AU2011271793A1 - Submersible vehicle for dumping rocks - Google Patents

Submersible vehicle for dumping rocks Download PDF

Info

Publication number
AU2011271793A1
AU2011271793A1 AU2011271793A AU2011271793A AU2011271793A1 AU 2011271793 A1 AU2011271793 A1 AU 2011271793A1 AU 2011271793 A AU2011271793 A AU 2011271793A AU 2011271793 A AU2011271793 A AU 2011271793A AU 2011271793 A1 AU2011271793 A1 AU 2011271793A1
Authority
AU
Australia
Prior art keywords
mass flow
vehicle
flow generator
fall pipe
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011271793A
Other versions
AU2011271793B2 (en
Inventor
Jan Gabriel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deme Offshore NL NV
Original Assignee
Tideway BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tideway BV filed Critical Tideway BV
Publication of AU2011271793A1 publication Critical patent/AU2011271793A1/en
Application granted granted Critical
Publication of AU2011271793B2 publication Critical patent/AU2011271793B2/en
Assigned to DEME OFFSHORE NL B.V. reassignment DEME OFFSHORE NL B.V. Request to Amend Deed and Register Assignors: TIDEWAY B.V.
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/34Diving chambers with mechanical link, e.g. cable, to a base
    • B63C11/36Diving chambers with mechanical link, e.g. cable, to a base of closed type
    • B63C11/42Diving chambers with mechanical link, e.g. cable, to a base of closed type with independent propulsion or direction control
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • E02F3/9206Digging devices using blowing effect only, like jets or propellers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/02Dredgers or soil-shifting machines for special purposes for digging trenches or ditches
    • E02F5/10Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables
    • E02F5/104Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables for burying conduits or cables in trenches under water
    • E02F5/105Dredgers or soil-shifting machines for special purposes for digging trenches or ditches with arrangements for reinforcing trenches or ditches; with arrangements for making or assembling conduits or for laying conduits or cables for burying conduits or cables in trenches under water self-propulsed units moving on the underwater bottom

Abstract

The invention relates to a submersible vehicle (1), in particular a so-called ROV, for manoeuvring a fall pipe for dumping rocks on or near subsea installations, such as pipelines, comprising a frame(2), hoisting and control cables (3) for suspending thevehicle from a surface vessel, propulsion means (4), and a channel (10a, 10b) for accommodating the end of a fall pipe or forming the end of a fall pipe. A mass flow generator (15, 17) is releasably mounted in said channel.

Description

WO 2012/002806 PCT/NL2011/050463 Submersible vehicle for dumping rocks The invention relates to a submersible vehicle, in particular to a so-called Fall Pipe ROV (Remotedly Operated Vehicle), for manoeuvring a fall pipe for dumping rocks on 5 or near subsea installations, such as pipelines, comprising a frame, hoisting and control cables for suspending the vehicle from a surface vessel, propulsion means, and a channel for accommodating the end of a fall pipe or forming the end of a fall pipe. The invention further relates to a kit comprising a submersible vehicle and to a method of dumping rocks on a seabed. 10 As explained in WO 2009/020385, rock dumping vessels are employed to dump and transport rocks of various sizes and other suitable aggregate material for offshore and coastal protection applications, including stabilization, protection and covering of cables, pipelines, and free span corrections, and filling up holes, e.g. around platforms 15 and rigs. Other applications include seabed preparation prior to pipe laying, construction of underwater berms, thermal insulation of oil lines, protection against anchors and fishing operations and ballasting of platform and loading buoys. Dumping can be performed with a large crane, but also by means of side rock dumping 20 vessels and fall pipe vessels. Side rock dumping vessels sail to their destination, where shovels put the rocks overboard at a steady pace. This rock dumping method is typically used in shallow water. Fall pipe vessels are used in deep water, bringing large amounts of rock in their holds. The rocks are dumped through a long and more or less flexible fall pipe. A fall pipe ROV manoeuvres the end of the pipe to ensure accurate dumping 25 of the rocks. Installations on the seabed can also be protected by means of material taken from the seabed itself, e.g. by moving sand and sediment by means of so-called mass flow excavation and depositing this material over and around (live) subsea cables, pipelines 30 et cetera. As the material does not have to be brought in, this method is usually less expensive than rock dumping. Mass flow excavation also can be used to remove sediments from the seabed, e.g. to remove sand dunes or soft top layers of the seabed in preparation of rock dumping or installation of pipelines or other equipment on the seabed.
WO 2012/002806 2 PCT/NL2011/050463 In many projects it is desirable to use both rock dumping and mass flow excavation. For instance, when installing a pipeline, some sections of the pipeline should be protected from the influence of strong currents by means of rocks, whereas other sections of the 5 pipeline are trenched and covering by material taken from the seabed suffices. Also, it may be necessary to remove sand dunes to create an even seabed for laying the pipe on. It is an object of the present invention to provide an improved, more versatile submersible vehicle. 10 To this end, the vehicle according to the present invention is characterised in that a mass flow generator is releasably mounted in the mentioned channel of the submersible vehicle. 15 Thus, a single ROV can be used both for rock dumping and for mass flow excavation. For instance, the ROV could follow a pipeline on and in the seabed and dump rocks on and next to sections of the pipeline exposed to strong currents and, once the rocks are depleted, exchange the fall pipe with a mass flow generator and return in opposite direction to cover remaining sections, e.g. trenched sections, with material taken from 20 the surroundings. As a result, the surface vessel needs to return to shore less frequently and/or no separate surface vessel for deploying a mass flow generator is required. In an embodiment, the mass flow generator is connected or connectable to a power supply on the ROV. ROVs are usually connected to the surface vessel by means of an 25 umbilical which provides data communication and electric power for propulsion. Many ROVs further comprise an hydraulic power pack to convert electric power supplied via the umbilical to hydraulic power to drive the propulsors. By using this supply of electric or hydraulic energy, the mass flow generator requires no dedicated power supply simplifying the design of the mass flow generator. 30 The invention further relates to a kit comprising a submersible vehicle as described above and a mass flow generator configured to be releasably mounted in said vehicle, offering the advantages discussed above.
WO 2012/002806 3 PCT/NL2011/050463 In an embodiment, the kit comprises a single mass flow generator configured to be releasably mounted in said channel. The generator may be provided with a nozzle that forms an integral whole with the generator or the nozzle may be interchangeable. 5 In a further embodiment, the kit comprises two or more mass flow generators configured to be releasably mounted in said channel. Thus, the mass flow generator can be readily replaced in case of malfunction or two or more generators having different properties can be included to be able to select the most suitable mass flow generator based on the circumstances, in particular local circumstances such as the nature of the 10 seabed. In a more specific embodiment, one mass flow generator comprises a relatively small diameter impeller and a relatively narrow tube or tube-like body and another or, in case of only two generators in the kit, the other mass flow generator in the kit comprises a relatively large diameter impeller and a relatively broad tube or tube-like body. The generator having the smaller impeller is more suitable for excavating and moving clay, 15 whereas the larger is more suitable for sand. The invention also relates to a method of dumping rock and moving sediment on or near subsea installations, such as pipelines, including the steps of mounting the end of a fall pipe or a mass flow unit to or in the vehicle, lowering a submersible vehicle from a 20 surface vessel, manoeuvring the vehicle to respectively dump rocks or move sediment on or near a subsea installation, exchanging the end of a fall pipe for a mass flow generator or the mass flow generator for the end of a fall pipe, respectively, and manoeuvring the vehicle to respectively dump rocks or move sediment on or near a subsea installation. 25 The method need not necessarily be carried out in the order specified above. For instance, it is possible to first lower the vehicle and then mount the mass flow generator, e.g. by employing divers. 30 Within the framework of the present invention, the term "rock" includes natural rocks, stones, and larger pebbles as well as artificial, e.g. concrete, blocks in various shapes. Further, the term "channel" refers to any space in the submersible vehicle suitable for accommodating a mass flow generator.
WO 2012/002806 PCT/NL2011/050463 Figure 1 is cross-section of an example of a fall pipe ROV according to the present invention. Figure 2 is a perspective view of a mass flow generator for use in the vehicle shown in Figure 1. 5 Figure 3 is side view of the mass flow generator shown in Figure 2. Figures 1 and 2 show a submersible remotely operated vehicle (ROV) 1 for manoeuvring a fall pipe (not shown) for dumping rocks on or near subsea installations, such as pipelines, comprising a frame 2, hoisting cables 3 connected to the frame 2 for 10 suspending the ROV 1 from a surface vessel (not shown) and controlling the position of the ROV 1 in the vertical direction. The ROV 1 comprises a plurality of hydraulically driven propulsors, in this example two sets of two propulsors 4 each, a first set for propelling the ROV 1 in a first horizontal direction and a second set for propelling the ROV 1 in a horizontal direction perpendicular to the first direction. Hydraulic power is 15 provided by means of an hydraulic power pack 5 which receives electric power from the surface vessel by means of an umbilical 6, integrated in one of the hoisting cables 3, and which supplies hydraulic power to a so-called common rail 7. Compensators 8 are provided to reduce, in a manner known in itself, the pressure difference over the seals in the various hydraulic devices. 20 The ROV 1 comprises a dynamic positioning system 9, connected to the surface vessel via the umbilical. In this embodiment, the ROV 1 is arranged as the master, whereas the surface vessel is arranged as the slave, i.e. the ROV 1 is operated or programmed to follow a predetermined path and the surface vessel follows the submerged ROV 1. 25 The ROV 1 further comprises a channel 10 providing a means to releasably accommodate the end of a fall pipe (not shown). The channel 10 extends through the middle and, in this example, through the centre of gravity of the ROV 1. The channel 10 comprises an upper section 1 OA converging downwards and a lower section 1OB 30 converging upwards, the sections together defining a waist. At this waist, the channel 10 is provided with one or more friction elements, e.g. a plurality of the resilient blocks 11 that can be moved radially inwards and outwards by means of hydraulic cylinders 12 mounted about the outer wall of the channel 10.
WO 2012/002806 5 PCT/NL2011/050463 In accordance with the present invention, a mass flow generator 15, shown in isolation in Figures 2 and 3, is releasably mounted inside the channel 10. The mass flow generator 15 comprises a tube-like body 16 having a large diameter upper rim 16A, an inlet opening, a cylindrical middle portion 16B, and a discharge nozzle 16C. The nozzle 5 is exchangeable. The nozzle 16C shown in the Figures converges in the flow direction (downwards in the Figures), but can be readily exchanged for another nozzle, such as a straight nozzle or a diverging nozzle, which would be more suitable for a low velocity, high discharge flow of water through the mass flow generator. An impeller 17 and a hydraulic motor 18 for driving the impeller are mounted inside the tube-like body 16 at 10 the transition of the large diameter inlet opening and the cylindrical middle portion. During operation, the end of a fall pipe is fitted inside the channel and the ROV is lowered while the fall pipe is gradually assembled in a manner similar to assembling a drill string, i.e. by adding segments to the top end of the fall pipe. When the fall pipe is 15 completed, the submerged ROV directs the end of the fall pipe to the location where the rocks are to be dumped and, once this position is reached, dumping is initiated. The ROV can, for instance, follow a pipeline on and in the seabed and dump rocks next to and/or onto only those sections of the pipeline that are exposed to strong currents or other hazards. 20 When mass flow excavation is required or when the rocks are depleted, the end of the fall pipe is removed, the mass flow generator is inserted into the channel of the ROV until its upper rim rests on the ROV and then bolted in place and also secured by the friction elements. The ROV manoeuvres the mass flow excavator just as it moves the 25 fall pipe, thus allowing accurate control of the excavation. The mass flow generator can be used for excavation, for trenching or for covering areas of the seabed, the latter making use of ambient water current for transport of the seabed material that is loosened by the mass flow excavator. 30 For each section of a subsea installation, in this example a pipeline, a suitable material, e.g. rocks or sand, is selected and that material is dumped or deposited onto that section. Thus, rocks are used efficiently and the surface or length of an installation that can be covered with one payload of the surface vessel increases significantly.
WO 2012/002806 6 PCT/NL2011/050463 Furthermore, as power supply, deployment system, propulsion, torque compensation, and general controls are provided by an ROV that is already present, i.e. the ROV for manoeuvring the end of a fall pipe, the design of the mass flow generator can be kept relatively straightforward. 5 The invention is not restricted to the above-described embodiments, which can be varied in a number of ways within the scope of the claims. For instance, the vehicle may be used in excavation projects where no rock dumping is required of where excavation is required in preparation of rock dumping.

Claims (13)

1. Submersible vehicle (1), in particular a so-called ROV, for manoeuvring a fall pipe for dumping rocks on or near subsea installations, such as pipelines, comprising a 5 frame (2), hoisting and control cables (3) for suspending the vehicle (1) from a surface vessel, propulsion means (4), and a channel (10) for accommodating the end of a fall pipe or forming the end of a fall pipe, characterised by a mass flow generator (15) releasably mounted in said channel (10). 10
2. Submersible vehicle (1) according to claim 1, wherein the mass flow generator (15) is connected or connectable to a power supply (5) on the vehicle (1).
3. Submersible vehicle (1) according to claim 1 or 2, wherein the mass flow generator (15) comprises a tube or tube-like body (16) and an impeller (17) mounted 15 inside the tube or tube-like body (16).
4. Submersible vehicle (1) according to claim 3, wherein the mass flow generator (15) comprises an hydraulic motor (18) for driving the impeller (17). 20
5. Submersible vehicle (1) according to any one of the preceding claims, wherein the mass flow generator comprises a portion (1 6A) that has an outer diameter that is larger than the (smallest) inner diameter of the channel.
6. Submersible vehicle (1) according to any one of the preceding claims, wherein 25 the channel (10) comprises one or more radially movable friction or locking elements (11).
7. Submersible vehicle (1) according to any one of the preceding claims, wherein the mass flow generator (15) comprises an exchangeable discharge nozzle (16C). 30
8. Submersible vehicle (1) according to any one of the preceding claims, comprising a control means or connectable to control means for positioning the mass flow generator (15) and/or for compensating torque of the mass flow generator by means of the propulsion (4) of the vehicle. WO 2012/002806 PCT/NL2011/050463
9. Kit comprising a submersible vehicle (1), in particular a so-called ROV, for manoeuvring a fall pipe for dumping rocks on or near subsea installations, such as pipelines, comprising a frame (2), hoisting and control cables (3) for suspending the 5 vehicle (1) from a surface vessel, propulsion means (4), and a channel (10) for accommodating the end of a fall pipe or forming the end of a fall pipe, characterised in that the kit further comprises a mass flow generator (15) configured to be releasably mounted in said channel (10).
10 10. Kit according to claim 9, comprising two or more mass flow generators (15) configured to be releasably mounted in said channel (10).
11. Kit according to claim 10, wherein one mass flow generator (15) comprises a relatively small diameter impeller (17) and a relatively narrow tube or tube-like body 15 (16) and another mass flow generator (15) comprises a relatively large diameter impeller (17) and a relatively broad tube or tube-like body (16).
12. Method of dumping rock and moving sediment and on or near subsea installations, such as pipelines, including the steps of mounting the end of a fall pipe or 20 a mass flow unit to or in the vehicle, lowering a submersible vehicle from a surface vessel, manoeuvring the vehicle to respectively dump rocks or move sediment on or near a subsea installation, exchanging the end of a fall pipe for a mass flow generator or the mass flow generator for a mass flow generator, respectively, and manoeuvring the vehicle to respectively dump rocks or move sediment on or near a subsea installation. 25
13. Method according to claim 12, wherein the mounting of the mass flow unit to or in the vehicle includes the step of connecting the generator to a power supply onboard the vehicle.
AU2011271793A 2010-06-28 2011-06-27 Submersible vehicle for dumping rocks Active AU2011271793B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2004991 2010-06-28
NL2004991A NL2004991C2 (en) 2010-06-28 2010-06-28 Submersible vehicle for dumping rocks.
PCT/NL2011/050463 WO2012002806A1 (en) 2010-06-28 2011-06-27 Submersible vehicle for dumping rocks

Publications (2)

Publication Number Publication Date
AU2011271793A1 true AU2011271793A1 (en) 2013-02-07
AU2011271793B2 AU2011271793B2 (en) 2015-07-30

Family

ID=43567956

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011271793A Active AU2011271793B2 (en) 2010-06-28 2011-06-27 Submersible vehicle for dumping rocks

Country Status (6)

Country Link
EP (1) EP2585368B1 (en)
AU (1) AU2011271793B2 (en)
BR (1) BR112012032317B1 (en)
MX (1) MX2012014125A (en)
NL (1) NL2004991C2 (en)
WO (1) WO2012002806A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104653864B (en) * 2015-01-22 2017-01-11 哈尔滨工程大学 Stone falling pipe stone dumping device for treating suspended spanning of submarine pipeline

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0814955A2 (en) 2007-08-06 2015-10-27 Itrec Bv ship, method for dumping stones and tube hold set.

Also Published As

Publication number Publication date
WO2012002806A1 (en) 2012-01-05
EP2585368A1 (en) 2013-05-01
BR112012032317A2 (en) 2018-02-27
BR112012032317B1 (en) 2023-02-07
MX2012014125A (en) 2013-02-15
EP2585368B1 (en) 2014-08-13
NL2004991C2 (en) 2011-12-29
AU2011271793B2 (en) 2015-07-30

Similar Documents

Publication Publication Date Title
AU2009324302B2 (en) Subsea well intervention module
US5722793A (en) Method and device for continuously laying and burying a flexible submarine conduit
US9145761B2 (en) Subsea well intervention module
CN102132001B (en) Subsea structure installation or removal
US10954652B2 (en) Assembly and method for installing a subsea cable
AU2009294382B2 (en) Method of locating a subsea structure for deployment
US20100139130A1 (en) Underwater Excavation Tool
EP3268583B1 (en) Subsea grab system and marine vessel having such subsea grab system
NO20111073A1 (en) Rigeless abandon system
JP2007146542A (en) Connecting structure of excavating machine and method of in-water recovery of excavating machine
GB2434409A (en) Tidal energy system
EP2585368B1 (en) Submersible vehicle for dumping rocks
RU2507431C2 (en) Production method of excavation and laying works at routing of underwater pipelines, and device for its implementation
WO2014202948A1 (en) Gravity base for a marine structure
WO2009063159A1 (en) Method and apparatus for lowering a subsea structure between the surface and the seabed
EP1573137B1 (en) Process and system for the installation of pipelines in shallow or very shallow water
Spencer et al. Rock cutting With the T750 super trencher
JP2016074395A (en) Sea bottom foundation and mooring rope used for tidal current power generation
Aanerud CAPJET-A Simple and Safe Burial Method for Pipelines and Cables
Nellessen Specialized Deep-Water Drilling Support Remotely Operated Vehicle
Wood Seabed Contact Vehicles
GB2447782A (en) Underwater structure leveled using screw jacks

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
HB Alteration of name in register

Owner name: DEME OFFSHORE NL B.V.

Free format text: FORMER NAME(S): TIDEWAY B.V.