AU2011253790A1 - Biopsy device with fluid delivery to tissue specimens - Google Patents

Biopsy device with fluid delivery to tissue specimens Download PDF

Info

Publication number
AU2011253790A1
AU2011253790A1 AU2011253790A AU2011253790A AU2011253790A1 AU 2011253790 A1 AU2011253790 A1 AU 2011253790A1 AU 2011253790 A AU2011253790 A AU 2011253790A AU 2011253790 A AU2011253790 A AU 2011253790A AU 2011253790 A1 AU2011253790 A1 AU 2011253790A1
Authority
AU
Australia
Prior art keywords
tissue
port
collector
vacuum
interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011253790A
Other versions
AU2011253790B2 (en
Inventor
Frank R. Louw
Paul Lubock
Richard L. Quick
Jason H. Safabash
Martin V. Shabaz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SenoRx Inc
Original Assignee
SenoRx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006278334A external-priority patent/AU2006278334B2/en
Application filed by SenoRx Inc filed Critical SenoRx Inc
Priority to AU2011253790A priority Critical patent/AU2011253790B2/en
Publication of AU2011253790A1 publication Critical patent/AU2011253790A1/en
Application granted granted Critical
Publication of AU2011253790B2 publication Critical patent/AU2011253790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention is directed to a tissue collector and probe component for use in a biopsy probe for separating and collecting one or more tissue specimens from a target site within a patient and flushing the specimen to remove blood, 5 debris and the like before the specimen is removed from the biopsy probe. The flow of flushing fluid to the tissue collector is preferably controlled to coincide with delivery of one or more specimens to the collecting tray or basket of the device or after the receipt of the specimen within the tissue collector to ensure that the fluid (16) is applied to a fresh specimen. The tissue tray or basket within the tissue 10 collector (14) has an open or grated portion to facilitate removal of fluid, such as the applied fluid and blood, and other debris from the tissue specimens on the tray. Vacuum (22) is provided within the tissue collector, preferably under the tray to remove fluid and debris from the collector interior,

Description

Pool Section 29 Regulation 3,2(2) AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: Invention Title: Biopsy device with fluid delivery to tissue specimens The following statement is a full description of this invention, including the best method of performing it known to us: 11 1AHAU/0710 BIOPSY DEVICE WITH FLUID DELIVERY TO TISSUE SPECIMENS FIELD OF THE INVENTION [0001] The present invention relates generally to tissue removing devices such as biopsy devices and the methods of using such devices. More specifically, it is directed to an improved biopsy or other tissue removing device and method of using the device which includes flushing one or more specimens with suitable fluid within a tissue collector to remove blood, debris and the like from the specimen(s). BACKGROUND OF THE INVENTION [0002] In diagnosing and treating certain medical conditions, such as potentially cancerous tumors, it Is usually desirable to perform a biopsy, in which a specimen of the suspicious tissue is removed for pathological examination and analysis. In many instances, the suspicious tissue is located in a subcutaneous site, such as inside a human breast. To minimize surgical intrusion into the patient's body, it is desirable to be able to insert a small instrument into the patient's body to access the targeted site and to extract the biopsy specimen therefrom. [0003] A variety of tissue collecting components have been proposed for biopsy devices but they have not always been easy for the physician or other operating room personnel to separate or remove the specimen from the device, Needle like tip designs have been developed to aid in the accessing of intracorporeal sites for biopsy and other procedures. SUMMARY OF THE INVENTION [0004] This invention is directed to a system and method for collecting one or more severed tissue specimens from a target site which includes the application of a fluid such as saline to one or more collected tissue specimens. 'The fluid may be applied to the one or more tissue specimens to flush blood and other debris from the 1 one or more collected tissue specimens and/or to apply one or more agents to the collected tissue specimens. The tissue specimens are preferably collected within a tissue collector associated with a biopsy system. The fluid is preferably applied to at least one tissue specimen after it has been collected within the tissue collector but fluid may be applied as the tissue is delivered into the tissue collector. A vacuum may be generated within the tissue collector to remove the fluid from the specimens. The tissue collector component is preferably part of the biopsy system and easily removable therefrom so that the specimens may be removed without interfering with the position of the biopsy device. [0005] A biopsy system having the tissue collection and fluid applying features of the invention generally include an elongated, preferably disposable probe component having an elongated tubular shaft, an elongated cutting member within the inner lumen of the elongated tubular shaft, a proximal housing that is secured to the proximal portion of the elongated tubular shaft and a tissue collector secured to the proximal housing in fluid communication with the inner lumen of the cutting member. The tissue cutter has a distal cutting edge to separate a tissue specimen from supporting tissue at an intracorporeal target site, an inner lumen to withdraw one or more tissue specimens and a proximal end with a discharge port which is configured to discharge specimens into the interior of the tissue collector. [0006] A fluid delivery conduit extends from a source of fluid and opens to the interior of the tissue collector to deliver fluid to one or more specimens in the interior of the tissue collector. Preferably the fluid delivery conduit has a valve to control the fluid flow therethrough so as to sequence the flow of fluid to the interior of the tissue collector after the delivery of a tissue specimen. The fluid is preferably sprayed onto the specimens, for example by one or more spray heads or nozzles that may be 2 provided. A controller may be provided to control the operation of the valve in the fluid delivery conduit to control fluid flow thereto, [0007] A vacuum conduit may extend from a lower portion of the tissue collector to generate a vacuum within the interior of the tissue collector to aid in the aspiration of fluid and debris from the specimens. The vacuum within the tissue collector interior may also be employed to facilitate aspiration of one or more tissue specimens through the inner lumen of the tubular cutter. The vacuum conduit preferably leads to a waste container which captures the waste (fluid and debris) from the interior of the tissue collector. Preferably, a second vacuum conduit leads from the waste container to a vacuum source such as a vacuum pump which maintains a vacuum within the waste container. A controller may be utilized to control the operation of the vacuum pump to control the level of vacuum in the waste container and the interior of the tissue collector. The controller controlling the vacuum pump may be the same controller controlling the fluid control valve referred to above. [0008] A suitable biopsy device which may be utilized with specimen flushing features of the invention is described in co-pending application Serial No. 11/014,413, filed on December 16, 2004. The housing on the proximal end of the probe has driving elements for the tissue cutter and other operative elements such as described in the aforesaid co-pending application which is incorporated herein by reference. [0009] The elongated probe component preferably has a distal shaft portion with a tissue penetrating distal tip, a tubular section proximal to the distal tip, an inner lumen extending within the tubular section and an open, tissue receiving aperture in the tubular section proximal to the distal tip which provides access to tissue at the targeted site. The probe component includes an elongated tissue-cutting member, 3 which is preferably at least in part cylindrically shaped and slidably disposed within the inner lumen of the tubular section. The tissue cutting member is provided with at least one tissue cutting edge on its distal portion which is configured to sever tissue extending into the interior of the tubular section through the aperture thereof. The cutting edge on the tissue cutting member may be configured for longitudinal cutting movement and may include oscillating rotational motion and/or reciprocating longitudinal motion to sever specimen tissue extending through the aperture from supporting tissue at the targeted site. The cutting edges are radially spaced from a longitudinal axis of the probe component and are preferably transversely oriented with respect to the longitudinal axis of the probe component. The tissue cutter is preferably slidably disposed within the inner lumen of the tubular section, although it may be disposed about the tubular section. The probe component may also have a handle which releasably engages a driver component as described in the above referenced application. [0010] The tissue cutting member has an inner lumen preferably extending to a discharge port in the proximal end thereof for tissue specimen removal. While mechanical withdrawal of the tissue specimen may be employed, it is preferred to provide a vacuum within the cutting member from the proximal end of the cutting member (via the tissue collector interior) to aspirate the severed tissue specimen through the inner lumen of the cutting member to a tissue collection station. A higher fluid pressure may be maintained in the inner lumen of the cutting member distal to the tissue specimen to aid in transporting the specimen proximally through the inner lumen. In this manner, the mechanical withdrawal and/or the vacuum on the proximal end of the specimen and a higher pressure on the distal end of the 4 specimen can move the specimen through the inner lumen of the cutting member to the tissue collector station. [00111 In at least one embodiment described in the above mentioned application, the handle of the probe component is secured, preferably releasably secured, to the driver provided to interconnect the various operative elements of the probe with operative elements of the driver component. The tissue cutting member is operatively connected to at least one driver to provide the desired cutting motion. The proximal end of the tubular section of the probe component is fixed within the handle housing so that the orientation thereof with respect to the longitudinal axis and therefore the orientation of the tissue receiving aperture within the tubular section, can be selected by rotation of the handle housing with respect to the driver component. The orientation of the aperture may be selected manually such as described in copending application Serial Number 10/642,406, filed August 15, 2003 or it may be preset or selected electronically by a control module which also controls the operation of the cutting member and electrical power such as described in co pending application Serial No. 11/014,413, filed December 16, 2004. The aperture orientation setting may be selected before or after the tubular section of the probe component is inserted into the patient. [0012] A method of collecting one or more severed tissue specimens with a tissue collection device embodying features of the invention includes advancing a biopsy or other tissue removal system having such a tissue collecting device at least partially into tissue at a desired site within the patient's body with the tissue penetrating distal tip of the outer cannula disposed distal to the tissue specimen to be separated from the target site, A vacuum is established within the inner lumen of the tubular section to draw tissue through the aperture therein into the inner lumen of the tubular 5 section. The cutting member, which is slidably disposed within the inner lumen of the tubular section, may then be moved, e.g. longitudinally, to cut a tissue specimen from supporting tissue at the target site by such cutter motion. The cutter motion preferably includes oscillating rotational movement and/or reciprocating longitudinal movement. The vacuum established within the inner lumen of the tubular section may be applied through the inner lumen of the tissue cutting member when the tissue cuting member is disposed within the tubular section. The applied vacuum within the inner lumen of the tissue cutting member from the vacuum of the tissue collector interior, may also be utilized to pull or aspirate the separated tissue sample proximally. In addition, or alternatively, a higher fluid pressure may be maintained in a distal part of the inner lumen of the tubular section, distal to the specimen, to push the tissue specimen proximally, Alternatively, the tissue specimen may be mechanically withdrawn. Fluid pressure may include pressure from a liquid delivered into the interior of the device, such as a physiological saline solution, and may include a gas, such as pressurized carbon dioxide, nitrogen or air, delivered into the interior of the device. Access to ambient air can also maintain a sufficiently high pressure differential to move the specimen through the inner lumen of the cutting member. Anesthetic may be injected to the target site through the outer cannula or the inner lumen of the cutting member. [0013] The one or more tissue specimens are discharged into the interior of the tissue collector and preferably onto a tray provided therefore in the interior. The tray preferably has one or more openings which allow for drainage from the specimens on the tray. irrigation (or other) fluid is applied to one or more specimens to remove blood or other debris. The periphery of the tissue collection tray is sealed within the interior of the tissue collector so that vacuum generated beneath the tray will aspirate 6 fluid and debris from specimens on the tray to a vacuum conduit opening beneath the collector tray. The application of the irrigation fluid is preferably controlled to sequence after one or more tissue specimens are discharged onto the tissue collector tray from the discharge port in the proximal end of the tissue cutter. The fluid may contain or be a treating agent suitable for the subsequent evaluation of the specimens. [00141 Upon removal from the patient, the tissue specimen may then be subjected to pathological examination. After acquisition of a tissue specimen or specimens, the tissue separation system may be repositioned for further tissue separation and collection or it may be withdrawn from the patient. [0015] These and other advantages of the invention will become more apparent from the following detailed description of the invention and the accompanying exemplary drawings. BRIEF DESCRIPTION OF THE DRAWINGS [0016] Figure 1 is a schematic view of a biopsy system having a tissue specimen collector with flush and aspiration that embodies features of the invention. [0017] Figure 2 is an exploded perspective view of the elongated tissue biopsy system shown in Figure 1. [0018] Figure 3 is a perspective view of the embodiment shown in Figure 2 in an assembled condition without a cover for the probe component. [00191 Figure 4 is a side elevational view of the tissue biopsy system shown in Figure 3. [00201 Figure 4A is a transverse cross-sectional view of the probe component taken along the lines 4A-4A shown in Figure 4 7 [00211 Figure 5A is a perspective view, with exterior portions partially in phantom, of a tissue collector shown in Figure 4. [0022] Figure 5B is a longitudinal cross sectional view taken along lines 5B-5B shown in Figure 5A. [0023] Figure 5C is a perspective view of the tissue receiving tray shown in Figure 5A. [0024] Figure 5D is an exploded perspective view of tissue collector shown in Figure 5A. [0025] Figure 5E is an end view in perspective of the tissue collector shown in Figure 5A. [0026] Figure 6A is a perspective view, with exterior portions partially in phantom, of a modified tissue collector. [0027] Figure 6B is a longitudinal cross sectional view taken along lines 6B-6B shown in figure 6A. [0028] Figure SC is a transverse cross-sectional view of the tissue receiving tray shown in Figure 6B taken along the lines 6C-6C. [0029] Figure 6D is an end view of the tissue collector shown in Figure 6B taken along the lines 6D-6D. [0030] Figure 6E is a transverse cross-sectional view of the tissue collector shown in Figure 6B taken along the lines 6E-6E. [0031] Figure 6F is an exploded perspective view of tissue collector shown in Figure 6A. [0032] Figure 6G is an end view in perspective of the tissue collector shown in Figure 6A, 8 DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION [0033] Figure 1 schematically illustrates a biopsy system 10 embodying features of the invention. The system 10 includes a probe component 11 with an elongated tubular section 12, a proximal housing 13 and a tissue specimen collector 14 attached to the proximal housing. A first conduit 15 extends from fluid source 16 to the proximal end of the tissue collector 14 to deliver fluid to tissue specimens in the interior of the collector. A valve 17 is provided to control the fluid flow through the first conduit 15. A second conduit 18 extends to the tissue specimen collector 14 for application of a vacuum to the interior of the tissue specimen collector to aspirate fluid applied to one or more severed tissue specimens within the specimen collector, The second conduit 18 directs the aspirated fluid and debris to waste container 20. A third conduit 21 extends from the waste container 20 to a vacuum pump 22 which provides vacuum to the waste container and ultimately to the interior of the tissue specimen collector 14. The operation of the valve 17 in the fluid delivery conduit 15 and the vacuum pump 22 connected to the third conduit 21 may be controlled by controller 23. [0034] Figures 2-5A-E illustrate the biopsy device 24 of the system 10 in further detail. The probe component 11 generally includes an elongated tubular section or cannula 12 with a tissue penetrating tip 25 on the distal end thereof and an open, tissue receiving aperture 26 proximally adjacent to the distal tip. The probe component 11 also includes a proximal housing 13 which contains the driving mechanisms for the various elements of the probe component. Probe housing cover 27 is configured to interfit with the driver component 28 so as to enclose the proximal housing 13 of the probe component 11. A tissue cutter 30 is slidably disposed within the probe component 11 and has a distal cutting edge 31 which severs tissue that 9 extends through the tissue receiving aperture 26. An inner lumen 32 extends through the tissue cutter 30 to the tissue discharge port 33 in a proximal portion of the tissue cutter which discharges tissue specimen into the interior 34 of the tissue collector 14. The tissue discharge port 33 is preferably located at the proximal end of the tissue cutter 30. [0035] The details of driver component 28 and the interaction between the driver component and the probe component 11 can be found in the above mentioned application Serial No. 111014,413. [0036] The tissue specimen collector 14 (shown in more detail in Figures 5A-5E) is secured to the proximal end of the housing 13 of probe component 11 and has an interior 34 in fluid communication with the inner lumen 32 of the tissue cutter 30 through tissue discharge port 33. The interior 34 of the specimen collector 14 has a specimen receiving basket or tray 35, preferably removable, which is configured to receive tissue specimens from the discharge port 33 which may have been drawn therein. The tray 35 may have a grated portion 36 (or foraminous or is otherwise provided with a plurality of openings) to provide fluid communication with the vacuum chamber 37 provided under the tray. A vacuum is generated within the interior 34 by the vacuum within the vacuum chamber 37 to draw tissue specimens through the inner lumen 32 of the cutter 30 into the interior 34 of the tissue collector 14. The first vacuum conduit 18 has a distal end which is in fluid communication with the vacuum chamber 36 and has a proximal end which is configured to be connected to a waste container 20, Alternatively, the first vacuum conduit 15 may be directly connected to a vacuum source such as vacuum pump 22.. [0037] Application of a vacuum within the tubular section 12 aids in pulling tissue into the interior thereof through the tissue receiving aperture 26 and the transfer of 10 the severed tissue specimen through the inner lumen 32 of the tissue cutter 30 and the deployment of the specimen onto the collection tray 35 within the tissue collector 14. Preferably, the vacuum is applied under the tray 35 in vacuum chamber 37 to facilitate removal of fluid and/or debris from the one or more specimens that may be on the upper surface of tray 35. [0038] Fluid delivery conduit 15 has a spray head 38 which discharges into the interior 34 over the tray 35 so as to spray fluid onto one or more specimens located on the tray. The low pressures in the vacuum chamber 37 under the tray 35 aspirates fluid and debris through the openings of grated portion 36 of the tray. Fluids include blood from the specimen and fluids injected or sprayed into the chamber 34 of the tissue collector 14 through the spray head 38. The size of the debris aspirated into the vacuum chamber is limited for the most part by the size of the openings in grated portion 36. Preferably, the delivery of flushing fluid to the chamber 34 is controlled to sequence after aspiration of one or more tissue specimens onto the tray 35. Saline is a suitable fluid, but other fluids may be used. A variety of agents, such as thrombolytic agents, e.g. heparin, may be incorporated into the fluid to break up thrombus which may have formed on the specimen. Treatment fluids may also be employed for the subsequent examination of the one or more specimens. [0039] The tissue penetrating distal tip 25 may have a variety of tip shapes. Particularly suitable distal tips are disclosed in the above mentioned co-pending application Serial No. 11/014,413. [0040] In use, the distal end of the probe component 11 is advanced within the patient with the tissue cutter 30 in a forward position to close off the tissue receiving aperture 26 of the tubular section 12 until the aperture is located in a desired location 11 within the patient for taking a tissue specimen. The tissue cutter 30 is then withdrawn proximally to an open position to open up the aperture 26. The withdrawal of the tissue cutter 30 can be used to control the length of the aperture which is opened in order to control the length of the specimen which is drawn into the interior of the tubular section 12 and severed from supporting tissue. A vacuum is applied to the inner lumen 32 of the tissue cutter 30 through the interior 34 of the tissue collector 14 to draw tissue at the site into the inner lumen of the tubular section 12 through the aperture 26. The tissue cutter 30 is then driven distally and rotated or oscillated to sever the aspirated tissue specimen from the supporting tissue at the target site with the tissue cutting edge 31. The vacuum within the inner lumen 32 of the tissue cutter 30 aids or causes the severed tissue specimen to be drawn through the inner lumen of the tissue cutter and into the interior 34 of specimen collector 14. Positive pressure or even ambient conditions distal to the tissue specimen in the lumen 32 can help tissue specimen passage through the inner lumen to the discharge port 33 of the tissue cutter 30. If another tissue specimen is desired, the tubular section 12 may be rotated in one or more steps to move the aperture 26 to another location and repeat obtaining another tissue specimen in the same manner without otherwise moving the biopsy device 24. Typically, tissue specimens are obtained sequentially with the aperture 26 of the probe 11 in the 12, 2, 4, 6, 8, 10 o'clock positions and then in the 1 3, 5, 7, 9 and 11 o'clock positions. Other sequences for obtaining tissue specimens may be employed. The position of the aperture 26 may be indicated by a marker arrow 39 at the distal end cap 40 (Figure 2) of proximal housing 13 so that the physician or other operating personnel can readily determine what the orientation of the aperture 26 within the patient. The biopsy system 10 may be hand held for some biopsy 12 procedures or the system may be mounted on a stereotactic mounting stage such as a shoe that is slidably mounted to a rail of a Fischer or Lorad stage as discussed in the above mentioned application Serial No,11/014,413, [0041] Fluid from a source 16 may be delivered through first conduit 15 to the interior 34 of tissue collector 14 and sprayed onto the one or more specimens on the grated portion of the tray 35. Vacuum generated in the vacuum chamber 36 under the tray 35 aspirates fluid and small dimensioned debris through the grated openings of the tray into the vacuum chamber 37. Fluid and debris are aspirated from vacuum chamber 36 through second conduit 18 into the waste container 20. Third conduit 21 maintains vacuum conditions in the interior of waste container 20 by the vacuum pump 22. [00421 An alternative tissue specimen collector 114 is shown in detail in Figures 6A-6G which is secured to the proximal end of the housing 13 of probe component 11 and has an interior 134 in fluid communication with the inner lumen 32 of the tissue cutter 30 through tissue discharge port 33. The interior 134 of the specimen collector 114 has a specimen receiving basket or tray 135, preferably removable, which is configured to receive tissue specimens from the discharge port 33 which. may have been drawn therein. The tray 135 has a grated portion 136 (or foraminous or is otherwise provided with a plurality of openings) to provide fluid communication with the vacuum chamber 137 provided under the tray. A vacuum is generated within the interior 134 by the vacuum within the vacuum chamber 137 to draw tissue specimens through the inner lumen 32 of the cutter 30 into the interior 134 of the tissue collector 114. The vacuum conduit 118 has a distal end which is in fluid communication with the vacuum chamber 137 and has a proximal end which is configured to be connected to a waste container 20. Alternatively, the vacuum 13 conduit 115 may be directly connected to a vacuum source such as vacuum pump 22 as shown in Figure 1. [0043] Fluid delivery conduit 115 has a spray head 138 which discharges into the interior 134 over the tray 135 so as to spray fluid onto one or more specimens located on the tray. The low pressures in the vacuum chamber 137 under the tray 135 aspirates fluid and debris through the openings of grated portion 136 of the tray. Fluids include blood from the specimen and fluids injected or sprayed into the chamber 134 of the tissue collector 114 through the spray head 138, shown in detail in Figures 6B and 6C. The size of the debris aspirated into the vacuum chamber is limited for the most part by the size of the openings in grated portion 136. Preferably, the delivery of flushing fluid to the chamber 134 is controlled to sequence after aspiration of one or more tissue specimens onto the tray 135. [0044] While particular forms of the invention have been illustrated and described herein, it will be apparent that various modifications and improvements can be made to the invention. For example, while the various embodiments of the invention have been described herein in terms of a biopsy device, it should be apparent that the tissue collector may be employed to remove tissue for purposes other than for biopsy, i.e. for treatment or other diagnoses. Alternatively, the tissue cutting element may be on the exterior of the probe device and the tubular component having the tissue receiving opening in the distal end may be disposed within the tissue cutting element. In the latter alternative embodiment, the tissue specimen may be transported through the tubular component having the tissue receiving opening. 0045] Individual features of embodiments having features of the invention may be shown in some drawings and not in others, but those skilled in the art will recognize that individual features of one embodiment can be combined with any or all the 14 features of another embodiment. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. [0046] Terms such as "element', "member", "device", "section", "component", "portion", "means", "step" and words of similar import, when used in the following claims, shall not be construed as invoking the provisions of 35 U.S.C. §112(6) unless the claims expressly use the term "means" followed by a particular function without specific structure or the term "step" or "steps" followed by a particular function without specific action, [0047] All patents and patent applications referred to herein are incorporated by reference in their entirety. 15

Claims (18)

1. A tissue specimen collector for engagement with a proximal housing of a biopsy probe along a longitudinal extent of a tubular elongated member of the biopsy probe configured to transport a tissue sample, comprising: 5 a collector housing defining an interior, and having a proximal opening and a distal port opposite the proximal opening, the distal port of the collector housing being configured to receive a proximal end of the tubular elongated member of the biopsy probe such that the proximal end of the tubular elongated member can extend into the interior of the collector housing; and 10 a releasable tray that is releasably attached to the collector housing at the proximal opening, the releasable tray including: a first end portion; and a grated portion that extends from the first end portion, the grated portion being configured to extend through the proximal opening of the 15 collector housing in a direction toward the distal port and into the interior to separate the collector housing to define a tissue chamber and a vacuum chamber, such that a tissue discharge port of the tubular elongated member is able to be positioned in the tissue chamber above the grated portion, the grated portion having a plurality of holes to facilitate fluid 20 communication between the tissue chamber and the vacuum chamber.
2. The tissue specimen collector of claim 1, wherein at least one of the collector housing and the releasable tray comprises a washing port extending to the interior of the collector housing, the washing port being in direct fluid communication with the tissue chamber, and the washing port being configured 25 for fluid communication with a washing fluid source.
3. The tissue specimen collector of claim 2, wherein the washing port includes a spray head coupled to a fluid conduit, the spray head being located over the grated portion.
4. The tissue specimen collector of claim 2, wherein at least one of the 30 collector housing and the releasable tray comprises a vacuum port extending to 17 the interior of the collector housing, the vacuum port being in direct fluid communication with the vacuum chamber with the grated portion being interposed between the washing port and the vacuum port, the vacuum port being configured for fluid communication with a vacuum source.
5 5. The tissue specimen collector of claim 1, wherein the releasable tray having the grated portion is configured to be removably received in the interior of the collector housing along the longitudinal extent of the tubular elongated member with the tissue discharge port of the tubular elongated member extending over the grated portion. 10
6. The tissue specimen collector of claim 1, wherein the releasable tray having the grated portion is configured to be removably received in the interior of the collector housing along the longitudinal extent of the tubular elongated member.
7. The tissue specimen collector of claim 1, wherein the tubular elongated 15 member is an elongated tissue cutting member.
8. The tissue specimen collector of claim 1, wherein the grated portion extends longitudinally from the first end portion, and further comprising a washing port and a vacuum port with the grated portion being interposed between the washing port and the vacuum port. 20
9. An elongated probe component for use in a system for collecting one or more tissue specimens from a target site within a patient, the system including a washing fluid source and a vacuum source, the elongated probe component comprising: an elongated shaft having a distal shaft portion with a distal tip, a tubular 25 section proximal to the distal tip, an inner lumen extending within the tubular section and a tissue receiving aperture in the tubular section which provides access to tissue at the target site, and a tubular elongated member disposed within the tubular section, the tubular elongated member having a distal end and a proximal end, the distal end 18 having at least one tissue cutting edge and the proximal end defining a tissue discharge port; a proximal housing coupled to a proximal part of the elongated shaft; and a tissue specimen collector configured for engagement with the proximal 5 housing along a longitudinal extent of the elongated tissue cutting member, the tissue specimen collector being secured to the proximal housing, the tissue specimen collector including: a collector housing defining an interior, and having a proximal opening and a distal port opposite the proximal opening, the distal port of 10 the collector housing being configured to receive a proximal end of the tubular elongated member of the biopsy probe such that the proximal end of the tubular elongated member can extend into the interior of the collector housing; and a releasable tray is releasably attached to the collector housing at 15 the proximal opening, the releasable tray including: a first end portion; and a grated portion that extends from the first end portion, the grated portion being configured to extend through the proximal opening of the collector housing in a direction toward the distal port 20 and into the interior to separate the collector housing to define a tissue chamber and a vacuum chamber, such that a tissue discharge port of the tubular elongated member is able to be positioned in the tissue chamber above the grated portion, the grated portion having a plurality of holes to facilitate fluid 25 communication between the tissue chamber and the vacuum chamber.
10. The elongated probe component of claim 9, wherein at least one of the collector housing and the releasable tray comprises a washing port extending to the interior of the collector housing, the washing port being in direct fluid 30 communication with the tissue chamber, and the washing port being configured for fluid communication with the washing fluid source. 19
11. The elongated probe component of claim 10, wherein the washing port includes a spray head coupled to a fluid conduit, the spray head being located over the grated portion.
12. The elongated probe component of claim 10, wherein at least one of the 5 collector housing and the releasable tray comprises a vacuum port extending to the interior of the collector housing, the vacuum port being in direct fluid communication with the vacuum chamber with the grated portion being interposed between the washing port and the vacuum port, the vacuum port being configured for fluid communication with the vacuum source. 10
13. The elongated probe component of claim 9, wherein the releasable tray having the grated portion is configured to be removably received in the interior of the collector housing along the longitudinal extent of the tubular elongated member with the tissue discharge port of the tubular elongated member extending over the grated portion. 15
14. The elongated probe component of claim 9, wherein the releasable tray having the grated portion is configured to be removably received in the interior of the collector housing along the longitudinal extent of the tubular elongated member.
15. The elongated probe component of claim 9, wherein the tubular elongated 20 member is elongated tissue cutting member.
16. The elongated probe component of claim 9, wherein the grated portion extends longitudinally from the first end portion, and further comprising a washing port and a vacuum port with the grated portion being interposed between the washing port and the vacuum port. 25
17. A tissue specimen collector for engagement with a proximal housing of a biopsy probe along a longitudinal extent of a tubular elongated member of the biopsy probe configured to transport a tissue sample, comprising: 20 a collector housing defining an interior, and having a proximal opening and a distal port opposite the proximal opening, the distal port of the collector housing being configured to receive a proximal end of the tubular elongated member of the biopsy probe such that the proximal end of the tubular elongated member can 5 extend into the interior of the collector housing; and a releasable tray that is releasably attached to the collector housing at the proximal opening, the releasable tray including: a first end portion; and a grated portion that extends from the first end portion, the grated 10 portion being configured to extend through the proximal opening of the collector housing in a direction toward the distal port and into the interior to separate the collector housing to define a tissue chamber and a vacuum chamber, such that a tissue discharge port of the tubular elongated member is able to be positioned in the tissue chamber above the grated 15 portion, the grated portion having a plurality of holes to facilitate fluid communication between the tissue chamber and the vacuum chamber, and wherein the collector housing comprises a washing port extending to the interior of the collector housing, the washing port being in direct fluid 20 communication with the tissue chamber, and the washing port being configured for fluid communication with a washing fluid source.
18. The tissue specimen collector of claim 17, wherein the collector housing comprises a vacuum port extending to the interior of the collector housing, the vacuum port being in direct fluid communication with the vacuum chamber with 25 the grated portion being interposed between the washing port and the vacuum port, the vacuum port being configured for fluid communication with a vacuum source. SENORX, INC WATERMARK PATENT & TRADE MARK ATTORNEYS P29945AU01
AU2011253790A 2005-08-05 2011-12-02 Biopsy device with fluid delivery to tissue specimens Active AU2011253790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011253790A AU2011253790B2 (en) 2005-08-05 2011-12-02 Biopsy device with fluid delivery to tissue specimens

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/197,827 2005-08-05
US11/498,504 2006-08-03
AU2006278334A AU2006278334B2 (en) 2005-08-05 2006-08-04 Biopsy device with fluid delivery to tissue specimens
AU2011253790A AU2011253790B2 (en) 2005-08-05 2011-12-02 Biopsy device with fluid delivery to tissue specimens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2006278334A Division AU2006278334B2 (en) 2005-08-05 2006-08-04 Biopsy device with fluid delivery to tissue specimens

Publications (2)

Publication Number Publication Date
AU2011253790A1 true AU2011253790A1 (en) 2012-01-12
AU2011253790B2 AU2011253790B2 (en) 2013-04-04

Family

ID=45444907

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011253790A Active AU2011253790B2 (en) 2005-08-05 2011-12-02 Biopsy device with fluid delivery to tissue specimens

Country Status (1)

Country Link
AU (1) AU2011253790B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357175B2 (en) 2008-12-16 2013-01-22 Nico Corporation Positioning system for tissue removal device
US8430825B2 (en) 2008-12-16 2013-04-30 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8460327B2 (en) 2008-12-16 2013-06-11 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8496599B2 (en) 2008-12-16 2013-07-30 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8657841B2 (en) 2008-12-16 2014-02-25 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8702738B2 (en) 2008-12-16 2014-04-22 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US9216031B2 (en) 2008-12-16 2015-12-22 Nico Corporation Tissue removal device with adjustable fluid supply sleeve for neurosurgical and spinal surgery applications
US9279751B2 (en) 2008-12-16 2016-03-08 Nico Corporation System and method of taking and collecting tissue cores for treatment
US9504247B2 (en) 2008-12-16 2016-11-29 Nico Corporation System for collecting and preserving tissue cores
US9655639B2 (en) 2008-12-16 2017-05-23 Nico Corporation Tissue removal device for use with imaging devices in neurosurgical and spinal surgery applications
US9820480B2 (en) 2008-12-16 2017-11-21 Nico Corporation System for collecting and preserving tissue cores
US9931105B2 (en) 2008-12-16 2018-04-03 Nico Corporation System and method of taking and collecting tissue cores for treatment
US10080578B2 (en) 2008-12-16 2018-09-25 Nico Corporation Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
US10368890B2 (en) 2008-12-16 2019-08-06 Nico Corporation Multi-functional surgical device for neurosurgical and spinal surgery applications

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062232A1 (en) * 2001-02-05 2002-08-15 Tyco Healthcare Group Lp Biopsy apparatus and method
WO2002062228A1 (en) * 2001-02-05 2002-08-15 Tyco Healthcare Group Lp Biopsy apparatus and method
EP1599125B1 (en) * 2003-02-24 2013-08-21 Senorx, Inc. Biopsy device with inner cutting member

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8357175B2 (en) 2008-12-16 2013-01-22 Nico Corporation Positioning system for tissue removal device
US8430825B2 (en) 2008-12-16 2013-04-30 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8460327B2 (en) 2008-12-16 2013-06-11 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8496599B2 (en) 2008-12-16 2013-07-30 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8657841B2 (en) 2008-12-16 2014-02-25 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8702738B2 (en) 2008-12-16 2014-04-22 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US8888803B2 (en) 2008-12-16 2014-11-18 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US9028518B2 (en) 2008-12-16 2015-05-12 Nico Corporation Tissue removal device for neurosurgical and spinal surgery applications
US9216031B2 (en) 2008-12-16 2015-12-22 Nico Corporation Tissue removal device with adjustable fluid supply sleeve for neurosurgical and spinal surgery applications
US9279751B2 (en) 2008-12-16 2016-03-08 Nico Corporation System and method of taking and collecting tissue cores for treatment
US9504247B2 (en) 2008-12-16 2016-11-29 Nico Corporation System for collecting and preserving tissue cores
US9655639B2 (en) 2008-12-16 2017-05-23 Nico Corporation Tissue removal device for use with imaging devices in neurosurgical and spinal surgery applications
US9820480B2 (en) 2008-12-16 2017-11-21 Nico Corporation System for collecting and preserving tissue cores
US9931105B2 (en) 2008-12-16 2018-04-03 Nico Corporation System and method of taking and collecting tissue cores for treatment
US10048176B2 (en) 2008-12-16 2018-08-14 Nico Corporation System and method of taking and collecting tissue cores for treatment
US10080578B2 (en) 2008-12-16 2018-09-25 Nico Corporation Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications
US10368890B2 (en) 2008-12-16 2019-08-06 Nico Corporation Multi-functional surgical device for neurosurgical and spinal surgery applications
US10398462B2 (en) 2008-12-16 2019-09-03 Nico Corporation Tissue removal device with adjustable sleeve for neurosurgical and spinal surgery applications
US10959424B2 (en) 2008-12-16 2021-03-30 Nico Corporation System for collecting and preserving tissue cores
US11609160B2 (en) 2008-12-16 2023-03-21 Nico Corporation System and method of taking and collecting tissue cores for treatment
US11759259B2 (en) 2008-12-16 2023-09-19 Nico Corporation Tissue removal device with adjustable delivery sleeve for neurosurgical and spinal surgery applications

Also Published As

Publication number Publication date
AU2011253790B2 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
US10874381B2 (en) Biopsy device with fluid delivery to tissue specimens
EP1924206B1 (en) Biopsy device with fluid delivery to tissue specimens
AU2011253790B2 (en) Biopsy device with fluid delivery to tissue specimens
US11589849B2 (en) Biopsy device with selectable tissue receiving aperature orientation and site illumination
US20070032740A1 (en) Biopsy device with fluid delivery to tissue specimens
US11534147B2 (en) Biopsy device with a removable sample recieving cartridge
US20220125417A1 (en) Biopsy device with aperture orientation and improved tip
CA2841505C (en) Biopsy device with aperture orientation and improved tip

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)