKTVKLFDLRKISTALHT FDAHKEEVF'QVGWNPKNETILASCCLGRRLMVWDLSRID EEQTPEDAEDGPPELLFIHGGHTSKISDFSWNTCEDWVV ASVAEDNILQIWQMAENIYHDEDDVPGEESNKGS 125 WO 2005/065339 PCT/US2004/043804 Entry sequence Description Annotated Peptide Sequence MMRGFSCTEDGDAPSTSSTSPPPPPPPPHRQQMQAPRAS SSSSGQPTSRRSTGNVFKLLARREVSPRSKMSLKKFWGE ASECQLCPFQQSYEAVRDVRRSLISWVEAFSLQHLSAKY CPLMPPPRSTIAAAFSPDGKILASTHGDHTVKLIDSQTG SCLKVLRGHRRTPWVVRFHPLYPEILASGSLDHEVHLWD ANTAECIGSRNFYRPIASIAFHAQGDLLAVASGHKLYIW HYNRSGETSSPTIVLRTPRSLPAVHFHPHAAPFLLTAEV NDLDLTDSAMTLATSPGYLHYPPPTIYLADAHSNERSRL The amino acid sequence of SEQ ID EDELPLMPSPLLMWPSFTRDDGRATLPHIGGDVGLSGQQ 359. The conserved G-protein beta RVDSLSSGQYEFHPSPIEPSSSTSMHEEMGTDPFSSVRE 92 WD-40 repeat domains are SEVTQSAMNIVDNTEVQPEERSTYSFSFSDPRFWELPSV underlined. YGWLVGQTQAAPRTAPSPGALETASALGEVASVSPVRSE FMPGGMDQPRLGGRSGSGCRSSGSRMMRTAGLNDHPHDE NYPOSVVSKLRSELEASLAAAASTELPCTVKLRVWPYDM KDPCALFRSESCRLTIPHAVLCSEMGAHFSPCGRFFAAC VACVLPQLEADPVLHGQVDPDVTGVATSPTRHPVSAYQI MYELRIYSLEEATFGMVLASRSIRAAHCLTSIQFSPTSE HLLLAYGRRHNSLLKSIVIDGENTVPIYSILEVYRVSDM ELVRVLPSAEDEVNVACFHPSVGGGLVYGTKEGKLRILQ IDSSGGLNPKSTGFLDENMAEVPTYALEC MGEGDLPRTEAGVLRGHEGAVLAARFNGDGNYCLSCGKD RTIRLWNPHRGIHIKTYKSHGREVRDVHCTSDNSKLISC The amino acid sequence of SEQ ID GGDRQIFYWDVSTGRVIRRFRGHDSEVNAVKFNDYASVV 359. The conserved G-protein beta VSAGYDRSVRAWDCRSHSTEPIQIINTFQDSVMSVCLTK WD-40 repeat domains are TEIIGGSVDGTVRTFDIRIGREISDDLGQPVNCISMSND underlined. GNCILASCLDSTLRLVDRSAGELLQEYKGHTCKSYKLDC CLTNTDAHVAGGSEDGYVFFWDLVDASVISKFRAHSSVV TSVSYHPKEDCMITASVDGTIKVWKT MACIKGVGRSASVAMAPDGGYLATGTMAGTVDLSFSSSA SLEIFGLDFQSDDRDLPLIAESPSSERNRLSWGKNGSG SDEFSLGLIAGGLVDGTIGLWNPLSLIRSEAGDKAIVGH LSRHKGPVRGLEFNVIAPNLLASGADDGEICIWDLAAPR EPSHFPPLRGSGSAAQGEISFLSWNSKVQHILASTSYNG TTVVWDLKKQKPVISFSDSVRRRCSVLQWNPDLATQLVV ASDEDSSPTLRLWDMRNIMSPVKEFAGHTRGVIAMSWCP NDSSYLVTCAKDNRTICWDTVTGEIVCELPAGSNWNFDV HWYPKIPGVISASSFDGKIGIYNVEGCSRYGVRENEFGA ATLRAPKWFKRPVGASFGFGGKVVSFHTRSTGGPSVNSS EVFVHDIITEQTLVSRSSEFEAAIQSGDRPSLRALCEKK SQHCESTDDQETWGFLKVLLEDDGTARSKLLAHLGFDIP The amino acid sequence of SEQ ID TETNDGSQEDLSQQVNALGLEDVTADKVVQEDNNESMVF 94 360. The conserved a-protein beta PTDNGEDFFNNLPSPRADTPVSTSADGFPTVNAAVEPSQ WD-40 repeat domains are DEVDGLEESSDPSFDDSVORALVVGDYKAAVALCMSANK underlined LADALVIAHVGGASLWESTRDKYLKMSRLPYLKVVFAMV NNDLQSLVDTRPLKFWKETLAILCSFAQGEEWAMLCNSL ASKLMAAGNMLAATLCFICAGNIDKTVEIWSRSLATEHD GMSYMDLLQDLMEKTIVLALASGQKQFSASVCKLVEKYA EILASQGLLTTAMDYLKLLGTDDLSPELAVLRDRIAFSV EAEKGANISAFNGSQDPRGAVYGVDQSNYGMVDTSQHYY PEAAQPQVPHTVPGSPYGENYQQPFGSSFGKGYNTPMQY QAPSQASMFVPSEPPQNAQPSFVPTPVTSQPTTRSQFIP APPLALRNPEQYQQPTLGSHLYPGSVNPTFQPLPHAPGP VAPVPPQVSSVPGQNMPQAVAPTQMRGFMPVTNPGVVQN PGPISMQPATPIESAAAQPVVSPAAPPPTVQTADTSNVP APQKPVIATL MKERGKGAGRSVDERYTOWKSLVPVLYDWLANHNLVWPS LSCRWGPQLEQATYKNRQRLYLSEQTDGSVPNTLVIANV EVVKPRVAAAEHISQFNEEARSPFVKKFKTIIHPGEVNR IRELPQNSKIVATHTDSPDVLIWDVETQPNRHAVLGAST The amino acid sequence of SEQ ID SRPDLILTGHKDNAEFALAMSPTEPFVLSGGKDRYVVLW 361. The conserved G-protein beta SIQDHISTLAADPGSAKSPGSAGTNNKQSSKAAGGNDKT WD-40 repeat domains are GDSPSIEPRGVYLGHGDTVEDVTFCPSSAQEFCSVGDDS underlined. CLILWDARTGSSPAIKVEKAHHADLHCVDWNPHDVNLIL TGSADNTVRMFDRRNLTSGGVGSPVHTFEGHNAAVLCVQ WSPDKSSVFGSSAEDGILNIWDHEKIGRKIETVGSKVPN SPPGLFFRHAGHRDKVVDFHWNSSDPWTIVSVSDDGEST GGGGTLQIWRMIDLIYRPEEEVLAELDKFKSHILSCTS 126 WO 2005/065339 PCTIUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MAKIAPGCEPVAGTLTPSKKREYRVTNRLQEGKRPLYAV VFNFIDSRYFNVFATVGGNRVTVYQCLEGGVIAVLSYI DEDKDESFYTVSWACNIDRTPFVVAGGINGIIRVIDAGN The amino acid sequence of SEQ ID EKIHRSFVGHGDSINEIRTQPLNPSLIVASKDESVRLW 362. The conserved G-protein beta NVHTGICILIFAGAGGHRNEVLSVDFHPSDKYRIASCGM 96 WD-40 repeat domains are DNTVKIWSMKEFWTYVEKSFTWTDLPSKFPTKYVQFPVF underlined and the Trp-Asp (WD) IAPVHSNYVDCNRWLGDFVLSKSVDNEIVLWEPKMKEQS repeats signature is in bold. PGEGSVDILQKYPVPECDIWFIKFSCDFHYHSIAIGNRE GKIYVWELQSSPPVLIAKLSHPQSKSPIRQTAMSFDGST ILSCCEDGTIWRWDAITASTS MNTAMHFGAGWRSIAEMGYTMSRLEIEPESCEDEKSLDG VGNSQGPNELPRCLDHELAHLTNLKSRPHEHLIRDFPGR PALPVSTVKMLAGRECNYSRRGRFSSADCCHMILSRYVPV NGPSPLDQMNSRAYVSQFSADGSLFVAGFQGSHIRIYNV The amino acid sequence of SEQ ID DKGWKCQKNILTKSLRWTITDTSLSPDQRYLVYASMSPI 36The mincdsequned G ofn Sea VHIVDIGSAAMDSLANITEIHEGLDFSADSGPYSFGIFS 97363. The conserved G-protein beta VKFSTDGREVVAGSSDDSIYVYDLVANKLSLRIPAHESD WD-40 repeat domains are VNTVCFADESGHIIYSGSDDTYCKVWDRRCLSARNKPAG underlined. VLMGHLEGITFIDSRGDGRYFISNGKDQTIKLWDIRKMG SDICRRGFRNFEWDYRWMDYPPR.ARDSKHPFDLSVATYK GHSVLRTLIRCYFSPVHSTGOKYIYTGSHDSCVYIYDVV TGAQVAALKHHKSPVRDCSWHPEYPMIVSSSWDGDIVKW EFFGNGET'EIPAMKKRIRRRHLY MEPQPQAPKKRGRKPKPKEDKKEEQLHQPPPPPPPQQQA APAPAPAATRSSTSGSAGGRDRRPQQQHAVDEKYARWKS LVPVLYDWLANHNLLWPSLSCRWGPQLEQATYKNRQRLY ISEQTDGSVPNTLVIANCEVVKPRVAAAEHVSQFNEEAR SPFIRKYKTIIHPGEVNRVRELPQNPNIVATHTDSPDVL The amino acid sequence of SEQ ID IWDVESQPNRHAVYGATASRPNLILTGHQENAEFALAMC 98 364. The conserved G-protein beta PAEPFVLSGGKDKTVVLWSIQDHITASATDQTTNKSPGS WD-40 repeat domains are GGSIIKKTGEGNEETGNGPSVGPRGIYCGHEDTVEDVAF underlined. CPSTAQEFCSVGDDSCLILWDARVGTNPVAKVEKAHNGD LHCVDWNPHDNNLILTGSADNSVNMFDRRNLTSNGVGSP VYKFEGHKAAVLCVQWSPDKPSVFGSSAEDGLLNIWDYE RVDKKVDRAPNAPAGLFFQHAGHRDKIVDFHWNAADPWT MVSVSDDCDTAGGGGTLQIWRMSDLIYRPEEEVLAELEN FKAHVLECSKA MGIFEPYRAVGYITTGVPFSVQRLGTETFVTVSVGKAFQ VYNCAKLSLVLVGPQLPKKIRALASYREYTFAAYGSDIG IFKRAHQLATWSGHTAKVCLLLLFGEHILSVDVDGNAYI WAFKGMNYNLSPVGHILLDSNFTPSCIMRPDTYLNKVIL GSQEGPLQLWNISTKTKLYEFKGWNSSVSSCVSSPALDV VAVGCADGKIHVHNIRYDEELVTFSHSMRGSVTALSFST DGQPLLASGSSSGVVSIWNLDKRRLQSVIRDAHDGSIIS LHFFANEPVLMSSSADNSIKMWIFDTSDGDPRLLRFRSG HSAPPLCIRFYANGRHILSAGQDRAFRLFSVVQDQQSRE The amino acid sequence of SEQ ID LSQRHVSKRAKKLKLKEEEIKLKPVIAFDVAEIRERDWC 365. The conserved G-protein beta NVVTSHMDTPQAYVWRLQNFVIGEHILRPCPNKPTPVKA WD-40 repeat domains are CMISACGNFAILGTAGGWIERFNLQSGISRGSYIDQLEG 99 underlined and the Trp-Asp (ND) TNSAHDGEVVGVACDATNTLMISAGYAGDIKVWDFKGRE repeats signature is in bold. The LKSRWEIGSSLVKISYHRLNGLLATVADDFIIRLFDAVA Utp21 specific ND40 associated LRMVRKFEGHTDRITDLCFSEDGKWLLSSSMDGSLRIWD putative domain is in italics. IIIAARQVDAVFVDVSITALSLSPNMDILATTHVDQNGVF LWVNQSMFSGDSDINLYASGKEVVTVKLPSVSSVEGSQV EESNEPTIRHSESKDVPSFRPSLEQIPDLVTLSLLPKSQ WQSLINLDIIKVRNKPVEPPKKPEKAPFFLPSIPSLSGE ILFKPSEMSDKGDMKADEDKSKITPEVPSSRFLQLLHSC SEAKNFSPFTTYIKGLSPSTLDLELRMLQIIDDDAVDAD ADDPQDVDKRQELLSIELLMDYFIHEISCRSNFEFVQAL VRLFLXIHGETIRRQSVLQNKAKVLLETQCSVWQRVDKL FQGARCIVAFLSNSQF 127 WO 2005/065339 PCTIUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MEETKVTCGSWIRRPENVNLAVLGRSPRRRGSAALEIFA FDPKSTSLSSSPLVAHVIEEIEGDPLAIAVHPNGEDIVC FASSGSCLSFELSGQESNLKLLTKELPPLRGIGPQKCMA The amino acid sequence of SEQ ID FSVDGSRFATGGVDGRLRILEWPSLRIILDEPKAHKSIR 100 366. The conserved G-protein beta DLDFSLDSEFLATTSTDGSARIWKAEDGLPCTTLTRRSD WD-40 repeat domains are EKIELCRFSKDGTKPFLFCTVQRGDKAVTGVWDISTWNK underlined. XGHKRLLRKPAVVMSISLDGKYLAQGSKDGDMCVVEVKK MEVSHWSKRLHLGTSLTSLEFCPIERVVITTSDEWGVLV TKLNVPADWKAWQVYLLLLGLFLASLVAFYIFYENSDSF WGFPLGKDQPARPKIGSVLGDPKSADDQNMWGEFGPLDM MADPVEHQHQQHQQHQLQQQRRRGWRIQGGQYLGEISAL CFLHLPPPPLSLSSSPVLSLSSGLDSESRDRPACSFRFP SAGSGSQVSLFDLASGAMVRTFYVFRGIRVHGIVLGCAD FPGGSSSSSSTLDYVIAVYGERRVKLFRLSVRLGRGAGE GSGTVLSADLELVSAAPRLSHWVMDVRFLKENGTSEDEL QRCLTVAIGCSDNSIRLWDVDKCSFVLAVSSPERCLLYS MRLWGDNLEDLQVASGTIYNEILIWKVVPNHDAPSSNEL TEEGLTNSCAGNSVHECLRYEAYHICRLVGHEGSIFRIA WSSDGSKLVSVSDDRSARIWEVHCKVQYSEDAGEVGLLF GHSARVWDCYISDNLIVTAGEDCSCRVWGLDGQQHDVIR EHIGRGIWRCLYDPWSSLLVTGGFDSAIKVHKLDASLAE The amino acid sequence of SEQ ID ASAKQSNIKDLSDGTELFTTHLPNSSGHSGHMDSKSEYV 367. The conserved G-protein beta RCLSFSCEDVMYIATNHGYLYHAKLCNDGDLRWTELAQV 101 WD-40 repeat domains are SNEVQIICMELLPSNPYDPRIDADDWVAVGDGKGWTTVV underined.RVVKNSDSPKVSTSFSWAAEMDRQLLGIHWCKSLGHRFI underlined. FTADPRGALKLWRFFEVSQSSSLYPENSPRISLIAEFKS DLGARIMCLDVAFESELLICGDLRGNLVLFPLLKDLLLD TFVVSAAKISPVNHFKGAHGISAVSSISVAHMSFNHIEL RSTGADGCICYMEYDKGLQSLNFVGMKQVKELSMIESVS TENESTGYRTSGSYASGFASTDFIIWNLVTEAKVLQVSC GGWRRPaSYYLGDVPEMKNCFAYVKDDIIYIRRHWIKDS IKDKILPQNLRLQFHGREVHSLCFVTGDFQLRKNKQSSWI VTGCEDGTVRLTRYTQCTDNWSSSKLLGEHVGGSAVRSI CCVSNIHTTSSGTSVSDVKGIENLPKDIKGTLMEDECNP SLLISVGAKRVLTSWLLRRRKQDGKEDDVTDLQEAENSS LPSSAGSSTFSFQWLSTDMPVKYSVPSKKSGSIKKLIGV SDTNVRCKSL MIPYKLSATLSNHSSDVRAVASPSDDLILSASRDSTAISW FRQSPSSFTPASVIRAGSRFVNAIAYLPPTPRAPQGYAV VGGQDTVVNVFALGPGDKEEPEYTLVGHTDNVCALSVNS DDTIISGSWDKTAKVWKDFALVYDLKGHQQSVWAVLAMN EKEFLTASADRTIKYWVQHKTMQTYEGHRDAVRGLALIP DIGFASCSNDSEIRVWTMGGDVVYTLSGHTSFVYSLSVL PNGDLVSAGEDRSVRVWRDGECSQVIVHPAISVWAVSTM PNGDIISGSSDGVVRVFSESEKRWATASELKALEDQIAS The amino acid sequence of SEQ ID QSLPSQOVGDVKKTDLPGPEALSVPGKKAGEVKMIRSGD 368. The conserved G-protein beta VVEAHQWDSLASSWQKIGEVVDAIGSGRKOLHDGKEYDY 102 WD-40 re eat domains are VFDVDIQEGAPPLKLPYNVSENPYTAAQRFLEQNDLPTG d0reeado s YLDQVVKFIEQNTAGVKLGNDGYVDPFTGASRYQPATQS underlined. TSNTASSSYMDPFTGGSRHIAESAPSNVPQGSHATGIIP FSKPIFFKLANVSAMQAKMFQFDEVLRNEISTATLAMRP DEVIMVNETFTYLSKVVTSTSSARTSLGWIHIETIMQIL DRWPVPQRFPVIDLGRLVTAYCMNAFSGPGDLEKFFSCL FRTSEWTSITSGSKALTKAQETNVLLLFRTIANSLDGAP LNDMEWIKQIFRELAQTPQLVLNKSHRLALASVLFNFSC IGLKGPVPADVRTLHLTIILQVLRSPNDDPEVAYRTCVA LGNMLYSDKTRGTPRDAQSPSPTELKSAVAAIKGGFSDP RINDVHREIMSLI MPPQKIESGHlDTVHDLAMDYYGKRLATASSDBTINVVG VSSSGSQHLATLIGHQGPVWQISWAHPKFGSLLASCSYD The amino acid sequence of SEQ ID GRVIZIWREGNPNEWTQAQVFEEHKSSVNSVAWAPHELGL 103 369. The conserved G-protein beta CLACGSSDGNISVFTARQDGGWDTSRIDQAHPVGVTSVS domain is underlined and the WD-40 WAPSTAPGALVGSGMMEPQnLCSGGCDNTVKVWKLYNR repeat domains are in bold VWKLDCFPVLQ1MTDWVRDVAWAPNLGLPKSTIASASQD GRVIIWTLAKEGDQWQmCVLYDFRTPVWRVSWSLTGNIL AVADGNNNVSLWNEAVDGEWIQVSTVEP 128 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MSAPMLEIEARDVVKIVLQFCKENSLHQTFQTLQSECQV SLNTVDSIETFVADINSGRWDAILPOVAQLKLPRNTLED LYEQIVLEMIELRELDTARAILRQTQAMGVMKQEQPERY LRLEHLLVRTYFDPNEAYQDSTKEKRRAQIAQALAAEVT VVPPSRLMALVGQALKWQQHQGLLPPGTQFDLFRGTAAM The amino acid sequence of SEQ ID KQDVDDMYPTTLSHTIKFGTKSRAECARFSPDGQFLVSC 370. The conserved G-protein beta SVDGFIEVWDYMSGKLKKDLQYQADETFMMHDDPVLCVD 104 WD-40 repeat domains are FSRDSEMLASGSQDGKIKVWRIRTGQCLRRLERAHSQGV underlined and the Trp-Asp (WD) TSVLFSRDGSQLLSTSFDGSARIHGLKSGKQLKEFRGHS repeats signature is in bold. SYVNDAIFSNDGSRVITASSDCTVKVWDVKTSDCLQTFK PPPPLRGGDASVNSVHLFPKNADHIVVCNKTSSIYIMTL QGQVVKSLSSGKREGGDFVAACVSPKGEWIYCVGEDRNL YCFSCQSGKLEHLMKVHERDVIGVTHHPHRNLVATYSED STMKLWKP MDLLQSYAEDNDGDLGRHSSPEPSPPRLLPSKSAAPKVD DTTLALTVAQTNQTLARPIDPSQHAVAFNPTYDQLWAPI CGPAHPYAKDGIAQGMRNHKLGFVEDAAIGSFLFDEQYN TFQRYGYAADPCASTGNEYVGDLDALKQNDGISVYNIRQ QEQKKYAEEYAKKKGEERGEGGREKAEVVSDKSTFHGKE The amino acid sequence of SEQ ID ERDYQGRSWIAPPKDAKATNDHCYIPKRLVHTWSGHTKG 371. The conserved G-protein beta VSAIRFFPKHGHLILSAGMDTKVKIWDVFNSGKCMRTYM 105 WD-40 repeat domains are GHSKAVRDISFCNDGTKFLTAGYDKNIKYWDTETGKVIS underlined. TFSTGKIPYVVKLHPDDEKQNILLAGMSDKKIVQWDMNT GQITQEYDQHLGAVNTITFVDDNRRFVTSSDDXSLRVWE FGIPVVIKYISEPHMHSMPSISLPNTNWLAAQSLDNQI LIYSTRERFQLNKKKRFAGHIVAGYACQVNFSPDGRFVM SGDGEGRCWFWDWKSCKVFRTLKCHEGVCIGCEWHPLEQ SKVATCGWDGLIKYWD MESNGNLEQTLQDGRIYRQLNSLIVAHLRDHNFPQAASA VALATMTPLNVEAPRNRLLELVAKGLAVEKGELLRGVSH AGTNDLGGSIPASYGLVPAPWTAIDFSSLRDTKGMSKSF TKHETRHLSDHKNVARCARFSTDGRFFATGSADTSIKLF The amino acid sequence of SEQ ID EVSKIKQMMLPDSTDGAIRAVIRTFYDHTHPVNDLDFHP 106 372. The conserved G-protein beta QNTVLISAAKDHTVKFFDYSKATAKRAFRVIQDTHNVRS WD-40 repeat domains are VAFHPSGDFLLAGTDHPIPHLYDVNTFQCYLSANVPEFA underlined. VNAAINQVRYSSSGGMYVTASKDGTIRFWDGASANCVRS IAGAHGAAEVTSANFTKDQRYVLSCGKDSTVKLWEVGTG RLVKQYLGATHMQLRCQAVFNNTEEFVLSIDEPSNEIVV WDAMTAEKVARWPSNHNGPPRWIEHSPTEAAFVSCGTDR SIRFWKETH MSNFQGEDGEYVADDFEAEDGDEELHGRESADPESDVDE IDTPSNRFTDTTADQARRGRDIQGIPWERLSITREKYRR TRLEQYKNYENVPQSGEKSGKDCTVTEKGNSFYEFRRNS RSVKSTILHFQLRNLVWATSKHDVYLMSNYSVVHWSSLT The amino acid sequence of SEQ ID GKKSEVLNLAGHVAPNEKHPGSLLEGFTQTQVSTLAVKD 373. The conserved G-protein beta RFLVAGGFQGELICKFLDRPGISFCSRTTYDDNAITNAV 107 WD-40 repeat domains are EIYVSPSQGIHFIASNNDCGVRDFDMENFELSKHFRFPW underlined. PVNHTSLSPDGKLLVIVGDDPEGILVDAKTGKTIMPLRG HLDFSFASEWHPDGVTFATGNQDKTCRIWDIRNLSKSIA VLKGNLGAIRSIRYTSDGRYMAIAEPADFVHVYDTKTGY KKEQEIDFFGEISGMSFSPDTESLFGVWDRTYGSLLEY GRRRNFSYLDCLV MGVEEDLEDLNALAESTDAAVDGQAALASAVDSVTLQPA PPILPPVIPPPAVPVVAPVPTIPPVLRPLAPLPIRPPVL RPPAPKRDEAGSSDSDSDHDGTAAGSTAEYEITEESRLV RERHEKAMQDLMMKRRGAALAVPTNDKAVRARLRRLGEP MTLFGEREMRRDRLRMLMAKLDAEGQLEKIMKAHEDEE The amino acid sequence of SEQ ID AAASAAPEDVEEEMLQYPFYTEGSKALFNARIDIAKFSI 374. The conserved G-protein beta TPAALRLERARRRRDDPDEDVDAEIDWALKKAESLSLHC 108 WD-40 repeat domains are SEIGDDRPLSGCSFSHDGKLLATCSMSGVAKLWDTCRMP underlined and the splicing factor QVNRVLTLKGHTERATDVAFSPVQNHIATASADRTAKLW motif is in bold. NTEGTILKTFEGHLDRLGRIAFHPSGKYLGTTSFDKTWR LWDIESGEELLLQEGHSRSIYGIDFHRDGSLVASCGLDA LARVWDLRTGRSILALEGHVKPVLGVSFSPNGYHLATGG EDNTCRIWDLRKKKSLYTIPARANLISEVKFEPQEGYFL VTASYDTTAKVWSARDFKPVKTLSVHEAKITSVDITADA SHIVTVSHDRTIKLWTSNDDVKEQAMDVD 129 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MVKAYLRYEPAAAFGVIASVESNIAYDASGKHLLAPALE KVGVWHVRQGVCTKALAPSASSAAGPSLAVTAIASSPSS LIASGYADGSIRIWDFEKGSCETTLNGHKGAVSVLRYGK LGSLLASGSKDNDI rLWDVVGETGLYRLRGHRDQVTDLV FLDSDKKLVSSSKDKYLRVWDLETQHCMQIVGGHHSEIW SLDTDPEERYLVTGSADPELRFYTVKNDSSDERSEADAS GGVGNGDLASHNRWDVLKQFGEIQRQSKDRVATVRFNKN GNLLACQAAGKLVEVFRVLDEAEAKRKAKRRLHREREKK GADVNENGDSSRGIGEGHDTMVTVADVFKLLQTIRASKK ICSISFCPVAPKSSLATLALSLNNNLLEFHSIEADKTSK The amino acid sequence of SEQ ID MLTIELQGHRSDVRSVTLSSDNTLLMSTSHNSVKIWNPS 375. The conserved G-protein beta TGSCLRTIDSGYGLCGLIVPQNKHALIGTKDGAIEIFDV 109 WD-40 repeat domains are GSGTCIEVVEAHGGSIRSIVAIPNQNGFVTGSADHDIKF underlined, and the conserved WEYGMKQKPGDNSKHLTVSNVRTLKMNDDVLVVAVSPDA Dip2/Utpl2 domain is in bold. QKIAVALLDCTVKVFFMDSLKLMHSLYGHRLPVLCLDIS SDGDLIVTGSADKNLMIWGLDFGDRHKSIFAHGDSIMAV QFVGNTHYMFSVGKDRLVKYWDADKFELLLTLEGHHADI WCLAISNRGDFLVTGSHDRSIRRWDRTEEPFFIEEEKEK RLEMFESDLDNAFGNKYVPEEIPEEGAVALAGKKTQE TLSATDSIEALDIABVELMRIAEm KNNGKTAEFHP NTVMLGLSPSDFILRALSNVQTNDLEQTLLALPFSDALK LLSYLKDWTTYPDICVELVSRIATVLLQTHYNQLVSTPAA RPLLTTLKDILHKKVKECKDTIGFNLAAMDHLKQLMALR SDALFODAKVLLE IRSQLSKRLEERTDPRAKRRKKKQ KKSTNMHAWP MGGVQAEREDKDKVSLELTEEILQSMEVGMTFRDYSGRI SSMDFHRASSYLVTASDDESIRLYDVASATCLKTINSKK The amino acid sequence of SEQ ID YGVDLVSFTSHPMTVIYSSKNGWDESLRLLSLHDNKYLR 376. The conserved G-protein beta YFKGHHDRVVSLSLCPRNECFISGSLDRTVLLWDQRAEK 110 WD-40 repeat domains are CQGLLRVQGRPATAYDDPGLVFAIAFGGCVRMFDARKYE underlined. KGPFEIFSVGGDVSDANVVKFSNDGRLMLLTTTDGHIHV LDSFRGTLLYTFNVPTSSKSTLEASFSPEGMFVISGSG DGSVYAWSVRGGKEVASWLSTDTEPPVIKWAPGNLMFAT GSSELSFWI PDLSKLGAYVGRK MAAFGAAPAGNHNPN4KSSEVIQPPSDSVSSLCFSPRANH LVATSWDNQVRCWE1LTKNGASVTSVPKASMSHDPVLCS The amino acid sequence of SEQ ID AWKDDGTTVFSGGC DKQAKMWSLMSGGQPVTVAMHDAPI 377. The conserved G-protein beta KEIAWIPEMNVLVTGSWDKTLKYWDTRQSNPVHTQQLPE 111 WD-40 repeat domains are RCYAMTVRYPLMVVGTADRNLIVFNLQNPQAEFKRFSSP dereetd o s aLKYQTRCVAAFPDQQGFLVGSIEGRVGVHHLDDSQISKN underlined. FT'KCHRDNNDIYSVNSLNFHPVHHTFATAGSDGTFNFW DKDSKQRLKAMSRC SQPIPCSTFNt4DGTIYAYSVCYDWS KGAENHNPATAKTY I FLHLPQESEVKAKPRVGTTNRK MNCSISGEVPEEPVVSTKSGHVFERRLIERYVSDYGKCP VSGEPLTMDDVLPVKMGKIVKPRPLQAASIPGLLSIFQN EWDSLMLSNFALE0QLHTARQELSHALYQHDAACRVIAR LKKERDEARSLLALAERQIPMTASSDIAVNAPAMSNGRK ASLDEEPGYAGKKt4RPGI SAS I IAEITDCNLALSQQRKK The amino acid sequence of SEQ ID RQIPSTLAPVEDLERYTQLSSYPLHKTGKPGITSLDICH 112 378. The conserved G-protein beta SKDIIATGGIDTSAVLFDRSSGQIMSTLSGHSKKVTSVN WD-40 repeat domains are FDAQGDMVLTGSADKTVRIWQGSEDGSYNCRHILKDHTA underlined. EVQAITVHATNYFATASLDNTWCFYEFSTGLCLTQVEG ASGSEGYTSAAFHP DGLILGTGTSNADVKIWDVKTQANV TTFSGHTGAITAIS FSENGYFLATAADGVKLWDLRKL NFRTFSAYDKDTGTNSVEFDHSGCYLGLAGSDIRVYQVA SVKSEWNCVKTFPDLSGTGKVTCVKFGPDSKYIAVGSMD HNLRIFGLPSEDGAMES MAAPGVETLKKEIKELKEKIAQHRLDTDGEQPLPAAAKS KSVPEVSAALKQRLLKGHFGKIYALHWSADSRHLVSAS The amino acid sequence of SEQ ID 9DGKLIIWNGFTTNKVHAIPLRSSWVMTCAYSPSGNLVA 379. The conserved G-protein beta CGGLDNLCSVYKVPHGGNKESSSAQKTYGELAQHEGYLS 113 domain is underlined and the WD-40 CCRPIKDNEIVTSSGDSTCILWDVETKTPKAIFNDHTGD reptdomain s e ueind ad tVMSLAVFDDKGVFV'SGSCDATAKLWDHRVHKQCVMTFQG repeat domains are in boldESDIN DGDAFGTGSDDSSC DIRAYQQ YSSDKILCGITSVA6FSKTGKSLFAGYDDYNTYVWDTLSG NQVEVLTGHENRVSCLGVSEDGKALATGSWDTLLKIWA 130 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MGGVEDESEPASKRMKLSSRVLRGLANGSSRTEPAAGSS LDLMARPLPIEGDEEVIGSKGVIKRVEFVRLIAKALYSL GYEKSGARLEEESGIPLQSSVVNLFMQQISDGLWDESVV TLHKIGLSDENLVKSASFLIEQKFLELLDQEKAMDALK TLRTEITPLC'IKNSRVRELSSCIISPSSCGLLNQNKRNS TRARSRSELLEELQKLLPPAVIIPERRLEHLVEQALVLQ The amino acid sequence of SEQ ID TDACMLHNSIDMEMSLYTDHQCGKEHIPCRTLQILQSHN 114 380. The conserved G-protein beta DEVWLVgFSHNGKYLASASNDRSAIIWEVDFNGSVSLKH de-40 repeat domains are KLTGHQKPISSVCWSPDDRQLLTCGVGETVRRWDVSSGE underlined. CLRVYEKAGHGLISCAWFPDGKWICYGVSDRSICMCDLE GKEIECWKGQRTLSIS'DLITSDGKQIISICRETAILLL DREAKYERMIEENQTITSFSLSKDNRYLLVNLLNQEIHL WDIKGDFRLVAKYKGLKRSRFVIRSCFGGLKQAFVASGS EDSQVYIWHKGSGELIEPLPGHSGAVNCVSWNPANHHiML ASASDDRTIRIWGLNELNTRHKGARPNGVHYCNGNGTS MTQLAETYACMPSTERGRGILIAGNPKPQSNSVLYTNGR SVVILNLDNPLDISVYAEHAYPATVARFSPNGEWVASAD SSGAVRIWGAYNDHVLKKEFKVLSGRIDDLOWSPDGLRI VASGDGKGKSLVRAFMWDSGTNVGEFDGHSRRVLSCAFK PTRPFRIVTCGEDFLVNFYEGPPFKFKLSRRDHSNFVNC LRFSPDGNRFISVSSIKKGIIYDGKTGEKIGELSSDGGH The amino acid sequence of SEQ ID TGSIYAVSWSPDSKQVITVSADKSAKIWDISEDGSGNLR 381. The conserved G-protein beta KTLTSSGSGGVDDMLVGCLWQNNHLVTVSLGGTISIYTA 115 WD-40 repeat domains are GDLDKAPVSFSGHMKNVSSLSVLKGDPKVILSSSYDGLI underlined. IKWIQGIGFSGRVQRKESTQIKCLAAVDEEIVTSGYDNK VCRVSGSGDAEFIDIGCQPKDLSLALQCPEFALVSTDTG VVLLRGAKIVSTINLGFAVTASTVAPDGTEAIIGAQDGK LRIYSISGDTLTEEAVLEKHRGAISVIHYSPDLSMFASG DLNREAVVWDRASREVRLKNILYHTARINCLAWSPDSST VATGSLDTCVIIYEVDKPASNRLTIKGAHLGGVYGLAFT DDFSVVSSGEDACIRVWKINRQ MKVKVISRSTDEFTRERSQDLQRVFRNFDPNLRTQEKAV EYVRALNAAKLDKVFARPFVGAMDGHVDSVSCMAKNPNY LKGIFSGSMDGDIRLWDIASRRTVCQFPGHQGPVRGLAA STDGQILVSCGIDSTVRLWNVPVATLGESDGTHENLAKP The amino acid sequence of SEQ ID LAVYVWKNAFWAVDHQWDGELFATAGAQVDIWNQNRSQP 382. The conserved G-protein beta ISSFEWGTDTVISVRFNPGEPNVLATSGSDRSITLYDLR 116 WD-40 repeat domains are MSSPTRKVIMRTKTNAISWNPMEPMNFTAANEDCNCYSY underlined and the SOFi protein DARKLEEAKCVHKDHVSAVMDIDYSPTGREFVTGSYDRT domain is in bold. VRIFQYNGGHSREVYHTKRMQRVFCVKFSCDASYVISGS DDTNLRLWKAKASEQLGVVLPRERRKHEYEEAVKSRYKH LPEVKRIVRHRHLPKPIYKAGILRRTVNEADRRKEERRK AHSAPGSSSAPLERRIIKEIE MVRSIKNPKIKAKRKNKGSKNGDGSSSSSSIPSMPTKVWQ PGVDKLEEGEELQCDPSAYNSLHAFHIGWPCLSFDIVRD TLGLVRTEFPHOVYFVAGTQAEKPTWNSIGI FKVSNITG KRRELVPSKPTDDADEESDSSDSDEDSDDEVGGSGTPIL QLRKVGHEGCVNRIRAMNQNPHICASWGDSGHVQIWDFS The amino acid sequence of SEQ ID SHLNALAESEADVSQGASSVFNQAPLVKFGGHKDEGYAL 117 383. The conserved G-protein beta DWSPLVPGRLVSGDCKNSIHLWEPTSGSTWNVDSTPFIG WD-40 repeat domains are HAASVEDLQWSTEENVFASCSVDTIAIWDTRLGKTPA underlined. ASFKAHDADVNVISWNRiATCMLASGCDDGTFSIHDIRL LKEGDSVVAHFEYHKHPVTSIEWSPHEASTLAVSSADCQ LTIWDLSLEKDEEEEAEFKAKTKEQVNAPEDLPPQLLFV HQGQKDLKELHWHAQIPGMIVSTAADGFNILMPSNIQST LPSDGA MERYKVIKELaDG TYGSVWKALNQQTHEIVAIKKMKRKY YIWEECINLREVKSLRKLNHPNI IKLKEVIRENNELFFI The amino acid sequence of SEQ ID FEYMECNLYQIMKERSTPFSETAIIKFCYQILQGLSYMH 384. The conserved eukaryotic RNGYFHRDLPENLLvTSDLIKIADFGLAREVLTSPPYT protein kinase domain is DYVSTRWYRAPEVLLQSPTYTTAIDMWAVGAILAELFTL underlined and the protein kinases HPLFPGESELDEIYKICGVLGTPDYETWPDGMQLAAFRN 118 ATP-binding region and FIFPQFLPVNLSVLIPHASPEAIDLITRLCSWDPQKRPT serine/threonine protein kinases AEQALHHPFFRIGMSIPLSLGGHFQDNTCAAEVDTKFHS active-site signatures are in KKACKAWNGEKESSLECFLGLSLGLKPSLGHLGAMGSQG bold. VGAVKQEVGSS PGCQSNPKQSLFQVLNSRAILPLFSSSP NLNVVPVKSSLPSAYTVNSQVMWPTIAGPPAAAVTVSTL QPSILGDFKIFGKSMGLASQYAGKEASPFS 131 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MGEMGRGINNSSNNNNSNRPAWLQHYDLVGKIGEGTYGL VFLARSKLPNNRGLRIAIKKFKQSKDGDGVSPTAI REIM LLREFSHENVVKLVNVHINHVDMSLYLAFDYAEHDLYEI The amino acid sequence of SEQ ID IRHHREKLNHHNINQYTVK(SLLWQLLNGLNYLHSNWIVH 385. The conserved eukaryotic RDLKPSNILVMGEGEEHGVVKIADFGLARIYQAPLKPLS protein kinase domain is DNGVVVTIWYRAPELLLGAKHYTSAVDMWAVGCIFAELI 119 underlined and the protein kinases TLKPLFQGVEVRASPNPFQLDQLDKIFKVLGHPTIEKWP ATE-binding region and .TLMNLPHWSKNLQOIQQHKYDNAGLHIGPIPAKSPAYDL serine/threonine protein kinases LSKMLEYDPRKRITAAQALEHEYFRIDPQPGRNALVPSQ active-site signatures are boxed PGEKAINYPPRLVDANTDFDGTIAPQPSQVSSGNAPSGS in bold. IASAAVPAVRPLPQQMQLMGMQRMQNPGMAAFNLGAQAS MSGLNHNNIALQRGSSQQQAHQQVRRKEPNSGFPNTGYP PPPKSRRL The amino acid sequence of SEQ ID MDKYEKLEKVGEGTYGKVYKARDDMTGQLVALKKTRLEM 386. The conserved protein kinase DEEGVPPSSLREISLLQMLSQSIYVVRLLCVEHVTKKGK family domain is underlined. The PLLYLVFEYLDTDLKKFIDYRRSVNAGPLPQNVIQSFMY 120 protein kinases ATP-binding region QLLKGVAHCHSHGVLERDLKPQNLLVDKSKGLLKVGDLG is in bold and the LGRAFTVPLKCYTHEVVTLWYRAPEVLLGSTHYSTPVDI serine/threonine protein kinases WSVGCIFAEMVRRQPLFPGDCEIQQLLHIFTLLGTPTEE active-site signature is in 4WPGVKRLRDWHEYPQWKPENLARAVPNLSPTGLDLISK bold/italics. MLQCDPAKRISAKAAMNHPYFDDLDKSQF The amino acid sequence of SEQ ID MDGYEKMDKVGEGTYGKVYMADKKTGQLVALKKTRLEN 387. The conserved protein kinase DGEGIPPTALREISLLQMLSQDIYIVRLLDVKHTENKLG family domain is underlined. The KPLLYLVFEYMESDLKKYIDSYRRSHTKMPPSMIKSFMY 121 protein kinases ATP-binding region QLCRGVAYCHSRGVMWRDLKPNLVDKEKGVLKIADLG is in bold and the LSRAFTVPVKKYTHEIVTLWYRAPEVLLGATHYSLPVDI serine/threonine protein kinases WS'VGCIFAEMSRMQALFTGDSEVQQLMNIFRFLGTPNEE active-site signature is in VWPGVTKLKDWHIYPEWKPQDISHAVPDLEPSGLDLLSQ bold/italics. MLVYEPSKRISAKKALEHPYFDDLDKSQF The amino acid sequence of SEQ ID MDAYEKLEKVGEGTYGKVTKAJDKNTGQLVALKKTRLES 388. The conserved eukaryotic DDEGIPPTALREISLLQMLSQDIHIVRLLDVEHTENKNG protein kinase domain is KPLL'YLVFEYMDSDLKKYIDGYRRSHTKVPPNIIKSFMY underlined and the protein kinases QLCQGVAYCHSRGVMHBDLKPHNLLVDKQRGVVKIADLG 122 ATP-binding region and LGRAFTIPIKKYTHEIVTLWYRAPEVLLGATHYSTPVDI serine/threonine protein kinases WSVGCIFAEMVRLQALFIGDSEVQQLFKIFSFLGTPNEE active-site signatures are in IWPGVTKFRDWHIYPQWKPDISSAVPDLEPSGVDLLSK bold. MLVYEPSKRISAKKALEHPYFDDLDKSQF The amino acid sequence of SEQ ID MDSYEKLEKVGEGTYGKVYKAKDKKTGKLVALKKTRLEN 389. The conserved protein kinase DGEGIPPTALREISLLQMLSQDMNIVRLLDVEHTENKNG family domain is underlined. The KPLLYLVFEYMDSDLKKYVDGYRRSHTKMPPKIIKSFMY 123 protein kinases ATP-binding region QLCQGVAYCHSRGVHRDLKPNLLVDKQRGVLKIADLG is in bold and the LGRAFTVPIKKYTHEIVTLWYRAPEVLLGATHYSTPVDI serine/threonine protein kinases WSVGCIFAEMSRMHALFCGDSEVQQLMSIFKFLGTPNEG active-site signature is in VWPGVTKLKDWHIYPEWRPQDLSRAVPDLEPSGVDLLTK bold/italics. MLVYEPSKRISAKKALQHPYFDDLDKSQF The amino acid sequence of SEQ ID MEKYEKLEKVSEGTYGKVYKGRDKRTGRLVALKKTPFHQ 390. The conserved eukaryotic EEGIPPTAIREISLLKSLSQCIYIVKLLDVKASFNGKGK protein kinase domain is HVLFMVFEYADSDLKKHIDAHRQCNTKLSERSIQSYMFQ . underlined and the protein kinases LCKGIAYCHSHGVLHRDLKPQNILVDQKIGLLKIADLGL 124 ATP-binding region and GRACTVPIKSYTFEVVTLWYRAPEVLLGAKRYSMALDIW serine/threonine protein kinases SLGCIFAELCNLQALFAGDSQIQQLINIFRLLGTPNEQL active-site signatures are in WPGVTQLSDWHEFPQWRPQDLSKVVFNLDPNGVDLLSKM bold. LQYDPAKRISAKEALDHPYFDSLDKSOF 132 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MGCVCGKPSARAADYVESPAEKGASSNSRSSSMAS RRLV APAVMDQGI DAENGHEGDYRTKLRGKQSNGADPVS LLSD DAEKQRHSRHHQHQQHHPIRPHHLRPQGEFVPNANSNPR FGNPPRHIEGEQVAAGWPAWLTAVAGEAIKGWI PRRADS FEKLDKIGQGTYSNVYKARDLDTGKIVALKKVRFDNLEP ESVRFMAREIQVLRRLDHPNVVKLEGLVTSRMSCSLYLV FEYMDHDLAGLAACPGIKFTEPQVKCYMQQLLRGLDHCH SRGVLHRDIKGSNLLIDNGGILKIADFGLATFFHP DQRQ The amino acid sequence of SEQ ID PLTSRVVTLWYRPPELLLGATEYGVAVDLWSTGCILAEL 391. The conserved eukaryotic LAGKPIMPGRTEVEQLHKIFKLCGSPSEDYWKSKLPHA protein kinase domain is TIFKPQQPYKRCVAETFKDFPPSALALMEVLLAIEPADR 125 underlined and the GTATSALKSDFFTTKPLACDPSSLPKYPPSKEFDAKIRD serine/threonine protein kinases FEARRQRAA'GGRGRDAARRPSRESRAIPAPEANAELAIS active-site signatures are in IQKRRLSSQGPSKSKSEKFNPQQEDGAVGFPIEPPRPMH bold. IGIDAGATSRMYSQQFGPSHSGPLSNQISSSIWGKNQKE DEIQMAPGRPSRSSKATISDFRKPGACAPQPGADLSHLS SLVATARSNAGIDTHKDRSGMWQRNRIDAIDGVHNNGKH EFLEVPEHPNRQDWTRFQQPESFKGLDNYHLQDLPATHH RKDERVASKEATMNWQGYGGQGGDKIHYSGPLLPPSGNI DEILKEHERHIQHAVRRARQDKGRPQRSNLSQNERKAFE HRSFVSGVNGNAGYSDLVNELPISVGSNRLKVSKTRGTE EIVELRELEREPLSSVMEKYEREHEM MGCVCAKQSDILGEPESPKVKGSNLASSRWSVSSETKQL PQHSDSGILHHQHYYHPRDESDEAKLKESNYGGSKRRTR QGRDPADLDMGIFVRTPSSQSEAELVAAGWPAWMAAFAG EAIHGWI PRRAESFEKLYKIGOGTYSNVYKARDLDNGKI VALKKVRFDSLDAESVRFMAREILVLRKLDHPNIVKLEG LVTSEVSSSLYLVFEYMEHDLAGLAACPGIKFTEPQVKC YM9QLLQGLDHCHRHGLHRDIKGSNLLIDNGGI LKIAD FGLATFFYPDQKQLLTSRVVTLWYRPPELLLGATDYGVA The amino acid sequence of SEQ ID VDIWSAOCILAELLAGKPILPGRTEVEQLHKIFKLCGSP 392. The conserved eukaryotic SEDYWKESKLPHATIFKPQHPYKSCIAEAFKDFSPSALA 126 protein kinase domain is LLETLLAIEPGHRGEASGALKSEFFTTEPLSCDPS SLPK underlined and serine/threonine YPPSKEFDAKLRAQETRRQRDVGVRGHGSEAARRTSRLS protein kineses active-site RAGPTPNEGAELTALTQKQHSTSHATSNIGSEKPSTKKE - signatures is in bold. DYTAGLHIDPPRPVNHSYETTGVSRAYDAIRGVAYSGPL SQTHVSGSTSGKKPKRDHVKGLSGQSSLOPSKPFIVSDS RSERIYEKSHVTDLSNHSRLAVGRNRDTTDPHKSLSTLM QQIQDGTLDGIDIGTHEYARAPVSSTKQKSAQLQRPSAL KYVDNVQLQNTRVGSRQSDERPANKESDMVSHRQGQRIH CSGPLLHPSANIEDLLQKHEQQIQQAVRRAHHGKREALS NKSSLPGKKPVDHRAWVSSGKGNKESPYFKGKGNKELSD LKGGPTAKVTNFRQKVM MAVANPGQLNLQEAPSWGSRSVNCFEKLEQIGEGTYGQV YMAKEIETGEIVALKKIRMDNEREGFPITAIREI KLLKK LQHENVIKLKEIVTSPGPEKDEQGKSDGNKYNGS IYMVF The amino acid sequence of SEQ ID EYMDHDLTGLAERPG4RFSVPQIKCYMKQLLIGLHYCHI 393. The conserved protein kinase NpVLHRDZKGSNLLIDNNGILKLADFGLARSFCSDQNGN family domain is underlined. The LTNRVITLWYRPPELLLGSTKYGPAVDMWSVGCIFAELL protein kinases ATP-binding region YGKPILPGKNEPEQLTKIFELCGSPDESNWPGVSECLPWY 127 is in bold and the SNFKPQRQMKRRVRESFKNFDRHALDLVEKMLTLDPSQR serine/threonine protein kinases ISAKDALDAEYFWTDPVPCAPSSLPRYEPSHDFQTKRKR active-site signature is in QQQRQHDEMTKRQKISQHPPQQRVRLPPIQNAGQGHLPL bold/italics. RPGPNPTMHNPPPQFPVGPSHYTGGPRGAGGQNRHPQNI RPLHAAQGGGYNANRGYGGPPQQQGGGYPPHGMGNQGPR GGQFGGRGAGYSQGGPYGGPVGGRGPNVGGGNRGPQFWS EQ MQNMEDNVQSSWSLHGNKEICARYEILERVGSGT YSDVY RGRRKADGLIVALKEVHDYQSSWREIEALQRLCGCPNVV RLYEWFWRENEDAVLVLEFLPSDLYSVIKSGKNKGENGI The amino acid sequence of SEQ ID PEAEVKAWMIQILQGLADCHANWVIHRDLKPSNLLISAD 394. The conserved eukaryotic GILKLADFGQARILEEPEAIYEVEYELPQEDIVADAPGE 128 protein kinase domain is RLMEEDDSVKGVRNEGEEDSSTAVETNFGDMAETANLDL underlined and the SWKNEGDMVMQGFTSGVGTRWYRAPELLYGATIYGKEID serine/threonine protein kinases LWSLGCILGELLILEPLFSGTSDIDQLSRLVKVLGTPTE active-site signature is in bold. ENWPGCSNLPDYRKLCFPGDGSPVGLKNHVPSCS DSVFS ILERLVCYDPAARLNAKEVLENKYFVEDPYPVLIHELRV PSPLREENNFSEDWAKWKDMEADSDLENIDEFNVVHS SD GFCIKFS 133 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MDLNQYPEDLNPELPEGTDNVDNPDNNKGSPVPSPHPPL KPLDPSERYRKGITLGQGTYGIVTKAFDTVTNKTVAVKK The amino acid sequence of SEQ ID IHLGKAKEGVNVTALREIKLLKELSHPNIIQLIDAYPHK 395. The conserved eukaryotic QNLHIVFEFMETDLEAVIKDRNLVFSPADIKSYLQMTLK protein kinase domain is GLAVCHKKWVLHRDMKPNNLLIAADGQLKLGDFGLARLF 129 underlined and the protein kinases GSPDRKFTHQVFAVWYRAPELLFGAKQYGPAVDIWATGC ATP-binding region and IFAELLLRKPFLQGVSDLDQIGKIFAAFGTPRQSQWPDV serine/threonine protein kinases ASLPDFVEFQFVPAPSLRSLFPMASEDALDLLSKMFTLD active-site signatures are in PKNRITAQQALEHRYFSSVPAPTRPDLLPKPSKVDSSRP bold. PKHASPDGPVVLSPSKARRVMLFPNNLAGILPKQVSQST TGGTPIEFDMPTQKLREVCPRSRITESGKKHLKRKTMDM SAALDECAREQEGQEGKTILDPDHQRSAKKEKHM MAGGQENCVRITRARAACVSKASAPVIQSQVDEKKSRKR APKPAAVDDLAANASGSQPKRRAVLGDVTNLHAAATDCL STAEDQVDAPNPSIKGRARNKKKEARTSTKVVKDEIHPE SNPLADHSSNLSECQKPPAAKLAEQRSLRGVPSKAKQGG The amino acid sequence of SEQ ID SSNSQSCSKHTDIDKDHTDPQMCTTYVEDIYEYLRNAEL 396. The conserved cyclin N- and KNRPSANFMETAQNDITPNMRAILVDWLVEVSEEYKLVP 130 C-terminal family domains are DTLYLTVSYIDRYLSANPTSRHKLQLLGVSCMLIASKYE underlined. EVCPPHVEEFCYITDNTYTRDEMLSMERKILIFLNFEMT KPTTKSFLRRFVRASQAGNKAPSLHMEFLANYLAELTLM ECSFLQYLPSLIAASTVFLSRLTLDFLTNPWNPTLAHYT GYKASQLKDCVMAI YNVQMNRKGSTLVAIREKYQQHKFK CVASLPPPPP'IAERFFEDTPN MTGTQASNVRITRARAAKSTLNNALPPLPPAQGKPRGKR AATESNISGFSVAAEPLKRRAVLSDVSNICKEAAAVDCL KKPKAVKVVSQNANAKGRGRGI PRNNKKITQEAEI KKET SPAICNVDDASAGNAIGDDKQNNNVNPLKEVQDNPKELN PIAEQISVHPHCKQSVEKPNEKEIVVSDNKAAIASLKQQ The amino acid sequence of SEQ ID STLQSLRIPKQPKYSLKQGNPVPLANLHEDVGRSSCSDF 397. The conserved cyclin and IDIDSEYKDPQMCTAYVTDIYANMRVVELKRRPLPNFME 131 cycling C-terminal domains are TTQRDINANMRSVLIDWLVEVSEEYKLVPDTLYLTVSYI underlined and the cyclins DRFLSANVVNRQRLQLLGVSCMLVASKYEEICAPPVEEF signature is in bold. CYITDNTYKKEEVLEMEISVLNRLQYDLTTPTTKTFLRR FIRAAQASCKVS SLHLEFMGNYLAELTLVEYDFLKYLPS LIAAAAVFVARMTLDPMVHPWNSTLQHYTGYKVS DMRDC ICAIHDLQLNRKGCTLAAIREKYNQPKFKCVANLFPPPI ISPQFLIDNEV MAAPNQNALLINNNNRRPLVDIGNLVGALNAQCNI SKNG ARKRAFGDIGNLVEDLDAKCTISKYWVRKRPRTNFGVNA NKGASSSTQGQGIVVRGEQKAWDRIVWGNKQSCAI KMNA QHVTATQRGTAI SI SDIIDSSVQDGGIKAPSQLKARKQT The amino acid sequence of SEQ ID VRTVTATLTARSEDSLRDVLEVPPGIDDGDRDNPLAVVE 398. The conserved cyclin and YVEDIYHFYRKIEVRSCVPPDYMTRQLEIKDSMRGVIID 132 cyclin C-terminal domains are WLIEVHRTFLLMPETLYLTVNIIDRYLSIQSVTRNELQL underlined and the cyclins MGITAMFIASKYEEISPPKINDLVYITKDAYTSKQIVNM signature is in bold. EHTILNRLKFKLTVPTPYVFLVRFLKAAGPDKVMKNLAF FLVDLCLLHYKMIKYSPSMLAAAAVYTAQCTLKKHPYWN KTLILHIGYSEAHLRECAHLMADLHLKAEGSNLKSVYK YSYPIFGSVAFLSPAKI PAGTVAAPAIDKCAHQIYLRNL R MFPNKQTQGLVQNKKMASKAAQPKAMVPPQRVPPAANNR RALGDIGNIVADVGGKCNVTKDGVNGKPLAQVSRP ITRS FGAQLLAQAAANKGISAANNQTQVPVVIPKADVRGNKQR RTSKSKDIPPTTVVTNESDDCVI IEQAQRIKPTCNHNVG AVGNKEKPQLLTAKPKSLTASLTSRSAVALRGFRFDDEM The amino acid sequence of SEQ ID TEAEEDPLPNIDVGDRDNQLAVVEYVEDIYKFYRRTEQM 133 399. The conserved cyclin N- and SCVPDYMPRQQEINPKMRAVLINWLIEVHYRFGLMPETL C-terminal family domains are YLTTNLIDRYLAtQLVSRSNYQLVGATAMLLASKYEEIW underlined. APEMNDFLDILENKFERKHVLVMEKAMLNKLKEHLTVPT PYVFLVRFLKAAASbEEMENLVFFLMELSLMQYVMIKFP PSMLAAAAVYTAQITLKKTTVWNDVLKRHTGYSEI DLKE CTRLMVAFHQSSEESKLNVVFKKYSMPEYDSVALI KPAK LEA 134 WO 2005/065339 PCTUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MAPSFDCVANAYIESCEDQEKLRQNAQILAQSGENDVDE PVSMLVQRETHYMLPEDYLQRLRNRTLDVNVRREAVGWI LKVHSFYNFGAPTAYLAVNYLDRFLSRHRMPQGVKAWMI The amino acid sequence of SEQ d QLMAVACLSLAARMEETQVPLPSDLQREDARFIFDARTI 134 400. The conserved cycling and QRMELLILSTLQWGMRSITPFSFIDYFAYRAVQGHGHGH cyclin C-terminal domains are DATPKAVMSRAIELILSTTEEIDFMEYRPSAIAAAALLC underlined AAEEVVPLQAVHYKRALSSSITDDKDKMFGCYNLIQET IIEGGCYWTPMSLQSTEkTPVGVLDAAACLSNTPTSSYS VKPYASVTAAKRRKLNEICSALLVSQAHPC MAANFWTSSHCKELLDAEKVGIVHPLDKDQGLTQEDVKI The amino acid sequence of SEQ ID IKINMSNCIRTLAQYVKLRQRVVATAITYCRRVYTRKSF 401. The conserved cyclin and TEYDPQLVAPTCLYLASKAEESTVQAKLVIFYMKKYSKH 135 c Tclin C-terminal domains are RYEIKDMLEMEMKLLEALDYYLVIYHPYRPLIQFLQDAG unyclinC-erm l dLNDLKVTAWALVNDTYRTDLILTYPPYMIAiACIYFACI underlined. MEEKDAQAWFEELRVDMNEIKNISMEIVDYYDNYRVIPD EKMNSALNKLPHRF MAPALSSSYECLSHLLCAEDASNVVGCWDEDESKIFCEE EEGFGIQHFPDFPVPDDDEIRVLVRKESQYMPGKSYVQS YQNLGLDFTARQNAIGWILKVHGSYNFGPLTAYLSINYL The amino acid seqence of SEQ ID DRFLSRNPLPKAKVWMLQLLSVACLSLAAKMEETQVPLL 13 4.The inaseque ce o LDLQAEEPDFLFEPRTIQRMELLVLSTLEWRMLSVTPFS 136 402. The conserved cyclin domain FVDYFLQGGGGRKPPPRAMVARANELIFNTHTVLDFLEH is underlined. RPSAIAAAAVICAAEEVLPLEAAQYKETILSCSLVDKEW VFGSYNLIQEVLIEKFSTPKKAKSASSSIPQSPVGVLDA FCLSNNSNNTSLEASLSVNLYASVAAKRRKLNDYCNTWR MFQHSTC MAPNCIDCAPSDLFCAEDAFGVVEWGDAETGSLYGDEDQ LHYNLDICDQHDEHLWDDGELVAFAEKETLYVPNPVEKN SAEAKARQDAVDWILKVHAHYGFGPVTAVLSINYLDRFL The min acd squene o SE ID SANQLQQDKPWMTQLAAVACLSLAAKMDETEVPLLLDFQ The amino acid sequence of SEQ ID VEEAKYIFESRTIQRMELLVLSTLEWRMSPVTPLSYIDH 137 403. The conserved cyclin domain ASRMIGLENHHCWIFTMRCKEILLNTLRDAKFLGLLPSV is underlined. VAAAIMLHVIKETELVNPCEYENRLLSAMKVNKDMCERC IGLLIAPESSSLGSFSLGLKRKSSTINIPVPGSPDGVLD ATFSCSSSSCGSGQSTPGSYDSNNSSILCISPAVIKKRK LNYEFCSDLHCLED The amino acid sequence of SEQ ID 404. The conserved cyclin dependent kinases regulatory MPQIQYSEKYTDDTYEYRHVVLPPETAKLLPKNRLLNEN 138 subunit domain is underlined and EWRAIGVQQSRGWVHYAIHRPEPHIMLFRRPLNYQQNQQ the cyclin-dependent kinases QQAGAQSQPMGLKAQ regulatory subunits signature 1 is in bold. The amino acid sequence of SEQ ID 405. The conserved cyclin dependent kinases regulatory MDQIEYSEKYYDDTYEYRHVELPPDVARLLPKNRLLTEN 139 subunit domain is underlined and EWRGIGVQQSRGWVHYAIHCSEPHIMLFRRPLNYEQNHQ the cyclin-dependent kinases HPEPHIMLFRRPLNCQPNHQPQAHHPT regulatory subunits signature 1 is in bold. The amino acid sequence of SEQ ID 406. The conserved cyclin dependent kinases regulatory MDQIEYSEKYYDDTYEYRHVELPPDVARLLPKNRLLTEN 140 subunit domain is underlined and EWRGIGVQQSRGWVHYAIHCSEPHIMLFRRPLNYEQNHQ the cyclin-dependent kinases HPEPHIMLFRRPLNCQPNHQPQAHHPT regulatory subunits signature 1 is in bold. The amino acid sequence of SEQ ID 407. The conserved cyclin dependent kinases regulatory MPQI 9 YSEKYYDDTYEYRHVVLPPDVARLLPKNRLLNEN 141 subunit domain is underlined and EWRGIGVQQSRGWVHYAIHRPEPHIMLFRRHLNYQQNQQ the cyclin-dependent kinases QQAQQQPAQAMGLQA regulatory subunits signature 1 is in bold, 135 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MALVETEPVTLIHPEEPKKFKKKPTPGRGGVISHGLTEE EARVKAIAEIVGAMVEGCRKGEDVDLNALKAAACRRYGL SRAPKLVEMIAALPDGERAAVLPKLKAKPVRTASGIAVV AVMSKPHRCPHIATTGNICVYCPGGPDSDFEYSTQSYTG YEPTSMRAIRAYNPYVQTRSRIDQLKRLGHTVDKVEFI The amino acid sequence of SEQ ID LMGGTflMSLPADYRDYFIRNLHDALSGHTSSNVEEAVCY 408. The conserved GCN5-related N- SEHSATKCIGLTIETRPDYCLGPHLRQMLSYGCTRLEIG 142 acetyltransferase family domain is VQSTYEDVARDTNRGHTVAAVADCFCLAKDAGFKVVARM underlined and the radical SAM MDLPNVGVERDMSFREFFENPAFRADGLKIYPTLVIR family domain is in bold. GTGLYELWKTGRYRNYPPEQLVDIIARVLALVPPWTRVY RVQRDIPMPLVTSGVEKGNLRELALARMDDLGLKCRDVR TREAGIQDIHHKIRPEVVELVRRDYCANEGWETFLSYED TRQDILVGLLRLRKCGHNTTCPELKGRCSIVRELHVYGT AVPVHGRDADKLQHQGYGTLLMEQAERIAWkEHRSIKIA VISGVGTRHYYRKLGYELEGPMMKYLN MLGFRDLYTSICEHLQRASGRLPIIAAATSLISTPEIAA VEKENKAPNSVDKMGMGSADESGRFSTSNGQFMNMNNGV VKEEWKGGVPVVPSAPTTVPVITNVKLETPSSPDHDMAR KRKLGFLPLEVGTRVLCKWRDGKFHPVKIIERRKLPNGA TNDYEYYVHYTEFNRRLDEWVKLEQLELDSVETDADEKV The amino acid sequence of SEQ ID DDKAGSLKMTRHQKRKIDETHVEGNEELDAASLREHEEF 409. The conserved chromo domain TKVKNITKIELGRYEIETWYFSPFPSEYNNCEKLYFCEF 143 is underlined and the MOZ/SAS-like CLNFMKRKEQLQRRMRKCDLKHPPGDEITRSGTLSMFEV protein domain is in bold. DGKENKVYAQNLCYLALFWLDDKTLYYDVDLFLFYILCE CDERGCHMVGYFSKEKHSEESYNLACILTLPPYQRKGYG KFLISFSYELSKKEGKVGTPERPLSDLGLLSYRGYWTRV LLDILKKHKSNISIKELSDMTAIKADDVLSTLQGLDLIQ YRKGQHAICADPKVLDRHLKAVGRGGLEVDVCKLIWTPY KEQ MGSLDESTCSEEIRDEGKDSIRTKFKVESTVNNAQNGGN DNSKKKRAAGLPLEVGIRLLCKWRDSKLHPVKIIERRKL PNGFPQDYEYYVHYTEFNRRLDEWVKLEQFELDSVETDA DEKIEDKGGSLKMTRHQKRKIDEIHVEEGQGHEDFDPAS LREHEEFTKVKNIAKVELGRYEIETWYFSPFPPEYSHCE The amino acid sequence of SEQ ID KLFFCEFCLNFMKRKEQLQRHMRKCDLKHPPGDEIYRNG 144 410. The conserved MOZ/SAS-like TLSMFEVDGKKNKIYGQNLCYLAKLFLDHKTLYYDVDLF protein domain is underlined. LFYVLCECDDRGCHVVGYFSKEKHSDEAYNLACILTLPP YQRKGYGKFIIAFSYtLSKKEGKVGTPERPLSDLGLLSY RGYWTRILLDILKKQRGNISIKELSDMTAIKVEDVISTL QVLDLIQYRKGQHVICADPKVLDRHLKAAGIAGLEVDVS - _ _ _ KLIWTPYKEQCG MASAPMVGCDDSRDKHRWVESKVYMRKGHGKGSKGNAGF NAQNSTAQVRRENDNMGNSIADNGKSEAASEGLSSLSRK QITVNQDHPPNETSSMPAVGGLQNIDTHVTFKLEGCSKO EIWELRKKLTNELEQVRGTFKKLEARELQLRGYSVSAGV NTSYSASQFSGNDMRNNGGKEVTSEVASGGAITPKQAQR ESNPPRQLSISLMENNQAASDMGEKGKRTPKANQYYRNS EFVLGKDKFPPAESKKSKSTGNKKISQSKVFSKETMQVG The amino acid sequence of SEQ ID KEFMPQKSVNEVFKQCSLLLTKLMKHKYGWVFNLPVDAQ 145 411. The conserved bromo family ALGLHDYHTIIKRPMDLGTVKSKLEKNLYNSPASFAEDV domain is underlined. KLTFSNAMTYNPKGHEVHTMAEQLLQLFEERWKTIYEEH LD$KMRFGSGQGLGASSSTKKLPFQODSKKNIKKSEPAGG PSPPKPKSTNHHASRTPSAKKPKADPHKRDMTYEEKQK LSTNLQNLPQERLELIVQIIKKRNPSLCQHDEEIEVDID SFDTETLWELDRFVTNYKKSLSKNKKKALLADQAKRASE HGSARNKHPMIGRELPMNNKKGEQGEKVVEIDHMPPVNP PVVEVEKDGVYAKRSSSSSSSSSDSGSSSSDSDSGSSSG SESDAYAATSPPAGSNTSARG 136 WO 2005/065339 PCTIUS20041043804 Entry Sequence Description Annotated Peptide Sequence MEGHSGALGFGQGFSRSSQSPNLSPSPSHSASASVTSSG QKRKRNEVEHAGVASNSTGMFAVPPSHIYSHLHPMSMSM PMPMHNSHPSSLSESRDGALTSNDDDDNLTGGNQSQLDS MSAGNTDGREDFDDEDDDDDDEEDDDEVEGDEEDQDHDP DADDDSDDGHDSMRTFTAARLDNGAPNSRNLKPKADAAG VAIAPTVKTEPILDTVKEEKVSGNNNNNSVSANNAQVAP The amino acid sequence of SEQ ID SGSAVLLSAVKEEANKPTSTDHIQTSGAYCAREESLKRE 412. The conserved GCN5-related N- EDADRLKFVCFGNDGIDQHMIWLIGLKNIFARQLPNMPK 146 acetyltransferase family domain is EYIVRLVMDRSRKSVMIIKQNQVVGGITYRPYLSQKFGE underlined and the bromodomain is IAFCAITADEQVKGYGTRLMNHLKQRARDVDGLTHFLTY in bold. ADNNAVGYFIKQDFTKEIKLEKERWHGYIKDYDGGILME CKIDPKLPYTDLPAMIRWQRQTIDEKIRELSNCHIVYSG IDIQKKEAGIPRKPIKVEDIPGLKEAGWTTDQWGHSRFR LLNSPSEGLPNRQVLHAMRSLHKAMVEHADAWPFKEPV DPRDVPDYYDIIKDPMDVKPMFTNARTYNTHETIYYKCA NR MEESGNSLTSGPDGSKRRVSYFYDSDIGNYYYSQGHPMK PHRIRMAHSLIVHYALDEK MEVCRPNLLOSRELRVFHAD DYISFLQSVTPETQHEQLRQLKRFNVGEDCPVFDGLYNF CQTYAGGSVGAAIKLNNKEADIAINWSGGLHHAKKCEAS GFCYVNDIVLAILELLKVHQRVLYIDIDIHHGDGVEEAF The mino acid sequence of SEQ ID YSTDRVMSVSFHKFGDYFPGTGRLKDVGYGKGKYYSLNV 147 413. The conserved histone. PLNnGIDDESYKNLFRPIIQKVMEIYOPEAVVLQCGADS deacetylase family domain is LSGDRLGCFNLSVKGHADCVRFLRSFNVPLVLVGGGGYT underlined. IRNVARCWCYETAVAVGVEPQDKLPYNEYYEYFGPDYTL HVAPSNMENQNSAKELAKIRNTLLEQLKRIQHVPSVPFQ ERPPDTKFPEEDEEDYEKRPKGHKWGGEYFGSESDEEQK PQNRDIDISDKPGIRRQSPPNVEAAKKIKVEEEDGDIGI VNENDGAKWPLGEAG MEESGNSLTSGPDGSKRRVSYFYDSDIGNYYYSQGHPMK PHRIRMAHSLIVHYALDEKMEVCRPNLLQSRELRVFHAD DYISFLQSVTPETQHEQLRQLKRFNVGEDCPVFDGLYNF CQTYAGGSVGAAIKLNNKEADIAINWSGGLHHAKKCEAS GFCYVNDIVLAILELLKVHQRVLYIDIDIHHGDGVEEAF The amino acid sequence of SEQ ID YSTDRVMSVSFHKFGDYFPGTGHLKDVGYGKGKYYSLNV 148 414. The conserve histone PLNDGIDDESYKNLFRPIIQKVMEIYQPEAVVLQCGADS deacetylase domain is underlined. LSGDRLGCFNLSVKGHADCVRFLRSFNVPLVLVGGGGYT IRNVAitCWCYETAVAVGVEPQDKLPYNEYYEYFGPDYTL HVAPSNMENONSAKELAKIRNTLLEQLKRIQHVPSVPFQ ERPPDTKFPEEDEEDYEKRPKGHKWGGEYFGSESDEEQK PQNRDIDISDKPGIRRQSPPNVEAAKKIKVEEEDGDIGI VNENDGAKWPLGEAG MMETGGNSLPSGPDGVKRKVAYFYDPEVGNYYYGQGHPM KPHRIRMTHALLVQYGLHKEMQILKPYPARDRDLCRFHA DDYVAFLRGITPETIQDQVKALKRFNVGDDCPVFDGLYQ YCQTYAGGSVGGAVKLNHKLCDIAINWAGGLHEAKKCEA SGFCYVNDIVLAILELLKYHKRVLYVDIDIHHGDGVEEA FYTTDRVMTVSFHKFGDYFPGTGDIRDIGCGKGKYYAVN VPLDDGIDDESFQSLFKPI IQQVMLVYNPEAIVLQCGAD The amino acid sequence of SEQ ID SLSGDRLGCFNLSVKGHAECVRYMRSFNVPLLMVGGGGY 149 416. The conserved histone TVRNVARCWCYETGVAVGVEIDDKMPQHEYYNYFGPDYT deacetylase family domain is VHVAPSNMENKNTKQYLDKIRSKILENINSLPCAPSAQF underlined. QVQPPDTDFPELEEEDYDERTRSHKWDGASCDSDSENGD LKHRNHDVEESAFPRHNLANISYNTKIKLEGVGTGGLDM AAGTDTKKNDESFEAMDYESGEELRQDHFASTINASQPC DPALLTGVQNQLQSTDTVKPIEQSGNAPGIPPPSVATVS TGTRPSSISRTSSLNSMSSVKQGSILGPNPPQGLNASGL QFPVPTSNSPIRQGGSYSITVQAPDKGLQNMKGPQNM PGNS 137 WO 2005/065339 PCTUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MPPKDRVAYFYDGDVGSVYFGPNHPMKPHRLCMTHHLVL SYELHKKMEIYRPHKAYPVELAQFHSADYVEFLHRITPD TQHLFTEELVKYNMGEDCPVFENLFEFCQIYAGGTIDAA HRLNNQICDIAINWSGGLHHAKKCEASGFCYINDLVLGI The amino acid sequence of SEQ ID LELLKHHARVLYVDIDVHHGDGVEEAFYFTDRVMTVSFH 150 417. The conserved histone KYGDMFFPGTGDVKEVGEREGKYYAINVPLKDGIDDASF deacetylase family domain is TRLFKTIITKVVDIYQPGAIVLQCGADSLAGDRLGCFNL underlined. SIDGHAQCVRIVKKFNLPLLVTGGGGYTKENVARCWSVE TGVLLDTELPNEIPDNDYIKYAPDYLKINTAG14ENL NSKTYLSAIKVQVMENLRAIQHAPSVQMHEVPPDFYIPD IDEDELNPDERMDQHTQDRQIQRDDEYYDGDNDIDHDME EAS MDSSKSEEANILHVFWHEGMLNHDLGTGVFDTLEDPGFL EVLEKHPENADRVRNMLSILRKGPIAPYTEWHTGRAAYL SELYSFHRPDYVDMLAKTSTAGGKTLCHGTRLNPGSWEA The amino acid sequence of SEQ ID ALLAAGTTLEAMRYILDGHGKLSYALVRPPGHHAQPTQA 418. The conserved histone DGYCFLNNAGLAVELAVASGCKRVAVVDIDVHYGNGTAE 151 deacetylase family domain is GFYERDDVLTISLHMNHGSWGPSHPQTGFHDEVGRGKGL underlined. GFNLNVPLPNGTGDKGYEHAMN4ELVVPAISKFMPEMIVL VIGQDSSAFDPNGR5CLTMEGYRKIGQIIMRQQADQFSGG RLVVVQEGGYHITYAAYCLHATLEGVLCLPHPLLSDPIA YYPEHDIYSERVTFIKNYWQGIISTTDKRN MEESGNALVSGPDGSKRRVTYFYDADIGNYYYGQGHPMK PHRMRMAHNLIVHYGLHQRMEVCRPHLAQSKDIRAFHTD DYIHFLSSVAPDTQQEQLRQLKRFNVGEDCPVFDGLFNF CQSSAGGSIGAALKLNRKDADIAINWAGGLHHAKKCEAS GFCYVNDIVLGILELLKVHQRVLYIDIDIHHGDGVEEAF The amino acid sequence of SEQ ID YTTDRVMTVSFHKFGDYFPGTGHIKDVGYGKGKYYALNV 152 deacetylase family domain is PLhDGIDDESYKHLFRPIIQKVMEVYQPEAVVLQCGADS de lae. LSGDRLGCFNLSVKGHADCVRFVRSFNIPLMLVGGGGYT underlined. IRNVARCWCYETAVAVGVEPQDKLPYNEYYEYFGPDYTL YVAPSNMENLNTEKDLEKMRNVLLEQLSKIQHTPSVPFQ ERPPDTEFNDEEEEDMEKRSKCRIWDGEYVGSEPEEDGK LPRFDADTYERSVLKHENKRLVPVSNVEPLKRIKQEEDG AAV MDLNLVSHGEEEEGVRRRKVGIVYDERMCKHATPEDQPH PEQPDRIRVIWDKLNSAGVLHKCVMVEAKEASEEQLAGV HSRKHIEVMKSIGTARYNKKKRDKLAASYSSIYFSQGSS EAALLAAGSVVEISEKVASGELDAGVAIVRPPGHHAEAD KAMGFCLFNNIAIAAKHLVHERPELGVQKVLIVDWDVHH GNGTQHMFWTDPHVLYFSVHRFDAGTFYPGGDDGFYDKI The amino acid sequence of SEQ ID GEGKGAGYNINVPWEQGKCGDADYLAVWDHVLVPVAKSY 153 421. The conserved histone DPDMVLISGGFDAALGDPLGGCRLTPYGYSLMTKKLMEF deacetylase family domain is AGGKIVLALEGGYNLKSLADSFLACVEALLKDGPSRSSV underlined. LTHPFGSTWRVIQAVRKELSSFWPALNEELQLPRLLKDA SESFDKLSSSSSDESSASEDEKKFAEVTSIMEVSPDPSS ILALTAEDIAQPLAGLKIEEAGTDSQRSSDHTLLDLTND DTQKLKQFEGEIFVMIGDEESVPSASSSKDQNESTVVLS KSNIKAHSWRLTFSSIYVWYASYGSNMWNPRFLCYIEGG QVEGMAKRCCGSEDKLLLKGYSGKLFLIECFLGDHTQIH GVQEECPFLIQIVVIRVKRMSACIK MADEDLDLSDVGEVEDEPGEEIESTPPLAVGQEKEINSL ALKKKLLKVGTRWETPENGDEVTVHYTGTLPDGTKFDSS RDRGEPFTFKLGQGQVIKGWDQGIVTMKKGERALTIPP ELAYGSSGVRPTIPPNATLQFDVELLSWTNIVDVCNDGG The amino acid sequence of SEQ ID ILKRIISEGEKYERPKDPDEVTVKYEAKLEDGTLVAKSP 422. The conserved FKBP-type EEGVEFYVNDGHFCPAIAKAVKTMKRGESVILTIKPTYA peptidyl-prolyl cis-trans FGERGKDAEEGFAAIPPNATLTTSLELVSFKAVIAVTED 154 isomerase signature is underlined KKVIKKILKEADGYDKPSDGTVVQIRYTAKLQDGTIFEK and the FKBP-type peptidyl-prolyl KGYEGEEPFQFVVDEEQVIAGLDKAVETMKTGEIALITI cis-trans isomerase signatures 1 GAEYGFGNFETQRDLAVIPPNSTLIYEVEMISFTKEKES and 2 are in bold. WDMDTTEKIEASKQKKEQGNSLFKVGKYQRAAKKYEKAA KYIEHDSSFSAEEKKQSKVLKVSCNLNHAACRLKLKDFK EAVKLCSKVLELESQNVKALYRRAQAYIETADLDLAEFD IKKALEIEPQNREVQLEYKILKQKQIEYNKKDAKLYGNM FAKLNKLEAFEGKVLS 138 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MADEGLELSDVAEVEDEPGEEFESAPPLVVGQEKELNSS GLKKKLLKAGTRCETPENGDEVTVHYTGTLLDGTKFDSS RDRGEPFTFNIGQGQVIKGWDQGIVTMKKREHALFTIPP The amino acid sequence of SEQ ID ELAYGASGMPPTIPPNATLQFDVELLSWTNIVDVCKDGG 423. The conserved FKBP-type ILKRIISDGEKYERPKDPDEVTVKYEAKLEDGMLVAKSP peptidyl-prolyl cis-trans EEGVEFYVNDGNFCPAIVKAVKTMKKGENVTLTIKPAYA isomerase family domains are FGEQGKDAEEGFAAIPPNATITINLQLVSFKAVKEVTED 155 underlined. The FKBP-type KKVIKKILKEADGYDKPSDGTVVQIRYTAKLQDGTIFEK peptidyl-prolyl cis-trans KGYAGEEPFFVVDEEVIAGLDAV TGEVALITI isomerase signatures 1 and 2 are GPEYGFGNIETQRDLAVIPPYSTLIYEVEMVSFTKEKES in bold. The TPR repeat is in WDMNTTENIEASKQKKEQGNSLFKVGKYLRAAKKYDKAA bold/italics. KYIEHDNSFSAEEKKQSKVLKVSCNLNHAACCLKLKDFK KAVKLCSKVLELESQNVKALYRRAQAYIETADLDLAEFD .IKALEIEPQNREVRLEYLILKQKQIEYNKKDAKLYGNM FARQNKLEAIEGKD The amino acid sequence of SEQ ID 424. The conserved cyclophilin- MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRAL type peptidyl-prolyl cis-trans CTGEKGTGRSGKPLHFKGSSFHRVIPGFMCQGGDFTRGN 156 isomerase signature is underlined GTGGESIYGEKFADENFVKKHTGPGILSMANAGPNTNGS and the cyclophilin-type peptidyl- QFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGS prolyl cis-trans isomerase GRTSKPVVIADSGQLA signature 2 is in bold. The amino acid sequence of SEQ ID 425. The conserved cyclophilin- MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRAL type peptidyl-prolyl cis-trans CTGEKGNGRSGKPLHFKGSSFHRVIPGMCQGGDFTRGN 157 isomerase signature is underlined GTGGESIYGEKFADENFVKKHTGPGILSMANAGPNTNGS andThe cyclophilin-type peptidyl- QFFICTAQTWLDGKHVVFGQVVEGLEVVRDIEKVGSGS prolyl. cis-trans isomerase GRTSKPVVIADSGQLA signature 2 is in bold. The amino acid sequence of SEQ ID 426. The conserved cyclophilin- MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRAL type peptidyl-prolyl cis-trans CTGEKGTGRSGKPLHFKGSSFHRVIPGFMCQGGDFTRGN 158 isomerase signature is underlined GTGGESIYGEKFADENFVKKHTGPGILSMANAGPNTNGS andThe cyclophilin-type peptidyl- QFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGS prolyl cis-trans isomerase GRTSKPVVIADSGQLA signature 2 is in bold. The amino acid sequence of SEQ ID 427. The conserved cyclophilin- MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRAL type peptidyl-prolyl cis-trans CTGEKGTGRSGKPLHFKGSSFHRVIPGFMCQGGDFTRGN 159 isomerase signature is underlined GTGGESIYGEKFADENFVKKHTGPGILSMANAGPNTNGS andThe cyclophilin-type peptidyl- QFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGS prolyl cis-trans isomerase GRTSKPVVIADSGQLA signature 2 is in bold. MADDFELPESAGMMENEDFGDTVFKVGEEKEIGKQGLKK LLVKEGGSWETPETGDEVEVHYTGTLLDGTKFDSSRDRG TPFKFKLGQGQVIKGWDQGIATMKKGENAVFTIPPDLAY GESGSQPTIPPNATLKFDVELLSWASVKDICKDGGIFKK The amino acid sequence of SEQ ID IIKEGEE(WEHPKEADEVLVKYEARLEDGTVVSKSEEGVE 428. The conserved Fi P-type FYVKDGYFCPAFAIAVKTMKKGEKVLLTVKPQYGFGHQG peptidyl-prolyl cistrans REAIGNDVARSTNATLLVDLELVSWKVVDEVTDDKKVLK 160 isomerase signature is underlined KILKQGEGYERPNDGAVVKVKYTGKLEDGTIFEEKGSDE and the FKBP-type peptidyl-prolyl EPFEFMAGEEQVVDGLDRAVMTMKKGEVALVSVAAEYGY cis-trans isomerase signature 1 is QTEIKTDLAVVPPKSTLIYEVELVSFVKEKESWDMNTAE in bold and underlined. The TPR KIEAAGKKKEEGNALFKVGKYFRASKKYEKATKYIEYDT repeat is in bold/italics. SFSEEEKKQSKPLKVTCNLNNAACKLKDKDYTQAEKLCT KVLEVESQNVWALYRRAQAYXQTADLELAELDXKALEI DPNNRDVKLEYRALKEKQKEYNKKEAKFYGNMFARMSKL EELESRKSGSQKVETANKEEGSDAMAVDGESA 139 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MAASLTPLGAGLAYATIYDQAKVRKLEPTKRSLIALCQH The amino acid sequence of SEQ ID SDSQHRRFITRKYHVNVQILNRRDAIRLIGLAAGLCIDL 161 429. The conserved FKBP-type SLMYDARGAGLPPQENAKLCDTTCEKELENAPMITTESG peptidylprolyl isomerase domain is LQYKDIKIGNGPSPPIGFQVAANYVAMVPSGQVFDSSLD underlined. KGQPYIFRVGSGQVIKGLDEGLLSMKVGGKRRLYIPGPL AFPKGLNSAPGRPRVAPSSPVIFDVSLEFIPGLESEEE MSAASLSADMAIRGTILGKTALHVLGPQVVSQCRQPVMF The amino acid sequence of SEQ ID KCPPHTLRKMRFSAQDLQSKNFYSGFTPFKSVFISTSKR 430. The conserved FKBP-type SWQAGSARAMSQDAAFQSKVTTKCFLDIEIGGDPAGRIV 162 peptidylprolyl isomerase domain is LGLFGEDVPKTAENFRALCTGEKGFGYKGSSFHERIKDF underlined and the Cyclophilin- MLQGGDFDRGOGTGGKSIYGRTFEDENFKILAHVGPGVLS type peptidyl-prolyl cis-trans MANAGPNTNGSOFFICTVKTPWLDKRHVVFGQVIEGMEI isomerase signature is in bold. VKKLESEETNRTDRPKRPCRIVDCGELP MGRIKPQTLLQQSKKKKVPGRISVSTIIVCNLIIIFLMF The amino acid sequence of SEQ ID SLVGIYRQPAKRNRATSRSDGDEEMENFGRSKINSVPH 431. The conserved FKBP-type AIVNTTKGLITLELFGKSSAHTVEKFVEWSERGYFNGLP 163 peptidylprolyl isomerase domain is FYRVIKHFVIQVGDPKFAGNREDWTVGGQLNVQLEFSPK underlined. HEAFMLGTSKLEDQGDGFELFITTAPIPDLNDKLNVFGR VIKGQDVVQEIEEVDTDEHFQPKSPIIINDVRLKDEL The amino acid sequence of SEQ ID 432. The conserved cyclophilin- MARQSTLLLFWSLVFLGAIVFTQAKHEELEEVTHKVYFD type peptidyl-prolyl cis-trans VDIAGKPAGRVVIGLFGKAVPKTVENFRALCTGEKGVGK 164 isomerase signature is underlined SGKPLHYKGSFFHRIIPSNIQGGDFTLGDGRGGESIYG and the cyclophilin-type peptidyl- TKFADENFKLKHTGPVFITTVTTDWLDGRHVVFGKIISG prolyl cis-trans isomerase MDVVYKVEAEGRQSGQPKRKVKIADSGELSMD signature is in bold. MEMDEIQEQSQPQSSEKQDISQESDTGNDKTINAEKITS ENAEVEEDDMLPPKVNTEVEVLHDKVTKQIIKEGSGNKP SRNSTCFLHYRAWAESTMHKFQDTWQEQQPLELVLGREK The amino acid sequence of SEQ ID KELSGFAIGVAGMKAGERALLHVDWQLGYGEEGNFSFPN 434. The conserved KBP-type VPPRANLIYEAELIGFEEAKEGKARSDMTVEERIEAADR 165 peptidyl-prolyl cis-trans RRQQGNELFKEDKLAEAMQQYEMALAYMGDDFMFQLFGK isomerase signature is underlined YKDMANAVKNPCHLNMAQCLLKLNRYEEAIGQCNMVLAE and the TPR repeat is in bold. DEKNIKALFRRGKARATLGQTDDAREDFQKVREFSPEDK AVIRELRLLAEHDKQVYQKQKEMFKGLFGQKPEQKPKKL HWFVVFWQWLLSMIRTIFRMRSKTD The amino acid sequence of SEQ ID 435. The conserved cyclophilin- MAGAGEGTPEVTLETSMGPITVELYHKHAPKTCRNFLEL type peptidyl-prolyl cis-trans SRRGYYNNVKFHRVIEDFMVQGGDPTGTGRGGESIYGPR 166 isomerase signature is underlined IFEDEITRDLKHTGAGILSMANAGPNTNGSQFFISLAPTP and the cyclophilin-type peptidyl- WLDEKHTIFGRVCKGMDVVKRLGNVQTDKNDRPIHDVKI prolyl cis-trans isomerase LRTTVKD signature is in bold. MMDPELMRLAQEQMSKISPDELMKMQRQXMANPDLMRMA SENMKNLKPEDIRFAAEQMKNVRKEEMAEISERISRASP EEIEAMKARANLQSAYQLQVAQNLKDQGNQLHARMKYSE AAEKYLQARNNLTGIPFSEAKSLLLASSSNLMSCYLKTG QYEECVQTGSEVLAYDAMNVKALYRRGQAYKQIGKLELA VADLRKAVEVSPEDETIAQALREASTELMEKGGTQDQNG The amino acid sequence of SEQ ID PRIEEIIEEEAVQPTAEKYPOSAPMVTSVTEDVSDDEQG 167 436. The conserved TPR repeat SEDQNGFSRDSFQATNAPDGQMYAESLRNLTENPDMLRT domain is underlined. MQSLMKNVDPDSLVALSGGKLSPDMVKTVSGMFGRMSPE EIQNMMEMSSTLSRQNPSTSSRFDDITRGHSNMDSSPQS VSVDNDLFEENQNRVGESSTNLSSSAAFSGMPNFSAEMQ EQVRNQMNDPATRQMFTSMIQNMSPEMMASMSEQFGVKL SPEDAVKAQNAMASLSPNDLDRLMNWATRLQTAIDYARK IKNWILGRPGLIFAISMLLLAIILHRFGYIGD The amino acid sequence of SEQ ID 437. The conserved FKBP-type MGVEKEILRPGNGPKPRPGQSVTVHCTGYGKNEDLSQKF 168 peptidylprolyl isomerase domain is WSTKDPGQKPFTFTIGQGRVIKGWDEGVLDMpLGEIFKL underlined and the Cyclophilin- RCSPDYGYGSNGFPAWGIRPNSVLVFEIEVLSVN type peptidyl-prolyl cis-trans isomerase signature is in bold. 140 WO 2005/065339 PCTIUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MPNPRCYLDITIGEELEGRILVELYSDVVPKTAENFRAL CTGEKGIGPHTGVPLHYKGLPFHRVIKGFMIQGGDISAQ The amino acid sequence of SEQ ID NGTGGESIYGLKFDDENFQLKHERRGMLSMANSGPNTNG 438. The conserved cyclophilin- SQFFITTTRTSHLDGKHVVFGKVIKGMGVVRGIEHTPTE type peptidyl-prolyl cis-trans SNDRPSLDVVISDCGEIPEGSDDGIANFFKDGDLYPDWP 169 isomerase family domain is ADLDEKSAEISWWMNAVDSAKCFGNENYKKGDYKMALRK underlined and the cyclophilin- YRKALRYLDICWEKEEIDEEKSNHLRKTKSQIFTNSSAC type peptidyl-prolyl cis-trans KLKLGDLKGALLDTEFAMRDGEDNVKALFRQGQAYMALK isomerase signature is in bold. DVDSAVASFKKALQLEPNDAGIRKELAVATKMINDRRDQ ERRAYARMFQ The amino acid sequence of SEQ ID MGDVIDLNGDGGVLKTIIRSAKPGAMQPTEDLPNVDVHY 439. The conserved FKBP-type EGTLADTGEVFDTTREDNTLFSFELGKGTVIKAWDIAVE 170 peptidylprolyl isomerase domain is TMKVGEVARITCKPEYAYGSAGSPPDIPENATLIFEVEL underlined and the Cyclophilin- VACKPRKGSTFGSVSDEKARLEELKKQREIAAASKEEEK type peptidyl-prolyl cis-trans isomerase signature is in bold. KRREEAKATAAARVQAKLAKKGQGRGKGKSKGK MGLGLIASASFLPIFNIMATRSLCILLVCFIPVLAHVL The amino acid sequence of SEQ ID SLQDPELGTVRVYFQTTYGDIEFGFFPHVAPKTVEHIYK 440. The conserved cyclophilin- LVRLGCYNSNHFFRVDKGFVAQVADVVGGREVPLNSEQR 171 440. Te consered c iln- KEGEKTIVGEFSEVKHVRGILSMGRYSDPDSASSSFSIL type peptidyl-prolyl cis-trans LGNAPHLDGQYAVFGKVTKGDDTLKRLEEVPTRQEGIFV isomerase signature is underlined. MPLERIRILSTYYYDTNERESNLTCDHEVSILKRRLVES AYEIEYQRRKCLP The amino acid sequence of SEQ ID MASKRSLRTMNVWPTLPPLVLLLLLCFSSMSSSVVAKKS 441. The conserved FKBP-type DVSELQIGVKHKPKSCDIQAHKGDRIKVHYRGSLTDGTV 172 peptidylprolyl isomerase domain is FDSSFERGDPIEFELGSGQVIKGWDQGLLGMCVGEKRKL underlined and the Cyclophilin- RIPSKLGYGAQGSPPKIPGGATLIFDTELVAVNGKGISN type peptidyl-prolyl cis-trans DGDSDL isomerase signatures are in bold. MSGAPAERPISYFDITIGGKPIGRIVFSLYADLVPKTAE NFRALCTGEKGIGKSGKPLCYAGSGFERVIKGFMCQGGD The amino acid sequence of SEQ ID FTAGNGTGGESIYGEKFEDEAFPVKHTKPFLLSMANAGK 442. The conserved FKBP-type DTNGSQFFITVSQTPHLDDKHVVFGEVIKGKSIVRAIEN 173 peptidylprolyl isomerase domain is YPTASGDVPTSPIIISACGVLSPDDPSLAASEETIGDSY underlined and the Cyclophilin- EDYPEDDDSDVQNPEVALDIARKIRELGNKLFKEGQIEL type peptidyl-prolyl cis-trans ALKKYLKSIRYLDVHPVLPDDSPPELKDSYDALLAPLLL isomerase signatures are in bold. NSALAALRTQPADAQTAVKNATRALERLELSDADKAKAL YRRASAHVILKQEDEAEEDLVAASQLSPEDMAISSKLKE VKDEKKKKREKEKKAFKKMFSS MASSLRSSLFSSWALDSKSVCSLFNLNPGKMGLPSISTP The amino acid sequence of SEQ ID LNWRTCCCSHSSELLELNEGLQSSRRKTVMGLSTVIALS 443. The conserved FKBP-type LVYCDEVGAVSTSKRALRSQKVPEDEYTTLPNGLKYYDL 174 peptidylprolyl isomerase domain is KVGSGTEAVKGSRVAVHYVAKWKGITFMTSRQGMGITGG underlined TPYGFDVGASERGAVLKGLDLGVQGMRVGGQRILIVPPE LAYGNTGIQEIPPNATLEFDVELISIKQSPFGSSVKIVE G MGAIEDEEPPLKRLKVSSPGLRRGLEEEAPSLSVGSVSI LMAKSLSLEEGETVGSKGLIRRVEFVRIITQALYSLGYQ KAGALLEEESGILLQSSNVALFRKQILDGKWDESVVTLR GIDQVEVEGNTLKAASFLILQQKFFELLDKGNIPEAMKT LRLEISPMQLNTKRVHELASCIVFPSRCEELGYSKQGNP The amino acid sequence of SEQ ID KSSQRMKVLQEIQQLLPPSIMIPEKRLERLVEQALNVQR 444. The conserved G-protein beta EACIFHNSLDPALSLYTDHQCGRDQIPTTTLQVLESHKN 175 WD-40 repeat domains are EVWFLQFSNNGKYLASASKDCSAIIWEITEGDSFSMKHR underlined LSAHQKPVSFVAWSPDDKLLLTCGIEEVVKLWNVETGEC KLTYDKANSGFTSCGWFPDGERFISGGVDKCIYIWDLEG KELDSWKGQGMPKISDLAVTSDGKEIISICGDNAIVMYN LDTKTERLIEEESGITSLCVSKDSRFLLLNLANOEIHLW DIGARSKLLLKYKGHRQGRYVIRSCFGGSDLAFVVSGSE DSQVYIWHRGNGELLAVLPGHSGTVNCVSWNPVNPHVFA SASDDYTIRIWGVNRNTFRSKNASSSNGVVHLANGGP 141 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MPGTTAGAGIEPIEPQSLKKLSLKSLKRSFDLFASLHGE PQPPDQRSQRIRIACKVRAEYEVVKNLPTLPQREVGSSV SNSNVGETHSSLTTNQAQGFPTDTSGDLSKDEGKEITSI AVHLQPQTGLIDGKAGAIAGTSTAISSVGSSDRYQPSAA The amino acid sequence of SEQ ID IMKRLPSKWPRPIWHPPWKNYRVISGHLGWVRSVAFDPG 445. The conserved G-protein beta NEWFCTGSADRTIKIWEVATGkLKLTLTGHIEQIRGLAV 176 WD-40 repeat domains are SSRHPYLFSAGDDKQVKCWDLEYNKAIRSYHGHLSGVYC underlined and the Trp-Asp (WD) LALHPTLDILCTGGRDSVCRVWDIRTKAQIFALSGHENT repeats signature is in bold. VCSVFTQAIDPQTGSHDTTIKLWDLAAGKTMSTLTYH KKSVRAIAKHPFEHTFASASADNIKKFKLPKGEFLHNML SQQKTIVNAMAINEDNVLVSAGDNGSLWFWDWKSGHNFQ QAQTIVQPGSLDSEAGIYALQYDITGSRLVSCEADKTIK MWKEDETATPESHPINFKAPKDIRRF MRPILMKGHERPLTFLKYNRDGOLIFSCAKDHTPTVWYG HNGERLGTYRG'HNGAVWCCDVSRDSTRLITSSADQTAKL The amino acid sequence of SEQ ID WNVETGAQLFS'FNFESPARAVDLAIGDKLVVITTDPFME 446The minacidseqed of Sea D LPSAIHIKRIEKDLSKQTADSVLTITGIKGRINRAVWGP 177 446. The conserved G-protein beta LNSTIISGGEDSVVRIWDSETGKLLRESDKETGHQKPIT WD-40 repeat domains are SLCKSADGSHFLTGSLDKSARLWDIRTLTLIKTYVTERP underlined. VNAVAISPLLDHVVIGGGQEASHVTTTDRRAGKFEAKFF HKILEEEIGGVKGHFGPINSLAFNPDGRSFASGGEDGYV RLHHFDPDYFHIKM MRPILMKGHERPLTFLKYNRDGDLLFSCAKDHTPTVWYG HNGERLGTYRGHNGAVWCCDVSRDSTRLITSSADQTAKL The amino acid sequence of SEQ ID WNVETGNQLFSFNFESPARAVDLAIGDKLVVITTDPFME 44 The minacid seqed G of Sea LPSAIHIKRIEKDLSKQTADSVLTITGIKGRINRAVWGP 178 447. The conserved G-protein beta LNSTIISGGEDSVVRIWDSETGKLLRESDKETGHQKAIT WD-40 repeat domains are SLCKSADGSHFLTGSLDKSARLWDIRTLTLIKTYVTERP underlined. VNAVAISPLLDHVVIGGGQEASHVTTTDRRAGKFEAKFF HKILEEEIGGVKGHFGPINSLAFNPDGRSFASGGEDGYV RLHHFDPDYFHIKM MAENNVGDFIPLDRQEYPSKPAPGAVDSSFWKSFKKKEV SRQIAGVTCINFCPEPPHDFAVTSSTRVHIYDGKSCELK KTITKFKDVAYSGVFRSDGQIIAAGGETGVIQVFNAKSQ MVLRQLKGHGRPVRVVRYSPQDKLHLLSGGDDSMVKWWD ITTQEELLNLEGHKDYVRCGAASPSSVNLWATGSYDHTV The amino acid sequence of SEQ ID RLWDLRNSKTVLQLKHGKPLEDVLFFPSGGLLATAGGNV 179 448. The conserved G-protein beta VKVWDILGGGRPIHTMETHQKTVMAMCISKVPRSGQALG WD-40 repeat domains are DAPSRLVTASLDGYMKVFDLDHFKVTHSARYPAPILSMG underlined. ISSLCRTMAVGTSSGLLFIRQRKGQIEDKIHSDSSGLOV NPVNDEKDSAVLKPNQYRYYLRGRSEKPSEGDYVVKRMA KVYFQEYDKDLRHFNHSKALVSALKAADSKGTVAVIEEL VARKRLIQTLSILNLDELELLINFLSRFILVPKYSRFLI SLTDRVLDARAVDLGKSENLKKQIADLKGIVVQELRVQQ SMQELQGIIEPLIRASAR MDVETSGKPTGNKRTYTRLPRQVCVFWQEGRCTRESCNF The amino acid sequence of SEQ ID LHVDEPGSVKRGGATNGFAPKRSYNGSDERDTLAAGPPG 449. The conserved C-x8-C-x5-C-x3- GSRRNISARWGRGRGGIFISDERQKIRNKVCNYWLAGNC H type zinc finger is underlined QRGEECKYLHSFVMGSDVKFLTQLSGHVKAIRGIAFPSD and in italics and the conserved SGKLYSGGQDKKVIVWDCQTGQGTDIPLNDEVGCLMSEG 180 Cys and His residues in bold,The PWIFVGLPNAVKAWNILTSTELSLVGPRGQVHALAVGNG conserved G-protein beta WD-40 MLFAGTHDGSILAWKFSPASNTFEPAASLVGHTQAVVSL repeat domains are underlined and VSGADRLYSGS1MDKTIRVWDLGTFQCLQTLRDHTSVVMS the Trp-Asp (WD) repeats signature LLCWDQFLLSCSLDNTVKVWVATSSGALEVTYTHNEEHG is in bold (non-italics). VLALCGMNDEQAKPVLLCSCNDNTVRLYDLPSFSERGRI FSRNEVRTFQIAPGGLFFTGDATGELKVWNWATQKS MSVQELRERHAAATAKVNALRERIKAKRLQLLDTDVATY ASSNGRTPISFSFTDLVCCRTLGHTGKVYSLDWTSEKN RIVSASQDGRLIVWNALTSQKTHAIKLPCAWVMTCAFSP The amino acid sequence of SEQ ID SGQAVACGGLDSVCSIFQLNNQLDRDGHLPVSRILSGHR 181 450. The conserved G-protein beta SYVSSCQYVPDGDTHVITGSGDRTCIQWDVTTGQRIAIF WD-40 repeat domains are GGEFPLGHTADVMSVSISAANPKEFVSGSCDTTTRLWDT underlined. RIASRAIRTFHGHEADVNTVKFFPDGLRFGSGSDDGTCR LFDIRTGHQLQVYRQPPRENQSPTVTAIAFSFSGRLLFA GYSNGDCFVWDTILEKVVLNLGELQNTHNGRISCLGLSA DGSALCTGSWDKNLKIWAFGGHRKIV 142 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MKVKIISRSTDEFTRERSNDLQRVFRNFDPNLHTQARAQ EYVRALNAAKLDKIFAKPFLAAMSGHIDGISAMAKSPRH LKSIFSGSVDGDIRLWDIAARRTVQQFPGHRGAVRGLTV STEGGRLISCGDDCTVRLWDIPVAGIGESSYGSENVQKP The amino acid sequence of SEQ ID LATYVGKNSFRAVDYQWDSNVFATGGAQVDIWDHDRSEP 451. The conserved G-protein beta TNSFAWGSDTVISVRFNPAEKDIFATTASDRSIVLYDLR 182 WD-40 repeat domains are MASPLNKLIMQTRNNAIAWNPREPMNFTAANEDCNCYSY underlined. DMRR4NISTCVHQDHVSAVMDIDYSPSGREFVTGSYDRT VRIFPYNAGHSREIYHTKRMORVFCVKFSGDATYVVSGS DANIRLWKAKASEQLGVLLPRERKRHEYLDAVKERFKH LPEIKRIERHRHLPKPIYKAALLRHTVNAAAKRKEERKR AHSAPGSVVTNPLRKKRIVAQLE MDHYYQDDFDYLVDDEMVDFADDVEDDVRTRRRSDIDSD SENDFDLNNKSPDTTALQAKRGKDIQGIPWNRLNFTREK YRETRLQQYKNYENLPRPRRSRNLDKECTNFERGSSFYD FRHNTRSVKATIVHFLRNLVWATSKHNVYLMQNYSIMH The amino acid sequence of SEQ ID WSSLKQKGEEVLNVAGPIVPSVKHPGSSPQGLTRVQVSA 452. The conserved G-protein beta MSVKDNLVVAGGFQGELICKYLDKPGVSFCTKISHDENG 183 WD-40 repeat domains are ITNAVEIYNDASGATRLMTANNDLAVRVFDTEKFTVLER underlined. FSFPWSVNHTSVSPDGKLVAVLGDNADCLLADCKTGKTV GTLRGHLDYSFAAAWHPDGYILATGNQDTTCRLWDVRKL SSSLAVLKGRMGAIRSIRFSSDGRFMAMAEPADFVHLYD TRQNYTKSQEIDLFGEIAGISFSPDTEAFFVGVADRTYG SLLEFNRRRMNYYLDSIL MAEALVLRGTMEGHTDAVTAIATPIDNSDMIVSSSRDKS ILLWNLTKEPEKYGVPRRRLTGHSHFVQDVVISSDGQFA The amino acid sequence of SEQ ID LSGSWDSELRLWDLNTGLTTRRFVGHTKDVLSVAFSIDN 453. The conserved G-protein beta RQIVSASRDRTIKLWNTLGECKYTIQPDAEGHSNWISCV 184 WD-40 repeat domains are RFSPSATNPTIVSCSWDRTVKVWNLTNCKLRNTLVGHGG underlined and the Trp-Asp (WD) YVNTAAVSPDGSLCASGGKDGVTMLWDLAEGKRLYSLDA repeats signatures are in bold. GDIIYALCFSPNRYWLCAATQQCVKIWDLESKSIVADLR PDFIPNKKAQIPYCTSLSWSADGSTLFSGYTDGKIRVWG IGHV MAAIKSTSRSASVAFAPDAPLLAAGTMAGAIDLSFSSLA NLEIFKLDFQSDDPELPVVGECPSNERLNRLSWGSAGGS FGIIAGGLVDGTINIWNPATLINSEDNGDALIARLEQHT GPVRGLEFNTISTNLLASGAEDGELCIWDLANPTAPTHF PPLKGVGSGAQGEISFLAWNRKVQHILASTSYSGTTVVW DLRRQKPIISFPDATRRRCSVLQWNPDASTQLIVASDDD NSPTLRAWDLRNTISPYKEFVGHSRGVIAMSWCPSDSLF LLTCAKDNRTLCWDTGSGEIVCELPAGANWNFDVQWSPK IPGILSTSSFDGKIGIHNIEACSRNVSGEVEFGGAIVRG GPSALLKAPKWLERPAGVSFGFGGKLASFRPSTVAQAAD HRHSEVFIHNLVTEDNLVIRSTEFEAAIADGEKVSLRAL CDRKAEESQSDEEKETWNFLRVMFEDEGTARTKLLEHLG The amino acid sequence of SEQ ID FKVQSEENGDLQETHSSKIDDIGSEIGKTLTLDDKTEED 185 454. The conserved G-protein beta VLPQLKGGQDAAIPQDNGEDFFDNLHSPKEEVSLSHVGN WD-40 repeat domains are DFVGEKDKDMVVNGAEIEHETEDLTEYSDWNEAIQHSLV underlined. VGDYKGAVLQCLSANRMADALIIAHLGGNSLWEKTRDEY LKKAKSSYLKVVSAMVNNDLTGLVNSRPLKSWKETLAML CTYSQREEWTVLCDMLASRLIAAGNVMAATLCYICAGNI EKTVEIWSRSLKYDYDGRSFVDHLQDVMEKTVVLALATG QKRVSPSLSKLVENYAELLASQGLLTTAMEYLKLLGTEE SSHELSILRDRLYLSGTDNKVEASSFPFETRODLTESQY NMHQTGFGAPETQKNYQENVHQVLPSGSYTDNYQPTANT HYIAGYQPAPQQQPSFQNYFTPASYQPAPSPNVFYPSQV SQAEQSNFAPPVNQPPMKTFVPSTPPILRNVDQYQTPSL NPOLYQGVSSATVETHPYQTGAPASVSVGTTPGQPSVVP NFMVPGPVTAPTVTPRGFMPVTTPTQHPLGSANPPVQPQ SPQSSQVQSV MAEAADSQLQTLSERDSTPNFKNLHTREYAAHKKKVHSV AWNCTGTKLASGSVDQTARVWNIEPHGHSKTKDLELKGH The amino acid sequence of SEQ ID ADSVDQLCWDPKHSELLATASGDRTVRLWDA'RSGKCSQQ 455. The conserved G-protein beta VELSGENINITFKPDGTHIAVGNRDDELTIIDVRKFKPL 186 WD-40 repeat domains are HKRKFSYEVNEIAWNTTGELFFLTTGNGTVEVLSYPSLQ underlined and the Trp-Asp (WD) VLHTLVAHTAGCYCIAIDPIGRYFAVGSADALVSLWDLS repeats signature is in bold. EMLCVRTFTKLEWPVRTISFNHDGQYIASASEDLFIDIA DVQTGRTVHQISCRAAMNSVEWNPKYNLLAFAGDDKNKY MQDEGVFRVFGFETP 143 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MAATSPVGAGSGRELANPPTDGISNLRFSNHSDHLLVSS WDRKVRLYDASANSLKGQFVHGGPVLDCCFHDDASGFSG The amino acid sequence of SEQ ID SADNTVRRYDFSTRKEDILGRHEAPVRCVEYSYAAGQVI 456. The conserved G-protein bet TGSWDTLKCWDPRGASGQEKTLVGTYSQLERVYSMSLV 187 WD-40 repeat domains are e GHRLVVATAGRHINVYDLRNMSQPEQRRESSLKYQTRCV underlineds RCYPNGTGFALSSVEGRVAMEFFDLSEAGQAKKYAFKCH RKSEAGRDTVYPVNAIAFHPIYGTFATGGCDGYVNVWDG NNKKRLYQYSKYPTSIAALSFSRDGRLLAVASSYTFEEG EKPHEPDAVFVRSVNEAEVKPKPKVYAAPP MASDDEEGFKNEEAPGVVDEAEVQEGLRACFPLSFGKQE KKQAPLESIHSATKRPEDPRPRRQLGPPRPPPSILAEQE DSDRFVGPPRPPQFVRDDNDDGEAEIMIGPPRPPAQYSD DHDNEETIGPPKPSYLEKGEETDQMVGPSKRGSDDETSG DSDDGDDAVDFRVPLSNEIVLRGHTKVVSALAIDOTGSR VLTGSYDYSVRMYDFQGMTSQLKSFRQLEPAEGHQVRSL The amino acid sequence of SEQ ID SWSPTSDRFLCVTGSAQAKIFDRDGLTLGEFVKGDMYLR 457. The conserved G-protein beta DLKNTKGHISGLTCGEWHPKEKQTILTCSEDGSLRIWDV 188 WD-40 repeat domains are NDFNTQKQVIKPKLAKPGRVPVTACAWGRDGKCIAGGVG underlined and the Trp-Asp (WD) DGSIQVWNLKPGWGSRPDLYVAKGHDDDITGLQFSADGN repeats signature is in bold. ILLTRSTDETLKVWDLRKAITPLQVFRDLPNNYAQTNVA FSPDERLIFTGTSVERDGNSGGLLCFYDRQTLELVLRIG VSPVHSVVRCTWHPRHNQVFATVGDKKEGGAHILYDPAL SERGALVCVARAPRKKSLDDFEAKPVIHNPHALPLFRDE PSRKRQREKARMDPMKSQRPDLPVTGPGFGGRVGSTKGS LLTQYLLKEGGLIKETWMEEDPREAILKYADVAAKDPKF IAPAYAQTQPETVFAETDSEEEQK MKERGQSHAGQPSVDERYTOWKSLVPVLYDWLANHNLVW PSLSCRWGPQMHQATYKNSQRLYLSEQTDGTVPNTLVIA TCEVVKPRVAAAEHISQFNEEARSPFVKKFKTIIHPGEV NRIRELPQNSKIVATHTDGPDVLIWDVDTQPNRQATLGA The amino acid sequence of SEQ ID ADSRPDLVLTGHKDNAEFALAMSPSAPFVLSGGKDKCVL 189 458. The conserved G-protein beta LWSIQDHISAATEPSSAKASKTPSSAHGEKVPKIPSIGP WD-40 repeat domains are RGVYKGHKDTVEDVQFCPSNAQEFCSVGDDSALILWDAR underlined. NGNEPVIKVEKAHNADLHCVDWNPHDENLILTGSADNSV RMFDRRNLTSSGVGSPVHKFEGHSAPVLCVQWCPDKASV FGSAAEDSYLNVWDYEKVGKNVGKKTPPGLFFQHAGHRD KVVDFHWNSFDPWTIVSVSDDGESTGGGGTLQIWRMSDL IYRPEDEVLAELERFRAHILSCQNK MSSLSRELVFLILQFLDEEKFKESVHKLEQESGFFFNMK YFDEKAQAGENDEVERYLSGFTKVDDNRYSMKIFFEIRK QKYLEALDRQDRARAVDILVKDLKVFSTFNEELYKEITQ LLTLDNFRENEQLSKYGDTKSARTIMMSELKKLIEANPL FREKLIYPNLKASRLRTLINQSLNWQHQLCKNPRPNPDI KTLFTDHACGPPNGARTPTQPTASLGVLPKATTFTPIGP HGPFPSSSTATSGLASWMSNPNMVTSPQAPVAVGPSVPV PPNQATLLKRPRTPPGSSSVVDYQTADSEQLIKRLRPVS QSIDEATYPGPTLRVPWSTDDLPKTLARALNEPYPVTSI DFHPSQQTFLLVGTKNGEITLWEVGSREKLATRSFKIWD The amino acid sequence of SEQ ID NANCSNHLEAAFVKDSSVSINRVLWSPDGTLIGIAFTKH 459. The conserved G-protein beta LVHTYTFOGLDLRQHLEIDAHVGGVNDLAFSHPNKOLCV WD-40 repeat domains are VTCGDDKMIKVWDAVTGRKLYNFEGHDAPVYSVCPHHKE 190 underlined. The Lissencephaly NTQFIFSTAVDGKIKAWLYDHLGSRVDYDAPGHSCTTMM type-i-like homology motif is in YSADGTRLFSCGTSKEGESFLVEWNESEGAIKRTYSGLR bold and the CTLH, C-terminal to KKGSGVVQFDTTQNHFLAVGDEHLIKFWDMDSTNMLTSC LisH motif is in italics. DAEGGILNLPRLRFNKEGSLLAVTTVNGIKILANADGQK LLKTMENRTFDLPSRAHIDAASATSSPATGRMERIERTS SANTVSGINGVDPAQSSEKLRLSDDLSEKTKIWKLTEIT DSIQCRCITLPENAAEPASKVSRLLYTNSGVGLLALGSN AVHKLWKWNRSEQNPSGKATASVHPQRWQPTSGLLMTND ITDINPEEAVPCIALSKNDSYVMSASGGKVSLFNMMTFK VMTTFMPPPPASTFLAFHPQDNNIIAIGMEDSTIHIYNV RVDEVKTKLKGHQKRITGLAFSSTQNILVSSGADAQLCV WNTETWEKRKSKTIQMPVGKTVSGDTRVQFHSDQLHILV VHETQLAIYDAYKLERQYQWVPQDALSAPILYATYSCNR QLIYATFSDG 144 WO 2005/065339 PCTIUS2004/043804 Entry Sequence Description Annotated Peptide Sequence MAKDEEEFRGEMEERLVNEEYRIWKKNTPFLYDLVITHA LEWPSLTVQWLPDREEPPGKDYSVQKMILGTHTSDNEPN YLMLAQVQLPLEDAENDARQYDDERGEIGGFGCANGKVQ VIQQINHDGEVNARYMPQNPFIIATKTVSAEVYVFDYS The amino acid sequence of SEQ ID KHPSKPPQDGGCHPDLRLRGHNTEGYGLSWSPFKHGHLL 191 460. The conserved G-protein beta SGSDDAQICLWDINVPAKNKVLEAQQIFKVHEGVVEDVA WD-40 repeat domains are WHLRHEYLFGSVGDDRHLLIWDLRTSATNKPLHSVVAHQ underlined. GEVNaLAFNPFNEWVLATGSADRTVKLFDLRKISSALHT FSCHKEEVFQIGWSPKNETILASCSADRRLMVWDLSRID EFQTPEDALDGPPELLFIHGGHTSKISDFSWNPCEDWVI -__ASVAEDNILQIWQMAENIYHDEEDDMPPEEVV MSPGVKQTGSQKFESGHQDVVHDVTMDYYGKRIATCSAD RTIKLFGLNASDTPSLLASLTGHEGPVWQVAWAHPKFGS The amino acid sequence of SEQ ID MLASCSYDGRVIIWREGQQENEWSQVQVFKEHEASVNSI 192 461. The conserved G-protein beta SWAPNELGLCLACGSSDGSITVFTCREDGSWDKTKIDQA WD-40 repeat domains are HQVGVTAVSWAPASAPGSLVGOPSDPIQKLVSGGCDNTA underlined. KVWKFYNGSWKLDCFPPLQMHTDWVRDVAWAPNLGLPKS TIASCSQDGKVVIWTQGKEGDKWEGRILNDFKIPVWRVN WSLTGNILAVADGNNSVTLWKEAVDGDWNQVTTVQ MSSGVKQTGSQKFESGHQDVVHDVTMDYYGKRIATCSAD RTIKLFGMNTSDTPTLLASLTGHEGPVWQVAWAHPKFGS The amino acid sequence of SEQ ID MLASCSYDRRVIIWREGQQENEWSQVQVFKEREASVNSI 193 462. The conserved G-protein beta SWAPHELGLCLACGSSDGSITVFTGREDGSWDKTKIDQA WD-40 repeat domains are HQVGVTAVSWAPASAPGSLVGQPSDPVQKLVSGGCDNTA underlined. KVWKFYNGSWKLDCFPPLQMHTDWVRDVAWAPNLGLPKS TIASCSQDGRVVIWTQGKEGDKWEGKILNDFKTPVWRIS WSLTGNILAVADGNNNVTLWKEAVDGEWNQVTTVQ MKKRSRPSNGHLSTAAKNKSRKTAPITKDPFFDSAHNRN KSKGKGKSRGKGEEIFSSDEDDDAIGRDAPAEEEEEIAE EERETADEKRLRVAKAYLDKIRAITKANEEDNEEEAGED EETEAERRGKRDSLVAEILQQEQLEESGRVQRQLASRVV TPSKLVECRVVKRHKQSVTAVALTEDDLRGFSASKDGTI The amino acid sequence of SEQ ID IHWDVETGASEKYEWPSQAVSVSSSNEVSKTQKGKGSKK 463. The conserved G-protein beta QGSKHVLSMAVSSDGRYLATGGLDRYIHLWDTRTQKHIQ 194 WD-40 repeat domains are AFRGHRGAVSCLAFRQGTQQLISGSFDRTIKLWSAEDRA underlined. YMDTLYGHQSEILAVDCLRKERVLSVGRDHTLRLWKVPE ETQLVFRGHAASLECCCFINNEDFLSGSDDGSIELWSML RKKPVFMAKNAHGHAIVENLSEDTSTREEPDEEVTTRQL PNGNSIGNGMTNQMGITPSVESWVGAVTVCRGTDLAASG AGNGVVRLWAIENSSKSL.ALHDIPLTGFVNSLTFARSG RFLIAGVGQEPRLGRWGRIQAARNGVTLCPIELS MAATFGTINTATSPHNPNKSFEIVQPPNDSISSLSFSPK ANYLVATSWDNQVRCWEVLQTASMPKAAMSHDQPVLCS TWKDDGTAVFSAGCDKQAKMWPLLTGGQPVTVAMHDAPI The amino acid sequence of SEQ ID KDIAWIPEMNLLATGSWDKTLKYWDTRQSNPVHTQQLPE 195 464. The conserved G-protein beta RCFALSVRHPLMVVGTADRNLIIFNLQNPQTEFKRISSP WD-40 repeat domains are LKY 9 TRCVAAFPDKQGFLVGSIEGRVGVHHVEEAQQSKN underlined. FTFKCHRDSNDIYAVNSLNFHPVHQTFATAGSDGAFNFW DKDSKQRLKAMARSNQPIPCSTFNSDGSLYAYAVSYDWS KGAENHNPATAKHHILLHVPQESEIKGKPRVTTSGRK MVVMDKGTHQTNEDESESEFIDEDDVIDEISIDEEDLPD ADVEGEDVQEDNKRSEPDENSSSLDDAIHTFEGHEDTLF AVACSPVDATWVASGGGDDKAFMWRIGHATPFFELKGHT DSVVALSFSNDGLLLASGGLDGVVRIWDASTGNLIHVLD The amino acid sequence of SEQ ID GPGGGIEWVRWHPKGHLVLAGSEDYSTWMWNADLGKCLS 196 465. The conserved G-protein beta VYTGHCESVTCGDFTPDGKAICTGSADGSLRVWNPQTQE WD-40 repeat domains are SKLTVKGYPYHTEGLTCLSISSDSTLVVSGSTDGSVHVV underlined. NINGKVVASLVGHSGSIECVRFSPSLTWVATGGMDKKL MIWELQSSSLRCTCQHEEGVMRLSWSLSSQHIITSSLDG IVRLWDSRSGVCERVFEGHNDSIQDMVVTVDQRFILTGS DDTTAKVFEIGAF 145 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MPVFRTAFNGYAVKFSPFVETRLAVATAQNFGIIGNGIR HVLELTPNGIVEVCAFDSSDGLYDCTWSEANENLVVSAS The amino acid sequence of SEQ ID GDGSVKIWDIALPPVANPIRSLEEHARVYSVWNLVRK 466. The conserved G-protein beta DCFLSASWDDTIRLWTIDRPQSMRLFKEHTYCIYAAVWN 197 WD-40 repeat domains are PRHADVFASASGDCTVRIWDVREPNATIIIPAHEHEILS underlined and the Trp-Asp (WD) CDWNKYNDCMLVTGSVDKLIKVWDIRTYRTPMTVLEGHT repeats signature is in bold. YAIRRVKFSPHQESLIASCSYDMTTCMWDYRAPEDALLA RYDHHTEFAVGIDISVLVEGLLASTGWDETVYVWQHGMD PRAC MDSRNRRSRLNLPPGMSPSSLHLETTAGSPGLSRVNSSP STPSPSRTTTYSDRFIPSRTGSRLNGFALIDKQPQPLPS PTRSAAEGRDDASSSSASAYSTLLRNELFGEDVVGPATP ATPEKSTGLYGGSRDSIKSPMSPSRNLFRFKNDHGGNSP GSPYSASTVGSEGLFSSNVGTPPKPARKITRSPYKVLDA The amino acid sequence of SEQ ID PALQDDFYLNLVDWSSNNVLAVGLGTCVYLWSACTSKVT 198 467. The conserved G-protein beta KLCDLGVNDSVCSVGWTPQGTHLAVGTNIGEVQIWDTSR WD-40 repeat domains are CKKVRTMGGHCTRAGALAWSSYILSSGSRDRNILHRDIR underlined. VQDDFIRKLVGHKSEVCGLKWSYDDRELASGGNDNQLLV WNQQSAQPLLRFN4EHTAAVKAIAWSPHQHGILASGGGTA DRCLRFWNTATDTRLNCVDTGSQVCNLVWCKNVNELVST HGYSQNQIMVWRYPSMSKLATLTGHTLRVLYLAISPDGQ TIVTGAGDETLRFWSIFPSPKSQSAVHDSGLWSLGRTHI R MEKKKVVVPIVCHGHSRPIVDLFYSPVTPDGLFLISASK DSSTMLR1GETGDWIGTFEGHKGAVWSCCLDNRALRAAS GSADFSAKIWDALTGDELHCFVHKHIVRACAFSESTSLL The amino acid sequence of SEQ ID LTGGHEKILRIFDLNRPDAPPKEVDNSPGSIRTVAWLHS 199 468. The conserved G-protein beta DQTILSSNSDAGGVRLWDLRTEKIVRVLETKSPVTSAEV WD-40 repeat domains are SRDGRYITTADGNSVKFWDANHFGMVKSYTMPCMVESAS underlined. LEPTMGNMFVAGGEDMWVRLFDFHTGEEIACNKGHHGPV HCVRFAPGGESYSSGSEDGTIRIWQTLNMNSEENESYGV NGLSGKVRVGVDDVVQKVEGFQITADGHLNDKPEKPNP MERYSQGTQKKSEIYTYEAPWQIYGMNWSVRKDKKFRLG IGSFLEEYNNRVEIIELDEESGEFKSDPRLAFDHPYPTT KIMFVPDKECQRPDLLATTGDYLRIWQVCEDRVEPKSLL The amino acid sequence of SEQ ID NNNKNSEFCAPLTSFDWNDADPKRIGTSSIDTTCTIWDI 200 469. The conserved G-protein beta EKEVVDTQLIAHDKEVYDIAWGEVGVFASVSADGSVRVF WD-40 repeat domains are DLRDKEHSTIIYESSQPETPLLRLGWNKQDPRFIATILM underlined. DSCKVVILDIRFPTLPVAELQRHQASVNTIAWAPHSPCH ICTAGDDSQALIWELSSVSQPLVEGGGLDPILAYTAAAE INQLQWSSMQPDWVAIAFSNEVQILRV MQSENNLDESLHLREVQELQGHTDTVWAVAWNPVTGIDG APSMLASCSGDKTVRIWENTHTLNSTSPSWACKAVLEET The amino acid sequence of SEQ ID HTRTVRSCAWSPNGKLLATASFDATTAIWENVGGEFECI 201 470. The conserved G-protein beta ASLEGHENEVKSVSWSASGMLLATCGRDKSVWIWDVQPG WD-40 repeat domains are NEFECVSVLQGHTQDVKMVQWHPNRDILVSASYDNSIKV underlined. WAEDGDGDDWACMQTLGNSVSGHTSTVWAVSFNSSGDRM VSCSDDLTLMVWDTSINPAERSGNAGPWKHLCTISGYHD RTIFSVHWSRSGLIASGASDDCIRLFS 146 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MKRAYKLQEFVAHASNVNCLKIGKKSSRVLVTGGEDHKV NMWAIGKPNAILSLSGHSSAVESVTFDSAEALVVAGAAS GTIKLWDLEEAKIVRTLTGHRSNCISVDFHPFGEFFASG SLDTNLKIWDIRRKGCIHTYKGHTRGVNSIRFSPDGRWV VSGGEDNIVKLWDLTAGKLMHDFKCHEGQIQCMDFHPQE FLLATGSADRTVKFWDLETFELIGSAGPETTGVRAMIFN PDGRTLLTGLHESLKVFSWEPLRCYDAVDVGWSKLADLN IHEGKLLGCSYNQSCVGVWVVDISRVGPYAAGNVSRTNG The amino acid sequence of SEQ ID HNEAKLASSGHPSVQQLDNNLKTNMARLSLSHSTESGIK 471. The conserved G-protein beta EPKTTTSLTTTEGLSSTPQRAGIAFSSKNLPASSGPPSY 202 WD-40 repeat domains are VSTPKKNSTSRVQPTTNFQTLSRPDIVPVIVPRSNSLRP underlined and thp Trp-Asp (WD) ETTSDVKKEMNNFGRVVPSTVSTKSTDVIKSGSNRDESD repeats signature is in bold. KIDSINQKRMTGNDKTDLNIARAEQHVSSRLDNTNTSSV VCDGNQPAARWIGAAKFRRNSPVDPVVSPHDRSPTFPWS ATDDGVTCQPDRQVTAPELSKRVVEPGRARALVASWETR EKALTADTPVLVSGRPPTSPGVDMNSFIPRGSHGTSESD LTVSDDNSAIEELMQQHNAFTSILQARLTKLQVIRRFWQ RNDLIGAIDATGKMGDHSVSADVISVLIERSEIFTLDIC TVILPLLTRLLQSETDRHLTVAMETLLVLVKTFGDVIRA TISATPTIGVDLQAEQRLERCNLCYVELENIKQILVPLI RRGGAVAKSAQELSLALQEV MSTLEIEARDVI KIVLQFCKENSLHQTFQTLQNECQVSL NTVDSLETFVADINSGRWDVILPQVAQLKLPRKKLEDLY EQIVLEMIELRELDTARAILRQTQAMGFMKQEQPERYLR LEHLLVRTYFDPREAYHESSKEKRRSQIAQALASEVTVV PPSRLMALIGQSLKWQQHQGLLPPGTQFDLFRGTAAVKA The amino acid sequence of SEQ ID DEEEMYPTTLAHTIKFGKQSHPECARFSPDGQYLVSCSV 472. The conserved G-protein beta DGFIEVWDYISGKLKKDLQYQADDSFMMHDDAVLCVDFS 203 WD-40 repeat domains are RDSEMLASGSQDGKIKVWRIRTGQCLRRLERAHSQGVTS underlined and the Trp-Asp (WD) LSFSRDGSQLLSTSFDSTARIHGLKSGKALKEFRGHTSY repeats signature is in bold. VNDAIFTSDGGRVITASBDCTVKVWDVKTTDCIQTFKPP PPLKGGDVSVNSVHLFPKNSEHIVVCNKASSIYIMTLQG QVVKSFSSGKREGGDFVAACISPKGEWIYCVGEDRNIYC FSQQSGKLEHLMKAHDKDIIGVTPHPHRNLLVTYSEDST MKIWKP MDIELEDQPFDLDFHPSAPIVAVALITGRLQLFRYVDIS SEPERLWTVTAHTESCRAARFINAGSSVLTASPDCSILA TNVETGQPVARLDNAHGAAINCLTNLTESTIASGDENGI The amino acid sequence of SEQ ID IKVWDTRQNSCCNKFKAHEDYISDMEFVPDTMQLLGTSG 204 473. The conserved G-protein beta DGTLSVCNLRKNKVHARSEFSEDELLSVALMKNGKKVVC WD-40 repeat domains are GSQEGVLLLYSWGYFKDCSDRFVGHPHSVDALLKLDEDT underlined. VLTGSSDGIIRVVSILPNKMIGVIGEHSSYPIERLAFSH DRNVLGSASHDQILKLWDIHYLHEDDEPETNKQEAVNDE NVDMDLDVDTEKRPRGSKRKKRAEKGQTSSQKQSSDFFA DI MDRIQQIPHTCVARKINLPLGMSKESLALNLPANLAPTM SPPSITYSDRFIPSRKASNFEEFALPDKTSPSPNSAGGQ SSSTNGEGRDDACAAYSALLRTELFPATPDKTEGCRRPV IGSPSGNVFRFKSQQCKSQSPFSLCPVGEDGDLSETGAV ARKTTRKIPRSPFKVLDAPALQDDFYLNLVDWSSHNILA The amino acid sequence of SEQ ID VGLSACVYLWSASSSKVTKLCDLGLDDNVCSVAWTQRGT 205 474. The conserved G-protein beta YLAVGTNNGGVQIWDAAHCKQVRTMEGHCTRVGTLAWNS WD-40 repeat domains are HILSSGGRDRNILQRDIRAQDDFVSKFSGHKSEVCGLKW underlined. SYDNRELASGGNDNQLFVWNQQSQQPVLKYNEHTAAVKA IAWSPHQHGLLASGGGTADRCIRFWNTATNTSLNCVDTG SQVCNLVWSKNVNELVSTHGYSQNQIIVWRYPTMSKLAT LTGHTLRVLYLAISPDGQTIVTGAGDETLRFWNVFPSSK TQQNTIRDMGVWSSGRTHIR MAGGQGEGEEKVDKLSMELTEDVMKSMEIGAVFKDYNGK INSLDFHRTNNYLVTASDDEAIRLFDTASATWQKTSYSK KYGVDLICFTNHQTSVLYSSKNGWDESLRHLSLMDNKYL The amino acid sequence of SEQ ID RYFKGHHDRVVSLCMSPKGECFMSGSLDRTVLLWDLRID 206 475. The conserved G-protein beta KCQGLIRVRGRPAVAYDEQGLVFAISNEGGLIKMFDARL WD-40 repeat domains are YDKGPFDTFVVEGDKSEASGIKFSNDGKLILLSTMDSNI underlined. HVLDAYQGTTVHSFSVEAVPNGGEAVPNGGTLEASFSPD GKFVISGSGNGNIHAWSVNSGKEVACWTTEGVIPAVVKW APRRLMFASGSSVLSLWVPDLSKLASLTGSNSNSAY 147 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MHRVGSTGNTSNSSRPRREKRLTYVLNDANDSRHCSGIN CLVISKLSLLGGNDYLFSGSRDGTLKRWELADDSAVCSA TFESHVDWVNDAVLTGETLVSCSSDTTLKTWRPFSDGVC TRTLRQHSDYVTCLAAASKNSNIVASGGLGREVFIWDIE AAMAPVSRTSEAMDDDTSNGVLSSGNSVLSTTVRSTNAT NSASLHTSQLQGYTPIAAKGHKESVYALAMNDVGTLLVS GGTEKVVRVWDPRSGAKQMKLRGHTDNVRALILDSTGRF CLSGSSOSIIRLWDLGQQRCVHSYAVHTDSVWALASTPN The amino acid sequence of SEQ ID FSHVYSGGRDLSLYLTDLTTRESLLLCMEKHPLLRLTLQ 207 476. The conserved G-protein beta DDSiWVATTDSSLHRWPAEGQNPPKMFQRGGSFLAGNLS WD-40 repeat domains are FTRARACLEGSAPVPVNTQPSFVIPGSPGIVQHEILNNR underlined. RHVLTKDAEGTVKLWEITRGAVLDDYGKVSFEEKKEELF EMVSIPAWFTMDTRLGSMSVHLDTPQCFTAEMYAVDLNV PDAPEEQKINLAQETLRGLLAWLSRRRQRLATQASANG DFPAGQENALRNHISSRIDVHDDAETHIAGILPAFDFST TSPPSIITEGSQGGPWRKKITDLDGTEDEKDFPWWCLEC VLHGRLSPRESLKCSFYLHPYEGTTVQVLTQGKLSAPRI LRIQKVINYVLEKMVLDRPLDSSNSETTFTPGLSGNQSH AAVVGDGSLRSGARVWQQKAKPLVEILCNNQVLSPDMSL ATVRTYIWKKPDDLYLYYRLVQNR MMKGKTIQMQAAHONHDGETSVACVLWDWHAKHLITAGA DNTILIHSYPSSSSSKPITLRHHKNAVTALAINSNVRSL ASGSVDHSVKLYSYPGGEFQSNVTRFTLPIRSLAFNKSG ELLAAAGDDEGIKLISTIDNSIARVLKGHNGPVTSISFD PKNEFLASSDSDGTVIYWELSTGKPVHTLKKIAPNTTSN PTSLNQISWRPDGEMLAVPGRKSEVSMYDRDTAEKLFSL KGGHSDTICSLAWSPNGKYIATAGTDRQVMVWDADRRQD IDKQRFDNPICSVAWKPSDNALAVIDVLGRFGVWESPIA SHMkXSPADGAERYDNMEDEEPLMARYEEELEDSVSGSLN EIINDDDDDDEMGKIPRKILQKKPSVKVEKGKEESNAKA The amino acid sequence of SEQ ID FKSGODSFKLKSAMQEAFQPGATQRQSGKRNFLAYNMLG 477The minaciseqed of Sea ID SVITFDNOGFSHIEVDFHDIGKGCRVPSMTDYFGFTMAS 208 477. The conserved C-protein beta LSESGSVEGSPQKGEKNPSTLMYRPFSSWANNSEWSMRF WD-40 repeat domains are PMGEEVKAVALGSGWVAAVTSLNFLRVFSEGGLQKFVLS underlined. MDGPVVTAAGYENLLVVVSHASNPLLSGDQVLSFTVYDI SQKTCPLSGRLPLSPGSHLTWLGFSEEGLLSSYDSEGNL RVFTNDYNGCWVPIFSAARERKSETESIWMVGLNSTQVF CVVCKLPDTYPQVAPKPVLSVLNLSLPLACSDLGADDLE NEYLRGSLLLSQMQKKAEDAVACGRESNMEEDSIFKMEA ALDRCLLRLIANCCKGDKLVRATELARLLSLEKSLQGAI KLVSAMKLPMLAERNTILEEKILQENNETISCRRLTSE AQDMDTPISISVKQVSYGANLGDSPFLPNRQVEPKHSTP VFSKPDTKIEVDTSEAIAKGCDAQNGNIKSGDAEVQPAS RNDSIQKPSNPFAKASNTSANQAVQRNASLLSSIKOMKT ATENEGKRKERARSGSLPQKPAKQSKIS MKQKRKGHQVDDPKYSVQTPQEDDTPNESGPASEEVESS DEEGGNSSNIEDDIIYSSSEEDPVVSSDYEEDEDAESDA EGVTAEQELEGDIDNALQNYMGTLTVLSNFHGENLKNAE GEDTSGDDDDEEEMPKRAEESDSPEDENDERPKRAEESD FSEDEDEERPKRAEESDSSEDEVPSRNTVGDVPLRWYKD EQHIGYDIKGKKIKKQPKKDQLDSFLASTDDSSDWRKVY DEYNDEEVELTKDEIKFISRLRKGTIPHADVNPYEPYVD WFDWKDKGHPLSNAPEPKRRFIPSKWEAKKVVKLVRAIR KGWITFQKAEEKPRFYLMWGDDLKPSEKMANGLSYIPAP The amino acid sequence of SEQ ID KPKLPGHEESYNPPPEYIPTQEEINSYQLMYEEDRPKFI 209 478. The conserved a-protein beta PKRFDSLRNVPAYDRFLSEIFERCLDLYLCPRTRKKRIN WD-40 repeat domains are IDPESLIPKLPKPKDLQPFPSICFLEYKGHTGAVSCISP underlined. ESSGQWLASGSKDGTVRIWEVETARCLKVWDIGRPIQHI AWNPVSQLSILAVAVDEEVLVLNTGLGSEDSOEKVAELL HVKSKPVSADDLGDNTSLTKWIKHEKFDGIKLTHLKPVH LISWHHKGDYFATVAPDGNTRAVLVHQLSKQQTQNPFKK. MQGRVVHVLFHPSRAIFFVATKTHVRVYDLVKQQLVKRL VTGLHEVSSMAVHHKGDNLLVGSKEGKVCWFDMDLSTQP YKTLKNHSKDIHSVAFHDSYPLFASCSDDCKAYVFYGLV YSDLLQNPLIVPLKVLQGHQSVNGMGVLDCQFHPKQPWL FTAGADSVVKLYCN 148 WO 2005/065339 PCT/US2004/043804 Entry sequence Description Annotated Peptide Sequence MMSLKRGFEESLVPAKRQKTELSTVTYGDGPRRTSSLES PIMLLTGHHAAIYTMKFNPTGTVIASGSHEREIFLWNVH GDCKNFMVLKGHKNAVLDL'HWTTDGCIISASPDKTLRA The. amino cidsevenG-prei E WDVETGKQIKKMAEHSSFVNSCCPSRRGPPLVVSGSDDG 210 479. The conserved G-protein beta TAKLWDLRHRGAIQTFPDKYQITAVGFSDAADKIYSGGI underlined o DNEIKVWDLRRGEVTMRLQGHTDTITGMQLSSDGSYLLT NSMDCSLRIWDMRPYAPQNRCVKILTGHQHNFEKNLLKC SWSSDGSKVTAGSADRMVYIWDTTTRRILYKLPGHTGSV NETGFHPTQPIIGSCSSDKQIYLGEIEPNVGYQAVI MEFSDTYKHTGPCCFSPDARYLAIAVDYRLVIRDVVTLK VVQLYSCMDKISNIEWALDSEYILCGLYKRAMVQAWSLS QPEWTCKIDEGPAGIAHARWSPDSRHIITTSDFQLRLTV WSLVNTACIHIQWPKHASKGVSFTQDGKFAAIATRRDCK The amino acid sequence of SEQ ID DYVNLLSCHTWEVMGTFTVDTIDLADLEWSPNDSAIVVW 211 400. The conserved G-protein beta DSPLEYKVLIYSPDGRCLFKYQAYDSWLGVKTVAWSPCS WD-40 repeat domains are QFLAVGSYDQTLRTLNHLTWKPFAEFVHVSTVRGP'ASAV underlined. VFKEVEEPWNLDVSGLHLNDDNAHDIQDGKPAEGHSRVR YKVVEFPVNVSSQKHPVDKPNPKQGIGLLAWSRDSQYLF TRNDNMPTALWIWDICRLELAALLIQKEPIRAAAWDPVY PRVALCTGSSHLYMWTPSGACCVNIPLPOFVVSDLKWNP DGTSMLLKDRESFCCTFVPMLPEFNDDETNEE MAKLIETHSCVPSTERGRGILIAGDAKTNSIIYCNGRSV IMRNLDNPLEASVYGEHSYPATVARFSPNGEWVASGDTS GTVRIWGRGSDHTLKYEYKALAGRIDDLEWSADGQRIVV CGDSKGKSMVRAFMWDSGTNVGEFDGHSRRVLSCSFKPT RPFRVATCGEDFLVNFYEGPPFRFKTSHRDSNYVNCVR FAPDGSKFITVGSDRKGVIFDGKMGEKIGELSKEGGHTG The amino acid sequence of SEQ ID SIYAASWSPDSKQVLTVSADKSAKIWEISETGNGTVKKT 212 481. The conserved G-protein beta LTFGSQGGADDMLVGCLWLNDYLITVSLGGIVSLLSAVD WD-40 repeat domains are PDKPPKTISGHMKSINAIALSLQSGQSEVCSSSYDGVIV underlined. RWILGVGYAGRVERKDSTQIKCLATIEGELVTCGFDNKV RRVPLLSEQHKESEPIDIGAQPKDLDVAVGCPELTFVST DAGIIIIRASKIVSTTNVGYAVTAAAISPDGTEAVVGGQ DGKLRVYSIKGDTLLEESVLERHRGPINAIRFSPDGSMF ASGDLNREAVVWDRITREVKLRNMVYHTARINCIAWSPD SSKVATGSLDTCILIYEVGKPASSRITIKGAHLGGVYGL AFSDQSTVISAGEDACVRVWSLP MPQPSVILATAGYDHTVRFWEATSGRCYRTLQYPDSQVN HLEITPDKQYLAAAGNPHIRLFEVNSNNPQPVISYDSHT The amino acid sequence of SEQ ID NNVTAVGFQCDGKWMYSGSEDGTVKIWDLRAPGFQREYE 482. The conserved G-protein beta SRAAVNTVVLHPNQTELISGDQNGNIRVWDLNANSCSCE 213 WD-40 repeat domains are LVPEDTAVRSLTVMWDGSLVVAANNHGTCYVWRLMRGTQ underlined and the Trp-Asp (WD) TMTNFEPLHKLQAHNSYILKCLLSPEFCEHHRYLATTSS repeats signature is in bold. DQTVKIWNVDGFTLERTLTGHQRWVWDCVFSVDGAFLVT ASSDSTARLWDLSTGEAIRTYQGHHKATVCCALHDGTDG ASC 149 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MLTKFETKSNRVKGLSFHPKRPWILASLHSGVIQLWDYR MGTLIDKFDEHDGPVRGVHFHKTQPLFVSGGDDYKIKVW NYKMRQCLFTFVGHLDYIRTVHFHNEYPWIVSASDDQTI RLWWQSRVCISVLTGHNHYVMSAFHPKDLWSJSW QTVRVWDISGLRKKTVSPADDLSRLAQMNTDLFGGGDVV VKYVLEGHDRGVNWAAFHTSLPLIVSGADDRQVKLWRTN DTKAWEVDTLRGHTNNVSCVIFHARQDIIVSNSEDKSIR VWDMSKRTSVQTFRREHDRFWILAAHPEMNLLAAGHDSG MIVFKLERERPAYVVYGGSLLYVKDRYLRTYEFATQKDN PLIPIRKPGSIGPNQGPRSLSySPTENAILICSDADGGA The amino acid sequence of SEQ ID YELYAVPIDSHGRSDTVQEAKKGLGGSAVFVARNRFAVL 483. The conserved G-protein beta DhGDWQVTIJOLKNEVTFGDLPVTADALF.YAGTGNLLC WD-40 repeat domains are RSDSVFLFDMQQRTVLGEIQTPNRYVVWSNMENVAL 214 underlined and the Trp-Asp (WD) LSKHTIZIASLSSTcSLUETyRVxKSGAWDDNGIMyS repeats signature is in bold. The TLNHYCLPNGDsGIIKTLDVPVYrTKVSGKsLYCLDR coatomer WD associated region is DGKNRVIQIDITECLFKLALSGKKYDYVINIJWSQLCG in bold/italics. QAIIAYLQQKGPEVALFVRDEmTRNrLAVESGNIEIA VASAKEIDEKDKWYRLGVEALRQGNAGIVYAYQRTRNF ERLSFLYLIGNLDKLSLRIAENNDVMGQFMALYL GDIQERIKIEEsGHLHLAYATAsLHGLaDIADRLAADL GGNIPVLPPGKKSSLLMPPAPILHGGDWPLLRVTKGIFE GGLENSTSAAYEEEDEEAAADWGEDIDIENIEGENGEAT VLDDQEVKGGEDDEGGWDMEDLELPPDVAAANVGTNQKT LFVAPTLGMPVSQIWMQKSSLAGEHAAAGNFETALRLLT RQLGIKNFSPLKPLFLELYMGSHTFLPSFASVPAFSLAL QRGWSESASPNIRGPPALVYRLSVLEEKLTVAYRATTEG RFSEALRLFL MDLLQNYQDDSEDSNPELRNHPPLEDATATSAPAGVENE TSSSPDSSPLRLALPAKSCAPDVDETLMALGVPGSEKKN NHNKPIDPTQHSVTFNPSYDQLWAPLYGPAHPYAKDGIA QGMRNHRLGFVEDSAIEPFMFDEQYNTFHRYGYAADPSA SLGSHIVGDLESLKKNDGASVYNLPKREKRQKLEKKMI QKDENEEEEKEVGEEVDNPSTEEWLKKNRKSPWAGKKEG The amino acid sequence of SEQ ID LQTELTEEQKKYAQEHAEKKGDREKGEKVEIVDKTTFHG 215 484. The conserved G-protein beta KEERDYQGRSWIDPPKDAKATNDHCYIPKRWVHTWSGHT WD-40 repeat domains are KGVSAIRFFPKYGHLLLSAGMDTKVKIWDVFNSGKCMRT underlined. YMGHSKAVRDISFSNDGSRFLSAGYDRNInWDTETGKV ISTFSTGKIPYVVKLHPDEDKQNVLLAGMSDKKIVQWDM NSGEITQEYDQHLGAVNTITFVDNNRRFVTSSDDKSLRV WEFGIPVVIKYISEPHMHSMPSISLHPNTNWLAAOSLDN QILIYSTRERFQLNKRKRFAGHIAAGYACQVNFSPDGRF VMSGDGEGRCWFWDWKTCKVFRTLECHDNVCIGCEWHPL EQSKVATCGWDGMIKYWD MARKGLGTDPAIGSLMSSKKRKEYKVTNRFQEGKRPLYA IAFNFIDARYHNIFATAGGTRVTIYQCLEGGAISVLQAY The amino acid sequence of SEQ ID VDDDKDESFYTLSWACDVNGSPLLVAGGHNGIIRVLDVA 4T5. amino c ise uenG-pr e i o SE NEKVHKSFVGHGDSVNEIRTQALKPSLILSASKDESVRL 485. The conserved G-protein beta HWQTGICILIFAGAGGHRNEVLSVDFHPSDVYRIASCG 216 WD-40 repeat domains are underlined and the Trp-Asp (WD) MDNTVKIWSMKEFWTYVEKSFTWTDLPSKFPTKYVQFPV repeats signature is in bold. FIAAVHSNYVDCTRWLGNFILSKSVDNEVVLWEPYSKEQ STSDGVVDILOKYPVPECDIWFIKFSCDFHYNSMAVGNR EGKVYVWELQSSPPNLIARLSHAHCKNPIRQTAISHDGS TILCCCDDGSMWRWDVVQ 150 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MESGAGGSVGARVPSAKPEMLQQPPYSNGDDDNDMERGT APVPSSNPNTVSKWELDKDFLCPICMQTMKDAFLTACGH SFCYMCIMTHLNNKSNCPCCSLYLTNNQLFPNFLLNKLL KKTSACQMASTASPVENLCLSLQQGAEVSVKELDFLLTL LAEKKRKMEQEEAETNMEILLDFLQRLRQQKQAELNEVQ ADLHYIKDDILALEKRRLELSRARERYSRKLHMLLDDPM DTTLGHAAIDDGNNVRTAFVRGGQGDAISGKFQQKKAEI The amino acid sequence of SEQ ID KAQASSQGMQKRANFCHSDSQVLPTLSGLTIARKRRVLA 486. The conserved G-protein beta QFDDLQECYLQKRRRWATQLRKQCDGGLRKERDGNSISR 217 WD-40 repeat domains are EGYEAGLEEFQSILTTFTRYSRLRVISELRHGDLFHSAN underlined and the Trp-Asp (WD) IVSSIEFDRDDELFATAGVSRRIKVFDFATVVNEPADVH repeats signature is in bold. CPVVEMSTRSKLSCLSWNKCIKSQIASSDYEGIVTVWDV NTRQSVMMYEEHEKRAWSVDFSRTEPTRLISGSDDGKVK VWCTRQETSVLNIDMKANICCVKYNPGSSYYVAVGSADH HIHYYDLRNPSVPLYEFNGHRKTVSYVKFISTNELASAS TDSTLRLWDVRDNCLVRTFKGHTNEKNFVGLTVNSEYIA CGSETNGVFVYHKAISKPAAWHQFGSPDLDDSDDDTSHF ISAVCWKSESPTMLAANSQGTIKVLVLAP MANZVDSKKNFKCVPALQQFYTGGPFRLSSDGSFLVCAC NDEVKVVDLATGSVKNTLEGDSELIVALALTPDNKYLFS ASRSTQIKFWDLSSATCKRTWKAHNGPVADMACDASGGL LATAGADRSILVWDVDGGYCTHSFRGHQGVVTTVIFHPD PHCLLLFSGSDDATVRIWDLVAKKCISVLEKHFSTVTSL AISENGWNLLSAGRDKVVNIWDLRDYHCRATIPTYEPLE AVCVLPTGSRLVSVMNQSRALPENRKKSGAAPVYFLTVG ERGIVRIWYSEGALCLYEQKSSDAIISSDKDELKGGFVS AVLLPLTQGVMCVTADQRFLFYNLDESDEGKCDLKVSKR LIGYNEEIVDLKFLGDEEKFLAVATNLEQVRMYDLSSMT CVYELSGHTDIVLCLDTVVFSGHSLLASGSKDHTVRIWD The amino acid sequence of SEQ ID TESKSCICVAAGHMGAVGAVAFSKKAKNFFVSGSSDRTI 218 487. The conserved G-protein beta KVWSFASVLDFGGISKSIKLSSQAAVAAHDKDINSVAVA WD-40 repeat domains are PNDSLICTGSQDRTARIWRLPDLVPVLVLRGHKRGVWCV underlined. EFSPVDQCVMTASGDKTIKIWALSDGSCLKTFEGHTASV LRASFLTRGTQFVSSGADGLLKLWTIKSNECIATFDQHE DKIWAMAVGKKTEMLATGGSDSLVNLWHDCTTTDEEEAL LKEEEAALDQELLNALADTDYVKAIQLAFELRRPYKLL NVFTELYSKGHAQDQIQKVIRELGNEELRLLLEYVREWN TKPKFAHVAQFVLFQLFNVLPPKEIIEVQGISELLEGLI PYAQRHYSRIDRLMRSTFLLDYTLSSMSVLSPTETDLSS SNLLARTADPLHAQIDQFHPTHFPEPNLTPIQSLLDSGN TDSVEVTARRAKKKRVSGNDSEKTTVAEVKIGDMENAFD EPDVADQGSSRKHKPASSKKRKSIAVGNASIKRIASGNA VTIALQV MESSCSSMNSNRHSTEKRCLRPLQKOGASMNKHSSDRFI PARGSIDLDVARFMVTQKQKDNNDIHALSPSPSPSKKAY QKEMADTLLKNAGAADNNCRILSFNGKSSTVSQGSQENV LANLSISRRARRYIPQSADRTLDAPDLLDDYYLNLLDWS The amino acid sequence of SEQ ID STNVLSTALGNTVYLWDASNSSISELLIADEEEGPVTSV 488. The conserved G-protein beta SWAPDGSQIAVGLNNSVVQLWDSQSNKKLRALKGHHDRV 219 WD-40 repeat domains are GALSWNGPILTTGGLDGIIINHDVRTRDHIVQTYKGHTQ underlined. EVCGLKWSPSGQQLASGGNDNLLYIWDKSMASHNPSSQY FHQLDEHCAAVKALAWCPFQTNLLASGGGTSDGSIKFWN TQTGACLNTVDTHSQVCSLLWNRHERELLSSHGLNQNQL TLWKYPSMVKITELTGHTARVLHMAQSPDGYTVASAAAD ETLKFWQVFGAPDASKKTKTKDTKGAFNMFHMHIR MLDEIVADEEEEFNIWKKNTPLLYDVVITHALEWPSLTV QWLPDRHQSPTKDYSLQKMIVGTHTSGDEPNYLMIAEVQ MPLQYSEDGNVGGFESTEAKVHIIQQINHEGEVNRAQYM PQNSFIIATKTVSSDVYVFDYTKHSSNAPQERVCNPELI The amino acid sequence of SEQ ID LKGHTNEGYSLSWSPLKEGQLLSGSNDAQICFWDINAAS 220 489. The conserved G-protein beta GRKVVEAKQIFKVHEGAVEDVSWHLKHEYLFGSVGDDCH WD-40 repeat domains are LLIWDTRTAAPNKPQHSVVAHESEVNSLAFNPFNEWLLA underlined.TGSADKTVKLFDLRKSCSLHTFSNHTEEVQIEWSP ETILASSGGDRRLMVWDLRRIGDEQTSEDAEDGPPELIF IHGGHTSKISDFSWNLHDDWLIASVAEDNILQIWQMABN IYHDDADIL 151 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MTKEDHGESRDEMGERMVNEEYKLWKKNTPFLYDLVITH ALEWPSLTVOWLPPSCKQQQDIIKDDDIDHPNTQMVILG THTSDNEPNYLILAEVQLHDGTEDEDGDGDVKRPQDKMK PGTSGGAMGKVRILQQINHQKEVNRARYMPQKPTIIATK The amino acid sequence of SEQ ID TVNADVYVFDYSKHPSKPPQEGRCNPELRLQGHESEGYG 221 490. The conserved G-protein beta LSWSPLKEGHLLSASDDAQICLWDITAATKAPKVVEANQ WD-40 repeat domains are IFRYHDGPVEDVAWRAIHDHLFGSVGDDHHLLLWDIRND underlined. SEKPLHIVEAHQAEVNCLAFNPFNEWIVATGSADRTVAL HDIRKLDKVLHTCAHHMEEVFQIGWSPQNGAILASCGSD RRLMVWDLSRIGDEQNPEDAEEAPPELLFIHGGHTSKIS DFSWNPAEEWVIASVAEDNILQVWQMSEHIYNDDNDSPT A MAMAMGDENAADPVEEFNIWKKNTPFLYDLVITHALEWP SLTVQWLPDRHQSSTADYSLQKMIVGTHTSEDEPNYLMI AEVQIPLQNSEDNIIGGFESTEAKVQIIQKINHEGEVNK ARYMPQNSFVIATKTVSSDVYVFDYSKHPSKAPQERVCN The amino acid sequence of SEQ ID PELILKGHSNEGYGLSWSPLKEGYLLSGSNDAQICLWDI 222 491. The conserved G-protein beta NAAFGKKVLEANQIFKVHEGAVGDVSWHLKHEYLFGSVG WD-40 repeat domains are DDCHLLIWDMRTAAPNKPQQSVIAHQSEVNSLAFNPFNE underlined. WLLATGSMDKTVKLFDLRKLSCSLHTFSiNHTDQVFQIEW SPMNETILASSGADRRLMVWDLARIGETPEDEEDGPPEL LFVHGGHTSKISDFSWNLNDDRVIASVAEDNILQIWOMA ENIYHDDEDML MGLFEPFRALGYITDGVPFAVQRRGIETFVTLSVGKAWQ IYNCAKLI PVLVGPQMDKKIRALACWRDFTFAATGHDIA VFRRAHQVATWSGHKAKVTLLLSFGQHVLSVDLEGCLFI WAVAEVNQNKPPIGQIQLGEKFSPSCIMHPDTYLNKVLI GSEEGTLQLWNVNTRKKLYEFKGWGSSIRCCVSSPALDV VGIGCSDGKIHVHNLRYDEEIVTFMHSTRGAVTALSFRT DGgPLLAAGGSSGVISIWNLEKKKLQSVIKDAHDSSVCS LHFFANEPVLMSSATDNSIKMWIFDTTDGEARLLKYRSG HSAPPMCIRYYGKGRHILSAGQDRAFRIFSVIQDQQSRE LSQGHVGKRAKKLKVKDEEIKLPPVIAFDAAEIRERDWC The amino acid sequence of SEQ ID NVVTCHLDDPCAYTWRLQNFVIGEHILKPCLEDPTPVKS 492. The conserved G-protein beta CSISACGNFAVLGTEGGWLERFNLQSGISRGTYIDIGEK 223 WD-40 repeat domains are RQCAHNGAVVGLACDATNTLLISGGYNGDIKVWDFKGRE underlined and the Trp-Asp (WD) LKFRWEIEVPLIKIVYHPGNGILATAADDMILRLFDVTA repeats signature is in bold. MRLVRIFVGHMORVTDLCFSGDGKWLLSSSMDGTIRVWD IISSRQLNAMHMDSAVTALSLSPGMDMLATTHVGHNGIY LWANRMIYSKATDIEPFISGKQVVKVSMPTVSSKRESEE GDEKRTIVAESNVNKSDVSGSLIGDSYSAQLTPELVTLA LLPKAQWQSLVNLDIIKMRNKPIEPPKKPEKAPFFLPSL PTLSGERIFIPSSMNGDGDQDETRNDKTVFEARGKKLGG ESLSFMQLLQSCAKIKDFTTFTNYLKGLSPSAVDMELRL LQIVDNENISETEHSVELQGIGMLLDYFVNEVSCNNNFE FVQALIRLFLKIHGETIRCQVSLQEKARKLLEIQSSTWE RLDTSFQNARCMITFLSSSQF MIAAVCWVPKGVAKVLPDSAEPPTQEEIQELLKCNVVAE SDDNEDSDEESEEMDTETDKNTDAVAKALAAANALGSQS SDFQRQHKVDDIANGLKELDMDHYDDEDEGIDIFGSGSL GNCYYPANDMDPYLVEQDDDDEDEIEDMTIKPSDLIILS The amino acid sequence of SEQ ID ARNEDDVSHLEVWIYEEETEEGGSNMYVHHDIILPAFPL 493. The conserved G-protein beta SLAWLDCNLKGGEKGNFVAVGTMQPEIELWDLDVLDEVE 224 WD-40 repeat domains are PAVVLGGAVKDEASGKTTKLKKKKKNKQAVNFKEGSHTD underlined and the Trp-Asp (WD) AVLGLAWNMEYRNVLASASADKSVKIWDIVAEKCEHTMQ repeats signature is in bold. PHTDKVQAVAWNPNQATVLLSGSFDRSVIMMDM4RAPTHS GIRWPVPADVESLAWDPHTDHSFMVSAEDGTVRGFDIRA AASTADFDGKPMFILHAHDKAVCAISYNPAAPSLLTTGS TDKMVKLWDITNNQPSCIASTNPNVGAVFSAAFSKNSPF LLATGGSKGILHVWDTLDNSEVARRFGKFRPQN 152 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MIMDENEFCDIFSLRKRLCLLSSQEGEEEEELEAMSQLD AGEFTVTGNEEVVAIAEDDVNTGILSQDLFSSQDYCTPS QPQDSTDLDSKDKAPCPLSPVKSTIQRKRCRPELLSNPP DSIQFSFQRLERVRSEESIQSSSQQLARVRSEVSSSDDF KTPKITASGQKNYVSQSALALRARVMSPPCIKNPYLDEN The amino acid sequence of SEQ ID EELNEKIQRSTRRSPACVTPIQSGACLSRYRADFHELEE 225 494. The conserved eukaryotic IGRGNFSRVYKALNRLDGCCYAVKCSQSELRLDTERKVA protein kinase domain is LMEVQSLAALGPHKNIVGYHTAWFENDHLYIQMELCDHN underlined. LTTANDRGILRTDTDFLEAVYQIAQALEFIHGRGVAHLD VKPENIYVRDGTYKLGDFGRATLINGTLHVEEGDARYMS REILNDNYENLDKVDMFSLGATFFELLMRKQYPGSGKRI DRDTEIKIPILPGFSIYFQKLLQDLVSNDPGKRPSAKDV LKNPIFNKVRGAKEV MLAPALEMEPVEPQSLKKLSFKSLKRALDLFSPVHGOIA PPDPESKKMRISYKLNFEYGGGSGSEDQVPKRKESGAAQ NQGQQAAGASNALALPGPEGSKIPPMEKSQNALTVGPSL RPQGLNDVGLHGKGTAIISASGSSDRNLSTSAIMERLPS The amino acid sequence of SEQ ID RWPRPVWHPPWKNYRVISGHLGWVRSIAFDPSNQWFCTG 495. The conserved G-protein beta SADRTIKIWDLASGRLKLTLTGHIEQIRGLAVSSKHTYM 226 WD-40 repeat domains are FSAGDDKQVKCWDLEQNKVIRSYHGHLSGVYCLALHPTI underlined and the Trp-Asp (WD) DILLTGGRDSVCRVWDIRSKMQIFALSGHDNTVCSVFAR repeats signature is in bold. PTDPQVVTGSHDTTIKWDLRHGKTMTTLTNHKKSVRAM AQHPKENCFASASADNIKKFQLPRGEFLHNMLSQQKTII NTMAVNEEGVMATGGDNGSLWFWDWKSGHNFQQAHTIVQ PGSLESEAGIYALSYDLTGSRLVSCEADKTIKMWKEDEL ATPETHPLNFKPPKDIRRF MEEAAKEQSAGSGKPKLLRYGLRSAAKPKEDKKEEQLHQ PPPPPPPQQQAAPAPAPAATRSSTSGSAGGRDRRPQQQH AVDEKYARWKSLVPVLYDWLANHNLLWPSLSCRWGPQLE QATYKNRQRLYISEQTDGSVPNTLVIANCEVVKPRVAAA EHVSQFNEEARSPFIRKYKTIIHPGEVNRIRELPQNPNI The amino acid sequence of SEQ ID VATHTDSPDVLIWDVESQPNRHAVYGATASRPNLILTGH 227 496. The conserved G-protein beta QENAEFALAMCPAEPFVLSGGKDKTVVLWSIQDHITASA WD-40 repeat domains are TDQTTNKSPGSGGSIIKKTGEGNEETGNGPSVGPRGIYC underlined. GHEDTVEDVAFCPSTAQEFCSVGDDSCLILWDARIGTNP VAKVEKAHNGDLHCVDWNPHDNNLILTGSADNSVNMFDR RNLTSNGVGSPVYKFEGHKAAVLCVQWSPDKPSVFGSSA EDGLLNIWDYERVDKKVDRAPNAPAGLFFQHAGHRDKIV DFHWNTADPWTMVSVSDDCDTAGGGGTLQIWRMSDLIYR PEEEVLAELENFKAHVLECSKA MAKDEEEFRGEMEERLVNEEYKIWKKNTPFLYDLVITHA LEWPSLTVQWLPDREEPPGKDYSVQKMILGTHTSDNEPN YLMLAQVQLPLEDAENDARQYDDERGEIGGFGCANGKVQ VIQQINHDGEVNRARYMPQNPFIIATKTVSAEVYVFDYS The mino acid sequence of SEQ ID KHPSKPPQDGGCHPDLRLRGHNTEGYGLSWSPFKHGHLL 228 497. The conserved G-protein beta SGSDDAQICLWDINVPAKNKVLEAQQIFKVHEGVVEDVA WD-40 repeat domains are WHLRHEYLFGSVGDDRHLLIWDLRTSATNKPLHSVVAHQ underlined. GEVNCLAFNPFNEWVLATGSADRTVKLFDLRKISSALHT FSCHKEEVFQIGWSPKNETILASCSADRRLMVWDLSRID EFQTPEDALDGPPELLFIHGGHTSKISDFSWNPCEDWVI ASVAEDNILQIWQMAENIYHDEEDDMPPEEVV MGKYMRKGKGVGEVAVMEVSQGSLGVRTRARTLAAASSQ KDHRRLGASKSVTTKHQSSAPPASPCVESSMHTCYLELR The amino acid sequence of SEQ ID SRKLEKFSRCYHSAHGATSHGESKRSLSLSEPSRLAVSE 229 498. The conserved cyclin- EARVASDKSSHRVLQQQSSVAHSRNNSATFSHNAKPAKA dependent kinase inhibitor domain AQRKERRDDDHTSARPSEAPHEDEDGMEVEASFGENVMD is underined. LDSRERRTRETTPSSYTRDVETMETPGSTTRPPSNAGRR RFQTEGGHGTRNQFHVPTTNEIEEFFAGAEQQEQRRFTD RYNYDPVSDSPLPGRFEWVRLRP MQNMEENVQSSWSLHGNKEICARYEILKRVSSGTYLDVY RGRRKEDGLIVALKEVHDYQSSWREIEALQRLCGCPNVV RLYEVILEFLTSDLYSVIKSAKNKGENGIPEAEVKAWMI The amino acid sequence of SEQ ID QILQGLANCHANWVIHDLKPSNMLISAYGILKLADFGS 499. The conserved MSFLERAIYEVEYELPQEDILADAPGERLMDEDDSVKGV 230 serine/threonine protein kinase WNEGEEDSSTAVETNFDDMAETANLDLSWKNEGDMVMQG domain is underlined, and the FTSGVGTRWYRAPDFLYGATIYGKEIDLWSLGCILGELL serine/threonine protein kinase ILEPLFSGTSNIDQLSRLVKVLGLQQKKNWPGCSNLPDY active-site signature is in bold. RKLCFPGDGSPVGLKNHVPNCSDNMFSILERLVCYDPAA RLNAKEIVENKYFVEDPYPVLTHELRVPSPLREENNFSE DWAKWKDMEVDSDLENIDEFNVVHSSDGFCIKFS 153 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence 4ADVPESLQQEKDEQGTDKNCCDGKFQKEIDIDDMEEEY NESSIDDEEENLSDNVATNNMGTIPQGQACMAVTVEGIE HANSVGCGRNGREGSEEVTAAEDMGHVSIENIREQGRNR KSSEQLLALYEQEGLLEDDEDDDDVDWEPFEGVTVQMKW YCTNCTMANSDDSVHCDSCGEHRNSDILRQGFLASPYLP AESPSSSDVPDERLEESKCVMTTLTPSISPMIGVCCSSL The amino acid sequence of SEQ ID QSERRTVVGFDERMLLHSEIQMETYPHPERPDRLRAIAA 502The inocidnseuene oSLRAAGLFPGKCFSIPAREATCEELQTIHSLEHVNAVES 231 deacetylase family domain is TSCGMLSHLSPDTYANEHSSLAARLAAGLCADLAKAIMT underlined GQAQNGFALVRPPGHRAGVKDSMGFCLHNNAAIAVSASR VVGAKKVLIVDWDVHHGNGTQEIFEADQSVLYISLRRHG EGFYPGSGAVTEVGSSKGEGYSVNIPWKCGGVGDNDYIF AFQHAVLPIAEQFEPDLTIISAGFDAAKGDPLGRCEVTP DGFAHMA9MLSCLSKGKMLVILEGGYNLRSISASATAVI KVLLGDNPKALPIDIQPSKGGLQTLLEVFEIQSKYWSSL KGHDQKLRSQWEAQYGSKKRKVIRKRHMHIVGGPVWWKW GRXRVVYYHWFARVSSRKHL The amino acid sequence of SEQ ID 503. The conserved cyclophilin- MASGAGAAGVVEWHQKPPNPKNPVVFFDVTIGTIPAGRI type peptidyl-prolyl cis-trans KMELFADIVPRTAENFRQFCTGEYRKAGIPIGYKGCHFH 232 isomerase family domain is RVIKDIQAGDFVKGDGSGCISIYGSKFEDEWFIAKHT underlined and the cyclophilin- GPGLLSMANSGPNTNGCQFFLTCAKCDWLDNKHVVFGRV type peptidyl-prolyl cis-trans LGEGLLVLRKIENVQTGQHNRPKLPCVIAECGEM isomerase signature is in bold. MDHYYQDDFDYLVDDEMVDFADDVEDDVRTRRRSDIDSD SENDFDSNNKSPDTTALQAKRGKDIQGIPWNRLNFTREK YRETRLQQYKNYENLPRPRRSRNLDKECTNFERGSSFYD FRHNTRSVKATIVHFQLRNLVWATSKHNVYLMQNYSIMH The amino acid sequence of SEQ ID WSSLKQKGEEVLNVAGPIIPSVKHPGSSPQGLTRVQVSA 233 505. The conserved G-protein beta MSVKDNLVVAGGFQGELICKYLDKPGVSFCTKISHDENG WD-40 repeat domain is underlined. ITNAVEIYNDASGATRLMTANNDLAVRVFDTEKFTVLER FSFPWSVNHTSVSPDGKLVAVLGDNADCLLADCKTGKTV GTLRGHLDYSFAAAWHPDGYILATGNQDTTCRLWDVRKL SSSLAVLKGRMGAIRSIRFSSDGRFMAMAEPADFVHLYD TRQNYTKSQEIDLFGEIAGISFSPDTEAFFVGVADRTYG SLLEFNRRRMNYYLDSIL MDCSGDEEEEQFFESLEEMLSPSDSGSEAADNETGCRNA DARSKYEIWKRAPSSIQERRQRFLVRMGLANPSELGNOV NSTSAESTCSTETANIPNGIERLRENSGAVLRTAGSSGR KTHCKNVINIGLREGSVRSSSSSNGTPDVGEDNGEFGGT IFSRSGGTWECMCKIKNLDSGKEFVVDELGQDGLWNKLR EVGTDRQLTMDEFERSLGLSPLVQELMRRESGVAQADCN GVHHHDAEISSSKRRSWLKALKSAAYSMRRPKEDQSNYD SERSGRRSGSFDVPWGKPQWTKVRHYRKRYKEFTALYMG QEIEAHEGSIWTMKFSLDGRYLASAGQDCVIHVREVIES The amino acid sequence of SEQ ID* MRTFGADTPDLYASSAYFSMNGLQELVPLSIEDHANKMK 234 506. The conserved G-protein beta RGKIIGSKKSSNSDCIVLPNKVFQLSEEPVCSFHGHLLD WD-40 repeat domains are VFDLSWSPSQYLLSSSMDKTVRLWKLGHESCLKVFSHND underlined. IVTCIQFNPVDERYFISGSLDGKARIWSIPDRQVVDWSD LREMVTAVCYTPDGQGGLVGSIKGSCRFYNTSGNKLQLE NQLNVRSKKKKSSGKKITGFQFAPGGDSQKVLITSADSR VRVYNGSELVCKYKGFRNTCSQISASFAPNGQHFVCASE DSRVYIWNHESPRGSGARHEKSSWSHEHFLSQGVSVAIP WSGMKLQPPVWNSPEFMLGORHNLLSLQGGKDVGCQNGL LSREAGEGQESETPLHYISQVSHSCGSQNMVDRDGQDDL SRYSACISDSRLSSFMAFPESPGNPDDLNSKVFFSDSSS KGSATWPEEKLPPTRKQSRSNSTSSHYDTLKTHLGNTIQ GQSGASAAVAWGLVIVTAGHGGEIRSFQNYGLPVRL 154 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MPSIPAIGEFTVCEINRELLTTKDESDTQAKDAYAKILG LVFPPISFQIEEGFGSASRQQFDQDLDREDTIVTPSTSE GTNALQEGGLLLKGVSVLKNILASSFGPIFSPNDTKVLK KVELLQGISWHRHKHILAFISGSNQVTVHDFQDPEWRES SLLVSESQRGIEALEWRPNGGTTLSVACRGGICIWSASY The amino acid sequence of SEQ ID PGSVAPVRSGVASFLGTSTRGSSVRWTLVDFLQIPGGKA 235 507. The conserved C-protein beta VTALSWSPTGRLLASASREDSSFTIWDVAQGVGTPLRRG WD-40 repeat domain is underlined. LGGISLLKWSPTGDYLFSAKPNGTFYLWETNTWTLEQWS SSGGCVISATWGPDGRMLFMAFSESTTLGSLHFAGRPPS LDAHLLPMELPEIGSITGGFGNIEKMAWDGCGERLAVSY TGGDLMYVGLIAIYDTRRTPFISASLVGFIRGPGEQVKP LAFAFHDKFKQGPLLSVCWSSGLCCTYPLIFRAH MEEENAKHTEETRQVQVRFTTKLQPALRVPTTSIAIPAH LTRYGLSDIVNTLLGNDKPQPFDFLVESELVRTSLEKLL LIEGISAEKILNIEYILAVVPPKQEEPSLHDDWVSVVDG SYPNFIFSGSFDSIGRIWKGEGLCTHVLEGHRDAITSAA The amino acid sequence of SEQ ID FIMPSDSSDSFINLATASKDRTLRLWQFKPNEHMTNGKM 508. The conserved G-protein beta VRPYKLLKGHTSSVQTVSACPRRNLICSGSWDCSIKIWQ 236 WD-40 repeat domains are TAGEMDIESNAGSVKKRKLEDSTEQIISQIEASRTLEGH underlined. SQCVSSVVWLEKDTIYSASWDHSVRSWDVETGVNSLTVG CRKALHCLSIGGEGSALIAAGGADSVLRIWDPRMPGTFT PILQLSSHKSWITACKWHPKSRHHLISASHDGTLKLWDV RSKVPLTTLEAHKDKVLCADWWKEDCVISGGADSTLQIF SNLNLT MNRLRSKRNHILELRLGQSEPEKEATLASNRSRGTNAPI The amino acid sequence of SEQ ID VVEDDDDVVVSSPRSFALARSSVSQRSSRIPIVNEEDLE 237 509. The conserved RING-t e zinc LRLGLAVTGRTSAEHNPRRRHGRVPPNKPIVLCDDAGEA 237 ger 5 s T onserved. RDQSSSKKRRTGQQLSSDVQSDESKEVKLTCAICISTMEE finger is underlined. ETSTICGHIFCKKCITNAIHRWKRCPTCRKKLAINNIHR IYISSSTG MEEPPPPAVLPSSEDTSIVSSHSFVNAPPTVPVGLDASI PQISTPGINQPGLTIPVPPEAAPLTASLVAASAGMPPAV VPSFVRPAIVAHPSVMPPPSMPLAALPMPVASAVPVAAP HFPPSTPNDNSITPSMPVPTPIVASSSVPPSVTIPGIAP LPFIAPIPVPSSRPVAPSPFMPPARPLGASVSVAMDVDN TDEQDQDADNKGESPSSSPDHPEDPSAAEYEITEESRKV RERQEQAIQELLLRRRAYALAVPTNDSSVRARLRRLNEP The amino acid sequence of SEQ ID XTLFGEREMEWDRLRALMAKLDAEGQLEIM2OKVQEEEE 510. The conserved G-protein beta AAANVDAEEVQEMEGPQVYPFYTEGSQELLKARTEITKF 238 WD-40 repeat domains are SLPRAVSRLQRARRKREDPDEDEDEELKCVLQQSAQINM underlined and the splicing factor DCSEIGDDRPLSGCAFSSDGTLLATSAWSGVTKLWSVPN motif is in bold. INKVATLKGHTERVTDVAFSPTNCHLATACADRTAMLWN SEGVLMKTYEaHLDRLARLAFHPSGLYLGTASFDKTWRL WDVNTGIELLLQEGRSRSVYGIAFQCDGSLAATCGLDGL ARIWDLRTGRSILALEGHVKPVLGIDFSPNGYHLATGSE DHTCRIWDLRKRQSVYIIPAHSHLVSQVKFEPQEGYFLV TASYDSTAKVWSARDFKSIKVLAGHEAKVTSVDITADGQ YIATVSHDRTIRLWSSKNSTNDMNIG MKRAYKLQEFVAHASNVNCLKIGKKSSRVLVTGGEDHKV NMWAIGKPNAILSLSGHSSAVESVTFDSAEALVVAGAAS GTIKLWDLEEAKIVRTTGHRSNCISVDFHPFGEFFASG SLDTNLKIWDIRRKGCIHTYKGHTRGVNSIRFSPDGRWV VSGGEDNIVKLWDLTAGKLMHDFKCHEGQIQCMDFHPQE FLLATGSADRTVRFWLETFELIGSAGPETTGVRAMIFN PDGRTLLTGLHESLKVFSWEPLRCYDAVDVGWSKLADLN IHEGKLLGCSYNQSCVGVWVVDISRVGPYAAGNVSRTNG The amino acid sequence of SEQ ID HNEAKLASSGHPSVQQLDNNLKTNMARLSLSHSTESGIK 511. The conserved G-protein beta EPKTTTSLTTTEGLSSTPORAGIAFSSKNLPASSGPPSY 239 WD-40 repeat domains are VSTPKKNSTSRVQPTTNFQTLSRPDIVPVIVPRSNSLRP underlined and the Trp-Asp (WD) ETTSDAKKEMNNFGRVVPSTVSTKSTDVIKSGSNRDESD repeats signature is in bold. KIDSINQKRMTGNDKTDLNIARAEQHVSSRLDNTNTSSV VCDGNQPAARWIGAAKFRRNSPVDPVVSPHDRSPTFPWS ATDDGVTCQPDRQVTAPELSKRVVEPGRARALVASWETR EKALTADTPVLVSGRPPTSPGVDMNSFIPRGSHGTSESD LTVSDDNSAIEELMQQHNAFTSILQARLTKLQVIRRFWQ RNDLKGAIDATGKMGDHSVSADVISVLIERSEIFTLDIC TVILPLLTRLLOSETDRHLTVAMETLLVLVKTFGDVIRA TISATPTIGVDLQAEQRLERCNLCYVELENIKQILVPLI RRGGAVAKSAQELSLALQEV 155 WO 2005/065339 PCT/US2004/043804 Entry Sequence Description Annotated Peptide Sequence MAGSDENNPGVVGGAHVQEGLRVGAGKMGAGNVOQRRAL SNINSNIIGAPPYPCAVNKRVLSEKNVNSENDLLNAAHR PITRQFAAQMAYKQQLRPEENKRTTQSVSNPSKSEDCAI LDVDDDKMADDFPVPMFVQHTEAMLEEIDRMEEVEMEDV The amino acid sequence of SEQ ID AEEPVTDIDSGDKENQLAVVEYIDDLYMFYQKAEASSCV 240 512. The conserved cyclin N- and PPNYMDRQQDINERMRGILIDWLIEVHYKFELMDETLYL C-terminal family domains are TVNLIDRFLAVQPVVKKKLQLVGVTAMLLACKYEEVSVP underlined. VVEDLILISDRAYSRKEVLEMERLMVNTLHFNMSVPTPY VFMRRFLKAAQSDKKLELLSFFIIELSLVEYDMLKFPPS LLAASAIYTALSTITRTKQWSTTCEWHTSYSEEQLLECA RLMVTFHQRAGSGKLTGVHRKYSTSKFGHAARTEPANFL LDFRL MQAPREGKSAAAIVGMGKYMKKSKAIPRDVSLLEASPRS PSATGVRTRAKTLASRRLRRASQRRPPPPAAAAAAAAPS The amino acid sequence of SEQ ID LDASPCPFSYLQLRSRRLRRPRLAPSPEARIDEGPAGSG 241 513. The conserved cyclin- SRGSRDASCSARTASSSGGVEGEGACVGRGDRGNGGECV dependent kinase inhibitor domain RDAAVDASYGENDLEIEDRDRSTRESTPCSLIRDSNANT is underlined. PPGSTTRQQSSCTAHRTQMSILRSIPTSDEMEEFFAYAE QRQQRSFIEKYNFDIVKDRPLPGRFEWVQVIP MDGHSSHLAAQNRSRGSOTPSPSHSAASASATSSIHLKR KLSAANASAASAAAAAAAAAAAADDHAPPFPPSSISADT RDGALTSNDDLESISARGGGAGDDSDDDSDDEEEDDGDN DGGSSLRTFTAARLENVGPAAARNRKIKAESNATVKVEK EDSAKDGGNGAGVGALGPAATSGAGSGSGTVPKEDAVKI The amino acid sequence of SEQ ID FTENLQASGAYSAREENLKREEEAGRLKFECLSNDGVDD 514. The conserved GCN5-related N- HMVWLIGLKNIFARQLPNMPKEYIVRLVMDRNHKSVMVI 242 acetyltransferase family domain is RRNLVVGGITYRPYASQKFGEIAFCAIKADEQVKGYGTR underlined and the bromodomain is LMNHLKQHARDVDGLTHFLTYADNNAVGYFIKQGFTKEI in bold. YLDKDRWHGYIKDYDGGILMECKIDPKLPYTDLSTMVRR QRQAIDEKIRELSNCHIVYQGIDFQKRDAGVPQNTIKME DIPGLREAGWTPDQWGYSRFRGLSDQKRLTFFIRQLLKV LNDHSDAWPFKEPVDAREVPDYYDIIKDPMDLKTMTKRV ESEQYYVTLMIADVK)MANARTYNSPDTIYFKIATR LEAHFQSKVQSNLQSGAGKIQQ MFNGMMDPELFKLAQEQMNRMSPAELAKIQQQMMSNPEL MRMASESMKNMRPEDLRQAAEQLKHVRPEEMAEIGEKMA NASPEEIAAVRARADAQMTYEINAAKILKKEGNELHSOG RFKDASQKYLRAKNNLKGIPSSEGKNLLLACSLNLMSCY LKTRQYEECIKEGSEALACEEKNLKAFYRRGQAYRELGQ LKDAVSDLRKAHEISPDDETIAQVLRDTEESLTKEGGSA The amino acid sequence of SEQ ID PRGVVIEEITEEDETLASVNHESPSEYSEKRHQESEDAH 243 515. The conserved TPR repeat KGPINGDIMGQMTNSESLKALKGDPDAIRSFQNFISNAD domain is underlined PTTLAAMGAGNAGEVSPDLIKTASSMIGKMSAEELQKMI QLASSFPGENPYVTRNSDSNSNSFGNGSIPNVSPDMLKT ASDMMSKMSPDDLQRMFEMASSSRGKDPSLDANHASSSS GANLAANLNHILGESEPSSSYHIPSSSRNISSSPLSNFP SSPGDMQEQIRNQMKDPAMRQMFTSMMKNMSPEMMANMG KQFGLELSPEDAAKAQEAMSSLSPEMLDKMMRWADRAQR GVETAKKTKNWLLGRPGMILAICMLLLAVILHRLGFIGS MIAAISWVPRGASKAVPEVAEPPSKEEIEEILKSGVVER SGDSDGEEDDENMDAVASEKADEVSTALSAADALGRISK VTKAGSGFEDIADGLRELDMDNYDEEDEDVKLFSTGLGD LYYPSNDMDPYLKDKDDDDDTEEIEDLSIKPMDSLIVCA RTDDEVNLLEVYLLEPSLSDESNMYVHHEVVISEFPLCT The amino acid sequence of SEQ ID AWLDCPIKGGDKGNFIAVGSMEPAIEIWDLDIIDAVEPC 244 516. The conserved G-protein beta LVLGGQEELKKKKKKGKKASIKYKEGSHTDSVLGLAWNK WD-40 repeat domains are EFRNILASASADRQVKIWDVAAGKCNITMEHHTDKVQAV underlined. AWNHHAPQVLLSGSFDHSVVMKDGRIPSHSGYRWSVTAD VESLAWDPHSEHFFVVSLEDGTVRGFDVRAAISNSASQS LPSFTLHAHEKAVSTISYNPAAPNLLATGSTDKMVKLWD LSNNQPSCIASRNPKAGAVFSVSFSEDSPLLLAIGGSKG RLEVWDTSSDAAVSRRFGKHGKPKTAEPGS 156 WO 2005/065339 PCTIJS2004/043804 Entry Sequence Description Annotated Peptide Sequence MKFCKKYQEYMQGQEGKKLPGLGFKKLKKILKRCRRRDS LHSQKALQAVQNPRTCPAHCSVCDGSFFPSLLEEMSAVL GCFNKQAQKLLELHLASGFQKYIMWFKGKLRGNHVALIQ The amino acid sequence of SEQ ID EGJDLVTYALINAIAIRKILKKYDKIHLSTQGQAJKSQV 245 517. The conserved Zn-finger, RING QRMHMEILQSPWLCELIAFHINVRETKANSGKGHALFEG domain is underlined, and the SPX 1 CSLVVDDGKPSLSCELFDSIKLDIDLTCSICLDTVFDSV N-terminal is in bold SLTCGHIYCYMCACSAASVTIVDGLKAAEPKEKCPLCRE ARVFEGAVHLDELNILLSRSCPEYWAERLQTERVERVRQ AKEHWESQCRAFMGVE MVSTOSTRENPSIFFPPPLKPWLLPVVLSLSLSRQLGMA AAAAASLPFKKNYRSSQALQQFYAGGPFAVSSDGSFIAC NCGDSIKIVDSSNASLRPSIDCGSDTITALSLSPDGKLL FSAGHSRQIRVWDLSTSTCLRSWKGHDGPVMSMACPVSG GLLATGGADRKVMVWDVDGGFCTHFFKGHDGVVSTVLFH PDSNRSLLFSGSDDGTIRVWDLLAKKCASTLRGHDSTVT SLAFSEDGLTLLAAGRDKVVSLWDLHNYACKKTIPHYEV LESVCVIHSGTVLASQLGLDDQLKVTKESAQNIHFITVG ERGILRIWKSEGSVCLFKQEHSDVTVISDEDDSRSGFTA AVMLPLDQGLLCVTADQQFLFYYPEKHPEGIFSLTLCRR The amino acid sequence of SEQ ID LVGYNEEIVDMKFLGEEENFLAVATNLEQVRVYELASMS 246 518. The conserved G-protein beta CSYVLAGHTETVLCLDTCISSSGRTLIVTGSKDNSVRLW WD-40 repeat domains are DSESRHCIGVGVGHMGAVGAVAFSRKRQDFFVSGSSDRT underlined. LKVWSLDGISEDGVDSTNLKAKAVVAAHDKDINSVAVAP NDSLVCSGSQDRTACVWRLPDLVSVVVLKGHKRGIWSVE FSPVDQCVLTASGDKTVKIWAISDGSCLKTFEGHVSSVL RASFLTRGTQFVSCGADGLVKLWTVRTNECIATYDQHSD KVWALAVGKKTEMLATGGSDAVVNLWYDSTASDKEDAFR KEEEGVLKGQELENAVSDADYTKAIELALELRRPHKLFE LFSELCRTREVGDRVERILSALSGEEVCLLLEYIREWNA K KLCHVAQSVLSQVFRILSPTEIVEIKGIGELLEGLIP YSQRHFSRIDRLVRSTYLLDYTLTGMSVIEPEADRSAVN DGSPDKSGLEKLEDGLLGENVGEEKIQNKEELESSAYKK RKLPRSKDRSKKKSKNVVYADAAAISFRA MDSAPRRKSGGINLPSGMSETSLRLDGFSGSSSSFRAIS NLTSPSKSSSISDRFIPCRSSSRLHTFGLVERGSPVKEG GNEAYSRLLKAELFGSDFGSLSPAGQGSPMSPSKNMLRF KTESSGPNSPFSPSILRQDSGFSSEASTPPKPPRKVPKT PHKVLDAPSLQDDFYLNLVDWSSQNTLAVGLGTCVYLWS The amino acid sequence of SEQ ID ASNSKVTKLCDLGPNDGVCAVQWTREGSYISIGTSLGQV 247 519. The conserved G-protein beta QIWDGTOCKRVRTMGGHQTRTGVLAWNSRILASGSRDRV WD-0 repeat domains are ILQHDLRVPNEFIGKLVGHKSEVCGLKWSHDDRELASGG underlined. NDNQLLVWNQHSQQPVLKLTEHTAAVKAIAWSPHQNGLL ASGGGTADRCIRFWNTTNGHQTSSVDTGSQVCNLAWSKN VNELVSTHGYSQNQIMVWKYPSMAKVATLTGHSLRVLYL AMSPDGQTIVTGAGDETLRFWNVFPSAKAPAPVKDTGLW SLGRTHIR MEDEAEIYDGVRAQFPLTFGKQSKPQTSLESVHSATRRG GPAPAPAPASSSSLPSTTSPSAAGGAGKSSGLPSLSSSS TAWLEGLRAGNPRAGREAGIGSRGGDGEDGGRAMIGPPR PPPGFSANDDGGGEDDDDDGDGVMVGPPPPPPGNLGDGD DDEEEEEAMIGPPRPPVVDSDEEEEEEEEENRYRLPLSN EIVLKGHNKIVSALAVDPTGSRVLSGSYDYTVRMFDFQG MNSRLSSFRDFEPVEGHQVRNLSWSPTADRFLCVTGSAQ The amino acid sequence of SEQ ID AKIYDRDGLTLGEFVKGDMYIRDLKNTKGHITGLTWGEW 248 520. The conserved G-protein beta HPKTKETILTSSEDGSLRIWDVNDFKSQKQVIKPKLARP WD-40 repeat domains are GRVPVTTCTWDREGKCIAGGIGDGSIQIWNLKPGWGSRP underlined. DIHVEQAHADDITGLKFSSDGKILLTRSFDDSLKVWDLR LMKNPLKVFEDLPNHYAQTNIACSPDEQLFLTGTSVERE STIGGLLCFFDRSELELVSRIGISPTCSVVQCAWHPRLN QIFATSGDKSQGGTHVLYDPTLSERGALVCVARAPRKKS VDDFELKPVIHNPHALPLFRDQPSRKRQREKILKDPLKS HKPELPMNGPGHGGRVGASKGSLLTQYLLKQGGMIKETW MDEDPREAILKHADAAEKNPKFTRAYAETQPDPVFAKSD SEDEDK 157 WO 2005/065339 PCT/US2004/043804 [03921 Table 12. Eucalyptus in silico Data. SEQ ConelD Faily 1 2 3 4 5 6 7 8 9 10 11 12 ID eucSpp Cyclin 1 3910 dependant 0.25 0.11 0.20 0.73 protein kinase Cyclin 2 19213 dependent 0.59 0.64 protein kinase Cyclin 3 36800 dependent 0.11 0.36 protein kinase Cyclin 4 40260 dependent 0.85 protein kinase Cyclin 5 41965 dependent 0.35 0.86 protein kinase Cyclin 6 2906 dependent 0.93 0.81 protein kinase Cyclin 7 1518 dependant 0.08 0.28 0.08 0.06 0.11 protein kinase Cyclin 8 8078 dependent 0.17 3.20 protein kinase Cyclin 9 9826 dependant 0.36 0.23 0.15 0.04 0.24 0.43 protein kinase Cyclin 10 10364 dependent 0.11 1.52 0.13 protein kinase Cyclin 11 11523 dependent 0.15 0.06 0.15 2.40 protein kinase Cyclin 12 24358 dependent 0.76 0.07 0.04 0.24 protein kinase Cyclin 13 39125 dependent 0.23 protein kinase Cyclin 14 5362 dependent 0.68 0.06 0.08 1.17 protein kinase Cyclin 15 44857 dependent 0.68 0.06 0.08 1.17 kinase 16 1743 Cyclin A 0.19 2.10 0.06 0.15 158 WO 2005/065339 PCT/US2004/043804 SEQ COsID Family 1 2 3 4 5 6 7 8 9 10 11 12 ID Suc Spp 17 12405 Cyclin A 0.60.59 2.84 18 3739 Cyclin B 0.42 1.99 0.08 2.33 19 22338 Cyclin B 0.86 20 2B605 Cyclin B 0.39 0.04 0.47 21 41006 Cyclin B 0.71 22 6643 Cyclin D 0.85 0.83 0.06 1.06 0.08 0.26 23 45338 Cyclin D 2.03 24 46486 Cyclin D 0.30 Cyclin dependent 25 12070 kinase 0.24 0.82 0.06 0.26 0.92 regulatory subunit Histone 26 6617 acetyltrans 0.08 0.06 0.04 0.55 0.26 ferase 51 Histone 27 7827 acetyltrans 2.27 0.11 0.04 ferase Histone 28 8036 acetyltrans 1.16 ferase 30 1596 Histone 0.17 0.16 0.08 2.98 0.88 0.26 0.98 0.71 deacetylase 31 5870 Histone 0.19 0.17 0.12 5.43 deacetylase 32 6901 Histone 1.21 0.08 2.01 1.16 0.08 deacetylase 33 6902 Histone 0.08 0.11 1.21 0.47 deacetylase 34 7440 Histone 0.48 1.23 0.15 0.22 0.48 0.20 2.02 deacetylase 35 8994 Histone 0.09 0.15 deacetylase 36 24580 Histone 0.42 1.22 deacetylase 37 37831 Histone 0.08 0.22 0.40 1.19 0.12 deacetylase MAT1 CDK activating 38 34958 kinase 0.15 0.23 assembly factor Peptidyl 39 22967 prolyl cis- 0.72 0.69 trans isomerase Peptidyl 40 8599 prolyl cis- 0.46 0.08 0.50 0.17 0.51 0.28 3.01 trans isomerase Peptidyl 41 9919 prolyl cis- 0.51 0.35 0.06 0.15 0.43 4.24 41 9919 trans isomerase Peptidyl 42 15820 prolyl cis- 0.04 6.78 trans 159 WO 2005/065339 PCT/US2004/043804 SEQ ConsID ID eucSpp Family 1 2 3 4 5 6 7 8 9 10 11 12 isomerase Peptidyl 43 8327 prolyl cis- 0.06 0.04 6.86 trans _____ _______isomerase Peptidyl 44 4604 prolyl cis- 0.68 trans isomerase Peptidyl 45 966 rlyl cis- 0.59 1.02 0.54 0.69 0.50 0.93 0.59 0.95 5.6 isomerase Peptidyl 46 1037 prolyl cis- 0.59 trans isomerase Peptidyl 47 4603 prolyl cis- 0.17 0.17 1.24 0.04 0.34 trans isomerase Peptidyl 48 5465 prolyl cis- 1.21 0.08 0.66 0.11 0.29 0.16 6.99 trans isomerase Peptidyl 49 6571 r cis 0.51 0.08 0.41 0.08 1.14 isomerase Peptidyl 50 6786 ralyl cis- 0.42 0.33 0.06 0.41 0.04 isomerase Peptidyl 51 7057 prolyl cis- 0.42 0.11 0.04 trans 04 .100 isomerase Peptidyl 52 8670 plyl cis- 1.56 0.39 0.20 0.12 isomerase Peptidyl 53 9137 prolyl cis- 0.04 0.59 trans isomerase Peptidyl 54 10285 prolyl cis- 0.60 1.16 0.04 0.04 0.45 trans isomerase Peptidyl 55 10600 prolyl cis- 0.16 0.17 0.06 0.46 transom isomerase Peptidyl 56 11551 prolyl cis- 0.08 0.06 0.04 0.08 1.89 trans isomerase Peptidyl 57 20743 prolyl cis 0.76 trans isomerase Peptidyl 58 23739 prolyl cis- 0.59 trans isomerase 160 WO 2005/065339 PCTIUS2004/043804 SEQ ConsID Family 1 2 3 4 5 6 7 8 9 10 11 12 ID euc Op Peptidyl 60 31985 prolyl cis- 1.99 trans isomerase Peptidyl 61 32025 prolyl cis- 0.99 trans isomerase Peptidyl 62 32173 prolyl cis- 1.99 trans isomerase Retinoblast 64 9143 oma related 0.90 0.15 protein 65 349 WD40 repeat 0.24 0.34 0.08 0.17 0.22 0.33 0.08 0. 2.24 protein I_1_1 25 66 575 WD40 repeat 0.25 0.94 0.31 0.34 0.11 0.16 0.47 1.87 _____ protein ____ - - - - 67 804 WD40 repeat 0.15 0.34 0.39 0.33 0.39 1.82 protein 68 805 WD40 repeat 0.97 0.51 4.66 0.23 0.17 0.77 0.33 1.07 0.24 4.43 protein 69 806 WD40 repeat 0.83 0.04 protein
-
I 70 2248 WD40 repeat 0.08 0.08 1.92 0.06 0.08 0.91 protein - 71 3203 WD40 repeat 0.34 0.18 0.15 0.17 0.11 0.30 0.04 0.72 protein I 1 _ 72 3209 WD40 repeat 0.08 0.15 0.17 0.12 0.61 protein I 1 1 73 4429 WD40 repeat 0.08 1.16 0.08 0.13 protein 74 4607 WD40 repeat 0.76 0.54 0.06 0.07 __protein 75 4682 WD40 repeat 0.08 0.28 0.23 1.13 0.08 0.12 protein 1 1 76 5786 WD40 repeat 0.08 0.06 0.46 0.08 0.13 protein 77 5887 WD40 repeat 1.61 1.23 0.08 0.06 0.15 0.28 1.41 protein 78 5981 WD40 repeat 0.08 0.37 protein 79 6766 WD40 repeat 0.24 0.08 1.31 0.51 0.06 0.74 0.51 0.28 protein 80 6769 WD40 repeat 0.93 0.17 0.12 2.28 protein I I 81 6907 WD40 repeat 0.25 0.17 0.06 0.45 0.32 0.47 1.67 protein 82 7518 WD40 repeat 0.91 0.28 0.15 0.55 0.59 protein 161 WO 2005/065339 PCT/US2004/043804 SEQ ConsID Family 1 2 3 4 5 6 7 8 9 10 11 12 ID GucSppI 83 7717 WD40 repeat 0.47 0.38 protein B4 7718 WD40 repeat 0.24 1.88 0.08 0.22 0.04 0.92 protein 85 7741 WD40 repeat 1.42 0.11 0.47 protein 86 7884 WD40 repeat 1.33 0.15 0.24 protein I 87 8258 WD40 repeat 0.72 0.19 0.23 0.87 0.15 0.08 0.08 protein I - 88 8465 WD40 repeat 0.47 0.08 1.75 protein 89 8616 WD40 repeat 0.57 0.08 0.69 0.16 0.13 protein II__ 90 8690 WD40 repeat 0.26 0.08 0.35 1.39 0.34 0.32 2.13 0.80 protein 91 8708 WD40 repeat 0.57 0.04 protein III_ 92 8850 WD40 repeat 0.09 0.06 0.27 2.03 protein 93 9072 WD40 repeat 1.21 0.17 0.48 protein 94 9465 WD40 repeat 0.24 0.72 0.33 0.15 protein I 95 9472 WD40 repeat 0.36 1.99 0.11 0.61 6.90 protein 96 9550 WD40 repeat 0.90 0.11 1.78 protein I 1 1 97 10284 WD40 repeat 0.24 0.08 1.82 1.22 0.16 0.47 0.28 protein 98 10595 WD40 repeat 0.16 0.17 0.11 6.52 0.85 protein 99 10657 WD40 repeat 0.06 0.12 protein I 100 12636 WD40 repeat 0.06 0.65 protein 101 12748 WD40 repeat 1.50 0.08 0.06 1.67 0.04 0.38 protein I _ 102 12879 WD40 repeat 0.08 0.33 0.06 0.04 0.08 2.00 ___ _ protein I I____ - 103 15515 WD40 repeat 0.35 0.30 protein 104 15724 WD40 repeat 0.25 D.33 0.15 0.47 0.04 0.39 protein 105 16167 WD40 repeat 0.24 0.52 protein 106 16633 WD40 repeat 1.96 0.12 0.42 protein 162 WO 2005/065339 PCT/US2004/043804 SEQ ConsID Family 1 2 5 8 9 10 11 12 ID eucSpP I 2 107 17485 WD40 repeat 0.65 protein 108 18007 WD40 repeat 0.12 protein 109 20775 WD40 repeat 0.17 0.08 protein 110 23132 WD40 repeat 2.42 ____ _______protein ______ - - ______ - -___ 111 23569 WD40 repeat 0.91 0.91 protein 112 23611 WD40 repeat 4.15 protein 113 24934 WD40 repeat 0.34 0.04 protein 114 25546 WD40 repeat 0.09 protein 115 30134 WD40 repeat 0.07 protein 116 31787 WD40 repeat 0.19 1.19 protein 117 34435 WD40 repeat 0.35 0.08 protein 118 34452 WD40 repeat. 1.44 0.20 0.25 protein 119 35789 WD40 repeat 0.20 protein 120 35804 WD40 repeat 0.19 0.27 0.08 protein 121 43057 WD40 repeat 0.30 0.57 protein 122 46741 WD40 repeat 0.46 protein- - 123 47161 WD40 repeat 1.78 protein 235 6366 WD40 repeat 0.08 0.68 0.23 0.93 0.11 0.36 0.83 0.24 0.94 protein - 236 17378 WD40 repeat 0.65 0.12 0.08 protein 252 45414 Cyclin B 3.13 Cyclin 253 44328 dependant 0.38 kinase inhibitor Histone 254 15615 acetyltrans 0.22 0.04 ferase Peptidyl 255 17239 prolyl cis- 0~.08 0.50 0.08 trans isomerase __ 163 WO 2005/065339 PCT/US2004/043804 SEQ ConsID family 1 2 3 4 5 6 7 8 9 10 11 12 ID eucSpp 256 18643 WD40 repeat 0.04 0.90 _ _protein --------- - - --- 257 19127 WD40 repeat 0.04 '09 protein 0.8 258 22624 WD40 repeat protein 259 32424 WD40 repeat 0.50 protein 260 37472 WD40 repeat 0.08 0.17 protein In Table 12, the following numbers 1-12 represent the following tissues: 1 is bud reproductive; 2 is bud vegetative; 3 is cambium; 4 is fruit; 5 is leaf; 6 is phloem; 7 is reproductive; 8 is root; 9 is sap vegetative; 10 is stem; 11 is whole; and 12 is xylem. 164 WO 2005/065339 PCT/US2004/043804 [0393] Table 13: Pine in silico data. SEQ ConsID ID pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiata Cyclin 124 1766 dependent 1.02 0.05 1.58 0.15 0.22 0.22 0.18 2.16 4.91 protein kinase Cyclin 125 2927 dependent 0.16 0.19 0.11 0.14 0.04 0.36 0.38 0.17 protein kinase Cyclin 126 7642 dependent 0.22 0.21 0.05 0.07 protein kinase Cyclin 127 13714 dependent 0.11 0.11 protein kinase Cyclin 128 16332 dependent 0.54 0.26 0.14 0.04 0.91 protein kinase Cyclin 129 21677 dependent 0.05 0.14 0.17 protein kinase Cyclin 130 27562 dependant 0.41 protein kinase Cyclin 131 1504 defendant 0.16 0.36 0.35 0.21 0.54 0.09 0.65 protein kinase Cyclin 132 15211 dependent 0.13 0.15 0.19 0.19 protein kinase Cyclin 133 20421 depeint 0.04 0.05 0.95 kinase Cyclin 134 3187 dependent 0.34 0.15 0.04 0.18 0.38 protein kinase 165 WO 2005/065339 PCT/US2004/043804 SEQ ConsID pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiate Cyclin 135 15661 dependent 0.04 0.13 protein kinase 136 13874 Cyclin A 0.31 0.27 0.15 0.05 137 14615 Cyclin A 0.16 0.15 138 4578 Cyclin B 0.47 0.14 0.13 0.22 0.74 0.38 139 23387 Cyclin B 0.29 0.26 0.17 140 6970 Cyclin D 0.14 0.27 0.04 141 10322 Cyclin D 0.16 0.19 0.06 0.14 1.12 1.36 142 22721 Cyclin D 0.27 0.36 143 23407 Cyclin D 0.15 0.26 0.31 Cyclin dependent 144 1945 kinase 0.28 0.55 0.41 0.16 1.62 5.02 0.22 0.72 0.39 3.06 regulatory subunit Cyclin dependent 145 8233 kinase 0.21 regulatory subunit Cyclin dependent 146 8234 kinase 0.16 0.11 regulatory subunit Cyclin dependent 147 22054 kinase 0.05 0.22 0.18 regulatory subunit 166 WO 2005/065339 PCT/US2004/043804 SEQ ConsID ID pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiata Histone 148 12137 acetyltran 0.06 1.51 0.19 sferase Histone 149 12582 acetyltran 0.64 0.15 1.09 0.33 0.63 sferase Histone 150 15285 acetyltran 0.21 0.12 0.70 0.14 sferase Histone 151 17229 acetyltran 0.94 0.16 sferase Histone 152 20724 acetyltran 0.04 0.19 0.19 sferase Histone 153 4555 deacetylas 0.16 0.14 0.97 0.14 0.89 0.89 e Histone 154 4556 deacetylas 0.14 e Histone 155 5729 deacetylas 0.31 0.28 0.22 0.58 0.22 2.00 0.48 0.07 0.04 2.73 1.46 e Histone 156 7395 deacetylas 0.14 0.14 0.19 0.93 0.04 0.14 1.33 e Histone 157 9503 deacetylas 0.11 0.14 e Histone 158 11283 deacetylas 0.19 0.15 0.96 1.35 e Histone 159 12322 deacetylas 0.16 0.06 0.11 0.04 0.05 0.29 e Histone 161 23236 deacetylas 0.13 0.11 e Peptidyl 162 171 prolyl 0.07 0.46 cis-trans0.7.4 isomerase 167 WO 2005/065339 PCTIUS2004/043804 ConsID SQ pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiata Peptidyl 163 172 prolyl 0.19 0.11 0.18 0.11 0.46 ci~s-trans isomerase Peptidyl 164 1480 prolyl 2.51 4.20 0.88 2.97 1.58 3.53 7.36 1.33 2.74 0.72 6.62 10.14 cis-trans isomerase Peptidyl 168 1692 prolyl 0.16 0.22 0.65 0.61 0.26 0.29 0.18 1.28 0.34 cis-trans isomerase Peptidyl 169 5313 prolyl 0.14 0.07 0.37 0.17 cis-trans isomerase Peptidyl 170 6362 prolyl 0.14 0.33 0.05 0.06 0.60 0.04 2.92 0.68 cis-trans isomerase Peptidyl 171 6493 prolyl 0.42 0.11 0.21 0.11 0.04 0.25 0.32 cis-trans isomerase Peptidyl 172 6983 prolyl 0.61 0.13 0.04 cis-trans isomerase Peptidyl 174 7665 prolyl 0.11 0.39 0.05 0.62 0.25 cis-trans isomerase Peptidyl 175 12196 prolyl 0.19 0.15 0.14 0.16 cis-trans isomerase 168 WO 2005/065339 PCT/US2004/043804 ConsID IDQ pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiata Peptidyl 176 13382 prolyl 0.25 0.06 0.07 0.04 0.87 0.15 cis--trans isomerase Peptidyl 177 16461 prolyl 0.19 0.15 0.15 0.04 0.04 0.74 cis-trans isomerase Peptidyl 178 17611 prolyl 0.24 0.11 0.27 0.41 0.99 cis-trans isomerase Peptidyl 179 19776 prolyl 0.13 0.07 0.16 0.05 0.61 cis-trans isomerase Peptidyl 180 20659 prolyl 0.15 0.19 cis -trans isornerase Peptidyl 181 22559 prolyl 0.11 0.14 0.20 cis-trans isoznerase Peptidyl 182 24188 prolyl 0.23 cis-trans isomerase Peptidyl 183 27973 prolyl 1.01 cis-trans isonerase WD40 184 1353 repeat 0.44 0.05 0.73 0.11 1.07 0.70 1.32 protein WD40 185 1978 repeat 0.14 0.05 0.44 0.11 0.21 0.27 0.36 1.46 0.82 protein 169 WO 2005/065339 PCT/US2004/043804 ConsiD pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiata WD40 186 2810 repeat 0.42 0.79 0.11 0.39 0.27 0.36 1.69 1.03 protein WD40 187 2811 repeat 0.14 0.09 0.14 protein WD40 188 2812 repeat 0.15 0.18 0.04 0.16 protein WD40 189 3514 repeat 0.63 0.06 0.14 0.18 0.48 0.56 protein WD40 190 4104 repeat 0.14 0.25 0.27 0.37 0.36 0.19 0.18 0.39 0.53 protein WD40 191 5595 repeat 0.14 0.25 0.15 0.14 0.07 0.23 protein WD40 192 5754 repeat 0.31 0.14 0.06 0.07 0.16 0.10 0.16 protein WD40 193 6463 repeat 0.16 0.56 0.22 0.43 0.81 0.53 0.21 0.08 1.00 0.70 protein WD40 194 6665 repeat 0.31 0.28 0.45 0.44 0.96 0.07 3.37 2.68 protein WD40 195 6750 repeat 0.14 0.59 0.05 0.37 0.42 0.04 0.18 0.52 protein WD40 196 7030 repeat 0.31 0.40 0.54 0.45 0.37 0.07 1.58 3.41 protein WD40 197 7854 repeat 0.11 0.14 0.05 protein WD40 198 7917 repeat 0.22 0.39 0.13 0.15 0.18 0.56 protein WD40 199 7989 repeat 0.11 0.04 0.11 protein WD40 200 8506 repeat 0.47 0.33 0.11 0.86 0.19 1.28 0.04 1.23 3.12 protein WD40 201 8692 repeat 0.21 0.06 0.11 0.15 0.10 0.87 protein 170 WO 2005/065339 PCT/US2004/043804 SEQ ConsID IE pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiata_ WD40 202 8693 repeat 0.11 0.80 0.25 0.14 0.18 0.53 0.31 protein WD40 203 9170 repeat 0.16 0.11 0.05 0.05 protein WD40 204 9408 repeat 0.33 0.05 0.41 0.15 0.14 0.41 0.33 protein WD40 205 9522 repeat 0.11 0.18 protein WD40 206 9734 repeat 0.11 0.05 0.11 0.15 0.07 0.25 0.11 protein WD40 207 9815 repeat 0.11 0.18 0.14 protein WD40 208 10670 repeat 0.40 0.16 0.11 0.16 0.34 0.31 protein WD40 209 11297 repeat 0.53 0.15 0.16 0.05 protein WD40 210 13098 repeat 0.19 0.11 0.54 0.31 0.14 0.26 1.85 0.14 protein WD40 211 13172 repeat 0.04 protein WD40 212 13589 repeat 0.11 0.06 0.21 0.05 0.37 protein WD40 213 13608 repeat 0.11 0.04 0.59 0.33 protein WD40 214 14299 repeat 0.16 0.05 1.09 0.38 protein WD40 215 14498 repeat 0.21 0.44 0.30 protein WD40 216 14548 repeat 0.16 0.11 0.11 0.82 protein WD40 217 14610 repeat 0.16 0.27 protein 171 WO 2005/065339 PCT/US2004/043804 SEQ ConsIfD IE pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Raciata WD40 218 16090 repeat 0.43 0.04 0.37 0.85 protein WD40 219 16722 repeat 0.10 protein WD40 220 16785 repeat 0.05 0.13 0.38 0.50 protein WD40 221 17094 repeat 0.29 0.15 0.24 0.81 protein WD40 222 17527 repeat 0.04 0.10 protein WD40 223 17591 repeat 0.14 0.10 protein WD40 224 17769 repeat 0.39 protein WD40 225 18047 repeat 0.05 0.22 0.98 0.15 2.68 0.07 0.19 0.80 protein WD40 226 18414 repeat 0.16 0.15 0.34 0.23 0.19 protein WD40 227 18986 repeat 0.41 0.15 protein WD40 228 19479 repeat 0.05 0.28 0.32 protein WD40 229 20144 repeat 0.43 0.29 0.05 protein WD40 230 22480 repeat 0.15 0.27 protein WD40 231 23079 repeat 0.13 0.04 protein WD40 232 26739 repeat 0.15 0.18 protein WD40 233 26951 repeat 0.21 0.20 protein 172 WO 2005/065339 PCT/US2004/043804 SEQ ConsID pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 Radiata_ 234 26529 WEEl-like 0.04 0.18 protein WD40 237 888 repeat 0.11 0.18 protein Cyclin 238 14166 dependant 0.16 0.05 0.05 kinase inhibitor Cyclin 239 3189 dependant 0.06 protein kinase Histone 240 9356 acetyltran 0.11 0.22 0.46 sferase Histone 241 65 deacetylas 0.16 0.22 0.27 0.22 0.24 0.34 e Histone 242 14197 deacetylas 0.16 0.33 0.05 a Peptidyl 243 9081 rans 0.11 0.05 0.29 0.26 0.69 cis-trans isomerase Peptidyl 244 13417 c rans 0.06 0.59 cis-trans isomerase WD40 245 5755 repeat 0.16 protein WD40 246 6670 repeat 0.14 0.05 protein WD40 247 7027 repeat 0.14 0.15 1.30 0.15 protein WD40 248 7276 repeat 0.14 0.11 0.05 protein WD40 249 7390 repeat 0.31 0.14 0.11 0.44 1.29 0.38 protein 173 WO 2005/065339 PCT/US2004/043804 SEQ ConsID pinus Family 1 2 3 4 5 6 7 8 9 10 11 12 RD1adiata ______ WD40 250 12648 repeat 0.05 0.06 0.05 0.94 protein WD40 251 13171 repeat 0.19 0.63 0.19 0.34 protein Table 13, the following numbers 1-12 represent the following tissues: 1 is bud reproductive; 2 is bud vegetative; 3 is callus; 4 is cambium; 5 is meristem vegetative; 6 is phloem; 7 is reproductive female; 8 is reproductive male; 9 is root; 10 is vascular; 11 is whole; and 12 is xylem. 174 WO 2005/065339 PCT[US2004/043804 [03941 Table 14. Oligo Table. Oligo SEQ Oligo ID Microarray Oligo Seq ID 521 Euc_003910_0_4 GATTTTAAGTAACTCAATTAGCAGTTCCAACATTAAACCATTATTATTACCCCTTTTATC 522 Euc_019213_0_1 CTCAAAAAGTACTTGGATGCGTGCGGTGACAACGGACTCGAACCGTACACTGTCAAATCT 523 Euc_036800_04 TTGTCAAGTTGCAGGACGTAGTGCACAGTGAGAGGCGTCTATATCTAGTTTTTGAGTACT 524 Euc_040260_0_1 GAAGAAATTATATAACTAGATACAAGGTTAGCTAGGTATATAATAGCGGTACAAGTCTTT 525 Euc_041965_0_1 GGACAAATCAAGTAGAACTTCTCTCGGCAGCATCAGTTTTTCTAATCCATGCCTTGTTGC 526 Euc_002906_0_1 CTCAGTTCTGATAATGCCTCGGATATATGGCCGAGTGTTCGCTGGACGGCCTCTTATGTT 527 Euc_001518_0_3 GGAGATTCTGAACTGCAACAGCTCCTACACATTTTCAGACTGTTGGGTACTCCAAATGAA 528 Euc_008078 0_2 GACTGGTAAAATCGTTGCACTAAAAAAGGTCCGGTTTGACAACTTGGAACCTGAAAGCGT 529 Euc_009826_0_4 AAACACCAATCTATCAACACTGTCGAGTTTAGTCACTAGTAGAACCGGAGATAACAAACA 530 Euc_010364_0_1 CTATGATCCTGAGCGCAAGCAAGTTATGACCAATAGAGTCGTTACACTATGGTACCGAGC 531 Euc_011523_0_1 TGTTGTGAAGGTAGTTATAGCCATCGATTAGACAGTGATTAAAGTAGTACCCGTGCCAAT 532 Euc_024358_0_2 CCACATACAAGAGTTGTTACGCTACACATCCTATACCATCAAAGGAACGTTGGAATGCCA 533 Euc_039125_0_3 TATGATCGACACAAGCATTTTGTGTTGGAGCCTCAGCTAATTGTATGTCATCGAGTACTT 534 Euc_005362_0_3 AAAATTTTTGCTACGGATAATGTTGTGAGGCGAGGCAGTCGAAATTACGGAGGTTGACTT 535 Euc_044857_0_1 ATGCAGGGATCAAATTTGTGAGTACTACGTAAAATTTTGCTACGGAGGCGAGGCAGTCGA 536 Euc_001743_0_1 GAAGAATACAGGCTCGTACCTGATACACTGTACCTGACTGTTAACTACATAGATCGGTAT 537 Euc_012405_0_1 TCCACCCTAAATGCGATACGTGAAMGTATAGACAACAGAAGGTAAACTATTCATTACTG 538 Euc 003739 0_2 AGGCTTCTAGTTGCGTTCCCCCAAACTACATGGATCGGCAGCAGGATATTAATGAGCGGA 539 EUc_022338_0_2 GAGAAAAATGACAGATTGATATCGATGATGATGACTGTCGTGTCATCAGTAGTGTGCTTT 540 Euc_028605_0_5 TTTCCAATTGTAGTTCGTCTTTTATTGTAACAATAAATTGATAGATACTGATTCGAAATA 541 Euc_041006_0_1 ACATTTATGCTAACTATAGGAGAACGGAGATTGTAGCTGCGTCTCTGCTAACTACATGG 542 Euc_006643_0_1 TTCTGGCTTAAAGGCTATTCTTTGTGCACAATGACCTGAGGGAGGTCTCGACAGACCACT 543 Euc_045338_0_1 TTCATCCGGGTCCTGGTTATCATACTCTTATATATGTTGGGGAATAACGGTTCATATGTT 544 Euc_046486_0_3 GGGTGTGCTTAATAGTTCTTATTAGTCTTAGCTTATTATCTTTGATTGGACATGCTATAA 545 Euc_012070_0_2 CTTGCTAAGTAGACATGTTATATTTCTAATGCTTTGAGAACAATATTACAGTATAATTAG 546 Euc_006617_0_2 AATCATCGACTAGACCGATGGTCAAAGTGGTAATCATGTAATTAAACGCGTTTGTCATTG 547 Euc_007827_0_2 ATGGAAAAATCTATGGATATGAAGGATTGAAGATATCCGTCTGGGTAAGCTGTGTATCAT 548 Euc_008036_0_3 TTATGATTTGAGAAAACCCTTGCAGGCTGCGATTTGCGGATCATGACAGCATAGTTTTGC 549 Euc 001596_0_2 GTTTTGTTGTGAGGGCTTGGTAGGTTTTCATTATATTGTAATGTCGACGACAGAGATTTT 550 EuC_005870_0_3 CCAATTAATGTTACTGCTCAAGCTGACGTACCTGCGAAAAAAGCACCAGTGACTGCTAAT 551 Euc_006901_0_3 TGATGTCAAAACGTAGCTCTTTTTTGTGTGAGCTATCCTGCTAAATTAAACCTCAGCAAA 552 EuC_006902_0_1 ACATGAGTATTATGAATACTTCGGTCCTGACTATACACTTCATGTTGCTCCGAGTAACAT 553 Euc_007440_0_2 GAATTGGCGATCACAATCTACTGTAGTCAATACTCAAGTGGGAGGTGTAAATAGATTCCA 554 Euc_008994_0_1 GATCATGTGTAATCAGTATATCAGGTTAGAAACAGTACTCTTGAGCTTAGCGGGCACTGT 555 Euc_024580_0_2 TCCTGTGAAGGTGGTCGACTCAATCAAAAGGTACCTTGTAGATAAGGTACCTTTTCTCAA 556 Euc_037831_0_5 GCATTTTATACGACGGATAGAGTCATGACCGTATCTTTCCATAAGTTTGGGGACTTCTTC 557 Euc_034958_0_3 CCTCGTTTCTTTGCGGTTCGGACGCATCATGGATGTATCTCCAAAGAGTAATCTGTCGAT 558 Euc_022967_0_2 AATTCAGATCTATTAGTGAAAGTTGGCATGAGTCTCAATCTTAGGGGAATACAGTACGGA 559 Euc_008599_0_3 TGATATGAGTATCATAACTCGGATGGTGACAACTTTGTACTACGGTCGGCACCGGTAGAT 560 Euc_009919_0_1 CATATACAATCTTAGTGGATTAGCTGAGGTCGAAACTGACAAGAGTGATCGCCCGTTGGA 175 WO 2005/065339 PCT/US2004/043804 Oligo SEQ Oligo ID Microarray Oligo Seq ID 561 Euc_015820_0_2 CATGGCTAACGCTGGCCCTAGCACTAATGGGAGCCAATTTTTCATATGCACTGTAAAGAC 562 Euc_008327_0_2 AACAAAGTCTACCTTGACATTAGCATCGGTAACCCTGTCGGGAAACTAGTCGGAAGAATT 563 EUC_004604_0_2 TGTGCTTGGATATACTGTATAAGCATTCTATATTATGCTTGTTGGCTTCGTTTTGAGGGA 564 Euc_ 000966_01 TTAACGTCGACCGCTTCTCTGCCCCTTGAATTTTCCCGAGAAAACCAGGAACCTGCCAAA 565 Euc_001037_0_1 TGTTGAATACGATG'ATTATAATGTTGGTGTCTTGGTGAAATACAGAATTATGCTTGCGT 566 Euc_004603_0_2 ATCGCTGTGGCTGATCTCGTCGCTCCGGCTTTTCATAAAAATCATGGCTGAGGCAATCGA 561 Euc_0054 65_0_2 CTCGCAACCCTATATCTCGCTCAGGCGAAGAAGTCTGAGGATTTGAAAGAGGTGACTCAC 568 EuC_006571 0_1 TGTTTTTGGGTACACGCAGTTAGGATAACTAGCATGAAAGCCCGATCCCGCATATACAGG 569 Euc_006786 _02 GAGGACTAGCCGGAACTTCATCGAACTCTCTCGGAGGGGTTACTACGATAACGTCAAGTT 570 Euc_007057_0_1 GATGGCTAGCACTGTGTAGAAAGGTGAATTTAAAGTACTTGTCTACACTGCTTATTAAAT 571 Euc_00867002 TGAGACTGTCTTGGCGTGTATTTTGGAATAAACTATTATCACGTTTTGTTAAATATAATA 572 Euc_009137_0_3 TTACAAAATGGCTCTCAGAAAGTATCGAAAGGCCCTGCGCTATCTGGATATCTGCTGGGA 573 Euc_010285_0_2 AATTTTATGTTTGCTACTGCTTAGTGCTTAATGGACTTGCGTAGGTATTCAAATTACAGA 574 Euc_010600_0_1 TGGAACCGTGGTATCGGCTGACGTTATCCGTGATTTTAAGACTGGAGATAGTTTATGCTA 575 Euc_011551 0_2 CTTTGATGTATCCTCAGTGTACTGCTTTTAGCTATGTATAGATCGAGTCAACTCATTGAA 576 Euc_020 7 4 3_0_3 TTTTTATTATTTACCTTCGCCTTTACGCTGCATACGTTAATAGGTTATTATTTCCTTCAA 577 Euc_023739_0_1 ATTTGTCCATGACAATCGTAGTCGAAGACACGATACGTCTTAGATGGTACGGAAATCTG 578 Euc03 1985_0_2 TGAATAGAGATAACTTTTCTGAGTGTGAATTGGATATTACGTTGCAAATAGCCGAATGAA 579 Euc_032025_0_2 GCTTTAGGTTAGGGATCCCTGTAAGCTGATGATAGATATTGGAGATGGTACTTGTAAGAT 580 Euc_032173_0_1 TGTTGTGTTTGGAAAGGTGCTGTCTGGGATGGATGTTGTCCACAAGATTGAGGCTGAAGG 581 Euc_009143_0_1 GGAAAGCGGGGAATGAGCATGTGGATATTATCTCTTTCTACAATGAAATATTCATTCCTT 582 Euc_000349_0_1 CATCAGGACGTTGACTCTAATTAAGACATATGTGACAGAGCGCCCTGTTAATGCGGTTAC 583 Euc_000575_0_2 CTTTAGGTTTGATCTGTCTGTTTTGTCTATCCTGCGAGTTTCGAGCATGTGCGTGTGTGA 584 EuC_000804_0_1 CAGCCCOAATAGATACTGGCTCTGTGCCGCTACTGAGAACAGTATTAAAATCTGGGACCT 585 Euc_000805_0_2 AAGAATGAAGCTGATATGAGTGATGGAACTACGGGGGCCATGAGCTCAAATAAGAAGGTC 586 Euc_000806_0_1 TGACTACAATTAGCACCTCACCATTATCGAACTGTATAATTGTGCTTGCCTGCTATTATT 587 Euc_002248_0_4 TTGAAGCGGAAATATATATTTATGCTACTACATAAGTAATGTACTACTTGACAAGATGAG 588 Euc_003203_0_1 TACTCGATGTGGTATAGAATTTATCCAATGTACTCCTAAATGTAGATACATCGTGTATTG 589 Euc_003209 0_2 GCTTCGTCTGATACCACTATCAAGATAATAGGCGTGAGCAATAGCTCTGGATCACAGCAC 590 Euc_004429_0_4 GGTCGGCTTGCTAGTGTATCTGATGACAAGAGCATATCACTCTATGATTACTCATGAAGG 591 Euc_004 607_0_3 GAAAGGAGAAAAGCATGGAGATCGATCTCGGAAACCTCGCATTCGACGTCGATTTTCATC 592 Euc 004682_0_1 GATTCAGTACCCGGATTCGCAAGTCAACCGGTTGGAGATAACTCCACATAAGCGGTACCT 593 Euc_005786_0_1 TTCCATGTATCAAGCCGCATCAATGTTTGTCGCTGCAATTAACATGTGTGCAGTCGATCC 594 Euc 005887_0_2 TTCAGCGCATTGTGTAAATGTAGATAGGTGATATATTTCTCGTTGCAATGTAGGGTAAQA 595 Euc 005981_0_2 TCCAATAATCACATTTACCATCAACAGGCATCAGCAACATACTGTTGTAGTGTAATTAAT 596 Euc_006766_0_1 GGGCATTCTGACTACCTGCACTGTATAGCTGCACGGAACTCTTCTAGTCAGATTATAACA 597 Euc_006769 _1 AATCGTCTGGTAGATTGTCAAAAACTAATAAACCTGTGATTGATCCGGATTCTAGTAATG 598 Euc_006907_0_2 AGTTGAGGATTCTCCACTATGACAGCTCTCATGGCTTGAATCTAAAGTCATCTGGTTTTC 599 Euc_007518_0_1 GAACAATCATTCTGTAGAACACTAGAGTCTATATGCTTGACTGTATCGGTTAATTAATTC 600 Euc_007717_0_1 AGATAGCGATAGAGTTATACTGCATGTACTGAGGTAAATGTTTTGATTACTCCACCCAAT 601 Euc_007718_0_1 AAGAATTGTTAGGAGGTGTATACTTTCTGTAACTGTATTCAATGAGCATACACCTGACGG 602 Euc_007741_0_2 CAACTCATATAATGACTGGATTCTGGCAACCGCGTCTTCAGACACAACAGTTGGACTATT 603 Euc_007884_0_1 AGTGTAAAAGGATGCCCCTAATAGATTATATGCCA6AGTGTAGTATATATAATAGTGCTTT 176 WO 2005/065339 PCT/US2004/043804 Oligo SEQ Oligo ID Microarray Oligo Seq ID 604 Euc_008258_0_2 AAGAATCTACAGTTGTCTTATGCTACTCTATTACTCAATTATGCTGTGCTATTGATTGAG 605 Euc_008465_0_4 TCTGAATACATACTTTGTGGTCTCTATAAAAGACCAATGATACAGGCATGGTCATTAATT 606 Euc_008616_0_5 TAAATCTTCTCATGTGCCTGGCGTAAATTTTGCAGTTATTACTAGACCAAGATAGTTTCA 607 Euc_008690_0_4 ACATGGATTCGATCAATCGCCACATGACAACTAAAACAAGCGGTTCACGTGATTGTAATT 608 Euc_008708_0_4 AGATGAGTATGCTCGGGTGTATGATATTCGCAATTACAAGTGGAATGGATCGCATAATTT 609 Euc_008850_0_5 TCTTTGATTCTGTTGTATGGTGTATCTTATTGTATCTTCTATCTGCCCCCCATGTAATTC 610 Euc_009072_0_1 TTCGTTGTGTAGTACTGGGAGTTACTACTTGTATGTATGTAAATCATGTGGCGTCTGTCC 611 Euc_0094650_1 GGAGATGTGTAATATGTCTGAGCGGTCACACTCTAGCTGTTACATGCGTAAAGTGGGGAG 612 Euc_009472_0_3 CCACCGTTGCGTAACTCGAATAGCCGGATTTTCGTTTTCGTTTTTATTTCCCCGTTAATT 613 Euc_009550_0_1 TGAGATGCTCTGTGTGAGGACTTTTACGAAACTTGAATGGCCCGTAAGGACAATAAGCTT 614 Euc_010284_0_3 TGGGTTGTTGCGACGGGTTCTACAGATAAGACTGTTAAGTTATTTGATCTACGCAAGATC 615 Euc_010595_0_1 GCAGAGGTGCCTACATATGCTTTAGAATGCTAGTAGCTTGGAAGTGCAACACGCTCGTGA 616 Euc_010657_0_1 AGTAAAGTTTAACGACTATGCATCTGTCGTAGTATCAGCCGGCTATGATCGTTCAGTGCG 617 Euc_012636_0_2 CGTTAGGATAGTCTTTAAAGGAGTTGGTGATTATTGATTTCCACCCAATATATGTAGCGT 618 Euc_012748_0_2 GAGCAAGCTACTTACAAAAATCGACAGCGTCTTTACCTATCTGAACAGACAGATGGCAGT 619 Euc_012879_0_2 TCCTTCCGACAAGTACCGTATTGCAAGTTGTGGTATGGACAATACGGTTAAAATCTGGTC 620 Euc_015515_0_1 TTTCACTCGATGACGGTTGGCCGGATAAATAATCGCTTATATAGTCCTAATAAGTTCCAT 621 Euc_015724_0_3 ATATGTAGGTGGTAGAGGTGTGGATATTGCATAGACCGAACCTCCGCAGGTCCGCATTCT 622 Euc_016167_0_1 CCATTGAACTACTTATGGATTACTTTATACATGAAATATCATGCCGGAGTAATTTTGAGT 623 Euc_016633_0_3 AGCATTAGAGACCTGGATTTTAGTCTAGATTCAGAGTTTTTGGCTACGACATCTACTGAT 624 Euc_017485_0_3 AAAGGTTTATCCCTCATTGGATTTGATATATAAACTGAGAGTGTTTTGCCCCCCATTAAA 625 Euc_018007_0_1 GTACAGCGTGTATTTCTTGTTACGATACTTGAGGGGTTAGAGGCACCTACGAATTAGGAA 626 Euc_020775_0_3 ATATCCTTATGAATGAAGTTTGGATGATAAGTGGCGCCAGACTTTCTACTCACCCTTTTT 627 Euc_023132O_03 TGATCACATCGTTGTTTGCAATAAGACGTCATCAATTTATATCATGACTCTACAGGGACA 628 Euc_023569_0_2 TTTTCCCAGTGTACTGCGAGAGTGATGCTACATAAGTTTACTCTTGTGTCTAACTTTTCC 629 Euc_023611_0_1 AGATTCTACAGATGGCGCTATACGAGCTGTTATACGGACATTTTATGACCATACACATCC 630 Euc_024934_0_3 TGCTACGGGAAACCAGGACAAAACTTGTAGGATTTGGGACATACGAAACTTATCTAAGTC 631 Euc_025546_0_1 CAAGTCATATAGTTACAGTGTCGCATGACAGAACAATTAAGCTCTGGACTAGTAACGACG 632 Euc_030134_0_2 TGCCACATCGTAACCATCATAGCACTTATCATCTAATTATGGTGAAAGGGAGTTATATAT 633 EUC_031787_0_5 GTTTATACTTATAAACAACAGAGAGACAACTGTACAGGTGTTGTAAACACTCCCAGTGTG 634 Euc_034435_0_1 CTGTGTTTTAGCCCGAGGGCCAATCACTTAGTTGCTACTTCGTGGGATAATCAGGTACGG 635 Euc_034452_0_3 GCAAAGTAGAGTTTAAGTTTCGTTGTGCTTGGACCGGAAAACTCACATGCTTAGAGTTTA 636 Euc_035789_0_5 AAGATTTGGGCATAACTTGTATGAACTTTTTCTGTTGTCGACACTGTAATTACACGAGCT 637 Euc_035804_0_4 AAACAGATGCATGTATGCTTCATAACTCTATAGATATGGAAATGTCACTGTACACTGATC 638 Euc_043057_0_2 TTATTGGTGCACAGGACGGAAAATTGCGCATATATTCTATTTCAGGTGATACATTAACAG 639 Euc_046741_0_1 AGGCACAGACACTTGCCTAAACCAATATACAAGGCAGGTATTCTAAGGCGCACCGTGAAT 640 Euc_047161_0_4 CATGCGAAGGTTTCTGGGAATTTTCAGTAGAAAATTCGGTCGTGGCGGCCATCCTCGATA 641 Pra_001766_0_1 TTAAGCTGATAGCTTTAGTTCCTACGTGGAATGTATAAATGCACCATTGTCCATAAGGCA 642 Pra_002927_0_2 GGATGCTCTGGTTACATGACTACTCCTTAGGGAATCAGTCAGACATTTTAAATAACTTCC 643 Pra_007642_0_2 TCATTAAGCGGTACTGGCAGAGGACATGTCTATTTATACAAGCAAATGGTCCTATTGGCT 644 Pra_013714_0_1 ATGTTGGTCAGACCTCAAATATTGTACTCCCCACACTAGGGAGCATTTACGGTGAATATA 645 Pra_016332_0_1 TCCTCTCGACCCTTAGAGTCCTCTGCGAATCTTGTTGTTAGTTACTGTGTACGCTGTAAC 646 Pra_021677_0_3 AAGCATGTTTTGAATTTATGGTGGTGGCATGTGGATATTTGAACTTGGTTGAGAAAAATT 177 WO 2005/065339 PCT/US2004/043804 Oligo SEQ Oligo ID Microarray Oligo Seq ID 647 Pra_027562_0_2 CATTCCTATTGAAGGGTCAACCTTTAATTTTGGCTAGCAGGACTGTATAGGATTATATGC 648 Pra_001504_0_2 TTATTGTATTTTAGATTCTTGATGGCCATCTAAACTTCTGGCTGCTTGGTGCAACATTGA 649 Pra_015211_0_2 ATAGCTAATGATTCCATGCTATCCATGGTATCTACTTCACGATAATAAAGGTCTTAGTCC 650 Pra_020421_0_2 CACCTAATAGGCCTGAGTATTGCTCACCACTATGCTGATATGGGGAGCAATAACGTTAGT 651 Pra_003187_0_2 TTTCTTTTCACTTTGTACTAATGATCATTGTGACCACAAAATCTTTATACACAATACAGA 652 Pra_015661_0_1 CTTGTCACTATCCTCATATTGATATCACCTCGTGTATGTTGTGGGGTGGCAAAATTACTT 653 Pra_013874_0_1 TATTTTAACTCAGCGACTTACCAGCCTAGTAAGCAATGGGGAGCTTGCATGTATTAGTTT 654 era_014615_0_1 ATTCGTCCTGGTCCTTTAGGACATGTACTTATGTCCATGCAAGTGCTTCTTGCCTAAGCT 655 Pra_004578_0_2 TTCTAGGCGATATATATCGCCGTAACTTTGGATGTGTTAAGAATATAGGGGATCATTAGC 656 Pra_023387_0_3 AGTTGCAGAGTGTGTAGCAACTGATGAGCATAGTTGTTATGTTTCTCAACTCAGTTGCAC 657 Pra_006970_0_1 AAGAAACTCATACACTGGACAGGCCAACCTTCCAPATATGTGTTTAGAAAACCTTTGTCT 658 Pra_010322_0_1 AAGGGGTGCTATCCATATCTAGAATCTACCATGCTCAATGAGGTATCTTCATTAGTATAC 659 Pra_022721_0_1 ATCTAATGCTAGTTTATTGATTTCTATGATCCAAGACCTCGTCATAGATCAAGTGCCTAG 660 Pra_023407_0_1 TTGTTATTAAATACCATTCAATATGCTTATGATTCATGAATGCTTAAGAGATTCTGCTGC 661 Pra_001945_0_2 GCTTCTAAACTGTAGAAGCCTGTTATCTTTAGACTCGTGGTTATGTGAACTACTTTTACA 662 Pra_008233_0_1 GGCTGTGGGGATTCGAGCCTGATGGTTATGCACTGTGGCCAGCAAGATGTTGAAGTTTTA 663 Pra_008234_0_4 GCCTGATGGTTATGCACTGTAAGTGATCTGATTTGATTAACTATTTTATCAATTAATTTT 664 Pra_022054_0_2 ATGGTCATTATCCGAGATAGTGCGCTTTGTCATGGGAAAATGACTATTGAATGTGAGTTT 665 Pra_012137O_02 TTTTCTGGTGCATCCTTAACACAGCTTGGTTACATGGTGAATTACAGTATTTGAAGGAGT 666 Pra_012582_0_2 AGATTTAATGCCACTTAGGTGATCGGTGACCCACTTGTACATATAGATGTTGGCGATGTT 667 Pra_015285_0_2 AAGAAATTCATCAATTCTTTGAAATTATTGTTCCCTTTTGATGCGGCCCCTTTCTGGAGG 668 Pra_017229_0_1 TAAAGTATATTTTAGCCGCTGTTGTTGTAAATTTATGTTTTTCATTGCTATCAACATTTA 669 Pra_020724_0_2 GGTTTTCCTATAAGATGTATGAATTCGCACTGTGGTGCAATTTTATGAATTAAACTCAAA 670 Pra_004555_0_1 TTTACTATTCCGTCTGGGCTTAGAGATGTACGTTAATTGGTCATTTAAGACGACTCAGTT 671 Pra_004556_0_5 TCAAATCTAGTCAATATCCGTGTTGAGCTAAACAAGCGCTGAAAGTTTGCTCGAATCAGC 672 Pra_005729_0_2 AGAAAGTTGTGTACTAATTTGTATTGTAACGTCCATTTATCCAACGAGTCCTCCATTCAT 673 Pra_007395_0_3 CAGTACTGTATTCGAAGATCCTGAAAATTTACTAAAACAAATGGAATATCAACAACCTAG 674 Pra_009503_0_1 TTGCTCTATATAATTTGTGCTCGTGTGTGTACTTGAAGATCCATCCTCACATAGTCCAAT 675 Pra_011283_0_1 GTGTGTATAGTTTTATAACACTCTATGGTATCACTACCACTATGGGCCTGTTTAGTCCAA 676 Pra_012322_0_3 GAAGCAGAATCAGCTTTGACCAGTATTTAGTGTCTTGTATACAATTCTTGTTTCAGTGAA 677 Pra_023236_0_3 AAATCAAGATTAAAATCCGAAACCAAGGCTAACCAGCAAACTGTGAGGTGTACATTGTTG 678 Pra_000171_0_2 TTCCAAGCAGAAGGGCACATGTTGTGACATCAAGTAGTAGATTGTTCTGCAGATTCTGGT 679 Pra_000172_0_1 GTTAATGTAATACATTTAGTTTTTAGATAACTGTTAATGTGTAGTAAAGCACTAGGAAGA 680 Pra_001480_0_3 GAGGCTTCAAAGGTTTTTGTGTCTTTTCTAGTTATTATAAACGCTTCATAGGTTCCTAGG 681 Pra_001692_0_2 GAAGATTGTAAGTTGGGTGAACTTTTTTACCACGCTAGGTTGATCTATTTTAAGACTCTT 682 Pra_005313_ORF_01 AAAATAGCTGCGCGTACCACAAAGGTGACAAACGCCGGATTTCTCTTATCAGACTTGTCA 683 Pra_006362_0_1 TTTAATTATCATAGTTTTATTCCGGCTATCTTGATCATTCACGGAAGTCCCGAGAGTCAA 684 Pra_006493_0_3 GTGGAGTGAACGTGGTTACTTCAATGGATTACCCTTCTATCGTGTCATTAAACACTTTGT 685 Pra_006983_0_1 GCTAACTCTTCTAGTTGAGATCTCCATCAATTAATGGATACAAACATTGAGTTTCACTTT 686 Pra_007665_0_1 GGATCACTACTGGATTCCGTTACATTAGTTATTGCAAGTTGGTTATTATGTACGTTTATA 687 Pra_012196_0_1 ATGAACAAATGCAATTACCCTGTTTTATTCTATCCCGCTTTAATTAATATTGGTCATGTT 688 Pra_013382_0_1 TTTGCTTGTGGATTGTACTGTGGTACATGGTATAAATCTATAGGCTATGTCGATTATTTT 689 Pra_016461_0 1 ATATAAGATATAAGATATTGCCAGCAAACTATTTGACAGGTTATTTAATAAAGTGTGCTA 178 WO 2005/065339 PCTfUS2004/043804 Oligo SEQ Oligo ID Microarray Oligo Seq ID 690 Pra_017611_0_1 TTTTAAATGTGGACAGAGGCACTATAAGAATGCGAAATATCGTCGGAGCACGACTAATTG 691 Pra_019776_0_1 ATAGACTAGTTCTACAAAGCCCTAGGATGATGGACTTCATTTCTTTTGCATTAAGATGAA 692 Pra_020659_0_1 GATTTCTTATGGGGTTGGAACATTCCTCGCTGCCTTCTGGTAATATTAGGTTATGCGTTT 693 Pra_022559_0_3 AATTGAGGTTGACTGTGTACTTCTCCAGTGGACAGGAGAAAGCGATAAAATTCAAACGTT 694 Pra_024188_0_5 AAGGAAGGGCAAATAGAGCTCGCGCTCAAGAAATACCTTAATCGATACGGTATTTGGAT 695 Pra_027973_0_2 TAATTTAAGAGCTATGAAACAACTACCTTTTGGAATGGTTTTGTTTTTAGCATCCCAATT 696 Pra_001353_0_1 TTGTAAATTATGCTGGTTCCATATGGGGGTTAATCAGTATCCTGGTTATTTGTGACACCA 697 Pra_001978_0_3 GTTGTGAACTATCAATAGACGGGGATGGTCCTTTTTAGCTGCTCCTTAAGCAGCTCAAAT 698 Pra_002810_0_2 TCAATTCCGGTCATATGTAGACGACTATAATGTTGTTTGTGTCCTATAACTATAGTGTTG 699 Pra_002811_0_1 CATTTTACACCCTATAACAAAATATAGTGTCATAAGTTTACACCAGGTAACAACTCTATA 700 Pra_002812_0_3 ATGGAGAGTTTTATTCATTACATGAAAGAGTATGTCACCTTTCGTGCTCCATCTATTGAT 701 Pra_003514_0_1 TTTCACGTCCTGTATACTCACTCAAGCAACTTTAGGATGAAGAGCTAAAGTATATCAAAG 702 Pra_004104_0_2 AATGCACTCTTTATAAAGTGGGATGAGGTATGTGTTTCCTTCCTATTGGCTAACCTGAAT 703 Pra_005595_0_1 ATTGGGCAATCGTTATTGATTTTACCTATCGCTATCTCACTGTCCGCCAATTTAGTGTAA 704 Pra_005754_0_1 TTTCAGCGGATATAAAGTCTTCCAACTTGTAAACCGGTGCTGTGAAGATTAAAAGTCCTT 705 Pra_006463_0_1 GCTTTAGAGGCAATGGTAGATTATGAAGTCAACACCAGGGAGTTTGACCGTTTGGGACAT 706 Pra_006665_0_1 CATTCAATTTGACATTGGAGTTTCAAGGCATTCCAAGGATAGCATGTACACAAGTTGAAT 707 Pra_006750_0_1 CATAAAATTACTATGGAAGTTGGATCATTATCTATGCCATAGTGGAGTAGAACTAGATTT 708 Pra_007030_0_1 CTCTTGATTCTAGAATCTAAACTACTACCTTGCGGACATGACTGAGCATCTCTCTAACAG 709 Pra_007854_0_1 CAGGGTTGTGCTAGTTTAACATTTTAACTTAATGTAATCATGTAAGCTTTAGAGAGGTGG 710 Pra_007917_0_1 GTAAATGTTTACATTGAGGTCATGCATGAGTGTTAATTACGCTTTCACTACTGTTCACTT 711 Pra_007989_ORF_02 AATTAAAGCTTGGTTGTATGATCATTTGGGATCGAGAGTAGATTATGATGCTCCTGGGCA 712 Pra_008506_0_1 TTATCTAGCTAGAAGTTGTGAAATTAAGAGGGATGTGAGGATTGGGTTATAACTAGTGTA 713 Pra_008692_ORF_02 AATGAATCAGGCATTAAAGCGGGAATCATTTATGACTTGGCAACCTGAAAATTCTATTAA 714 Pra_008693_0_2 TTCTTGACGTTTTAATATGGTATGGTATTAAATTTGGAAGGCCTATTCGATTGTTTGCAA 715 Pra_009170_0_1 TTCTTATAACCTGTACGATTGCCGATATATCACCAATTTTGCTGATTTTAATCTGAGTTT 716 Pra_009408_0_1 CAATTTCATATTCGGGTTCAATGTAGTGCCTCTCATTTTAGGGTGATAGCATGAGTTTTT 717 Pra_009522_0_1 TCCACAAGTTAACATAGGTAACTATCGACTGAAGTGAACTGGGGGGCAGAAGCTAACTAT 718 Pra_0097340_2 TTTAGATAGCCATTTACATTTTACTTATTATTGGACTTGTAAAGATTTTTGTACCCTTGT 719 Pra_009815_0_4 TTGCTGAAATATTTCAAGCTGAAAGTTATGATTCTGGCCAAGAAGTCTACTGAAAATTTG 720 Pra_010670_0_2 AAACATAAGTTTGGCCCAGATTCGGTTTATCATAAAATCTGGCTGCATATAAGGTGTCAG 721 Pra_011297_0_1 ATGTTCTAGAATTTGTCTAAGCTAGCTACTGGTGTTTAACTGATATGGAAAACTTTTGCC 722 Pra_013098_0_2 TTTGGGGAGTACTTTAGTCAATAAAAGTGAAGTGAATCATGATATAAAGGGTTTAAGTAA 723 Pra_013172_0_2 AGAAGTTACTAATTTGTAGATAAATTCTAACGAAGGTGATGATAGCATACACGTAATGAA 724 Pra_013589_0_2 GAATTTTGATGGTAGCGTATGGTTGAAGGAAAACTTGGATATATCATGTAAACATTTTTC 725 Pra_013608_0_1 TTAATGAACCGCTTTTTCCTTGAGAGGCTATGAATGCCTGTAGAACTAATCCTTTAAGTA 726 Pra_014299_0_2 TTTCTCTAACACTATATTTTCTGGTATGACCGCTCTACATTGTATATTAACCCTTGCAAA 727 Pra_014498_0_1 TATATTCACTGTGCTGGGATTATCCTCTCCCCTTTTTGACCCACTGTTGTGTGTATTTGA 728 Pra_014548_0_1 GAGCATACAGCGTTATCTTTGAGACGAGTCATCAATGATAATATCCTCGTAAAAGGTTAC 729 Pra_014610_0_2 TTTATTCAATTACGACGGATTCAGTTGGCCTTTTGTAACATTCAAGTATCCATCTATCAC 730 Pra 016090_0_2 ATGTTCAGGGGTATTAAAAATTCAGAGGATAAATTTCCTCACTCTCAAGTGTTAGATGGT 731 Pra_016722_0_2 CAAAGTCTAGACGTTAATGTTTTGGAACTCTTTTTTCGAATTTGTGCCTATTGAATCACT 732 Pra_016785_0_3 TATAAATATATTGTACTGGGGATCCAAGACATGGCAATATATGTCGAGATTTTCATTTTC 179 WO 2005/065339 PCT/US20041043804 Oligo SEQ Oligo ID Microarray Oligo Seq im 733 Pra_017094_0_3 CTTTTGCATGAGTTCAAATGTCTTTGTGACATATTGTCTTGAACCACCGAGGATATATCA 734 Pra_017527_0_2 GTTTGTATGTCCAATAGATTATAACCTATTTACTGTGACACTATTCTTCACACCCATGTC 735 Pra 017591_ORF_02 AGATCTAGTTGTTTCAGCATCGTTGGACCAAACTGTTCGTGTATGGGATATAAGTGGCCT 736 Pra_017769_0_2 TGCCGTATCAAAAGATTGGTACTTCCTTATGGACACACAAGATCGTAAGCATGGCTGAAT 737 Pra_018047_0_2 TTGATGGCCACATGAGTTGTTTATACAAGTCGTTGTTTTATGAGAGAACCTTCTTCAGAT 738 Pra_018414_0_1 ATTTCTATAGTGCCATATGCTTGTCGGTTGTCATTGACCTCTAATAGAATAGCCAGAGTA 739 Pra_018986_0_1 TTCACGGCAGTTGAACTAGTCATAGTGGAATATTATTTAAATGGTGTATTCTAGTCACAT 740 Pra_019479_ORF_01 TGCAGGCGCTCTATAGTTCTGTTCTCTAGCATGAAGTGTGTATTTTATCTATTGTGGACC 741 Pra_020144_0_1 TGTCTTTAATCTTCAGGGTTCGTTACTAACAATTGAGCTCAAATCTCTATTCTGACCAGC 742 Pra_022480_0_1 CATTTATAGAGTTGTGCAAAATCACCCATAATGCTATGAATTGACAGGTGACTGTAATCT 743 Pra_023079_0_2 GGAGAAAATTTCCTATCCCTTTGTGGGTGTGTGAAAAACGAAATATAGAGGAACAATGTG 744 Pra_026739_0_2 ACCAATCATTTATTTGCAGTGTAGTTGATATGAAGGGAGAAATATGACAGTTGGTTTCAA 745 Pra_026951_0_2 AAGTTAATGTTCTCATAGGTTATTCATTGGAGTTGTCTCGTATGTACGCTGTGCCGTAGT 746 Pra_026529_0_2 CTCATAAATTGAGGCTTGCCTACGTTAATTGTTATATATGGAGAGCCATGCTAATTGTTA 747 Euc_006366_0_2 GCAGATCATGTAATTGTATCTCAATTATAGTATCCGTATTCTGTACAAATGCTCCGGAA 748 Euc_017378_0_1 TCTTTACGCAGATGGTGACTGAAGCTGGTTCCGAGATCGGCATATGTAGCTGGTAGAGGT 749 Pra_000888_0_1 TTCACATTGAGGGTTGCCGTCGGTATTCGCCGATGATATCCTGTTTTACGCGCAACAGTT 750 Pra_014166_0_1 TCATTATTTAGGGTGCAGGCTGTATAAAATGTTGTAAATTGTAGTATCAATGTGTACAAT 751 Pra_003189_0_1 GCATTCACCACGACAGTAAAGTAATCATTATGATTACTAATGTATTGCTTTCATGGGGTG 752 Pra_009356_0_4 AAAGGGTATATTTTGTCTCATGTTGGGGTGATAATTCTCCCTGAAAGTCTCCAAAATATA 753 Pra_000065_ORF_0_2 AAATTTCCGGTTGCCATAGTCTAGTGGGGTGAGGGTTCATTCTAGGGGATTTATTGTGTT 754 Pra_014197_ORF_01 GCAGTGATAAAGGTACTTCTTGGTGATAATCCTAAAGCCTTACCCATGGATATCCAGCCT 755 Pra_009081_0_2 TTCTTTAACAAGGTAAAAATCCCCCCCTTGGCATGTAGCTCAATTAGTTGTAATGGAACT 756 Pra_013417_0_1 AGTTGTAAACAGTGTAATAAGGAGCAGAAGTTGTGATAGCTTTTAGGAACGATAGACTTT 757 Pra_005755_0_1 TGAACCAATTCTTGTATATTAGATATGTAACATGTATGAATGTCCATAGAGCAGAGCTTT 758 Pra_006670_0_2 AGCCAGGCACGCTTAACTAAATTTCGTTTAGTTCACCATGACTATTCGTTGAACTTAATG 759 Pra_007027_0_1 CAAAACCCCTTGTAGGGTGGACTTCTGTTGTATCCAATTTTTATGGCATAATTAGCTAGT 760 Pra_007276_0_1 AATTTGGTGATTATTCCTTACCATATCGTACTGTACAGATACGGTAAGGTCGAAATATAT 761 Pra_007390_ORF_01 CATGCCGTGATCGGTCGATTGCATTAAGTGCTGCAAGGATCAAATAGTGGCACTGTCATG 762 Pra_012648_ORF_01 CAAACATAAATAAGGTTGCTACTTTAAAGGGACATACGGAACGAGTTACTGATGTGGCAT 763 Pra_013171_0_2 ATTTATGGATGAGGTACTCCTTATGAATATCTTCAAACTAAGAAATAACTATATATGCAA 764 Euc_045414_0_2 CTTGGTTTTTGTTGAGCTTTCTATTTCAAGCAATTTGTGATTGGGGGGTTCTGCATTCTT 765 Euc_044328_0_2 ATGTCTAAAGAGCCGTGATCTATGAGTAGATTAGAAACCGCCTTTTTAGTTGCAAACGCC 766 Euc_015615_0_2 TTGCAACAAGGTATACTTAGTCAGTCCTTGTTATGTATGTCTTTTGTCAACCCTTCAGGG 767 Euc_017239_0_3 GGCGGAATCCCTTTGTTCTTTCGAGCTTTACGTGACAAGTCGGCCAGAAAGCAGTAGCAT 768 Euc_0186430_3 TTGATGTACGAGCCGCTATATCTAATTCTGCCTCCCAGTCACTGCCAAGTTTTACTCTTC 769 Euc_019127_05 GTCTTGCATGTCAGCTATTATACAGTCCTGTTTATAGTCCTGTGATGTAATAAAAAGCTG 770 Euc_022624_0_3 AAGTAGGAGATCGTGTAGAGAGAATACTTTCTGCTCTCAGCGGCGAAGAGGTTTGTCTGC 771 Euc_032424_0_1 AATTGTGAGTAGAATAGGAGAAACTTTTGTACAAGATTAATACGTGTGGCATAATAAGAT 772 Euc_037472_0_1 TGATGTGCAGTTTACATTATTATGGTTCGAGTATTATTTAGCTGCCCTATCTTAAGTCAT 180 WO 2005/065339 PCT/US2004/043804 [0395] Table 15. Peptide Table. Patent Patent Protein Target Patent PEPTIDE Sequence Oaw oIW SEQ ID start stop MGDGSLGSGGRGNSGGGGGGGSRPEWLQQYDLIGKIGEGTYGLVFLARIKHPST NRGKYIAIKKFKQSKDGDGVSPTAIREIMLLREISHENVVKLVNVHINPVDMSL YLAFDYADHDLYEIIRHHRDKVNQAINPYTVKSLLWQLLNGLNYLHSNWIIHRD LKPSNILVMGEGEEQGVVKIADFGLARVYQAPLKPLSDNGVVVTIWYRAPELLL 261 CDK type A GAKHYTSAVDMWAVGCIFAELLTLKPLFQGQEVKANPNPFQLDQLDKIFKVLGH 387 1820 PTQEKWPMLVNLPHWQSDVQHIQRHKYDDNALGNVVRLSSKNATFDLLSKMLEY DPQKRITAAQALEHEYFRMEPLPGRNALVPSSPGDKVNYPTRPVDTTTDIEGTT SLQPSQSASSGNAVPGNMPGPHVVTNRPMPRPMHMVGMQRVPASGMAGYNLNPS GMGGGMNPSGIPMQRGVANQAQQSRRKDPGMGMGGYPPQQKQRRF MEKYQQLAKIGEGTYGIVYKAKDKKSGELLALKKIRLEAEDEGIPSTAIREISL LKQLQHPNIVRLYDVVHTEKKLTLVFEFLDQDLKKYLDACGDNGLEPYTVKSFL YQLLQGIAFCHEHRVLHRDLKPQNLLINMEGELKLADFGLARAFGIPVRNYTHE 262 CDK type A 99 1007 VVTLWYRAPDVLMGSRKYSTQVDIWSVGCIFAEMVNGRPLFPGSSEQDQLLRIF KTLGTPSLKTWPGMAELPDFKDNFPKYVVQSFKKICPKKLDKTGLDLLSRMLQY DPAKRISAEQAMGHPYFKDLKLRKPKAAGPGP MDQYEKIEKIGEGTYGVVYKAIDRSTNKTIALKKIRLEQEDEGVPSTAIREISL LKEMQHGNIVKLQDVVHSERRLYLVFEYLDLDLKKHMDSCPEFSKDTHTIKMFL YQILRGISYCHSHRVLHRDLKPQNLLLDRRTNSLKLADFGLARAFGIPVRTFTH 263 CDK type A 120 1004 EVVTLWYRAPEILLGSRHYSTPVDVWSVGCIFAEMVNRRPLFPGDSEIDELFKI FRIMGTPNEDSWPGVTSLPDFKSTFPKWASQDLKTVTPTVDPAGIDLLSKMLCM DPRRRITAKVALEHEYFKDVGVIP MVMKSKLDKYEKLEKLGEGTYGVVYKAQDKTTKEIYALKKIRLESEDEGIPSTA IREIALLKELQHPNVVRIHDVIHTNKKLILVFEFVDYDLKKFLHNFDKGIDPKI VKSLLYQLVRGVAHCHQQKVLHRDLKPQNLLVSQEGILKLGDFGLARAFGIPVK 264 CDK type A 23 937 NYTNEVVTLWYRAPDILLGSKNYSTSVDIWSIGCIFVEMLNQKPLFPGSSEQDQ LKKIFKIMGTPDATKWPGIAELPDWKPENFEKYPGEPLNKVCPKMDPDGLDLLD KMLKCNPSERIAAKNAMSHPYFKDIPDNLKKLYN MDQYEKVEKIGEGTYGVVYKAIDRLTNETIALKKIRLEQEDEGVPSTAIREISL LKEMQHGNIVRLQDVVHSENRLYLVFEYLDLDLKKHMDSSPDFAKDPRLVKIFL YQILRGIAYCHSHRVLHRDLKPQNLLIDRRTNALKLADFGLARAFGIPVRTFTH 265 CDK type A 149 1033 EVVTLWYRAPEILLGSRHYSTPVDVWSVGCIFAEMVNQRPLFPGDSEIDELFKI FRILGTPNEDTWPGVTALPDFKSAFPKWPAKNLQDMVPGLNSAGIDLLSKMLCL DPSKRITARSALSHEYFKDIGFVP MEKYEKLEKVGEGTYGKVYKAKDKATGQLVALKKTRLEMDEEGVPPTALREVSL LQLLSQSLYVVRLLSVEHVDGGSKRKPMLYLVFEYLDTDLKKFIDSHRKGPNPR PVPAATVQNFLYQLLKGVAHCHSHGVLHRDLKPQNLLVDKEKGILKIADLGLGR 266 CDK type B-i 199 1116 AFTVPLKSYTHEVVTLWYRAPEVLLGSAHYSIGVDMWSVGCIFAEMVRRQALFP GDSEFQQLLHIFRLLGTPTEKQWPGVTTLRDWHVYPQWEPQNLARAVPSLGPDG VDLLSKMLKYDPAERISAKAALDHPFFDSLDKSQF 181 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQID start stop MERPATAAVSAMEAFEKLEKVGEGTYGKVYRAREKATGKIVALKKTRLHEDEEG VPPTTLREISILRMLSRDPHIVRLMDVKQGQNKEGKTVLYLVFEYMETDLKKYI RGFRSSGESIPVNIVKSLMYQLCKGVAFCHGHGVLHRDLKPHNLLMDKKTLTLK 267 CDK type B-2 41 962 IADLGLARAFTVPIKKYTHEILTLWYRAPEVLLGATHYSTAVDMWSVGCIFAEL VTKQALFPGDSELQQLLHIFRLLGTPNEKMWPGVSSLMNWHEYPQWKPQSLSTA VPNLDKDGLDLLSQMLHYEPSRRISAKAAMEHPYFDDVNKTCL MGCVLGREVSSGIVTESKGRDSSEVETSKRDDSVAAKVEGEGKAEEVRTEETQK KEKVEDDQQSREQRRRSKPSTKLGNLPKHIRGEQVAAGWPSWLSDICGEALNGW IPRRANTFEKIDKIGQGTYSNVYKAKDLLTGKIVALKKVRFDNLEPESVRFMAR EILILRHLDHPNVVKLEGLVTSRMSCSLYLVFEYMEHDLAGLAASPAIKFTEPO VKCYMHQLLSGLEHCHNRRVLHRDIKGSNLLIDNGGVLKIGDFGLASFYDPDHK 269 CDK type C HRMTSRVVTLWYRPPELLLGANDYGVGIDLWSAGCILAELLAGKPIMPGRTEVE 291 2042 QLHKIYKLCGSPSEEYWKKYKLPNATLFKPREPYRRCIRETFKDFPPSSLPLIE TLLAIDPAERGTATDALQSEFFRTEPYACEPSSLPQYPPSKEMDAKKRDDEARR LRAASKGQADGSKKERTRDRRVRAVPAPEANAELOHNIDRRRLISHANAKSKSE KFPPPHQDGALGFPLGASHRFDPAVVPPDVPFTSTSFTSSKEHDQTWSGPLVDP PGAPRRKKHSAGGQRESSKLSMGTNKGRRADSHLKAYESKSIA MYSKSSAVDDSRESPKDRVSSSRRLSEVKTSRLDSSRRENGFRARDKVGDVSVM LIDKKVNGSARFCDDQIEKKSDRLQKQRRERAEAAAAADHPGAGRVPKAVEGEQ VAAGWPVWLSAVAGEAIKGWLPRRADTFEKLDKIGQGTYSSVYKARDVTNNKIV ALKRVRFDNLDTESVKFMAREIHILRMLDHPNVIKLEGLITSRMSCSLYLVFEY MEHDLTGLASRPDVKFSEPQIKCYMKQLLSGLDHCHKHGVLHRDIKGSNLLIDN NGILKIADFGLASVFDPHQTAPLTSRVVTLWYRPPELLLGASRYGVEVDLWSTG CILGELYTGKPILPGKTEVEQLHKIFKLCGSPSDDYWRRLHLPHAAVFKPPQPY 269 CDK type C 107 2236 RRCVAEIFKELPPVALGLLETLISVDPSQRGTAAFALRSEFFTASPLPCDPSSL PKYPPSKEIDMKLREEEARRRGAAGGKNELEKRGTKDSRTNSAYYPNAGQLQVK QCHSNANGRSEIFGPYQEKTVSGFLVAPPKQARVSKETRKDYAEQPDRASFSGP LVPGPGFSKAGKELGHSITVSRNTNLSTLSSLVTSRTGDNKQKSGPLVSESANQ ASRYSGPIREMEPARKQDRRSHVRTNIDYRSREDGNSSTREPALYGRGSAGNKI YVSGPLLVSSNNVDQMLKEHDRRIQEHARRARFDKARVGNNHPQAAVDSKLVSV HDAG MGCIPTIISDGRRRSAAPDKRRPRPRRSSSEGEAPPHATAAGSEGGESARGAPG KERPEPAPRFVVRSPQGWPPWLVAAVGHAIGEFVPRCADSFRKLAKIGEGTYSN VYKARDLVTGKTVALKKVRFDNLEAESIKFMAREILVLTRLNHPNVIKLEGPVT SRMSSGLYLAFEYMEHDLSGIAARQNGKFTEPQVKCFMRQLLSGLEHCHNHDVL HRDIKCSNLLIDNEGNLKIADFGLATFYDPERKQVMTNRVVTLWYRAPELLLGA 270 CDK type C TSYGIGIDLWSAGCILAELLYGKPIMPGRTEVEQLHKIFKLCGSPSEAYWNKFK B2 1749 LPNANIFKPPQPYARCIAETFKDFPPSALPLLETLLSIDPDERGTATTALNSEF FAAEPHACEPSSLPKYPPSKEMDLKLIKEKTRRDSSKRPSAIHGSRRDGIHDRA GRVIPAPEATAENQATLHRPRAMKKANPMSRSEKFPPAHMDGVVGSSANAWLSG PASNAAPDSRRHRSLNQNPSSSVGKASTGSSTTQETLKVAPELLQVGSSSLHPC HRMLVYGSNLTIRSK 182 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ I start stop MGCICAKQADRGPASPGSGILTGAGTGTGTRSSKIPSGLFEFEKSGVKEHGGRS GELRKLEEKGSLSKRLRLELGFSHRYVEAEQAAAGWPSWLTAVAGDAIQGLVPL KADSFEKLEKIGQGTYSSVFRARELANGRMVALKKVRFDNFQPESIQFMAREIS ILRRLDHPNIMKLEGIITSRMSNSIYLVFEYMEHDLYGLISSPOVKFSDAQVKC 271 CDK type C YMKQLLSGIEHCHQHGVIHRDVKSSNILVNNEGILRIGDFGLANILNPKDRQQL 151 1560 TSHVVTLWYRPPELLMGSTSYGVTVDLWSVGCVFAELMFRKPILRGRTEVELH KIFKLCGSPPDGYWKMCKVPQATMFRPRRAYECTLRERCKGIATSAMKLMETFL SIEPHKRGTASSALISEYFRTVPYACDPSSLPKYPPNKEIDAKHREEARRKKAR SRVREAEVGKRPTRIHRASQEQGFSSNIAPKEKRSYA MAVAAPGHLNVNESPSWGSRSVDCFEKLEQIGEGTYGQVYMAKEKKTGEIVALK KIRMDNEREGFPITAIREIKILKKLHHENVIKLKEIVTSPGPEKDEQGRPEGNK YKGGIYMVFEYMDHDLTGLADRPGMRFSVPQIKCYMRQLLTGLHYCHINQVLHR DIKGSNLLIDNEGNLKLADFGLARSFSNDHNANLTNRVITLWYRPPELLLGATK YGPAVDMWSVGCIFAELLHGKPIFPGKDEPEQLNKIFELCGAPDEINWPGVSKI 272 CDK type C 62 1644 PWYNNFKPTRPMKRRLREVFRHFDRHALELLERMLTLDPSQRISAKDALDAEYF WADPLPCDPKSLPKYESSHEFQTKKKRQQQRQHEETAKRQKLQHPPQHPRLPPV QQSGQARAQMRPGPNQLMHGSQPPVATGPPGHHYGKPRGPSGGAGRYPSSGNPG GGYNHPSRGGQGGSGGYNSGPYPPQGRAPPYGSSGMPGAGPRGGGGNNYGVGPS NYPQGGGGPYGGSGAGRGSNMMGGNRNQQYGWQQ MGCICTKGILPAHYRIKDGGLKLSKSSKRSVGSLRRDELAVSANGGGNDAADRL ISSPHEVENEVEDRKNVDFNEKLSKSLQRRATMDVASGGHTQAQLKVGKVGGFP LGERGAQVVAGWPSWLTAVAGEAINGWVPRRADSFEKLEKIGQGTYSSVYRARD LETNTIVALKKVRFANMDPESVRFMAREIIIMRKLDHPNVMKLEGLITSRVSGS LYLVFEYMDHDLAGLAATPSIKLTESQIKCYMQQLLRGLEYCHSHGVLHRDIKG SNLLVDNNGNLKIGDFGLATFFRTNQKQPLTSRVVTLWYRPPELLLGSSDYGAS VDLWSSGCILAELFAGKPIMPGRTEVEQLHKIFKLCGSPSEEYWKKSKLPHATI 273 CDK type C 626 2782 FKPQQPYKRCLLETFKDFPSSALGLLDVLLAVEPECRGTASSALQNEFFTSNPL PSDPSSLPKYPSSKEFDARLRDEEARKHKATAGKARGLESIRKGSKESKVVPTS NANADLKASIQKRQEQSNPRSTGEKPGGTTQNNFILSGQSAKPSLNGSTOIGNA NEVEALIVPDRELDSPRGGAELRRQRSFMQRRASQLSRFSNSVAVGGDSHLDCS REKGANTQWRDEGFVARCSHPDGGELAGKHDWSHHLLHRPISLFKKGGEHSRRD SIASYSPKKGRIHYSGPLLPSGDNLDEMLKEHERQIQNAVRKARLDKVKTKREY ADHGQTESLLCWANGR MDPDPSPDPDPPKSWSIHTRREIIARYEILERVGSGAYSDVYRGRRLSDGLAVA LKEVHDYQSAFREIEALQILRGSPHVVLLHEYFWREDEDAVLVLEFLRSDLAAV IADASRRPRDGGGGGAAALRAGEVKRWMLQVLEGVDACHRNSIVHRDLKPGNLL ISEEGVLKIADFGQARILLDDGNVAPDYEPESFEERSSEQADILQQPETMEADT 274 CDK type D TCPEGQEQGAITREAYLREVDEFKAKNPRHEIDKETSIFDGDTSCLATCTTSDI 13 1467 GEDPFKGSYVYGAEEAGEDAQGCLTSCVGTRWFRAPELLYGSTDYGLEVDLWSL GCIFAELLTLEPLFPGISDIDQLSRIFNVLGNLSEEVWPGCTKLPDYRTISFCK IENPIGLESCLPNCSSDEVSLVRRLLCYDPAARATPMELLQDKYFTEEPLPVPI SALQVPQSKNSHDEDSAGGWYDYNDMDSDSDFEDFGPLKFTPTSTGFSIQFP 183 WO 2005/065339 PCTUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MDPDPSPSPDPPKSWSIHTRREIIARYEILERVGSGAYSDVYRGRRLSDGLAVA LKEVHDYQSAFREIEALQILRGSPHVVLLHEYFWREDEDAVLVLEFLRSDLAAV IADASRRPRGGGVAPLRAGEGKRWMLQVLEGVDACHRNSIVHRDLKPGNLLISE EGVLKIADFGQARILLDDGNVAPDYEPESFEERSSEQADILQQPETMEADTTCP 275 CDK type D EGQEQGAITREAYLREVDEFKAKNPRHEIDKETSIYDGDTSCLATCTTSDIGED 113 1558 PFKGSYVYGAEEAGEDAQGSLTSCVGTRWFRAPELLYGSTDYGLEVDLWSLGCI FAELLTLEPLFPGISDIDQLSRIFNVLGNLSEEVWPGCTKLPDYRTISFCKIEN PIGLESCLPNCSSDEVSLVRRLLCYDPAARATPMELLQDKYFTEEPLPVPISAL QVPQSKNSHDEDSAGGWYDYNDMDSDSDFEDFGPLKFTPTSTGFSIQFP MSNQHRRSSFSSSTTSSLAKRMASSSSSSLENAGKAFAAAAVPSHLAKKRAPLG NLTNLKAGDGNSRSSSAPSTLVANATKLAKTRKGSSTSSSIMGLSGSALPRYAS TKPSGVLPSVNPSIPRIEIAVDPMSCSMVVSPSRSDMOSVSLDESMSTCESFKS PDVEYIDNEDVSAVDSIDRKTFSNLYISDAAAKTAVNICERDVLMEMETDEKIV NVDDNYSDPQLCATIACDIYQHLRASEAKKRPSTDFMDRVQKDITASMRAILID 276 Cyclin A 187 1686 WLVEVAEEYRLVPDTLYLTVNYIDRYLSGNVMNRORLQLLGVACMMIAAKYEEI CAPQVEEFCYITDNTYFKEEVLQMESSVLNYLKFEMTAPTVKCFLRRFVRAAQG VNEVPSLQLECMANYIAELSLLEYDMLCYAPSLVAASAIFLAKFVITPSKRPWD PTLQHYTLYQPSDLGNCVKDLHRLCFNNHGSTLPAIREKYSQHKYKYVAKKYCP PSIPPEFFHNLVY MNKENAVGTKSEAPTIRITRSRSKALGTSTGMLPSSRPSFKQEOKRTVRANAKR SASDENKGTMVGNASKQHKKRTVLNDVTNIFCENSYSNCLNAAKAQTSRQGRKW SMKKDRDVHQSGAVQIMQEDVQAOFVEESSKIKVAESMEITIPDKWAKRENSEH SISMKDTVAESSRKPQEFICGEKSAALVQPSIVDIDSKLEDPQACTPYALDIYN 277 Cyclin A YKRSTELERRPSTIYMETLQKDVTPNMRGILVDWLVEVSEEYKLVPDTLYLTVN 238 1653 LIDRSLSOKFIEKQRLQLLGVTCMLIASKYEEICPPRVEEFCFITDNTYTSLEV LKMESRVLNLLHFQLSVPTVKTFLRRFVQAAQVSSEVPSVELEYLANYLAELTL VEYSFLKFLPSLMAASAVLLARWTLNQSDNPWNLTLEHYTKYKASELKAAVLAL EDLQLNTSGSTLNAIREKYRQQKVNYSLLIHSKANHEIL MAGSDENNPGVVGGAHVQEGLRVGAGKMGAGNVQQRRALSNINSNIIGAPPYPC AVNKRVLSEKNVNSENDLLNAAHRPITRQFAAQMAYKQQLRPEENKRTTQSVSN PSKSEDCAILDVDDDKMADDFPVPMFVQHTEAMLEEIDRMEEVEMEDVAEEPVT DIDSGDKENQLAVVEYIDDLYMFYQKAEASSCVPPNYMDRQQDINERMRGILID 278 Cyclin B WLIEVHYKFELMDETLYLTVNLIDRFLAVQPVVKKKLQLVGVTAMLLACKYEEV 235 1539 SVPVVEDLILISDRAYSRKEVLEMERLMVNTLHFNMSVPTPYVFMRRFLKAAQS DKKLELLSFFIIELSLVEYDMLKFPPSLLAASAIYTALSTITRTKQWSTTCEWH TSYSEEQLLECARLMVTFHQRAGSGKLTGVHRKYSTSKFGHAARTEPANFLLDF RL 184 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MASRPIVPVQARGEAAIGGGAGKAAIGGGAGKQQKKNGAAEGRNRKALGDIGNL VTVRGIEGKVQPHRPITRSFCAOLLANAQAAAAAENNKKQAVVNVNGAPSILDV PGAGKRAEPAAAAAAAVAKAAQKKVVKPKQKAEVIDLTSDSERAIEAKKKQQHH EPTKKEGEKSSRRNMPTLTSVLTARSKAACGMTKKPKEKVVDIDAGDAHNELAA 279 Cyclin B FEYIEDIYTYYKEAENESLPRNYMSSQPEINEKMRAILVDWLIEIHNKFDLMPE 158 1618 TLYLTINIIDRFLSVKAVPRRELQLLGMGALETASKYEEIWAPEVNDLVCIADR AYSHEQVLAMEKTILGKLEWTLTVPTHYVFLVRFIKASLGDRKLENMVYFLAEL GVM4NYATLTYCPSMVAASAVYAARCTLGLTPLWNDTLKLHTGFSESQLMDCARL LVGYHAKAKENKLQVVYKKYSSSQREGVALIPPAKALLCEGGGLSSSSSLASSS MGLPDENNAALSKPTNLQVGGLEIGGRKFGQEIRQTRRALSVINQNLVGDRAYP CHVVNKRGHSKRDAVCGKDQVDPVHRPLTRKFAAQTASTQQHCIEEAKKPRTAV QERNEFGDCIFVDVEDCQPSSENQPVPMFLEIPESRLDDDMEEVEMEDIVEEEE EEPIMDIDGRDKKNPLAVVDYIEDIYANYRRTENCSCVSANYMAQQADINEKMR 280 Cyclin B SILIDWLIEVHDKFDLMHETLFLTVNLIDRFLARQSVVRKKLQLVGLVAMLLAC 205 1530 KYEEVSVPVVGDLILISDKAYTRKEVLEMESLMLNSLQFNMSVPTPYVFMRRFL KAAESDKKLEVLSFFLIELSLVEYEMVKFPPSLLAAAA;FTAQCTLYGFKQWTK TCEWHSNYTEDQLLECARMMVGFHQKAATGKLTGVHRKYGTSKFGYTSKCEPAN FLLGEMKNP MGLPDENNAALSKPTNLQVGGLEIGGRKFGQEIROTRRALSVINQNLVGDRAYP CHVVNKRGHSKRDAVCGKDQVDPVHRPLTRKFAAQTASTQQHCIEEAKKPRTAV QERNEFGDCIFVDVEDCQPSSENQPVPMFLEIPESRLDDDMEEVEMEDIVEEEE EEPIMDIDGRDKKNPLAVVDYIEDIYANYRRTENCSCVSANYMAQQADINEKMR 281 Cyclin B SILIDWLIEVHDKFDLMHETLFLTVNLIDRFLARQSVVRKKLQLVGLVAMLLAC 174 1499 KYEEVSVPVVGDLILISDKAYTRKEVLEMEKLMLNSLQFNMSVPTPYVFMRRFL KAAESDKKLEVLSFFLIELSLVEYEMVKFPPSLLAAAAIFTAQCTLYGFKQWTK TCEWHSNYTEDQLLECARMMVGFHQKAATGKLTGVHRKYGTSKFGYTSKCEAAN FLLGEMKNP MAMVQRQGHDPSSPQEQEDGPSSFLSDDALYCEEGRFEEDDGGGGGQVDGIPLF PSQPADRQQDSPWADEDGEEKEEEEAELQSLFSKERGARPELAKDDGGAVAARR EAVEWMLMVRGVYGFSALTAVLAVDYLDRFLAGFRLQRDNRPWMTQLVAVACLA LAAKVEETDVPLLVELQEVGDARYVFEAKTVQRMELLVLSTLGWEMHPVTPLSF 262 Cyclin D 94 1332 VHHVARRLGASPHHGEFTHWAFLRRCERLLVAAVSDARSLKHLPSVLAAAAMLR VIEEVEPFRSSEYKAQLLSALHMSQEMVEDCCRFILGIAETAGDAVTSSLDSFL KRKRRCGHLSPRSPSGVIDASFSCDDESNDSWATDPPSDPDDNDDLNPLPKKSR SSSPSSSPSSVPDKVLDLPFMNRIFEGIVNGSPI MEASYQPHHHGHLRQHDPSSSQQEEQVPFDALYCSEEHWGEEDEEEGLASDGLL SEERDHRLLSPRALLDQDLLWEDEELASLFSKEEPGGMRLNLENDPSLADARRE AVEWIMRVHAHYAFSALTALLAVNYWDRFTCSFALQEDKPWMTQLSAVACLSLA AKVEETQVPLLIDFOVEDSSPVFEAKNIQRMELLVLSSLEWKMNPVTPLSFLDY 283 Cyclin D 176 1342 MTRRLGLTGHLCWEFLRRCENVLLSVISDCRFTCYLPSVIAASTMLHVINGLKP RLDVEDQTQLLGILAMGMDKIDACYKLIDDDHALRSQRYSHNKRKFGSVPGSPR GVMELCFSSDGSNDSWSVAASVSSSPEPHSKKSP,AGEEAEDRLLRGLEGEEDDP ASADIFSFPH 185 WO 2005/065339 PCT1US20041043804 Patent Patent Protein Target Patent PEPTWE Sequence ORF ORF SEQ ID start stop MALQEEDTRRHYPTAPPFSPDGLYCEDETFGEDLADNACEYAGGGARDGLCEIK DPTLPPSLLGQDLFWEDGELASLVSRETGTHPCWDELISDGSVALARKDAVGWI LRVHGHYGFRPLTAMLAVNYLDRFFLSRSYQRDRPWISQLVAVACLSVAAKVEE 284 Cyclin D TQVPILLDLQVANAKFVFESRTIQRMELLLMSTLDWRMNSVTPISFFDRILRRF 150 1283 GLTTNLHRQFFWMCERLLLSVVADVRLASFLPSVVATAAMLYVNKEIEPCICSE FLDQLLSLLKINEDRVNECYELILELSIDHPEILNYKHKRKRGSVPSSPSGVID TSFSCDSSNDSWGVASSVSSSLEPRFKRSRFQDQQMGLPSVNVSSMGVLNSSY Cyclin dependent MGQIQYSEKYFDDTYEYRHVVLPPDVAKLLPKNRLLSENEWRAIGVQQSRGWVH 285 kinase 101 367 YAIHRPEPHIMLFRRPLNYQQQQENQAQQNMLAK regulatory subunit MGSIDPPKAEQNGTAAAAVADPGQKPGAGDAMPPPPPVKHSNGTAAEPDVATKR RRMSVLPLEVGTRVMCRWRDGKYHPVKVIERRKLNPGDPNDYEYYVHYTEFNRR LDEWVKLEQLDLNSVETVVDEKVEDKVTGLKMTRHQKRKIDETHVEGHEELDAA Histone SLREHEEFTKVKNIATIELGRYEIETWYFSPFPPEYNDCSKLYFCEFCLNFMKR 286 acetyltransfera KEQLQRHMKKCDLKHPPGDEIYRSGTLSMFEVDGKKNKVYGQNLCYLAKLFLDH 9 1352 se KTLYYDVDLFLFYVLCECDDRGCHMVGYFSKEKHSEESYNLACILTLPPYQRKG YGKFLIAFSYELSKKEGKVGTPERPLSDLGLLSYKGYWTRVLLDILKKHKANIS IKELSDMTAIKADDILNTLQSLDLIQYRKGQHVICADPKVLDRHLKAAGRGGLE VDVSKLIWTPYREQG MAQKHSTAPDPAAEPKKRRRVGFSGIDAGVDPNGCFKVYLVSREEEVGAPDSFC LDPVDLSHFFEEEDGKIYGYEGLKISVWVSCVSFHSYAEIAFESKSDGGKGITD LNTALKNMFGETLVDNKDDFLQTFSKETQFIRSTVSAGEILKHKHSDDHVNDSV Histone SNLKVGSDVEAVRMLMGDMTAGHLYSRLVPLVLLLVDGSSPIDVTDSSWELYLL 287 acetyltransfera IQKTSDQQGNFHDRLLGFAAVYRFYHYPDSSRLRLGQILVLPLYQEKGYGRYLL 89 1486 se EVLNNVAIADDVYDFTIEEPVDNLQHLRTCIDVQRLLSFDKVQQAVNSTVSQLK QGKLSKKTYIPRLLPPPSVVEDARKRFKINKKQFLQCWEILVYLGLDPADKSIQ DYFSVISNRVRADILGKDSETAGKKVIEVPSDFDPEMSFVMHRAKAGGEANGIQ VEDNQNKQEEQLQQLIDERLKDIKLIAEKVTQK MAQKHSTAPDPAAEPKKRRRVGFSGIDAGVDPNGCFKVYLVSREEEVGAPDSFC LDPVDLSHFFEEEDGKIYGYEGLKISVWVSCVSFHSYAEIAFESKSDGGKGITD LNTALKNMFGETLVDNKDDFLQTFSKETQFIRSTVSAGEILKHKHSDGHVNDSV Histone SNLKVGSDVEAVRMLMGDMTAGHLYSRLVPLVLLLVDGSNPIDVTDSSWELYLL 288 acetyltransfera IQKTSDQQGNFHDRLLGFAAVYRFYHYPDSLRLRLGQILVLPLYQRKGYGHYLL 80 1477 se EVLNNVAIADDVYDFTIEEPVDNLQHLRTCIDVQRLLSFDKVQQAVNSTVSQLK QGKLSKKTYIPRLLPPPSVVEDARKRFKINKKQFLQCWEILVYLGLDPADKSIQ DYFSVISNRVRADILGKDSETAGKKVIEVPSDFDPEMSFVLHRAKAGGETNGIQ VEDNQNKQEEQLQQLIDERLKDIKLIAQKVSRK 186 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MALPMEFWGVEVKAGQPLKVNPGNAKILHLSQASLGECKSSKGNESVPLHVKFG DQKLVLGTLSTENFPQLAFDLVFEKEFELSHNWKSGSVYFCGYKSVVHDDDDEF 289 Histone SDLESDSEEEDLPMIGVENGKVAAQASAKTATASANASKVESSGKQKARIPQPM 160 1062 deacetylase KVDEDDSDEDDDDEDEDESDEEGVDGEADSDEEEDESDEEETPKKAEIGKKRAA DSATKTPVPAKKSKLPTPQKTDGKKGGHTATPHPAKQAGKNPANSANKSQSPKS AGQVSCKSCSKTFNSDGALQSHSKAKHGGK; MEFWGVEVKAGQPLKVNPGNAKI IHLSQASLGECKSSKGNESVPLHVKFGDQKL VLGTLSTENFPQLAFDLVFEKEFELSHNWKSGSVYFCGYKSVVHDDDDEFSDLE 290 Histone SDSEEEDLPMIGVENGKVAAQASAKTATASANASKVESSGKQKASIPQPMKVDE 172 1077 deacetylase DDSDEDDDEDDDDEDESDEGVDGEADSDEEEDESDEEETPKKAEIGKKEAADSA TKTPVPAKKSKLPTPQKTDGKKGGHTATPHPAKQAGKNPANSANKSQSPKSAGQ VSCKSCSKTFNSDGALQSHSKAKHGGK MEFWGVEVKSGEPLNVEPGAETVVHLSQACLGETKEKTKESVLLYVHIGVQKLV LGTLSADKFPQIPFDLVFEKSFKLSHNWKNGSVFFSGYKTLLPCGSDADSPYSD 291 Histone SDTDEGLPINVTAQADVPAKKAPVTANANAARPNLASAKQKVKIVESNEDGKNE 66 989 deacetylase GDDDEDADVSSDDDAEDDSGDEDMVDGGDESSDEDDDDSEEGESSEEEEPKAQP SKKRPADSVLKTPASDKKSKLETPQKTDGKKASEHVATPYPSKQAGKAIASKGQ AKQQTPNSNEFSCKPCNRSFKSDQALQSHNKAKHGGS MDTGGNSLPSGPDGVKRKVCYFYDPEVGNYYLLQHMQVLKPVPARDRDLCRFHA DDYVAFLRSITPETQQDQLROLKRFNVGEDCPVFDGLHSFCQTYAGGSVGGAVK LNHGLCDIAINWAGGLHHAKKCEASGFCYVNDIVLGILELLKQHERVLYVDIDI HHGDGVEEAFYTTDRVMTVSFHKFGDYFPGTGDIRDIGYGKGKYYSLNVPLDDG 292 Histone IDDESYHSLFKPIIGKVMEVFKPGAVVLQCGADSLSGDRLGCFNLSIKGHAECV 111 1541 deacetylase RYMRSFNVPVLLLGGGGYTIRNVARCWCYETGVALGLEVDDKMPQHEYYEYFGP DYTLHVAPSNMENKNSRQLLEEIRSKLLENLSKLQHAPSVPFQERPPDTELPEA DEDQEDPDERWDPDSDMDVDEDRKPLPSRVKRELIVEPEVKDQDSQKASIDHGR GLDTTQEDNASIKVSDMNSMITDEQSVKMEQDNVNKPSEQIFPK MDTGGNSLPSGPDGVKRKVCYFYDPEVGNYYYGQGHPMKPHRIRMTHALLAHYG LLQHMQVLKPVPARDRDLCRFHADDYVAFLRSITPETQQDQLRQLKRFNVGEDC PVFDGLHSFCQTYAGGSVGGAVKLNHGLCDIAINWAGGLHHAKKCEASGFCYVN DIVLGILELLKQHERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKFGDYFPGT Histone GDIRDIGYGKGKYYSLNVPLDDGIDDESYHSLFKPIIGKVMEVFKPGAVVLQCG 293 116 1615 deacetylase ADSLSGDRLGCFNLSIKGHAECVRYMRSFNVPVLLLGGGGYTIRNVARCWCYET GVALGLEVDDKMPQHEYYEYFGPDYTLHVAPSNMENKNSRQLLEDIRSKLLENL SKLQHAPSVPFQERPPDTELPEADEDQEDPDERWDPDSDMDVDEDRKPLPSRVK RELIVEPEVKDQDSQKASIDHGRGLDTTQEDNASIKVSDMNSMITDEQSVKMEQ DNVNKPSEQIFPK 187 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ I start stop MRPKDRISYFYDGDVGSVYFGPNHPMKPHRLCMTHHLVLSYELHTKMEIYRPHK AYPAELAQFHSPDYVEFLHRITPDTQHLFPNDLAKYNLGEDCPVFENLFEFCQI YAGGTIDAARRLNNQLCDIAINWAGGLHHAKKCEASGFCYINDLVLGILELLKY Histone HARVLYXDIDVHHGDGVEEAFYFTDRVMTVSFHKFGDMFFPGTGDVKEIGGKEG 294 155 1453 deacetylase KFYAINVPLKDGIDDTSFTRLFKAIISKVVETYQPGAIVLQCGADSLAGDRLGC FNLSIDGHSECVRFVKKFNLPLLVTGGGGYTKENVARCWVVETGVLLDTELPNE IPENEYFKYFAPDYSLKIPRGNIVLENLNSKSYLSAIKVQVLENLRNIQHAPSV QMQEVPPDFYIPDFDEDEQNPDERMDQHTQDKQIQRDDEYYDGDNDNDHNMDDS MTVAEDFHVNNRSKMVSQATPESRLTGGEDDNSLHNQVDELLCQELPERQVILE FEGTRPKPYFSDHNGGENSALGVRATEDDLNSDVEAEEKQKEMTLEDMYKNDGT LYDDDEDDSOWEPVKRQVELMRWFCTNCTMVNVEDVFLCDICGEHRDSGILRHG FYASPFMQDVGAPSVEAEVQESREDHARSSPPSSSTVVGFDEKMLLHSEVEMKS HPHPERADRLQAIAASLATAGIFPGRCRSLPVREITKEELQMVHSSEHVDAVEM 295 Histone TSHMFSSYFTPDTYANEHSARAARIAAGLCADLASTIISGRSKNGFALVRPPGH 228 2033 deacetylase HAGIKHAMGFCLHNNAAVAALAAQGAGAKKVLIVDWDVHHGNGTQEIFDGNKSV LYISLHRHEGGNFYPGTGAAHEVGTMGAEGYCVNIPWSRRGVGDNDYVFAFHHI VLPIASAFAPDFTIISAGFDAARGDPLGCCDVTPAGYAQMTHMLSALSGGKLLV ILEGGYNLRSISSSAVAVIKVLLGDSPISEIADAVPSKAGLRTVLEVLKIQRSY WPSLESIFWELQSQWGMFLVDNRRKQIRKRRRVLVPIWWKWGRKSVLYHLLNGH LHVKTKR MAAAPSSPPTNRVDVFWHDGMLSHDTGRGVFDTGSDPGFLDVLEKHPENPDRVR NMVSILKRGPISPFISWHTATPALISQLLSFHSPEYINELVEADKNGGKVLCAG TFLNPGSWDAALLAAGNTLSAMKYVLDGKGKIAYALVRPPGHHAQPSQADGYCF 296 Histone LNNAGLAVRLALDSGCKRVVVVDIDVHYGNGTAEGFYQSSDVLTISLHMNHGSW 110 1258 deacetylase GPSHPQSGSVDELGEDEGYGYNMNIPLPNGTGDRGYEYAVTELVVPAVESFKPE MVVLVVGQDSSAFDPNGRQCLTMDGYRAIGRTIRGLADRHSGGRILIVQEGGYH VTYSAYCLHATVEGILDLPDPLLADPIAYYPEDEAFPVKVVDSIKRYLVDKVPF LKEH MVESSGGASLPSVGQDARKRRVSYFYEPTIGDYYYGQGHPMKPHRIRMAHNLIV HYYLHRRMEISRPFPAATTDIRRFHSEDYVTFISSVTPETVSDPAFSRQLKRFN VGEDCPVFDGIFGFCQASAGGSMGAAVKLNRGDSDIALNWAGGLHHAKKSEASG FCYVNDIVLGILELLKVHKRVLYVDIDVHHGDGVEEAFYTTDRVMTVSFHKFGD 297 Histone FFPGSGHIKDTGAGPGKNYALNVPLNDGIDDESFRGMFRPIIQKVMEVYQPDAV 50 1462 deacetylase VLQCGADSLSGDRLGCFNLSVKGHADCLRFLRSFNVPLMVLGGGGYTMRNVARC WCYETAVAVGVEPENDLPYNEYYEYFGPDYTLHVEPCSMENLNAPKDLERIRNM LLEQLSRIPHAPSVPFOMTPPITQEPEEAEEDMDERPKPRIWNGEDYESDAEED KSQHRSSNADALHDENVEMRDSVGENSGDKTREDRSPS MAT1 CDK- MVVPSSNPHNREMAIRRRMASTFNKREDDFPSLREYNDYLEEVEEMTFNLIEGV 298 activating DVPTIEAKIAKYQEENAEQIMINRAKKAEEAAALAASKGLPPQTDPDGALNSQ 176 739 kinase assembly AGLSVGTQGQYAPAIAGGQPRPTGMAPQPVPLGTGLDIHGYDDEEMIKLRAERG factor GRAGGWSIELSKKRALEEAFGSLWL 188 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MAAIISCHHYHSCCSSLIASKWVGARIPTSCFGRSSTQSNNAASVRQFVTRCSS SPSSRGQWQPHQNGEKGRSFSLRECAISIALAVGLVTGVPSLDMSTGNAYAASP ALPDLSVLISGPPIKDPEALLRYALPINNKAIREVQKPLEDITDSLKVAGLRAL DSVERNVRQASRVLKQGKNLIVSGLAESKKDHGVELLDKLEAGMDELQQIVEDG 299 Peptidylprolyl NRDAVAGKQRELLNYVGGVEEDMVDGFPYEVPEEYKNMPLLKGRAAVDMKVKVK 150 1529 isomerase DNPNLEECVFRIVLDGYNAPVTAGNFVDLVERHFYDGMEIQRADGFVVQTGDPE GPAESFIDPSTEKPRTIPLEI4VDGEKAPVYGATLEELGLYKAQTKLPFNAFGT MAMARDEFEDNSASSOIFWLLKESELTPSNANILDGRYAVFGYVTENQDFLADL KVGDVIESVQVVSGLDNLANPSYKIAG; MAGEDFDIPPADEMNEDFDLPDDDDDAPVMKAGDEKEIGKQGLKKKLVKEGDAW ETPDNGDEVEVHYTGTLLDGTQFDSSRDRGTPFKFTLGQGQVIKGWDQGIKTMK KGENAIFTIPPELAYGEAGSPPTIPPNATLQFDVELLSWTSVKDICKDGGIFKK ILVEGEKWENPKDLDEVLVKYEFQLEDGTTIARSDGVEFTVKEGHFCPAVAKAV KTMKKGEKVLLTVKPQYGFGEKGKPASGDEGAVPPNATLQITLELVSWKTVSEV 300 Peptidylprolyl TDDKKVIKKILKEGEGYERPNEGAVVEVKLIGKLQDGTVFVKKGHDDCEELFKF 247 1971 isomerase KIDEEQVVDGLDKAVMNMKKGEVALLTVAPEYAFGSSESKQDLAVVPPSSTVYY EVELVSFVKDKESWDMNTEEKIEAAGKKKEEGNVIFKAGKYAKASKRYEKAVKY IEYDTSFSEDEKKQAKALKVACNLNDAACKLKLKDYNQAEKLCTKVLELDSRNV KALYRRAQAYIELSDLDLAEFDIKKALEIDPHNRDVKLEYKVLKEKVKEFNKKD AKFYGNMFAKMSKLEPVEKTAAKEPEPMSIDSKA; MSTVYVLEPPTKGKVVLNTTHGPLDVELWPKEAPKAVRNFVQLCLEGYYDNTIF HRIIKDFLVOGGDPTGSGTGGESIYGDAFSDEFHSRLRFKHRGLVACANAGSPH SNGSQFFITLDRCDWLDRKNTIFGKITGDSIYNLSGLAEVETDKSDRPLDPPPK IISVEVLWNPFEDIVPRAPVRSLVPTVPDVQNKEPKKKAVKKLNLLSFGEEAEE 301 Peptidylprolyl EEKALVVVKQKIKSSHDVLDDPRLLKEHIPSKQVDSYDSKTARDVQSVREALSS 136 1644 isomerase KKQELQKESGAEFSNSFREIADDEDDDDDDASFDARMRRQILQKRKELGDLPPK PKPKSRDGISARKERETSISRDKDDDDDDDQPRVEKLSLKKKGIGSEARGERMA NADADLQLLNDAERGRQLQKQKKHRLRGREDEVLTKLETFKASVFGKPLASSAK VGDGDGDLS DWRSVLKFAPEPGKDRMTRNEDPNDYVVVDPLLEKGKEKFNRMQ AKEKRRGREWAGKSLT; MASAISMHSSGLLLLQGTNGKDVTEMGKAPASSRVANMQQRKYGATCCVARGLT SRSHYASSLAFKOFSKTPSIKYDRMVEIKAMATDLGLQAKVTNKCFFDVEIGGE 302 Peptidylprolyl PAGRIVIGLFGDDVPKTVENFRALCTGEKGFGYKGCSFHRIIKDFMIQGGDFTR 48 836 isomerase GNGTGGKSIYGSTFEDENFALKHVGPGVLSMANAGPSTNGSQFFICTVKTPWLD NRHVVFGOVVDGMDVVQKLESOETSRSDVPROPCRIVNCGELPLDG; MAASFTALSNVGSLSSPRNGSEIRRFRPSCNVAASVRPPPLKAGLSASSSSSFS GSLRLIPLSSSPQRKSRPCSVRASAEAAAAQSKVTNKVYLDISIGNPVGKLVGR 303 epiylpro IVIGLYGDDVPQTAENFRALCTGEKGFGYKGSTVHRVIKDFMIGGDFDKGNGT 49 822 is omeras e GGKSIYGRTFKDENFKLSHVGPGVVSMANAGPNTNGSQFFICTVKTPWLDQRHV VFGQVLEGMDIVRLIESQETDRGDRPRKRVVVSDCGELPVV; 189 WO 2005/065339 PCT1US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MAEAIDLTGDGGVMKTIVRRAKPDAVSPSETLPLVDVRYEGVLAETGEVFDSTH 304 Peptidylprolyl EDNTLFSFEIGKGSVISAWDTALRTMKVGEVARITCKPEYAYGSTGSPPDIPPD 185 751 isomerase ATLIFEVELVACKPCKGFSVTSVTEDKARLEELKKQREIAAATKEEEKKRREEA KAAAAARVQAKLDAKKGHGKGKGRAK; MGNPKVFFDMSIGGQPAGRIVMELYADVVPRTAENFRALCTGEKGAGRSGKPLH 305 Peptidylprolyl YKGSSFHRVIPGFMCQGGDFTAGNGTGGESIYGSKFADENFVKKHTGPGVLSMA 103 621 isomerase NAGPGTNGSQFFVCTAKTEWLDGKHVVFGQIVDGMDVVKAIEKVGSSSGRTSKP VVVADCGQLS MPNPKVFFDMTIGGAAAGRVVMELYADTTPRTAENFRALCTGEKGVGRSKKPLH 306 Peptidylprolyl YKGSKFHRVIPSFMCQGGDFTAGNGTGGESIYGVKFADENFIKKHTGPGILSMA 41 559 isomerase NAGPGTNGSQFFICTTKTEWLDGKHVVFGKVVEGMEVVKAIEKVGSSSGRTSP VVVADCGQLP MAEAIDLTGDGGVMTIVRRAKPDAVSPSETLPLVDVRYEGVLAETGEVFDSTH 307 Peptidylprolyl EDNTLFSFEIGKGSVISAWDTALRTMKVGEVAKITCKPEYAYGSTGSPPDIPPD 127 693 isomerase ATLIFEVELVACKPCKGFSVTSVTEDKARLEELKKQREIAAATKEEEKKRREEA KAAAAARVQAKLDAKKGHGKGKGKAK MATARSFFLCALLLLATLYLAQAKKSEDLKEVTHRVYFDVEIAGKPAGRIVMGL 308 Peptidylprolyl YGKAVPKTAENFRALCTGEKGTGKSGKPLHYKGSSFHRIIPSFMLQGGDFTLGD 28 639 isomerase GRGGESIYGEKFADENFKLKHTGPGLLSMANAGPDTNGSQFFITTVTTSWLDGR HVVFGKVLSGMDVVYKVEAEGRQSGTPKSKVVIADSGELPL MMRREISVLLQPRFVLAFLALAVLLLVFAFPFSRQRGDQVEEEPEITHRVYLDV DIDGQHLGRIVIGLYGEVVPRTVENFRALCTGEKGKSANGKKLHYKGTPEHRII 309 Peptidylprolyl SGFMIQGGDVIYGDGKGYESIYGGTFADENFRIKHSHAGIISMVNSGPDSNGSQ 135 812 is operas e FFITTVKASWLDGEHVVFGRVIQGMDTVYAIEGGAGTYNGKPRKKVIIADSGEI PKSKWDEER MWATAEGGPPEVTLETSMGSFTVELYFKHAPRTSRNFIELSRRGYYDNVKFHRI 310 Peptidylprolyl IKDFIVOGGDPTGTGRGGESIYGKKFEDEIKPELKHTGAGILSMANAGPNTNGS 119 613 isomerase QFFITLAPCPSLDGKHTIFGRVCRGMEIIKRLGSVQTDNNDRPIHDVKILRTSV KD MSNPKVFFDILIGKMKAGRVVMELFAOVTPKTAENFRALCTGEKGIGRSGKPLH 311 Peptidylprolyl YKGSTFHRIIPNFMCOGGDFTRGNGTGGESIYGMKFADENFKIKHTGLGVLSMA 38 562 isomerase NAGPDTNGS0FFICTEKTPWLDGKHVVFGKVIDGYNVVKEMESVGSDSGSTRET VAIEDCGQLSEN 190 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MDDDFEFPASSNVENDDDDGMDMDDMGGDVPEEEDPVASPAVLKVGEEREIGKA GFKKKLVKEGEGWETPSSGDEVEVHYTGTLLDGTKFDSSRDRGTPFKFKLGRGQ VIKGWDEGIKTMKKGENAIFTIPPELAYGESGSPPTIPPNATLQFDVELLSWSS VKDICKDGGILKKVLVEGEKWDNPKDLDEVFVKYEASLEDGTLI SKS DGVEFTV GDGYFCAALAKAVKTMKKGEKVLLTVMPQYAFGETGRPASGDEAAVPPDASLQI 312 Peptidylprolyl MLELVSWKTVSDVTKDKKVLKKTLKEGEGYERPNDGAAVQVRLCGKLODGTVFV 109 1872 isomerase KKDDEEPFEFKI DEEQVIDGLDRAVKNMKKGEVALVTIQPEYAFGPTESQQDLA VVPANSTVYYEVELLSFVKEKESWEMNNQEKIEAAARKKEEGNAAFKAGKYVRA SKRYEKAVRFIEYDSSFSDEEKQQAKTLKNTCNLNDAACKLKLKDFKEAEKLCT KVLEGDGKNVKALYRRAQAYILVDLDLAEQDIKKALEIDPNNRDVKLEYKILK EKVREYNKRDAQFYGNMFAKMNKLEHSRTAGMGAKHEAAPMTI DSKA MAKPRCFMDISIGGELEGRIVGELYTDVAPKTAENFRALCTGEKGIGPHTGAPL HYKGVRFHRVIKGFMVQGGDISAGDGTGGESIYGLKFEDENFDLKHERKGMLSM ANSGPNTNGSQFFITTTRTSHLDGKRVVFGRVVKGMGVVRSVEHVTTAAGDCPT 313 Peptidylprolyl VDVVIADCGEIPAGADDGIRNFFKDGDTYPDWPADLDESPAELSWWMDAVDSIK 74 1159 isomerase AFGNGSYKKQDYKMALRKYRKALRYLDICWEKEGI DEVESSSLRKTKSQI FTNS SACKLKLCDLKGALLDAEFAVRDGENNAKAYFRQGQAHMELNDIDAAAESFSKA LELEPNDVGIKKELNAAKKKIFERREQEKRAYRKMFL MTKRKNPLVFLDVSIDGDPVERIVIELFADTVPRTAENFRSLCTGEKGVGKTTG KPLHYKGSYFHRIIKGFMAQGGDFSNGNGTGGESIYGGKFADENFKLAHDGPGL LSMANGGPNTNGSQFFI IFKRQPHLDGKHVVFGKVMRGMEVVKKI EQVGSANGK PLQPVKIVDCGETSETGTQDAVVEEKSKSATLKAKKKRSARDSS SESRGKRRQR KSRKERTRKRRRYSSSDSYSSESSDSDSESYSSDTESESKSHSES SVSDSSSSD GRRRKRKSTKREKLRRQRGKDSRGEQKSARYDKKSRHKSADSSSDSESESSSRS 314 Peptidylprolyl RSRDDKKKSSRRESARSVSKLKDAEANSPENLESPRDREIKKVEDNSSHEEGEF 54 2045 is operas e SPKNDVQHNGHGTDAKFGKYDDQRPRSDGSKKSSGSMRDSPKRLANSVPQGSPS SSPAHKASEPSSSIRARNPSRSPAPDGNSKRIRKGRGFTERFSYARRYRTPSPE DVTYRPYHYGRRNFHDRRNDRYSNYRSYSERSPHRRYRSPPRGRSPPRYQRRRS RSRSVSRSPGGNKGRYRGRDQSRSRSRSRSRSPRRGSSPANKQLPLSERLKSRL GTRVDEHS PRRRRSSS RSHDSS RS RS PDEVPDKHEGKAAPVS PARS RSS S PS GR GLVSYGDASPDSGIN MSVLLVTSLGDIVVDLHADRCPLTCKNFLKLCRIKYYNGCVFHTVQKDFTAQTG DPTGTGTGGDSVYKFLYGDQARFFMDEIHLDLEHSKTGTVAMASGGENLNASQF YFTLRDDLDYLDGKHTVFGEVAEGLETLTRINEAYVDERGRPYKNIRIRHTYIL DDPFDDPPQLAELIPDASPEGKPKDEVVDDVRLEDDWVPLDEQLGPAQLEEAIR AKEAHSRAVVLESIGDI PDAEIKPPDNVLFVCKLNPVTEDEDLHTIFSRFGTVV 315 Peptidylprolyl SADVIRDFKTGDSLCYAFIEFENKDSCEQAYFKMDNALIDDRRIKVDFSQSVAK 53 1879 isomerase LWSQFKRKDSQAAKGKGCFKCGAPDHMARECPGSSTROPLSKYILKEDNAQRGG DDSRYEMVFDEDAPESPSHGKKRRGRDDRDDRHKMSRQSVEETKFNDREGGHSV DKHROSERSRHREDEMSRDSKASEAGRRRIDRDFPEEERDGEKYTESHRDRDGK RGDYRDYRKGRADVQTHGDRRGDENYRRKSAAYDDGHEGAGAARRKDSNDDHHA YRRGYGDSRKGTRDEDDDGRGRRDDPSYRRSSGHKDSSNGGREEQKYRSGETDG KSHPERSHRGDRRR 191 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MRPFNGGSSIACLVLVIAAGALAESQGPHLGSARVVFQTNYGDIEFGFFPGVAP RTVDHIFKLVRLGCYNTNHFFRVDKGFVAQVADVANGRTAPMNDEQRTEAERT I 316 Peptidylprolyl VGEFSNVKHVRGILSMGRYDDPDSAQSSFSILLGDAPHLDGKYAIFGRVTKGDE 7 690 isomerase TLKKLEQLPTRREGMFVMPTERITILSSYYYDTGAESCEEENSTLRRRLAASAV EVERQRMKCFP MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRALCTGEKGTGRSGKPLH Peptidylprolyl FKGSSFHRVIPGFMCQGGDFTRGNGTGGESIYGEKFADENFVKKHTGPGILSMA 317 83 601 isomerase NAGPNTNGSQFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGSGRTSKP VVIADSGQLA MRFTSITSAIALFAAAASALDKPLDIKVDKAVECSRKTKAGDKIOVHYRGTLEA 318 Peptidyprolyl DGSEFDASYKRGQPLSFHVGKGQVIKGWDQGLLDMCPGEKRTLTIQPDWGYGSR 125 535 isomerase GMGPIPANSVLIFETELVEIAGVAREEL MGNPKVFFDMSIGGQPAGRIVMELYADVVPRTAENFRALCTGEKGAGRSGKPLH 319 Peptidylprolyl YKGSSFHRVIPGFMCQGGDFTAGNGTGGESIYGSKFADENFVKKHTGPGVLSMA 55 573 isomerase NAGPGTNGSQFFVCTAKTEWLDGKHVVFGQIVDGMDVVKAIEKVGSSSGRTSKP VVVADCGQLS MAVATRSRWVAMSVAWILVLFGTLALIQNRLSDTGASSDPKLVHRKVGEEKKKCP DDLEEVTHKVFFDVEIGGKPAGRIVMGLFGKTVPKTVENFRALCTGEKGIGKSG 320 Peptidylprolyl KPLNYKGSQFHRIIPKFMIQGGDFTLGDGRGGESIYGNKFSDENFKLKHTDAGR 147 842 isomerase LSMTNAGPDTNGSQFFITTVTTSWLDGRVVFGKVLSGMDVVHKIEAEGGOSGQ PKSIVVISDSGELDL 321 Peptidylprolyl MAVTLHTNLGDIKCEIFCDEVPKAAEHNARGILSMANSGPNTNGSQFFIAYAKQ 167 487 isomerase PHLNGLYTIFGRVIHGFEVLDIMEKTQTGPGDRPLAEIRLNRVTIHANPLAG MAVATRSRWVAMSVAWILVLFGTLALIQNRLSDTGASSDPKLVHRKVGEEKKHP DDLEEVTHKVFFDVEIGGKPAGRIVMGLFGKTVPKTVENFRALCTGEKGIGKSG 322 Peptidylprolyl KPLNYKGSQFHRIIPKFMIQGGDFTLGDGRGGESIYGNKFSDENFKLKHTDAGR 195 890 isomnerase LSMANAGPDTNGSQFFITTVTTSWLDGRHVVFGKVLSGMDVVHKIEAEGGQSGQ PKSIVVISDSGELDL MGNPKVFFDMSIGGQPAGRIVMELYADVVPRTAENFRALCTGEKGAGRSGKPLH 323 Peptidylprolyl YKGSSFHRVIPGFMCOGGDFTAGNGTGGESIYGSKFADENFVKKHTGPGVLSAA 68 586 isomerase NAGPGTNGSQFFVCTAKTEWLDGKHVVFGQIVDGMDVVKAIEKVGSSSGRTS RP VVVADCGQLS 192 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop NSPVAANAMEEAAPEVPAPVTPSKDDADTDAAVSRFLGFCKSKLGLAEGNCVQ SSTLLRKTAHVLRSSGTVIGTGTAEEAERYWFAFVLYTVRRVGERKAEDEONGS DETEVPLSRILKASVLNLIDFFKEIPQFVIKAGAIVSGIYGANWDSRLEAREMQ TNYVHLCILCKFYKRICGEFFILNDAKDDMKSADSSTSDPVIHYOPFGWLLFLA LRIHALSRFKDLVSSTNALVSVLAILIIHLPTRFRKFSISDSSQLVKRSEKGVD LVGSLAYRYDTSEDEIKRTLEKANNVIAEILGITPPPASECKAENLENVDTDGL IYFGNLMEETSLSSILSTLEKIYEDATRNDSEFDERVFINDDDSLLVSGSLSGA AINLTGAKRKYDSFASPAKTITRPLSPSRSPASHINGIIGGTNLRITATPVATA MTTAKWLRTFVSPLPSKPSTDLQGFLASCDRDVTSDVIRRANIILEAIFPNSPI 324 Retinoblastoma GERTVTGGLQNANLMDNMWAEQRRLEALKLYYRVLEAMCRAEAQILHSNNLTSL 182 3265 related protein LTNERFHRCMLACSAELVLATHKTVTLFPAVLERTGITAFDLSKVIESFVRHE ETLPRELRRHLNTLEERLLENMVWERGSSMYNSLVVARPALAPEINRLGLLPEP MPSLDAIALLINFSSSGLPQSPVQKHEASPGQNGDIRSPKRISTEYRSVLVERN FTSPVKDRLLALSNIKSKLPPPPLQSAFASPTRPHPGGGGETCAETAIHIFFSK ITKLAAVRINAMLERLQLSQQIKEGVYCLFQQILSQRTNLFFNRHIDQVILCCF YGVAKINQINLTFREIIYNYRKQPOCKPQVFRNVFVDWSTRRNGKAGNEHVDII SFYNEIFIPSVKPLLVELGPTGATTRTNRTSEVGNKNDAQCPGSPKISSFPTLP DMSPKKVSASHNVYVSPLRSSKMDASISHSSKSYYACVGESTHAYQSPSKDLVA INSRLNGNRKVRGTLNFDDVDAGLVSDSMVANSLYLQNGSSMSSSTAKSSEKPE S MRPILMKGHERPLTFLKYNREGDLLFSCAKDHTPTVWFADNGERLGTYRGHNGA VWCCDVSRDSMRLITGSADTTAKLWSVQNGTQLFTFNFDSPARSVDFSIGDKLA VITTDPFMELPSAIHVKRIARDPADQASESVLVLRGHQGRIARAVWGPLNKTII 325 WD40 repeat SAGEDAVIRIWDSETGKLLRESDKETGHKKAVTSLMKSVDGSHFVTGSQDKSAK 165 1145 protein LWDIRTLTLIKTYVTERPVNAVTMSPLLDHVVLGGGQDASAVTMTDHRAGKFEA KFFDKILQEEIGGVKGHFGPINALAFNPDGKSFSSGGEDGYVRLHHFDPDYFNI KI MDKKRTVVPLVCHGHSRPVVDLFYSPITPDGFFLISASKDSSPMLRNGETGDWI GTFEGHKGAVWSCCLDTNALRAASGSADFSAKLWDALSGDELHSFERKHIVRSC AFSEDTHLLLTGGVEKILRIFDLNRPDAPPREVDNSPGSIRTVAWLHSDQTILS 326 WD40 repeat SCTDIGGVRLWDVRSGKIVOTLETKSPVTSSEVSQDGRYITTADGSTVKFWDAN 529 1569 protein HFGLVKSYNMPCNIESASLEPKLGNKFIAGGEDMWVHIFDFHTGEEIGCNKGHH GPVHCVRFSPGGESYASGSEDGTIRIWQTGPANNVEGDANPSNGPVTGKAKVGA DEVTRKVEDLQIGKEGRDWREG MAEGLILKGTMRAHTDMVTAIAIPIDNSDMVVTSSRDKSIILWHLTKEEKVYGV PRRRLTGHSHFVQDVVLSSDGQFALSGSWDGELRLWDLATGVSARRFVGHTKDV LSVAFSIDNRQIVSASRDRTIKLWNTLGECKYTIQEGEAHTDWVSCVRFSPNTL 327 WD40 repeat QPTIVSASWDRTIKVWNLTNCKLRNTLAGHNGYVNTVAVSPDGSLCASGGKDGV 156 1136 protein ILLWDLAEGKRLYNLEAGAIIHSLCFSPNRYWLCAATENSIKIWDLESKSIVED LRVDLKNEADKTDGTTTAASNKKVIYCTSLNWSADGSTLFSGYNDGVIRVWGTG RY 193 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence Ow ORF SEQ ID start stop MAEGLHLKGTMKAHTDVTAIAVPIDNADMIVTSSRDKSIILWHLTKEDKVYGV PRRRLTGHSHFVQDVVLSSDGQFALSGSWDGELRLWDLATGVSARRFVGHTKDV LSVAFSIDNRQIVSASRDRTIKLWNTLGECKYTIQEGEAHNDWVSCVRFSPNTL 328 WD40 repeat QPTIVSASWDRTVKVWNLTNCKLRNTLQGHSGYVNTVAVSPDGSLCASGGKDGV 90 1073 protein ILLWDLAEGKKLYSLEAGAIIHSLCFSPNRYWLCAATENSIKIWDLESKSIVED LRVDLKNEADMSDGTTGAMSSNKKVIYCTSLNWSADGSTLFSGYNDGVIRVWGI GRY AEGLHLKGTMKAMTDMV'TAIAVPIDNADMIVTSSRDKSIILWHLTKEDKVYGV PRRRLTGHSHFVQDVVLSSDGQFALSGSWDGELRLWDLATGVSARRFVGHTKDV LSVAFSIDNRQIVSASRDRTIKLWNTLGECKYTIQEGEAHNDWVSCVRFSPNTL 329 WD40 repeat PTIVSASWDRTVKVWNLTNCKLRNTLQGHSGYVNTVAVSPDGSLCASGGKDGV 66 1049 protein ILLWDLAEGKKLYSLEAGAIIHSLCFSPNRYWLCAATENSIKIWDLESKSIVED LRVDLKNEADMSDGTTGAMSSNKKVIYCTSLNWSADGSTLFSGYNDGVIRVWGI GRY MSGVPAPPFATTTPENGTMSSNSPAFHRDSDDDDDOGEVFLDDSDIIHEVAVDD EDLPDADDEADEAEEADDSLHIFTGHNGEVYSLACSPTDATLVATGAGDDKGFL WRIGHGDWAVELQGHKDSISSLAFSLDGQLLASGSLDGVIQIWDVPSGNLKGTL WD40 repeat DGPGGGIEWIRWHPKGHIILAGSEDSTVWMWNADKMAYLNMFSGHGNSVTCGDF 277 1512 protein TPDGKTICTGSDDATLRIWNPKSGENIHVVKGHPYHAEGLTSMAISSDSGLAIT GAKDGSVRIVNISSGRVVSSLDAHADSVEFVGLALSS PWAATGSLDQKLIIWDL QHSSPRATCDHEDGVTCLSWVGASRFLASGCVDGKVRVWDSLSGDCVRTFHGHS DAIQSLSVSANEEFLVSVSIDGTARVFEIAEFH 4GTSOHOLSSCLOLLPRRRGNKNLIFRRTMASGGAAAVAPPPGYKPYRHLKTLT GHVAAVSCVKFSNDGTLLASASLDKTLIIWSSAALSLLHRLVGHSEGVSDLAWS SDSHYICSASDDRTLRIWSSRSPFDCLKTLRGHTDFVFCVNFNPQSSLIVSGSF 331 WD40 repeat DETIRIWEVKTGRCLNVIRAHSMPVTSVHFNRDGSLIVSGSHDGSCKIWDTKNG 33 1076 protein ACLKTLIDDTVPAVSFAKFSPNGKFILVATLNDTLKLWNYATGKFLKIYTGHKN SVYCLTSTFSVTNGKYIVSGSEDRCICIWDLQGKNLI QKLEGHSDTVISVTCHP SENKIASAGLDSDRTVRIWLQDA MPSQKIETGHQDIVHDVAMDYYGKRVATASSDTTIKI IGVSNSSGSQHLASLSG HKGPVWQVAWAHPKFGSILASCSYDGQVILWKEGNQNDWAQAHVFNDHKSSVNS WD40 repeat IAWAPHELGLCLACGSSDGNISVFTARPDGGWDTTRIEQAHPVGVTSVSWAPSM 65 973 protein APGALVGSGLLDPVQKLASGGCDNTVKVWKLYNGTWKMDCFPALQMHSDWVRDV AWAPNLGLPKSTIASASODGTVVIWTVAKEGEQWQGKVLKDFKTPVWRVSWSLT GNLLAVADGNNNVTLWNEAVDGEWQQVTTVEP MKIAGLKSVENAHDESVWAAAWVPATESRPALLLTGSLDETVKLWRPDELALER TNAGHFLGVVSVAAHPSGVIAASASIDSFVRVFDVDTNATIATLEAPPSEVWQM 0WD40 repeat QFDPKGTTLAVAGGGSASIKLWDTATWELNATLSIPRPEQPKPSEKGNKKFVLS 82 1047 protein VAWSPDGRRLACGSMDGTISIFDVARAKFLHHLEGHFMPVRSLVFSPVEPRLLF SASDDAHVHMYDSEGKSLVGSMSGHASWVLSVDVSP DGAALATGSSDRTVRLWD LSMRAAVQTMSNHSDQVWGVAFRPMAGAGVRAGGRLASVSDDKSISLYDYS 194 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MEIDLGNLAFDVDFHPSEQLVASGLITGDLLLYRYGDGSSPEKLLEVRAHGESC RAVRFINDGKAILTGSPDCSILATDVETGSVVARVENAHEAAVNRLVNLTESTI ATGDDNGCIKVWDTRQRSCCNTFSAHEDFISDMTFASDSMKLVVTSGDGTLSVC 334 WD40 repeat NLRSNKVQTRSEFSEDELLSVVIMKNGRKVVCGTQSGTLLLYSWGFFKDCSDRF 43 1101 protein VDLSPSSVDALLKLDEDRIIAGTENGLISLIGILPNRIIQPIAEHSDHPIERLA FSHDKKFLGSISHDQTLKLWDLNDILGSEDSPSSQAAIDDSDSDEMDVDANPPD SSKGNKKKHSGKGNDVGNANNFFADLGD MSQQPSVILATASYDHTIRFWEAKSGRCYRTIQYPDSQVNRLEITPHKRYLAVA GNPSIRLFDVNSNTPQPVMSFDSHTNNVMAVGFQYDGNWMYSGSEDGTVRIWDL WD40 repeat RARGCQREYESRGAVNTVVLHPNOTELISGDQNGNIRVWDLTANSCSCELVPEV 142 1095 protein DTAVRSLTVMWDGSLVVAANNNGTCYVWRLLRGSQTMTNFEPLHKLQAHNGYIL KCLLSPEFCEPHRYLATASSDHTVKIWNVEGFTLEKTLIGHQRWVWDCVFSVDG AYLITASSDTTARLWSMSTGQDIRVYQGHHKATTCCALHDGAEGSPG MEDAMDMEVEVEVEAEEHSPSSSNPSGSSFRRFGLKNSIQTNFGSDYVFEITPK FDWSLMGVSLSSNAVKLYSPTTGQYCGECRGHSDTVNGISFSGPSSPHVLHSCS SDGTIRAWDTRSFKEVSCISAGPSQEIFSFSFGGSSDSLLSAGCKSQILFWDWR 336 WD40 repeat NKKQVACLEDSHVDDVTQVCFVPHHQNKLISASVDGLICIFDTAGDINDDEHME 61 1257 protein SVINVGTSIGKVGIFGQTFEKLWCLTHIETLSVWDWKEGTNEANFEDARKLASD SWSLDHIDYFVDCHSAEEGEGLWVIGGTNAGTLGYFPVKYKGGAAIGSPEAVLG GGHSDVVRSVLPMSGMAGTTSKTRGIFGWTGGEDGRLCCWLSDDSSATSRSWMS SNLVLKSSRSHHKKNRHQPY MSQHQEYPMEYAADDYDVGEVEDDMYFHERVMGDSDTDEDEEYDHLDNKITDTS AADARRGKDIQGIPWERLSVTREKYRRTRIEQYKNYENVPQSGESSEKDCKPTR KGGNYYEFWRNTRSVKSTILHFQLRNLVWSTTKHDVYLMSHFSIIHWSSLTCKK TEVLDVYGHVAPREKHPGSLLEGFTQTQVSTLAVRDKLLIAGGFQGELICKNLD 337 WD40 repeat RPGVSYCCRTTYDDNAITNAVEIYDYPSGAVHFMASNNDCGVRDFDMEKFELSR 193 1527 protein HFTFPWPVNHTSLSPDGKLLVIVGDNPEGIVVDSQRGKTIRPLQGHLDFSFASA WHPDGHIFATGNQDKTCRIWDIRNLSKSVAVLKGNLGAIRSIRFTSDGRFMAMA EPADFVHVYDVKSGYEKEQEIDFFGEISGVSFSPDTESLFVGVWDRTYGSLLQY NRCRNYSYLDSM MGASSDPNPDVSDEHQKRSEIYTYEAPWHIYAMNWSVRRDKKYRLAIASLLDHP AAAAAVPNRVEIVQLDDSTGEIRADPNLSFDHPYPATKAAFVPDKDCQRADLLA TSSDFLRIWRIADDSSRVDLRSFLNGNKNSEFCRPLTSFDWNEAEPKRIGTSSI 338 WD4 rpe DTTCTIWDIERETVDTQLIAHDKEVYDIAWGGVSVFASVSADGSVRVFDLRDKE 109 1155 protein HSTIIYESSEPDTPLVRLGWNKQDPRYMATIIXMDSAKVVVLDIRYPTMPVVELQ RHQASVNAIAWAPHSSCHICTAGDDSOALIWDLSSMAQPVEGGLDPILAYTAGA EIEQLQWSSSQPDWVAIAFSLKLQ 195 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MRGGGGGGDATGWDEDAYRESVLKEREVQTRTVFRAAFAPSPSPSPSPDAVVVA SSDGSVASYSISACLSDHRLQSLRFADAKSQNVLEAEPACFLQGHDGPAYDVKF YGEGEDSLLLSCGDDGRIRGWMWRDITSSEAHDHSQGNSAKPVLDLVNPOSRGP 339 WD40 repeat WGALSPIPENNALAVDVKRGSIYAAAGDSCAYCWDVECGKIKTVFKGHSDYLHC 71 1213 protein IAARNSSSQIITGSEDGTARIWDCRSGKCVQVIDPDKDHKKGFFASVSCLALDA SESWLVCGRGRDLSVWSISASDCIAKISTNAPAQDVLFDDNQILLVGAE PLI SR LDMNGAVLSQIHCAPQSVFSVSLHQSGVTAVGGYGGLVDVISQFGSHLCTFRCK CI MEAPIIDPLQGDFPEVIEEYLEHGIMKCIAFNRRGTLLAAGCTDGSCIIWDFET RGVAKELRDRECTAAITSVCWSKYGHRILVSASDKSLILWDVLSGEKIAHTTLQ HTVLQACLHPGSSTPSICLACPFSSAPMIVDLNTGSTTALPVLTADVSNGATPL SRNKTSDTSVTYSPCNACFNKHGDLVYAGTSKGEILI IDHKNVRVCAIVLVSGG AVIKNVVFSRNGQYMLTNSNDRLIRIYKNLLPPKDGLKMLDELNESFNESDDVE 340 WD40 p KLKAIGSKCLELLHEFQDSITRVOWKAPCFSGDGEWVIGGAASRGEHKIYIWDR 109 1785 protein AGHLVKILEGPKEALMDLAWHPVHPIIISVSLTGLVYIWAKDYTENWSAFAPDF KELEENEEYVEREDEFDLVPETEKVKGLDVHEDDEVDVLTVERDSVFSDSDMSQ EELCFLPAVPCLDIPEQQDKCVGSCSKLPDGNHSGSPLSVEAGQNGNASNHNSS PLEPMENSTADDTDGVRLKRKRKPSEKGLELQAEKVKKPVKPLKSSGRLSKTNK PVIDPDSSNGVYGDDGSD MRGVSWPEDGNNPSTSSSSQRNQQQAHAPRAVSGHAASHPSASNIFKLLVQREV SPRSKHSSKKLWREASKCQPYPFQQSCEAVRDVRQGLI SWVESASLRHLSAKYC PLVPPPRSTIAAAFSPDGKILASTHGDHTVKLIDSQTGSCLKVLRGHRRTPWVV RFHPLYPEILASGSLDHEVRLWDANTAECIGSRNFYRIASIAFHARGELLAVA SGHKLYIWHYNRRGETSSPTIVLRTORSLRAVHFHPHAAPFLLTAEVNDLDSAD SAMTLATSPGYLHYPPPTVYFADAHSHERSRLADELPLMPLPLLMWPSFTRDDG RVPLQRIDGDVGLNGQQRVDSSSSVRLWTYSTPSGOYELLLSPVESGNSPSMPE 341 WD40 repeat ETGNNAFSSAVEAEVSQSAMDTVEDMEVQPEERNTOFFSFSDPRFWELPLLHGW 364 2685 protein LVGQTQAGPRSVRQSSPGDIETQSAFGEVASVSPITSGVMPVSMDPSRFGGRSG SRYRSPGSRGVHVTGPNNDGPRDENDPOSVVSKLRSELAASLAAAASTELPCTV KLRIWPHDVKDPCAQLDLESCRLTI PHAVLCSEMGAHFS PCGRFLAACVACVLP HLESDPGLHGQVNQDVTGVATSPTRHPISAHQIMYELRIYSLEEATFGIVLASR PVRAAHCLTSIQFSPTSEHLLLAYGRRHSSLLKSIVIDGENTVPIYTI LEVYRV SDMELVRVLPSAEDEVNVACFHPSVGGGLIYGTKEGKLRILHYDSSHGLNLKSS GFLDENVPEVOTYALEC MDSAVAIAALSLVVGAAIALLFFGNYFRKRRSEVVAMAEADLQPHPKNPSRPPP QPAAKKVHAKSHAHGADKDKNKRHHPLDLNTLKGHGDSVTGLCFASDGRSLATA CADGVVRVFKLDDASNKSFKFLRINLPAGGHPTAVAFGDGVSSVIVASQHLSGC SLYMYGEEKPTNLDSNKQQTKLPMPEIKWEHHKVHEQKAILTLSGAAANYDSGD 342 WD40 repeat GSTIIASCSEGTDIIIWAKTGKILGNVDTNQLKNTMSAISPNGRFIAAAAFTA 96 1412 protein DVKVWEIVYSKDGSVKGVTKVMQLKGHKSAVTWLCFTPNSEQIVTASKDGSIRI WNINVRYHLDEDTKTLKVFPIPLODSSGTTLHYERLSLSPDGKILAATHGSMLQ WLCIETGKVLDTAEKAHDGDITCMSWAPQSIPTGDKKVNVLATASGDKKVKLWA APPLPS 196 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MEVEPKKASKTFPVKPKLKPKPRTPSGKTPESKYWSSFKTTHPLDNLSFSVPSL AFSPSPPHLLAAAHSATVSLFSPHRTTISSFSDVVSSLSFRSDGQLLAASDLSG LIQVFDVRSRTPLRRLRSHARPVRFVRYPVLDKLHLVSGGDDALVKYWDVAGES VVSELRGHKDYVRCGDCSPADANCFVTGSYDHVVKLWDVRVRDGNRAATEVNHG WD40 repeat SPVQDVIFLPSGSLVATAGGNSVKIWDLIGGGRMVYSMESHNTVTSICVGTMG 116 1702 protein AQQSGEEGVQLRI LSVGLDGYMKVFDYSRMKVTHSMRFPAPLLS IGFS PDSNVR AIGTSNGILYVGKRKAKENAEGGANGILGLGSVEEPRRRVLKPSFYRYFHRGQS EKPSEGDYLVMRPKKVKLAEHDKLLKKFQHKNALISVLGGNDPEKVVAVMEELV ARRALLKCVLNLDADELGLILTFLHKNSTVPRYSSLLLGLAKKVIDLRLEDIPA SDALKGHIRNLKRSVDEEIRIQEGLQEIQGMVSPLLRIAGRR MQGGSSGVGYGLKYQARCISDVKADTDHTSFLTGTLSLKEENEVHLLRLSSGGT ELICEGLFSHPSEIWDLSSCPFDQRIFSTVFSTGESYGAAVWQI PElYGQLNSP QLEKIASLDAHSRKISCVLWWPSGRHDKLVSIDEENIFLWGLDCSKKSAQVQSQ 344 WD40 repeat ESAGMLHNLSGGAWDPHDVNTVAATCESSIQFWDLRTMKKANSLESVRARDLDY 46 1101 protein DMRKKHLLVTSEDESGVRVWDLRMPKAPIQEFPGHTHWTWAVRCNPDYEGLILS AGTDSAVNLWWSSTASSDELISERLIDSPTRKLDPLLHSYNDYEDSVYGLAWSS REPWIFASLSYDGRVVVESVKPFLSRK MAEEEGSAELEQQLEEEFAVWKKNTPILYDLLISHALEWPSLTVHWAPLLPQPS SSAAAAAGDPSLAAHRLVLGTHTSDGAPNFLILADALLPSSESDHCGDDAVLPK VEISQKIRVDGEVNRARFMPQNHNIVGAKTNGCEVYVFDCSKQAAKOHDGGFDP WD40 repeat DLRLTGHDGEGYGLSWSPLKENYLLSASHDKKICLWDISAAAQDKVLGAMHVFE 23 1258 protein AHEGAVGDASWHSKNDNLFGSAGDDCQLMIWDLRTNKAQQCVKAHE:KEVNSVSF NSYNDWILATASSDTTVGLFDMRKLTTPLHVFSSHEGEVLQVEWDPNHEAVLAS SSEDRRVMVWDLNRIGDEQQEGDASDGPAELLFSHGGHKAKISDFSWNKNEPWV ISSVAEDNSVQVWQMAESICGDDDDMQAMEGYI MGNYGEEDEDQYFDALEETASVSDRGSNSSDCCSSGSGLDENVLDSLGFEFWTK FPESVRARRNRFLMLTGLGIEANSVDKEDAFPPSCNEIEVYTCKVTRDDGAVQR SLDSYNCI SLLQSSTSIRSNQEVESLRGDSLLSSFRGRSKESDDLTELCGMGCP ESKRNAVSEFGSVSQGSIEELRRIVASSPLVHPLLHRKLEYERELIETKQKMGA GWLRKFGSATCISGRQGDTWSDPDDLEITAGMKMRRVRAHSSKKKYKELSSLYA AQEFLAHEGSISTMKFSMDGQYLASAGEDTVVRVWKVTEEDRSERVNVTVDPSC WD40 repeat LYFALNESTQLASLNTNKEHIGKAKTFQRSSDSSCVILPLKVFQITEKPWHEFK 404 2644 346 protein GHNGEVLDLSWSSKGYLLSSSTDKTVRLWRVGCDRCQRVYSNDYVTCISFNPV NENFFISGSIDGKVRIWNVFGGQVVAYIDCREIVSAVCYRSDGKGAIVGTMTGN CLFYSIKDNHLQMDAQVYLHGKKKSPGKRITGFQFPPNDPGKLMITSADSVIRV LSGLDVVCKLKGPRNSGGPMIATFTSDGKHVI SASEDSNVYIWNYAGQDKTSSR VKKIWSCESFWSSASVALPWCGIRTVPEALAPPSRSEERRASCAENGENHHML EEYFQKMPPYSPDCFSLSRGFFLELLPKGSATWPEEKLSDTSPPTVSSQAI SKI EYKFLKSACHSVLSSAHMWGLVIVTAGWDGRIRTYHNYGLPVRS 197 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MDIDFKEYRLRCELRGHEDDVRGVCVCGDGSIGTSSRDRTVRLWAPSAGERRKY EVARVLLGHKSFVGPLAWVPPSEELPEGGIVSGGMDTLVMAWDLRNGEAQTLKG HQLQVTGIVLDGGDIVSASVDCTLIRWKNGQLTEHWEAHKAPIQAVIRLPSGEL VTGSSDTTLKLWRGKTCTTFVGHTDTVRGLAVMPDLGILSASHDGSIRLWAVS GECLMEMVDHTSIVYSVDSHASGLIVSGSEDRAKIWKDGVCFQSIEHPGCVWD VKFLEDGDIVTACSDGTIRIWTNQEDRANSTELELFDLELSSYKRSRKRVGGL KLEELPGLEALQVPGTSDGQTKVIREGDNGVAYAWNSTELKWDKIGEVVDGPED 347 W4 repeat SMNRPALDGVQYDYVFDVDIGDGEPTRKLPYNRSDNPYDTADKWLLKENLPLSY 107 2383 protein RQQIVEFILANSGQRDFNLDPSFRDPYTGSSAYVPGAPSQLAAKQARPTFKHIP KKGMLVFDAAQFDGILKKINEFNNTLLSNQEKKNLSLTDIEISRLGAVVKILKD TSHYHSSKFADADFDLMLKLLESWPYEMMFPVIDI FRMVILHPDGADGLLRHQE DKKDVLMESIKRATGNPSVPANFLTSIRAVTNLFKNSAYYSWLQKHRSEMLDAF SSCSSSSNKNLQLSYATLLLNYAVLLIEKKDEEGQSQVLSAALELAENESLEVD ARYl\ALVAIGSLMLDGLVKRIALDFDVEHIAKAARTSKEAKIAEVGADIELLIK QS MEFTEAYKQSGPCCFSPNARFIAVAVDYRLVIRDTLSLKVVQLFSCLDKISYIE WALDSEYILCGLYKRPMIQAWSLIQPEWTCKIDEGPAGIAYARWSPDSRHILTT SDFQLRLTVWSLVNTACVHVQWPKHASKGVSFTRDGKFAAICTRHDCKDYINLL SCHNWEIMGVFAVDTLDLADIQWSPDDSAIVIWDSPLEYKVLVYSPDGRCLFKY 348 WD40 repeat QAYESGLGVKSVSWSPCGQFLAVGSYDQMLRVLSHLTWKTFAEFTHLSNVRAPC 243 1625 protein CAAIFKEVDEPLQIDMSELSLSDDYMQGNSGDAPEGHYRVRYDVTEVPITLPCQ KPPADRPNPKQGIGLMSWSNDSOYICTRNDSMPTILWIWDMRHLELAAILVQKD PIRAAVWDPTGTRLVLCTGSSHLYMWTPSGAYCVSVPLSQFNITDLKWNSDGSC LLLKDKESFCCAAAPLPPDESSDYSSDD MATIAALDDDMVRSMSIGAVFSDFVGKLNSLDFHRKDDILVTAGEDDSVRLYDI ANARLLKTTFHKKHGTDRVCFTHHPNSLICSSTKNLDTGESLRYISMYDNRSLR YFKGHKQRVVSLCMSPINDSFMSGSLDHSVRMWDLRVNACQGILRLRGRPTVAY 349 WD40 repeat DQQGLVFAVAMEGGAIKLFDSRSYDKGPFDAFLVGGDTSEVCDIKFSNDGKSVL 126 1122 protein LSTTNNNIYVLDAYAGDKQCGFNLEPSPSTPIEASFSPDGQYVVSGSGDGTLHA WNISRRNEVACWNSHIGVASCLKWAPRRAMFVAASTVLTFWIPNSEPELASAKG EAGVPPEQV MSVAELKERHRAATETVNSLRERLKQKRVQLLDTDVAGYARTQGKTPVTFGATD LVCCRTLQGHTGKVYSLDWTPERNRIVSVSQDGRFIVWNALTSQKTHAIRLPCA WVMTCAFAPNGQSVACGGLDSVCSI FNLNSPVDRDGNLPVSRMLSGHKGYVSSC 350 WD40 repeat QYVFDGDAHLITGSGDQTCVLWDITTGLRTSVFGGEFOSGHTADVLSVSINGSS 257 1390 protein PRIFVSGSCDSTARMWDTRVASRAVRTYHGHEGDVNAVKFFPDGNRFGTGSDDG TCRLFDIRTGHELQVYYQQRGIDEIPHVTSIAFSISGRLLIAGYSNGDCFVWDT LLAQVVLNLGSLQNSHEGRISCLGVSADGSALCTGSWDTNLKIWAFGGIRRVT 198 WO 2005/065339 PCTUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF start stop MKKRPRGASLDQAVVDIRRREVGGLSGLSFARRLAASEGLVLRLDIYNKLKGHR GCVNTVGFNLDGDIVISGSDDRHVKLWDWQTGKVKLSFDSGHLSNVFQAKIMPY TDDRSIVTCAADGQARHAQILEGGQVQTMLLAKHRGRAHKLAIDPGSPHIVYTC GEDGLVQRLDLRSNTARELFTCREVYGTHVEVVHLNAIAIDPRNPNLFVIGGSD 351 WD40 repeat EYARVYDIRNYKWNGSHNFGRSANYFCPSHLIGEAHVGITGLAFSGQSELLVSY 178 1632 protein NDESIYLFTQEMGLGPDPLSASTKSVDSNSSEVTSPTAVNVDDRVTPQVYKGHR NCETVKGVGFFGPKCEYVVSGSDCGRIFIWKKKGGQLIRVMAADKHVVNCIEPH PHIPALASSGIENDIKIWTPKAIERATLPMNVEQLKPKARGWMNRISSPRQLLL QLYSLERWPEHGGETSSGLAAGQEELTELFFALSANGNGSPDGGGDPSGPLL MSKRGYKLQEFVAHSSNVNCLSIGKKACRLFLTGGDDCKVNLWAIGKPNSLMSL CGHTNAVESVAFDSAEVLVLAGASSGVIKLWDVEEAKMVRGLTGHRSNCTAMEF HPFGEFFASGSTDTNLKIWDIRKKGCIHTYKGHTRGISTIRFSPDGRWVVSGGN DNVVKVWDLTAGKLLHDFKFHENHIRSIDFHPLEFLLATGSADRTVKFWDLETF ELIGSSRPEAAGVRAIAFHPDGRTLFCGLEDSLKVYSWEPVICHDGVDMGWSTL ADLCIHDGKLLGCSYYQSSVGVWVADASLIEPYGTNVKPQQKDSGDDEIEHQES RPSAKVGTTIRSTSIMRCASPDYETKDIKNIYVDTASGNPVSSQRVGTTNFAKV TQPLDFNDTPNLTLRRQGLVTETPDGLSGHVPSKSITQPKVVSRDSPDGKDSSR 352 WD40 repeat RESITFSRTKPGMLLRPAHSRRPSSTKYDVDRLSACAEIGVLSSAKSGSESLVD 290 2917 protein SFLNIKVAPEDGARNGCEDNHSSVKNVSVESEKVLPLQTPKTEKCDQTVGFKEE INSVKFVNGVAVVPGRTRTLVEKFEKREKLNSTEDQTINTPENPTLDKTPPPSL AENEEKSDRLNIVERKATRMSSHMVTAEDRTPVTLVGSPEDQSTVMAPQRELPA DESSKTPPLPVEDLEIHHGSNVSEDKATILSSQTVSEEDSKRSTLIRNFRRRDR FKSTEGRSPVMATQRKLPTDESGKTSSLPMEDLEIKGGLNVSEDKATSFSSRAP PREDRAHSALVRNVRKRDKFKSTNDTITVMVHQRGLSTDEASTVSVERVERRQL SNNVENPLNNLPPHSVPPTTTRGEPQYVGSESDSVNHEDVTELLLGNHEVFLST LRSRLTKLQVV MSTFLTGTALSNPNPNKSYEVVQPPNDSVSSLSFNPKANFLVATSWDNQVRCWE IVRSGTSLGTTPKASISHDQPVLCSTWKDDGTTVFSGGCDKQVKMWPLSGGQPM TVAMHDAPIKEISWIPEMNLLVTGSWDKTLRYWDTRQANPVHIQQLPERCYALT 353 WD40 repeat VRHPLMVVGTADRNLIIYNLQSPQTEFKRISSPLKYQTRCLAAFPDQQGFLVGS 148 1197 protein IEGRVGVHHLDDSQQSKNFTFKCHREGSEIYSVNSLNFHPVHHTFATAGSDGAF NFWDKDSKQRLKAMSRCSQPIPCSTFNNDGSIFAYSACYDWSKGAENHNPATAK TYIFLHLPQESEVKGKPRLGTTGRK MEVEAQQRDVNNVMCQLVDPEGTTLGPPMYLPQDVGPQQLQQMVNKLLSNEDKL PYTFYISDQELVVPLESYLQKNKVSVEKVLSIVYQPQAIFRIRPVNRCSATIAG HSEAVLSVAFSPDGKQLASGSGDTTVRLWDLSTQTPMFTCKGHKNWVLSIAWSP DGKHLVSGSKAGEIQCWDPLTGOPSGNPLVGHKKWITGISWEPVHLSSPCRRFV 354 WD40 repeat SSSKDGDARIWDVTLRRCVICLSGHTLAVTCVKWGGDGVIYTGSQDCTIKVWET 140 1567 protein SQGKLIRELKGHGHWVNSLALSTEYVLRTGAFDHTGKQYSSAEEMKQVALERYK KMKGNAPERLVSGSDDFTMFLWEPSVSKHPKTRMTGHQQLVNHVYFSPDGQWVA SASFDKSVKLWNGITGKFVAAFRGHVGPVYQISWSADSRLLLSGSKDSTLKIWD IRTKKLKRDLPGHADEVFAVDWSPDGEKVVSGGKDKVLKLWMG 199 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDS Sequence ORF ORF SEQ ID start stop MDAGSAHSSSNMKTQSRSPLQEQFLQRRNSRENLDRFIPNRSAMDFDYAHYMLT EGRKGKENPAVSSPSREAYRKQLAETLNMNRTRILAFKNKPPTPVELI PHELTS AQPAKPTKTRRYIPQTSERTLDAPDLLDDYYLNLLDWGSSNVLSIALGNTVYLW NASDGSTSELVTIDDETGPVTSVSWAPDGRHIAVGLNNSDVQLWDSADNRLLRT 355 WD40 repeat LRGGHRSRVGSLAWNNHILTTGGMDGLIVNNDVRVRSEIVDTYRGHTQEVCGLK 376 1737 protein WSASGQQLASGGNDNILHIWDRSTASSNSPTQWLHRLEEHTAAVKALAWCPFQG NLLASGGGGGDRTIKFWNTHTGACLNSVDTGSQVCALLWNKNERELLSSHGFTQ NQLTLWKYPSMVKIAELTGHTSRVLFMAQSPDGCTVASAAGDETLRFWNVFGVP EVAKPAPKANPEPFAHLNRIR MEEAIPFKNLPSREYQGHKKKVHSVAWNCTGTKLASGSVDQTARVWHIEPHGHG KVKDIELKGHTDSVDQLCWDPKHADLIATASGDKTVRLWDARSGKCSQQAELSG 356 WD40 repeat ENINITYKPDGTHVAVGNRDDELTILDVRKFKPIHKRKFNYEVNEIAWNMSGEM 69 1010 protein FFLTTGNGTVEVLAYPSLRPVDTLMAHTAGCYCIAIDPVGRYFAVGSADSLVSL WDI SEMLCVRTFTKLEWPVRTISFNHTGDYVASASEDLFI DISNVQTGRTVHQI PCRAAMNSVEWNPKYNLLAYAGDDKNKYQADEGVFRIFGFESA MGKDEEEMRGEIEERLINEEYKVWKKNTPFLYDLVITHALEWPSLTVEWLPDRE EPPGKDYSVQKLVLGTHTSENEPNYLMLAQVQLPLEDAENDARHYDDDRADVGG FGCANGKVQI IQQINHDGEVNRARYMPONSFIIATKTVSAEVYVFDYSKHPSKP WD40 repeat PLDGACSPDLRLRGHSTEGYGLSWSKFKQGHLLSGSDDAQICLWDINATPKNKS 149 1423 protein LDAMQIFKVHEGVVEDVAWHLRHEYLFGSVGDDYLLIWDLRTPSVTKPVQSVV AHQSEVNCLAFNPFNEWVVATGSTDKTVKLFDLRKISTALHTFDAHKEEVFQVG WNPKNETILASCCLGRRLMVWDLSRIDEEQTPEDAEDGPPELLFIHGGHTSKIS DFSWNTCEDWVVASVAEDNILQIWQMAENIYHDEDDVPGEESNKGS MMRGFSCTEDGDAPSTSSTSPPPPPPPPHRQQMQAPRASSSSSGQPTSRRSTGN VFKLLARREVSPRSKHSLKKFWGEASECQLCPFQQSYEAVRDVRRSLI SWVEAF SLQHLSAKYCPLMPPPRSTIAAAFSPDGKILASTHGDHTVKLIDSQTGSCLKVL RGHRRTPWVVRFHPLYPEILASGSLDHEVHLWDANTAECIGSRNFYRPIASIAF HAQGDLLAVASGHKLYIWHYNRSGETSSPTIVLRTPRSLRAVHFHPHAAPFLLT AEVNDLDLTDSAMTLATSPGYLHYPPPTIYLADAHSNERSRLEDELPLMPSPLL MWPSFTRDDGRATLPHIGGDVGLSGQQRVDSLSSGQYEFHPSPIEPSSSTSMHE 356 WD40 repeat EMGTDPFSSVRESEVTQSAMNIVDNTEVQPEERSTYSFSFSDPRFWELPSVYGW 365 2677 protein LVGQTQAAPRTAPSPGALETASALGEVASVSPVRSEFMPGGMDQPRLGGRSGSG CRSSGSRMMRTAGLNDHPHDENYPOSVVSKLRSELEASLAAASTELPCTVKLR VWPYDMKDPCALFRSESCRLTI PHAVLCSEMGAHFSPCGRFFAACVACVLPQLE ADPVLHGVDPDVTGVATSPTRHPVSAYQIMYELRIYSLEEATFGMVLASRSIR AAHCLTSIQFSPTSEHLLLAYGRRHNSLLKSIVIDGENTVPIYSILEVYRVSDM ELVRVLPSAEDEVNVACFHPSVGGGLVYGTKEGKLRILOIDSSGGLNPKSTGFL DENMAEVPTYALEC 200 WO 2005/065339 PCTUJS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MGEGDLPRTEAGVLRGHEGAVLAARFNGDGNYCLSCGKDRTIRLWNPHRGIHIK TYKSHGREVRDVHCTSDNSKLISCGGDRQIFYWDVSTGRVIRRFRGHDSEVNAV WD40 repeat KFNDYASVVVSAGYDRSVRAWDCRSHSTEPIQIINTFQDSVMSVCLTKTEIIGG 2 4 923 protein SVDGTVRTFDIRIGREISDDLGQPVNCISMSNDGNCILASCLDSTLRLVDRSAG ELLQEYKGHTCKSYKLDCCLTNTDAHVAGGSEDGYVFFWDLVDASVISKFRAHS SVVTSVSYHPKEDCMITASVDGTIKVWKT MACIKGVGRSASVAMAPDGGYLATGTMAGTVDLSFSSSASLEIFGLDFQSDDRD LPLIAESPSSERFNRLSWGKNGSGSDEFSLGLIAGGLVDGTIGLWNPLSLIRSE AGDKAIVGHLSRHKGPVRGLEFNVIAPNLLASGADDGEICIWDLAAPREPSHFP PLRGSGSAAQGEISFLSWNSKVQHILASTSYNGTTVVWDLKKOKPVISFSDSVR RRCSVLQWNPDLATQLVVASDEDSSPTLRLWDMRNIMSPVKEFAGHTRGVIAMS WCPNDSSYLVTCAKDNRTICWDTVTGEIVCELPAGSNWNFDVHWYPKIPGVISA SSFDGKIGIYNVEGCSRYGVRENEFGAATLRAPKWFKRPVGASFGFGGKVVSFH TRSTGGPSVNSSEVFVHDIITEQTLVSRSSEFEAAIQSGDRPSLRALCEKKSQH CESTDDQETWGFLKVLLEDDGTARSKLLAHLGFDIPTETNDGSQEDLSQQVNAL GLEDVTADKVVQEDNNESMVFPTDNGEDFFNNLPSPRADTPVSTSADGFPTVNA 360 WD40 repeat AVEPSODEVDGLEESSDPSFDDSVQRALVVGDYKAAVALCMSANKLADALVIAH 221 3598 protein VGGASLWESTRDKYLKMSRLPYLKVVFAMVNNDLOSLVDTRPLKFWKETLAILC SFAQGEEWAMLCNSLASKLMAAGNMLAATLCFICAGNIDKTVEIWSRSLATEHD GMSYMDLLDLMEKTIVLALASGQKQFSASVCKLVEKYAEILASOGLLTTAMDY LKLLGTDDLSPELAVLRDRIAFSVEAEKGANISAFNGSQDPRGAVYGVDQSNYG MVDTSQHYYPEAAQPOVPHTVPGSPYGENYQQPFGSSFGKGYNTPMQYQAPSOA SMFVPSEPPQNAQPSFVPTPVTSQPTTRSQFIPAPPLALRNPEQYQQPTLGSHL YPGSVNPTFQPLPHAPGPVAPVPPQVSSVPGQNMPOAVAPTOMRGFMPVTNPGV VQNPGPISMQPATPIESAAAQPVVSPAAPPPTVQTADTSNVPAPQKPVIATLTR LYNETSEALGGSRANPAKKREIEDNSRKIGALFAKLNSGDISKNAADKLVQLCQ ALDNGDYSTALQIQVLLTTSEWDECNFWLATLKRMIKTRQNVRLS MKERGKGAGRSVDERYTQWKSLVPVLYDWLANHNLVWPSLSCRWGPQLEQATYK NRORLYLSEQTDGSVPNTLVIANVEVVKPRVAAAEHISQFNEEARSPFVKKFKT IIHPGEVNRIRELPQNSKIVATHTDSPDVLIWDVETQPNRHAVLGASTSRPDLI LTGHKDNAEFALAMSPTEPFVLSGGKDRYVVLWSIQDHISTLAADPGSAKSPGS 361 WD40 repeat AGTNNKQSSKAAGGNDKTGDSPSIEPRGVYLGHGDTVEDVTFCPSSAQEFCSVG 44 1447 protein DDSCLILWDARTGSSPAIKVEKAHRADLHCVDWNPHDVNLILTGSADNTVRMFD RRNLTSGGVGSPVHTFEGHNAAVLCVQWSPDKSSVFGSSAEDGILNIWDHEKIG RKIETVGSKVPNSPPGLFFRHAGHRDKVVDFHWNSSDPWTIVSVSDDGESTGGG GTLQIWRMIDLIYRPEEEVLAELDKFKSHILSCTS MAKIAPGCEPVAGTLTPSKKREYRVTNRLQEGKRPLYAVVFNFIDSRYFNVFAT VGGNRVTVYQCLEGGVIAVLQSYIDEDKDESFYTVSWACNIDRTPFVVAGGING IIRVIDAGNEKIHRSFVGHGDSINEIRTQPLNPSLIVSASKDESVRLWNVHTGI 362 WD40 repeat CILIFAGAGGHRNEVLSVDFHPSDKYRIASCGMDNTVKIWSMKEFWTYVEKSFT 196 1314 protein WTDLPSKFPTKYVQFPVFIAPVHSNYVDCNRWLGDFVLSKSVDNEIVLWEPKMIK EQSPGEGSVDILQKYPVPECDIWFIKFSCDFHYHSIAIGNREGKIYVWELQSSP PVLIAKLSHPQSKSPIRQTAMSFDGSTILSCCEDGTIWRWDAITASTS 201 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ I start stop MNTAMHFGAGWRSIAEMGYTMSRLEIEPESCEDEKSLDGVGNSQGPNELPRdLD HELAHLTNLKSRPHEHLIRDFPGRRALPVSTVKMLAGRECNYSRRGRFSSADCC HMLSRYVPVNGPSPLDQMNSRAYVSQFSADCSLFVAGFQGSHIRIYNVDKGWKC QKNILTKSLRWTITDTSLSPDQRYLVYASMSPIVHIVDIGSAAMDSLANITEIH WD40 repeat EGLDFSADSGPYSFGIFSVKFSTDGREVVAGSSDDSIYVYDLVANKLSLRIPAH 193 1668 protein ESDVNTVCFADESGHIIYSGSDDTYCKVWDRRCLSARNKPAGVLMGHLEGITFI DSRGDGRYFISNGKDQTIKLWDIRKMGSDICRRGFRNFEWDYRWMDYPPRARDS KHPFDLSVATYKGHSVLRTLIRCYFSPVHSTGQKYIYTGSHDSCVYIYDVVTGA QVAALKHHKSPVRDCSWHPEYPMIVSSSWDGDIVKWEFFGNGETEIPAMKKRIR RRHLY MEPOPQAPKKRGRKPKPKEDKKEEQLHQPPPPPPPQQQAAPAPAPAATRSSTSG SAGGRDRRPQQQHAVDEKYARWKSLVPVLYDWLANHNLLWPSLSCRWGPOLEQA TYKNRQRLYISEQTDGSVPNTLVIANCEVVKPRVAAAEHVSQFNEEARSPFIRK YKTIIHPGEVNRVRELPQNPNIVATHTDSPDVLIWDVESQPNRHAVYGATASRP 364 WD40 repeat NLILTGHQENAEFALAMCPAEPFVLSGGKDKTVVLWSIDHITASATDQTTNKS 78 1634 protein PGSGGSIIKKTGEGNEETGNGPSVGPRGIYCGHEDTVEDVAFCPSTAQEFCSVG DDSCLILWDARVGTNPVAKVEKAHNGDLHCVDWNPHDNNLILTGSADNSVNMFD RRNLTSNGVGSPVYKFEGHKAAVLCVQWSPDKPSVFGSSAEDGLLNIWDYERVD KKVDRAPNAPAGLFFQHAGHRDKIVDFHWNAADPWTMVSVSDDCDTAGGGGTLQ IWRMSDLIYRPEEEVLAELENFKAHVLECSKA MGIFEPYRAVGYITTGVPFSVQRLGTETFVTVSVGKAFQVYNCAKLSLVLVGPQ LPKKIRALASYREYTFAAYGSDIGIFKRAHQLATWSGHTAKVCLLLLFGEHILS VDVDGNAYIWAFKGMNYNLSPVGHILLDSNFTPSCIMHPDTYLNKVILGSQEGP LQLWNISTKTKLYEFKGWNSSVSSCVSSPALDVVAVGCADGKIHVHNIRYDEEL VTFSHSMRGSVTALSFSTDGQPLLASGSSSGVVSIWNLDKRRLQSVIRDAHDGS IISLHFFANEPVLMSSSADNSIKMWIFDTSDGDPRLLRFRSGHSAPPLCIRFYA NGRHILSAGQDRAFRLFSVVQDQQSRELSORHVSKRAKKLKLKEEEIKLKPVIA FDVAEIRERDWCNVVTSHMDTPQAYVWRLQNFVIGEHILRPCPNKPTPVKACMI 365 WD40 repeat SACGNFAILGTAGGWIERFNLQSGISRGSYIDQLEGTNSAHDGEVVGVACDATN 85 2826 protein TLMISAGYAGDIKVWDFKGRELKSRWEIGSSLVKISYHRLNGLLATVADDFIIR LFDAVALRMVRKFEGHTDRITDLCFSEDGKWLLSSSMDGSLRIWDIILARQVDA VFVDVSITALSLSPNMDILATTHVDQNGVFLWVNQSMFSGDSDINLYASGKEVV TVKLPSVSSVEGSQVEESNEPTIRHSESKDVPSFRPSLEQIPDLVTLSLLPKSQ WQSLINLDIIKVRNKPVEPPKKPEKAPFFLPSIPSLSGEILFKPSEMSDKGDMK ADEDKSKITPEVPSSRFLQLLHSCSEAKNFSPFTTYIKGLSPSTLDLELRMLQI IDDDAVDADADDPQDVDKRQELLSIELLMDYFIHEISCRSNFEFVQALVRLFLK IHGETIRRQSVLONKAKVLLETQCSVWQRVDKLFQGARCMVAFLSNSQF 202 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MEETKVTCGSWIRRPENVNLAVLGRSPRRRGSAALEIFAFDPKSTSLSSSPLVA HVIEEIEGDPLAIAVHPNGEDIVCFASSGSCLSFELSGQESNLKLLTKELPPLR GIGPOKCMAFSVDGSRFATGGVDGRLRILEWPSLRIILDEPKAHKSIRDLDFSL WD40 repeat DSEFLATTSTDGSARIWKAEDGLPCTTLTRRSDEKIELCRFSKDGTKPFLFCTV 366 74 1246 protein QRGDKAVTGVWDISTWNKIGHKRLLRKPAVVMSISLDGKYLAQGSKDGDMCVVE VKKMEVSHWSKRLHLGTSLTSLEFCPIERVVITTSDEWGVLVTKLNVPADWKAW QVYLLLLGLFLASLVAFYIFYENSDSFWGFPLGKDQPARPKIGSVLGDPKSADD QNMWGEFGPLDM MADPVEHQHQQHQQHQLQQQRRRGWRIQGGQYLGEISALCFLHLPPPPLSLSSS PVLSLSSGLDSESRDRPACSFRFPSAGSGSQVSLFDLASGAMVRTFYVFRGIRV HGIVLGCADFPGGSSSSSSTLDYVIAVYGERRVKLFRLSVRLGRGAGEGSGTVL SADLELVSAAPRLSHWVMDVRFLKENGTSEDELQRCLTVAIGCSDNSIRLWDVD KCSFVLAVSSPERCLLYSMRLWGDNLEDLQVASGTIYNEILIWKVVPNHDAPSS NELTEEGLTNSCAGNSVHECLRYEAYHICRLVGHEGSIFRIAWSSDGSKLVSVS DDRSARIWEVHCKVQYSEDAGEVGLLFGHSARVWDCYISDNLIVTAGEDCSCRV WGLDGOQHDVIKEHIGRGIWRCLYDPWSSLLVTGGFDSAIKVHKLDASLAEASA KQSNIKDLSDGTELFTTHLPNSSGHSGHMDSKSEYVRCLSFSCEDVMYIATNHG YLYHAKLCNDGDLRWTELAQVSNEVQIICMELLPSNPYDPRIDADDWVAVGDGK GWTTVVRVVKNSDSPKVSTSFSWAAEMDRQLLGIHWCKSLGHRFIFTADPRGAL KLWRFFEVSQSSSLYPENSPRISLIAEFKSDLGARIMCLDVAFESELLICGDLR GNLVLFPLLKDLLLDTFVVSAAKISPVNHFKGAHGISAVSSISVAHMSFNHIEL 367 WD40 repeat RSTGADGCICYMEYDKGLQSLNFVGMKQVKELSMIESVSTENESTGYRTSGSYA 100 4377 protein SGFASTDFIIWNLVTEAKVLQVSCGGWRRPHSYYLGDVPEMKNCFAYVKDDIIY IRRHWIKDSKDKILPQNLRLQFHGREVHSLCFVTGDFQLRKNKQSSWIVTGCED GTVRLTRYTOCTDNWSSSKLLGERVGGSAVRSICCVSNIHTTSSGTSVSDVKGI ENLPKDIKGTLMEDECNPSLLISVGAKRVLTSWLLRRRKQDGKEDDVTDLQEAE NSSLPSSAGSSTFSFQWLSTDMPVKYSVPSKKSGSIKKLIGVSDTNVRCKSLLP DSEALQSKVSAVDKNEDDWRYLAVTAFLVRHSGSRLIVCFIIVACSDATLAIRA LVLPYRLWFDVALMVPLSSPVLSLQHVIIGRCQLPDENVQIGNVYVVISGATDG SIAFWDLTESVEAFMRRLSNIHLEKFMDCQKRPRTGRGSQGGRWWRSLSKIACK EQPINDPVTAKAIKELNRKLTGGVACGSSSSMLDASPELDSNAANSSFEIIEVN PFHVLNGVHQSGVNCLHVCETKHGQSSDGRFLYQLVSGGDDQALHLLKFEVLVQ PPVQVPDVPNSDIRNSILVEEFLLDEQNQKTKCTIEFISQEKIASARNSAVKGV WTDGTWVFSTGLDQRVRCWISKDRGTPTELAHFIISVPEPEALDARSICWDQYQ IAVAGRGMQMIEFHVPSSEIR 203 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MPYKLSATLSNHSSDVRAVASPSDDLILSASRDSTAISWFRQSPSSFTPASVIR AGSRFVNAIAYLPPTPRAPQGYAVVGGQDTVVNVFALGPGDKEEPEYTLVGHTD NVCALSVNSDDTIISGSWDKTAKVWKDFALVYDLKGHQQSVWAVLAMNEKEFLT ASADRTIKYWVQHKTMQTYEGHRDAVRGLALIPDIGFASCSNDSEIRVWTMGGD VVYTLSGHTSFVYSLSVLPNGDLVSAGEDRSVRVWRDGECSQVIVHPAISVWAV STMPNGDIISGSSDGVVRVFSESEKRWATASELKALEDQIASQSLPSQQVGDVK KTDLPGPEALSVPGKKAGEVKMIRSGDVVEAHQWDSLASSWOKIGEVVDAIGSG 368 WD40 repeat RKQLHDGKEYDYVFDVDIOEGAPPLKLPYNVSENPYTAAQRFLEQNDLPTGYLD 58 2439 protein QVVKFIEQNTAGVKLGNDGYVDPFTGASRYQPATQSTSWTASSSYMDPFTGGSR HIAESAPSNVPQGSHATGIIPFSKPIFFKLANVSAMQAKMFQFDEVLRNEISTA TLAMRPDEVIMVNETFTYLSKVVTSTSSARTSLGWIHIETIMQILDRWPVPQRF PVIDLGRLVTAYCMNAFSGPGDLEKFFSCLFRTSEWTSITSGSKALTKAQETNV LLLFRTIANSLDGAPLNDMEWIKQIFRELAQTPQLVLNKSHRLALASVLFNFSC IGLKGPVPADVRTLHLTIILQVLRSPNDDPEVAYRTCVALGNMLYSDKTRGTPR DAQSPSPTELKSAVAAIKGGFSDPRINDVHREIMSLI MPPQKIESGHKDTVHDLAMDYYGKRLATASSDHTINVVGVSSSGSQHLATLIGH QGPVWQISWAHPKFGSLLASCSYDGRVIIWREGNPNEWTQAQVFEEHKSSVNSV 369 WD40 repeat AWAPHELGLCLACGSSDGNISVFTARQDGGWDTSRIDQAHPVGVTSVSWAPSTA 159 1064 protein PGALVGSGMMEPVQKLCSGGCDNTVKVWKLYNRVWKLDCFPVLMHTDWVRDVA WAPNLGLPKSTIASASQDGRVIIWTLAKEGDQWQGKVLYDFRTPVWRVSWSLTG NILAVADGNNNVSLWNEAVDGEWIOVSTVEP MSAPMLEIEARDVVKIVLQFCKENSLHQTFQTLQSECQVSLNTVDSIETFVADI NSGRWDAILPQVAQLKLPRNTLEDLYEQIVLEMIELRELDTARAILRQTQAMGV MKQEQPERYLRLEHLLVRTYFDPNEAYQDSTKEKRRAQIAQALAAEVTVVPPSR LMALVGQALKWQQHQGLLPPGTQFDLFRGTAAMKQDVDDMYPTTLSHTIKFGTK 370 WD40 repeat SHAECARFSPDGQFLVSCSVDGFIEVWDYMSGKLKKDLQYQADETFMHDDPVL 118 1665 protein CVDFSRDSEMLASGSQDGKIKVWRIRTGQCLRRLERAHSQGVTSVLFSRDGSQL LSTSFDGSARIHGLKSGKQLKEFRGHSSYVNDAIFSNDGSRVITASSDCTVKVW DVKTSDCLQTFKPPPPLRGGDASVNSVHLFPKNADHIVVCNKTSSIYIMTLQGQ VVKSLSSGKREGGDFVAACVSPKGEWIYCVGEDRNLYCFSCOSGKLEHLMKVHE KDVIGVTHHPHRNLVATYSEDSTMKLWKP MDLLQSYAEDNDGDLGRHSSPEPSPPRLLPSKSAAPKVDDTTLALTVAQTNQTL ARPIDPSQHAVAFNPTYDQLWAPICGPAHPYAKDGIAQGMRNHKLGFVEDAAIG SFLFDEQYNTFQRYGYAADPCASTGNEYVGDLDALKQNDGISVYNIRQQEQKKY AEEYAKKKGEERGEGGREKAEVVSDKSTFHGKEERDYQGRSWIAPPKDAKATND 371 WD40 repeat HCYIPKRLVHTWSGHTKGVSAIRFFPKHGHLILSAGMDTKVKIWDVFNSGKCMR 57 1628 protein TYMGHSKAVRDISFCNDGTKFLTAGYDKNIKYWDTETGKVISTFSTGKIPYVVK LHPDDEKQNILLAGMSDKKIVQWDMNTGQITQEYDQHLGAVNTITFVDDNRRFV TSSDDKSLRVWEFGIPVVIKYISEPHMHSMPSISLHPNTNWLAAQSLDNQILIY STRERFQLNKKKRFAGHIVAGYACQVNFSPDGRFVMSGDGEGRCWFWDWKSCKV FRTLKCHEGVCIGCEWHPLEQSKVATCGWDGLIKYWD 204 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MESNGNLEQTLQDGRIYRQLNSLIVAHLRDHNFPQAASAVALATMTPLNVEAPR NRLLELVAKGLAVEKGELLRGVSHAGTNDLGGSIPASYGLVPAPWTAIDFSSLR DTKGMSKSFTKHETRHLSDHKNVARCARFSTDGRFFATGSADTSIKLFEVSKIK QMMLPDSTDGAIRAVIRTFYDHTHPVNDLDFHPQNTVLISAAKDHTVKFFDYSK 372 WD40 repeat ATAKRAFRVIQDTHNVRSVAFHPSGDFLLAGTDHPIPHLYDVNTFQCYLSANVP 250 1566 protein EFAVNAAINQVRYSSSGGMYVTASKDGTIRFWDGASANCVRSIAGAHGAAEVTS ANFrKDQRYVLSCGKDSTVKLWEVGTGRLVKQYLGATHMQLRCQAVFNNTEEFV LSIDEPSNEIVVWDAMTAEKVARWPSNHNGPPRWIEHSPTEAAFVSCGTDRSIR FWKETH MSNFQGEDGEYVADDFEAEDGDEELHGRESADPESDVDEIDTPSNRFTDTTADQ ARRGRDIQGIPWERLSITREKYRRTRLEQYKNYENVPQSGEKSGKDCTVTEKGN SFYEFRRNSRSVKSTILHFQLRNLVWATSKHDVYLMSNYSVVHWSSLTGKKSEV LNLAGHVAPNEKHPGSLLEGFTQTQVSTLAVKDRFLVAGGFQGELICKFLDRPG 373 WD40 repeat ISFCSRTTYDDNAITNAVEIYVSPSGGIHFIASNNDCGVRDFDMENFELSKHFR 106 1434 protein FPWPVNHTSLSPDGKLLVIVGDDPEGILVDAKTGKTIMPLRGHLDFSFASEWHP DGVTFATGNQDKTCRIWDIRNLSKSIAVLKGNLGAIRSIRYTSDGRYMAIAEPA DFVHVYDTKTGYKKEQEIDFFGEISGMSFSPDTESLFIGVWDRTYGSLLEYGRR RNFSYLDCLV MGVEEDLEDLNALAESTDAAVDGQAALASAVDSVTLQPAPPILPPVIPPPAVPV VAPVPTIPPVLRPLAPLPIRPPVLRPPAPKRDEAGSSDSDSDHDGTAAGSTAEY EITEESRLVREREKAMQDLMMKRRGAALAVPTNDKAVRARLRRLGEPMTLFGE REMERRDRLRMLMAKLDAEGQLEKLMKAHEDEEAAASAAPEDVEEEMLQYPFYT EGSKALFNARIDIAKFSITRAALRLERARRRRDDPDEDVDAEIDWALKKAESLS 374 WD40 repeat LHCSEIGDDRPLSGCSFSHDGKLLATCSMSGVAKLWDTCRMPQVNRVLTLGHT 190 1917 protein ERATDVAFSPVQNHIATASADRTAKLWNTEGTILKTFEGHLDRLGRIAFHPSGK YLGTTSFDKTWRLWDIESGEELLLQEGHSRSIYGIDFHRDGSLVASCGLDALAR VWDLRTGRSILALEGHVKPVLGVSFSPNGYHLATGGEDNTCRIWDLRKKKSLYT IPARANLISEVKFEPQEGYFLVTASYDTTAKVWSARDFKPVKTLSVHEAKITSV DITADASHIVTVSHDRTIKLWTSNDDVKEQAMDVD 205 WO 2005/065339 PCT1US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence OIF ORF SEQ ID start stop MVKAYLRYEPAAAFGVIASVESNIAYDASGKHLLAPALEKVGVWHVRQGVCTKA LAPSASSAAGPSLAVTAIASSPSSLIASGYADGSIRIWDFEKGSCETTLNGHKG AVSVLRYGKLGSLLASGSKDNDIILWDVVGETGLYRLRGHRDQVTDLVFLDSDK KLVSSSKDKYLRVWDLETQHCMQIVGGHSEIWSLDTDPEERYLVTGSADPELR FYTVKNDSSDERSEADASGGVGNGDLASHNKWDVLKQFGEIQRQSKDRVATVRF NKNGNLLACQAAGKLVEVFRVLDEAEAKRKAKRRLHRKREKKGADVNENGDSSR GIGEGHDTMVTVADVFKLLTIBASKKICSISFCPVAPKSSLATLALSLNNNLL EFHSIEADKTSKMLTIELQGHRSDVRSVTLSSDNTLLMSTSHNSVKIWNPSTGS 375 WD40 repeat CLRTIDSGYGLCGLIVPQNKHALIGTKDGAIEIFDVGSGTCIEVVEAHGGSIRS 102 2942 protein IVAIPNQNGFVTGSADHDIKFWEYGMKOKPGDNSKHLTVSNVRTLKMNDDVLVV AVSPDAQKIAVALLDCTVKVFFMDSLKLMHSLYGHRLPVLCLDISSDGDLIVTG SADKNLMIWGLDFGDRHKSIFAHGDSIMAVQFVGNTHYMFSVGKDRLVKYWDAD KFELLLTLEGHRADIWCLAISNRGDFLVTGSHDRSIRRWDRTEEPFFIEEEKEK RLEEMFESDLDNAFGNKYVPKEEIPEEGAVALAGKKTQETLSATDSIIEALDIA EVELKRIAEHEEEKNNGKTAEFHPNYVMLGLSPSDFILRALSNVQTNDLEQTLL ALPFSDALKLLSYLKDWTTYPDKVELVSRIATVLLQTHYNQLVSTPAARPLLTT LKDILHKKVKECKDTIGFNLAAMDHLKQLMALRSDALFQDAKVKLLEIRSQLSK RLEERTDPREAKRRKKKQKRSTNMHAWP MGGVQAEREDKDKVSLELTEEILQSMEVGMTFRDYSGRISSMDFHRASSYLVTA SDDESIRLYDVASATCLKTINSKKYGVDLVSFTSHPMTVIYSSKNGWDESLRLL SLHDNKYLRYFKGHHDRVVSLSLCPRNECFISGSLDRTVLLWDQRAEKCQGLLR 376 WD40 repeat VOGRPATAYDDPGLVFAIAFGGCVRMFDARKYEKGPFEIFSVGGDVSDANVVKF 75 1079 protein SNDGRLMLLTTTDGHIHVLDSFRGTLLYTFNVKPTSSKSTLEASFSPEGMFVIS GSGDGSVYAWSVRGGKEVASWLSTDTEPPVIKWAPGNLMFATGSSELSFWIPDL SKLGAYVGRK MAAFGAAPAGNHNPNKSSEVIQPPSDSVSSLCFSPRANHLVATSWDNQVRCWEL TKNGASVTSVPKASMSHDQPVLCSAWKDDGTTVFSGGCDKQAKMWSLMSGGQPV TVAMHDAPIKEIAWIPEMNVLVTGSWDKTLKYWDTRQSNPVHTQQLPERCYAMT 377 WD40 repeat VRYPLMVVGTADRNLIVFNLQNPQAEFKRFSSPLKYQTRCVAAFPDQQGFLVGS 99 1148 protein IEGRVGVHHLDDSQISKNFTFKCHRDNNDIYSVNSLNFHPVHHTFATAGSDGTF NFWDKDSKORLKAMSRCSQPIPCSTFNNDGTIYAYSVCYDWSKGAENHNPATAK TYIFLHLPQESEVKAKPRVGTTNRK MNCSISGEVPEEPVVSTKSGHVFERRLIERYVSDYGKCPVSGEPLTMDDVLPVK MGKIVKPRPLQAASIPGLLSIFONEWDSLMLSNFALEQQLHTARQELSHALYQH DAACRVIARLKKERDEARSLLALAERQIPMTASSDIAVNAPAMSNGRKASLDEE PGYAGKKMRPGISASIIAEITDCNLALSQQRKKRQIPSTLAPVEDLERYTQLSS 3"78 WD40 repeat YPLHKTGKPGITSLDICHSKDIIATGGIDTSAVLFDRSSGQIMSTLSGHSKKVT 232 1806 protein SVNFDAQGDMVLTGSADKTVRIWQGSEDGSYNCRHILKDHTAEVQAITVHATNN YFATASLDNTWCFYEFSTGLCLTQVEGASGSEGYTSAAFHPDGLILGTGTSNAD VKIWDVKTQANVTTFSGHTGAITAISFSENGYFLATJAQDGVKLWDLRKLKNFR TFSAYDKDTGTNSVEFDHSGCYLGLAGSDIRVYQVASVKSEWNCVKTFPDLSGT GKVTCVKFGPDSKYIAVGSMDRNLRIFGLPSEDGAMES 206 WO 2005/065339 PCT/US2004/043804 Patent Patent protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MAAPGVETLKKEIKELKEKIAQHRLDTDGEQPLPAAAKSKSVPEVSAALKQRRI LKGHFGKIYALHWSADSRHLVSASODGKLIIWNGFTTNKVHAI PLRSSWVMTCA YSPSGNLVACGGLDNLCSVYKVPHGGNKESSSAQKTYGELAQHEGYLSCCRFIK 379 WD40 repeat DNEIVTSSGDSTCILWDVETKTPKAIFNDHTGDVMSLAVFDDKGVFVSGSCDAT 72 1124 protein AKLWDHRVHKQCVMTFGHESDINSVQFFPDGDAFGTGSDDSSCRLFDIRAYQQ INKYSSDKILCGITSVAFSKTGKSLAGYDDYNTYVWDTLSGNQVEVLTGHENR VSCLGVSEDGKALATGSWDTLLKIWA MGGVEDESEPASKRMKLSSRVLRGLANGSSRTEPAAGSSLDLMARPLPIEGDEE VIGSKGVIKRVEFVRLIAKALYSLGYEKSGARLEEESGI PLQSSVVNLFMQQIS DGLWDESVVTLHKIGLSDENLVKSASFLILEQKFLELLDQEKAMDALKTLRTEI TPLCIKNSRVRELSSCIISPSSCGLLNQNKRNSTRARSRSELLEELQKLLPPAV II PERRLEHLVEQALVLQTDACMLHNSI DMEMSLYTDHQCGKEHI PCRTLQI LQ 380 WD40 repeat SHNDEVWLVQFSHNGKYLASASNDRSAIIWEVDENGSVSLKHKLTGHQKPISSV 315 2069 protein CWSPDDRQLLTCGVGETVRRWDVSSGECLRVYEKAGHGLISCAWFPDGKWICYG VSDRSICMCDLEGKEIECWKGQRTLSISDLEITSDGKQI ISICRETAILLLDRE AKYERMIEENQTITSFSLSKDNRYLLVNLLNQEIHLWDIKGDFRLVAKYKGLKR SRFVIRSCFGGLKQAFVASGSEDSQVYIWHKGSGELIEPLPGHSGAVNCVSWNP ANHHMLASASDDRTIRIWGLNELNTRHKGARPNGVHYCNGNGTS MTQLAETYACMPSTERGRGILIAGNPKPGSNSVLYTNGRSVVILNLDNPLDISV YAEHAYPATVARFSPNGEWVASADSSGAVRIWGAYNDHVLKKEFKVLSGRIDDL QWSPDGLRIVASGDGKGKSLVRAFMWDSGTNVGEFDGHSRRVLSCAFKPTRPFR IVTCGEDFLVNFYEGPPFKFKLSRRDHSNFVNCLRFSPDGNRFISVSSDKKGII YDGKTGEKIGELSSDGGHTGSIYAVSWSPDSKQVITVSADKSAKIWDISEDGSG 381 WD40 repeat NLRKTLTSSGSGGVDDMLVGCLWQNNHLVTVSLGGTISIYTAGDLDKAPVSFSG 145 1968 protein HMKNVSSLSVLKGDPKVILSSSYDGLIIKWIQGIGFSGRVQRKESTQIKCLAAV DEEIVTSGYDNKVCRVSGSGDAEFIDIGCQPKDLSLALQCPEFALVSTDTGVVL LRGAKIVSTINLGFAVTASTVAPDGTEAIIGAQDGKLRIYS ISGDTLTEEAVLE KHRGAISVIHYSPDLSMFASGDLNREAVVWDRASREVRLKNILYHTARINCLAW SPDSSTVATGSLDTCVIIYEVDKPASNRLTIKGAHLGGVYGLAFTDDFSVVSSG EDACIRVWKINRQ MKVKVISRSTDEFTRERSQDLQRVFRNFDPNLRTQEKAVEYVRALNAAKLDKVF ARPFVGAMDGHVDSVSCMAKNPNYLKGIFSGSMDGDIRLWDIASRRTVCQFPGH QGPVRGLAASTDGQILVSCGI DSTVRLWNVPVATLGES DGTHENLAKPLAVYVW KNAFWAVDHQWDGELFATAGAQVDIWNQNRSQPISSFEWGTDTVISVRFNPGEP 382 WD40 repeat NVLATSGSDRSITLYDLRMSSPTRKVIMRTKTNAISWNPMEPMNFTAANEDCNC 130 1488 protein YSYDARKLEEAKCVHKDHVSAVMDIDYSPTGREFVTGSYDRTVRIFQYNGGHSR EVYHTKRMORVFCVKFSCDASYVISGSDDTNLRLWKAKASEQLGVVLPRERRKH EYHEAVKSRYKHLPEVKRIVRHRHLPKPIYKAGILRRTVNEADRRKEERRKAHS APGSSSAEPLRKRRIIKEIE 207 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ I.D start stop MVRSIKNPKKAKRKNKGSKNGDGSSSSSSIPSMPTVWQPGVDKLEEGEELQCD PSAYNSLHAFHIGWPCLSFDIVRDTLGLVRTEFPHQVYFVAGTQAEKPTWNSIG IFKVSNITGKRRELVPSKPTDDADEESDSSDSDEDSDDEVGGSGTPILQLRKVG HEGCVNRIRAMNQNPHICASWGDSGHVQIWDFSSHLNALAESEADVSQGASSVF 383 WD40 repeat NQAPLVKFGGHKDEGYALDWSPLVPGRLVSGDCKNSIHLWEPTSGSTWNVDSTP 269 1693 protein FIGHAASVEDLOWSPTEENVFASCSVDGTIAIWDTRLGKTPAASFKAHDADVNV ISWNRLATCMLASGCDDGTFSIHDLRLLKEGDSVVAHFEYHKHPVTSIEWSPHE ASTLAVSSADCQLTIWDLSLEKDEEEEAEFKAKTKEQVNAPEDLPPQLLFVHQG QKDLKELHWHAQIPGMIVSTAADGFNILMPSNIQSTLPSDGA MERYKVIKELGDGTYGSVWKALNQQTHEIVAIKKMKRKYYIWEECINLREVKSL RKLNHPNI IKLKEVIRENNELFFIFEY4ECNLYQINKERSTPFSETAIIKFCYQ ILOGLSYMHRNGYFHRDLKPENLLVTSDLIKIADFGLAREVLTSPPYTDYVSTR WYRAPEVLLQSPTYTTAIDMWAVGAILAELFTLHPLFPGESELDEIYKICGVLG 384 CDK type A TPDYETWPDGMQLAAFRNFIFPQFLPVNLSVLIPHASPEAIDLITRLCSWDPQK 1163 2545 RPTAEQALHHPFFRIGMSIPLSLGGHFQDNTCAAEVDTNFHSKKACKGRGMGEK ESSLECFLGLSLGLKPSLGHLGAMGSQGVGAVKQEVGSSPGCQSNPKQSLFQVL NSRAILPLFSSSPNLNVVPVKSSLPSAYTVNSQVMWPTIAGPPAAAVTVSTLQP SILGDFKIFGKSMGLASQYAGKEASPFS MGEMGRGINNSSNNNNSNRPAWLQHYDLVGKIGEGTYGLVFLARSKLPNNRGLR IAIKKFKQSKDGDGVSPTAIREIMLLREFSHENVVKLVNVHINHVDMSLYLAFD YAEHDLYEIIRHHREKLNHHNINQYTVKSLLWQLLNGLNYLHSNWIVHRDLKPS NILVMGEGEEHGVVKIADFGLARIYQAPLKPLSDNGVVVTIWYRAPELLLGAKH 385 CDK type A YTSAVDMWAVGCIFAELITLKPLFQGVEVKASPNPFQLDLDKTFKVLGHPTIE 152 1582 KWPTLMNLPHWSKNLQQIQQHKYDNAGLHIGPIPAKSPAYDLLSKMLEYDPRKR ITAAQALEHEYFRIDPQPGRNALVPSQPGEKAINYPPRLVDANTDFDGTIAPQP SOVSSGNAPSGSIASAAVPAVRPLPQQMQLMGMQRMONPGMAAFNLGAQASMSG LNHNNIALQRGSSQQQAHQQVRRKEPNSGFPNTGYPPPPKSRRL MDKYEKLEKVGEGTYGKVYKARDKMTGQLVALKKTRLEMDEEGVPPSSLREISL LQMLSQSIYVVRLLCVEHVTKKCKPLLYLVFEYLDTDLKKFIDYRRSVNAGPLP QNVIQSFMYQLLKGVAHCHSHGVLHRDLKPQNLLVDKSKGLLKVGDLGLGRAFT 386 CDK type B-i 389 1297 VPLKCYTHEVVTLWYRAPEVLLGSTHYSTPVDIWSVGCIFAEMVRRQPLFPGDC EIQQLLHIFTLLGTPTEEMWPGVKRLRDWHEYPQWKPENLARAVPNLSPTGLDL ISKMLQCDPAKRISAKAAMNHPYFDDLDKSQF; MDGYEKMDKVGEGTYGKVYMARDKKTGQLVALKKTRLENDGEGIPPTALREISL LQMLSQDIYIVRLLDVKHTENKLGKPLLYLVFEYMESDLKKYIDSYRRSHTKMP 387 CDK type B-i PSMIKSFMYQLCRGVAYCHSRGVMHRDLKPHNLLVDKEKGVLKIADLGLSRAFT 38 946 VPVKKYTHEIVTLWYRAPEVLLGATHYSLPVDIWSVGCIFAEMSRMQALFTGDS EVQQLMNIFRFLGTPNEEVWPGVTKLKDWHIYPEWKPODISHAVPDLEPSGLDL LSQMLVYEPSKRISAKKALEHPYFDDLDKSQF 208 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SBQ ID start stop MDAYEKLEKVGEGTYGKVYKAKDKNTGQLVALKKTRLESDDEGIPPTALREISL LQMLSQDIHIVRLLDVEHTENKNGKPLLYLVFEYMDSDLKKYIDGYRRSHTKVP PNIIKSFMYQLCQGVAYCHSRGVMHRDLKPHNLLVDKQRGVVKIADLGLGRAFT 388 CDK type B-1 180 1088 IPIKKYTHEIVTLWYRAPEVLLGATHYSTPVDIWSVGCIFAEMVRLQALFIGDS EVQQLFKIFSFLGTPNEEIWPGVTKFRDWHIYPQWKPQDISSAVPDLEPSGVDL LSKMLVYEPSKRISAKKALEHPYFDDLDKSQF MDSYEKLEKVGEGTYGKVYKAKDKKTGKLVALKKTRLENDGEGIPPTALREISL LQMLSQDMNIVRLLDVEHTENKNGKPLLYLVFEYMDSDLKKYVDGYRRSHTKMP - PKIIKSFMYQLCQGVAYCHSRGVMHRDLKPHNLLVDKQRGVLKIADLGLGRAFT VPIKKYTHEIVTLWYRAPEVLLGATHYSTPVDIWSVGCIFAEMSRMHALFCGDS EVQQLMSIFKFLGTPNEGVWPGVTKLKDWHIYPEWRPQDLSRAVPDLEPSGVDL LTKMLVYEPSKRISAKKALQHPYFDDLDKSQF MEKYEKLEKVGEGTYGKVYKGRDKRTGRLVALKKTPFHOEEGIPPTAIREISLL KSLSQCIYIVKLLDVKASFNGKGKHVLFMVFEYADSDLKKHIDAHRQCNTKLSP 390 CDR type B-i RSIQSYMFOLCKGIAYCHSHGVLHRDLKPQNILVDQKIGLLKIADLGLGRACTV 229 1134 PIKSYTFEVVTLWYRAPEVLLGAKRYSMALDIWSLGCIFAELCNLQALFAGDSQ IQQLINIFRLLGTPNEQLWPGVTOLSDWHEFPQWRPQDLSKVVFNLDPNGVDLL SKMLOYDPAKRISAKEALDHPYFDSLDRSQF MGCVCGKPSARAADYVESPAEKGASSNSRSSSMASRRLVAPAVMDQGIDAENGH EGDYRTKLRGKQSNGADPVSLLSDDAEKQRHSRHHQHQQHHPIRPHHLRPQGEF VPNANSNPRFGNPPRHIEGEQVAAGWPAWLTAVAGEAIKGWIPRRADSFEKLDK IGQGTYSNVYKARDLDTGKIVALKKVRFDNLEPESVRFMAREIQVLRRLDHPNV VKLEGLVTSRMSCSLYLVFEYMDHDLAGLAACPGIKFTEPQVKCYMQQLLRGLD HCHSRGVLHRDIKGSNLLIDNGGILKIADFGLATFFHPDQRQPLTSRVVTLWYR PPELLLGATEYGVAVDLWSTGCILAELLAGKPIMPGRTEVEQLHKIFKLCGSPS EDYWKKSKLPHATIFKPOQPYKRCVAETFKDFPPSALALMEVLLAIEPADRGTA 391 CDK type C 105 2642 TSALKSDFFTTKPLACDPSSLPKYPPSKEFDAKIRDEEARRQRAAGGRGRDAAR RPSRESRAIPAPEANAELAISIQKRRLSSQGPSKSKSEKFNPQQEDGAVGFPIE PPRPMHIGIDAGATSRMYSQQFGPSHSGPLSNQISSSIWGKNQKEDEIQMAPGR PSRSSKATISDFRKPGACAPQPGADLSHLSSLVATARSNAGIDTHKDRSGMWQH NRIDAIDGVHNNGKHEFLEVPEHPNRQDWTRFQQPESFKGLDNYHLQDLPATHH RHDERVASKEATMNWQGYGGQGGDKIHYSGPLLPPSGNIDEILKEHERHIQHAV RRARQDKGRPQRSNLSQNERKAFEHRSFVSGVNGNAGYSDLVNELPISVGSNRL KVSKTRGTEEIVELRELEREPLSSVMEKYEREHEM MGCVCAKQSDILGEPESPKVKGSNLASSRWSVSSETKQLPQHSDSGILHHQHYY HPRDESDEAKLKESNYGGSKRRTRQGRDPADLDMGIFVRTPSSQSEAELVAAGW PAWMAAFAGEAIHGWIPRRAESFEKLYKIGQGTYSNVYKARDLDNGKIVALKKV RFDSLDAESVRFMAREILVLRKLDHPNIVKLEGLVTSEVSSSLYLVFEYMEHDL 392 CDK type C AGLAACPGIKFTEPQVKCYMQQLLGLDHCHRHGVLHRDIKGSNLLIDNGGILK 187 2580 IADFGLATFFYPDQKQLLTSRVVTLWYRPPELLLGATDYGVAVDIWSAGCILAE LLAGKPILPGRTEVEQLHKIFKLCGSPSEDYWKESKLPHATIFKPQHPYKSCIA EAFKDFSPSALALLETLLAIEPGHRGEASGALKSEFFTTEPLSCDPSSLPKYPP SKEFDAKLRAQETRRQRDVGVRGHGSEAARRTSRLSRAGPTPNEGAELTALTQK 209 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORP start stop QHSTSHATSNIGSERPSTKKEDYTAGLHIDPPRPVNHSYETTGVSRAYDAIRGV AYSGPLSQTHVSGSTSGKKPKRDHVKGLSGQSSLQPSKPFIVSDSRSERIYEKS HVTDLSNHSRLAVGRNRDTTDPHKSLSTLMQQIQDGTLDGIDIGTHEYARAPVS STKQKSAQLQRPSALKYVDNVQLQNTRVGSRQSDERPANKESDMVSHRQGQRIH CSGPLLHPSANIEDLLKHEQQIQQAVRRAHHGKREALSNSSLPGKKPVDHRA WVSSGKGNKESPYFKGKGNKELSDLKGGPTAKVTNFRQKVM MAVANPGQLNLQEAPSWGSRSVNCFEKLEQIGEGTYGQVYMAKEIETGEIVALK KIRMDNEREGFPITAIREIKLLKKLQHENVIKLKEIVTSPGPEKDEQGKSDGNK YNGSIYMVFEYMDHDLTGLAERPGMRFSVPQIKCYMXOLLIGLHYCHINQVLHR DIKGSNLLIDNNGILKLADFGLARSFCSDQNGNLTNRVITLWYRPPELLLGSTK YGPAVDMWSVGCIFAELLYGKPILPGKNEPEQLTKIFELCGSPDESNWPGVSKL 393 CDK type C 220 1749 PWYSNFKPQRQMKRRVRESFKNFDRHALDLVEKMLTLDPSQRISAKDALDAEYF WTDPVPCAPSSLPRYEPSHDFQTKRKRQQQRQHDEMTERQKISQHPPQQHVRLP PIQNAGQGHLPLRPGPNPTMHNPPPQFPVGPSHYTGGPRGAGGQNRHPQNIRPL HMQGGGYNANRGYGGPPQQQGGGYPPHGMGNQGPRGGQFGGRGAGYSQGGPYG GPVGGRGPNVGGGNRGPQFWSEQ MQNMEDNVSSWSLHGNKEICARYEILERVGSGTYSDVYRGRRKADGLIVALKE VHDYQSSWREIEALQRLCGCPNVVRLYEWFWRENEDAVLVLEFLPSDLYSVIKS GKNKGENGIPEAEVKAWMIQILQGLADCHANWVIHRDLKPSNLLISADGILKLA DFGQARILEEPEAIYEVEYELPQEDIVADAPGERLMEEDDSVKGVRNEGEEDSS 394 CDK type D TAVETNFGDMAETANLDLSWKNEGDMVMQGFTSGVGTRWYRAPELLYGATIYGK 43B 1748 EIDLWSLGCILGELLILEPLFSGTSDIDQLSRLVKVLGTPTEENWPGCSNLPDY RKLCFPGDGSPVGLKNHVPSCSDSVFSILERLVCYDPAARLNAKEVLENKYFVE DPYPVLTHELRVPSPLREENNFSEDWAKWKDMEADSDLENIDEFNVVHSSDGFC IKFS MDLNQYPEDLNPELPEGTDNVDNPDNNKGSPVPSPHPPLKPLDPSERYRKGITL GQGTYGIVYKAFDTVTNKTVAVKKIHLGKAKEGVNVTALREIRLLKELSHPNII QLIDAYPHKQNLHIVFEFMETDLEAVIKDRNLVFSPADIKSYLQMTLKGLAVCH KKWVLHRDMKPNNLLIAADGQLKLGDFGLARLFGSPORKFTHQVFAVWYRAPEL 395 CDK type D LFGAKQYGPAVDIWATGCIFAELLLRKPFLQGVSDLDQIGKIFAAFGTPRQSQW 240 1631 PDVASLPDFVEFQFVPAPSLRSLFPMASEDALDLLSKMFTLDPKNRITAQQALE HRYFSSVPAPTRPDLLPKPSKVDSSRPPKHASPDGPVVLSPSKARRVMLFPNNL AGILPKQVSQSTTGGTPIEFDMPTQKLREVCPRSRITESGKKHLKRKTMDMSAA LDECAREQEGQEGKTILDPDHQRSAKKZE1HM MAGGQENCVRITRARAACVSKASAPVIQSQVDEKKSRKRAPKRAAVDDLAANAS GSQPKRRAVLGDVTNLHAAATDCLSTASDQVDAPNPSIKGRARNKKKEARTSTK VVKDEIHPESNPLADHSSNLSECQKPPAAKLAEORSLRGVPSKAKQGGSSNSQS CSKHTDIDKDHTDPOMCTTYVEDIYEYLRNAELKNRPSANFt4ETAQNDITPNMR 396 Cyclin A AILVDWLVEVSEEYKLVPDTLYLTVSYIDRYLSANPTSRHKLQLLGVSCMLIAS 252 1604 KYEEVCPPHVEEFCYITDNTYTRDEMLSMERKILIFLNFEMTKPTTKSFLRRFV RASQAGNKAPSLHMEFLANYLAELTLMECSFLQYLPSLIAASTVFLSRLTLDFL TNPWNPTLAHYTGYKASQLKDCVMAIYNVQMNRKGSTLVAIREKYQQHKFKCVA SLPPPPFIAERFFEDTPN 210 WO 2005/065339 PCTIUS2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence ORF ORF start stop MTGTQASNVRITRARAASTLNNALPPLPPAQGKPRGKRAATESNISGFSVAAE PLKRRAVLSDVSNICKEAAAVDCLKKPKAVKVVSNANAKGRGRGIPRNNKKIT QEAEIKKETSPAICNVDDASAGNAIGDDKQNNNVNPLKEVQDNPKELNPIAEQI SVHPHCKQSVEKPNEKEIVVSDNKAAIASLKQQSTLQSLRIPKQPKYSLKQGNP 397 Cycling A VPLANLHEDVGRSSCSDFIDIDSEYKDPQMCTAYVTDIYANMRVVELKRRPLPN 261 1817 FMETTQRDINANMRSVLIDWLVEVSEEYKIVPDTLYLTVSYIDRFLSANVVNRQ RLQLLGVSCMLVASKYEEICAPPVEEFCYITDNTYKKEEVLEMEISVLNRLQYD LTTPTTKTFLRRFIRAAQASCKVSSLHLEFMGNYLAELTLVEYDFLKYLPSLIA AAAVFVARTLDPMVHPWNSTLQHYTGYKVSDMRDCICAIHDLQLNRKGCTLAA IREKYNQPKFKCVANLFPPPIISPQFLIDNEV MAAPNONALLINNNNRRPLVDIGNLVGALNAQCNISKNGARKRAFGDIGNLVED LDAKCTISKYWVRKRPRTNFGVNANKGASSSTQGQGIVVRGEQKAWDRIVWGNK QSCAIKMNAQHVTATORGTAISISDIIDSSVQDGGIKAPSQLKARKQTVRTVTA TLTARSEDSLRDVLEVPPGIDDGDRDNPLAVVEYVEDIYHFYRKIEVRSCVPPD 398 Cyclin B YMTROLEIKDSMRGVIIDWLIEVHRTFLLMPETLYLTVNIIDRYLSIQSVTRNE 167 1576 LQLMGITAMFIASKYEEISPPKINDLVYITKDAYTSKQIVNMEHTILNRLKFKL TVPTPYVFLVRFLKAAGPDKVMENLAFFLVDLCLLHYKMIKYSPSMLAAAAVYT AQCTLKKHPYWNKTLILHIGYSEAHLRECAHLMADLHLKAEGSNLKSVYKKYSY PIFGSVAFLSPAKIPAGTVAAPAIDKCAHQIYLRNLR MFPNKQTQGLVONKKMASKAAQPKAMVPPQRVPPAANNRRALGDIGNIVADVGG KCNVTKDGVNGKPLAQVSRPITRSFGAQLLAQAAANKGISAANNQTQVPVVIPK ADVRGNKQRRTSKSKDIPPTTVVTNESDDCVIIEQAQRIKPTCNHNVGAVGNKE KPQLLTAKPKSLTASLTSRSAVALRGFRFDDEMITEAEEDPLPNIDVGDRDNQLA 399 Cyclin B VVEYVEDIYKFYRRTEQMSCVPDYMPRQQEINPKMRAVLINWLIEVHYRFGLMP 183 1598 ETLYLTTNLIDRYLATQLVSRSNYQLVGATAMLLASKYEEIWAPEMNDFLDILE NKFERKHVLVMEKAMLNKLKFHLTVPTPYVFLVRFLKAAASDEEMENLVFFLME LSLMQYVMIKFPPSMLAAAAVYTAQITLKKTTVWNDVLKRHTGYSEIDLKECTR LMVAFHQSSEESKLNVVFKKYSMPEYDSVALIKPAKLPA MAPSFDCVANAYIESCEDQEKLRQNAQILAQSGENDVDEPVSMLVQRETHYMLP EDYLQRLRNRTLDVNVRREAVGWILKVHSFYNFGAPTAYLAVNYLDRFLSRHRM PQGVKAWMIQLMAVACLSLAAKMEETQVPLPSDLQREDARFIFDARTIQRMELL 400 Cyclin D ILSTLOWGMRSITPFSFIDYFAYRAVQGHGHGHDATPKAVMSRAIELILSTTEE 98 1126 IDFMEYRPSAIAAAALLCAAEEVVPLQAVHYKRALSSSITDVDKDKMFGCYNLI QETIIEGGCYWTPMSLQSTEKTPVGVLDAAACLSNTPTSSYSVKPYASVTAAKR RKLNEICSALLVSQAHPC MAANFWTSSHCKELLDAEKVGIVHPLDKDQGLTQEDVKIIKINMSNCIRTLAQY VKLRQRVVATAITYCRRVYTRKSFTEYDPQLVAPTCLYLASKAEESTVQAKLVI 401 Cyclin D FYMKKYSKHRYEIKDMLEMEMKLLEALDYYLVIYHPYRPLIQFLQDAGLNDLKV 148 894 TAWALVNDTYRTDLILTYPPYMIALACIYFACIMEEKDAQAWFEELRVDMNEIK NISMEIVDYYDNYRVIPDEKMNSALNKLPHRF 211 WO 2005/065339 PCTJUS2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence ORF ORF start stop MAPALSSSYECLSHLLCAEDASNVVGCWDEDESKIFCEEEEGFGIQHFPDFPVP DDDEIRVLVRKESQYMPGKSYVQSYQNLGLDFTARQNAIGWILIVHGSYNFGPL TAYLSINYLDRFLSRNPLPKAKVWMLLLSVACLSLAAKMEETQVPLLLDLQAE 402 Cyclin D EPDFLFEPRTIQRMELLVLSTLEWRMLSVTPFSFVDYFLQGGGGRKPPPRAMVA 287 1363 RANELIFNTHTVLDFLEHRPSAIAAAAVICAAEEVLPLEAAQYKETILSCSLVD KEWVFGSYNLIQEVLIEKFSTPKKAKSASSSIPQSPVGVLDAFCLSNNSNNTSL EASLSVNLYASVAAKRRKLNDYCNTWRMFQHSTC MAPNCIDCAPSDLFCAEDAFGVVEWGDAETGSLYGDEDQLHYNLDICDQHDEHL WDDGELVAFAEKETLYVPNPVEKNSAEAKARQDAVDWILKVHAHYGFGPVTAVL SINYLDRFLSANQLQQDKPWMTQLAAVACLSLAAKMDETEVPLLLDFQVEEAKY 403 Cyclin D IFESRTIQRMELLVLSTLEWRMSPVTPLSYDHASRMIGLENHCWIFTMRCKE 251 1348 ILLNTLRDAKFLGLLPSVVAAAIMLHVIKETELVNPCEYENRLLSAMKVNKDMC ERCIGLLIAPESSSLGSFSLGLKRKSSTINIPVPGSPDGVLDATFSCSSSSCGS GQSTPGSYDSNNSSILCISPAVIKKRKLNYEFCSDLHCLED Cyclin dependent 404 kinase MPQIQYSEHYTDDTYEYRHVVLPPETAKLLPKNRLLNENEWRAIGVQQSRGWVH regulatory YAIHRPEPHIMLFRRPLNYQQNQQQQAGASQPMGLKAQ 229 510 subunit Cyclin dependent 405 kinase MDQIEYSEKYYDDTYEYRHVELPPDVARLLPKNRLLTENEWRGIGVQQSRGWVH 92 409 regulatory YAIHCSEPHIMLFRRPLNYEQNHQHPEPHIMLFRRPLNCQPNHQPQAHHPT subunit Cyclin dependent 406 kinase MDQIEYSEKYYDDTYEYRHVELPPDVARLLPKNRLLTENEWRGIGVQQSRGWVH 64 381 regulatory YAIHCSEPHIMLFRRPLNYEQNHQHPEPHIMLFRRPLNCQPNHQPQAHHPT subunit Cyclin dependent 407 kinase MPQIQYSEKYYDDTYEYRHVVLPPDVARLLPKNRLLNENEWRGIGVQQSRGWVH regulatory YAIHRPEPHIMLFRRHLNYQQNQQQQAQQQPAQAMGLQA 68 349 subunit 212 WO 2005/065339 PCTIUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MALVETEPVTLIHPEEPKKFKKKPTPGRGGVISHGLTEEEARVKAIAEIVGAMV EGCRKGEDVDLNALKAAACRRYGLSRAPKLVEMIAALPDGERAAVLPKLKAKPV RTASGIAVVAVMSKPHRCPHIATTGNICVYCPGGPDSDFEYSTQSYTGYEPTSM RAIRARYNPYVQTRSRIDQLKRLGHTVDKVEFILMGGTFMSLPADYRDYFIRNL Histone HDALSGHTSSNVEEAVCYSEHSATKCIGLTIETRPDYCLGPHLRMLSYGCTRL 408 acetyltransfera EIGVQSTYEDVARDTNRGHTVAAVADCFCLAKDAGFKVVAHMMPDLPNVGVERD 125 1849 se MESFREFFENPAFRADGLKIYPTLVIRGTGLYELWKTGRYRNYPPEQLVDIIAR VLALVPPWTRVYRVQRDIPMPLVTSGVEKGNLRELALARMDDLGLKCRDVRTRE AGIQDIHHKIRPEVVELVRRDYCANEGWETFLSYEDTRQDILVGLLRLRKCGHN TTCPELKGRCSIVRELHVYGTAVPVHGRDADKLQHQGYGTLLMEQAERIAWKEH RSIKIAVISGVGTRHYYRKLGYELEGPYMMKYLN MLGFRDLYTSICEHLQRASGRLPIIAAATSLISTPEIAAVEKENKAPNSVDKMG MGSADESGRFSTSNGQFMNMNGVVKEEWKGGVPVVPSAPTTVPVITNVKLETP SSPDHDMARKRKLGFLPLEVGTRVLCKWRDGKFHPVKI IERRKLPNGATNDYEY YVHYTEFNRRLDEWVKLEQLELDSVETDADEKVDDKAGSLKMTRHQKRKIDETH Histone VEGNEELDAASLREHEEFTKVKNITKIELGRYEIETWYFSPFPSEYNNCEKLYF 409 acetyltransfera 70 1602 CEFCLNFMKRKEQLQRHMRKCDLKHPPGDEIYRSGTLSMFEVDGKKNKVYAQNL CYLAKLFLDHKTLYYDVDLFLFYILCECDERGCHMVGYFSKEKHSEESYNLACI LTLPPYQRKGYGKFLISFSYELSKKEGKVGTPERPLSDLGLLSYRGYWTRVLLD ILKKHKSNISIKELSDMTAIKADDVLSTLQGLDLIQYRKGQHAICADPKVLDRH LKAVGRGGLEVDVCKLIWTPYKEQ MGSLDESTCSEEIRDEGKDSIRTKFKVESTVNNAQNGGNDNSKKKRAAGLPLEV GIRLLCKWRDSKLHPVKIIERRKLPNGFPQDYEYYVHYTEFNRRLDEWVKLEOF ELDSVETDADEKIEDKGGSLKMTRHQKRKIDEIHVEEGQGHEDFDPASLREHEE Histone FTKVKNIAKVELGRYEIETWYFSPFPPEYSHCEKLFFCEFCLNFMKRKEQLQRH 410 acetyltransfera MRKCDLKHPPGDEIYRNGTLSMFEVDGKKNKIYGONLCYLAKLFLDHKTLYYDV 140 1465 se DLFLFYVLCECDDRGCHVVGYFSKEKHSDEAYNLACILTLPPYQRKGYGKFLIA FSYELSKKEGKVGTPERPLSDLGLLSYRGYWTRILLDILKKQRGNISIKELSDM TAIKVEDVISTLQVLDLIQYRKGQHVICADPKVLDRHLKAAGIAGLEVDVSKLI WTPYKEQCG MASAPMVGCDDSROKHRWVESKVYMRKGHGKGSKGNAGFNAQNSTAQVRRENDN MGNSIADNGKSEAASEGLSSLSRKQITVNQDHPPNETSSMPAVGGLQNIDTHVT FKLEGCSKQEIWELRKKLTNELEQVRGTFKKLEARELQLRGYSVSAGVNTSYSA SQFSGNDMRNNGGKEVTSEVASGGAITPKOAQRESNPPRQLSISLMENNQAASD MGEKGKRTPKANQYYRNSEFVLGKDKFPPAESKKSKSTGNKKISQSKVFSKETM QVGKEFMPQKSVNEVFKQCSLLLTKLMKHKYGWVFNLPVDAQALGLHDYHTIIK 411 acetyltransfera RPMDLGTVKSKLEKNLYNSPASFAEDVKLTFSNAMTYNPKGHEVHTMAEQLLQL 628 2565 se FEERWKTIYEEHLDGKMRFGSGOGLGASSSTKKLPFQDSKKNIKKSEPAGGPSP PKPKSTNHHASRTPSAKKPKAKDPHKRDMTYEEKQKLSTNLQNLPQERLELIVQ IIKKRNPSLCQHDEEIEVDIDSFDTETLWELDRFVTNYKKSLSKNKKKALLADQ AKRASEHGSARNKHPMIGRELPMNNKKGEQGEKVVEIDHMPPVNPPVVEVEKDG VYAKRSSSSSSSSSDSGSSSSDSDSGSSSGSESDAYAATSPPAGSNTSARG 213 WO 2005/065339 PCTUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MEGHSGALGFGQGFSRSSQSPNLSPSPSHSASASVTSSGQKRKRNEVERAGVAS NSTGMFAVPPSHIYSHLHPMSMSMPMPMHNSHPSSLSESRDGALTSNDDDDNLT GGNQSQLDSMSAGNTDGREDFDDEDDDDDDEEDDDEVEGDEEDQDHDPDADDDS DDGHDSMRTFTAARLDNGAPNSRNLKPKADAAGVAIAPTVKTEPILDTVKEEKV Histone SGNNNNNSVSANNAQVAPSGSAVLLSAVKEEANKPTSTDHIQTSGAYCAREESL 412 acetyltransfera KREEDADRLKFVCFGNDGIDQHMIWLIGLKNIFARQLPNMPKEYIVRLVMDRSH 55 1818 se KSVMIIKQNQVVGGITYRPYLSQKFGEIAFCAITADEQVKGYGTRLMNHLKQHA RDVDGLTHFLTYADNNAVGYFIKQDFTKEIKLEKERWHGYIKDYDGGILMECKI DPKLPYTDLPAMIRWQRQTIDEKIRELSNCHIVYSGIDIQKKEAGIPRKPIKVE DIPGLKEAGWTTDQWGHSRFRLLNSPSEGLPNRQVLHAFMRSLHKAMVEHADAW PFREPVDPRDVPDYYDIIKDPMDVKRMFTNARTYNTHETIYYKCANR MEESGNSLTSGPDGSKRRVSYFYDSDIGNYYYSQGHPMKPHRIRMAHSLIVHYA LDEKMEVCRPNLLQSRELRVFHADDYISFLQSVTPETQHEQLROLKRFNVGEDC PVFDGLYNFCQTYAGGSVGAAIKLNNKEADIAINWSGGLHHAKKCEASGFCYVN DIVLAILELLKVHQRVLYIDIDIHHGDGVEEAFYSTDRVMSVSFHKFGDYFPGT Histone 413 Histone GHLKDVGYGKGKYYSLNVPLNDGIDDESYKNLFRPIIQKVMEIYOPEAVVLQCG 259 1710 deacetylase ADSLSGDRLGCFNLSVKGHADCVRFLRSFNVPLVLVGGGGYTIRNVARCWCYET AVAVGVEPQDKLPYNEYYEYFGPDYTLHVAPSNMENONSAKELAKIRNTLLEQL KRIQHVPSVPFOERPPDTKFPEEDEEDYEKRPKGHKWGGEYFGSESDEEQKPQN RDIDISDKPGIRRQSPPNVEAAKKIKVEEEDGDIGIVNENDGAKWPLGEAG MEESGNSLTSGPDGSKRRVSYFYDSDIGNYYYSQGHPMKPHRIRMAHSLIVHYA LDEKMEVCRPNLLQSRELRVFHADDYISFLQSVTPETQHEQLRQLKRFNVGEDC PVFDGLYNFCQTYAGGSVGAAIKLNNKEADIAINWSGGLHHAKKCEASGFCYVN DIVLAILELLKVHQRVLYIDIDIHHGDGVEEAFYSTDRVMSVSFHKFGDYFPGT Histone 414 GHLKDVGYGKGKYYSLNVPLNDGIDDESYKNLFRPIIQKVMEIYQPEAVVLQCG 356 1807 deacetylase ADSLSGDRLGCFNLSVKGHADCVRFLRSFNVPLVLVGGGGYTIRNVARCWCYET AVAVGVEPQDKLPYNEYYEYFGPDYTLHVAPSNMENQNSAKELAKIRNTLLEQL KRIQHVPSVPFQERPPDTKFPEEDEEDYEKRPKGHKWGGEYFGSESDEEQKPQN RDIDISDKPGIRRQSPPNVEAAKKIKVEEEDGDIGIVNENDGAKWPLGEAG MEFWGVEVKPGEALTCDPGDERYLHMSQAAIGDKEGAKENERVSLYVHVDGKKF VLGTLSRGKCDQIGLDLVFEKEFKLSHTSQTGSVFVSGYTTVDHEALDGFPDDE DLESSEDEEEELAQITTLTAKENGGKTGAKPVKPESKSSVTDKAAAKGKPEVKP Histone 415 PVKKQEDDSDSDEDEDEDEDEDEDDDDEDDEDMKDASASDDGDEEDDSDEESDD 261 1298 deacetylase DEEEDEETPKPAAGKKRPMPASDNKSPATDKKAKITTPAGGQKPGADKGKETEH IATPYPKHGAKGPASGVKGKETPLGSKQTPGSKVKNSSTPESGKKSGQFKCQSC SRDFATEGALSSHNAAKHGGK 214 WO 2005/065339 PCTIUS2004/043804 Patent Patent Protein Target Patent FEPTIDE Sequence ORF ORF SEQ ID start stop MMETGGNSLPSGPDGVKRKVAYFYDPEVGNYYYGOGHPMKPHRIRMTHALLVQY GLHKEMQILKPYPARDRDLCRFHADDYVAFLRGITPETIQDQVKALKRFNVGDD CPVFDGLYQYCQTYAGGSVGGAVKLNHKLCDIAINWAGGLHHAKKCEASGFCYV NDIVLAILELLKYHKERVLYVDIDIHHGDGVEEAFYTTDRVMTVSFHKFGDYFPG TGDIRDIGCGKGKYYAVNVPLDDGIDDESFQSLFKPIIQQVMLVYNPEAIVLQC Histone GADSLSGDRLGCFNLSVKGHAECVRYMRSFNVPLLMVGGGGYTVRNVARCWCYE 416 365 2251 deacetylase TGVAVGVEIDDKMPQHEYYEYFGPDYTVHVAPSNMENKNTKQYLDKIRSKILEN INSLPCAPSAQFQVQPPDTDFPELEEEDYDERTRSHKWDGASCDSDSENGDLKH RNHDVEESAFPRHNLANISYNTRIKLEGVGTGGLDMAAGTDTKRNDESFEAMDY ESGEELRQDHFASTINASQPCDPALLTGVQNQLQSTDTVKPIEQSGNAPGIPPP SVATVSTGTRPSSISRTSSLNSMSSVKQGSILGPNPPQGLNASGLQFPVPTSNS PIROGGSYSITVOAPDKOGLQNHMKGPQNMPGNS MPPKDRVAYFYDGDVGSVYFGPNHPMKPHRLCMTHHLVLSYELHKKMEIYRPHK AYPVELAQFHSADYVEFLHRITPDTQHLFTKELVKYNMGEDCPVFENLFEFCQI YAGGTIDAAHRNNQICDIAINWSGGLHHAKKCEASGFCYINDLVLGILELLKH Histone HARVLYVDIDVHHGDGVEEAFYFTDRVMTVSFHKYGDMFFPGTGDVKEVGEREG 417 156 1454 deacetylase KYYAINVPLKDGIDDASFTRLFKTIITKVVDIYQPGAIVLQCGADSLAGDRLGC FNLSIDGHAQCVRIVKKFNLPLLVTGGGGYTKENVARCWSVETGVLLDTELPNE IPDNDYIKYFAPDYSLKINTAGNMENLNSKTYLSAIKVQVMENLRAIQHAPSVQ MHEVPPDFYIPDIDEDELNPDERMDQHTQDRQIQRDDEYYDGDNDIDHDMEEAS MDSSKSEEANILHVFWHEGMLNHDLGTGVFDTLEDPGFLEVLEKHPENADRVRN MLSILRKGPIAPYTEWHTGRAAYLSELYSFHRPDYVDMLAKTSTAGGKTLCHGT RLNPGSWEAALLAAGTTLEAMRYILDGHGKLSYALVRPPGHHAQPTQADGYCFL Histone NNAGLAVELAVASGCKRVAVVDIDVHYGNGTAEGFYERDDVLTISLHMNHGSWG 418 203 1348 deacetylase PSHPQTGFHDEVGRGKGLGFNLNVPLPNGTGDKGYEHAMHELVVPAISKFMPEM IVLVIGQDSSAFDPNGRECLTMEGYRKIGQIMRQQADOFSGGRLVVVQEGGYHI TYAAYCLHATLEGVLCLPHPLLSDPIAYYPEHDIYSERVTFIKNYWQGIISTTD KRN MEESGNALVSGPDGSKRRVTYFYDADIGNYYYGQGHPMKPHRMRMAHNLIVHYG LHQRMEVCRPHLAQSKDIRAFHTDDYIHFLSSVAPDTQQEQLRQLKRFNVGEDC PVFDGLFNFCQSSAGGSIGAALKLNRKDADIAINWAGGLHHAKKCEASGFCYVN DIVLGILELLKVHQRVLYIDIDIHHGDGVEEAFYTTDRVMTVSFHKFGDYFPGT Histone 419 GHIKDVGYGKGKYYALNVPLNDGIDDESYKHLFRPIIQKVMEVYQPEAVVLQCG 229 1644 deacetylase ADSLSGDRLGCFNLSVKGHADCVRFVRSFNIPLMLVGGGGYTIRNVARCWCYET AVAVGVEPQDKLPYNEYYEYFGPDYTLYVAPSNMENLNTEKDLEKMRNVLLEQL SKIQHTPSVPFQERPPDTEFNDEEEEDMEKRSKCRIWDGEYVGSEPEEDGKLPR FDADTYERSVLKHENKRLVPVSNVEPLKRIKOEEDGAAV 215 WO 2005/065339 PCTIUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MPPKDRVAYFYDGDVGSVYFGPNHPMKPHRLCMTHHLVLSYELHKKMEIYRPHK AYPVELAQFHSADYVEFLHRITPDTQHLFTKELVKYNMGEDCPVFENLFEFCQI YAGGTIDAAHRLNNQICDIAINWSGGLHHAKKCEASGFCYINDLVLGILELLKH Histone RARVLYVDIDVHHGDGVEEAFYFTDRVMTVSFHKYGDMFFPGTGDVKEVGEREG 420 156 1454 deacetylase KYYAINVPLKDGIDDASFTRLFKTIITKVVDIYQPGAIVLQCGADSLAGDRLGC FNLSIDGRAQCVRIVKKFNLPLLVTGGGGYTKENVARCWSVETGVLLDTELPNE IPDNDYIKYFAPDYSLKINTAGNMENLNSKTYLSAIKVQVMENLRAIQHAPSVQ MHEVPPDFYIPDIDEDELNPDERMDQHTODRQIQRDDEYYDGDNDIDHDMEEAS MDLNLVSHGEEEEGVRRRKVGIVYDERMCKATPEDQPHPEQPDRIRVIWDKLN SAGVLHKCVMVEAKEASEEQLAGVHSRKHIEVMKSIGTARYNKKKRDKLAASYS SIYFSQGSSEAALLAAGSVVEISEKVASGELDAGVAIVRPPGHHAEADKAMGFC LFNNIAIAAKHLVHERPELGVQEVLIVDWDVHHGNGTHMFWTDPHVLYFSVHR FDAGTFYPGGDDGFYDKIGEGKGAGYNINVPWEQGKCGDADYLAVWDHVLVPVA KSYDPDMVLISGGFDAALGDPLGGCRLTPYGYSLMTKKLMEFAGGKIVLALEGG 421 Histone YNLKSLADSFLACVEALLKDGPSRSSVLTHPFGSTWRVIQAVRKELSSFWPALN 27 2222 deacetylase EELOLPRLLKDASESFDKLSSSSSDESSASEDEKKIAEVTSIMEVSPDPSSILA LTAEDIAQPLAGLKIEEAGTDSQRSSDHTLLDLTNDDTQKLKQFEGEIFVMIGD EESVPSASSSKDQNESTVVLSKSNIKAHSWRLTFSSIYVWYASYGSNMWNPRFL CYIEGGQVEGMAKRCCGSEDKTPPQRIQWKVVPHRMFFGRSYTNTWGSGGVSFL DPNCSDTSEAHVCLYKITLAQFNDLLLQENNLNCGTEHPLVDLSSIDAIRNGNS ILELIKDSWYGTLIYLGMEGGLPIVTFTCSVCDVEKFKHGQLPLCPPSSRYENI LIRGLVQGKKLSEDDATAYIRASTSPLL MADEDLDLSDVGEVEDEPGEEIESTPPLAVGQEKEINSLALKKKLLKVGTRWET PENGDEVTVHYTGTLPDGTKFDSSRDRGEPFTFKLGQGQVIKGWDQGIVTMKKG ERALFTIPPELAYGSSGVRPTIPPNATLQFDVELLSWTNIVDVCNDGGILKRII SEGEKYERPKDPDEVTVKYEAKLEDGTLVAKSPEEGVEFYVNDGHFCPAIAKAV KTMKRGESVILTIKPTYAFGERGKDAEEGFAAIPPNATLTTSLELVSFKAVIAV 422 Peptidylprolyl TEDKKVIKKILKEADGYDKPSDGTVVQIRYTAKLQDGTIFEKKGYEGEEPFQFV 71 1759 is amaras a VDEEQVIAGLDKAVETMKTGEIALITIGAEYGFGNFETQRDLAVIPPNSTLIYE VEMISFTKEKESWDMDTTEKIEASKQKKEQGNSLFKVGKYQRAAKKYEKAAKYI EHDSSFSAEEKKQSKVLKVSCNLNHAACRJKLKDEKEAVKLCSKVLELESQNVK ALYRRAQAYIETADLDLAEFDIKKALEIEPQNREVOLEYKILKQKQIEYNKKDA KLYGNMFAKLNKLEAFEGKVLS 216 WO 2005/065339 PCT/US2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence ORF ORF start stop MADEGLELSDVAEVEDEPGEEFESAPPLVVGQEKELNSSGLKKELLKAGTRCET PENGDEVTVHYTGTLLDGTKFDSSRDRGEPFTFNIGQGQVIKGWDQGIVTMKKR EHALFTIPPELAYGASGMPPTIPPNATLQFDVELLSWTNIVDVCKDGGILKRII SDGEKYERPKDPDEVTVKYEAKLEDGMLVAKSPEEGVEFYVNDGNFCPAIVKAV KTMKKGENVTLTIKPAYAFGEQGKDAEEGFAAIPPNATITINLQLVSFKAVKEV Peptidylprolyl 423 isomerase TEDKKVIKKILKEADGYDKPSDGTVVQIRYTAKLQDGTIFEKKGYAGEEPFQFV 358 2040 VDEEOVIAGLDKAVETMKTGEVALITIGPEYGFGNIETQRDLAVIPPYSTLIYE VEMVSFTKEKESWDMNTTENIEASKQKKEQGNSLFKVGKYLRAAKKYDKAAKYI EHDNSFSAEEKKQSKVLKVSCNLNHAACCLKLKDFKKAVKLCSKVLELESQNVK ALYRRAQAYIETADLDLAEFDIKKALEIEPQNREVRLEYLILKQKQIEYNKKDA KLYGNMFARQNKLEAIEGKD MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRALCTGEKGTGRSGKPLH Peptidylprolyl FKGSSFHRVIPGFMCQGGDFTRGNGTGGESIYGEKFADENFVKRHTGPGILSMA 424 isomerase NAGPNTNGSQFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGSGRTSKP 238 756 VVIADSGQLA MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRALCTGEKGNGRSGKPLH 425 Peptidylprolyl FKGSSFHRVIPGFMCQGGDFTRGNGTGGESIYGEKFADENFVKKHTGPGILSMA isomerase NAGPNTNGSQFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGSGRTSKP 285 803 VVIADSGQLA MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRALCTGEKGTGRSGKPLH 426 Peptidylprolyl FKGSSFHRVIPGFMCQGGDFTRGNGTGGESIYGEKFADENFVKKHTGPGILSMA isomerase NAGPNTNGSQFFICTAOTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGSGRTSKP VVIADSGQLA MPNPKVFFDMQVGGAPAGRIVMELYADVVPKTAENFRALCTGEKGTGRSGKPLH Peptidylprolyl FKGSSFHRVIPGFMCQGGDFTRGNGTGGESIYGEKFADENFVKKHTGPGILSMA 427 156 674 isomerase NAGPNTNGSQFFICTAQTSWLDGKHVVFGQVVEGLEVVRDIEKVGSGSGRTSKP VVIADSGQLA MADDFELPESAGMMENEDFGDTVFKVGEEKEIGKQGLKKLLVKEGGSWETPETG DEVEVHYTGTLLDGTKFDSSRDRGTPFKFKLGQGQVIKGWDQGIATMKKGENAV PrIPPDLAYGESGSQPTIPPNATLKFDVELLSWASVKDICKDGGIFKKIIKEGE KWEHPKEADEVLVKYEARLEDGTVVSkSEEGVEFYVKDGYFCPAFAIAVKTMKK GEKVLLTVKPQYGFGHQGREAIGNDVARSTNATLLVDLELVSWKVVDEVTDDKK 428 VLKKILKQGEGYERPNDGAVVKVKYTGKLEDGTIFEEKGSDEEPFEFMAGEEQV 176 1912 isomerase VDGLDRAVMTMKKGEVALVSVAAEYGYQTEIKTDLAVVPPKSTLIYEVELVSFV KEKESWDMNTAEKIEAAGKKKEEGNALFKVGKYFJRASKKYEKATKYIEYDTSFS EEEKKQSKPLKVTCNLNNAACKLKLKDYTQAEKLCTKVLEVESQNVKALYRRAQ AYIOTADLELAELDIKKALEIDPNNRDVKLEYBALKEKQKEYNKKEAKFYGNMF ARMSKLEELESRKSGSQKVETANKEEGSDAMAVDGESA MAASLTPLGAGLAYATIYDQAKVRKLEPTKRSLIALCQHSDSHRRFITRKYHV NVQILNRRDAIRLIGLAAGLCIDLSLMYDARGAGLPPQENAKLCDTTCEKELEN 429 isomerase APMITTESGLQYKDIKIGNGPSPPIGFQVAANYVAMVPSGQVFDSSLDKGOPYI 64 765 FRVGSGQVIKGLDEGLLSMKVGGRRLYIPGPLAFPKGLNSAPGRPRVAPSSPV IFDVSLEFIPGLESEEE 217 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein SEQ ID Target Patent PEPTIDE Sequence ORF OR' start atop MSAASLSADMAIRGTILGKTALHVLGPQVVSQCRQPVMFKCPPHTLRKMRFSAQ Peptidylprolyl DLQSKNFYSGFTPFKSVFISTSKRSWQAGSARAMSQDAAFQSKVTTKCFLDIEI 430isomerase GGDPAGRIVLGLFGEDVPKTAENFRALCTGEKGFGYKGSSFHRIIKDFMLQGGD 93 881 FDRGDGTGGKSIYGRTFEDENFKLAHVGPGVLSMANAGPNTNGSQFFICTVKTP WLDKRHVVFGQVIEGMEIVKKLESEETNRTDRPKRPCRIVDCGELP MGRIKPQTLLQQSKKKKVPGRISVSTIIVCNLI I IFLMFSLVGIYRORAKRNRA TSRSDGDEEMENFGRSKINSVPHQAIVNTTKGLITLELFGKSSAHTVEKFVEWS 41 Peptidylprolyl 431 ERGYFNGLPFYRVIKHFVIQVGDPKFAGNREDWTVGGQLNVQLEFSPKHEAFML 372 1070 isomerase GTSKLEDQGDGFELFITTAPIPDLNDKLNVFGRVIKGQDVVQEIEEVDTDEHFQ PKSPIIINDVRLKDEL MARQSTLLLFWSLVFLGAIVFTQAKHEELEEVTHKVYFDVDIAGKPAGRVVIGL Peptidylprolyl FGKAVPKTVENFRALCTGEKGVGKSGRPLHYKGSFFHRI IPSFMIQGGDFTLGD 432 28 594 isomerase GRGGESIYGTKFADENFKLKHTGPVFITTVTTDWLDGRHVVFGKIISGMDVVYK VEAEGRQSGOPKRKVKIADSGELSMD MARQSTLLLFWSLVFLGAIVFTQAKHEELEEVTHKVYFDVDIAGKPAGRVVIGL Peptidylprolyl FGKAVPKTVENFRALCTGEKGVGKSGPLHYKGSFFHRIIPSFMIQGGDFTLGD 648 isomerase GRGGESIYGTKFADENFKLKTGPGFLSMANAGPDTNGSQFFITTVTTDWLDGR HVVFGKIISGMDVVYKVEAEGRQSGQPKRKVKIADSGELSMD MEMDEIQEQSQPQSSEKQDISQESDTGNDKTINAEKITSENAEVEEDDMLPPKV NTEVEVLHDKVTKQIIKEGSGNKPSRNSTCFLHYRAWAESTMHKFODTWQEQQP Peptidyiprolyl LELVLGREKKELSGFAIGVAGMKAGERALLHVDWQLGYGEEGNFSFPNVPPRAN 434 LIYEAELIGFEEAKEGKARSDMTVEERIEAADRRRQQGNELFKEDKLAEAMQQY 481 1611 i somerase EMALAYMGDDFMFQLFGKYKDMANAVKNPCHLNMAQCLLKLNRYEEAIGQCNMV LAEDEKNIKALFRRGKARATLGQTDDAREDFQKVRKFSPEDKAVIRELRLLAEH DKQVYQKQKEMFKGLFGQKPEQKPKKLHWFVVFWQWLLSMIRTIFRMRSKTD MAGAGEGTPEVTLETSMGPITVELYHHAPRTCRNFLELSERGYYNNVKFHRVI Peptidylprolyl KDFVQGGDPTGTGRGGESIYGPRFEDEITRDLKHTGAGILSMANAGPNTNGSQ 584 isomerase FFISLAPTPWLDEKHTIFGRVCKGMDVVKRLGNVQTDENDRPIHDVKILRTTVK D MMDPELNRLAQEQMSKISPDELMKMQRQIMANPDLMRMASENMKNLKPEDIRFA AE0MKNVRKEEMAEISERISRASPEEIEAMKARANLSAYLQVANLKDQGNQ LHARMKYSEAAEKYLQARNNLTGIPFSEAKSLLLASSSNLMSCYLKTGQYEECV QTGSEVLAYDAMNVKALYRRGQAYKQIGKLELAVADLRKAVEVSPEDETIAQAL 436 Peptidylprolyl REASTELMEKGGTQDQNGPRIEEIIEEEAVQPTAEKYPQSAPNVTSVTEDVSDD 1869 isomerase EQGSEDONGFSRDSFQATNAPDGQMYAESLRNLTENPDMLRTMOSLMKNVDPDS LVALSGGKLSPDMVKTVSGMFGRMSPEEIQNMMKMSSTLSRONPSTSSRFDDIT RGHSNMDSSPQSVSVDNDLFEENQNRVGESSTNLSSSAAFSGMPNFSAEMQEQV RNQMNDPATRQMFTSMIQNMSPEMMASMSEQiGVKLSPEDAVKAQNAMASLSPN DLDRLMNWATRLQTAI DYARKIKNWILGRPGLIFAISMLLLAIILHRFGYIGD 218 WO 2005/065339 PCT/US2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence OP2 Oar start stop Peptidyiproly MGVEKEILRPGNGPKPRPGQSVTVHCTGYGKNEDLSQRFWSTKDPGQKPFTFTI 437 isoerase GQGRVIKGWDEGVLDMQLGEIFKLRCSPDYGYGSNGFPAWGIRPNSVLVFEIEV 84 422 LSVN MPNPRCYLDITIGEELEGRILVELYSDVVPKTAENFRALCTGEKGIGPHTGVPL HYKGLPFHRVIKGFMIQGGDISAQNGTGGESIYGLKFDDENFQLKHERRGMLSM Peptidylprolyl ANSGPNTNGSOFFITTTRTSHLDGKHVVFGKVIKGMGVVRGIEHTPTESNDRPS 438 LDVVISDCGEIPEGSDDGIANFFKDGDLYPDWPADLDEKSAEISWWMNAVDSAK 128 1213 i somerase CFGNENYKKGDYKMALRKYRKALRYLDICWEKEEIDEEKSNHLRKTKSQIFTNS SACKLKLGDLKGALLDTEFAMRDGEDNVKALFRQGQAYMALKDVDSAVASFKKA LQLEPNDAGIRKELAVATKMINDRRDQERRAYARMFQ MGDVIDLNGDGGVLKTIIRSAKPGAMQPTEDLPNVDVHYEGTLADTGEVFDTTR Peptidylprolyl EDNTLFSFELGKGTVIKAWDIAVKTMKVGEVARITCKPEYAYGSAGSPPDIPEN isomerase ATLIFEVELVACKPRKGSTFGSVSDEKARLEELKKQREIAAASKEEEKKRREEA 265 37 KATAAARVQAKLEAKKGQGRGKGKSKGK MGLGLKIASASFLPIFNIMATRSLCILLVCFIPVLAHVLSLQDPELGTVRVYFQ TTYGDIEFGFFPHVAPKTVEHIYKLVRLGCYNSNHFFRVDKGFVAQVADVVGGR Peptidylprolyl 440 EVPLNSEQRKEGEKTIVGEFSEVKHVRGILSMGRYSDPDSASSSFSILLGNAPH 38 781 isom'erase LDGQYAVFGKVTKGDDTLKRLEEVPTRQEGIFVMPLERIRILSTYYYDTNERES NLTCDHEVSILKRRLVESAYEIEYQRRKCLP MASKRSLRTMNVWPTLPPLVLLLLLCFSSMSSSVVAKKSDVSELQIGVKHKPKS 441 CDIQAHKGDRIKVHYRGSLTDGTVFDSSFERGDPIEFELGSGOVIKGWDQGLLG 38 526 isomerase MCVGEKRKLRIPSKLGYGAQGSPPKIPGGATLIFDTELVAVNGKGISNDGDSDL MSGAPAERPISYFDITIGGKPIGRIVFSLYADLVPKTAENFRALCTGEKGIGKS GKPLCYAGSGFHRVIKGFMCQGGDFTAGNGTGGESIYGEKFEDEAFPVKHTKPF LLSMANAGKDTNGSQFFITVSQTPHLDDKHVVFGEVIKGKSIVRAIENYPTASG 442 DVPTSPIIISACGVLSPDDPSLAASEETIGDSYEDYPEDDDSDVQNPEVALDIA 37 1158 isomerase RKIRELGNKLFKEGQIELALKKYLKSIRYLDVHPVLPDDSPPELKDSYDALLAP LLLNSALAALRTQPADAQTAVKNATBALERLELSDADKAKALYRRASAHVILKQ EDEAEEDLVAASQLSPEDMAISSKLKEVKDEKKKKREKEKKAFKKMFSS MASSLRSSLFSSWALDSKSVCSLFNLNPGKMGLPSISTPLNWRTCCCSHSSELL ELNEGLQSSRRKTVMGLSTVIALSLVYCDEVGAVSTSKRALRSQKVPEDEYTTL 443 PNGLKYYDLKVGSGTEAVKGSRVAVHYVARWKGITFMTSRQGMGITGGTPYGFD 61 768 isomerase VGASERGAVLKGLDLGVQGMRVGGQRILIVPPELAYGNTGIQEIPPNATLEFDV ELISIKQSPFGSSVKIVEG 219 WO 2005/065339 PCT/US2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence ORF ORF start stop MGAIEDEEPPLKRLKVSSPGLRRGLEEEAPSLSVGSVSILMAKSLSLEEGETVG SKGLIRRVEFVRIITQALYSLGYQKAGALLEEESGILLQSSNVALFRKQILDGK WDESVVTLRGIDQVEVEGNTUKASFLILQQKFFELLDKGNIPEAMKTLRLEIS PMQLNTKRVHELASCIVFPSRCEELGYSKQGNPKSSQRMKVLQEIQQLLPPSIM WD40 repeat IPEKRLERLVEQALNVQREACIFHNSLDPALSLYTDHQCGRDQIPTTTLQVLES 444 protein HKNEVWFLQFSNNGKYLASASKDCSAIIWEITEGDSFSMKHRLSAHQKPVSFVA 421 2172 WSPDDKLLLTCGIEEVVKLWNVETGECKLTYDKANSGFTSCGWFPDGERFISGG VDKCIYIWDLEGKELDSWKGQGMPKISDLAVTSDGKEIISICGDNAIVMYNLDT KTERLIEEESGITSLCVSKDSRFLLLNLANOEIHLWDIGARSKLLLKYKGHRQG RYVIRSCFGGSDLAFVVSGSEDSQVYIWHRGNGELLAVLPGHSGTVNCVSWNPV NPHVFASASDDYTIRIWGVNRNTFRSKNASSSNGVVHLANGGP MPGTTAGAGIEPIEPQSLKKLSLKSLKRSFDLFASLHGEPQPPDQRSQRIRIAC KVRAEYEVVKNLPTLPQREVGSSVSNSNVGETHSSLTTNQAQGFPTDTSGDLSK DEGKEITSIAVHLQPQTGLIDGKAGAIAGTSTAISSVGSSDRYQPSAAIMKRLP SKWPRPIWMPPWKNYRVISGHLGWVRSVAFDPGNEWFCTGSADRTIKIWEVATG 445 WD40 repeat KLKLTLTGHIEQIRGLAVSSRHPYLFSAGDDKQVKCWDLEYNKAIRSYHGHLSG protein VYCLALHPTLDILCTGGRDSVCRVWDIRTKAQIFALSGHENTVCSVFTQAIDPQ 163 1647 VVTGSHDTTIKLWDLAAGKTMSTLTYHKKSVRAIAKHPFERTFASASADNIKKF KLPKGEFLHNMLSQQKTIVNAMAINEDNVLVSAGDNGSLWFWDWKSGHNFQQAQ TIVQPGSLDSEAGIYALQYDITGSRLVSCEADKTIKMWKEDETATPESHPINFK APKDIRRF MRPILMKGHERPLTFLKYNRDGDLLFSCAKDHTPTVWYGHNGERLGTYRGHNGA VWCCDVSRDSTRLITSSADQTAKLWNVETGAQLFSFNFESPARAVDLAIGDKLV WD040 repeat VITTDPFMELPSAIHIKRIEKDLSKQTADSVLTITGIKGRINRAVWGPLNSTII 446 protein SGGEDSVVRIWDSETGKLLRESDKETGHQKPITSLCKSADGSHFLTGSLDKSAR 192 1172 LWDIRTLTLIKTYVTERPVNAVAISPLLDHVVIGGGQEASHVTTTDRRAGKFEA KFFHKILEEEIGGVKGHFGPINSLAFNPDGRSFASGGEDGYVRLHHFDPDYFHI KM MRPILMKGHERPLTFLKYNRDGDLLFSCAKDHTPTVWYGENGERLGTYRGHNGA VWCCDVSRDSTRLITSSADQTAKLWNVETGNQLFSFNFESPARAVDLAIGDKLV 19040 repeat VITTDPFMELPSAIHIKRIEKDLSKQTADSVLTITGIKGRINRAVWGPLNSTII 447 protein SGGEDSVVRIWDSETGKLLRESDKETGHQKAITSLCKSADGSHFLTGSLDKSAR 131 1111 LWDIRTLTLIKTYVTERPVNAVAISPLLDHVVIGGGQEASHVTTTDRRAGKFEA KFFHKILEEEIGGVKGHFGPINSLAFNPDGRSEASGGEDGYVRLHHFDPDYFHI KM 220 WO 2005/065339 PCT/US2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence og ORF start stop MAENNVGDFIPLDRQEYPSKPAPGAVDSSFWKSFKKKEVSRQIAGVTCINFCPE PPHDFAVTSSTRVHIYDGKSCELKKTITKFKDVAYSGVFRSDGQIIAAGGETGV IQVFNAKSQMVLRQLKGHGRPVRVVRYSPQDKLHLLSGGDDSMVKWWDITTQEE LLNLEGHKDYVRCGAASPSSVNLWATGSYDHTVRLWDLRNSKTVLQLKHGKPLE 448 0WD40 repeat DVLFFPSGGLLATAGGNVVKVWDILGGGRPIHTMETHQKTVMAMCISKVPRSGQ protein ALGDAPSRLVTASLDGYMKVFDLDHFKVTHSARYPAPILSMGISSLCRTMAVGT 149 1726 SSGLLFIRQRKGQIEDKIHSDSSGLQVNPVNDEKDSAVLKPNQYRYYLRGRSEK PSEGDYVVKRMAKVYFQEYDKDLRHFNHSKALVSALKAADSKGTVAVIEELVAR KRLIQTLSILNLDELELLINFLSRFILVPKYSRFLISLTDRVLDARAVDLGKSE NLKKQIADLKGIVVQELRVQQSMQELQGIIEPLIRASAR MDVETSGKPTGNKRTYTRLPRQVCVFWQEGRCTRESCNFLHVDEPGSVKRGGAT NGFAPKRSYNGSDERDTLAAGPPGGSRRNISARWGRGRGGIFISDERQKIRNKV CNYWLAGNCQRGEECKYLHSFVMGSDVKFLTQLSGHVKAIRGIAFPSDSGKLYS 0WD40 repeat GGQDKKVIVWDCQTGQGTDIPLNDEVGCLMSEGPWIFVGLPNAVKAWNILTSTE 449 948 2228 protein LSLVGPRGQVHALAVGNGMLFAGTHDGSILAWKFSPASNTFEPAASLVGHTQAV VSLVSGADRLYSGSMDKTIRVWDLGTFQCLQTLRDHTSVVMSLLCWDQFLLSCS LDNTVKVWVATSSGALEVTYTHNEEHGVLALCGMNDEQAKPVLLCSCNDNTVRL YDLPSFSERGRIFSRNEVRTFIAPGGLFFTGDATGELKVWNWATQKS MSVQELRERHAAATAKVNALRERIKAKRLQLLDTDVATYASSNGRTPISFSFTD LVCCRTLQGHTGKVYSLDWTSEKNRIVSASQDGRLIVWNALTSQKTHAIKLPCA WVMTCAFSPSGQAVACGGLDSVCSIFQLNNQLDRDGHLPVSRILSGHRSYVSSC WD40 repeat 450 QYVPDGDTHVITGSGDRTCIQWDVTTGQRIAIFGGEFPLGHTADVMSVSISAAN 332 1465 PKEFVSGSCDTTTRLWDTRIASRAIRTFHGHEADVNTVKFFPDGLRFGSGSDDG TCRLFDIRTGHQLQVYRQPPRENQSPTVTAIAFSFSGRLLFAGYSNGDCFVWDT ILEKVVLNLGELQNTHNGRISCLGLSADGSALCTGSWDKNLKIWAFGGHRKIV MKVKIISRSTDEFTRERSNDLQRVFRNFDPNLHTQARAQEYVRALNAAKLDKIF AKPFLAAMSGHIDGISAMAKSPRHLKSIFSGSVDGDIRLWDIAARRTVQQFPGH RGAVRGLTVSTEGGRLISCGDDCTVRLWDIPVAGIGESSYGSENVQKPLATYVG KNSFRAVDYQWDSNVFATGGAQVDIWDHDRSEPTNSFAWGSDTVISVRFNPAEK WD040 repeat 451 ein DIFATTASDRSIVLYDLRMASPLNKLIMQTRNNAIAWNPREPMNFTAANEDCNC 232 1590 YSYDMRRMNISTCVHQDHVSAVMDIDYSPSGREFVTGSYDRTVRIFPYNAGHSR EIYHTKRMQRVFCVKFSGDATYVVSGSDDANIRLWKAKASEQLGVLLPRERKRH EYLDAVKERFKHLPEIKRIERHRHLPKPIYKAALLRHTVNAAAKRKEERKRAHS APGSVVTNPLRKKRIVAQLE MDHYYQDDFDYLVDDEMVDFADDVEDDVRTRRRSDIDSDSENDFDLNNKSPDTT ALQAKRGKDIQGIPWNRLNFTREKYRETRLQQYKNYENLPRPRRSRNLDKECTN FERGSSFYDFRHNTRSVKATIVHFQLRNLVWATSKHNVYLMQNYSIMHWSSLKQ WD40 repeat KGEEVLNVAGPIVPSVKHPGSSPQGLTRVQVSAMSVKDNLVVAGGFQGELICKY 452protein LDKPGVSFCTKISHDENGITNAVEIYNDASGATRLMTANNDLAVRVFDTEKFTV 207 1550 LERFSFPWSVNHTSVSPDGKLVAVLGDNADCLLADCKTGKTVGTLRGHLDYSFA AAWHPDGYILATGNQDTTCRLWDVRKLSSSLAVLKGRMGAI RSIRFSSDGRFMA MAEPADFVHLYDTRQNYTKSQEIDLFGEIAGISFSPDTEAFFVGVADRTYGSLL EFNRRRMNYYLDSIL 221 WO 2005/065339 PCT/US2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence ORF ORF start stop MAEALVLRGTMEGHTDAVTAIATPIDNSDMIVSSSRDKSILLWNLTKEPEKYGV PRRRLTGHSHFVQDVVISSDGQFALSGSWDSELRLWDLNTGLTTRRFVGHTKDV 453 WD40 repeat LSVAFSIDNRQIVSASRDRTIKLWNTLGECYTIQPDAEGHSNWISCVRFSPSA 21 protein TNPTIVSCSWDRTVKVWNLTNCKLRNTLVGHGGYVNTAAVSPbGSLCASGGKDG 222 1171 VTMLWDLAEGKRLYSLDAGDIIYALCFSPNRYWLCAATQQCVKIWDLESKSIVA DLRPDFIPNKKAQIPYCTSLSWSADGSTLFSGYTDGKIRVWGIGHV MAAIKSTSRSASVAFAPDAPLLAAGTMAGAIDLSFSSLANLEIFKLDFQSDDPE LPVVGECPSNERLNRLSWGSAGGSFGIIAGGLVDGTINIWNPATLINSEDNGDA LIARLEQHTGPVRGLEFNTISTNLLASGAEDGELCIWDLANPTAPTHFPPLKGV GSGAQGEISFLAWNRKVQHILASTSYSGTTVVWDLRRQKPIISFPDATRRRCSV LQWNPDASTQLIVASDDDNSPTLRAWDLRNTISPYKEFVGHSRGVIAMSWCPSD SLFLLTCAKDNRTLCWDTGSGEIVCELPAGANWNFDVQWSPKIPGILSTSSFDG KIGIHNIEACSRNVSGEVEFGGAIVRGGPSALLKAPKWLERPAGVSFGFGGKLA SFRPSTVAQAADHRHSEVFIHNLVTEDNLVIRSTEFEAAIADGEKVSLRALCDR KAEESQSDEEKETWNFLRVMFEDEGTARTKLLEHLGFKVQSEENGDLQETHSSK IDDIGSEIGKTLTLDDKTEEDVLPQLKGGQDAAIPQDNGEDFFDNLHSPKEEVS WD40 repeat LSHVGNDFVGEKDKDMVVNGAEIEHETEDLTEYSDWNEAIQHSLVVGDYKGAVL 454 21 37 protein QCLSANRMADALIIAHLGGNSLWEKTRDEYLKKAKSSYLKVVSAMVNNDLTGLV NSRPLKSWKETLAMLCTYSQREEWTVLCDMLASRLIAAGNVMAATLCYICAGNI EKTVEIWSRSLKYDYDGRSFVDHLQDVMEKTVVLALATGQKRVSPSLSKLVENY AELLASQGLLTTAMEYLKLLGTEESSHELSILRDRLYLSGTDNKVEASSFPFET RQDLTESQYNMHQTGFGAPETQKNYQENVHQVLPSGSYTDNYOPTANTHYIAGY QPAPQQQPSFQNYFTPASYQPAPSPNVFYPSQVSQAEQSNFAPPVNQPPMKTFV PSTPPILRNVDQYQTPSLNPQLYQGVSSATVETHPYQTGAPASVSVGTTPGQPS VVPNFMVPGPVTAPTVTPRGFMPVTTPTQHPLGSANPPVQPQSPOSSQVQSVTA ATTPPPTIQNVDTSNVAAEIRPVIGTLRRLYDETSEALGGARANPAKRREIEDN SRKIGSLFAKLNSGDISSNAASKLVHLCOALESRDYATAFQIQVGLTTSDWDEC SFWLAALKRMIKVKQNMR MAGAADSQLOTLSERDSTPNFKNLHTREYAAHKKKVHSVAWNCTGTKLASGSVD QTARVWNIEPHGHSITKDLELKGHADSVDQLCWDPKHSELLATASGDRTVRLWD ARSGKCSQQVELSGENINITFKPDGTHIAVGNRDDELTIIDVRKFKPLHKRKFS 455 YEVNEIAWNTTGELFFLTTGNGTVEVLSYPSLQVLHTLVAHTAGCYCIAIDPIG 269 1252 RYFAVGSADALVSLWDLSEMLCVRTFTKLEWPVRTISFNHDGQYIASASEDLFI DIADVQTGRTVHQISCRAAMNSVEWNPKYNLLAFAGDDKNKYMQDEGVFRVFGF ETP MAATSPVGAGSGRELANPPTDGISNLRFSNHSDHLLVSSWDRKVRLYDASANSL KGQFVHGGPVLDCCFHDDASGFSGSADNTVRRYDFSTRKEDILGRHEAPVRCVE WD40a repeat YSYAAGQVITGSWDKTLKCWDPRGASGQEKTLVGTYSOLERVYSMSLVGHRLVV 456 ATAGRHINVYDLRNMSQPEQRRESSLKYQTRCVRCYPNGTGFALSSVEGRVAME 214 1242 FFDLSEAGQAKKYAFKCHRKSEAGRDTVYPVNAIAFHPIYGTFATGGCDGYVNV WDGNNKKRLYQYSKYPTSIAALSFSRDGRLLAVASSYTFEEGEKPHEPDAVFVR SVNEAEVKPKPKVYAAPP 222 WO 2005/065339 PCT/US2004/043804 Protein Patent Patent SEQ ID Target Patent PEPTIDE Sequence ORF ouY start stop MASDDEEGFKNEEAPGVVDEAEVQEGL\CFPLSFGKQEKKQAPLESIHSATKR PEDPRPRRQLGPPRPPPSILAEQEDSDRFVGPPRPPQFVRDDNDDGEAEIMIGP PRPPAQYSDDHDNEETIGPPKPSYLEKGEETDQMVGPSKRGSDDETSGDSDDGD DAVDFRVPLSNEIVLRGHTKVVSALAIDQTGSRVLTGSYDYSVRMYDFQGMTSQ LKSFRQLEPAEGHQVRSLSWSPTSDRFLCVTGSAQAKIFDRDGLTLGEFVKGDM 457 WD40 repeat YLRDLKNTKGHISGLTCGEWHPKEKQTILTCSEDGSLRIWDVNDFNTQKQVIKP protein KLAKPGRVPVTACAWGRDGKCIAGGVGDGSIQVWNLKPGWGSRPDLYVAKGHDD 119 2065 DITGLQFSADGNILLTRSTDETLKVWDLRKAITPLQVFRDLPNNYAQTNVAFSP DERLIFTGTSVERDGNSGGLLCFYDRQTLELVLRIGVSPVHSVVRCTWHPRHNO VFATVGDKKEGGAHILYDPALSERGALVCVARAPRKKSLDDFEAKPVIHNPHAL PLFRDEPSRKRQREKARMDPMKSQRPDLPVTGPGFGGRVGSTKGSLLTQYLLKE GGLIKETWMEEDPREAILKYADVAADPKFIAPAYAQTQPETVFAETDSEEEQK MKERGQSHAGQPSVDERYTQWKSLVPVLYDWLANHNLVWPSLSCRWGPQMHQAT YKNSQRLYLSETDGTVPNTLVIATCEVVKPRVAAAEHISQFNEEARSPFVKKF KTIIHPGEVNRIRELPQNSKIVATHTDGPDVLIWDVDTQPNRQATLGAADSRPD LVLTGRKDNAEFALAMSPSAPFVLSGGKDKCVLLWSIQDHISAATEPSSAKASK WD040 repeat 458 TPSSAHGEKVPKIPSIGPRGVYKGHKDTVEDVQFCPSNAQEFCSVGDDSALILW 186 1550 DARNGNEPVIKVEKAHNADLHCVDWNPHDENLILTGSADNSVRMFDRRNLTSSG VGSPVXKFEGHSAPVLCVQWCPDKASVFGSAAEDSYLNVWDYEKVGKNVGKKTP PGLFFQHAGHRDKVVDFHWNSFDPWTIVSVSDDGESTGGGGTLQIWRMSDLIYR PEDEVLAELERFRAHILSCQNK MSSLSRELVFLILQFLDEEKFKESVHKLEQESGFFFNMKYFDEKAQAGEWDEVE RYLSGFTKVDDNRYSMKIFFEIRKQKYLEALDRQDRAKAVDILVKDLKVFSTFN EELYKEITQLLTLDNFRENEQLSKYGDTKSARTIMMSELKKLIEANPLFREKLI YPNLKASRLRTLINQSLNWQHQLCKNPRPNPDIKTLFTOHACGPPNGARTPTQP TASLGVLPKATTFTPIGPHGPFPSSSTATSGLASWMSNPNMVTSPQAPVAVGPS VPVPPNQATLLKRPRTPPGSSSVVDYQTADSEQLIKRLRPVSQSIDEATYPGPT LRVPWSTDDLPKTLARALNEPYPVTSIDFHPSQQTFLLVGTKNGEITLWEVGSR EKLATRSFKIWDNANCSNHLEAAFVKDSSVSINRVLWSPDGTLIGIAFTKHLVH TYTFQGLDLRQHLEIDAHVGGVNDLAFSHPNKQLCVVTCGDDKMIKVWDAVTGR WD40 repeat KLYNFEGHDAPVYSVCPHHKENIQFIFSTAVDGKIKAWLYDHLGSRVDYDAPGH 459protein SCTTMMYSADGTRLFSCGTSKEGESFLVEWNESEGAIKRTYSGLRKKGSGVVQF 244 3671 DTTQNHFLAVGDEHLIKFWDMDSTNMLTSCDAEGGLLNLPRLRFNKEGSLLAVT TVNGIKILANADGQKLLKTMENRTFDLPSPAHIDAASATSSPATGRMERIERTS SANTVSGINGVDPAQSSEKLRLSDDLSEKTKIWKLTEITDSIQCRCITLPENAA EPASKVSRLLYTNSGVGLLALGSNAVHKLWKWNRSEQNPSGKATASVHPQRWOP TSGLLMTNDITDINPEEAVPCIALSKNDSYVMSASGGKVSLFNMMTFKVMTTEM PPPPASTFLAFHPQDNNIIAIGMEDSTIHIYNVRVDEVKTKLKGHQKRITGLAF SSTONILVSSGADAQLCVWNTETWEKRKSKTIQMPVGKTVSGDTRVQFHSDQLH ILVVHETQLAIYDAYKLERQYQWVPQDALSAPILYATYSCNRQLIYATFSDGNI GVYDAEILRPRCRIAPTTYLSSGTSSSTSLPLVVAAHPHEPNQFAIGLSDGAVQ VLEPSESEGKWGVSPPPENGVVPAVVAGPSTSNQGSEQAPR 223 WO 2005/065339 PCTUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MAKDEEEFRGEMEERLVNEEYKIWKKNTPFLYDLVITHALEWPSLTVQWLPDRE EPPGKDYSVQKMILGTHTSDNEPNYLMAQVQLPLEDAENDARQYDDERGEIGG FGCANGKVQVIQQINHDGEVNRARYMPQNPFIIATKTVSAEVYVFDYSKHPSKP 460 WD40 repeat PQDGGCHPDLRLRGHNTEGYGLSWSPFKHGHLLSGSDDAQICLWDINVPAKNKV 163 1431 protein LEAQQIFKVHEGVVEDVAWHLRHEYLFGSVGDDRHLLIWDLRTSATNKPLHSVV AHQGEVNCLAFNPFNEWVLATGSADRTVKLFDLRKISSALHTFSCHKEEVFQIG WSPKNETILASCSADRRLMVWDLSRIDEFQTPEDALDGPPELLFIHGGHTSKIS DFSWNPCEDWVIASVAEDNILQIWQMAENIYHDEEDDMPPEEVV MSPGVKQTGSQKFESGHQDVVHDVTMDYYGKRIATCSADRTIKLFGLNASDTPS LLASLTGHEGPVWQVAWAHPgFGSMLASCSYDGRVIIWREGQQENEWSQVQVFK 461 WD40 repeat EHEASVNSISWAPNELGLCLACGSSDGSITVFTCREDGSWDKTKIDQAHQVGVT 155 1081 protein AVSWAPASAPGSLVGQPSDPIQKLVSGGCDNTAKVWKFYNGSWKLDCFPPLQMH TDWVRDVAWAPNLGLPKSTIASCSQDGKVVIWTQGKEGDKWEGRILNDFKIPVW RVNWSLTGNILAVADGNNSVTLWKEAVDGDWNQVTTVQ MSSGVKQTGSQKFESGHQDVVHDVTMDYYGKRIATCSADRTIKLFGMNTSDTPT LLASLTGHEGPVWQVAWAHPKFGSMLASCSYDRRVIIWREGQQENEWSQVQVFK WD40 repeat EHEASVNSISWAPHELGLCLACGSSDGSITVFTGREDGSWDKTKIDQAHQVGVT 537 1463 protein AVSWAPASAPGSLVGQPSDPVQKLVSGGCDNTAKVWKFYNGSNKLDCFPPLQMH TDWVRDVAWAPNLGLPKSTIASCSQDGRVVIWTQGKEGDKWEGKILNDFKTPVW RISWSLTGNILAVADGNNNVTLWKEAVDGEWNQVTTVQ MKKRSRPSNGHLSTAAKNKSRKTAPITKDPFFDSAHNRNKSKGKGKSRGKGEEI FSSDEDDDAIGRDAPAEEEEEIAEEERETADEKRLRVAKAYLDKIRAITKANEE DNEEEAGEDEETEAERRGKRDSLVAEILQQEQLEESGRVQRQLASRVVTPSKLV ECRVVKRHKQSVTAVALTEDDLRGFSASKDGTIIHWDVETGASEKYEWPSOAVS' VSSSNEVSKTQKGKGSKKQGSKHVLSMAVSSDGRYLATGGLDRYIHLWDTRTQK 463 WD40 repeat HIQAFRGHRGAVSCLAFRQGTQQLISGSFDRTIKLWSAEDRAYMDTLYGHOSEI 284 1909 protein LAVDCLRKERVLSVGRDHTLRLWKVPEETQLVFRGHAASLECCCFINNEDFLSG SDDGSIELWSMLRKKPVFMAINAHGHAIVENLSEDTSTREEPDEEVTTRQLPNG NSIGNGMTNQMGITPSVESWVGAVTVCRGTDLAASGAGNGVVRLWAIENSSKSL RALHDIPLTGFVNSLTFARSGRFLIAGVGQEPRLGRWGRIQAARNGVTLCPIEL S MAATFGTINTATSPHNPNKSFEIVQPPNDSISSLSFSPKANYLVATSWDNQVRC WEVLQTGASMPKAAMSHDQPVLCSTWKDDGTAVFSAGCDKQAKMWPLLTGGQPV TVAMHDAPIKDIAWIPEMNLLATGSWDKTLKYWDTRQSNPVHTQQLPERCFALS 464 WD40 repeat VRHPLMVVGTADRNLIIFNLQNPQTEFKRISSPLKYQTRCVAAFPDKOGFLVGS 610 1659 protein IEGRVGVHHVEEAQQSKNFTFKCHRDSNDIYAVNSLNFHPVHQTFATAGSDGAF NFWDKDSKQRLKAMARSNQPIPCSTFNSDGSLYAYAVSYDWSKGAENHNPATAK HHILLHVPQESEIKGKPRVTTSGRK 224 WO 2005/065339 PCTIUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MVVMDKGTHQTNEDESESEFIDEDDVIDEISIDEEDLPDADVEGEDVQEDNKRS EPDENSSSLDDAIHTFEGHEDTLFAVACSPVDATWVASGGGDDKAFMWRIGHAT PFFELKGHTDSVVALSFSNDGLLLASGGLDGVVRIWDASTGLIHVLDGPGGGI 465 WD40 repeat EWVRWHPKGHLVLAGSEDYSTWMWNADLGKCLSVYTGHCESVTCGDFTPDGKAI 241 1452 protein CTGSADGSLRVWNPQTQESKLTVKGYPYHTEGLTCLSISSDSTLVVSGSTDGSV HVVNIKNGKVVASLVGHSGSIECVRFSPSLTWVATGGMDKKLMIWELQSSSLRC TCQHEEGVMRLSWSLSSQHIITSSLDGIVRLWDSRSGVCERVFEGHNDSIQDMV VTVDQRFILTGSDDTTAKVFEIGAF MPVFRTAFNGYAVKFSPFVETRLAVATAQNFGIIGNGRQHVLELTPNGIVEVCA FDSSDGLYDCTWSEANENLVVSASGDGSVKIWDIALPPVANPIRSLEEHAREVY 466 WD40 repeat SVDWNLVRKDCFLSASWDDTIRLWTIDRPQSMRLFKEHTYCIYAAVWNPRHADV 223 1173 protein FASASGDCTVRIWDVREPNATIIIPAHEHEILSCDWNKYNDCMLVTGSVDKLIK VWDIRTYRTPMTVLEGHTYAIRRVKFSPHQESLIASCSYDMTTCMWDYRAPEDA LLARYDHHTEFAVGIDISVLVEGLLASTGWDETVYVWQHGMDPRAC MDSRNRRSRLNLPPGMSPSSLHLETTAGSPGLSRVNSSPSTPSPSRTTTYSDRF IPSRTGSRLNGFALIDKQPQPLPSPTRSAAEGRDDASSSSASAYSTLLRNELFG EDVVGPATPATPEKSTGLYGGSRDSIKSPMSPSRNLFRFKNDHGGNSPGSPYSA STVGSEGLFSSNVGTPPKPARKITRSPYKVLDAPALQDDFYLNLVDWSSNNVLA 467 WD40 repeat VGLGTCVYLWSACTSKVTKLCDLGVNDSVCSVGWTPQGTHLAVGTNIGEVQIWD 251 1777 protein TSRCKKVRTMGGHCTRAGALAWSSYILSSGSRDRNILHRDIRVQDDFIRKLVGH KSEVCGLKWSYDDRELASGGNDNOLLVWNQOSAQPLLRFNEHTAAVKAIAWSPH QHGILASGGGTADRCLRFWNTATDTRLNCVDTGSQVCNLVWCKNVNELVSTHGY SQNQIMVWRYPSMSKLATLTGHTLRVLYLAISPDGQTIVTGAGDETLRFWSIFP SPKSQSAVHDSGLWSLGRTHIR MEKKKVVVPIVCHGHSRPIVDLFYSPVTPDGLFLISASKDSSTMLRNGETGDWI GTFEGHKGAVWSCCLDNI\ALRAASGSADFSAKIWDALTGDELHCFVHKHIVRAC AFSESTSLLLTGGHEKILRIFDLNRPDAPPKEVDNSPGSIRTVAWLHSDQTILS 468 WD40 repeat SNSDAGGVRLWDLRTEKIVRVLETKSPVTSAEVSQDGRYITTADGNSVKFWDAN 367 1419 protein HFGMVKSYTMPCMVESASLEPTMGNMFVAGGEDMWVRLFDFHTGEEIACNKGHH GPVHCVRFAPGGESYSSGSEDGTIRIWQTLNMNSEENESYGVNGLSGKVRVGVD DVVQKVEGFQITADGHLNDKPEKPNP MERYSQGTQKKSEIYTYEAPWQIYGMNWSVRKDKKFRLGIGSFLEEYNNRVEII ELDEESGEFKSDPRLAFDHPYPTTKIMFVPDKECQRPDLLATTGDYLRIWQVCE DRVEPKSLLNNNKNSEFCAPLTSFDWNDADPKRIGTSSIDTTCTIWDIEKEVVD 469 WD40 repeat TQLIAHDKEVYDIAWGEVGVFASVSADGSVRVFDLRDKEHSTIIYESSQPETPL 284 1303 protein LRLGWNKQDPRFIATILMDSCKVVILDIRFPTLPVAELQRHQASVNTIAWAPHS PCHICTAGDDSQALIWELSSVSQPLVEGGGLDPILAYTAAEINQLQWSSMQPD WVAIAFSNEVQILRV 225 WO 2005/065339 PCT1fUS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MQSENNLDESLHLREVQELQGHTDTVWAVAWNPVTGIDGAPSMLASCSGDKTVR IWENTHTLNSTSPSWACKAVLEETHTRTVRSCAWSPNGKLLATASFDATTAIWE NVGGEFECIASLEGHENEVKSVSWSASGMLLATCGRDKSVWIWDVQPGNEFECV 470 WD40 repeat SVLQGHTQDVKMVQWHPNRDILVSASYDNSIKVWAEDGDGDDWACMQTLGNSVS 684 1784 protein GHTSTVWAVSFNSSGDRMVSCSDDLTLNVWDTSINPAERSGNAGPWKHLCTISG YHDRTIFSVHWSRSGLIASGASDDCIRLFSESTDDSVTPVDGTSYKLILKKEKA HSMDVNSVQWHPSEPQLLASASDDGRIKIWEVTRINGLANSH MKRAYKLQEFVAHASNVNCLKIGKKSSRVLVTGGEDHKVNMWATGKPNAILSLS GHSSAVESVTFDSAEALVVAGAASGTIKLWDLEEAKIVRTLTGHRSNCISVDFH PFGEFFASGSLDTNLKIWDIRRKGCIHTYKGHTRGVMSIRFSPDGRWVVSGGED NIVKLWDLTAGKLMHDFKCHEGQIQCMDFHPQEFLLATGSADRTVKFWDLETFE LIGSAGPETTGVRAMIFNPDGRTLLTGLHESLKVFSWEPLRCYDAVDVGWSKLA DLNIHEGKLLGCSYNQSCVGVWVVDISRVGPYAAGNVSRTNGHNEAKLASSGHP SVQQLDNNLKTNMARLSLSHSTESGIKEPKTTTSLTTTEGLSSTPQRAGIAFSS 471 WD40 repeat KNLPASSGPPSYVSTPKKNSTSRVQPTTNFQTLSRPDIVPVIVPRSNSLRPETT 336 2738 prSDVKKEMNNFGRVVPSTVSTKSTDVIKSGSNRDESDKIDSINQKRMTGNDKTDL NIARAEQHVSSRLDNTNTSSVVCDGNQPAARWIGAAKFRRNSPVDPVVSPHDRS PTFPWSATDDGVTCQPDRQVTAPELSKRVVEPGRARALVASWETREKALTADTP VLVSGRPPTSPGVDMNSFIPRGSHGTSESDLTVSDDNSAIEELMQQHNAFTSIL QARLTKLQVIRRFWQRNDLKGAIDATGKMGDHSVSADVISVLIERSEIFTLDIC TVILPLLTRLLQSETDRHLTVAMETLLVLVKTFGDVIRATISATPTIGVDLQAE QRLERCNLCYVELENIKQILVPLIRRGGAVAKSAQELSLALQEV MSTLEIEARDVIKIVLQFCKENSLHQTFQTLQNECOVSLNTVDSLETFVADINS GRWDVILPOVAQLKLPRKKLEDLYEQIVLEMIELRELDTARAILRQTQAMGFMK QEQPERYLRLEHLLVRTYFDPREAYHESSKEKRRSQIAQALASEVTVVPPSRLM ALIGQSLKWQQHQGLLPPGTQFDLFRGTAAVKADEEEMYPTTLAHTIKFGKQSH WD40 repeat PECARFSPDGQYLVSCSVDGFIEVWDYISGKLKKDLQYQADDSFMMHDDAVLCV 472 81 1622 protein DFSRDSEMLASGSQDGKIKVWRIRTGQCLRRLERAHSQGVTSLSFSRDGSQLLS TSFDSTARIHGLKSGKALKEFRGHTSYVNDAIFTSDGGRVITASSDCTVKVWDV KTTDCIQTFKPPPPLKGGDVSVNSVHLFPKNSEHIVVCNKASSIYIMTLQGQVV KSFSSGKREGGDFVAACISPKGEWIYCVGEDRNIYCFSQQSGKLEHLMKAHDKD IIGVTPHPHRNLLVTYSEDSTMKIWKP MDIELEDQPFDLDFHPSAPIVAVALITGRLQLFRYVDISSEPERLWTVTAHTES CRAARFINAGSSVLTASPDCSILATNVETGQPVARLDNAHGAAINCLTNLTEST IASGDENGIIKVWDTRQNSCCNKFKAHEDYISDMEFVPDTMQLLGTSGDGTLSV 47340 p CNLRKNKVHARSEFSEDELLSVALMKNGKKVVCGSOEGVLLLYSWGYFKDCSDR 399 1460 protein FVGHPHSVDALLKLDEDTVLTGSSDGIIRVVSILPNKMIGVIGEHSSYPIERLA FSHDRNVLGSASHDQILKLWDIHYLHEDDEPETNKOEAVNDENVDMDLDVDTEK RPRGSKRKKRAEKGQTSSQKQSSDFFADI 226 WO 2005/065339 PCT/1JS2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MDRIQQIPHTCVARKINLPLGMSKESLALNLPANLAPTMSPPSITYSDRFIPSR KASNFEEFALPDKTSPSPNSAGGQSSSTNGEGRDDACAAYSALLRTELFPATPD KTEGCRRPVIGSPSGNVFRFKSQQCKSQSPFSLCPVGEDGDLSETGAVARKTTR KIPRSPFKVLDAPALQDDFYLNLVDWSSHNILAVGLSACVYLWSASSSKVTKLC 474 WD40 repeat DLGLDDNVCSVAWTQRGTYLAVGTNNGGVQIWDAAHCKQVRTMEGHCTRVGTLA 207 1673 protein WNSHILSSGGRDRNILQRDIRAQDDFVSKFSGHKSEVCGLKWSYDNRELASGGN DNOLFVWNQQSQQPVLKYNERTAAVKAIAWSPHQHGLLASGGGTADRCIRFWNT ATNTSLNCVDTGSQVCNLVWSKNVNELVSTHGYSQNQIIVWRYPTMSKLATLTG HTLRVLYLAISPDGOTIVTGAGDETLRFWNVFPSSKTQQNTIRDMGVWSSGRTH IR MAGGQGEGEEKVDKLSMELTEDVMKSMEIGAVFKDYNGKINSLDFHRTNNYLVT ASDDEAIRLFDTASATWQKTSYSKKYGVDLICFTNHQTSVLYSSKNGWDESLRH LSLMDNKYLRYFKGHHDRVVSLCMSPKGECFMSGSLDRTVLLWDLRIDKCQGLI 475 WD40 repeat RVRGRPAVAYDEQGLVFAISNEGGLIKMFDARLYDKGPFDTFVVEGDKSEASGI 263 1309 protein KFSNDGKLILLSTMDSNIHVLDAYQGTTVHSFSVEAVPNGGEAVPNGGTLEASF SPDGKFVISGSGNGNIHAWSVNSGKEVACWTTEGVIPAVVKWAPRRLMFASGSS VLSLWVPDLSKLASLTGSNSNSAY MHRVGSTGNTSNSSRPRREKRLTYVLNDANDSRHCSGINCLVISKLSLLGGNDY LFSGSRDGTLKRWELADDSAVCSATFESHVDWVNDAVLTGETLVSCSSDTTLKT WRPFSDGVCTRTLRQHSDYVTCLAAASKNSNIVASGGLGREVFIWDIEAAMAPV SRTSEAMDDDTSNGVLSSGNSVLSTTVRSTNATNSASLHTSQLQGYTPIAAKGH KESVYALAMNDVGTLLVSGGTEKVVRVWDPRSGAKQMKLRGHTDNVRALILDST GRFCLSGSSDSIIRLWDLGQQRCVHSYAVHTDSVWALASTPNFSHVYSGGRDLS LYLTDLTTRESLLLCMEKHPLLRLTLQDDSIWVATTDSSLHRWPAEGQNPPKMF 476 WD40 repeat ORGGSFLAGNLSFTRARACLEGSAPVPVNTQPSFVIPGSPGIVQHEILNNRRHV 232 2529 protein LTKDAEGTVKLWEITRGAVLDDYGKVSFEEKKEELFEMVSIPAWFTMDTRLGSM SVHLDTPQCFTAEMYAVDLNVPDAPEEQKINLAQETLRGLLAHWLSRRRQRLAT QASANGDFPAGQENALRNHISSRIDVHDDAETHIAGILPAFDFSTTSPPSIITE GSQGGPWRKKITDLDGTEDEKDFPWWCLECVLHGRLSPRESLKCSFYLHPYEGT TVQVLTQGKLSAPRILRIQKVINYVLEKMVLDRPLDSSNSETTFTPGLSGNQSH AAVVGDGSLRSGARVWQQKAKPLVEILCNNQVLSPDMSLATVRTYIWKKPDDLY LYYRLVQNR 227 WO 2005/065339 PCTIUS2004/043804 Patent Patent Protein Target Patent PEPTEDE Sequence ORF ORF SEQ ID start stop MMKGKTIQMQAAHQNHDGETSVACVLWDWHAKHLITAGADNTILIHSYPSSSSS KPITLRHHKNAVTALAINSNVRSLASGSVDHSVKLYSYPGGEFQSNVTRFTLPI RSLAFNKSGELLAAAGDDEGIKLISTIDNSIARVLKGHNGPVTSISFDPKNEFL ASSDSDGTVIYWELSTGKPVHTLKKIAPNTTSNPTSLNQISWRPDGEMLAVPGR KSEVSMYDRDTAEKLFSLKGGHSDTICSLAWSPNGKYIATAGTDRQVMVWDADR RQDIDKQRFDNPICSVAWKPSDNALAVIDVLGRFGVWESPIASHMKSPADGAER YDNMEDEEPLMARYEEELEDSVSGSLNEIINDDDDDDEMGKIPRKILQKKPSVK VEKGKEESNAKAFKSGQDSFKLKSAMQEAFQPGATQRQSGKRNFLAYNMLGSVI WD40 repeat TFDNDGFSHIEVDFHDIGKGCRVPSMTDYFGFTMASLSESGSVFGSPQKGEKNP 56 2950 protein STLMYRPFSSWANNSEWSMRFPMGEEVKAVALGSGWVAAVTSLNFLRVFSEGGL QKFVLSMDGPVVTAAGYENLVVVSHASNPLLSGDQVLSFTVYDISQKTCPLSG RLPLSPGSHLTWLGFSEEGLLSSYDSEGNLRVFTNDYNGCWVPIFSAARERKSE TESIWMVGLNSTQVFCVVCKLPDTYPQVAPKPVLSVLNLSLPLACSDLGADDLE NEYLRGSLLLSQMQKKAEDAVACGRESNMEEDSIFKMEAALDRCLLRLIANCCK GDKLVRATELARLLSLEKSLQGAIKLVSAMKLPMLAERFNTILEEKILOENMET ISCRRLTSEAQDMDTPISISVKQVSYGANLGDSPFLPNROVEPKHSTPVFSKPD TKIEVDTSEAIAKGCDAQNGNIKSGDAEVQPASHNDSIQKPSNPFAKASNTSAN QAVQRNASLLSSIKQMKTATENEGKRKERARSGSLPOKPAKQSKIS MKQKRKGHQVDDPKYSVQTPOEDDTPNESGPASEEVESSDEEGGNSSNIEDDII YSSSEEDPVVSSDYEEDEDAESDAEGVTAEQELEGDIDNALQNYMGTLTVLSNF HGENLKNAEGEDTSGDDDDEEEMPKRAEESDSPEDENDERPKRAEESDFSEDED EERPKRAEESDSSEDEVPSRNTVGDVPLRWYKDEQHIGYDIKGKKIKKQPKKDQ LDSFLASTDDSSDWRKVYDEYNDEEVELTKDEIKFISRLRKGTIPHADVNPYEP YVDWFDWKDKGHPLSNAPEPKRRFIPSKWEAKKVVKLVRAIRKGWITFQKAEEK PRFYLMWGDDLKPSEKMANGLSYIPAPKPKLPGHEESYNPPPEYIPTQEEINSY 478 WD40 repeat QLMYEEDRPKFIPKRFDSLRNVPAYDRFLSEIFERCLDLYLCPRTRKKRINIDP 193 2577 protein ESLIPKLPKPKDLQPFPSICFLEYKGHTGAVSCISPESSGQWLASGSKDGTVRI WEVETARCLKVWDIGRPIQHIAWNPVSQLSILAVAVDEEVLVLNTGLGSEDSOE KVAELLHVKSKPVSADDLGDNTSLTKWIKHEKFDGIKLTHLKPVHLISWHHKGD YFATVAPDGNTRAVLVHQLSKQQTQNPFKKMQGRVVHVLFHPSRAIFFVATKTH VRVYDLVKQQLVKRLVTGLHEVSSMAVHHKGDNLLVGSKEGKVCWFDMDLSTQP YKTLKNHSKDIHSVAFHDSYPLFASCSDDCKAYVFYGLVYSDLLQNPLIVPLKV LOGHQSVNGMGVLDCQFHPKQPWLFTAGADSVVKLYCN MMSLKRGFEESLVPAKRQKTELSTVTYGDGPRRTSSLESPIMLLTGHHAAIYTM KFNPTGTVIASGSHEREIFLWNVHGDCKNFMVLKGHKNAVLDLHWTTDGCQIIS ASPDKTLRAWDVETGKQIKKMAEHSSFVNSCCPSRRGPPLVVSGSDDGTAKLWD 479 WD40 repeat LRHRGAIQTFPDKYQITAVGFSDAADKIYSGGIDNEIKVWDLRRGEVTMRLQGH 187 1233 protein TDTITGMQLSSDGSYLLTNSMDCSLRIWDMRPYAPONRCVKILTGHQHNFEKNL LKCSWSSDGSKVTAGSADRMVYIWDTTTRRILYKLPGHTGSVNETGFHPTQPII GSCSSDKQIYLGEIEPNVGYQAVI 228 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MEFSDTYKHTGPCCFSPDARYLAIAVDYRLVIRDVVTLKVVQLYSCMDKISNIE WALDSEYILCGLYKRAMVQAWSLSQPEWTCKIDEGPAGIAHARWSPDSRHIITT SDFQLRLTVWSLVNTACIHIQWPKHASKGVSFTODGKFAAIATRRDCKDYVNLL SCHTWEVMGTFTVDTIDLADLEWSPNDSAIVVWDSPLEYKVLIYSPDGRCLFKY 480 WD40 repeat QAYDSWLGVKTVAWSPCSQFLAVGSYDQTLRTLNHLTWKPFAEFVHVSTVRGPA 51 1436 protein SAVVFKEVEEPWNLDVSGLHLNDDNAHDIQDGKPAEGHSRVRYKVVEFPVNVSS QKHPVDKPNPKQGIGLLAWSRDSQYLFTRNDNMPTALWIWDICRLELAALLIQK EPIRAAAWDPVYPRVALCTGSSHLYMWTPSGACCVNIPLPQFVVSDLKWNPDGT SMLLKDRESFCCTFVPMLPEFNDDETNEE MAKLIETHSCVPSTERGRGILIAGDAKTNSIIYCNGRSVIMRNLDNPLEASVYG EHSYPATVARFSPNGEWVASGDTSGTVRIWGRGSDHTLKYEYKALAGRIDDLEW SADGQRIVVCGDSKGKSMVRAFMWDSGTNVGEFDGHSRRVLSCSFKPTRPFRVA TCGEDFLVNFYEGPPFRFKTSHRDHSNYVNCVRFAPDGSKFITVGSDRKGVIFD GKMGEKIGELSKEGGHTGSIYAASWSPDSKQVLTVSADKSAKIWEISETGNGTV 481 WD40 repeat KKTLTFGSQGGADDMLVGCLWLNDYLITVSLGGIVSLLSAVDPDKPPKTISGHM 525 2351 protein KSINAIALSLQSGQSEVCSSSYDGVIVRWILGVGYAGRVERKDSTQIKCLATIE GELVTCGFDNKVRRVPLLSEQHKESEPIDIGAQPKDLDVAVGCPELTFVSTDAG IIIIRASKIVSTTNVGYAVTAAAISPDGTEAVVGGQDGKLRVYSIKGDTLLEES VLERHRGPINAIRFSPDGSMFASGDLNREAVVWDRITREVLKNMVYHTARINC IAWSPDSSKVATGSLDTCILIYEVGKPASSRITIKGAHLGGVYGLAFSDQSTVI SAGEDACVRVWSLP MPQPSVILATAGYDHTVRFWEATSGRCYRTLOYPDSQVNHLEITPDKQYLAAAG NPHIRLFEVNSNNPQPVISYDSHTNNVTAVGFQCDGKWMYSGSEDGTVKIWDLR 482 WD40 repeat APGFQREYESRAAVNTVVLHPNQTELISGDQNGNIRVWDLNANSCSCELVPEDT 152 1099 protein AVRSLTVMWDGSLVVAANNHGTCYVWRLMRGTQTMTNFEPLHKLQAHNSYILKC LLSPEFCEHHRYLATTSSDQTVKIWVDGFTLERTLTGHQRWVDCVFSVDGAF LVTASSDSTARLWDLSTGEAIRTYQGHHKATVCCALHDGTDGASC 229 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MLTKFETKSNRVKGLSFHPKRPWILASLHSGVIQLWDYRMGTLIDKFDEHDGPV RGVHFHKTQPLFVSGGDDYKIKVWNYKMRQCLFTFVGHLDYIRTVHFHNEYPWI VSASDDQTIRLWNWSRVCISVLTGHNHYVMSASFHPKEDLVVSASLDQTVRVW DISGLRKKTVSPADDLSRLAQMNTDLFGGGDVVVKYVLEGHDRGVNWAAFHTSL PLIVSGADDRQVKLWRMNDTKAWEVDTLRGHTNNVSCVIFHARQDIIVSNSEDK SIRVWDMSKRTSVQTFRREHDRWILAAHPEMNLLAAGHDSGMIVFKLERERPA YVVYGGSLLYVKDRYLRTYEFATQKDNPLIPIRKPGSIGPNQGPRSLSYSPTEN AILICSDADGGAYELYAVPKDSHGRSDTVQEAKKGLGGSAVFVARNRFAVLDKN HNQVTIKNLKNEVTKKFDLPVTADALFYAGTGNLLCRSEDSVFLFDMQQRTVLG EIQTPNVRYVVWSNDMENVALLSKHTIIIASKKLSSTCSLHETIRVKSGAWDDN GIFMYSTLNHIKYCLPNGDSGIIKTLDVPVYITKVSGKSLYCLDRDGKNRVIQI 483 WD40 repeat DITECLFKLALSKKKYDYVINMIRNSQLCGQAIIAYLQQKGFPEVALHFVRDER 470 4114 protein TRFNLAVESGNIEIAVASAKEIDEKDHWYRLGVEALRQGNAGIVEYAYQRTKNF ERLSFLYLITGNLDKLSKMLRIAEMKNDVMGQFHNALYLGDIQERIKILEESGH LHLAYATASLHGLADIADRLAADLGGNIPVLPPGKKSSLLMPPAPILHGGDWPL LRVTKGIFEGGLENSTSAAYEEEDEEAAADWGEDIDIENIEGENGEATVLDDQE VKGGEDDEGGWDMEDLELPPDVAAANVGTNQKTLFVAPTLGMPVSQIWMQKSSL AGEHAAAGNFETALRLLTRQLGIKNFSPLKPLFLELYMGSHTFLPSFASVPAFS LALQRGWSESASPNIRGPPALVYRLSVLEEKLTVAYRATTEGRFSEALRLFLNI LHTIPVIVVDSRKEIDEVKELIGIAKEYVLGLRMEVKRKEIRDDAVRQQELAAY FTHCNLQKAHLKLALLNAMGISYRCKNYNTAANFARRLLETDPSSNHATKARQV LQVCERNLQDATQLNYDFRNPFVVCGATFTPIYRGQKEVSCPYCMARFVPDIAG KLCSICDLAIVGSDASGLFCFATOTR MDLLQNYQDDSEDSNPELRNHPPLEDATATSAPAGVENETSSSPDSSPLRLALP AKSCAPDVDETLMALGVPGSEKKNNHNKPIDPTQHSVTFNPSYDQLWAPLYGPA HPYAKDGIAQGMRNHKLGFVEDSAIEPFMFDEQYNTFHRYGYAADPSASLGSHI VGDLESLKKNDGASVYNLPKREHKRQKLEKKMIQKDENEEEEKEVGEEVDNPST EEWLKKNRKSPWAGKKEGLQTELTEEQKKYAQEHAEKKGDREKGEKVEIVDKTT 484 WD40 repeat FHGKEERDYQGRSWIDPPKDAKATNDHCYIPKRWVHTWSGHTKGVSAIRFFPKY 196 2007 protein GHLLLSAGMDTKVKIWDVFNSGKCMRTYMGHSKAVRDISFSNDGSRFLSAGYDR NIKLWDTETGKVISTFSTGKIPYVVKLHPDEDKQNVLLAGMSDKKIVQWDMNSG EITOEYDQHLGAVNTITFVDNNRRFVTSSDDKSLRVWEFGIPVVIKYISEPHMH SMPSISLHPNTNWLAAQSLDNQILIYSTRERFQLNRKKRFAGHIAAGYACQVNF SPDGRFVMSGDGEGRCWFWDWKTCKVFRTLKCHDNVCIGCEWHPLEQSKVATCG WDGMIKYWD MARKGLGTDPAIGSLMSSKKRKEYKVTNRFQEGKRPLYAIAFNFIDARYHNIFA TAGGTRVTIYQCLEGGAISVLQAYVDDDKDESFYTLSWACDVNGSPLLVAGGHN GIIRVLDVANEKVHKSFVGHGDSVNEIRTQALKPSLILSASKDESVRLWNVQTG 485 WD4 p ICILIFAGAGGHRNEVLSVDFHPSDVYRIASCGMDNTVKIWSMKEFWTYVEKSF 214 1323 p TWTDLPSKFPTKYVQFPVFIAAVHSNYVDCTRWLGNFILSKSVDNEVVLWEPYS KEQSTSDGVVDILQKYPVPECDIWFIKFSCDFHYNSMAVGNREGKVYVWELOSS PPNLIARLSHAHCKNPIRQTAISHDGSTILCCCDDGSMWRWDVVQ 230 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQID start stop MESGAGGSVGARVPSAKPEMLQQPPYSNGDDDNDMERGTAPVPSSNPNTVSKWE LDKDFLCPICMQTMKDAFLTACGHSFCYMCIMTHLNNKSNCPCCSLYLTNNQLF PNFLLNKLLKKTSACQMASTASPVENLCLSLQQGAEVSVKELDFLLTLLAEKKR KMEQEEAETNMEILLDFLQRLRQQKQAELNEVQADLHYIKDDILALEKRRLELS RARERYSRKLHMLLDDPMDTTLGHAAIDDGNNVRTAFVRGGQGDAISGKFQQKK AEIKAQASSQGMQKRANFCHSDSQVLPTLSGLTIARKRRVLAQFDDLQECYLOK 486 WD40 repeat RRRWATQLRKQCDGGLRKERDGNSISREGYRAGLEEFQSILTTFTRYSRLRVIS 68 2146 protein ELRHGDLFHSANIVSSIEFDRDDELFATAGVSRRIKVFDFATVVNEPADVHCPV VEMSTRSKLSCLSWNKCIKSQIASSDYEGIVTVWDVNTRQSVMMYEEHEKRAWS VDFSRTEPTRLISGSDDGKVKVWCTRQETSVLNIDMKANICCVKYNPGSSYYVA VGSADHHIHYYDLRNPSVPLYEFNGHPKTVSYVKFISTNELASASTDSTLRLWD VRDNCLVRTFKGHTNEKNFVGLTVNSEYIACGSETNGVFVYHKAISKPAAWHQF GSPDLDDSDDDTSHFISAVCWKSESPTMLAANSQGTIKVLVLAP MANYVDSKKNFKCVPALQQFYTGGPFRLSSDGSFLVCACNDEVKVVDLATGSVK NTLEGDSELIVALALTPDNKYLFSASRSTQIKFWDLSSATCKRTWKAHNGPVAD MACDASGGLLATAGADRSILVWDVDGGYCTHSFRGHQGVVTTVIFHPDPHCLLL FSGSDDATVRIWDLVAKKCISVLEKHFSTVTSLAISENGWNLLSAGRDKVVNIW DLRDYHCRATIPTYEPLEAVCVLPTGSRLVSVMNQSRALPENRKKSGAAPVYFL TVGERGIVRIWYSEGALCLYEQKSSDAIISSDKDELKGGFVSAVLLPLTQGVMC VTADQRFLFYNLDESDEGKCDLKVSKRLIGYNEEIVDLKFLGDEEKFLAVATNL EQVRMYDLSSMTCVYELSGHTDIVLCLDTVVFSGHSLLASGSKDHTVRIWDTES 487 WD40 repeat KSCICVAAGHMGAVGAVAFSKKAKNFFVSGSSDRTIKVWSFASVLDFGGISKSI 874 3705 protein KLSSQAAVAAHDKDINSVAVAPNDSLICTGSQDRTARIWRLPDLVPVLVLRGHK RGVWCVEFSPVDQCVMTASGDKTIKIWALSDGSCLKTFEGHTASVLRASFLTRG TQFVSSGADGLLKLWTIKSNECIATFDQHEDKIWAMAVGKKTEMLATGGSDSLV NLWHDCTTTDEEEALLKEEEAALKDQELLNALADTDYVKAIQLAFELRRPYKLL NVFTELYSKGHAQDQIQKVIRELGNEELRLLLEYVREWNTKPKFAHVAQFVLFQ LFNVLPPKEIIEVQGISELLEGLIPYAQRHYSRIDRLMRSTFLLDYTLSSMSVL SPTETDLSSSNLLARTADPLHAOIDQFHPTHFPEPNLTPIOSLLDSGNTDSVEV TARRAKKKRVSGNDSEKTTVAEVKIGDMENAFDEPDVADQGSSRKHKPASSKKR KSIAVGNASIKRIASGNAVTIALQV MESSCSSMNSNRHSTEKRCLRPLQKQGASMNKHSSDRFIPARGSIDLDVARFMV TQKQKDNNDIHALSPSPSPSKKAYQKEMADTLLKNAGAADNNCRILSFNGKSST VSQGSOENVLANLSISRRARRYIPQSADRTLDAPDLLDDYYLNLLDWSSTNVLS TALGNTVYLWDASNSSISELLIADEEEGPVTSVSWAPDGSQIAVGLNNSVVQLW 488 WD40 repeat DSQSNKKLRALKGHHDRVGALSWNGPILTTGGLDGIIINHDVRTRDHIVQTYKG 360 1754 protein HTQEVCGLKWSPSGQQLASGGNDNLLYIWDKSMASHNPSSQYFHQLDEHCAAVK ALAWCPFQTNLLASGGGTSDGSIKFWNTQTGACLNTVDTHSQVCSLLWNRHERE LLSSHGLNQNQLTLWKYPSMVKITELTGHTARVLHMAQSPDGYTVASAAADETL KFWQVFGAPDASKKTKTKDTKGAFNMFHMHIR 231 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MLDEIVADEEEEFNIWKKNTPLLYDVVITHALEWPSLTVQWLPDRHQSPTKDYS LQKMIVGTHTSGDEPNYLMIAEVQMPLQYSEDGNVGGFESTEAKVHIIQQINHE GEVNRAQYMPQNSFIIATKTVSSDVYVFDYTKHSSNAPQERVCNPELILKGHTN 489 WD40 repeat EGYSLSWSPLKEGQLLSGSNDAQICFWDINAASGRKVVEAKQIFKVHEGAVEDV 185 1384 protein SWHLKHEYLFGSVGDDCHLLIWDTRTAAPNKPQHSVVAHESEVNSLAFNPFNEW LLATGSADKTVKLFDLRKLSCSLHTFSNHTEEVFQIEWSPMNETILASSGGDRR LMVWDLRRIGDEQTSEDAEDGPPELIFIHGGHTSKISDFSWNLHDDWLIASVAE DNILQIWQMAENIYHDDADIL MTKEDHGESRDEMGERMVNEEYKLWKKNTPFLYDLVITHALEWPSLTVQWLPPS CKQQQDIIKDDDIDHPNTQMVILGTHTSDNEPNYLILAEVQLHDGTEDEDGDGD VKRPQDKMKPGTSGGAMGKVRILQQINHQKEVNRARYMPQKPTIIATKTVNADV 490 WD40 repeat YVFDYSKHPSKPPQEGRCNPELRLOGHESEGYGLSWSPLKEGHLLSASDDAQIC 241 1533 protein LWDITAATKAPKVVEANQIFRYHDGPVEDVAWHAIHDHLFGSVGDDHHLLLWDI RNDSEKPLHIVEAHQAEVNCLAFNPFNEWIVATGSADRTVALHDIRKLDKVLHT CAHHMEEVFQIGWSPQNGAILASCGSDRRLMVWDLSRIGDEQNPEDAEEAPPEL LFIHGGHTSKISDFSWNPAEEWVIASVAEDNILVWQMSEHIYNDDNDSPTA MAMAMGDENAADPVEEFNIWKKNTPFLYDLVITHALEWPSLTVQWLPDRHQSST ADYSLQKMIVGTHTSEDEPNYLMIAEVQIPLQNSEDNIIGGFESTEAKVQIIQK INHEGEVNKARYMPQNSFVIATKTVSSDVYVFDYSKHPSKAPQERVCNPELILK 491 WD40 repeat GHSNEGYGLSWSPLKEGYLLSGSNDAQICLWDINAAFGKKVLEANQIFKVHEGA 230 1435 protein VGDVSWHLKHEYLFGSVGDDCHLLIWDMRTAAPNKPQQSVIAHQSEVNSLAFNP FNEWLLATGSMDKTVKLFDLRKLSCSLHTFSNHTDQVFQIEWSPMNETILASSG ADRRLMVWDLARIGETPEDEEDGPPELLFVHGGHTSKISDFSWNLNDDRVIASV AEDNILQIWQMAENIYHDDEDML MGLFEPFRALGYITDGVPFAVQRRGIETFVTLSVGKAWQIYNCAKLIPVLVGPQ MDKKIRALACWRDFTFAATGHDIAVFRRAHQVATWSGHKAKVTLLLSFGQHVLS VDLEGCLFIWAVAEVNQNKPPIGQIQLGEKFSPSCIMHPDTYLNKVLIGSEEGT LQLWNVNTRKKLYEFKGWGSSIRCCVSSPALDVVGIGCSDGKIHVHNLRYDEEI VTFMHSTRGAVTALSFRTDGQPLLAAGGSSGVISIWNLEKKKLQSVIKDAHDSS VCSLHFFANEPVLMSSATDNSIKMWIFDTTDGEARLLKYRSGHSAPPMCIRYYG KGRHILSAGQDRAFRIFSVIQDQQSRELSQGHVGKRAKKLKVKDEEIKLPPVIA FDAAEIRERDWCNVVTCHLDDPCAYTWRLQNFVIGEHILKPCLEDPTPVKSCSI 492 WD40 repeat SACGNFAVLGTEGGWLERFNLQSGISRGTYIDIGEKRQCAHNGAVVGLACDATN 101 2857 protein TLLISGGYNGDIKVWDFKGRELKFRWEIEVPLIKIVYHPGNGILATAADDMILR LFDVTAMRLVRIFVGHMDRVTDLCFSGDGKWLLSSSMDGTIRVWDIISSRQLNA MHMDSAVTALSLSPGMDMLATTHVGHNGIYLWANRMIYSKATDIEPFISGKQVV KVSMPTVSSKRESEEGDEKRTIVAESNVNKSDVSGSLIGDSYSAQLTPELVTLA LLPKAQWQSLVNLDIIKMRNKPIEPPKKPEKAPFFLPSLPTLSGERIFIPSSMN GDGDODETRNDKTVFEARGKKLGGESLSFMQLLQSCAKIKDFTTFTNYLKGLSP SAVDMELRLLQIVDNENISETEHSVELQGIGMLLDYFVNEVSCNNNFEFVQALI RLFLKIHGETIRCQVSLQEKARKLLEIQSSTWERLDTSFQNARCHITFLSSSQF 232 WO 2005/065339 PCT/US20041043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MIAAVCWVPKGVAKVLPDSAEPPTQEEIQELLKCNVVAESDDNEDSDEESEEMD TETDKNTDAVAKALAAANALGSSSDFQRQHKVDDIANGLKELDMDHYDDEDEG IDIFGSGSLGNCYYPANDMDPYLVEQDDDDEDEIEDMTIKPSDLIILSARNEDD VSHLEVWIYEEETEEGGSNMYVHHDIILPAFPLSLAWLDCNLKGGEKGNFVAVG WD40 repeat TMQPEIELWDLDVLDEVEPAVVLGGAVKDEASGKTTKLKKKKKNKQAVNFKEGS 493 43 1548 protein HTDAVLGLAWNMEYRNVLASASADKSVKIWDIVAEKCERTMQPHTDKVQAVAWN PNQATVLLSGSFDRSVIMMDMRAPTHSGIRWPVPADVESLAWDPHTDHSFMVSA EDGTVRGFDIRAAASTADFDGKPMFILHAHDKAVCAISYNPAAPSLLTTGSTDK MVKLWDITNQPSCIASTNPNVGAVFSAAFSKNSPFLLATGGSKGILHVWDTLD NSEVARRFGKFRPQN MIMDENEFCDIFSLRKRLCLLSSQEGEEEEELSAMSQLDAGEFTVTGNEEVVAI AEDDVNTGILSQDLFSSQDYCTPSQPQDSTDLDSKDKAPCPLSPVKSTIQRKRC RPELLSNPPDSIQFSFQRLERVRSEESIQSSSQQLARVRSEVSSSDDFKTPKIT ASGQKNYVSQSALALRARVMSPPCIKNPYLDENEELNEKIQRSTRRSPACVTPI 494 QSGACLSRYRADFHELEEIGRGNFSRVYKALNRLDGCCYAVKCSQSELRLDTER 206 1657 protein KVALMEVQSLAALGPHKNIVGYHTAWFENDHLYIQMELCDHNLTTANDRGILRT DTDFLEAVYQIAQALEFIHGRGVAHLDVKPENIYVRDGTYKLGDFGRATLINGT LHVEEGDARYMSREILNDNYEHLDKVDMFSLGATFFELLMRKQYPGSGKRIDRD TEIKIPILPGFSIYFQKLLQDLVSNDPGKRPSAKDVLKNPIFNKVRGAKEV MLAPALEMEPVEPQSLKKLSFKSLKRALDLFSPVHGQIAPPDPESKKMRISYKL NFEYGGGSGSEDQVPKRKESGAAQNQGQQAAGASNALALPGPEGSKIPPMEKSQ NALTVGPSLRPQGLNDVGLHGKGTAIISASGSSDRNLSTSAIMERLPSRWPRPV WHPPWKNYRVISGHLGWVRSIAFDPSNQWFCTGSADRTIKIWDLASGRLKLTLT 495 WD40 repeat GHIEQIRGLAVSSKHTYMFSAGDDKQVKCWDLEQNKVIRSYHGHLSGVYCLALH 117 1580 protein PTIDILLTGGRDSVCRVWDIRSKMQIFALSGHDNTVCSVFARPTDPQVVTGSHD TTIKFWDLRHGKTMTTLTNHKKSVRAMAQHPKENCFASASADNIKKFQLPRGEF LHNMLSQQKTIINTMAVNEEGVMATGGDNGSLWFWDWKSGHNFQQAHTIVQPGS LESEAGIYALSYDLTGSRLVSCEADKTIKMWKEDELATPETHPLNFKPPKDIRR F MEEAAKEQSAGSGKPKLLRYGLRSAAKPKEDKKEEQLHQPPPPPPPQQQAAPAP APAATRSSTSGSAGGRDRRPQQQHAVDEKYARWKSLVPVLYDWLANHNLLWPSL SCRWGPQLEQATYKNRQRLYISEQTDGSVPNTLVIANCEVVKPRVAAAEHVSQF NEEARSPFIRKYKTIIHPGEVNRIRELPQNPNIVATHTDSPDVLIWDVESQPNR 496 WD40 repeat HAVYGATASRPNLILTGHQENAEFALAMCPAEPFVLSGGKDKTVVLWSIQDHIT 11 1700 protein ASATDQTTNKSPGSGGSIIKKTGEGNEETGNGPSVGPRGIYCGHEDTVEDVAFC PSTAQEFCSVGDDSCLILWDARIGTNPVAKVEKAHNGDLHCVDWNPHDNNLILT GSADNSVNMFDRRNLTSNGVGSPVYKFEGHKAAVLCVQWSPDKPSVFGSSAEDG LLNIWDYERVDKKVDRAPNAPAGLFFQHAGHRDKIVDFHWNTADPWTMVSVSDD CDTAGGGGTLQIWRMSDLIYRPEEEVLAELENFKAHVLECSKA 233 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent pEPTIDE Sequence ORF ORF SEQ ID start stop MAKDEEEFRGEMEERLVNEEYKIWKKNTPFLYDLVITHALEWPSLTVQWLPDRE EPPGKDYSVQKMILGTHTSDNEPNYLMLAQVQLPLEDAENDARQYDDERGEIGG FGCANGKVQVIQQINHDGEVNRARYMPQNPFIIATKTVSAEVYVFDYSKHPSKP WD40 repeat PQDGGCHPDLRLRGHNTEGYGLSWSPFKHGHLLSGSDDAQICLWDINVPAKNKV 144 1412 protein LEAQQIFKVHEGVVEDVAWHLRHEYLFGSVGDDRHLLIWDLRTSATNKPLHSVV AHQGEVNCLAFNPFNEWVLATGSADRTVKLFDLRKISSALHTFSCHKEEVFQIG WSPKNETILASCSADRRLMVWDLSRIDEFQTPEDALDGPPELLFIHGGHTSKIS DFSWNPCEDWVIASVAEDNILQIWQMAENIYHDEEDDMPPEEVV MGKYMRKGKGVGEVAVMEVSQGSLGVRTRARTLAASSQKDHRRLGASKSVTTK Cyclin- HQSSAPPASPCVESSMHTCYLELRSRKLEKFSRCYHSAHGATSHGESKRSLSLS 498 dependant EPSRLAVSEEARVASDKSSHRVLQQQSSVAHSRNNSATFSHNAKPAKAAQRKER 793 1683 kinase RDDDHTSARPSEAPHEDEDGMEVEASFGENVMDLDSRERRTRETTPSSYTRDVE inhibitor TMETPGSTTRPPSNAGRRRFQTEGGHGTRNQFHVPTTNEIEEFFAGAEQQEQRR FTDRYNYDPVSDSPLPGRFEWVRLRP MQNMEENVOSSWSLHGNKEICARYEILKRVSSGTYLDVYRGRRKEDGLIVALKE VHDYQSSWREIEALQRLCGCPNVVRLYEVILEFLTSDLYSVIKSAKNKGENGIP EAEVKAWMIQILQGLANCHANWVIHRDLKPSNMLISAYGILKLADFGSMSFLKR AIYEVEYELPQEDILADAPGERLMDEDDSVKGVWNEGEEDSSTAVETNFDDMAE 499 CDK type D 415 2196 TANLDLSWKNEGDMVMQGFTSGVGTRWYRAPDFLYGATIYGKEIDLWSLGCILG ELLILEPLFSGTSNIDQLSRLVKVLGLQQKKNWPGCSNLPDYRKLCFPGDGSPV GLKNHVPNCSDNMFSILERLVCYDPAARLNAKEIVENKYFVEDPYPVLTHELRV PSPLREENNFSEDWAKWKDMEVDSDLENIDEFNVVHSSDGFCIKFS MAPVKRIEPEKTKANEGKPRRRKVAFAIDTGIEANDCISLHLVSTPEEMRDAEG VEDQSLSFNPEYMQHFVGEHGKIYGYKGLKIDVWLNALSFHAYVDIQYESKVEE GKSEKEATDLTDIMKRIFGRGLVEDRNAFIQSFSSNSQSIESMIHNEGERIATR EILTDKGLSAQGDSERLGVSNEIFRLELSDPQIREWHARLEPLVLLFVEGSQPI Histone EQDDPKWEMYIRVQRESLSGGSAVCRLLGFCTVYRFYHYPDTTRLRISQILVFP PYQGKGHGLLLLEAVNKTAVSRDSYDVTVEEPSESLQELRDCMDTIRLLSFEPV se MPAVKSAVQKLKEANPSDKGAADHCLEGNVNNETVTTSSTKPKNKSGWFPPPGL VEEVRKHLKISKKQFKRCWEILLYLNLDRSDSQCEDKYHISLMEQIMSELFDKS SEKSAKGKRVIDIDNEYDNSKTFIMVRTRNPGNGEGFLPEALEGGMEVSQEDQL KSLFEERLEEIAQIAEKVPSLCKALQMP MPEDRKKILEALAAKRKAEAESGEKKKRQKSSLNPAKPVSKPVSKPVGGIGSKG KSTSAPISSTKAKSKHKEEVKAKRVTKMDRYETDEDDESEEEEDLDSESDDDEL Histone 501 SDEDSEDDIKSKSVKKLPPQSKGKAPVKGISSSNGKGRDEKGKGIMKDKGKAKA 343 1023 deacetylase KVEESSSDAEGDSDDDGGDLSDDPLQEVDPSNILPSKTRRRASQPTNYQEANMS GDDDDDDDSD 234 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MADVPESLQQEKDEQGTDKNCCDGKFQKEIDIDDMEEEYNESS IDDEEENLSDN VATNNMGTI PQGQACMAVTVEGI EHANSVGCGRNGREGSEEVTAAEDMGHVSI E NIREQGRNRKSSEQLLALYEQEGLLEDDEDDDDVDWEPFEGVTVQMKWYCTNCT MANSDDSVHCDSCGEHRNSDILRQGFLASPYLPAESPSSSDVPDERLEESKCVM TTLTPSISPMIGVCCSSLQSERRTVVGFDERMLLHSEIQMETYPHPERPDRLRA 502 Histone IAASLRAAGLFPGKCFS IPAREATCEELQTIHSLEHVNAVESTSCGMLSHLSPD 47 25 502 411 2351. deacetylase TYANEHSSLAARLAAGLCADLAKAIMTGQAQNGFALVRPPGHHAGVKDSMGFCL HNNAAIAVSASRVVGAKKVLIVDWDVHHGNGTQEIFEADQSVLYISLHRHGEGF YPGSGAVTEVGSSKGEGYSVNIPWKCGGVGDNDYIFAFOHAVLPIAEQFEPDLT IISAGFDAAKGDPLGRCEVTPDGFAHMAQMLSCLSKGKMLVILEGGYNLRSISA SATAVIKVLLGDNPKAL PIDIQPSKGGLQTLLEVFEIQSKYWSSLKGHDQKLRS QWEAQYGSKKRKVIRKRHMHIVGGPVWWKWGRKRVVYYHWFARVSSRKHL MASGAGAAGVVEWHQKPPNPKNPVVFFDVTIGTI PAGRIKMELFADIVPRTAEN 503 Peptidylprolyl FRQFCTGEYRKAGIPIGYKGCHFHRVIKDFMIQAGDFVKGDGSGCISIYGSKFE 69 641 isomerase DENFIAKHTGPGLLSMANSGPNTNGCQFFLTCAKCDWLDNKHVVFGRVLGEGLL VLRKIENVQTGQHNRPKLPCVIAECGEM MAKLVSSVCAFSCQQRHPHSRPRFLSNRDHYNHYHNHSHYHNVCYFPPMMMMQQ QLQKQKRMTTKTITSLFKCNSSNHTLLKGLKEFMGFKFRLQAAMLSCEMSILGR VFAIFFIVHQAAAPFP FNHFDNWLVPPASAVLYSPNTKVPRTGEVALRKS I PAN PAMKSIQDFLEDIYYLLRFPQRKPYGTMEGDVKSALOIAINEKDSILGSVPLDM 504 Peptidylprolyl KERGLQLYNFLIDGQGGLQVLIEYIKEKDPDKVSVNLSSSLDTIAQLELLQAPG 172 1623 LPYLLPEEYQQYPRLNGRATIEFTMEKGDNSMFSVSSGGGLQKTATIQVVLDGY SAPLTAGNFTKLVIDGAYNGLKLKTTEQAVISDNERAEAGFNLPIEILPAGGFE PLYRTTLSVQDGELPVIPLSVYGAIAMAHNTISEDYSSPSQFFFYLYDKRNAGL GGLSFDEGQFSVFGYTTVGKEILPQLKTGDIIKSAKLVDGFDHLVLPSSST MDHYYQDDFDYLVDDEMVDFADDVEDDVRTRRRSDIDSDSENDFDSNNKSPDTT ALQAKRGKDIQGIPWNRLNFTREKYRETRLQQYKNYENLPRPRRSRNLDKECTN FERGSSFYDFRHNTRSVKATIVHFLRNLVWATSKHNVYLMQNYSIMHWSSLKQ KGEEVLNVAGPII PSVKHPGSSPQGLTRVQVSAMSVKDNLVVAGGFQGELICKY 505D40 repeat LDKPGVSFCTKISHDENGITNAVEIYNDASGATRLMTANNDLAVRVFDTEKFTV 231 1768 protein LERFSFPWSVNHTSVS PDGKLVAVLGDNADCLLADCKTGKTVGTLRGHLDYSFA AAWHPDGYILATGNQDTTCRLWDVRKLSSSLAVLKGRMGAIRSIRFSSDGRFMA MAEPADFVHLYDTRQNYTKSOEIDLFGEIAGISFSPDTEAFFVGVADRTYGSLL EFNRRRMNYYLDSIL 235 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF oRF SEQ ID start stop MDCSGDEEEEQFFESLEEMLSPSDSGSEAADNETGCRNADARSKYEIWKRAPSS IQERRQRFLVRMGLANPSELGNQVNSTSAESTCSTETANIPNGIERLRENSGAV LRTAGSSGRKTHCKNVINIGLREGSVRSSSSSNGTPDVGEDNGEFGGTIFSRSG GTWECMCKIKNLDSGKEFVVDELGQDGLWNKLREVGTDRQLTMDEFERSLGLSP LVQELMRRESGVAQADCNGVHHHDAEISSSKRRSWLKALKSAAYSMRRPKEDQS NYDSERSGRRSGSFDVPWGKPQWTKVRHYRKRYKEFTALYMGQEIEAHEGSIWT MKFSLDGRYLASAGQDCVIHVREVIESMRTFGADTPDLYASSAYFSMNGLQELV 506 WD40 repeat PLSIEDHANKMKRGKIIGSKKSSNSDCIVLPNKVFQLSEEPVCSFHGHLLDVFD 376 2943 protein LSWSPSOYLLSSSMDKTVRLWKLGHESCLKVFSHNDIVTCIQFNPVDERYFISG SLDGKARIWSIPDRQVVDWSDLREMVTAVCYTPDGQGGLVGSIKGSCRFYNTSG NKLQLENQLNVRSKKKKSSGKKITGFQFAPGGDSQKVLITSADSRVRVYNGSEL VCKYKGFRNTCSQISASFAPNGQHFVCASEDSRVYIWNHESPRGSGARHEKSSW SHEHFLSQGVSVAIPWSGMKLQPPVWNSPEFMLGQRHNLLSLQGGKDVGCQNGL LSREAGEGQESETPLHYISQVSHSCGSQNMVDRDGQDDLSRYSACISDSRLSSF MAFPESPGNPDDLNSKVFFSDSSSKGSATWPEEKLPPTRKQSRSNSTSSHYDTL KTHLGNTIQGQSGASAAVAWGLVIVTAGHGGEIRSFQNYGLPVRL MPSIPAIGEFTVCEINRELLTTKDESDTQAKDAYAKILGLVFPPISFQIEEGFG SASRQQFDQDLDREDTIVTPSTSEGTNALQEGGLLLKGVSVLKNILASSFGPIF SPNDTKVLKKVELLQGISWHRHKHILAFISGSNQVTVHDFQDPEWRESSLLVSE SQRGIEALEWRPNGGTTLSVACRGGICIWSASYPGSVAPVRSGVASFLGTSTRG 507 SSVRWTLVDFLQIPGGKAVTALSWSPTGRLLASASREDSSFTIWDVAQGVGTPL 107 1498 protein RRGLGGISLLKWSPTGDYLFSAKPNGTFYLWETNTWTLEQWSSSGGCVISATWG PDGRML4FMAFSESTTLGSLHFAGRPPSLDAHLLPMELPEIGSITGGFGNIEKMA WDGCGERLAVSYTGGDLMYVGLIAIYDTRRTPFISASLVGFIRGPGEQVKPLAF AFHDKFKQGPLLSVCWSSGLCCTYPLIFRAH MEEENAKHTEETRQVQVRFTTKLQPALRVPTTSIAIPAHLTRYGLSDIVNTLLG NDKPQPFDFLVESELVRTSLEKLLLIKGISAEKILNIEYILAVVPPKQEEPSLH DDWVSVVDGSYPNFIFSGSFDSIGRIWKGEGLCTHVLEGHRDAITSAAFIMPSD SSDSFINLATASKDRTLRLWQFKPNEHMTNGKMVRPYKLLKGHTSSVQTVSACP 508 WD40 repeat RRNLICSGSWDCSIKIWQTAGEMDIESNAGSVKKRKLEDSTEQIISQIEASRTL 118 1425 protein EGHSQCVSSVVWLEKDTIYSASWDHSVRSWDVETGVNSLTVGCRKALHCLSIGG EGSALIAAGGADSVLRIWDPRMPGTFTPILQLSSHKSWITACKWHPKSRHHLIS ASHDGTLKLWDVRSKVPLTTLEAHKDKVLCADWWKEDCVISGGADSTLOIFSNL NLT MNRLRSKRNHILELRLGQSEPEKEATLASNRSRGTNAPIVVEDDDDVVVSSPRS 509 WD40 repeat FALARSSVSQRSSRIPIVNEEDLELRLGLAVTGRTSAEHNPRRRHGRVPPNKPI 186 797 protein VLCDDAGEADQSSSKIKRRTGQQLSSDVQSDESKEVKLTCAICISTMEEETSTIC GHIFCKKCITNAIHRWKRCPTCRKKLAINNIHRIYISSSTG 236 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop NEEPPPPAVLPSSEDTSIVSSHSFVNAPPTVPVGLDASIPQISTPGINQPGLTI PVPPEAAPLTASLVAASAGMPPAVVPSFVRPAIVAHPSVMPPPSMPLAALPMPV ASAVPVAAPHFPPSTPNDNSITPSMPVPTPIVASSSVPPSVTIPGIAPLPFIAP IPVPSSRPVAPSPFMPPARPLGASVSVAMDVDNTDEQDQDADNKGESPSSSPDH PEDPSAAEYEITEESRKVRERQEQAIQELLLRRRAYALAVPTNDSSVRARLRRL NEPITLFGEREMERRDRLRALMAKLDAEGQLEKLMKVQEEEEAAANVDAEEVQE 510 WD40 repeat MEGPQVYPFYTEGSQELLKARTEITKFSLPRAVSRLQRARRKREDPDEDEDEEL 387 2456 protein KCVLQQSAQINMDCSEIGDDRPLSGCAFSSDGTLLATSAWSGVTKLWSVPNINK VATLKGHTERVTDVAFSPTNCHLATACADRTAMLWNSEGVLMKTYEGHLDRLAR LAFHPSGLYLGTASFDKTWRLWDVNTGIELLLQEGHSRSVYGIAFOCDGSLAAT CGLDGLARIWDLRTGRSILALEGHVKPVLGIDFSPNGYHLATGSEDHTCRIWDL RKRQSVYIIPAHSHLVSQVKFEPQEGYFLVTASYDSTAKVWSARDFKSIKVLAG HEAKVTSVDITADGQYIATVSHDRTIIKLWSSKNSTNDMNIG MKRAYKLQEFVAHASNVNCLKIGEKS SRVLVTGGEDHKVNMWAIGKPNAILSLS GHSSAVESVTFDSAEALVVAGAASGT IKLWDLEEAKIVRTLTGHRSNCISVDFH PFGEFFASGSLDTNLKIWDIRRKGCI HTYKGHTRGVNSIRFSPDGRWVVSGGED NIVKLWDLTAGKLMHDFKCHEGQIQCMDFHPQEFLLATGSADRTVKFWDLETFE LIGSAGPETTGVRAMIFNPDGRTLLTGLHESLKVFSWEPLRCYDAVDVGWSKLA DLNIHEGKLLGCSYNQSCVGVWVVDI SRVGPYAAGNVSRTNGHNEAKLASSGHP SVQQLDNNLKTNMARLSLSHSTESGI KEPKTTTSLTTTEGLSSTPQRAGIAFSS 511 WD40 repeat KNLPASSGPPSYVSTPKKNSTSRVQPTTNFQTLSRPDIVPVIVPRSNSLRPETT 359 2761 protein SDAKKEMNNFGRVVPSTVSTKSTDVI KSGSNRDESDKIDSINQKRMTGNDKTDL NIARAEQHVSSRLDNTNTSSVVCDGNQPAARWIGAAKFRRNSPVDPVVSPHDRS PTFPWSATDDGVTCQPDRQVTAPELSKRVVEPGRARALVASWETREKALTADTP VLVSGRPPTSPGVDMNSFIPRGSHGT SESDLTVSDDNSAIEELMQQHNAFTSIL QARLTKLQVIRRFWQRNDLKGAIDATGKMGDHSVSADVISVLIERSEIFTLDIC TVILPLLTRLLQSETDRHLTVAMETLLVLVKTFGDVIRATISATPTIGVDLQAE QRLERCNLCYVELENIKQILVPLIRRGGAVAKSAQELSLALQEV MAGSDENNPGVVGGAHVQEGLRVGAGKMGAGNVQQRRALSNINSNIIGAPPYPC AVNKRVLSEKNVNSENDLLNAAHRPI TRQFAAQMAYKQQLRPEENKRTTQSVSN PSKSEDCAILDVDDDKMADDFPVPMFVQHTEAMLEEIDRMEEVEMEDVAEEPVT DIDSGDKENQLAVVEYIDDLYMFYQKAEASSCVPPNYMDRQQDINERMRGILID 512 Cyclin B WLIEVHYKFELMDETLYLTVNLIDRFLAVQPVVKKKLOLVGVTAMLLACKYEEV 238 1648 SVPVVEDLILISDRAYSRKEVLEMERLMVNTLHFNMSVPTPYVFMRRFLKAAOS DKKLELLSFFIIELSLVEYDMLKFPPSLLAASAIYTALSTITRTKQWSTTCEWH TSYSEEQLLECARLMVTFHORAGSGKLTGVHRKYSTSKFGHAARTEPANFLLDF RL MQAPREGKSAAAIVGMGKYMKKSKAI PRDVSLLEASPRSPSATGVRTRAKTLAS RRLRRASCRRPPPPAAAAAAAAPSLDASPCPFSYLQLRSRRLRRPRLAPSPEAR 513 dependant IDEGPAGSGSRGSRDASCSARTASSSGGVEGEGACVGRGDRGNGGECVRDAAVD 59 859 kinase ASYGENDLEIEDRDRSTRESTPCSLI RDSNANTPPGSTTRQQSSCTAHRTQMSI inhibitor LRSIPTSDEMEEFFAYAEQRQQRSFI EKYNFDIVKDRPLPGRFEWVQVIP 237 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MDGHSSHLAAQNRSRGSQTPSPSHSAASASATSSIHLKRKLSAANASAASAAAA AAAAAAAADDHAPPFPPSSISADTRDGALTSNDDLESISARGGGAGDDSDDDSD DEEEDDGDNDGGSSLRTFTAARLENVGPAAARNRKIKAESNATVKVEKEDSAKD GGNGAGVGALGPAATSGAGSGSGTVPKEDAVKIFTENLQASGAYSAREENLKRE Histone EEAGRLKFECLSNDGVDDHMVWLIGLKNIFARQLPNMPKEYIVRLVMDRNHKSV 514 acetyltransfera MVIRRNLVVGGITYRPYASQKFGEIAFCAIKADEQVKGYGTRLMNHLKQHARDV 44 1829 se DGLTHFLTYADNNAVGYFIKOGETKEIYLDKDRWHGYIKDYDGGILMECKIDPK LPYTDLSTMVRRQRQAIDEKIRELSNCHIVYQGIDFQKRDAGVPQNTIKMEDIP GLREAGWTPDQWGYSRFRGLSDQKRLTFFIRQLLKVLNDHSDAWPFKEPVDARE VPDYYDIIRDPMDLKTMTKRVESEQYYVTLEMFIADVKRMFANARTYNSPDTIY FKIATRLEAHFQSKVQSNLQSGAGKIQQ MFNGMMDPELFKLAQEQMNRMSPAELAKIQQQMMSNPELMRMASESMKNMRPED LRQAAEQLKHVRPEEMAEIGEKMANASPEEIAAVRARADAQMTYEINAAKILKK EGNELHSQGRFKDASQKYLRAKNNLKGIPSSEGKNLLLACSLNLMSCYLKTRQY EECIKEGSEALACEEKNLKAFYRRGQAYRELGQLKDAVSDLRKAHEISPDDETI AQVLRDTEESLTKEGGSAPRGVVIEEITEEDETLASVNHESPSEYSEKRHQESE 515 Peptidylprolyl DAHKGPINGDIMGQMTNSESLKALKGDPDAIRSFQNFISNADPTTLAAMGAGNA 109 1866 isoneras a GEVSPDLIKTASSMIGKMSAEELQMIQLASSFPGENPYVTRNSDSNSNSFGNG SIPNVSPDMLKTASDMMSKMSPDDLQRMFEMASSSRGKDPSLDANHASSSSGAN LAANLNHILGESEPSSSYHIPSSSRNISSSPLSNFPSSPGDMQEQIRNQMKDPA MRQMFTSMMKNMSPEMMANMGKFGLELSPEDAAKAQEAMSSLSPEMLDKMMRW ADRAQRGVETAKKTKNWLLGRPGMILAICMLLLAVILHRLGFIGS MIAAISWVPRGASKAVPEVAEPPSKEEIEEILKSGVVERSGDSDGEEDDENMDA VASEKADEVSTALSAADALGRISKVTKAGSGFEDIADGLRELDMDNYDEEDEDV KLFSTGLGDLYYPSNDMDPYLKDEKDDDDDTEEIEDLSIKPMDSLIVCARTDDEV NLLEVYLLEPSLSDESNMYVHHEVVISEFPLCTAWLDCPIKGGDKGNFIAVGSM 516 WD40 repeat EPAIEIWDLDIIDAVEPCLVLGGQEELKKKKKKGKKASIKYKEGSHTDSVLGLA 212 1815 protein WNKEFRNILASASADRQVKIWDVAAGKCNITMEHHTDKVQAVAWNHHAPQVLLS GSFDHSVVMKDGRIPSHSGYRWSVTADVESLAWDPHSEHFFVVSLEDGTVRGFD VRAAISNSASQSLPSFTLHAHEKAVSTISYNPAAPNLLATGSTDKMVKLWDLSN NQPSCIASRNPKAGAVFSVSFSEDSPLLLAIGGSKGRLEVWDTSSDAAVSRRFG KHGKPKTAEPGS MKFCKRYQEYMQGQEGKKLPGLGFKKLKKILKRCRRRDSLHSQKALQAVQNPRT CPAHCSVCDGSFFPSLLEEMSAVLGCFNKQAQKLLELHLASGFQKYLMWFKGKL RGNHVALIQEGKDLVTYALINAIAIRKILKKYDKIHLSTQGQAFKSQVQRMHME 517 WD40 repeat ILQSPWLCELIAFHINVRETKANSGKGHALFEGCSLVVDDGKPSLSCELFDSIK 207 1193 protein LDIDLTCSICLDTVFDSVSLTCGHIYCYMCACSAASVTIVDGLKAAEPKEKCPL CREARVFEGAVHLDELNILLSRSCPEYWAERLQTERVERVRQAKERWESQCRAF MGVE 238 WO 2005/065339 PCT/US2004/043804 Patent Patent Protein Target Patent PEPTIDE Sequence ORF ORF SEQ ID start stop MVSTQSTRENPSIFFPPPLKPWLLPVVLSLSLSRLGMAAAAAASLPFKKNYRS SQALQQFYAGGPFAVSSDGSFIACNCGDSIKIVDSSNASLRPSIDCGSDTITAL SLSPDGKLLFSAGHSROIRVWDLSTSTCLRSWKGHDGPVMSMACPVSGGLLATG GADRKVMVWDVDGGFCTHFFKGHDGVVSTVLFHPDSNRSLLFSGSDDGTIRVWD LLAKKCASTLRGHDSTVTSLAFSEDGLTLLAAGRDKVVSLWDLHNYACKKTI PM YEVLESVCVIHSGTVLASQLGLDDOLKVTKESAONIHFITVGERGILRIWKSEG SVCLFKQEHSDVTVISDEDDSRSGFTAAVMLPLDQGLLCVTADQQFLFYYPEKH PEGIFSLTLCRRLVGYNEEIVDMKFLGEEENFLAVATNLEQVRVYELASMSCSY 518 WD40 repeat VLAGHTETVLCLDTCISSSGRTLIVTGSKDNSVRLWDSESRHCIGVGVGHMGAV 6 2786 protein GAVAFSRKRQDFFVSGSSDRTLKVWSLDGISEDGVDSTNLKAKAVVAAHDRDIN SVAVAPNDSLVCSGSQDRTACVWRLPDLVSVVVLKGHKRGIWSVEFSPVDQCVL TASGDKTVKIWAISDGSCLKTFEGHVSSVLRASFLTRGTQFVSCGADGLVKLWT VRTNECIATYDQHSDKVWALAVGKKTEMLATGGSDAVVNLWYDSTASDKEDAFR KEEEGVLKGQELENAVSDADYTKAIELALELRRPHKLFELFSELCRTREVGDRV ERILSALSGEEVCLLLEYIREWNAKPKLCHVAQSVLSQVFRILSPTEIVEIKGI GELLEGLIPYSORHFSRIDRLVRSTYLLDYTLTGMSVIEPEADRSAVNDGSPDK SGLEKLEDGLLGENVGEEKIQNKEELESSAYKKRKLPRSKDRSKKKSKNVVYAD AAAISFRA MDSAPRRKSGGINLPSGMSETSLRLDGFSGSSSSFRAI SNLTSPSKSSSISDRF I PCRSSSRLHTFGLVERGSPVKEGGNEAYSRLLKAELFGSDFGSLSPAGQGSPM SPSKNMLRFKTESSGPNSPFSPSILRQDSGFSSEASTPPKPPRKVPKTPHKVLD APSLQDDFYLNLVDWSSQNTLAVGLGTCVYLWSASNSKVTKLCDLGPNDGVCAV 519 WD40 repeat QWTREGSYISIGTSLGQVQIWDGTQCKRVRTMGGHQTRTGVLAWNSRILASGSR 213 1726 protein DRVILQHDLRVPNEFIGKLVGHKSEVCGLKWSHDDRELASGGNDNQLLVWNQHS QQPVLKLTEHTAAVKAIAWSPHQNGLLASGGGTADRCIRFWNTTNGHQTSSVDT GSQVCNLAWSKNVNELVSTHGYSQNQIMVWKYPSMAKVATLTGHSLRVLYLAMS PDGQTIVTGAGDETLRFWNVFPSAKAPAPVKDTGLWSLGRTHIR MEDEAEIYDGVRAQFPLTFGKQSKPQTSLESVHSATRRGGPAPAPAPASSSSLP STTSPSAAGGAGKSSGLPSLSSSSTAWLEGLRAGNPRAGREAGIGSRGGDGEDG GRAMIGPPRPPPGFSANDDGGGEDDDDDGDGVMVGPPPPPPGNLGDGDDDEEEE EAMIGPPRPPVVDSDEEEEEEEEENRYRLPLSNEIVLKGHNKIVSALAVDPTGS RVLSGSYDYTVRMFDFQGMNSRLSSFRDFEPVEGHQVRNLSWSPTADRFLCVTG SAQAKIYDRDGLTLGEFVKGDMYIRDLKNTKGHITGLTWGEWHPKTKETILTSS 520 WD40 repeat EDGSLRIWDVNDFKSQKQVIKPKLARPGRVPVTTCTWDREGKCIAGGIGDGSIQ 101 2110 protein IWNLKPGWGSRPDIHVEQAHADDITGLKFSSDGKILLTRSFDDSLKVWDLRLMK NPLKVFEDLPNHYAQTNIACSPDEQLFLTGTSVERESTIGGLLCFFDRSKLELV SRIGISPTCSVVQCAWHPRLNQIFATSGDKSQGGTHVLYDPTLSERGALVCVAR APRKKSVDDFELKPVIHNPHALPLFRDQPSRKRQREKILKDPLKSHKPELPMNG PGHGGRVGASKGSLLTQYLLKQGGMIKETWMDEDPREAILKHADAAEKNPKFTR AYAETQPDPVFAKSDSEDEDK 239 WO 2005/065339 PCT/US2004/043804 [03961 Table 16. BLAST Sequence Alignment Table. Blast SEQ T t Patent identifier BlastX top oe name BlastX e BlastX X hiE value identities over ap PUTATIVE 1 CDK type A eucalyptusSpp_003910 Q9FRN5 SERINE/THREO 0 367 492 NINE KINASE CDC2-LIKE 2 CDK type A eucalyptusSpp_019213 044000 PROTEIN e-160 217 290 KINASE TPK2 PROTEIN 3 CDK type A eucalyptusSpp_036B00 Q40789 KINASE 0 259 294 P34CDC2 4 CDK type A eucalyptusSpp_040260 Q27168 CDC2 e-156 208 304 5 ~~~CDC2PA mRNA. e-52729 5 CDK type A eucalyptusSpp_041965 Q43361 SPTREMBL e-159 274 294 Cyclin 6 CDK type B-1 eucalyptusSpp_002906 Q9FYT9 dependent e-159 269 305 kinase B1-1 B2-TYPE 7 CDK type B-2 eucalyptusSpp_001518 Q9FSH4 CYCLIN 0 270 315 DEPENDENT KINASE 240 WO 2005/065339 PCT/US2004/043804 Blast Blsx oRlastX e BlastX X SEQ ID Target Patent Identifier Blast top Gene name value identities over hit vle iette vr ap 8 CDK type C eucalyptusSpp_008078 Q9LDC1 CRKl protein 0 415 558 F8L10.9 9 CDK type C eucalyptusSpp_009826 Q9LNNO protein. 0 392 716 SPTREMBL Putative cyclin 10 CDK type C eucalyptusSpp_010364 Q8GZA7 dependent e-172 309 499 protein kinase. Cyclin 11 CDK type C eucalyptusSpp_011523 Q8W2ND dependent e-165 273 405 kinase CDC2C CDC2MSC 12 CDK type C eucalyptusSpp 024358 P93320 PRoTEIN 0 448 523 13 CDK type C eucalyptusSpp 039125 080540 F14J9.26 0 418 743 protein
CDK
activating kinase 1AT 14 CDK type D eucalyptusSpp_005362 080345 (Cdk- e-180 305 483 activating kinase CAK1At)
CDK
activating kinase 1AT 15 CDK type D eucalyptusSpp_044857 080345 (Cdk- e-177 302 477 activating kinase CAK1At) 241 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top Gene name BlastX e r-ties over ap MITOTIC 16 Cyclin A eucalyptusSpp_001743 Q39879 CYCLIN A2- 0 360 508 TYPE MITOTIC 17 Cyclin A eucalyptusSpp_012405 039878 CYCLIN A2- e-179 278 470 TYPE 18 Cyclin B eucalyptusSpp_003739 Q9LDM4 F2D1S.6 e-148 288 466 19 Cyclin B eucalyptusSpp_022338 P93557 ic e-168 310 476 B-like 20 Cyclin B eucalyptusSpp_028605 Q40337 cyclin. e-158 300 439 SPTREMBL 21 Cyclin B eucalyptusspp 041006 Q40337 e-158 300 439 22 Cyclin D eucalyptusSpp_006643 Q9SXN7 NtCycD3-1 1E-73 177 404 euca~ptu~pp..00643protein Cyclin D3.1 23 Cyclin D eucalyptusSpp_045338 Q8LK74 protein. e-101 190 332 SPTREMBL 242 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top BlastX e BlastX X hit Gen value identities over ap 24 Cyclin D eucalyptusSpp_046486 Q9ZRX7 CYCIN D3.2 e-126 196 373 Cyclin dependent SEQUENCE 1 25 kinase eucalyptusSpp_012070 CAB69358 FROM PATENT 8E-64 83 88 regulatory W09841642 subunit Histone 181 26 acetyltransf eucalyptusSpp_006617 080378 (Fragment) 0 371 395 erase Histone Histone 27 acetyltransf eucalyptusSpp_007827 Q9FjT8 acetyltransf e-148 260 465 erase erase HAT B Histone 28 acetyltransf eucalyptusSpp_008036 Q9FJT8 acetyltransf e-149 262 465 eraseerase HAT B. erase SPTREMBL Putative 30 Hdeatylase eucalyptusSpp_001596 Q9M4T5 dactylase 7E-76 156 305 HD2 Putative histone 31 Hdecetlase eucalyptusSpp_005870 Q9M4T4 deacetylase 7E-66 144 318 (AT5g03740/F 17C15_160) Histone 32 deacetylase eucalyptusSpp 006901 HDACARATH deacetylase 0 405 499 (HD) 243 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top Gene name BlastX e ientties verl ap 33 Hdieatylase eucalyptusSpp_006902 AAM13152 HE YLASE 0 427 499 34 Hdatylase eucalyptusSpp_007440 Q8W508 CTYLASE 0 369 428 Histone Histone 35 deacetylase eucalyptusSpp_008994 Q8LD93 deacetylase, 0 354 536 putative Atlg08460/T2 36 deacetylase euc'alyptusSpp 024580 Q94EJ2 HG . e-165 274 3-/3 SPTREMBL Histone 37 deacylase eucalyptusSpp_037831 Q9FML2 deacetylase. 0 356 4 64 SPTREMBL MATl CDK activating Hypothetical 38 kinase eucalyptusSpp_034958 Q8LESB protein 4E-47 101 1 90 assembly factor Peptidyl prolyl cis 39 Peptidylprol 001209EGXC004488HT TL40,SPIOL eras 0 329 392 yi isonerase isomerese, chloroplast precursor 40 Peptidyiprol 010310EGXD012820HT Q9FJL3 PEPTIDYLFROL 0 453 579 yl isomerase YL ISOMEP.ASE 244 WO 2005/065339 PCT/US2004/043804 Blast SEQ D Target Patent Identifier BlastX top Gone name BlastX e BlatX v Paehiet nm value identities ovewl ap HYPOTHETICAL 41 Peptidyiprol 010310EGXD013036HT 082646 57.1 KDA 0 302 521 yl isomerase PROTEIN (EC 5.2.1.6) PUTATIVE
PEPTIDYL
42 Peptidyprol 010316EGXF999037HT BAB39983 PROLYL CIS- e-115 146 172 42 yl isonerase 0136GF907TTRANS ISOMERASE, CHLOROPLAST 43 Peptidylprol 010324EGXFOO2118HT AAK32894 AT5G13120/T1 e-122 179 264 yl isomerase 9L5_80 HYPOTHETICAL 44 Peptidylprol 011019EGKA001923HT AAM14253 20.3 KDA e-108 146 188 y1 isomerase PROTEIN Peptidylprol Peptidyiprol y 1 isomerase 45 y isomerase eucalyptusSpp 000966 QBL5T1 (Cyclophilin 1E-91 155 170 (EC 5.2.1.B) 46 yidiomrs eucalyptusSpp 001037 QBVX73 CYCLO 5.218 e-120 155 169 HYPOTHETICAL 47 yl isomerase eucalyptusSpp 004603 AAM14253 20.3 KDA e-108 146 188 PROTEIN. Cyclophilin ROC7 (EC 48 idomers eucalyptusspp_005465 Q9SPO2 5Ag 10/m 2E-93 172 204 znl_160) (Pepti... 245 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent identifier BlastX top Gene name BlastX e BlastX X hit value identities overl ap EC 5.2.1.8 (Cyclophilin 49 Peptidylprol -like 9-98 16922 49 y1 isoerase eucalyptusSpp_006571 049605 protein) 9E 224 (Peptidyl prolyl Cyclophilin tidl l (EC 5.2.1.8) 50 Pepti ylprol eucalyptusSpp 006786 093VG0 (Peptidyl- 5E-82 142 164 yl isomerase prolyl cis trans Cytosolic cyclophilin 51 yl isomerase eucalyptusSpp007057 Q38901 (EC 5.2.1.8) 3E-84 144 172 (Peptidyl prolyl 52 Peptidyiprol eucalyptusSpp_008670 Q9FJL3 PEPTIDYLPROL 0 423 596 yl isomerase YL ISOMERASE Cyclophilin Peptidylprol 40 (EC 53 y isomerase eucalyptusSpp 009137 Q9C566 5.2.1.8) e-168 285 361 y1 isoerase(Expressed protein) Cyclophylin like protein 54 Peptidylprol eucalyptusSpp 010285 Q9LY75 (EC 5.2.1.8) e-160 345 658 y 1 isomerase (Peptidyl prolyl HYPOTHETICAL 55 Peptidylprol eucalyptusspp010600 93Y8 KDA 0 346 475 yl isomerase PROTEIN (FRAGMENT) 56 yidysmrs eucalyptusSpp_011551 Q9ZVG4 T2P11.13 e-115 154 192 246 WO 2005/065339 PCTIUS2004/043804 Blast SEQ ID Target Patent identifier BlastX top ene name BlastX e BlastX X .LJ ~~r~ en Ienifer hit Value identities ovenl ap PUTATIVE 57 iomers eucalyptusSpp_020743 Q8VXA5 A-IOS IN e-125 161 172 PROTEIN FK506 Peptidlprolbinding 58 Pepidyirol eucalyptusSpp_023739 FK21_NEUCR protein 3E-49 74 112 precursor (FKBP-21) Cyclophilin Peptidyiprol like protein 60 yl isomerase eucalyptusSpp 031985 Q8L8W5 (EC 5.2.1.8) 1E-82 155 229 (Peptidyl prolyl F22M8.7 protein (EC 61 Peptidyprol eucalyptusSpp032025 Q9LPC7 1E-45 99 160 yl isomerase ealtupp025 Q9P7 (Peptidyl prolyl cis trans Cyclophilin Peptidyiprol like protein 62 yl isomerase eucalyptusSpp 032173 Q8L8W5 (EC 5.2.1.8) 4E-83 156 229 (Peptidyl prolyl Retinoblasto Retinoblasto 64 ma related eucalyptusSpp_009143 Q9SLZ4 ma-related 0 704 1008 protein protein TGF-BETA 65 0 repeat eucalyptusSpp 000349 AAK49947 NECTNG 0 291 326 PROTEIN 1 WD-40 repeat 66 WD40 repeat eucalyptusSpp 000575 Q9LW17 protein-like e-168 282 341 66 protein (xrse protein) 247 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top Gone name BlastX e BlastX X hit value identities over ap Guanine nucleotide 67 WD41 repeat eucalyptusSpp_000804 GBLP_SOYBN binding 0 291 326 protein protein beta subunit-like Guanine WD40 repeat eucalyptusSpp_000805 GBLPEDSA nucleotide- e-171 291 327 68 protein eclpupp000 BPMDA binding protein beta Guanine nucleotide 69 WD4o repeat eucalyptusSpp 000806 GBLPMEDSA binding e-171 291 327 protein -protein beta subunit-like HYPOTHETICAL 70 prote eucalyptusSpp 002248 AAL86002 43.8 KDA 0 261 3B8 protein PROTEIN Putative WD WD40 repeat repeat 71 prote eucalyptusSpp 003203 Q9SYOO protein e-144 236 317 protein (AT4G02730/T 5J8_2) HYPOTHETICAL 72 WD4o repeat eucalyptusSpp 003209 AAM14986 32.6 KDA e-160 259 302 protein PROTEIN -4 HYPOTHETICAL 73 W40 repeat eucalyptusSpp 004429 09SZQ5 34.3 KDA 0 260 322 protein PROTEIN 74 tD4 repeat eucalyptusSpp 004607 AAC27402 EXPRESSED 0 253 356 protein PROTEIN 248 WO 2005/065339 PCT/US2004/043804 Blast SEQ I Target Patent Identifier BlastX top Gene nam BlastX e BlastX X hit value identities over ap D40 repeat HYPOTHETICAL 75 ot0 ri e eucalyptusSpp 004682 AAK00964 35.3 KDA 0 264 313 protin -PROTEIN At2g47790/Fl 7A22 .18 76 WD4o repeat eucalyptusSpp 005786 Q944S2 (Expressed e-155 264 396 protein protein). SPTREMBL 77 repeat eucalyptusspp_005887 Q94AB4 g1340/MD 0 332 446 WD-repeat 78 WD40 repeat eucalyptusSpp_005981 Q8L4X6 protein 0 315 348 protein GhTTG2. SPTREMBL Putative WD 79 WD4 repeat eucalyptusSpp 006766 Q8L4M1 40 repeat e-137 234 369 protein protein RETINOBLASTO 80 WD40 repeat eucalyptusSpp 006769 Q9LJC6 MA-BINDING 0 372 566 protein PROTEIN-LIKE WD40 repeat Hypothetical 4681 81 protein eucalyptusSpp_006907 094C94 protein. 0 446 812 82 WD40 repeat eucalyptusSpp 007518 Q93ZN5 AT4GO0090/F6 0 311 436 protein N15_8 249 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BitX top G ae nae Biestxties over ap At2g47990 protein 83 WD40 repeat eucalyptusSpp 007717 082266 (Hypothetica e-180 327 528 protein 1 58.9 kDa protein) WD40 repeat Hypothetical 84 protein eucalyptusSpp 007718 Q8RWD8 protein. e-173 278 350 SPTREMBL Putative WD 85 oW40 repeat eucalyptusSpp 007741 QBLA40 prot repeat e-158 269 409 85 protein poen MSI2 Similarity 86 protein eucalyptusSpp 007884 Q9FHY2 to unknown e-149 316 765 protin -protein EMBICAB63739 87 WD40 repeat eucalyptusSpp_008258 Q9LHN3 AT3G18860/ 0 524 58 CB22_3) 88 WD40 repeat eucalyptusSpp_00t465 Q9FLS2 o e 0 366 460 protein ecytupp086 QFL2 protein-like 89 WD40 repeat eucalyptusSpp 008616 09LYK6 Hypothetical e-148 252 321 protein protein 90 WD40 repeat eucalyptusSpp 008690 Q9SW94 G PROTEIN 0 326 376 protein BETA SUBUNIT 250 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent identifier BlastX top B nme BlastX e BlastX X hit value identities over ap 91 WD40 repeat eucalyptusSpp_00708 QL862 hypothetical e-167 297 487 91 protein eaytupp080 QL82 protein F1IP17.7 92 WD40 repeat eucalyptusSpp 008850 022725 protein. 0 402 853 protein SPTREMBL F23A5.2(form 2) (mRNA 93 W40 repeat eucalyptusSpp 009072 Q9SAJO export e-176 288 350 protein protein, putative) NOTCHLESS WD40 repeat eucalyptusSpp 009465 Q9FLX9 PROTEIN 0 384 475 protein HOMOLOG WD-REPEAT 95 WD40 repeat eucalyptusSpp 009472 Q9SZA4 PROTEIN-LIKE 0 374 457 protein PROTEIN Gb]AAF54217. 96 0 repeat eucalyptusSpp_009550 Q9FKT5 Hypothetica e-167 275 313 1 protein) 97 Wt40eirepeat eucalyptusSpp_010284 022466 WDo0 repeat 0 397 423 prtnprotein M~ W00repeat Hypothetical 419 789 98 p04 epa eucalyptusSpp_010595 Q94C94 protein 0 251 WO 2005/065339 PCT/US2004/043804 Blast ID T et Blastx top BlastX e BlaatX x SEQ I ag hit Gene name value identities over ap HYPOTHETICAL 99 WD40 repeat eucalyptusSpp 010657 Q94AH2 33.1 KDA 0 243 298 protein PROTEIN 100 WD40 repeat eucalyptusSpp_012636 Q8L611 Hypothetical 0 756 1133 10 protein euaytsp 166protein PUTATIVE WD 101 WDp0 repeat eucalyptusSpp_012748 AAD10151 0PROT EPEAT 0 375 469 MS14 FERTILIZATIO
N
102 protep eucalyptusSpp 012879 Q8VZY6 INDEPENDENT 0 291 377 protein ENDOSPERM PROTEIN Putative WD 103 WD40 repeat eucalyptusSpp_015515 Q8LPI5 pt0 360 493 13 protein poen SPTREMBL W4 reetWD-40 repeat 0 395 522 104 repeat eucalyptusSpp_015724 022607 protein MS14a Putative WD 105 en40 repeat eucalyptusSpp_016167 Q93YS7 repeat 0 663 917 protein membrane protein HYPOTHETICAL 106 WD4o repeat eucalyptusSpp 016633 Q9SUY6 43.8 KDA e-174 240 384 protein - PROTEIN 252 WO 2005/065339 PCT/US2004/043804 Blast BlastX top BlastX e BlastX X SEQ ID Target Patent Identifier hit Gene name value identities over ap Hypothetical 107 W4o repeat eucalyptusSpp 017485 Q8RXC4 144.7 kDa 0 650 1348 protein protein WD repeat 108 WD40 repeat eucalyptusSpp 018007 094289 containing e-129 302 794 protein protein 109 WD40 repeat eucalyptusSpp 020775 Q8W403 Secl3p e-150 242 304 protein 110 W e40 repeat eucalyptusSpp 023132 AAK52092 WD40 REPEAT 0 458 515 protein PROTEIN 1 WD40 repeat eucalyptusSpp 023569 Q9XIJ3 T10024.21. 0 404 576 protein S PTREMBL Cleavage stimulation 112 WD40 repeat eucalyptusSpp023611 Q8L4J2 factor 50K e-174 301 438 12 protein ealpupp031 Q842 chain (Cleavage stimulation AT3g13340/MD WD40 repeat C11 13. WD 113 protein eucalyptusSpp 024934 Q94AB4 repeat 0 343 444 protein-like SPTREMBL Hypothetical 61.8 kDa 114 40 repeat eucalyptusSpp 025546 022212 rpas0 352 566 containing protein 253 WO 2005/065339 PCT/US2004/043804 Blast BlastX top BlastX a BlastX X SEQ ID Target Patent Identifier Gene name value identities overl ap Genomic DNA, 115 epeat eucalyptusSpp_030134 Q9LVF2 chromclone: 0 677 946 MIL23 116 WD40 repeat eucalyptusSpp_031787 AAL91206 WD REPEAT 0 264 329 protein PROTEIN-LK F23A5.2(form 2) (mRNA 117 WD40 repeat eucalyptusSpp 034435 Q9SAJO e-178 290 349 protein poen putative). SPTREMBL Hypothetical protein 118 WD40 repeat eucalyptusSpp_034452 Q94BR4 (Putative 0 381 525 protein eualpts-p 3452 Q99R splicing factor Guanine nucleotide 119 WD40 repeat eucalyptusSpp 035789 P93563 binding 3E-88 171 356 protein protein beta subunit WD-repeat 120 WD40 repeat eucalyptusSpp_035804 Q9FNN2 lotein- 0 356 589 10 proteinlie SPTREMBL WD40-repeat 121 WD40 repeat eucalyptusSpp 043057 Q9LV35 protein. 0 472 610 protein SPTREMBL 122 repeat eucalyptusSpp_046741 Q93VK1 AT4g28450/F2 0 363 452 protein 009130 254 WO 2005/065339 PCT/US2004/043804 Blast BlastX top BlastX e BlastX x ID Target Patent Identifier hit Gene name value identities over ap Putative WD 123 WD40 repeat eucalyptusSpp_047161 Q9ZUN8 40 repeat 0 350 473 protein protein PUTATIVE CDC2-RELATED 124 CDK type A pinusRadiata_001766 Q9M3W7 PROTEIN e-128 237 436 KINASE CRK2. 459 e-128 PUTATIVE 125 CDK type A pinusRadiata_002927 Q9FRN5 SERINE/THREO 0 349 470 NINE KINASE Cyclin 126 CDK type B-1 990309PRCA009171HT Q9FYT8 dependent e-145 244 303 kinase B1-2
CYCLIN
127 CDK type B-1 pinusRadiata_013714 Q9FYT8 DEPENDENT e-174 222 304 KINASE B1-2
CYCLIN
128 CDK type B-1 pinusRadiata_016332 Q9FYT8 DEPENDENT e-178 228 304 KINASE B1-2
CYCLIN
129 CDK type B-1 pinusRadiata_021677 Q9FYT8 DEPENDENT e-176 229 304 KINASE B1-2 Cyclin 130 CDK type B-1 pinusRadiata_027562 Q9FYT8 dependent e-118 211 304 kinase B1-2 255 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier histX top re na BlastX e Bati v htvalue identities ovenl ap F8L10. 9 131 CDK type C pinusRadiata_001504 Q9LNNO protein 0 434 790 prLoei 132 CDK type C pinusRadiata_015211 Q9LNNO protein 0 371 746 protein 133 CDK type C pinusRadiata_020421 P93320 protein 0 318 432
CDK
ACTIVATING KINASE 1AT 134 CDK type D pinusRadiata_003167 080345 (CDK- e-137 226 465 ACTIVATING KINASE CAKIAT)
CDK
135 CDK type D pinusRadiata_015661 Q947K6 ACTIVATING 0 266 407 KINASE. 136 Cyclin A pinusRadiata_013874 096226 Cyclin e-108 223 474 PUTATIVE A 137 Cyclin A pinusRadiata_014615 CAC27333 LIKE CYCLIN 0 332 390 (FRAGMENT) Probable G2/mitotic 138 Cyclin B pinusRadiata_004578 065064 specific 9E-87 162 217 cyclin (Fragment) 256 WO 2005/065339 PCT/US2004/043804 Blast BlastX top BlastX e BlastX X tohGitnm value identities overl SEQ ID Target Patent Identifier hit Gn ae vle iette vr ap 139 Cyclin B pinusRadiata_023387 004389 2E-98 220 466 140 Cyclin D pinusRadiata_006970 P93103 LI ROTEIN 1E-75 135 293 SEQUENCE 33 141 Cyclin D pinusRadiata_010322 CAC17049 FROM PATENT e-131 171 254 WO0065040 142 Cyclin D pinusRadiata_022721 P93103 KE OTEIN 1E-76 137 289 143 Cyclin D pinusRadiata_023407 Q9SMD5 CYCD3,2 8E-90 139 278 PROTEIN PUTATIVE Cyclin-
CYCLIN
dependent DEPENDENT 144 kinase pinusRadiata_001945 Q947Y1 KINASE 5E-55 74 86 regulatory REGULATORY subunit SUBUNIT Cyclin dependent SEQUENCE 1 145 kinase pinusRadiata_008233 CAB69358 FROM PATENT 4E-49 65 86 regulatory W09841642 subunit Cyclin dependent SEQUENCE 1 146 kinase pinuSRadiata_008234 CAB69358 FROM PATENT 4E-49 65 86 regulatory W09841642 subunit 257 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top Gone name BlastX e duties over hit vle iette vr ap Cyclin dependent SEQUENCE 1 147 kinase pinusRadiata_022054 CAB69358 FROM PATENT 8E-55 70 82 regulatory W09841642 subunit Histone Histone acetyltransf 148 acetyltransf pinusRadiata_012137 Q9FK40 erase 0 496 555 erase (AT5g50320/M X122_3) Histone 181 149 acetyltransf pinusRadiata_012582 080378 (Fragment) 0 354 402 erase SPTREMBL Histone 150 acetyltransf pinusRadiata_015285 080378 fragment) 0 342 401 erase Histone F9Pl4.9 151 acetyltransf pinusRadiata_017229 Q9LNC4 protein e-118 268 585 erase Histone Histone acetyltransf 152 acetyltransf pinusRadiata_020724 Q9AR19 erase GCN5 e-177 355 639 erase (Expressed protein) 153 acetylase pinusRadiata_004555 AAM13152 CTYLASE 0 331 488 154 eaceylas pinusRadiata_004556 AAM13152 HD TLASE 0 331 488 258 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX toP Gene nm BlastX dentties ove ap Histone 155 deacetylase pinusRadiata_005729 Q9M4U5 deacetylase 9E-62 154 348 2 isoform b 156 dea tylase pinusRadiata_007395 AAM13152 HD TLASE 0 335 426 157 deatylase pinusRadiata_009503 Q8W508 deactylase 0 365 427 158 Histone pinusRadiata_011283 AAM19887 ATlG08460/T2 0 255 366 deacetylase 7G7_702536 HISTONE HistoneDEACETYLASE 159 deacetylase pinusRadiata_012322 Q9FML2 (PUTATIVE 0 327 435 HISTONE DEACETYLASE) Putative 161 Histone Pttv deacetylase pinusRadiata_023236 QBRX28 histone e-144 238 390 deacetylase 162 yidomrs pinusRadiata_000171 Q9FJL3 YL IOMEBAS 0 364 549 FK506 Peptidylprol BINDING 163 yl isomerase pinusRadiata_000172 Q38949 PROTEIN 0 365 552 FKBP62 (ROF1) 259 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top Gane name ae entities ove ap PUTATIVE 164 Peptidyiprol pinusRadiata_001480 Q8VXA5 CYCLOSPORIN e-125 161 172 yl isomerase A-BINDING PROTEIN 70 kDa 168 isomers pinusRadiata_001692 FKB7_WHEAT peptidyprol 0 418 553 (EC 5,2.1.8) FKBP-TYPE
PEPTIDYL
169 yepidy3.rol pinusRadiata_005313 AAB64339 PROLYL CIS- 1E-97 135 175 TRANS ISOMERASE PUTATIVE
PEPTIDYL
PROLYL CIS 170 Peptidylprol pinusRadiata 006362 BAB39983 TRANS 3E-77 129 168 yl isomerase ISOMERASE, CHLOROPLA... 290 3e-77 Hypothetical 26.4 kDa 171 Peptidylprol pinusRadiata_006493 Q9CS35 protein (EC 2E-62 12B 235 yl isomerase -05.2.1.8) (Peptidyl prol... 172 isoners pinusRadiata_006983 AAK96784 CYCLOPHILIN e-103 151 204 FKBP-like protein 174 yi. lmrs pinusRadiata_007665 Q9LDCD (Genomic e-138 239 378 chromosome 3, P1 clone: Cyclophilin (EC 5.2.1.8) 175 Pepidyirol pinusRadiata_012196 Q93VGO (Peptidyl- 4E-74 132 160 prolyl cis trans 260 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier Gene name BlastX e BlastX X hiatX o value identities overl ap Peptidylprol HYPOTHETICAL 176 y1 isomerase pinusRadiata_013382 Q9C588 60.2 KDA 0 28B 581 PROTEIN 177 yidysmrs pinusRadiata_016461 004287 IMMUNOPHILIN 9E-66 88 109 Cyclophilin 40 (EC 178 Peptidyiprol pinusRadiata_017611 Q9C566 5.2.1.8) e-163 276 360 yl isomerase (Expressed protein) Peptidylprol HYPOTHETICAL 179 y1 isomerase pinusRadiata_019776 AAM14253 20.3 KDA e-110 146 190 PROTEIN Hypothetical 180 Pepidymprol pinusRadiata_020659 AA063961 protein 7E-85 159 227 SPTREMBL PUTATIVE
PEPTIDYL
181 yepidylprol pinusRadiata_022559 AAK43974 PROLYL CIS- 2E-73 113 153 TRANS ISOMERASE
PEPTIDYL
PROLYL CIS 182 Pepidylrol pinusRadiata_024188 Q9P3X9 TRANS e-122 210 379 ISOMERASE (EC 5.2.1.8) T22K18.11 183 Peptidyiprol pinusRadiata_027973 Q9SR70 060/T 3E-69 125 171 yl isomerase (TgO6/ 22K1811) 261 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top Gene nae BlastX a BlastX X hit Ge a value identities overl ap 40 reetWD-repeat 184 W pinusRadiata_001353 Q9FNN2 protein- 0 317 590 protein likeSPTREMBL PP1/PP2A phosphatases 185 otein a pinusRadiata_001978 PRL1_ARATH pleiotropic 0 341 502 regulator PRL1 TGF-BETA 186 40 repeat pinusRadiata_002B10 AAK49947 IECTING 0 273 326 PROTEIN 1 TGF-BETA 187 eirepeat pinusRadiata_002811 AAK49947 RNCEPTOR- 0 273 326 proteinINTERACTING PROTEIN 1 HYPOTHETICAL 188 40 repeat pinusRadiata_002812 AAM15129 58.9 KDA e-127 225 521 PROTEIN Similarity WD40 repeat to myosin 189 protein pinusRadiata_003514 Q9FJ94 heavy chain e-137 242 445 kinaseSPTREM BL Guanine WD40 repeat nucleotide 190 protein pinusRadiata_004104 GBBORYSA binding 0 294 378 protein beta subunit WD40 repeat PUTATIVE 191 protein pinusRadiata_005595 Q9FTT9 DKFZP5640046 0 320 459 3 PROTEIN 262 WO 2005/065339 PCT/US2004/043804 Blast BlastX top BlastX e BlastX X SEQ ID Target Patent Identifier hit Gone name value identities overl ap At1g78070/F2 192 protein pinusRadiata_005754 094JT6 8K19_28SPTRE e-168 294 451 Guanine nucleotide binding 193 WD4O repeat pinusRadiata 006463 GBLP MEDSA protein beta e-152 261 324 protein subunit-like ... 538 e 152 HYPOTHETICAL 194 WD40 repeat pinusRadiata_006665 AAM20553 11 . KDA 0 655 1169 protein PROTEIN. 1229 0.0 HYPOTHETICAL 195 0 repeat pinusRadiata006750 AAM13119 35.4 KDA e-158 264 312 protein POEN 6 e-158 MITOTIC 196 WD40 repeat pinusRadiata_007030 Q9LPNR ECKINT5 e-169 284 335 protein PE-69 59 e-169 Putative WD 197 WD40 repeat pinusRadiata_007854 Q8H919 0 429 644 protein containing protein PUTATIVE WD 198 WD40 repeat pinusRadiata_007917 AAD10151 PROTEIN 0 353 462 protein PROTEIN, - MSI4 Genomic DNA, 199 WD40 repeat pinusRadiata 007989 Q9LRZO chromosome 0 480 687 protein 3, TAC clone:K20I9 263 WO 2005/065339 PCT7US2004/043804 Blast SEQ ID Target Patent Identifier BlastK top Gene name BlastX e detties over ap 200 oDeirepeat pinusRadiata_008506 MSI1_LYCES te0 364 420 20 protein prtin_~ 201 WD40 repeat pinusRadiata_008692 QBW403 Secl3p e-134 218 301 21 protein_ 202 WD40 repeat pinusRadiata_008693 QBW403 Secl3p e-137 222 301 22 protein_ U3 snoRNP associated 203 WD40 repeat pinusRadiata_009170 Q9MOV4 like e-127 244 524 protein protein. SPTREMBL WD40 repeat . F23A5.2(FORM 204 protein pinusRadiata_009408 Q9SAJO 2). 602 e- e-171 282 350 171 Hypothetical 205 WD40 repeat pinusRadiata_009522 Q8RXQ4 43.8 kDa e-129 231 395 protein -protein Peroxisomal targeting 206 WD4o repeat pinusRadiata_009734 AA027452 signal type e-142 227 317 protein 2 receptor. SPTREMBL CELL CYCLE 207 WD4o repeat pinusRadiata_009815 AAM20433 SWITCH 0 326 500 protein PROTEIN 264 WO 2005/065339 PCTUS2004/043804 Blast BlastX top BlastX e BlastX X SEQ ID Target Patent Identifier Gene name value identities over ap 208 WD40 repeat pinusRadiata_010670 AAN72058 Expressed e-157 264 345 protein piu~daa007 A708 protein WD REPEAT 209 WD40 repeat pinusRadiata_011297 AAM13100 PROTEIN e-157 262 337 protein ATAN11 HYPOTHETICAL 210. WD40 repeat pinusRadiata_013098 AAM13153 39.1EN e-136 229 352 protein PROTEIN. 487 e-136 211 WD40 repeat pinusRadiata_013172 QBHOT9 Hypothetical 0 437 860 21 protein piu~daa037 809 protein 212 W40 repeat pinusRadiata_013589 AAK52092 4ROTEINPEAT 0 448 512 213 WD40 repeat pinusRadiata_013608 AAC27402 EXPRESSED e-141 202 358 protein PROTEIN Cell cycle 214 WD40 repeat pinusRadiata_014299 Q9XEDS pwenPR 0 335 488 protein piu~daa049 9E5 proteinSPTRE MBL 215 WD40 repeat pinusRadiata_014498 Q9FH64 WO REPEAT e-152 206 329 protein PROTEIN-LIKE 265 WO 2005/065339 PCT/US2004/043804 Blast BlastX top BlastX e BlastX X SEQ ID Target Patent Identifier hit G value identities over ap HYPOTHETICAL 216 W40 repeat pinusRadiata_014548 Q93ZS6 82.2 KDA 0 505 763 6 protein -PROTEIN Hypothetical 217 protein pinusRadiata_014610 Q9M298 104.7 kDa 0 450 922 proteinprotein Putative WD 218 Wprotrepeat pinusRadiata_016090 Q9SIY9 proteiSt 0 442 802 MBL Putative 219 WD40 repeat pinusRadiata_016722 022826 splicing e-159 257 310 protein factorSPTREM BL 220 WD40 repeat pinusRadiata_016785 AAG60193 UA PROTEIN 0 344 464 221 WD40 repeat pinusRadiata_017094 Q9LV35 WD40-REPEAT 0 406 604 Hypothetical 222 W040 repeat pinusRadiata_017527 Q9AYE4 35.3 kDa e-154 254 314 protein -protein 223 WD40 repeat pinusRadiata_017591 080706 F8K4.21 0 905 1218 protein protein 266 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top valu nde B tXnd ties over ap 224 repeat pinusRadiata_017769 09XIJ3 T10024.21 0 446 607 24 protein FERTILIZATIO
N
225 WD40ep pinusRadiata_018047 Q8VZY6 INDEPENDENT 0 285 373 protein ENDOSPERM PROTEIN 226 WD40 repeat pinusRadiata_018414 Q947M8 COPI 0 455 638 protein 227 pt epeat pinusRadiata_018986 Q9LFE2 nrpeat 0 518 886 WD-repeat 228 WD4o repeat pinusRadiata_019479 Q9SZA4 protein-like e-156 276 454 protein protein MSI TYPE NUCLEOSOME/C 229 W4o repeat pinusRadiata 020144 Q8W514 HROMATIN 0 288 413 protein ASSEMBLY FACTOR C MSI type nucleosome/c 230 WD40 repeat pinusRadiata 022480 QBW514 hromatin e-167 287 426 protein assembly factor C MSI type nucleosome/c 231 W repeat pinusRadiata_023079 Q8W514 a ne-169 283 397 factor C. SPTREMBL 267 WO 2005/065339 PCT/US2004/043804 Blast BlastX top BlastX e BlastX X SEQ ID Target Patent Identifier hit Gene nam value identities over ap Putative WD WD40 repeat repeat 232 protein pinusRadiata026739 Q93YS7 membrane 0 591 918 protein. SPTREMBL AT4g18900/F1 233 eirepeat pinusRadiata_026951 Q93VSS y o hi e-163 290 503 pprsodate0691in3S (Hypothetica 1 protein) 234 WEEl-like pinusRadiata_026529 Q9SRY9 F22D16.3 e-122 209 451 protein PROTEIN 235 WD40 repeat eucalyptusSpp 006366 Q8LF96 PRL1 protein 0 374 492 protein 236 t repeat eucalyptusSpp_017378 022607 protein SI4 0 31 453 237 WD40 repeat . pinusRadiata_00088B 022466 repeat 0 364 420 27 protein piu~daa008 246 protein MSIi GENOMIC DNA, Cyclin- CHROMOSOME 238 dependant pinusRadiata_014166 Q9FKB5 NEK4AC 5E-42 114 304 kinase CLONE:K24G6 inhibitor (CYCLIN DEPENDENT
CDK
239 CDK type D pinusRadiata_003189 Q9M5G4 activating BE-21 56 100 kinase 268 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier stX top Gene name BlastX e nties ove ap Histone Histone 240 acetyltransf pinusRadiata_009356 Q9FJT8 acetyltransf 7E-85 187 510 erase erase HAT B 241 Histone pinusRadiata_000065 Q9LPW6 5E-18 71 209 deacetylase piu~daa006 9P6 protein. Putative 242 deacetylase pinusRadiata_014197 QBGXJ1 histone e-170 308 519 deacetylase Cyclophilin (EC 5.2.1.8) 243 Peptidylprol pinusRadiata_009081 Q9ZRQ9 (Peptidyl- e-106 185 190 y1 isomerase prolyl cis trans Putative peptidyl 244 Peptidylprol pinusRadiata 013417 Q8H4TO prolycis- e-140 235 345 yl isomerase trans isomerase protein 245 WD40 repeat pinusRadiata 005755 Q9SKW4 F5J5.6. e-143 144 319 protein WD-40 repeat 246 WD40 repeat pinusRadiata_006670 Q9LDG7 oten-ike e-163 393 960 26 protein MK31 protein) 247 W40 repeat pinusRadiata_007027 Q8GWR1 po etical e-157 276 470 protein Hpotei 269 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier BlastX top Gene name BlastX e BlatX X hit value identities overl ap WD40 repeat Hypothetical 248 WDotepa pinusRadiata_007276 Q9LF27 47.3 kDa e-138 235 428 protein PUTATIVE RING ZINC 249 WD40 repeat pinusRadiata_007390 Q94AH4 FINGER 3E-17 53 158 protein PROTEIN. 91 3e-17 Hypothetical 61.8 kDa 250 p0 repeat pinusRadiata_012648 022212 r- ps 0 324 561 containing protein 251 WD40 repeat pinusRadiata_013171 QBHOT9 Hypothetical 0 437 860 21 protein piu~daa037 8O9 protein. 252 Cyclin B eucalyptusSpp_045414 Q9LDM4 FZD1.10 e-142 255 423 (F5MI5.6) e-2 2543 GENOMIC DNA, Cyclin- CHROMOSOME 253 defendant eucalyptusSpp_044328 Q9FKB5 5, TAC 1E-54 121 260 23 kinase euaytsp 438CLONE:K24G6 inhibitor
(CYCLIN
DEPENDENT Histone Histone acetyltransf 254 acetyltransf eucalyptusSpp_015615 Q9AR19 erase GCN5 0 390 563 erase (Expressed protein) 255 Peptidyprol eucalyptusSpp017239 QGWM6 Hypothetical 0 364 591 y isomerase p protein 270 WO 2005/065339 PCT/US2004/043804 Blast SEQ ID Target Patent Identifier astX top Gnnae BlastX e astties over ap AT4gl8900/F1 256 ein0repeat eucalyptusSpp 018643 Q93VS5 othetica 0 229 327 26 protein _Hpthtc 1 protein) WD40 repeat F22D16.14 257 protein eucalyptusSpp_019127 Q9SRX9 protein. e-131 232 337 SPTREMBL 28 WD40 repeat WD4O-repeat 05986 258 protein eucalyptusSpp_022624 Q9LFE2 protein 0 594 868 9 WD40 repeat Cell cycle 259 protein eucalyptusSpp_032424 Q8LPL5 switch 0 255 327 protein Putative WD WD40 repeat 40 repeat 260 protein eucalyptusSpp 037472 Q9SK69 protein 0 461 677 (AT2G20330/F 11A3.12) 271 INTERPRETATION OF THIS SPECIFICATION It will therefore be understood that the invention could take many forms and be put to 5 many different uses. All such forms and uses are embodied within the spirit and scope of the invention, which is to be understood as not being limited to the particular details of the embodiments or the examples discussed previously, but which extends to each novel feature and combination of features disclosed in or evident from this specification (including in the accompanying claims and drawings). All of these different combinations constitute various 10 alternative aspects of the invention. Throughout this specification, unless the context requires otherwise, the word "comprise" is (and variants, variations or other forms of that word, such as "comprises" or "comprising" are) to be understood as implying the inclusion of a stated element, feature or integer or group of elements, features or integers, but not the exclusion of any other element, feature or integer or 15 group of elements, features or integers. Further, wherever used in this specification, the term "includes" is not a term of limitation, and is not be taken as excluding the presence of other any element, feature or integer or group of elements, features or integers. It is further to be understood that any discussion in this specification of background or prior art documents, devices, acts, information, knowledge or use ('Background Information') 20 is included solely to explain the context of the invention. Any discussions of such Background Information is not be taken as an admission in any jurisdiction that any such Background Information constitutes prior art, part of the prior art base or the common general knowledge in the field of the invention on or before the priority date of the appended claims or any amended claims later introduced into this specification. 25 DIVISONAL APPLICATION This complete specification accompanies a divisional application, being one divided from Australian patent application No 2004311384. The entire disclosure of the complete specification (as filed) for Australian patent application No 2004311384 (including the disclosure 30 of the abstract, disclosure, claims, drawings and sequence listings) is incorporated by reference into the present specification, as if that disclosure was expressly set out in this document. 271(a)

Claims (6)

1. An isolated polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof.
2. The isolated polynucleotide of claim 1 comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-12, 14-58, 60-62, 64 70, 72-75, 77-83, 85-86, 88-91, 93-119, 121-130, 132-148, 150-156, 158-191, 193 207, 209-218, 220-221, 223-231, 233-237 and conservative variants thereof.
3. The isolated polynucleotide of claim 1 comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-12, 14, 16-26, 30-37,
40-41, 43-76, 78-103, 106, 108-113, 116-121, 124-125, 128-147, 150-152, 154-155,
161-162, 164-172, 174, 177-183, 185-191, 193-197, 200-204, 208-213, and 215-234 and conservative variants thereof. 4. The isolated polynucleotide of claim 1 comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-12, 14, 16-26, 30-37, 40-41, 43-58, 60-62, 64-70, 72-75, 78-83, 85-86, 88-91, 93-103, 106, 108-113, 116 119, 121, 124-125, 128-130, 132-147, 150-152, 154-155, 161-162, 164-172, 174,
177-183, 185-191, 193-197, 200-204, 209-213, 215-218, 220-221, 223-231, and 233 234 and conservative variants thereof. 5. The isolated polynucleotide of claim 1, wherein the polynucleotide has a sequence comprised in a gene expressed in a wild-type plant of a species of Eucalyptus or Pinus. 6. The isolated polynucleotide of claim 1, wherein the variant has a sequence identity that is greater than or equal to 99%, 98%, 97%, 96%, 95%, 94%, 93%, 92%, 91%, 90%, 89%, 88%, 87%, 86%, 85%, 84%, 83%, 82%, 81%, 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, or 60% to any one of SEQ ID NOs: 1-237. 272 WO 2005/065339 PCT/US2004/043804 7. The isolated polynucleotide of claim 1, wherein the polynucleotide encodes a protein selected from the group consisting of cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans isomerase, retinoblastoma-related protein, WEEl-like protein, and WD40 repeat protein. 8. The isolated polynucleotide of claim 7, wherein the variant encodes a protein with an amino acid sequence having a sequence identity that is greater than 60%, 65%, 70%, 75%, 80%, 85% or 90% to any one of SEQ ID NOs: 261-497, and wherein the protein encoded by the polynucleotide possesses the activity of the protein encoded by said any one of SEQ ID NOs: 1-237. 9. A. DNA construct comprising at least one polynucleotide having the sequence of any one of SEQ ID NOs: 1-237 and conservative variants thereof. 10. The DNA construct of claim 9, further comprising a promoter, wherein the promoter and the polynucleotide are operably linked. 11. The DNA construct of claim 10, wherein the promoter is selected from the group consisting of a constitutive promoter, a strong promoter, an inducible promoter, a regulatable promoter, a temporally regulated promoter, and a tissue preferred promoter. 12. The DNA construct of claim 9, wherein the polynucleotide encodes an RNA transcript. 13. The DNA construct of claim 12, wherein the polynucleotide is in a sense or antisense orientation relative to the promoter. 14. The DNA construct of claim 12, wherein the RNA transcript induces RNA interference of a polynucleotide having a nucleic acid sequence selected from the group consisting of 1-237. 15. A plant cell transformed with the DNA construct of claim 9. 273 WO 2005/065339 PCT/US2004/043804 16. A transgenic plant comprising the plant cell of claim 15. 17. The transgenic plant of claim 16, wherein a phenotype of the plant is different from a phenotype of a plant of the same species that has not been transformed with the DNA construct. 18. The transgenic plant of claim 17, wherein a phenotype that is different in the transgenic plant is selected from the group consisting of lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. 19. The transgenic plant of claim 16, wherein the plant is a woody plant. 20. The transgenic plant of claim 19, wherein the plant is a tree. 21. The transgenic plant of claim 20, wherein the plant is of a species of Eucalyptus or Pinus. 22. The transgenic plant of claim 16, wherein the plant exhibits one or more traits selected from the group consisting of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests, enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, and production of novel 274 WO 2005/065339 PCT/US2004/043804 proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. 23. The transgenic plant of claim 16, wherein the plant exhibits one or more traits selected from the group consisting of a reduced period of juvenility, an increased period of juvenility, propensity to form reaction wood, self-abscising branches, accelerated reproductive development or delayed reproductive development, as compared to a plant of the same species that has not been transformed with the DNA construct. 24. An isolated polynucleotide comprising a sequence encoding the catalytic or substrate-binding domain of a polypeptide selected from of any one of SEQ ID NOs: 261-497, wherein the polynucleotide encodes a polypeptide having the activity of said polypeptide selected from any one of SEQ ID NOs: 261-497. 25. A method of making a transformed plant comprising transforming a plant cell with a DNA construct comprising at least one polynucleotide having the sequence of any of SEQ ID NOs: 1-237; and culturing the transformed plant cell under conditions that promote growth of a plant. 26. The method of claim 25, wherein the DNA construct further comprises a promoter, wherein the polynucleotide and the promoter are operably linked. 27. The method of claim 25, wherein the at least one polynucleotide encodes a protein that is selected from the group consisting of cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans isomerase, retinoblastoma-related protein, WEEl -like protein, and WD40 repeat protein. 28. The method of claim 25, wherein the plant cell is located within a plant explant tissue. 275 WO 2005/065339 PCTIUS2004/043804 29. The method of claim 25, wherein the transgenic plant exhibits a phenotype that is different from a plant of the same species that has not been transformed with the DNA construct. 30. The method of claim 25, wherein a phenotype that is different in the transgenic plant is selected from the group consisting of lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. 31. The method of claim 25, wherein the transgenic plant exhibits one or more traits selected from the group consisting of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests, enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. 32. A wood obtained from a transgenic tree which has been transformed with the DNA construct of claim 9. 33. A wood pulp obtained from a transgenic tree which has been transformed with the DNA construct of claim 9. 276 WO 2005/065339 PCT/US2004/043804 34. The wood pulp of claim 33, wherein the DNA construct comprises a nucleotide sequence encoding a polypeptide comprising the amino acid sequence of any one of SEQ ID NOs: 261-497. 35. A method of making wood, comprising: transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof; culturing the transformed plant under conditions that promote growth of a plant; and obtaining wood from the plant. 36. A method of making wood pulp, comprising: transforming a plant with a DNA construct comprising a polynucleotide having a nucleic acid sequence selected from the group consisting of SEQ ID NOs: I - 237 and conservative variants thereof; culturing the transformed plant under conditions that promote growth of a plant; and obtaining wood pulp from the plant. 37. An isolated polypeptide comprising an amino acid sequence encoded by the isolated polynucleotide of claim 1. 38. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of 261-497. 39. A method of altering a plant phenotype of a plant, comprising altering expression in the plant of a polypeptide encoded by any one of SEQ ID NOs: 1-237. 40. The method of claim 39, wherein the expression is up-regulated, down regulated, silenced, or developmentally regulated. 41. The method of claim 39, wherein the plant phenotype is selected from the group consisting of lignin quality, lignin quality, lignin structure, wood composition, wood appearance, wood density, wood strength, wood stiffness, cellulose polymerization, fiber dimensions, lumen size, other plant components, plant cell division, plant cell development, number of cells per unit area, cell size, cell shape, cell wall composition, rate of wood formation, aesthetic appearance of wood, 277 WO 2005/065339 PCTIUS2004/043804 formation of stem defects, average microfibril angle, width of the S2 cell wall layer, rate of growth, rate of root formation ratio of root to branch vegetative development, leaf area index, and leaf shape. 42. The method of claim 39, wherein the plant exhibits one or more traits selected from the group consisting of increased drought tolerance, herbicide resistance, reduced or increased height, reduced or increased branching, enhanced cold and frost tolerance, improved vigor, enhanced color, enhanced health and nutritional characteristics, improved storage, enhanced yield, enhanced salt tolerance, enhanced resistance of the wood to decay, enhanced resistance to fungal diseases, altered attractiveness to insect pests, enhanced heavy metal tolerance, increased disease tolerance, increased insect tolerance, increased water-stress tolerance, enhanced sweetness, improved texture, decreased phosphate content, increased germination, increased micronutrient uptake, improved starch composition, improved flower longevity, production of novel resins, and production of novel proteins or peptides, as compared to a plant of the same species that has not been transformed with the DNA construct. 43. A polynucleotide comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 471-697. 44. The polynucleotide of claim 43, wherein said polynucleotide is comprised of less than about 100 nucleotide bases. 45. A method of correlating gene expression in two different samples, comprising: detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof in a first sample; detecting a level of expression of the one or more genes in a second sample; comparing the level of expression of the one or more genes in the first sample to the level of expression of the one or more genes in the second sample; and correlating a difference in expression level of the one or more genes between the first and second samples. 278 WO 2005/065339 PCT/US2004/043804 46. The method of claim 45, wherein the first sample and the second sample are each from a different type of plant tissue. 47. The method of claim 45, wherein the first sample and the second sample are from the same tissue, and wherein the first sample and the second sample are each harvested during a different season of the year. 48. The method of 45, wherein the first sample and the second sample are obtained from plants in different stages of development. 49. A method of correlating the possession of a plant phenotype to the level of gene expression in the plant of one or more genes comprising: detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof in a first plant possessing a phenotype; detecting a level of expression of the one or more genes in a second plant lacking the phenotype; comparing the level of expression of the one or more genes in the first plant to the level of expression of the one or more genes in the second plant; and correlating a difference in expression level of the one or more genes between the first and second plants to possession of the phenotype. 50. A method of correlating gene expression to a stage of the cell cycle, comprising: detecting a level of expression of one or more genes encoding a product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 and conservative variants thereof in a first plant cell in a first stage of the cell cycle; detecting a level of expression of the one or more genes in a second plant cell in a second, different stage of the cell cycle; comparing the level of the expression of the one or more genes in the first plant cells to the level of expression of the one or more genes in the second plants cells; and correlating a difference in expression level of the one or more genes between the first and second samples to the first or second stage of the cell cycle. 51. The method of claim 45 wherein the first and second samples are both obtained from a plant tissue selected from the group consisting of vascular tissue, 279 WO 2005/065339 PCT/US2004/043804 apical meristem, vascular cambium, xylem, phloem, root, flower, cone, fruit, and seed. 52. The method of claim 51, wherein the plant tissue of the first sample and second sample are each obtained from a different type of tissue. 53. The method of claim 51, wherein the first and second samples are each obtained from a plant tissue in a different stage of development. 54. The method of claim 45, wherein the first and second samples are each obtained from plant cells in different stages of the cell cycle. 55. The method of any one of claims 49 or 50, wherein both the first and second plants or plant cells are of a same species selected from Eucalyptus and Pinus species. 56. The method of any one of claims 49 or 50, wherein the first and second plants or plant cells are of a species selected from Eucalyptus grandis or Pinus radiata. 57. The method of any one of claims 45, 49 or 50, wherein the step of detecting is effected using one or more polynucleotides capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 under standard hybridization conditions. 58. The method of any one of claims 45, 49 or 50, wherein the step of detecting is effected using one or more polynucleotides capable of hybridizing to a gene product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 under standard hybridization conditions. 59. The method of any one of claims 45, 49 or 50, wherein the step of detecting is effected by hybridization to a labeled nucleic acid. 60. The method of claim 56, wherein the one or more polynucleotides are labeled with a detectable label. 280 WO 2005/065339 PCTIUS2004/043804 61. The method of claim 57, wherein at least one of the one or more polynucleotides hybridizes to a 3' untranslated region of one of the one or more genes. 62. The method of claim 58, wherein at least one of the one or more polynucleotides hybridizes to the 3' untranslated region of one of the one or more genes. 63. The method of claim 57, wherein the one or more polynucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs:471-697. 64. The method of claim 58, wherein the one or more polynucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 471-697. 65. The method of claim 57, wherein the one or more polynucleotides is selected from the group consisting of DNA and RNA. 66. The method of claim 58, wherein the one or more polynucleotides is selected from the group consisting of DNA and RNA. 67. The method of any one of claims 45, 49, or 50, further comprising, prior to the detecting steps, the step of amplifying the one or more genes in the first and second plant or plant cells. 68. The method of any one of claims 45, 49, or 50, further comprising, prior to the detecting steps, the step of labeling the one or more genes in the first and second plant or plant cells with a detectable label. 69. A combination for detecting expression of one or more genes, comprising two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237. 281 WO 2005/065339 PCT/US2004/043804 70. A combination for detecting expression of one or more genes, comprising two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to gene product encoded by a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237. 71. The combination of claim 69, wherein each of the two or more oligonucleotides hybridizes to a different one of the nucleic acid sequences selected from the group consisting of SEQ ID) NOs: 1-237. 72. The combination of claim 70, wherein each of the two or more oligonucleotides hybridizes to a nucleotide sequence encoded by a different one of the nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1-237. 73. The combination of claim 69, wherein at least one of the two or more oligonucleotides hybridizes to a 3' untranslated region of a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237. 74. The combination of claim 70, wherein at least one of the two or more oligonucleotides hybridizes to nucleic acid sequence that is complementary to a 3' untranslated region of a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237. 75. The combination of any one of claims 69 or 70, wherein each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. 76. The combination of claim 69, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 471-697. 77. The combination of claim 70, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 471-697. 78. The combination of claim 69, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group 282 WO 2005/065339 PCT/US2004/043804 consisting of cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans isomerase, retinoblastoma-related protein, WEE 1-like protein, and WD40 repeat protein. 79. The combination of claim 70, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a protein selected from the group consisting of cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl prolyl cis-trans isomerase, retinoblastoma-related protein, WEE l -like protein, and WD40 repeat protein. 80. The combination of claim 78, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins. 81. The combination of claim 79, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins. 82. The combination of claim 78, wherein each of the two or more oligonucleotides hybridizes to a different gene. 83. The combination of claim 79, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a different gene. 84. The combination of any one of claims 69 or 70, comprising from about 2 to about 5000 of the two or more oligonucleotides. 85. The combination of any one of claims 69 or 70, wherein each of the two or more oligonucleotides is labeled with a detectable label. 86. A microarray comprising the combination of any one of claims 69-85 provided on a solid support, wherein each of said two or more oligonucleotides occupies a unique location on said solid support. 283 WO 2005/065339 PCT/US2004/043804 87. A method for detecting one or more genes in a sample, comprising: contacting the sample with two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 under standard hybridization conditions; and detecting the one or more genes of interest which are hybridized to the one or more oligonucleotides. 88. A method for detecting one or more nucleic acid sequences encoded by one or more genes in a sample, comprising: contacting the sample with two or more oligonucleotides, wherein each oligonucleotide is capable of hybridizing to a nucleic acid sequence encoded by a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs: 1-237 under standard hybridization conditions; and detecting the one or more nucleic acid sequences which are hybridized to the one or more oligonucleotides. 89. The method of claim 87, wherein each of the two or more oligonucleotides hybridizes to a gene comprising a different one of the nucleic acid sequences selected from the group consisting of SEQ ID NOs: 1-237. 90. The method of claim 88, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene comprising a different one of the nucleic acid sequences selected from the group consisting of SEQ ID NOs 1-237. 91. The method of claim 87, wherein at least one of the two or more oligonucleotides hybridizes to a 3' untranslated region of a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs 1-237. 92. The method of claim 88, wherein at least one of the two or more oligonucleotides hybridizes to a nucleic acid sequence that is complementary to a 3' untranslated region of a gene comprising a nucleic acid sequence selected from the group consisting of SEQ ID NOs 1-237. 284 WO 2005/065339 PCT/US2004/043804 93. The method of any one of claims 87 or 88, wherein each of the two or more oligonucleotides are comprised of fewer than about 100 nucleotide bases. 94. The method of claim 87, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 471-697. 95. The method of claim 88, wherein at least one of the two or more oligonucleotides comprises a nucleic acid sequence selected from the group consisting of SEQ ID NOs 471-697. 96. The method of claim 87, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a protein selected from the group consisting of cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl-prolyl cis-trans isomerase, retinoblastoma-related protein, WEEl-like protein, and WD40 repeat protein. 97. The method of claim 88, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a protein selected from the group consisting of cyclin, cyclin dependent kinase, cyclin dependent kinase inhibitor, histone acetyltransferase, histone deacetylase, peptidyl prolyl cis-trans isomerase, retinoblastoma-related protein, WEEl -like protein, and WD40 repeat protein. 98. The method of claim 96, wherein each of the two or more oligonucleotides hybridizes to a gene encoding a different one of the proteins. 99. The method of claim 97, wherein each of the two or more oligonucleotides hybridizes to a nucleic acid sequence encoded by a gene encoding a different one of the proteins. 100. The method of any one of claims 87 or 88, wherein the two or more oligonucleotides are provided on a solid support, wherein each of the two of more oligonucleotides occupy a unique location on the solid support. 285 WO 2005/065339 PCI'/US2004/043804 101. The method of claim 100, wherein the solid support comprises from about 2 to about 5000 of the two or more oligonucleotides. 102. The method according to any one of claims 87 or 88, further 5 comprising, prior to the contacting step, the step of amplifying the one or more genes or nucleic acid sequences in the sample. 103. The method according to any one of claims 87 or 88, further comprising, prior to the contacting step, the step of labeling the one or more genes 10 or nucleic acid sequences in the sample with a detectable label. 104. A kit for detecting gene expression comprising the microarray of claim 86 together with one or more buffers or reagents for a nucleotide hybridization reaction. 15 Dated: 12 April 2012 ARBORGENINC. 20 By its Patent Attorneys KNIGHTSBRIDGE PATENT ATTORNEYS 286
AU2012202108A 2003-12-30 2012-04-12 Cell cycle genes and related methods of using Abandoned AU2012202108A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2012202108A AU2012202108A1 (en) 2003-12-30 2012-04-12 Cell cycle genes and related methods of using

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/533,036 2003-12-30
AU2004311384A AU2004311384B2 (en) 2003-12-30 2004-12-30 Cell cycle genes and related methods of using
AU2012202108A AU2012202108A1 (en) 2003-12-30 2012-04-12 Cell cycle genes and related methods of using

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2004311384A Division AU2004311384B2 (en) 2003-12-30 2004-12-30 Cell cycle genes and related methods of using

Publications (1)

Publication Number Publication Date
AU2012202108A1 true AU2012202108A1 (en) 2012-05-10

Family

ID=46640389

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012202108A Abandoned AU2012202108A1 (en) 2003-12-30 2012-04-12 Cell cycle genes and related methods of using

Country Status (1)

Country Link
AU (1) AU2012202108A1 (en)

Similar Documents

Publication Publication Date Title
US20100122382A1 (en) Cell Cycle Genes and Related Methods
JP4909072B2 (en) Transcription factor
JP5155875B2 (en) Gene microarray of wood and cell wall
US7723110B2 (en) Plant cell signaling genes
AU2011201695B2 (en) Compositions and methods for regulating polysaccharides of a plant cell
AU2012202108A1 (en) Cell cycle genes and related methods of using
NZ544385A (en) Transcription factors for regulating plant gene expression comprising a MYB transcription factor

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period