AU2012202046B2 - Channel quality measurements for downlink resource allocation - Google Patents

Channel quality measurements for downlink resource allocation Download PDF

Info

Publication number
AU2012202046B2
AU2012202046B2 AU2012202046A AU2012202046A AU2012202046B2 AU 2012202046 B2 AU2012202046 B2 AU 2012202046B2 AU 2012202046 A AU2012202046 A AU 2012202046A AU 2012202046 A AU2012202046 A AU 2012202046A AU 2012202046 B2 AU2012202046 B2 AU 2012202046B2
Authority
AU
Australia
Prior art keywords
channel quality
ue
derived
plurality
timeslots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2012202046A
Other versions
AU2012202046A1 (en
Inventor
Stephen G. Dick
James M. Miller
Stephen E. Terry
Ariela Zeira
Eldad Zeira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US60/290,739 priority Critical
Priority to AU2009217367A priority patent/AU2009217367B2/en
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to AU2012202046A priority patent/AU2012202046B2/en
Publication of AU2012202046A1 publication Critical patent/AU2012202046A1/en
Application granted granted Critical
Publication of AU2012202046B2 publication Critical patent/AU2012202046B2/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Abstract

Abstract The present invention provides for timely measurement of channel quality (CQ) and for signalling the information to the base station as appropriate. The present invention provides several embodiments to measure and signal the CQ per timeslot, or sub-channel, from the user equipment (UE) to the base station. Measurements may be performed at a high rate for all relevant timeslots or sub-channels, or may be made at a lower rate by selectively reducing the rate by which such measurements are performed. Fig.2

Description

POO1 SectIon 29 Regulation 3.2(2) AUSTRALIA Patents Act 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: Invention Title: Channel quality measurements for downlink resource allocation The following statement is a full description of this invention, including the best method of performing it known to us: P11'[AHAU/0710 1 CHANNEL QUALITY MEASUREMENT FOR DOWNLINK RESOURCE ALLOCATION BACKGROUND OF THE INVENTION The present invention relates to wireless digital communication systems 5 and, more particularly, to communication stations employing code-division multiple access (CDMA) technology utilizing measurement techniques to efficiently determine downlink resource allocation. In modern wireless communication systems, as the makeup of communication traffic has shifted from primarily voice traffic to an ever-increasing 10 share of data traffic, such as for internet applications, the capacity requirements of such systems have increased. Thus, the provision of techniques to maximize the capacity of downlink (DL) transmissions is highly desirable. The propagation loss between a transmitter and a receiver is not fixed or constant. In addition to the dependence of propagation loss on distance, 15 variations are caused by obstructions to the path, (or multiple paths), between the transmitter and receiver as well as the interaction between paths. These variations are referred to as fading. Additionally, the fading varies with time. In some communication systems, it is customary to transmit at each time instance to a particular user, or several users among multiple users, who enjoy 20 the most favorable transmission conditions at that time. With these systems, it is necessary to define a channel quality that may be estimated for each user from time to time in order to transmit to each user at the most appropriate moment. Although selection of the most appropriate moment from the fading point of view is not mandatory, instantaneous path loss should be one of the considered 25 factors in the selection. One measure of channel quality is the instantaneous path loss- Channel quality improves as the instantaneous path loss is reduced, and channel quality is best when the instantaneous path loss is the smallest. Another measure of channel quality is the interference seen by the user, 30 since higher interference generally requires higher transmission power. As transmission power is limited, it results in reduction of system capacity. Channel quality (CO) may therefore be defined as the ratio of the received power of a fixed-level base station transmission to the received interference. This ratio is 2 inversely proportional to the required transmission power of the base station for user data. Maximization of this ratio, by continually selecting the users whoso CQ is highest, (and therefore path loss and/or interference is lowest), at any instant in time, tends to increase system capacity as a whole over time. 5 The particular signal that is measured to determine the path loss and calculate the ratio is not critical. For example, the signal may be any pilot signal, beacon or even data-carrying signal that is transmitted at a constant or known power. In some systems the reception power is termed received signal code power (RSCP) and the received interference power is termed interference signal 10 code power (ISCP). For example,. in the Universal Mobile Telecommunication Systems (UMTS) frequency division duplex (FDD) standard, the common pilot channel (CPiCH) is measured, and the CQ is defined as CPiCH_FRSCP/ISCP, In the UMTS time division duplex (TDD) standard, the beacon channel (PCCPCH) is measured and the CQ is defined as PCCPCHRSCP/ISCP. Since channel 15 conditions change rapidly, it is preferable to use a short time allocation, (i.e. a small timeslot), for each transmission. The measurement information used for the allocation must therefore also be timely. In some communication systems it is customary to separate transmissions to users by time, or to separate one type of user-selective transmission in time 20 from other types of transmissions, such as normal voice services and data services. Such time separation can be obtained in different ways. For example, a repetitive frame may be divided into a plurality of timeslots. Each timeslot may each be allocated to one or more users at a time. In addition, several timeslots, adjacent or non-adjacent, may be allocated to one or more users. If a collection 25 of one or more timeslots is allocated together, it may be referred to as a sub channel. In a time-separated transmission, it is likely that the interference in all of the timeslots or sub-channels is not equal- The reporting of a single value for all timeslots often results in a non-optimal allocation and the information in some of 30 the timeslots may be lost. It is therefore desirable to report individual measurements for each timeslot.

3 SUMMARY OF THE INVENTION The present invention provides for timely measurement of CQ and for signaling the information to the base station as appropriate. The present invention provides several embodiments to measure and signal the CQ per timeslot, or sub 5 channel, from the UE to the base station. Measurements may be performed at a high rate for all relevant timeslots or sub-channels, or may be made at a lower rate by selectively reducing the rate by which such measurements are performed. According to a first aspect the present invention provides a method for reporting channel quality from a user equipment (UE) to a base station, the method 10 including: deriving, by the UE, a channel quality for each of a plurality of downlink resources; transmitting, by the UE, the derived channel qualities in a pattern of time intervals by rotating through the derived channel qualities, wherein each derived 15 channel quality is transmitted in a separate time intervals of the pattern; wherein a derived channel quality is not transmitted by the UE in each time interval of a frame. According to a second aspect the present invention provides a user equipment (UE) configured to report a channel quality to a base station, including: 20 a channel quality determination device, configured to derive a channel quality for each of a plurality of downlink resources; and a channel quality transmitter configured to transmit the derived channel qualities in a pattern of time intervals by rotating through the derived channel qualities, wherein each derived channel quality is transmitted in a separate time 25 intervals of the pattern; wherein a derived channel quality is not transmitted by the UE in each time interval of a frame. According to a third aspect the present invention provides a wireless network node for receiving channel quality information from a user equipment 30 (UE), including: 3a a channel quality receiver, configured to receive derived channel qualities in a pattern of time intervals, wherein each of the received derived channel qualities correspond to a respective downlink resource of a plurality of downlink resources, wherein the channel qualities of the respective downlink resources are rotated 5 through the pattern of time intervals, wherein each derived channel quality is received in a separate time interval of the pattern; and wherein a derived channel quality is not received from the UE in each time interval of a frame. BRIEF DESCRIPTION OF THE DRAWINGS 10 The objectives of the present invention will become apparent upon consideration of the accompanying detailed description and figures, in which: 15 4 Figuro 1 is a simplfied block diagram of the UMTS architecture. Figure 2 is a simplified block diagram illustrating a UE and a base station for implementing channel quality measurements for downlink resource allocation of the present invention. 5 Figure 3 is a flow diagram of one preferred method for performing channel quality measurements at the UE for downlink resource allocation of the present invention and reporting those measurements to the base station. DESCRIPTION OF PREFERRED EMBODIMENT Presently preferred embodiments are described below with reference to 10 the drawing figures wherein like numerals represent like elements throughout. Referring to Figure 1, the UMTS network architecture Includes a core network (CN), a UMTS Terrestrial Radio Access Network (UTRAN), and a User Equipment (UE). The two general interfaces are the lu interface, between the UTRAN and the core network, as well as the radio interface Uu, between the 15 UTRAN and the UE. The UTRAN consists of several Radio Network Subsystems (RNS) which can be interconnected by an lur interface. This interconnection allows core network independent procedures between different RNSs. Therefore, radio access technology-specific functions can be kept outside of the core network. The RNS is further divided into the Radio Network Controller (RNC) and 20 several base stations (Node Bs). The Node Bs are connected to the RNC by an lub interface. One Node B can serve one or multiple cells, and typically serves a plurality of UEs. The UTRAN supports both FDD mode and TDD mode on the radio interface. For both modes, the same network architecture and the same protocols are used. 25 Referring to the block diagram in Figure 2, a preferred communication system 10 for performing the process of obtaining CQ measurements for downlink resource allocation in accordance with the principles of the present invention is shown. The communication system 10 comprises a UE 12 and a base station/node-B 30, (hereinafter referred to as base station 30) which are 30 coupled together via a wireless radio interface 14. UE 12 includes an antenna 16, an isolator or switch 18, a matched filter 20, a reference channel code generator 21, a power measurement device 22, a timeslot interference measurement device 24, a CQ transmitter 26 and a CQ 5 determination device 28. The antenna 16 is coupled through the isolator/switch 18 to the matched ilter 20, which receives the downlink signal and provides an output to the power measurement device 22. The reference channel code generator 21 generates a reference channel code, which is applied to the 5 matched filter 20. The power measurement device 22 analyzes the output of the matched filter 20 to determine the power level of the downlink signal and outputs this power level to the CQ determination device 28. The output of isolator/switch 18 is further coupled to the timeslot interference measurement device 24, which measures the downlink channel and 10 provides an output to a second input of the CQ determination device 28. The CO determination device 28 analyzes the power level output from the power measurement device 22 and the interference level from the timeslot interference measurement device 24 and provides a CQ measurement to the transmitter 26. The transmitter 26 is coupled to the antenna 16 through the isolator/switch 18 for 15 wireless RF transmission to the base station 30 through wireless radio interface 14. Base station 30 comprises a reference channel transmitter 36, an isolator or switch 34, an antenna 32, a CQ receiver 38 and a CQ storage device 40. The antenna 32 receives the wireless RF transmission from the UE, including the CQ 20 measurement through the wireless radio interface 14, and couples via the isolator/switch 34 to the received signal to the channel quality receiver 38. The received CQ measurement is then stored at the CQ storage device 40. The reference channel transmitter 36 provides a reference signal, which is transmitted in the downlink to UE 12 through the isolator/switch 34 and the antenna 32. The 25 reference downlink signal from the transmitter 36 is utilized by the UE 12 to create the downlink CQ measurement. It should be noted that the foregoing preferred method 50 in accordance with the present invention shown in Figure 3 may be performed by communication systems other then the types shown in Figures 1 and 2, and the 30 present invention is not intended to be so limited. Referring to Figure 3, the method 50 may be implemented by a digital communication system 10 as explained with reference to Figures 1 and 2, comprising a UE 12 which is in communication with a base station 30.

6 A fast quality estimate per timeslot or sub-channel is one preferred technique for CQ measurement employed by the present invention to provide the best performance for the downlink (DL) allocation since the base station 30 will have al1 of the information needed to choose the modulation and coding, select 5 the best user or users and to allocate to them the best timeslots or sub-channels. Although the present invention is applicable to both the UMTS frequency division duplexing (FOD) and time division duplex (TDD) standards, only one example will be set forth herein, In the FDD standard, for example, the common pilot channel (CPICH) may be measured and divided by a per-timeslot or sub-channel 10 interference signal code power (ISCP) measurement, which is performed in all relevant timeslots. In the TDD standard the physical common pilot channel (PCCPCH) is an example of a channel that may be measured. The base station 30 transmits a fixed-level transmission (step 52), such as a pilot beacon or a data-carrying signal, over the PCCPCH, hereafter referred to 15 as the reference channel. It should be understood that the reference channel may be any type of fixed-level, (or known), base station transmission, whether or not it is a control channel or a data channel. It is only necessary that the reference channel power be known by the UE 12 at the time of measurement. The UE 12 measures received signal code power (RSCP) (step 54). The UE 12 20 then measures the ISCP (step 56). The RSCP and/or the ISCP may be measured continuously, (Le. for every frame and timeslot), or on a less frequent basis as discussed below. There are a number of different alternatives that can be implemented for steps 56 and 54. In a first alternative, the UE 12 measures the ISCP and/or the 25 RSCP in specifically-identified timeslots and in a specifically-identified order. In a second alternative, the UE 12 measures the ISCP and/or the RSCP in all of the timeslots in a predetermined order or a random order. In a third alternative, the UE 12 measures the ISCP andior the RSCP in a randomly identified number of timeslots in a random order. In a fourth alternative, the UE 12 rotates the 30 measurement of the timeslots. For example, ISCP and/or RSCP in tirneslots 1-4 of the first frame are measured, then tirneslots 6-8 of the subsequent frame are measured and timeslots 9-12 of the subsequent frame, etc. By having this inherent flexibility, the method 50 in accordance with the present invention may 7 be adapted to the particular needs of the system operator and the special application. As discussed above, it is not necessary to have both path loss and interference measured using the same timing scheme at the same rate. Thus, 5 ISCP may be measured much less frequently than RSCP. For example, ISCP may be measured in accordance with the fourth alternative of Table 1 and RSCP may be measured in accordance with the second alternative of Table 1 Table 1 summarizes the different embodiments for UE measurement. However, it should be noted that any combination of predetermined or dynamic 10 selection of timeslots and/or timeslot order may be used without departing from the spirit and scope of the present invention. AITERNA UE MEASUREMENT TIVE First Measure in specific timeslots and in a specific order Second Measure in all timesots in a predetermined or random order ___ fhird_ l-Measure in randomly identified timeslots and in a random order Fourth Rotate measurement in different tineslots TABLE 1 Returning to Figure 3, regardless of the timeslots or timeslot order that was 15 selected and measured, the UE 12 at step 58 determines the downlink CQ from the measurements taken and reports downlink CO to the base station 30. The CQ measurement may comprise transmitting ISCP (from step 56) and RSCP (from step 54) individually, transmitting the ISCP/RSCP ratio calculated by the UE 12, or may comprise one of many other alternatives which will be explained in 20 further detail hereinafter. The downlink CQ measurement report generated and transmitted by the UE 12 at step 58 is received by the base station 30 at step 60, and is analyzed at 8 step 62 to determine the activity necessary for subsequent transmissions to the UE 12, taking into account the downlink CQ measurements. The manner in which the UE 12 collects the measurements and transmits the measurement data is typically a trade-off between the amount of data 5 provided, and the overhead necessary to transmit the measurement data back to the base station 30. For example, measurement and transmission of all data for both ISCP and RSCP for every selected timeslot provides the most information. However, the drawback is the large amount of data required to be transmitted and the overhead required to transmit it. 10 The goal of the present invention is to return timely and accurate CO information and to determine the proper modulation and coding to use for the downlink channels. As such, there are many different alternatives that the UE 12 can use to measure and transmit this information to the base station 30. Table 2 shows the different alternatives for transmitting RSCP and ISCP to the base '15 station 30. UE TRANSMITTED INFORMATION ALTERNATIVE 1 RSCP and ISCP for every timeslot 2 RSCP once per frame and ISCP for every specified timeslot 3 RSCPiISCP ratio for every specified timeslot 4 A "coded" RSCP/ISCP ratio for every specified timeslot 5 Soft symbol errors for every specified timeslot 6 An indication of one of the available sets or levels of the modulation coding set (MCS) for each timeslot A combined coding of all tirneslots 8 A mean of the CQ for all timeslots (i.c, 4-5 bits) and -the difference from the mean (i.e. I or 2 bits) for each timeslot 9 The actual measured value of one predetermined or identified timeslot or sub-channel as a reference, and then 9 transmit the difference of the remaining timeslots from the reference timeslot. TABLE 2 The nine alternatives are generally in the order from requiring the most number of bits to requiring the least number of bits to transmit the downlink CQ information from the UE 12 to the base station 30. It should be understood that 5 this list is not an all-inclusive and the present invention should not be limited to the specific enumerated alternatives shown in Table 1. In alternative 1, the UE 12 transmits RSCP and ISCP for every timeslot to the base station 30. In alternative 2, the UE 12 transmits RSCP once per frame and transmits 10 ISCP for every specified timeslot to the base station 30. In alternative 3, the UE 12 transmits an RSCP/ISCP ratio for every specified timeslot to the base station 30. In alternative 4, the UE 12 codes and transmits the RSCP/iSCP ratio for every specified timeslot to the base station 30. Coding of the ratio reduces the 15 number of bits required to transmit the information. In alternative 5, the UE 12 transmits the number soft symbol errors, detected by the UE 12, to the base station 30. Soft symbol errors are well known by those of skill in the art as an indication of downlink CQ. In alternative 6, the UE 12 selects the available modulation coding sets 20 (MCS) from the RSCP and 1SCP measurements, and transmits this selection to the base station which the base station 30 uses for transmission. There are typically a predefined number of MCSs available to a UE, for example eight (8) such sets, Once the UE performs the RSCP and ISCP measurements, it calculates which MSCs would be supportable give the current CQ. 25 In alternative 7, the UE 12 combines coding of CO information for all timeslots. Separately coding the common and differential quality of all tirmeslots or sub-channels results in a saving of transmitted bits. In alternative 8, the UE 12 measures and transmits the mean of the CQs for all timeslots, which is coded using a larger number of bits, and then transmits 30 the difference of each remaining timeslot to the mean value using coded values having a smaller number of bits. As one example, four (4) or five (5) bits may be 10 used to identify the mean value of the timeslots, while the difference of each timeslot or sub-channel to the mean value requires only one (1) or two (2) bits. In alternative 9, one of the Umeslots or sub-channels is designated as a reference point. The CQ measurement for this timeslot is transmitted, and then 5 for the remaining timeslots it is only necessary to transmit the differential information as referred to the reference point. In a manner similar to the alternative 8, the reference timeslot may be four (4) or five (5) bits and the difference from the reference for the remaining timeslots may be one (1) or two (2) bits. 10 in order to reduce power requirements as well as the complexity of the implementation necessary for measurement and processing, it is desirable to minimize the number of measurements and the amount of processing. For systems in which the UE 12 must perform measurements at all times pending information requests from the base station 30, this can impose a heavy 15 measurement burden on the UE 12 if the number of timeslots or sub-channels are large. In situations where the interference does not change at the same rate that the fading does, timeslot measurements may be rotated in such a way that a recent interference measurement is available for some tirneslots while older information is used for other slots. 20 By reducing the number of timeslots measured, complexity can be substantially reduced. Large numbers of timeslots to be measured results in frequent measurement reports and high complexity. A smaller number of timeslot measurements result in lower complexity but less frequent measurement reports, which leads to some degradation in performance. A compromise can be adopted 25 according to the needs and/or preferences of the particular application. Although the invention has been described in part by making detailed reference to the preferred embodiment, such detail is intended to be instructive rather than restrictive. It will be appreciated by those skilled in the art that many variations may be made in the structure and mode of operation without departing 30 from the spirit and scope of the invention as disclosed in the teachings herein.

Claims (24)

1. A method for reporting channel quality from a user equipment (UE) to a base station, the method including: deriving, by the UE, a channel quality for each of a plurality of downlink 5 resources; transmitting, by the UE, the derived channel qualities in a pattern of time intervals by rotating through the derived channel qualities, wherein each derived channel quality is transmitted in a separate time interval of the pattern; wherein a derived channel quality is not transmitted by the UE in each time 10 interval of a frame.
2. The method according to claim 1, wherein each time interval includes a plurality of timeslots.
3. The method according to claim 1, further including: deriving a channel quality associated with all of the plurality of downlink 15 resources.
4. The method according to claim 1, wherein the plurality of downlink resources are timeslots.
5. The method according to claim 1, wherein the derived channel quality for includes a measured received signal code power (RSCP) value. 20
6. The method according to claim 5, wherein the derived channel quality is based on a coded ratio of the measured RSCP value to a measured interference signal code power value.
7. The method according to claim 1, wherein the derived channel quality indicates a modulation and coding set. 12
8. A user equipment (UE) configured to report a channel quality to a base station, including: a channel quality determination device, configured to derive a channel quality for each of a plurality of downlink resources; and 5 a channel quality transmitter configured to transmit the derived channel qualities in a pattern of time intervals by rotating through the derived channel qualities, wherein each derived channel quality is transmitted in a separate time intervals of the pattern; wherein a derived channel quality is not transmitted by the UE in each time 10 interval of a frame.
9. The UE according to claim 8, wherein each time interval includes a plurality of timeslots.
10. The UE according to claim 8, wherein the channel quality determination device is further configured to derive a channel quality associated with all of the 15 plurality of downlink resources.
11. The UE according to claim 8, wherein the plurality of downlink resources are timeslots.
12. The UE according to claim 8, wherein: the channel quality determination device is further configured to derive a 20 first channel quality of a second plurality of downlink resources; and the channel quality transmitter is further configured to transmit each derived channel quality of the plurality of downlink resources as a difference between the channel quality of the respective downlink resource and the first channel quality of the second plurality of downlink resources. 25
13. The UE according to claim 12, wherein: 13 the channel quality transmitter is further configured to transmit the first channel quality in a time interval of the pattern.
14. The UE according to claim 8, wherein the derived channel quality indicates a modulation and coding set. 5 15. A wireless network node for receiving channel quality information from a user equipment (UE), including: a channel quality receiver, configured to receive derived channel qualities in a pattern of time intervals, wherein each of the received derived channel qualities correspond to a respective downlink resource of a plurality of downlink resources, 10 wherein the channel qualities of the respective downlink resources are rotated through the pattern of time intervals, wherein each derived channel quality is received in a separate time interval of the pattern; and wherein a derived channel quality is not received from the UE in each time interval of a frame.
15
16. The wireless network node according to claim 15, wherein each time interval includes a plurality of timeslots.
17. The wireless network node according to claim 15, wherein the channel quality receiver is further configured to receive a channel quality report including a derived channel quality associated with all of the plurality of downlink resources. 20
18. The wireless network node according to claim 15, wherein the plurality of downlink resources are timeslots.
19. The wireless network node according to claim 15, wherein the derived channel quality includes a measured received signal code power (RSCP) value. 14
20. The wireless network node according to claim 19, wherein the derived channel quality is based on a coded ratio of the measured RSCP value to a measured interference signal code power value.
21. The wireless network node according to claim 15, wherein the derived 5 channel quality indicates a modulation and coding set.
22. The method according to claim 1 and substantially as hereinbefore described with reference to the accompanying figures.
23. The UE according to claim 8 and substantially as hereinbefore described with reference to the accompanying figures. 10
24. The wireless network node according to claim 15 and substantially as hereinbefore described with reference to the accompanying figures. INTERDIGITAL TECHNOLOGY CORPORATION WATERMARK PATENT & TRADE MARK ATTORNEYS P23419AU04
AU2012202046A 2001-05-14 2012-04-11 Channel quality measurements for downlink resource allocation Active AU2012202046B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US60/290,739 2001-05-14
AU2009217367A AU2009217367B2 (en) 2001-05-14 2009-09-18 Channel quality measurements for downlink resource allocation
AU2012202046A AU2012202046B2 (en) 2001-05-14 2012-04-11 Channel quality measurements for downlink resource allocation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2012202046A AU2012202046B2 (en) 2001-05-14 2012-04-11 Channel quality measurements for downlink resource allocation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009217367A Division AU2009217367B2 (en) 2001-05-14 2009-09-18 Channel quality measurements for downlink resource allocation

Publications (2)

Publication Number Publication Date
AU2012202046A1 AU2012202046A1 (en) 2012-05-10
AU2012202046B2 true AU2012202046B2 (en) 2015-09-03

Family

ID=46640387

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2012202046A Active AU2012202046B2 (en) 2001-05-14 2012-04-11 Channel quality measurements for downlink resource allocation

Country Status (1)

Country Link
AU (1) AU2012202046B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986282A1 (en) * 1998-04-17 2000-03-15 Matsushita Electric Industrial Co., Ltd. Radio communication device and method of controlling transmission rate
WO2000057658A1 (en) * 1999-03-24 2000-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Channel allocation using enhanced pathloss estimates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986282A1 (en) * 1998-04-17 2000-03-15 Matsushita Electric Industrial Co., Ltd. Radio communication device and method of controlling transmission rate
WO2000057658A1 (en) * 1999-03-24 2000-09-28 Telefonaktiebolaget Lm Ericsson (Publ) Channel allocation using enhanced pathloss estimates

Also Published As

Publication number Publication date
AU2012202046A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
EP1388263B1 (en) Common control channel uplink power control for adaptive modulation and coding techniques
EP1774822B1 (en) Efficient signaling over access channel
JP4067873B2 (en) Wireless transmission device
EP1006746B1 (en) Soft handoff between second and third generation CDMA systems
EP2285175B1 (en) Method and apparatus for transmitting packet data via at least one of a first set of channels in a wireless communication
JP4012505B2 (en) Interference reduction in time division duplex systems using code division multiple access
JP4607589B2 (en) Power allocation for power control bits in cellular networks
JP3730975B2 (en) Data transmission apparatus and method using transmission antenna diversity method in packet service communication system
EP1192749B1 (en) Method and apparatus for determining a reverse link transmission rate in a wireless communication system
JP5295185B2 (en) Base station apparatus and communication method
EP1299956B1 (en) Code power measurement for dynamic channel allocation
KR100735402B1 (en) Apparatus and Method of Transmission Transmit Format Combination Indicator for Downlink Shared Channel in Asynchronous Mobile Communication System
US6408039B1 (en) Radio communication apparatus employing a rake receiver
US7366200B2 (en) Beacon signaling in a wireless system
US6973098B1 (en) Method and apparatus for determining a data rate in a high rate packet data wireless communications system
EP1578043B1 (en) Radio communication device and radio communication method
EP1408712B1 (en) Method and Apparatus for selecting a modulation scheme.
KR100582640B1 (en) Mobile station, base station, communications system, and communication method
US6850500B2 (en) Transmission power level estimation
EP2257105B1 (en) Method for performing handoff by sequentially using up- and downlink signal quality
DE60100981T2 (en) Method for automatic data rate selection in a wireless communication system
US6272354B1 (en) Method for adjusting transmit power during call set-up, and a cellular radio system
US20040125743A1 (en) Dynamic sub-carrier assignment in OFDM systems
JP2006500852A (en) Packet data transmission in MIMO system
EP1653646B1 (en) Radio communication apparatus and subcarrier assignment method

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)