AU2012101895A4 - An improved system and method for analysing data from multiple perspectives - Google Patents

An improved system and method for analysing data from multiple perspectives Download PDF

Info

Publication number
AU2012101895A4
AU2012101895A4 AU2012101895A AU2012101895A AU2012101895A4 AU 2012101895 A4 AU2012101895 A4 AU 2012101895A4 AU 2012101895 A AU2012101895 A AU 2012101895A AU 2012101895 A AU2012101895 A AU 2012101895A AU 2012101895 A4 AU2012101895 A4 AU 2012101895A4
Authority
AU
Australia
Prior art keywords
data
identifying
scd
visual
scds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2012101895A
Inventor
Andrew John Cardno
Mukesh Gordhan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Bis Safe Luxco SARL
Original Assignee
New Bis Safe Luxco SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Bis Safe Luxco SARL filed Critical New Bis Safe Luxco SARL
Application granted granted Critical
Publication of AU2012101895A4 publication Critical patent/AU2012101895A4/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

2012101895 According to one aspect, the present invention provides in a data visualisation system, a method of generating multiple perspective views of a graphical representation of data based on a single database query, the method comprising the steps of: Receiving a database query, determining the query data associated with the database query retrieving the query data from a data storage module that is in communication with the data visualisation system, generating multiple perspective query results from the database query, and generating a graphical representation based on one or more of the multiple perspective query results. WO 2012/128651 PCT/NZ2012/000045 Figure 7

Description

WO 2012/128651 PCT/NZ2012/000045 1 AN IMPROVED SYSTEM AND METHOD FOR ANALYSING DATA FROM MULTIPLE PERSPECTIVES FIELD OF THE INVENTION 5 The present invention relates to an improved system and method for analysing data from multiple perspectives. In particular, the present invention relates to a method of or system for generating multiple perspective views of a graphical representation of data based on a single database query. 10 BACKGROUND When analysing data, different results can be provided depending on the perspective in which the data is viewed or analysed. 15 For example, the data analysis may be performed from a financial perspective where the data analysed may be transaction specific. According to another example, the data analysis may be performed from a machine or device perspective where the data analysis may be machine or device specific. As a 20 further example, the data analysis may be performed from a marketing, consumer or customer perspective where the data analysis may be location specific. That is, for different query purposes, it is beneficial to look at data in different 25 ways that tie up with a specific desired purpose. For example, the data may be analysed and viewed in the context of location, time, customer groups, device groups, configurations or themes, for example. In known data analysis systems, the end user is required to understand the 30 structure of the data that is being analysed and perform programmatic query functions to return different sets of results for each different query purpose. That is, the end user must create and/or re-write the query functions each time a different analytical perspective is needed.
WO 2012/128651 PCT/NZ2012/000045 2 This clearly provides a burden on the end user in having to train themselves or other individuals in order to ensure that correct queries are generated so that accurate analysis of the data is performed. 5 Data visualization systems have been developed to enable the data analysis results to be visualized in a user friendly and intuitive manner. One such system has been created by the current applicants and is described in PCT publication WO 2009/154484 entitled "METHODS, APPARATUS AND SYSTEMS FOR DATA VISUALIZATION AND RELATED APPLICATIONS". 10 An object of the present invention is to provide an improved data visualization system or method that provides analytical data query results showing multiple perspectives. 15 A further object of the present invention is to provide an improved data visualization system or method that improves efficiency in generating multiple perspective query results. Each object is to be read disjunctively with the object of at least providing the 20 public with a useful choice. The present invention aims to overcome, or at least alleviate, some or all of the afore-mentioned problems. 25 Further objects and advantages of the invention will be brought out in the following portions of the specification, wherein the detailed description is for the purpose of fully disclosing the preferred embodiment of the invention without placing limitations thereon. 30 The background discussion (including any potential prior art) is not to be taken as an admission of the common general knowledge. SUMMARY OF THE INVENTION 35 It is acknowledged that the terms "comprise", "comprises" and "comprising" may, under varying jurisdictions, be attributed with either an exclusive or an inclusive WO 2012/128651 PCT/NZ2012/000045 3 meaning. For the purpose of this specification, and unless otherwise noted, these terms are intended to have an inclusive meaning - i.e. they will be taken to mean an inclusion of the listed components that the use directly references, but optionally also the inclusion of other non-specified components or elements. 5 According to one aspect, the present invention provides in a data visualisation system, a method of generating multiple perspective views of a graphical representation of data based on a single database query, the method comprising the steps of: receiving a database query, determining the query data associated 10 with the database query retrieving the query data from a data storage module that is in communication with the data visualisation system, generating multiple perspective query results from the database query, and generating a graphical representation based on one or more of the multiple perspective query results. 15 BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which: 20 Figure 1A shows a NASDAQ Heat Map Example; Figure 1B shows a NASDAQ Heat Map Intra Day Data Example; Figure IC shows a diagrammatical representation of some key terms; Figure 2A shows a system concept diagram according to an embodiment of the present invention; 25 Figure 2B shows an overview of the software modules in the described system; Figure 3 shows a general overview of the data flow within the system according to an embodiment of the present invention; Figure 4 shows an architectural overview of the described solution according to an embodiment of the present invention; 30 Figure 5 shows a high-level system delivery overview of the described solution according to an embodiment of the present invention; Figure 6A shows a general data flow diagram according to an embodiment of the present invention; Figure 6B shows a flow diagram according to an embodiment of the present 35 invention; WO 2012/128651 PCT/NZ2012/000045 4 Figure 7 shows the concept of layers according to an embodiment of the present invention; Figure 8 shows a graphical representation of a performance analysis according to an embodiment of the present invention; 5 Figure 9 shows a graphical representation of a machine analysis according to an embodiment of the present invention; Figure 10 shows a graphical representation of a customer or marketing analysis according to an embodiment of the present invention; Figure 11 shows a representation of various slowly changing dimensions 10 according to an embodiment of the present invention; and Figure 12 shows a system block diagram according to an embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION 15 First Embodiment The following described invention is suitable for use in conjunction with other methods, and the incorporation into one or more systems, for example as 20 described in METHODS, APPARATUS AND SYSTEMS FOR DATA VISUALISATION AND RELATED APPLICATIONS (earlier filed by the applicant in the entirety as US provisional patent application serial number 61/074,347 filed on 20 June 2008), which is incorporated by reference, and a portion of which herein follows. 25 Four key terms (or concepts) form the foundation of the specification set out in this document and accordingly have been defined as follows: The four key terms are: 30 Business Performance Drivers (BPD) BPD Packages Visual Designs Visual Documents WO 2012/128651 PCT/NZ2012/000045 5 The key terms are defined as follows: Business Performance Drivers (BPDs) : A Business Performance Driver (BPD) is a business metric used to quantify a business objective. For example, turnover, sales. BPDs are Facts (sometimes referred to as measures). Facts are 5 data items that can be counted. For example, Gross Sales; Units Sold. BPDs comprise of: 1. Measures: Data items that can be counted. For example, Gross Sales; Units Sold. 2. Dimensions: Data items that can be categorized. For example, Gender; 10 Locations. 3. Restrictions can be applied to BPDs. These filter the data included. For example a restriction of 'State = "CA"' may be specified to only include data for California. 4. Normalizations can be applied to BPDs. These specify (or alter) the time 15 period the BPD refers to. For example - Daily Units Sold, Monthly Profit. The combination of BPDs, Restrictions and Normalizations provides the flexibility to create many ways of looking at data without requiring extensive definition effort. In other words a Business Performance Driver (BPD) is a 'measure' that can be 20 normalized. Measures are data items that can be counted. For example, Gross Sales; Units Sold. BPDs might be displayed on visualizations. For example, Revenue earned per store on a map. Restrictions and/or Normalizations could be applied to a BPD. The following table provides examples of these: Scenario Business Example BPD (no Revenue normalization or restriction) BPD with Revenue earned in the state of California restriction BPD with Revenue earned in week 1 of 2008 WO 2012/128651 PCT/NZ2012/000045 6 normalization BPD with Revenue earned in the state of California in week 1 of 2008 restriction and normalization BPD Packages: A BPD Package is made up from a set of related BPDs. This relationship (between a BPD Package and its BPDs) is defined using metadata. BPD Packages can be thought of as the Visual Document's vocabulary. 5 Visual Designs: Visual Designs are a classification of the different types of visualizations that a user may choose. Within each Visual Design, there are a number of visualizations. For example, the 'spatial' category can have retail store location maps or geographical location maps. 10 The software solution allows users to select one visualization (one visual form within a Visual Design category) to create a Visual Document. Visual Document: A Visual Document contains visual representations of data. 15 Access to the data used to construct the visual representation is in many ways analogous to a textual document. A Visual Document is constructed by applying BPD data to a specific Visual Design. It is designed to illustrate at least one specific point (using the 20 visualization), supports the points made with empirical evidence, and may be extended to provide recommendations based on the points made. The Visual Document is a deliverable to the user. Dimensions Dimensions are data items that can be categorized. For example, Gender; Locations. Dimensions might be displayed on visualizations. For example product categories on a shop floor. Fact See Business Performance Drivers (BPDs) WO 2012/128651 PCT/NZ2012/000045 7 Measure See Business Performance Drivers (BPDs) Normalizations Can be applied to BPDs. These specify (or alter) the time period the BPD refers to. For example - Daily Units Sold, Monthly Profit. The combination of BPDs, Restrictions and Normalizations provides the flexibility to create many ways of looking at data without requiring extensive definition effort. Refer to definition of BPDs for examples. Restrictions Can be applied to BPDs or Dimensions. These filter the data included. For example a restriction of 'State = "CA"' may be specified to only include data for California. A BPD or Dimension could be restricted by Compound Statements (series of restrictions using AND/OR statements). For example, Revenue from all stores where state = California AND units sold > 200units. Restrictions have the following types: Restriction Definition Example Business Type Context Equal to State Revenue 'CA' earned within the state of California >= Greater Units Sold Revenue than or >= 200 earned from equal to stores where units sold were greater than (or equal to) 200 units =< Less than Revenue Revenue or equal to =< earned from $50,000 stores where Revenue was less than (or equal to) $50,000 > Greater Units Sold Revenue than > 200 earned from stores.where the number WO 2012/128651 PCT/NZ2012/000045 8 of units sold were greater than 200units < Less than Units Sold Revenue < 200 earned from stores where the number of units sold were less than 200units IN In (list) State IN Revenue ('CA', 'NY') earned from stores within the states of California and New York BETWEEN Values Product Revenue between X Code earned from and Y between product '124'and codes 124 to '256' 256 (inclusive) NOT = Not Equal State NOT Revenue to = CA earned from stores outside the state of California. NOT IN Not in State NOT Revenue (list) IN ('CA', earned from 'NY') outside the states of California and New York. NOT Values not Store Revenue BETWEEN between X Code NOT earned from and Y Between stores 105 and excluding 110 stores with a store code between 105 and 110 (inclusive).
WO 2012/128651 PCT/NZ2012/000045 9 Heatmaps: A heat map is a graphical representation of data where the values taken by a variable in a two-dimensional map are represented as colors. A very similar presentation form is a Tree map. 5 Heat maps are typically used in Molecular Biology to represent the level of expression of many genes across a number of comparable samples (e.g. cells in different states, samples from different patients) as they are obtained from DNA microarrays. 10 Heat maps are also used in places where the data is volatile and representation of this data as a heat map improves usability. For example, NASDAQ uses heat maps to show the NASDAQ-100 index volatility. Source: Wikipedia (http://en.wikipedia.org/wiki/Heatmap). 15 This is shown diagrammatically in Figure 1A. Some blocks are colored green, which means the stock price is up and some blocks are colored red, which means the stock price is down. The blocks have a varying deepening of the relevant color to indicate the direction that the stock is moving. The deeper the color, the bigger the move. 20 If a user hovers over a stock, additional intra-day data is presented - as shown in Figure 1B: Source: Nasdaq.com (Nasdaq-100 Dynamic Heatmap;Date Accessed, June 10, 2008; http://screening.nasdaq.com/heatmaps/heatmap_100.asp). 25 The key terms are set out diagrammatically in Figure 1C. Visual designs 110 are individual visualization techniques. One or more are applied to visualize BPD packages 115 to create visual documents 120. Many organizations are facing massive and increasing amounts of data to interpret, the need to make more complex decisions faster, and accordingly are 30 turning to data visualization as a tool for transforming their data into a competitive advantage. This is particularly true for high-performance companies, but it also extends to any organization whose intellectual property exists in massive, growing data sets.
WO 2012/128651 PCT/NZ2012/000045 10 One objective of the described solution is to put experts' data visualization techniques in the customer's hands by skillfully guiding the end user through choosing the right parameters, to display the right data, and to create its most useful visualizations to improve business performance. 5 The described solution is a generic tool and can apply to multiple business areas that require decisions based on and understanding massive amounts of data. The resulting browser-based output is defined as a 'Visual Document'. 10 The solution provided is summarized in figure 2A. The system identifies user tasks 201 in the form of defining visual documents, requesting visual documents, requesting rendered documents, calls to action, and analyzing results. These tasks are then detected by the system in 15 conjunction with other systems 203, which include CRM applications, third party Business Intelligence (BI) Tools and other third party applications, all of which may access data stored in an enterprise data warehouse (EDW). The visual design layer concept 207 may be utilized within the visual documents 205. The creation of the visual documents is made in conjunction with a number of different 20 defined visual design types 209, BPD packages 211, spatial analysis maps 213 and other application components 215, such as application servers and application infrastructure. A Visual Document contains visual representations of data. Access to the data 25 used to construct the visual representation is in many ways analogous to a textual document. It is constructed by applying Business Performance Driver(s) (BPD) data to a specific Visual Design (Visual Designs are grouped into ten classifications). 30 A Visual Document is designed to illustrate at least one specific point (using the visualization), support the points made with empirical evidence, and may be extended to provide recommendations based on the points made. The Visual Document is the actual deliverable from the software to the software user. Visual Documents may be stored, distributed or analyzed later, as needed. 35 WO 2012/128651 PCT/NZ2012/000045 11 The Visual Document is fed by data and a metadata database that stores definitions of BPDs - the BPDs are the focus of the Visual Document. A Business Performance Driver is a business metric used to quantify a business objective. Examples include, gross sales or units sold. For instance, the Visual Document 5 may be used to graphically depict the relationship between several BPDs over time. In the Visual Document, data is rendered in up to seven layers in one embodiment. However, it will be understood that the number of layers may be 10 varied as needed by the user. Specific Visual Document Layers are described herein. However, it will be understood that further Visual Document Layers may be included over and above the specific types described. Visual Designs are explicit techniques that facilitate analysis by quickly 15 communicating sets of data (termed BPD Packages) related to BPDs. Once constructed, Visual Documents may be utilized to feed other systems within the enterprise (e.g., Customer Relationship Management (CRM) systems), or directly generate calls to action. 20 The described solution utilizes the best available technical underpinnings, tools, products and methods to actualize the availability of expert content. At its foundation, the solution queries data from a high performance enterprise data warehouse characterized by parallel processing. This database can support 25 both homogeneous (identical) and heterogeneous (differing but intersecting) databases. The system is adaptable for use with a plurality of third party database vendors. A scalable advanced web server framework can be employed to provide the 30 necessary services to run the application and deliver output over the web. A flexible and controllable graphics rendering engine can be used to maximize the quality and speed levels required to support both static and dynamic (which could be, for example, animated GIF, AVI or MPEG) displays. All components can operate with a robust operating system platform and within secure network 35 architecture.
WO 2012/128651 PCT/NZ2012/000045 12 Pre-existing (and readily available) third party components can be employed to manage user security (e.g. operating system security), industry specific applications and OLAP (Online Analytical Processing) or other more traditional reporting. The described solution is designed to facilitate speedy and reliable 5 interfaces to these products. A predictive modeling interface assists the user in analyzing forecasted outcomes and in 'what if' analysis. 10 Strict security, testing, change and version control, and documentation standards can govern the development methodology. Many organizations are facing massive and increasing amounts of data to interpret, the need to make more complex decisions faster, and accordingly are 15 turning to data visualization as a tool for transforming their data into a competitive advantage. This is particularly true for high-performance companies, but it also extends to any organization whose intellectual property exists in massive, growing data sets. 20 This clash of (a) more data, (b) the increased complexity of decisions and (c) the need for faster decisions was recently recognized in an IDC White Paper (Gantz, John et. al.; IDC White Paper; "Taming Information Chaos: A State-of-the-Art Report on the Use of Business Intelligence for Decision Making" November 2007), which described this clash as the "Perfect Storm" and that this 'storm' will 25 drive companies to make a quantum leap in their use of and sophistication in analytics. Today's business tools and the way they operate barely allow business users to cope with historical internal data, let alone internal real time, predictive, and 30 external data. Hence, a new paradigm in business intelligence solutions is required. SYSTEM OVERVIEW 35 As explained above, Figure 2A shows a high-level overview of the system.
WO 2012/128651 PCT/NZ2012/000045 13 There are five key components to the system. These are: 1. Visual Documents; 5 2. Visual Designs; 3. Business Performance Drivers (and BPD Packages); 10 4. Spatial Maps; 5. Application Components. A description of each of these components is set out below under the respective 15 headings. Visual Documents The Visual Documents form the core of the solution from a user perspective. This may include visualization(s), associated data and/or metadata (typically the visual 20 form) that the user defines requests and interacts with. The Visual Documents may consist of single frames or animated frames (which could be, for example, implemented in AVI, GIF or MPEG format or a sequence of still images). The Visual Document is typically viewed in a dynamic web browser view. In this 25 interactive view the user may observe, select and navigate around the document. Once created, the Visual Documents may be stored in the database and may be distributed to key persons (printed, emailed etc.) or stored for later use and analysis. 30 Visual Designs The Visual Designs are a classification of the different types of visualizations that a user may choose. Within each Visual Design category, there are a number of visualizations. For example, the 'spatial' category can have retail store location WO 2012/128651 PCT/NZ2012/000045 14 maps, network maps or geographical location maps, such as, for example, maps available from Google TM or Yahoo TM The described system allows users to select one or more visualizations (e.g. one 5 visual form within a Visual Design category) to create a Visual Document. There are ten Visual Design categories defined below, however it will be understood that further Visual Designs are envisaged, as well as the number of visualizations within each classification and the number of classifications. 10 Business Performance Drivers (and BPD Packages) Business Performance Drivers (BPDs) are a metric applied to data to indicate a meaningful measurement within a business area, process or result. BPDs may be absolute or relative in their form of measurement. 15 The Business Performance Driver (BPD) concept differs from the known KPI concept by introducing BPDs that (1) may have multiple dimensions, (2) place the BPD in the context of the factors used to calculate them, 20 (3) provide well understood points of reference or metadata around which visual document creation decisions can be made, and (4) may contain one or more methods of normalization of data. Common groups of BPDs are called BPD Packages. For example, BPDs relating 25 to one industry (say, telecommunications) can be grouped into one BPD Package. BPDs may be classified into one or more BPD Packages. For example, Net Revenue with normalizations available of per customer or per month may be applicable in a number of industries and hence, applicable to a number of BPD Packages. 30 Spatial Maps Spatial maps allow for a user-owned and defined spatial map and/or for the user to use publicly available context maps such as Google TM Maps or Yahoo TM Maps. In either case, the user can display selected BPDs on the chosen spatial map. 35 WO 2012/128651 PCT/NZ2012/000045 15 Typically, a user-owned spatial map may be the inside floor space of a business and a publically available context map may be used for displaying BPDs on a geographic region e.g. a city, county, state, country or the world. Application Components 5 The described application includes two main components, the Application Servers and the Application Infrastructure. The Application Server includes a number of servers (or server processes) that 10 include the Rendering Engine (to make (or render) the Visual Documents), Metadata Servers (for the BPD Packages, the Visual Designs and the BPDs) and the Request Queue. The Application Infrastructure is also comprised of a number of servers (or server 15 processes) that may include a Listener (which 'listens' for document requests) and central error logging. Based on the user selections made above (Visual Documents, Visual Designs and BPDs), the user can click on an action and send a communication to a third 20 party system (CRM, Business Intelligence or other application). The third party system could, for example, load the list from the solution and then send out a personalized email to all members on that list. According to one embodiment, the described server components of the 25 application are a Java based application and utilize application framework such as the IBMTM WebSphere application server framework, other platforms and server applications may be utilized as alternatives. The client application may be a mashup that utilizes the server components or it could be a rich internet application written using the Adobe T M Flash framework. 30 Other key elements of the system may include: * Parallelism - Parallel processing to increase responsiveness or to increase workload scalability of queries or Visual Documents. This WO 2012/128651 PCT/NZ2012/000045 16 parallelism may also decrease response time for larger visual documents in particular animated images may be executed in a parallel fashion. * Security - System and user-access security. This security may be a 5 combination of authorization and authentication. The security framework may be implemented using the application framework. " Map Updates - A map management tool to update user-owned spatial maps. 10 * Predictive Modeling - This may be an interface to third-party predictive models. * Configuration Tools - The application may be supported by configuration 15 tools to enable rapid deployment of the application. MODULAR OVERVIEW Module Descriptions 20 The diagram shown in figure 2B shows an overview of the software modules in the described system. These modules are described in the subsequent table. More detailed descriptions and diagrams of each of the software modules are provided below. 25 The table below outlines the following four items in relation to each module: 1. Technology System Component: This is the name given to the system component; this name matches the name in the above diagram. 30 2. High Level Functional Description: Describes the role of the software module. 3. Caching: Indicates whether this module uses caching to optimize 35 performance.
WO 2012/128651 PCT/NZ2012/000045 17 Technology System High Level Functional Description Caching Component 1. Rendering Produces images and animations; could use Yes Engine Google TM Maps or Yahoo TM Maps for spatial context map. The development of Special Layers enables Visual Document produced to have unique capabilities that were not previously readily available. 2. Parallelism Enables parallel execution of requests for Yes Engine high volume of Visual Document output and rapid results delivery to users. The preferred application framework selected is the IBM TM WebSphere product. This framework enables the application to be scaled across multiple servers. 3. Map Provides key map editing features Yes Management (specifically CAD like) and map version Tool control (desktop and enterprise) tools. 4. OLAP Industry standard online analytical reporting. Yes Reporting For example, sorting, filtering, charting and multi-dimensional analysis. It is desirable that the user interaction with the data selection process in the data view is seamless with the data visualization view. For example, if the user selects 5 customers from the data view, the same 5 customers should be selected in the visualization view. This means that the solution may be a hybrid view (as discussed later). This hybrid view is a 'simple' view and is an interface to an industry leading OLAP tool. One option includes interfacing to the OLAP tool via a JDBC interface from the described solution or a web service model for the selection management. 5. Predictive An interface to external predictive modeling Yes Modeling engines; may also have some modeling System systems. For example, Self Organizing Maps (SOM). 6. Visual Design Tools for users to manage the different Visual No Management Designs. System WO 2012/128651 PCT/NZ2012/000045 18 Technology System High Level Functional Description Caching Component 7. BPD Tools for users to manage the different BPD No Management Packages and their associated BPDs. and Data Contains Data Access capability that enables Access data to be queried from RDBMS (or System potentially other data sources). 8. Output For management of the documents (Visual Yes Management Documents) within the system. System 9. Infrastructure Core system management functions including Yes system logging and Request Queue management. The Request Queue is also described under parallelism and there may be crossover between these two module descriptions. 10.Security Enables access to the system (or parts No thereof) to be properly controlled and administered. 11. Interfaces Allows services to be called by (or to call) No external applications. 12. Implementati Tools to deploy and configure the software Yes on Tools system. ARCHITECTURAL VIEWS OF THE SYSTEM This section contains descriptions and diagrams of the architectural views of the 5 system. The architecture shows how the system components fit and operate together to create an operational system. If compared to a vehicle, the wiring diagrams, the physical body, the driving circle and key complex components like the engine would be shown in architectural views. 10 This view does not describe how the system is written; it describes the high-level architectural considerations. Architectural considerations are typically implemented by one or more software modules. The modular view described herein lays out a high-level view of how 15 the software modules are arranged.
WO 2012/128651 PCT/NZ2012/000045 19 Figure 3 shows a general overview of the data flow within the system. Figure 4 shows the architectural overview of the described solution. This diagram 5 is elaborated by the diagrams and descriptions in following sections of this document. The following modules or components are shown: 10 Web interface Module 4105: User interfaces are browser based or may be a web services client, a rich internet application or may be a thick client. In all cases the user interface uses the same interface to the back end services. Rendering Definition Module 4110: The user interface is used to define and 15 request the rendering of Visual Documents Rendering Use Module 4115: Visual Documents are used for analysis, and precipitate calls to action. 20 Connectivity Services Module 4120: The definition and rendering of Visual Documents is performed through a set of programs or services called the Connectivity Services. Configuration Management Tools Module 4125: Multiple versions of the basic 25 elements; BPD, Visual Design, Visual Documents; are managed by a set of programs called the Configuration Management Tools. Visual Document Management Catalog 4130: One such Configuration Management Tool (4125) is a set of programs that manage a users' catalog of 30 available Visual Documents. Predictive Modeling Module 4135: Predictive modeling is used for forecasting unknown data elements. These forecasts are used to predict future events and provide estimates for missing data. 35 WO 2012/128651 PCT/NZ2012/000045 20 Map Management Tool 4140: Another of the Configuration Management Tools (21125) is the Map Management Tool. It is designed to manage versions of the spatial elements of a visual design such as a geographic map or floor plan. 5 Visual Document Definitions Management Module 4145: Visual Document Definitions are managed through the use of metadata (4175). Message Queue Submission Module 4150: Requests for Visual Documents are handled through queued messages sent between and within processes. 10 Visual Design Type Module 4155: Visual Documents are comprised of one or many Visual Designs in these categories. Visual Document Status Module 4160: The status of Visual Documents is 15 discerned from the metadata and displayed on the user interface. Interaction and Visual Document View Module 4165: The user interacts with the Visual Documents through the user interface, and appropriate changes to and requests to read are made to the metadata. 20 List Production Module 4170: Where additional output such as customer lists are required, they are requested using the user interface and stored in the EDW (4215). 25 Data Packages Metadata Module 4175: Metadata is used to describe and process raw data (data packages). Message Queue Module 4180: Messages may be queued while awaiting processing (4150). 30 Visual Design and BPD Metadata Module 4185: Metadata is used to describe and process the BPD's and Visual Designs associated with a particular Visual Document. 35 Visual Documents Module 4190: Visual Documents may be comprised of layered Visual Designs.
WO 2012/128651 PCT/NZ2012/000045 21 Third Party Modules 4195: Visual Documents may be used with or interact with other third party tools. 5 Listener Module 4200: The listener processes messages (4150) in the message queue (4180) Document Controller Module 4205: The document controller is used to provide processed data to the rendering or query engines. 10 Central Error Logging Module 4210: System errors are detected and logged in the EWP (4215). EDW 4215: All data is typically stored on a database, typically, multiple fault 15 tolerant processors in an Enterprise Data Warehouse. The following architectural components are described in more detail. Architectural Component Description Connectivity This is a common communication service that is used Services when sending messages between systems (i.e. the described solution and 3 rd party tools) and between the described application layer and the user interface layer. Configuration Allows specialized users to configure Visual Designs and Management Visual Documents to their needs - which differ from the Tools default configuration provided. Manage Visual Gives selected users the ability to search, sort, group, Document and delete Visual Documents in the Visual Document Catalog Catalog.
WO 2012/128651 PCT/NZ2012/000045 22 Architectural Component Description Predictive External modeling systems that use data sent from the Modeling described solution to perform complex calculations to produce predictive data. This predicted data is piped through the described solution to the user. Map Management This is an application that enables users to create modify Tool and delete individual maps to manage the complete sequences, this is very appropriate for management of floor plans. Data Packages The services responsible for providing metadata that Metadata enables the requester (typically, Data Collector) to source the data for the BPD. Visual Design & The services responsible for providing the metadata to BPD Metadata the requester (typically the Rendering Engine) that enables the construction of the Visual Documents. Request Queue The Request Queue manages the communication of requests for rendering of Visual Documents. These communications may be scheduled. Document The Document Controller consists of two components. Controller The first is the Data Collector responsible for reading the appropriate metadata and retrieving the data from the EDW (Enterprise Data Warehouse). This data is passed to the Rendering Engine that is responsible for producing the Visual Document. Document Controllers run parallel Visual Document requests, build and store documents. Read/Write The described solution provides a common interface for Interface for 3 rd 3 rd party tools to communicate with e.g. CRM Party Tools applications.
WO 2012/128651 PCT/NZ2012/000045 23 Architectural Component Description 3 rd Party BI Tools One of the 3 rd party tools that the described solution may integrate with is an external OLAP tool. Secret Databases Secret databases are a method of sharing encrypted databases and providing a SQL interface that enables end users to run queries against atomic data without discovering the details of the data. The following terms have been also been used in Figure 4. These are explained in more detail below. Architectural Component Description Logging Logging (for example, error logging and access logging) is an inherently difficult activity in a parallel independent and predominantly stateless system. The main issue that arises is that logging presents potential links between systems and therefore dependencies. Typically within the application, each server will be responsible for its own logging. This ensures that the system scales without degradation in performance. A separate process (central log reader) may be used to consolidate these logs dynamically as and when required. Web Server Web Servers respond to requests from users to provide Visual Documents. They read any required information from the metadata servers and Visual Document storage servers. If necessary they write WO 2012/128651 PCT/NZ2012/000045 24 Architectural Component Description Visual Document requests to the Request Queue. Metadata Metadata servers are responsible for storage and Servers/Storage user views of metadata. The metadata servers are also responsible for the validation of user rights to read Visual Documents (within the application). Visual Document The Visual Document Catalog is a secure storage Storage for all Visual Documents. Access is only possible when security requirements are met. Data Collector Typically the data collector queries the customer's data warehouse. The data warehouse can be augmented with additional subscribed embellishment data. This will provide the raw data that is represented visually back to the user. BPD Packages The described solution will use metadata to define Metadata groups of BPDs. These groups of BPDs are called BPD Packages. BPD Packages enable both internal data measures to be efficiently installed and external datasets to be provided. BPD packages contain no data. A further high-level system delivery overview of the solution is set out as shown in Figure 5. 5 The described solution 500 is hosted by the enterprise 510. The figure shows the logical flow from the submission of a request to the end result, viewing the rendered Visual Document. The data being visualized belongs to the customer 512 and the submitted 10 request is unknown to the entity running the visualization system 500.
WO 2012/128651 PCT/NZ2012/000045 25 The controlling entity, integrators and customers may wish to have summaries of technical performance data (usage patterns, errors etc) sent from the operational system back to the integrator or controlling entity. 5 The system 500 has access to the data in a EDW 505. The system utilizes a request queue 515 to control requests from a corporate network 510. These requests are forwarded to a document controller 520. The document controller 520 accesses both the EDW 505 and reads visual designs and BPD metadata services 525, as well as data packages metadata services 530. 10 The system described thus enables various methods to be performed. For example, data is transformed into visually interpretable information. The visually interpretable information is in the form of visual representations that are placed within one or more visual documents. 15 Figure 6A shows a general data flow diagram for the described system. The User Interface 610 allows the user to define BPD's 615 in terms of raw data 627, which become the focus of the Visual Document 630. 20 Further, the User Interface 610 allows the user, through automated expert help, to create the Metadata 620, the most appropriate Visual Designs 635 that make up the Visual Document 625 in order to provide detailed analysis of data related to the BPD 615. The data acquisition, visual design rendering and visual 25 document rendering processes utilize massive amounts of raw data 627. The Metadata 620 is used by the Processes 625 to optimize the acquisition of the appropriate Data 627, processing of the data into useful information, and to optimize the creation and rendering of the Visual Designs 635 and the Visual 30 Document 630 that contains them. This method includes the steps of providing comprehensive yet easy to understand instructions to an end user that has accessed the system and the visual design application. The instructions assist the end user in obtaining data 35 associated with a theme, wherein the theme may be focused on objectives that have been derived from the data. The objectives may be business objectives, for WO 2012/128651 PCT/NZ2012/000045 26 example. In this way, the system guides a user carefully through the many choices that are available to them in creating the visual representations, and the system automatically tailors its instructions according to not only what the user requires, but also according to the data that is to be represented. The system 5 focuses on providing instructions to enable a visual representation to be created that will enable an end user to more effectively understand the data that has been collated. Further, the instructions assist the end user in determining one or more 10 summaries of the obtained data that enable the end user to understand the theme, as well as organizing the determined summaries into one or more contextual representations that contribute to the end user's understanding of the theme. 15 Further, instructions are provided that assist an end user in constructing one or more graphical representations of the data, where each graphical representation is of a predefined type, as discussed in more detail below, and includes multiple layers of elements that contribute to the end user's understanding of the theme. 20 Finally, instructions are provided to assist an end user in arranging the produced multiple graphical representations in a manner that enables the end user to understand and focus on the theme being represented as well as to display or print the organized graphical representations. The system assists in the organization or arrangement of the representations, elements thereof, within the 25 visual document so as to ensure certain criteria are met, such as, for example, providing a suitable representation in the space available, using the minimum amount or volume of ink to create the representation, and providing a suitable representation that depicts the theme in a succinct manner, or visually simplistic manner. 30 The data being processed to create the graphical representations may be particularly relevant to the theme being displayed, disparate information or indeed a combination of relevant and disparate information. 35 There are multiple types of graphical representations that may be included within the visual document. The types are discussed in more detail below and include a WO 2012/128651 PCT/NZ2012/000045 27 hierarchical type, a spatial type, a virtual type, a classical type, a navigational type, a temporal type, a textual type, a structural type, a pivotal type, and an interactive type. 5 Further, the instructions may assist an end user in arranging the graphical representations in order to display high density data in a manner that conveys important information about the data, rather than swamping the end user with multiple representations that look impressive but do not convey much information. 10 In addition instructions may be provided to assist the end user in arranging the graphical representations to allow supplementary information to be added, where the supplementary information may be provided in any suitable form. Particular examples provided below depict the supplementary information being provided in 15 subsequent visual layers that overlay the graphical representation. Alternatively, or in addition, supplementary information may include additional elements to be displayed within a single layer of the representation, for example, in the form of widgets. 20 Figure 6B shows a flow diagram according to this embodiment of the invention. Step 6105: Process Starts. User decides to manage the business. Step 6110: Available data is identified and analyzed. 25 Step 6115: Business Process Drivers (metrics defined in terms of the data to indicate a meaningful measurement within a business area, process or result). Step 6120: Data influencing the BPD metrics are identified. 30 Step 6125: BPD's are input into a computer system Step 6130: BPD is categorized and appropriate metadata describing it is generated. 35 Step 6135: Visual Designs to display the influential data are created: WO 2012/128651 PCT/NZ2012/000045 28 Step 6140: Visual Designs are aggregated into Visual Documents and rendered. Adjustments are made based on the freshness of all components (e.g., BPD, available data). 5 Step 6145: Visual documents are analyzed by the end user. Step 6150: The end user decides on and implements actions based on the analysis in 6145. 10 As touched on above, business performance drivers (BPDs) are used to enable more efficient data analysis so as to produce accurate and relevant visual representations of the data. A BPD is a form of advanced business measure wherein additional information is included within the BPD that enables the system 15 using the BPD to understand how to manipulate the BPD. That is, one or more intelligent attributes are included with the business measure to form the BPD, where those attributes reference or include information on how the BPD is to be processed or displayed. The form of processing and display may also be varied according to the device type or media upon which the business measures are to 20 be displayed. The attributes are attached to the business measure by storing the BPD in the form of a mark up language, such as, for example, HTML or XML. It will however be understood that any other suitable format for storing the BPD may be used 25 where the attributes can be linked to the business measure. In the example of HTML, the attribute is included as a tag. One such example would be to include the data or business measure within the body of the HTML code and follow the business measure with a tag that references the attributes, or 30 dimensions, associated with that business measure. Further, the attributes may also be modified or deleted, or indeed new attributes added, during or after the processing of the BPD so that the attributes are maintained, or kept up to date, bearing in mind the requirements of the entity 35 using the BPD to visualize their data.
WO 2012/128651 PCT/NZ2012/000045 29 The business performance drivers, or measurable business objectives, are identified in order to create graphical representations of the business objectives, where those representations are placed within a visual document. A business objective may be, for example, a metric associated with a business. 5 Instructions are provided by the system to the end user, in order to assist the end user in establishing multiple business objectives as functions of available metrics, as well as assisting the user in organizing the business objectives into a contextual form that contributes to the end user's understanding of the business 10 objectives. Further, instructions are provided to assist the end user in constructing one or more graphical representations of the business objectives, where each graphical representation is of a predefined type, as mentioned above and described in 15 more detail below. Further, each graphical representation includes multiple layers of elements that contribute to the end user's understanding of the business objective. The elements within the graphical representation may include, for example, a 20 shape, position, color, size, or animation of a particular object. Instructions are also provided by the system to assist the user in arranging multiple graphical representations in a suitable manner that enables the end user to understand and focus on the business objectives being represented. 25 Finally, the end user is also assisted with instructions on how to display the organized graphical representations. The following section describes a method of creating a visual representation of 30 data in the form of a visual design. The method includes the steps of the system providing instructions to an end user to assist the end user in constructing multiple graphical representations of data, where each graphical representation is one of a predefined type, as defined 35 above and explained in more detail below, and the graphical representation WO 2012/128651 PCT/NZ2012/000045 30 includes multiple layers of elements that contribute to the end user's understanding of the data The system also provides instructions to an end user that assist the end user with 5 arranging multiple graphical representations of different types within the visual representation in a manner that enables the end user to understand and focus on the data being represented, as well as providing instructions to assist the end user in displaying the visual representation in a suitable manner. 10 The visual representation may be displayed in a number of different ways, such as on a color video screen or a printed page. The information that is forwarded to the display device to create the visual representation may differ according the type of display device so that the visual representation is produced in the best known suitable manner utilizing the advantages of the display device, and 15 avoiding any disadvantages. The data being displayed may be based on a measured metric or an underlying factor that affects a metric. 20 The elements within the graphical representation may include a shape, position, color, size or animation of a particular object. Although a single visual document may include only one type of graphical representation, either in the form of multiple graphical representations or a single 25 representation, there will also be situations where multiple types of graphical representations may be organized within a single visual document in order to convey different aspects of the data, such as, for example, temporal as well as spatial information. The inclusion of different types of graphical representations within a single document can provide an end user with a better understanding of 30 the data being visualized. Further, the single visual representation may be arranged to be displayed as an image on a single page or screen. This may be particularly useful where space is at a premium yet the user requires the visual representation to be provided in a 35 succinct manner. For example, the user may request certain information to be displayed in a visual representation on a single mobile telephone display,- or a WO 2012/128651 PCT/NZ2012/000045 31 single screen of a computer display, in order to show a customer or colleague the results of a particular analysis without the need to flick between multiple screens which can result in confusion, a waste of energy and ultimately a loss of understanding of the visual representations. 5 The same issue applies to printed representations, where the result of the system enabling a user to arrange a single representation, which may include multiple elements or layers, on a single page not only succinctly represents the data being analyzed but also saves the amount of paper being printed on and the amount of 10 ink being used to print the document. Further, the amount of ink required for a visual representation may be further reduced by providing instructions to the end user in a manner that directs them to control and use white space in a representation in an efficient manner so as to 15 reduce the requirement of ink. Multiple types of graphical representations may be merged together within a single visual document, or representation. 20 As mentioned above, instructions can be provided by the system to assist the end user in adding supplementary information to the visual representation, and the supplementary information may be provided in layers within the representation. 25 VISUALIZATION FRAMEWORK The following description provides the visualization framework that will support embodiments of the present invention. The description includes an overview of the importance of Visual Design including a brief historical recount of a world 30 recognized leading visualization. The description also sets out the Visual Design classifications for the described solution. It will be understood that the Visual Design examples described in this section are examples for illustrative purposes to identify the concepts behind how the 35 visualization is produced. Therefore, it will further be understood that the concepts described can produce visual designs different to those specifically WO 2012/128651 PCT/NZ2012/000045 32 described. The Visual Design examples shown are also used to help the reader understand the narrative describing the Visual Designs. The system described is specifically adapted to create actual specific 5 visualization designs relevant to selected vertical and horizontal industry applications being deployed. A vertical industry application is one that is associated with a solution directed at a specific industry, such as, for example, the entertainment industry. In this 10 example, BPDs relevant to that industry are created, such as rental patterns of movies over different seasons. A horizontal industry application is one that is associated with solutions across multiple industries. For example, the BPD may be based on CRM analytics, 15 which applies across a whole range of different industries. Design is now a fundamental part of almost every aspect of how people live work and breath. Everything is designed from a toothbrush to every aspect of a web site. Compare visual design to architectural design - in both cases anybody can 20 draw quite complex pictures. The resulting pictures could have stimulating and well drawn graphic elements. In both cases, the question is why does the world need designers? Exploring this question more deeply one can ask - does it make such a difference to how one perceives and understands a design when it is made by a professional rather than an amateur? 25 The trend in business intelligence is to design tools to provide flexibility and leave the world of visual design to the amateurs. Stephen Few comments in Information Dashboard Design (Few, Stephen - from white paper "BizViz: The Power of Visual Business Intelligence" - March 7, 2006. 30 www.perceptualedge.com) that "Without a doubt I owe the greatest debt of gratitude to the many software vendors who have done so much to make this book necessary by failing to address or even contemplate the visual design needs of dashboards. Their kind disregard for visual design has given me focus, ignited my passion, and guaranteed my livelihood for years to come." 35 WO 2012/128651 PCT/NZ2012/000045 33 Visual Designs within the described framework are well thought through in how the data is displayed. The described system allows good information visualization design concepts to be captured and delivered back to users as Visual Documents using unique data processing and analysis techniques. 5 Visual Designs Method or Visual Design Classifications According to this embodiment, ten Visual Design types are defined and incorporated into the described system. It will be understood that additional 10 Visual Designs may be further defined including the creation of certain examples and actual Visual Designs for specific industry applications. The visual design types include: 15 e Hierarchical * Temporal * Spatial * Textual * Virtual 20 0 Structural * Classical * Pivotal * Navigational * Interactive 25 The following describes a method for the assessment of Visual Design quality. In assessing the quality of a Visual Design the following factors should be considered: WO 2012/128651 PCT/NZ2012/000045 34 * Alternative approaches - To assess the capability of a Visual Design it is important to contrast it with other visualization methods. In particular one should compare the visual design to a classical graph or table of numbers. This comparison is important as many data visualizations add 5 considerable graphic weight but little informational value. " Visual simplicity - Looking at a visualization should not overload the mind. The simplicity of the visualization is important as it enhances interpretation and allows common understanding without training. Some 10 visualizations require considerable training to be applied. In general, the described solution will not use these visual designs. * Data density - the density of data in a visualization is a critical measure of its overall value. Higher density visualizations, if successful in 15 maintaining their simplicity, have considerable potential to increase the flow of information to end users. * Volume of ink used - Is the visual design using negative space to show key information? This use of negative space allows lower volumes of ink 20 to be used while showing the same or higher density of information. In addition, ink required is generally reduced as the number of "views" or pages of data is reduced to convey the same volume of data. * Capability to be illuminated with detail - In the end, data visualization 25 becomes information visualization when the specific details are shown. The ability of a visualization to hold detailed information in specific places, often achieved with labels, is a key element in determining its value as an information visualization. Visual Design Layers 30 There are seven defined Visual Design Layers which are set out diagrammatically as shown in Figure 7. Other visual design layers may be added as appropriate. 35 These seven Visual Design Layers are described in the following table: WO 2012/128651 PCT/NZ2012/000045 35 Visual Design Layer Description Type 1. Embellishment Embellishment Layers have labels, symbology Layers and/or other detailed information that is used to illuminate information that is displayed in the lower layers. The overlay can also include controls such as progress bars or spark-lines. 2. Selectable Layers Selectable Layers are interactive and consist of items that can have associated data. On a retail spatial map it includes store locations as they have associated data. Selectable Layers are typically not obscured by thematic treatments. 3. Thematic Layers Thematic Layers overlay colors or heatmaps on Special Layers. These thematic treatments become the core visual impact of the final Visual Document. 4. Transparent Transparent Thematic Layers are very similar to Thematic Layers Thematic Layers (in fact are an alternative). The only difference is that they are graphically merged using a transparent overlay. For example, this kind of layer is necessary to overlay heatmaps on maps.google.com. 5. Special Layers Special Layers construct the structure of the data. Specifically the Special Layer understands how to automatically draw the data so that other thematic treatments can be applied. Special Layers include mundane layers such as layers of polygons. 6. Context Layers These are the lowest level of the visualization; they include background maps and other contextual information.
WO 2012/128651 PCT/NZ2012/000045 36 Visual Design Layer Description Type 7. Context Map Layers This is a type of context layer that is rendered from a map such as Google TM Maps, YahooTM Maps etc. This may be a road map, satellite map or any other map. It is past as a set of tiled images and as such can only be used as a Context Layer. Typically, a Transparent Thematic Layer will be used to display thematic data on a context map layer. In terms of the Special Layer, two examples of Special Layers are set out below: A. Classic Example of Special Layer: Voronoi Diagram 5 Source: Wikipedia (http://en.wikipedia.org/wiki/Voronoidiagram) In mathematics, a Voronoi diagram, named after Georgy Voronoi, also called a Voronoi tessellation, a Voronoi decomposition, or a Dirichlet tessellation (after Lejeune Dirichlet), is a special kind of decomposition of a metric space 10 determined by distances to a specified discrete set of objects in the space, e.g., by a discrete set of points. In the simplest and most common case, in the plane, a given set of points S, and the Voronoi diagram for S is the partition of the plane which associates a region 15 V(p) with each point p from S in such a way that all points in V(p) are closer to p than to any other point in S. A Voronoi diagram can thus be defined as a Special Layer, where a set of polygons are generated from a set of points. The resulting polygon layer can then 20 be subjected to thematic treatments, such as coloring. B. Non Traditional Example of a Special Layer: Calendar A calendar can be generated as a Special Layer for display of a temporal visual 25 document. This Special Layer would require a 'start date' and an 'end date', most other information regarding the nature and structure of the Calendar could be WO 2012/128651 PCT/NZ2012/000045 37 determined automatically. The thematic layers would then use the structure of the calendar as a basis for thematic treatments such as coloring and contouring. In an example from ENTROPIA (ENTROPIA; "Ms tiempo"; 5 http://www.luispabon.com/entropia/index.php?entry=entry071129-145959) a calendar is shown that can be created into a spiral. The structure and layout of this spiral will be the subject of considerable design discussions by information designers focused on issues such as aesthetics and clarity of information. The result of this discussion is a visual design of a spiral calendar Special Layer. This 10 Special Layer can then be used for thematic treatments such as coloring. As touched on in the background discussion, it would be beneficial to review, analyze and/or represent data based on the purpose of a query. 15 Referring to Figure 12, an example of a system in the form of a block diagram is provided. A user interface 1201 provides an interface between a user and the herein described system. The user enters a request for data via this interface, such as via a desktop keyboard and screen, for example. 20 A set of data interface objects 1203 are generated by the herein described system based on the user's request. A data interface object is an object that provides an interface between a user and the underlying data. For example, data interface objects include BPD's and Dimensions. 25 A data interface object builder 1205 generates the data interface objects based on a set of rules contained and implemented by a rules engine 1207. That is, the builder 1205 operates in accordance with the rules of the rules engine. A query builder 1209 receives the generated data interface objects from the 30 builder 1205 to generate queries based on instructions received from a perspective generator 1213. The perspective generator receives input data from a perspective request module 1211 that receives instructions from the user interface 1201. 35 The query builder develops the relevant queries and accesses the appropriate or required data from a data store 1215. The results are then transferred to a WO 2012/128651 PCT/NZ2012/000045 38 visualization document output module which generates the visualization document. The resultant document is then provided to an output module 1219, such as a display, printer or further storage module. 5 Various different perspectives can be generated by the perspective generator 1213 without having to rework all of the data interface objects, thus providing a dynamic system. For example, the different perspectives may include the following: 10 A first perspective wherein a change in state of whatever is being analyzed may be considered irrelevant to the user's data requirements. For example, a recorded change in location within the data may not be considered relevant to the user's requested perspective of the data. Therefore, the only requirement is access a view of the available data for a defined time period regardless of the 15 state or condition of the item or entity being analyzed. One example would be a financial view of a company as it has moved through various different location changes (another example could be restructuring of a company). When analyzing the financial data for that company for a defined time period, the actual state (e.g. location or structure) of the company at the time may not be 20 considered relevant to a financial analyst. That is, the analyst may only want to see the true financial perspective. A second perspective wherein a last known state of what is being analyzed is relevant and only the transaction data associated with that last state is retrieved 25 and analyzed for this perspective. For example, a change in location for a set of data may be considered particularly relevant as the analyst only wants to see how that data is reacting to that location. Third perspective wherein a change in state of whatever is being analyzed may 30 be considered irrelevant to the user's data requirements as in the first perspective, but in this case the data for the time period being analyzed is considered to be relevant for the attribute of the dimensions of the data set as it was at the end time point of the analysis. For example, financial data for a company located in three different locations is used to determine the likely 35 financial state of that company in its current location. That is, the earlier financial data for different locations is considered relevant for the purposes of the current WO 2012/128651 PCT/NZ2012/000045 39 state of the company, even though the location has changed. In terms of a gaming device for example, for marketing program analysis it is important to know how a device has performed in a number of different locations to get an understanding of how it may perform in its current location. Merely ignoring all 5 previous locations for that device may corrupt the data analysis. For example, the query may specifically relate to data obtained from: * a defined location * a defined time or time period 10 e a defined customer or group of customers * a defined machine or group of machines * a defined configuration " a defined theme 15 Each query has specific attributes associated with it. These attributes define the purpose of the query. For example, for different purpose's different time periods may need to be analysed, e.g. what time period must be analysed to satisfy the purpose of the query? 20 Database queries are generated according to this invention in order to produce multiple perspective query results. The present application is focussed on a query builder (i.e. an SQL generator) that is used to query a database. A mechanism is provided that enables the 25 query builder to understand a pre-defined set of different perspectives and to generate these multiple perspectives from the query provided. A single query is generated using standard SQL techniques based on the requirements of the analytical perspective. The query generated is not 30 represented in standard SQL but is based on a set of rules that is then used to build the SQL. The system then generates a set of multiple pre-defined perspectives from the single query. 35 WO 2012/128651 PCT/NZ2012/000045 40 The system does not carry out location or machine based analysis but instead performs business type analysis on the queries to produce the appropriate kind of SQL. 5 Two examples of considerations of the SQL generation that take place are: How is the business type analysis performed on the queries? What are the basic steps of the business type analysis? 10 One of the key advantages of the visual representation of the different perspectives is the ability to view OR manage representations of the data over a structure. The structure may be a map, layout or hierarchy for example. According to one example, slowly changing dimensions (SCDs) are implemented 15 to enable data to be retrieved from specific points in time based on the location or configuration of the item or asset being analysed. It will also be understood that a SCD may also be based on variables other than location or configuration, such as version, product line, rating etc. 20 According to another example, an extension of the AS AT statement may be utilised to query the database. The AS AT statement is an extension to SQL that some databases support. Where this extension has been implemented then the SQL generation may use these constructs. One advantage of this implementation is that the SQL is easier to understand and the complexity of a slowly changing 25 dimension (SCD) is shielded from the end user. The AS AT statement enables a query to be made to a database to retrieve relevant data associated with a specific point in time. The herein described system and methods aim to solve the problem associated 30 with structure of data values versus the data value transactions. That is, the system addresses the question: If the structure (e.g. map or hierarchy) of the data values changes, which transactions should be used by the system in order to solve the query? 35 For example, if an airplane no longer has first class seats it does not make any sense to include the first class fares from historic flights when looking at the rate WO 2012/128651 PCT/NZ2012/000045 41 of revenue being generated by the airplane, as these first class seats can no longer have any effect on the rate of revenue. According to another example, a website hierarchy changes all the time. That is, 5 the structure and content of the website are continually changing. However, a key defining characteristic of each change is that it has a start date and an end date. For current data, a future value may be allocated to the data to indicate that the data is current. Taking the airplane scenario again, the airplane may have a specific configuration of seats from a specific start date to a specific end 10 date. A more detailed description of the present invention is now provided. Embodiments of the present invention are described herein with reference to a 15 system adapted or arranged to perform a method for generating multiple perspective views of a graphical representation of data based on a single database query. In summary, the system includes at least a processor, one or more memory 20 devices or an interface for connection to one or more memory devices, input and output interfaces for connection to external devices in order to enable the system to receive and operate upon instructions from one or more users or external systems, a data bus for internal and external communications between the various components, and a suitable power supply. Further, the system may 25 include one or more communication devices (wired or wireless) for communicating with external and internal devices, and one or more input/output devices, such as a display, pointing device, keyboard or printing device. The processor is arranged to perform the steps of a program stored as program 30 instructions within the memory device. The program instructions enable the various methods of performing the invention as described herein to be performed. The program instructions may be developed or implemented using any suitable software programming language and toolkit, such as, for example, a C-based language. Further, the program instructions may be stored in any suitable 35 manner such that they can be transferred to the memory device or read by the processor, such as, for example, being stored on a computer readable medium.
WO 2012/128651 PCT/NZ2012/000045 42 The computer readable medium may be any suitable medium, such as, for example, solid state memory, magnetic tape, a compact disc (CD-ROM or CD R/W), memory card, flash memory, optical disc, magnetic disc or any other suitable computer readable medium. 5 The system is arranged to be in communication with external or internal data storage systems or devices in order to retrieve the relevant data. For example, an SQL database may be in communication with the system and a database analysis module may be arranged to communicate with the SQL database to 10 retrieve data based on the SQL statements generated by the system. It will be understood that the system herein described includes one or more elements that are arranged to perform the various functions and methods. The following portion of the description is aimed at providing the reader with an 15 example of a conceptual view of how various modules and/or engines that make up the elements of the system may be interconnected to enable the functions to be implemented. Further, the following portion of the description explains in system related detail how the steps of the herein described method may be performed. The conceptual diagrams are provided to indicate to the reader how 20 the various data elements are processed at different stages by the various different modules and/or engines. It will be understood that the arrangement and construction of the modules or engines may be adapted accordingly depending on system and user 25 requirements so that various functions may be performed by different modules or engines to those described herein, and that certain modules or engines may be combined into single modules or engines. It will be understood that the modules and/or engines described may be 30 implemented and provided with instructions using any suitable form of technology. For example, the modules or engines may be implemented or created using any suitable software code written in any suitable language, where the code is then compiled to produce an executable program that may be run on any suitable computing system. Alternatively, or in conjunction with the 35 executable program, the modules or engines may be implemented using any suitable mixture of hardware, firmware and software. For example, portions of WO 2012/128651 PCT/NZ2012/000045 43 the modules may be implemented using an application specific integrated circuit (ASIC), a system-on-a-chip (SoC), field programmable gate arrays (FPGA) or any other suitable adaptable or programmable processing device. 5 The methods described herein may be implemented using a general purpose computing system specifically programmed to perform the described steps. Alternatively, the methods described herein may be implemented using a specific computer system such as a data visualization computer, a database query computer, a graphical analysis computer, a retail environment analysis computer, 10 a gaming data analysis computer, a manufacturing data analysis computer, a business intelligence computer, a social network data analysis computer, etc., where the computer has been specifically adapted to perform the described steps on specific data captured from an environment associated with a particular field. 15 The data provided as an input to the system may be of any suitable type of data, for example, real world data including, but not limited to, gaming or gambling data associated with a gaming environment such as a casino, event data, test or quality control data obtained from a manufacturing environment, business data retrieved from an accounting system, sales data retrieved from a company 20 database, data received or accumulated from a social network, etc. All this data may be received by the system in real time (e.g. by receiving streaming data) in a cache memory or may be stored in a more permanent manner. The following example of an implementation of the herein described invention is 25 directed at gaming floor data. However, it will be understood that the present invention may be applied to other forms of data, such as retail data, business data, social network data, manufacturing data, travel services data (e.g. flight, rail and/or vehicle travel related data) etc. 30 When analyzing a gaming floor it is important to determine what the question is that the person is looking to answer, as this impacts on the data requirements. When examining these questions it can be seen that there may be more than one correct answer to the question "what are the performance numbers from my gaming floor?". 35 WO 2012/128651 PCT/NZ2012/000045 44 To illustrate these different perspectives, three quite different questions are analyzed. 1) From the financial perspective - e.g. how much money is my gaming floor 5 making, and what are the contributions from individual games? For example, this may be a transaction specific query. 2) From a device perspective, such as a gaming machine or slot machine, e.g. how are my devices performing? For example, this may be a device specific query. 10 3) From the marketing or customer perspective, e.g. what impacts are my marketing programs or incentives having on my gaming floor? For example, this may be a location specific query. Within the world of transaction databases typically current records of financial 15 transactions are kept. However in the world of analytical databases it is more beneficial to put together a seamless view of the world involving where the data can be analyzed at a future point in time. For example if looking at a gaming floor from Jan 2009 and displaying the results on a map it is important that the map being used is correct as of Jan 2009. There are a number of approaches to 20 solving this problem including the "period type" which database companies such as Teradata have implemented. A period type typically has a beginning bound and an ending bound; both of these must be of the same type - DATE, TIME, or TIMESTAMP. A period 25 represents a duration starting from the beginning and going up to the ending bound; period does not include the ending bound. Using the period type the process of querying the database is much simpler as the database handles the storage of the history of the objects. 30 One approach is to use a slowly changing dimension (SCD). An SCD applies to a situation in which the attribute for a record can vary over time.
WO 2012/128651 PCT/NZ2012/000045 45 Consider, as an example, the case of a carded customer Harold who used to live in Las Vegas. So the initial entry in the player lookup table of Casino Silver Nugget looked like Customer ID Name A City State 123456 Harold Las Vegas Nevada 5 Harold has moved to Henderson now, and the Silver Nugget has to modify the customer table to reflect this change. This is known as the SCD problem. There are many options for implementation of SCD, the most common one being 10 a Type 2 SCD as shown below. These variations involve adding columns for start date and end date to the record. The Type 2 method tracks historical data by creating multiple records in the dimensional tables with separate keys. With Type 2, unlimited history preservation is provided as a new record is inserted each time a change is made. 15 In the same example, if the supplier moves to Illinois, the table would look like this: Supplier-key SupplierCode SupplierName SupplierState version 001 ABC Phlogistical Supply CA 0 Company 002 ABC Phlogistical Supply IL 1 Company Another popular method for tuple versioning is to add effective date columns. Supplier-key SupplierCode SupplierName SupplierState StartDate EndDate Phlogistical 01-Jan- 21 -Dec 001 ABC Supply CA 2000 2004 Company Phlogistical 22-Dec 002 ABC Supply IL 2004 Company Null EndDate signifies current tuple version. In some cases, a standardized surrogate high date (e.g. 9999-12-31) may be used as an end date, so that the 20 field can be included in an index." WO 2012/128651 PCT/NZ2012/000045 46 In the world of slots, the definition of a new record in the SCD is a little more complex than one would think. Following are some questions that should be considered before defining the SCD record. - Do you want to analyze the effect of change of a games location on its 5 performance? - Do you want to see the effects of the change of denomination on game performance. - How much change in the hold% is important for analytical purposes, for example is 0.01% hold percent change important. 10 - Should you track new chip changes to existing games? - Does it matter when new chairs are added at a location from an analytical perspective? - Does it matter if new signage is added at a location from an analytical perspective? 15 The challenge is that the more SCD records that are added the more fragmented the data becomes. This balance in requirements between analytical fragmentation and the questions that can be answered makes the process of answering these questions a critical part of the warehouse design. It is our recommendation that any changes to theme, location or denomination are 20 tracked and that small adjustments to hold% (which are often corrections) are not tracked. The alternative is to create a maximum detail SCD that tracks every change as a new record. This alternative requires that additional views of the data are created to build SCDs for the different kinds of analyses. While this maximum detail 25 approach is very appealing, pragmatism normally rules and only one SCD is kept for analytical purposes. The following is an example of a slot configuration SCD, where each row represents an attribute in the dimension table. The key to this dimension table is that it combines both attributes of the game and the location of the game. 30 Machine Variables Table: Description WO 2012/128651 PCT/NZ2012/000045 47 MachineNumber The unique number that identifies the machine configuration MachineSerialNumber This serial number of the machine LocationlD The number of location where this machine is installed MachineTheme The name of the theme MachineDenomination The denomination that has been configured MachineManufacturer The manufacturer that built the game MachinePaylines The number of paylines on the game MachineHoldPercent The manufacturer rated hold percentage StartDate The start date of the configuration EndDate The end date of the configuration This configuration table is quite a simplification of the machine config table as managed by the gaming system; however it also holds the additional information that shows the location of each gaming device. In other words if a gaming device is moved it will create a new record in the SCD. 5 This simplification enables users to answer business questions related to changes in the attributes in question. For example, "show me the number of theme changes at this location" or by joining to the transaction table, "show me the total revenue generated by game type by location or by area of the property". If the LocationlD is not part of the SCD then location related questions may not 10 be possible, so it will be difficult to answer questions like, "how did the game moves affect the performance of the games?" or "how did this game perform in a different areas of the gaming floor?". With the buzz surrounding downloadable games and the ability to place any game at any location with the push of a button location based analysis emerges 15 as a dimension in the gaming data. Location based questions like "how are these themes going in this location?" or "what is the best kind of theme in this location?" are difficult to answer. As downloadable games can have dramatic numbers of changes the management of the associated SCD creates a complex data management problem.
WO 2012/128651 PCT/NZ2012/000045 48 In the building of data warehouses, the data integrity questions associated with the transaction data are relatively easy to answer. For example, the actual win numbers can be added up and compared to the total revenue. However, SCDs are much more difficult to manage, for example, if location based changes are 5 not captured accurately as they happen it is likely this information will be lost forever. If these changes are not accurately tracked then analysis that depends on the correct dimensional information may be fundamentally flawed. Referring to figure 8, which shows a view of slowly changing dimensions in association with a financial perspective of the data, an example of an 10 implementation of the present invention is provided. This perspective is related to performance analysis. From the financial perspective, the main question is usually "how much money is my gaming floor making?". 15 These reports contain gaming machines that have been removed or reconfigured must reconcile back to the overall volume of money that is generated by the gaming floor. 20 The queries to generate this data include all transactions for the period and link each transaction to the SCD that is appropriate for the time. As with all things, compromises in the construction of the SCD, for example adjustments to the hold percentage, may result in variations in the final numbers. 25 Three machines, 1, 2 and 3 are being viewed. A number of records are recorded for the machines. That is, machine 1 has a first record 801 and a second record 803. Machine 2 has a first record 805. Machine 3 has a first record 807, a second record 809 and a third record 811. Each record indicates a particular state of the machine for a particular time period. That is, as the location or 30 configuration of a machine changes, a new record is created. This produces slowly changing dimensions (SCDs) associated with the machines. The circled area for each machine identifies the period or records that is relevant for the appropriate measures and performance analysis. That is, for this form of WO 2012/128651 PCT/NZ2012/000045 49 analysis, the measures that are relevant are for the whole period (between the start date and the end date) with one record per machine configuration. Referring to figure 9, which shows a view of slowly changing dimensions in 5 association with a device specific perspective of the data, an example of an implementation of the present invention is provided. In terms of gaming devices, this perspective is related to machine analysis, According to this perspective the key question from the slot perspective is "how 10 are my games performing?". When moving to the gaming floor analysis, the current or active floor at the end point of the analysis is of greatest importance. The gaming analyst is looking at different locations on the casino floor, the different games at these locations, and 15 the numbers they are generating on different days of the week. For gaming floor analysis we would consider it to be quite misleading to include the performance of historic games in location performance numbers. According to this example, the Transaction data is restricted to include only 20 values from machines and their locations at the End Date of the visualization. Common issues in the SCD here include not tracking location changes of games, if these new locations do not create new SCD records then the location performance numbers could be blend of the transactions from an old location and the new location. For example, an extreme case of this would be showing the 25 numbers the machine generated while it was placed in the high limit room on the new location the game was moved to. Again, three machines, 1, 2 and 3 are being viewed. A number of records are recorded for the machines. That is, machine 1 has a first record 901 and a 30 second record 903. Machine 2 has a first record 905. Machine 3 has a first record 007, a second record 909 and a third record 911. Each record indicates a particular state of the machine for a particular time period. That is, as the location or configuration of a machine changes, a new record is created. This produces slowly changing dimensions (SCDs) associated with the machines. 35 WO 2012/128651 PCT/NZ2012/000045 50 The circled area for each machine identifies the period or records that is relevant for the appropriate measures and performance analysis. That is, for this form of analysis, the measures that are relevant are for the machines that are located on the gaming floor at the end date. The dimensions are machines on the floor at 5 the end date. Referring to figure 10, which shows a view of slowly changing dimensions in association with a marketing perspective of the data, an example of an implementation of the present invention is provided. This perspective is related to 10 a customer/consumer or marketing perspective According to this perspective the key question from the marketing perspective is "what impacts are my marketing programs or incentives having on my gaming floor?". 15 Now enter the marketing department and the questions become quite different. The marketing analyst is asking "where did my loyalty or incentive dollars get redeemed?" or "where did players who responded to my marketing program play on the gaming floor?". The marketing person is unlikely to ask to be shown the 20 transactions of only players who played on games that have not been changed by slots. This quite different question requires quite a different analysis, for this analysis we are only interested in locations on the floor at the end point of the analysis, 25 and we typically do not wish to restrict the analysis to only games at these locations. The Transaction Data is shown at the location that it occurred, irrespective of the games that were at the location at the time. Again, three machines, 1, 2 and 3 are being viewed. A number of records are 30 recorded for the machines. That is, machine 1 has a first record 1001 and a second record 1003. Machine 2 has a first record 1005. Machine 3 has a first record 1007, a second record 1009 and a third record 1011. Each record indicates a particular state of the machine for a particular time period. That is, as the location or configuration of a machine changes, a new record is created. This 35 produces slowly changing dimensions (SCDs) associated with the machines.
WO 2012/128651 PCT/NZ2012/000045 51 The circled area for each machine identifies the period or records that is relevant for the appropriate measures and performance analysis. That is, for this form of analysis, the measures that are measures are for the whole period. The dimensions are machines on the floor at the end date. 5 The correct management of the SCD enables the answering of questions relating to how the gaming floor is being managed and the impacts of configuration changes and location moves. 10 As illustrated above, each of the perspectives is correct. Each perspective will generate different data sets, and is only right for the questions that are being asked. Figure 11 shows a further example with more details of various SCDs (location 15 and configuration) for different machines. It will be understood that the SCDs generated may relate to any type of variable feature associated with the machines, including but not limited to those listed in the machine variables table above. 20 For example, machine 1 has a number of location SCDs that are created each time the machine is moved to a new location. It also has associated with it a number of configuration SCDs that are generated each time the machine's configuration is changed. For machine 1, it can be seen that the machine has been relocated once hence the creation of LSCD2. Also, for machine 1, the 25 configuration has been changed quite regularly to create three separate configurations SCDs: CSCD1, CSCD2 & CSCD3. Machine 2 has also been relocated once to create two location SCDs. The configuration of machine 2 was also changed to create CSCD2 when the 30 machine was relocated. Machine 3 was relocated twice within the time period shown to create three different location SCDs. However, the configuration of the machine remained constant during this time period. 35 WO 2012/128651 PCT/NZ2012/000045 52 Machine 4 remained in one location during the time period shown. However, its configuration changed once halfway through the time period. Machine 5 was neither moved nor had a change in configuration during the time 5 period shown. Therefore, for the various different types of analysis, different SCDs would be retrieved and analyzed to generate the multiple perspectives of the data. 10 For example, for performance analysis, all transactions would be retrieved that have occurred or are occurring between the start and end times of the period shown for each machine. As a further example, for machine analysis, the transactions used are the most 15 current SCDs. That is, for machine 1, LSCD2 (not LSCD1) would be used and CSCD3 (not CSCD1 or CSCD2) would be used. As a further example, for customer analysis, only transactions from the location SCDs could be used. All transactions for all LSCDs within the time period could 20 be used. Further Embodiments It will be understood that the embodiments of the present invention described 25 herein are by way of example only, and that various changes and modifications may be made without departing from the scope of invention.

Claims (32)

1. In a data visualisation system, a method of generating multiple perspective views of a graphical representation of data based on a single 5 database query, the method comprising the steps of: receiving a database query, determining the query data associated with the database query retrieving the query data from a data storage module that is in communication with the data visualisation system, 10 generating multiple perspective query results from the database query, and generating a graphical representation based on one or more of the multiple perspective query results.
2. The method of claim 1, wherein each of the multiple perspective query 15 results retrieves measures for a defined period or point in time based on the perspective of the query result.
3. The method of claim 1, wherein each of the multiple perspective query results retrieves dimensions associated with the defined period or point in time 20 based on the perspective of the query result.
4. The method of claim 1, wherein the multiple perspective query results include query results based on two or more of a performance analysis, machine analysis, location analysis, asset analysis, call pattern analysis, and customer 25 analysis.
5. The method of claim 1, wherein the step of generating multiple perspective query results comprises the steps of identifying a time period for analysis, 30 identifying transactions or measures that are associated with the time period, identifying one or more slowly changing dimensions (SCDs) that are active within the defined time period, linking the identified transactions to the active SCDs, and applying the linked transactions to produce the analytical perspective. 35
6. The method of claim 1, wherein the SCD is a location SCD WO 2012/128651 PCT/NZ2012/000045 54
7. The method of claim 6, wherein the location SCD records changes to the location of a device. 5
8. The method of claim 1, wherein the SCD is a configuration SCD
9. The method of claim 8, wherein the configuration SCD records changes to the configuration of a device 10
10. The method of claim 9, wherein the configuration SCD is associated with a single device or group of devices.
11. The method of claim 10, wherein the device is a device or system comprising of one or more of: a gaming device; a retail outlet device; a data 15 recording device; a manufacturing device or system; slot machine device; a cell phone; a smart phone; a traffic counting system; a medical scanning device; an air travel booking system.
12. The method of claim 1, wherein the identified time period wholly 20 encompasses the active SCDs.
13. The method of claim 1, wherein the active SCDs are partially active outside of the identified time period. 25
14. The method of claim 1, wherein the active SCDs are only active within the identified time period.
15. The method of claim 1, wherein all transactions within the identified time period are retrieved to produce the analytical perspective. 30
16. The method of claim 1, wherein all transactions within the identified time period are linked to one or more active SCDs.
17. The method of claim 1, wherein the step of identifying SCDs comprises 35 the step of identifying a plurality of location SCDs. WO 2012/128651 PCT/NZ2012/000045 55
18. The method of claim 1, wherein the step of identifying SCDs comprises the step of identifying a plurality of configuration SCDs.
19. The method of claim 1, wherein the step of applying the linked 5 transactions comprises: applying the linked transactions that are linked to an active SCD that is current at the end of the identified time period to produce the analytical perspective.
20. The method of claim 1, wherein the step of linking the identified 10 transactions comprises: linking the identified transactions that are associated with an active SCD that is current at the end of the identified time period.
21. The method of claim 1, wherein the step of identifying transactions further comprises the step of identifying transactions associated with an active SCD that 15 is current at the end of the identified time period.
22. The method of claim 1, wherein the step of identifying one or more SCDs comprises the step of identifying the SCD that is current at the end of the identified time period. 20
23. The method of claim 1, wherein the step of identifying SCDs comprises the step of identifying a single location SCD.
24. The method of claim 1, wherein the step of identifying SCDs comprises 25 the step of identifying a single configuration SCD.
25. The method of claim 1, wherein the step of applying the linked transactions comprises: applying the linked transactions that are linked to an active location SCD that is current at the end of the identified time period to 30 produce the analytical perspective.
26. The method of claim 1, wherein the step of linking the identified transactions comprises: linking the identified transactions that are associated with an active location SCD that is current at the end of the identified time period. 35 WO 2012/128651 PCT/NZ2012/000045 56
27. The method of claim 1, wherein the step of identifying transactions further comprises the step of identifying transactions associated with an active location SCD that is current at the end of the identified time period. 5
28. The method of claim 1, wherein the step of identifying one or more SCDs comprises the step of identifying a location SCD that is current at the end of the identified time period.
29. The method of claim 1, wherein the step of identifying SCDs comprises 10 the step of identifying a single location SCD and identifying a plurality of configuration SCDs associated with the identified location SCD.
30. A graphical visualization system arranged to perform the method of any one of claims 1 to 29. 15
31. A method of generating multiple perspective views of a graphical representation of data based on a single database query in a data visualization system substantially as herein described with reference to the accompanying drawings. 20
32. A graphical visualization system substantially as herein described with reference to the accompanying drawings.
AU2012101895A 2011-03-24 2012-03-23 An improved system and method for analysing data from multiple perspectives Expired AU2012101895A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161467260P 2011-03-24 2011-03-24
US61/467,260 2011-03-24

Publications (1)

Publication Number Publication Date
AU2012101895A4 true AU2012101895A4 (en) 2013-11-07

Family

ID=46879582

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2012231859A Pending AU2012231859A1 (en) 2011-03-24 2012-03-23 An improved system and method for analysing data from multiple perspectives
AU2012101895A Expired AU2012101895A4 (en) 2011-03-24 2012-03-23 An improved system and method for analysing data from multiple perspectives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2012231859A Pending AU2012231859A1 (en) 2011-03-24 2012-03-23 An improved system and method for analysing data from multiple perspectives

Country Status (2)

Country Link
AU (2) AU2012231859A1 (en)
WO (1) WO2012128651A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9836708B2 (en) 2013-12-13 2017-12-05 Visier Solutions, Inc. Dynamic identification of supported items in an application
CN112347200A (en) * 2020-11-24 2021-02-09 武汉烽火众智数字技术有限责任公司 Vehicle simultaneous analysis method based on big data
CN115174684A (en) * 2022-07-05 2022-10-11 中孚信息股份有限公司 Network data visualization platform, system and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015448A1 (en) * 2007-08-01 2009-02-05 Arvinmeritor Do Brasil Sistemas Automotivos Ltda Wheel packaging device

Also Published As

Publication number Publication date
AU2012231859A1 (en) 2013-10-17
WO2012128651A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
US10388044B2 (en) Dimension reducing visual representation method
US10055864B2 (en) Data visualization system and method
US10783677B2 (en) System and method of identifying and visually representing adjustable data
US10073907B2 (en) System and method of analyzing and graphically representing transaction items
US20180189990A1 (en) Methods, apparatus and systems for data visualization and related applications
US20110179066A1 (en) Methods, apparatus and systems for data visualization and related applications
US10192389B2 (en) Methods, apparatus and systems for determining an adjustment value of a gaming device
US20110141136A1 (en) Method and system of graphically representing discrete data as a continuous surface
US10578730B2 (en) Method, apparatus and system for location detection and object aggregation
AU2012101897A4 (en) An improved data visualization configuration system and method
Eckerson et al. Visual reporting and analysis
US20140089297A1 (en) System and method for analysing data from multiple perspectives
US20110184995A1 (en) method of optimizing a tree structure for graphical representation
AU2012101895A4 (en) An improved system and method for analysing data from multiple perspectives
BE1026611B9 (en) Methods and systems for data visualization and related applications
Singh A Framework for Improving Adaptive Data Visualization in Decision Support Systems

Legal Events

Date Code Title Description
FGI Letters patent sealed or granted (innovation patent)
MK22 Patent ceased section 143a(d), or expired - non payment of renewal fee or expiry