AU2011247846A1 - Non-attached tire monitoring device - Google Patents

Non-attached tire monitoring device Download PDF

Info

Publication number
AU2011247846A1
AU2011247846A1 AU2011247846A AU2011247846A AU2011247846A1 AU 2011247846 A1 AU2011247846 A1 AU 2011247846A1 AU 2011247846 A AU2011247846 A AU 2011247846A AU 2011247846 A AU2011247846 A AU 2011247846A AU 2011247846 A1 AU2011247846 A1 AU 2011247846A1
Authority
AU
Australia
Prior art keywords
antenna
monitoring device
tire
monitoring
disposed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2011247846A
Other versions
AU2011247846B2 (en
Inventor
Gordon Hardman
Francis Merat
John Rensel
Paul Wilson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Americas Tire Operations LLC
Original Assignee
Bridgestone Americas Tire Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009202461A external-priority patent/AU2009202461B2/en
Application filed by Bridgestone Americas Tire Operations LLC filed Critical Bridgestone Americas Tire Operations LLC
Priority to AU2011247846A priority Critical patent/AU2011247846B2/en
Publication of AU2011247846A1 publication Critical patent/AU2011247846A1/en
Application granted granted Critical
Publication of AU2011247846B2 publication Critical patent/AU2011247846B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0491Constructional details of means for attaching the control device

Abstract

A non-attached monitoring device includes monitoring assembly and an antenna configured to radiate signals from the monitoring assembly. The antenna is configured to radiate through 5 the oriented attenuating body of the tire sidewall regardless of the position of the monitoring device with respect to the tire sidewall. In one embodiment, the antenna has a body that is looped back on itself. The body may be parallel to or perpendicular to the antenna ground plane. In another embodiment, a radiating slot antenna is configured to provide transmissions through the tire sidewall regardless of the position of the monitoring device.

Description

AUSTRALIA Patents Act COMPLETE SPECIFICATION (ORIGINAL) Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: Bridgestone Americas Tire Operations, LLC Actual Inventor(s): Gordon Hardman, Francis Merat, John Rensel, Paul Wilson Address for Service and Correspondence: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: NON-ATTACHED TIRE MONITORING DEVICE Our Ref: 928131 POF Code: 467479/497390 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): -1- NON-ATTACHED TIRE MONITORING DEVICE BACKGROUND OF THE INVENTION The present application is a divisional application from Australian patent application number 2009202461 which, in turn, is a divisional application from Australian patent 5 application number 2004209553, the entire disclosures of which are incorporated herein by reference. 1. TECHNICAL FIELD The present invention generally relates to non-attached monitoring devices and 10 antenna configurations for transmitting through an oriented attenuating body. More particularly, the present invention is related to a non-attached monitoring device that is free to move about within the cavity formed by the tire and the rim on which the tire is mounted. Specifically, the present invention relates to the configuration of the device antenna and its ability to transmit data through the attenuating body of the tire sidewall. 15 A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was, in Australia, known or that the information it contains was part of the common general knowledge as at the priority date of any of the claims. 20 2. BACKGROUND INFORMATION Monitoring conditions of pneumatic tires while they are installed and in use on a particular vehicle is desired in the art. The users of this technology particularly desire to measure the internal temperature and internal pressure of a tire. These non-destructive measurements are preferably taken while the tire is in use without having to remove the tire 25 from the vehicle or otherwise interrupt the use of the vehicle to take the measurements. It is particularly desirable to monitor the conditions and statistics of large off-the-road truck tires because the off-the-road tires are expensive and subject to harsher conditions than typical passenger car tires. Owners of highway trucks also desire to monitor their tires. Both types of tires must be regularly maintained to maximize vehicle usage and tire efficiency. 30 Numerous types of monitoring devices are known to the Applicant. One type of monitoring device uses a passive integrated circuit embedded within the body of the tire that is activated by a radio frequency transmission that energizes the circuit by inductive magnetic coupling. Other devices known to the Applicant and which are used for monitoring tire conditions include self-powered circuits that are positioned external of the tire, such as at the 35 valve stem. Other active, self-powered programmable electronic devices are disclosed in US Patents 1a 5,500,065, 5,573,610, 5,562,787, and 5,573,611 which are assigned to the Assignee of the present application. The attachment problems exist because the forces on an electronic monitoring device while connected to a pneumatic tire are significant and numerous. The forces in the footprint 5 area of the tire must be considered when mounting a monitoring device. Tires are subject to rotational forces when the vehicle is moving and also to various impact forces when the tire contacts surface irregularities. The tire will also deform and deflect during maneuvering because the loads to the wheel change. The attachment of the monitoring device to the tire must be strong enough and secure enough to maintain the position of the monitoring device 10 with respect to the tire while experiencing all of these forces while also protecting the monitoring device from damage resulting from these forces. These concerns have lead to the use of non-attached monitoring devices such as those disclosed in US 6,082,192 (commonly assigned) and US 4,067, 235 (which is known to the Applicant). One drawback with these devices is that their freedom of movement prevents the 15 position of the antenna from being accurately predicted while the monitoring device is in use. The Applicant recognizes that the position of the antenna with respect to the tire sidewall is an important factor when attempting to radiate a radio frequency signal through certain tire sidewall constructions. The rubber composite materials used in tire constructions may include a conductive material such as carbon black. These materials can attenuate the signal of 20 some radio frequency transmissions through the tire sidewall or other tire structure. Some tire constructions such as those commonly used in certain highway truck tires and off-the-road tires can also include metal cords. For example, a plurality of metal cords oriented radially may be present in the sidewall area of these tires. Such metal structures will provide additional attenuation of a radio frequency signal passing through the tire sidewall. The 25 orientation of the metal cords in the tire structure in relation to the orientation of the electromagnetic field associated with a radio signal passing through the tire sidewall will determine the degree of additional attenuation that the presence of the metal cords imparts upon the radio signal. Therefore, a tire structure of this type is termed an "oriented" attenuating body. The electromagnetic field orientation is a direct result of the type and 30 orientation of antenna used in transmitting the radio signal. Certain antenna configurations provide more desirable transmissibility through the oriented attenuating body than other antenna configurations. One antenna configuration T-IDDO a4P 9 6G7VM g,,,gdM5IW*ooC 2 known to the Applicant is disclosed in US 6,474,380 (commonly assigned) wherein a dipole antenna is fixed to the sidewall and disposed perpendicular to the metal body cords. This type of antenna configuration is not typically used with non-attached monitoring devices because the movement of the monitoring device does not allow the antenna to remain perpendicular to 5 the metal body cords during all transmissions. The Applicant is also aware of some previous attempts to control the position of the non-attached monitoring device within the tire so that the antenna would be in a predictable position with respect to the tire sidewall. The art desires a monitoring device and antenna configuration that will provide signal transmissions through the tire sidewall regardless of the position of the monitoring device with respect to the 10 tire sidewall. BRIEF SUMMARY OF THE INVENTION According to one aspect of the present invention, there is provided a tire having a non attached monitoring device for monitoring an engineering condition of the tire and transmitting data related to the engineering condition to a reader positioned outside the tire; the assembly 15 including: a tire body having a tire sidewall that is an oriented attenuating body for the monitoring device; the oriented attenuating body having maximum and minimum attenuating levels; a non-attached monitoring device being loosely disposed within the tire; 20 the monitoring device including a monitoring assembly and an antenna; the antenna having at least one curved portion that radiates a transmission pattern that extends along an arc that encompasses at least 90 degrees; the transmission pattern having a portion that is attenuated by the oriented attenuating body of the tire sidewall at the minimum attenuating level. 3 According to another aspect of present the invention, there is provided a non-attached monitoring device for monitoring an engineering condition of an environment; the monitoring device including: a body having an outer surface; 5 a monitoring assembly disposed within the body; and an antenna electrically connected to the monitoring assembly; the antenna including an antenna body that is looped back on itself through a 180 degree arc. According to another aspect of the present invention, there is provided a non-attached monitoring device for monitoring an engineering condition of an environment within a 10 structure while the monitoring device is loosely disposed with respect to the structure; the monitoring device including: a body having an outer surface; a monitoring assembly disposed within the body; and an antenna carried by the body; the antenna being electrically connected to the 15 monitoring assembly; the antenna including at least two spaced conductive elements that cooperate to form a slot that radiates signals from the antenna. 20 3a BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS Fig. 1 is a view of a reader disposed outside a sectioned pneumatic tire with one embodiment of the monitoring device of the present invention loosely disposed in the tire. 5 Fig. 2 is a front elevation view of the first embodiment of the monitoring assembly of the present invention with the protective body of the monitoring device shown in section. Fig. 3- is a side elevation view of the first embodiment of the monitoring assembly. 10 Fig. 4 is a bottom plan view of the first embodiment of the monitoring assembly. Fig. 5 is a front elevation view of a second embodiment of the monitoring assembly of the present invention with the protective body of the monitoring device shown in section. 15 Fig. 6 is a side elevation view of the second embodiment of the monitoring assembly. Fig. 7 is a bottom plan view of the second embodiment of the monitoring assembly. Fig. 8 is a section view of a third embodiment of the monitoring device of 20 the present invention with the monitoring assembly shown in elevation. Fig. 9 is a perspective view of the antenna used in the third embodiment of the monitoring device of the present invention. Fig. 10 is a view similar to Fig. 8 showing a fourth embodiment of the monitoring device of the invention. 25 Fig. 11 is a perspective view of the antenna used in the fourth embodiment of the monitoring device of the present invention. Fig. 12 is a front elevation view of a fifth embodiment of the monitoring device of the present invention. Fig. 13 Is a side elevation view taken along line 13-13 of Fig. 12. 30 Similar numbers refer to similar parts throughout the specification: DETAILED DESCRIPTION OF THE INVENTION The electronic monitoring device using the antenna configuration of the present invention is indicated generally by the numeral 2 in the accompanying 4 drawings. Monitoring device 2 is loosely disposed within a pneumatic tire 4 in Fig. 1 such that the movement of monitoring device 2 is only restricted by the body of tire 4 and the rim 6 on which tire 4 is mounted. As described above, this type of monitoring device does not have to be mounted to tire 4 or rim 6. One 5 drawback to the free movement is that the antenna 10 of monitoring device 2 does not maintain a consistent orientation with respect to tire 4 or rim 6. This is a problem because tire 2 typically has a sidewall 8 that functions as an attenuating body because sidewall 8 includes a plurality of metal cords 9. In the case of tire 2, the attenuating body is oriented. In the context of this application, 10 an "oriented" attenuating body will impede signals of one orientation to a lesser degree than signals of another orientation. An oriented attenuating body thus has a minimum attenuating level and a maximum attenuating level depending on the orientation of the signal. being attenuated by the body. The maximum attenuating level may prevent signals from being received by the reader 15 monitoring the transmissions from the monitoring device. If the orientation of the antenna were fixed with respect to the sidewall, a most favorable or optimal antenna orientation would exist as well as a least favorable antenna orientation. In a non-attached monitoring device, the orientation of the antenna with respect to the sidewall changes. Prior art monitoring device antennas would thus be 20 positioned in less than optimal orientations when used with a non-attached monitoring device. The antennas described below are thus configured to provide a radio signal orientation capable of successfully passing through sidewall 8 regardless of the orientation of device 2 with respect to sidewall 8. The antennas thus provide constant performance independent of the position of the 25 monitoring device. Figs. 2-4 depict a first embodiment of antenna 10 while Figs. 5-7 depict a second embodiment of antenna 10. Each antenna embodiment 10 is configured to provide a transmission patten having at least one portion that is not so severely attenuated by sidewall 8 such that a reader 12 positioned outside 30 sidewall 8 will receive a signal regardless of the orientation of device 2 with respect to sidewall 8. In some embodiments, the signal received by reader 12 will have a constant strength as device 2 tumbles within the chamber of tire 4. All of the antenna embodiments shown in this application are depicted in use with an exemplary monitoring assembly 14 having a circuit board 16 that is 5 disposed in a circuit board reference plane 18. Reference plane 18 is disposed coplanar with the drawing sheet in Figs. 4 and 7 and perpendicular to the drawing sheet in Figs. 2, 3, 5, 6, 8, and 10. Monitoring assembly 14 may also include a power source such as the batteries 20 shown in the drawings. 5 Monitoring assembly 14 further includes the sensors and electronics 22 that are used to measure an engineering condition of tire 4 (such as temperature or pressure) and transmit data by RF transmission through antenna 10 relating to the condition to a reader positioned outside tire 4. The specific sensors and electronics may vary but may be any one of the various configurations known In 10 the art. Exemplary monitoring assemblies are cited above. For example, monitoring assembly 14 may Include one or more microchips, one or more amplifiers, one or more batteries, one or more sensors such as pressure, temperature, and/or mileage/distance sensors. While not shown in the drawings, it is envisioned that the microchip itself can contain all or 15 some of the aforementioned components. Assembly 14 may be active or passive depending on the type of reader and system used. The first embodiment of antenna 10 has a body 30 disposed substantially parallel to reference plane 18. In this embodiment, circuit board 16 functions as the ground plane for antenna 10. Body 30 may be disposed in or on circuit 20 board 16 or may be spaced from board 16 as shown in the drawings. When a spaced configuration Is desired, legs 32 are provided with at least one of the legs 32 electrically connected to the electronic component that sends the signal to be radiated from antenna 10. Legs 32 may also radiate signals in an orientation perpendicular to body 30. The second embodiment of antenna 10 is shown in 25 Figs. 5-7 wherein body 30 is disposed perpendicular to reference plane 18 as shown in Fig. 6. In other alternative embodiments of the invention, body 30 of antenna 10 may be disposed at an angle between zero and 90 degrees. Each body 30 is looped back on itself to create signals of different orientations that will be attenuated differently by sidewall 8. In one embodiment, 30 body 30 may only contain a 90 degree arc. In the embodiments shown in the drawings, body 30 forms at least a half loop that contains a 180 degree arc. The half loop may follow a generally smooth circular path, a generally smooth oval path, or a wavy path. The signals transmitted from body 30 are thus disposed at all angles from zero to 180 degrees with respect to the ground plane. The 180 6 degree signal radiation pattern ensures that one area of body 30 will be desirably disposed (these signals will be attenuated at the minimum attenuation level) with respect to sidewall 8 regardless of the orientation of monitoring device 2 with respect to sidewall 8. Monitoring device 2 may thus tumble about within tire 4 5 while still transmitting signals to reader 12 outside.of tire 2. Both antenna embodiments 10 may be contained within the compact body of monitoring device 2 because the body 30 is looped back over board 16. Antenna 10 may thus be encapsulated with monitoring assembly 14 inside the rigid encapsulation material 40 as shown in Figs. 2-4. This material may be a 10 rigid epoxy that protects assembly 14 and antenna 10 from significant bending forces by maintaining their relative positions. Antenna 1.0 may also extend into the protective body 42 of monitoring device 2 as shown in Figs. 5-7. Exemplary encapsulation layers and exemplary protective bodies are disclosed in US Patent 6,082,192 which are incorporated herein by reference. 15 A third embodiment of the monitoring device of the invention is indicated generally by the numeral 2 in Fig. 8. In this embodiment, the antenna 50 includes a pair of spaced conductive bodies 52 and 54 that extend through the body of device 2. In this embodiment and in the following embodiments, conductive bodies 52 and 54 may be conductive foils or conductive coatings 20 disposed on the body portions of device 2. In the exemplary embodiment, each body 52 and 54 is disc-shaped as shown in Fig. 9. In other embodiments, the outer slot defined by the intersection of the bodies 52 and 54 with the outer surface of the body of device 2 may be circular while the bodies are curved inside the body of device 2. For example, bodies 52 and 54 may be portions of 25 concentric spheres disposed with the body of device 2. Bodies 52 and 54 are spaced apart to form a cavity that extends to the outer surface of the body of device 2 and defines a slot about the equator of device 2. The cavity may be filled with a dielectric filler material 56. In other embodiments, the cavity may be left hollow with mechanical spacers used to maintain the spacing between 30 bodies 52 and 54. The size and spacing of bodies 52 and 54 and the type of material 56 are used to tune antenna 50. Bodies 52 and 54 thus divide the body of device 2 into two portions. In the exemplary embodiment, monitoring assembly 14 is shown in one hemisphere such that device 2 would be weighted 7 to stop in a predictable orientation. In other embodiments, the other hemisphere may be counterweighted to balance device 2. Antenna 50 is fed at the center of one of bodies 52 and 54 while the other body 52 and 54 acts as the ground plane for antenna 50. When fed at its center, 5 antenna 50 will radiate signals from the entire circumference of the slot. Some portion of the radiated signal will thus pass through sidewall 8 regardless of the orientation of device 2. A fourth embodiment of the monitoring device of the invention is indicated generally by the numeral 2 in Fig. 10. In this embodiment, the antenna 60 10 includes a two pairs of spaced conductive bodies 62 and 64 that extend through the body of device 2. Bodies 62 and 64 each have first and second planar leg portions disposed perpendicular to each other with the outer edge of each leg being curved. In the exemplary embodiment, each body 62 and 64 is the shape of the inner surface of a quarter sphere as shown in Fig. 11. Bodies 62 and 64 15 are spaced apart to form a cavity that extends out of the body of device 2 in a pair of slots about perpendicular equators of device 2. The cavity may be filled with a filler material 56. In other embodiments, the cavity may be left hollow with mechanical spacers used to maintain the spacing between bodies 62 and 64. The size and spacing of bodies 62 and 64 and the type of material 56 are used 20 to tune antenna 60. Bodies 62 and 64 thus divide the body of device 2 into four portions. In the exemplary embodiment, monitoring assembly 14 and batteries 20 are shown in opposed quadrants such that device 2 is evenly weighted. Weights may also be added to the other quadrants if needed. Antenna 60 is fed at the center of the two opposed bodies 62 while the 25 other bodies 64 function as the ground plane of antenna 60. Antenna 60 will radiate signals from the entire circumference of both slots. Some portion of the radiated signals will thus pass through sidewall 8 regardless of the orientation of device 2. A fifth embodiment of the monitoring device of the invention is indicated 30 generally by the numeral 2 in Figs. 12 and 13. In this embodiment, the antenna 70 includes a two conductive bodies 72 and 74 that extend through the body of device 2. In the exemplary embodiment, each body 62 and 64 forms a serpentine pattern when It ends at the outer surface of device 2. Bodies 72 and 74 are spaced apart to form a cavity that extends from the center of device 2 out 8 of the body of device 2 in a serpentine slot that extends about the body of device 2 such that at least two portions of the slot may be viewed in the six possible elevation views of device 2. The cavity may be filled with a filler material 56. In other embodiments, the cavity may be left hollow with mechanical spacers used 5 to maintain the spacing between bodies 72 and 74. The size and spacing of bodies 72 and 74 and the type of material 56 are used to tune antenna 70. Bodies 72 and 74 thus divide the body of device 2 into two portions. As above, the monitoring assembly may be disposed in one or both of the two portions to balance device 2 as desired. 10 Antenna 70 is fed at the center of one of the two opposed bodies 72 while the other of the two opposed bodies 74 function as the ground plane of antenna 70. Antenna 70 will radiate signals from the entire circumference of the serpentine slot. Some portion of the radiated signals will thus pass through sidewall 8 regardless of the orientation of device 2. 15 In each of the third, fourth and fifth embodiments, the conductive bodies do not have to extend entirely through the body of the monitoring device as shown in the drawings. For example, the conductive bodies may be configured such that the cavity defined between the bodies is a channel that extends from the slot into the body of the monitoring device. In the case of the third 20 embodiment, each conductive body 52 and 54 may be in the shape of a flat doughnut or a flat washer (the shape formed by a reference plane passed through the diameter of a torus). In the foregoing description, certain terms have been used for brevity, clearness, and understanding. No unnecessary limitations are to be implied 25 therefrom beyond the requirement of the prior art because such terms are used for descriptive purposes and are intended to be broadly construed. Moreover, the description and illustration of the invention is an example and the invention is not limited to the exact details shown or described. For example, the non-attached monitoring device described in the exemplary 30 embodiment of the invention is used with pneumatic tires having attenuating sidewalls. These monitoring devices may also be used in other applications wherein an attenuating body is disposed between the monitoring device and the reader. Exemplary applications include types of silos, freezers, pumps, and pipes. 9

Claims (17)

1. A tire having a non-attached monitoring device for monitoring an engineering condition of the tire and transmitting data related to the engineering condition to a reader positioned 5 outside the tire; the assembly including: a tire body having a tire sidewall that is an oriented attenuating body for the monitoring device; the oriented attenuating body having maximum and minimum attenuating levels; a non-attached monitoring device being loosely disposed within the tire; 10 the monitoring device including a monitoring assembly and an antenna; the antenna having at least one curved portion that radiates a transmission pattern that extends along an arc that encompasses at least 90 degrees; the transmission pattern having a portion that is attenuated by the oriented attenuating body of the tire sidewall at the minimum attenuating level. 15
2. The tire of claim 1, wherein the curved portion of the antenna that radiates a transmission pattern extends along an arc that encompasses 180 degrees.
3. The tire of claims 1 or 2, wherein the monitoring assembly defines the ground plane of 20 the antenna; the body of the antenna being disposed in a reference plane that is perpendicular to the ground plane.
4. The tire of claims 1 or 2, wherein the monitoring assembly defines the ground plane of the antenna; the body of the antenna being disposed in a reference plane that is parallel to 25 the ground plane.
5. The tire of claims 1 or 2, wherein the monitoring assembly defines the ground plane of the antenna; the body of the antenna being disposed in a reference plane that is disposed at an angle between zero and 90 degrees to the ground plane. 30
6. The tire of any one of claims 1 to 5, wherein the monitoring assembly and the entire antenna are encapsulated within a rigid encapsulation layer.
7. The tire of any one of claims 1 to 5, wherein the monitoring assembly and the at least 35 a portion of the antenna are encapsulated within a rigid encapsulation layer. 10
8. A non-attached monitoring device for monitoring an engineering condition of an environment; the monitoring device including: a body having an outer surface; a monitoring assembly disposed within the body; and 5 an antenna electrically connected to the monitoring assembly; the antenna including an antenna body that is looped back on itself through a 180 degree arc.
9. The monitoring device of claim 8, further including a ground plane for the antenna; the antenna body being disposed in a reference plane that is perpendicular to the ground plane. 10
10. The monitoring device of claim 8, further including a ground plane for the antenna; the antenna body being disposed in a reference plane that is parallel to the ground plane.
11. A non-attached monitoring device for monitoring an engineering condition of an 15 environment within a structure while the monitoring device is loosely disposed with respect to the structure; the monitoring device including: a body having an outer surface; a monitoring assembly disposed within the body; and an antenna carried by the body; the antenna being electrically connected to the 20 monitoring assembly; the antenna including at least two spaced conductive elements that cooperate to form a slot that radiates signals from the antenna.
12. The monitoring device of claim 11, wherein the slot is circular. 25
13. The monitoring device of claim 11, wherein the slot is serpentine.
14. The monitoring device of any one of claims 11 to 13, wherein the slot is filled with a dielectric material. 30
15. The monitoring device of claim 11, wherein the first and second conductive elements are parallel to each other.
16. The monitoring device of claim 15, wherein the first and second conductive elements are circular. 35 11
17. The monitoring device of claims 15 or 16, wherein the slot is defined at the outer surface of the body; shape of the slot at the outer surface of the body being circular. 12
AU2011247846A 2003-02-04 2011-11-07 Non-attached tire monitoring device Ceased AU2011247846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011247846A AU2011247846B2 (en) 2003-02-04 2011-11-07 Non-attached tire monitoring device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/445,074 2003-02-04
AU2009202461A AU2009202461B2 (en) 2003-02-04 2009-06-19 Non-attached tire monitoring device
AU2011247846A AU2011247846B2 (en) 2003-02-04 2011-11-07 Non-attached tire monitoring device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2009202461A Division AU2009202461B2 (en) 2003-02-04 2009-06-19 Non-attached tire monitoring device

Publications (2)

Publication Number Publication Date
AU2011247846A1 true AU2011247846A1 (en) 2011-12-01
AU2011247846B2 AU2011247846B2 (en) 2012-06-07

Family

ID=45465541

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011247846A Ceased AU2011247846B2 (en) 2003-02-04 2011-11-07 Non-attached tire monitoring device

Country Status (1)

Country Link
AU (1) AU2011247846B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101583A1 (en) * 2017-11-27 2019-05-31 Safran Electronics & Defense Standalone on-board pressure measurement device, and pressure measurement method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4169497A (en) * 1977-05-31 1979-10-02 Yasuo Tsuruta Method and device for automatically increasing the restoring force of a pneumatic tire
US4343338A (en) * 1981-02-25 1982-08-10 Caterpillar Tractor Co. Tire cooling system and method
US5679187A (en) * 1995-09-20 1997-10-21 Caterpillar Inc. Bounce damping in elastomeric tires
JP2759073B2 (en) * 1996-06-28 1998-05-28 伊三五 美浦 Pneumatic tire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101583A1 (en) * 2017-11-27 2019-05-31 Safran Electronics & Defense Standalone on-board pressure measurement device, and pressure measurement method
FR3074096A1 (en) * 2017-11-27 2019-05-31 Safran Electronics & Defense AUTONOMOUS PRESSURE MEASURING DEVICE ONBOARD PRESSURE MEASURING METHOD
US10953709B2 (en) 2017-11-27 2021-03-23 Safran Electronics & Defense Standalone on-board pressure measurement device, and pressure measurement method

Also Published As

Publication number Publication date
AU2011247846B2 (en) 2012-06-07

Similar Documents

Publication Publication Date Title
AU2009202461B2 (en) Non-attached tire monitoring device
AU2016323529B2 (en) Tyre comprising a passive transponder and method for reading the data
KR20010007027A (en) Dipole antenna for tire tag
US20040021559A1 (en) Electronics device for a tire
AU2011247846B2 (en) Non-attached tire monitoring device
CN114829158B (en) Tyre comprising a radio frequency transponder
JP2022549804A (en) Tires with radio frequency transponders
CN114829159B (en) Tire with radio frequency transponder
CN114450178B (en) Tyre comprising a radio frequency transponder
CN112203875B (en) Casing equipped with a measuring system and communication method for such an assembly
KR20240036581A (en) Radio-frequency reading systems embedded in vehicles

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired