AU2011221379B2 - Method for accessing patient data - Google Patents

Method for accessing patient data Download PDF

Info

Publication number
AU2011221379B2
AU2011221379B2 AU2011221379A AU2011221379A AU2011221379B2 AU 2011221379 B2 AU2011221379 B2 AU 2011221379B2 AU 2011221379 A AU2011221379 A AU 2011221379A AU 2011221379 A AU2011221379 A AU 2011221379A AU 2011221379 B2 AU2011221379 B2 AU 2011221379B2
Authority
AU
Australia
Prior art keywords
instrument
instruments
data
patient
patient data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2011221379A
Other versions
AU2011221379A1 (en
Inventor
Anwar A. Azer
Ramon E. Benet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Instrumentation Laboratory Co
Original Assignee
Instrumentation Laboratory Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2006208341A external-priority patent/AU2006208341B2/en
Application filed by Instrumentation Laboratory Co filed Critical Instrumentation Laboratory Co
Priority to AU2011221379A priority Critical patent/AU2011221379B2/en
Publication of AU2011221379A1 publication Critical patent/AU2011221379A1/en
Application granted granted Critical
Publication of AU2011221379B2 publication Critical patent/AU2011221379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medical Treatment And Welfare Office Work (AREA)

Abstract

A method for accessing patient data, the method comprising: (a) providing a plurality of instruments configured for direct communication there between to a network, each instrument comprising a sampling member for contacting a body fluid sample from a patient and acquiring patient data therefrom; (b) communicating via a communications module for facilitating direct electronic bidirectional communication between a first instrument and a second instrument in the plurality of instruments wherein the direct electronic bidirectional communication comprises controlling the first instrument by the second instrument and controlling the second instrument by the first instrument; (c) processing by the first instrument the body fluid sample, wherein the second instrument is controlling the processing; and (d) accessing, by the second instrument directly from the first instrument, the acquired patient data. C:\NRPonb\DCC\MKAUS55980_1.DOC - 5/9/1I oE -0 a)) z UGo

Description

Australian Patents Act 1990 - Regulation 3.2A ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title "Method for accessing patient data" The following statement is a full description of this invention, including the best method of performing it known to us: P/00/00I C:\NRPortb\DCC\MKA\3855766 I.DOC - 7/9/11 C:\NtPrtblDCCVMKAus5W6 8_.DOC.7A9/201 I METHOD FOR ACCESSING PATIENT DATA Field 5 [0001] The invention relates to a method for accessing patient data. Background 100021 Medical facilities such as hospitals and doctor's offices employ numerous 10 medical devices to obtain and/or analyze samples from patients. These analytical instruments are often placed at different locations throughout the medical facility. [00031 Typically, such instruments are connected to or communicate with a stand-alone computer to perform the data management functions relating to the processing of patient 15 data. However, several problems exist with this arrangement. For example, the user must physically walk to the computer to see and/or manipulate the data from a particular device. In another example, the computer typically has a different used interface than the user interface of the instrument. Furthermore, in facilities using different user instruments for different procedures, each instrument may have it own interface. These different user 20 interfaces require the user to learn how to navigate through each user interface to perform the necessary tasks, and to quickly distinguish the difference between them. Moreover, if an analytical instrument is used outside of the facility in which it normally operates, the user would be unable to perform the data management functions without the stand-alone computer, or without having to return the instrument to the facility prior to performing any 25 of these functions. This results in a cumbersome requirement to maintain the data management capabilities when the user travels with the instrument.
CV4RflrbIPDCC%.4A\33S60I6_1 DOC.Sff92II I -2 [00041 The medical facility may also employ a server computer for the storage of information associated with, for instance, the analytical data. The instruments (or other computers) traditionally communicate with the server to access the information. A user located at the server, however, cannot typically analyze a sample. Also, if many 5 instruments request information from the server at approximately the same time, communications may be delayed. Moreover, if the server experiences a failure and has to be repaired, the retrieval of the data is delayed until the problem is fixed or until another server replaces the faulty server. Such server-centric arrangements can result in a chain reaction of inefficiencies such as data unavailability and inefficient medical treatment. 10 100051 It is desired, therefore, to provide a method for accessing patient data that alleviates one or more difficulties of the prior art, or that at least provides a useful alternative. Summary 15 [00061 In accordance with the present invention, there is provided a method for accessing patient data, the method comprising: (a) providing a plurality of instruments configured for direct communication there between to a network, each instrument comprising a sampling member for contacting a body fluid sample from a patient and acquiring patient data therefrom; 20 (b) communicating via a communications module for facilitating direct electronic bidirectional communication between a first instrument and a second instrument in the plurality of instruments wherein the direct electronic bidirectional communication comprises controlling the first instrument by the second instrument and controlling the second instrument by the first instrument; 25 (c) processing by the first instrument the body fluid sample, wherein the second instrument is controlling said processing; and (d) accessing, by the second instrument directly from the first instrument, the acquired patient data. 30 C:\NRPonbMDCC MKA35686.LDOC.5)9/2011 -3 [0007] - 100111 Brief Description of the Drawings 100121 Some embodiments of the present invention are hereinafter described, by way of 5 example only, with reference to the accompanying drawings, wherein: [0013] FIG. 1 is a block diagram of a system having a first, second, and third instrument communicating over a network according to an illustrative embodiment of the invention. [00141 FIG. 2 is a block diagram of a system having a server communicating with a first and second instrument over a network according to an illustrative embodiment of the 10 invention. 100151 FIG. 3 is a block diagram of an instrument having a user interface and a data management module according to an illustrative embodiment of the invention. 100161 FIG. 4 is a flow diagram of the steps performed for configuring the instruments of FIG. 1 according to an illustrative embodiment of the invention. 15 [00171 FIG. 5 is a flow diagram of the steps performed for using the instruments of FIG. I according to an illustrative embodiment of the invention.
C:\NRPofnbADCCtMKA3856086_ .DOC-5I9/2 1 -4 Detailed Description [0018] FIG. I is a block diagram of a system 100 having a first instrument 104, a second instrument 104', and a third instrument 104" (generally instrument 104) communicating over a network 116 according to an illustrative embodiment of the invention. Examples of 5 instruments 104 include but are not limited to a GEM Intelligent Quality Management (iQM) 3000 analyzer, a GEM Intelligent Quality Management (iQM) 4000 analyzer (both from Instrumentation Laboratory., Lexington, Massachusetts), and a VITROS DT60 II Chemistry System (Johnson & Johnson, Piscataway, New Jersey). Other instruments may be, for example, a handheld instrument such as a handheld glucose sensor. The instruments 10 104 can be located in, for instance, a hospital, a doctor's office. A medical facility, a patient's home, an elderly care facility, an ambulance, public transportation vehicles, large public venues, or any other location in which medical analysis and/or patient data sampling occurs on either a routine or emergency basis. For example, one instrument of the system may be located in a hospital, and another one of the 5 instruments may be located in a doctor's office. Alternatively, all of the instruments may be located in a hospital, but at remote locations throughout the hospital. In some cases, the instruments 104 travel throughout the facility, thereby introducing the possibility that any instrument 104 could be at any location at any time. Each instrument 104, 104', 104" includes a respective sampling member 120, 120', 120" 10 (generally sampling member 120). An example of a sampling member 120 is a probe for contacting the sample, an inlet port for receiving a sample, a receptacle for receiving a sample cartridge, or a sample cuvette, for example. Each sampling member 120, 120', 120" can sample a body fluid from a patient. Examples of a body fluid include blood, serum, plasma, urine, semen, saliva, tracheo-bronchial 15 washing, cerebrospinal fluid, and the like. The sampling member 120, 120', 120" can analyze a body fluid to determine qualitatively or quantitatively the amount or presence of one or more target analytes in the body fluid. Although described below with respect to the first instrument ("instrument 104"), the description applies to any or all of the instruments 104, 104', 104". Similarly, although the description below 20 is with respect to the first sampling member 120 ("sampling member 120"), the description applies to any or all of the sampling members 120, 120', 120". [0019] As used herein, accessing patient data means one instrument 104 directly accessing data on another instrument 104', i.e., a central processing unit (CPU) or server positioned between the first and second instruments 104, 104', respectively, is 25 not necessary for the first and second instruments to access data from each other. Acquiring patient data means when one instrument 104 analyzes a target component in a patient body fluid sample. In one embodiment, the acquiring of patient data includes using the sampling member 120 to obtain a patient sample. Patient data is patient personal data and patient clinical data. Personal data can include, for 30 example, name, gender, residence, age, height, weight, sex, allergies, and/or health history. Clinical data can include a qualitative or quantitative determination of a target analyte in a patient body fluid sample. 5 [0020] As used herein, direct communication between two instruments 104, 104' means one instrument 104 communicating with another instrument 104 without the aid of a central CPU or computer that is incapable of sampling a body fluid from a patient (i.e., that is not an instrument 104) and that provides additional data 5 processing functionality with respect to the analysis, storage, display, or manipulation of the data other than devices such as routers, repeaters, or switches that mange, direct, and/pr amplify messages over the network 116. Examples of direct communications, and communications over a mesh-type network whereby one or more of the instruments 104 can also assist with the transmission of a message 10 from a first instrument 104 to a second instrument 104'. [00211 To facilitate the direct communications among the instruments 104, each instrument 104 contains or is connected to (either permanently or on an ad hoc basis) a communication module 124. The communication module 124 maintains identification and routing information related to the plurality of instruments within 15 the system, and packages instructions, data and other information as messages in such a manner that when broadcast, the message contains the routing information necessary to reach it intended destination (i.e., a second instrument 104') without the aid of a central server. The communications module 124 also receives messages, and decodes, decrypts, and/or compiles the message into instructions for the second 20 instrument 104'. In some embodiments, the communications module 124 also provides confirmation messages back to the first instrument 104 to confirm that a message has been received, understood, and/or acted upon. [0022] With continued reference to FIG. 1, the direct communication between the first instrument 104 and second instrument 104' is shown with a first 25 communications channel 144. Similarly, the direct communication between the first instrument 104 and third instrument 104" is shown with a second communications channel 148. Moreover, the direct communication between the second instrument 104' and third instrument 104" is shown with a third communications channel 152. 6 [00231 The network 116 can be, for instance, an intranet. Example embodiments of the communication channels 144, 148, 152 include standard telephone lines, LAN or WAN links (e.g., TI, T3, 56kb, X.25), broadband connections (ISDN, Frame Relay, ATM), and wireless connections (802.11). 5 [00241 With continued reference to FIG. 1, the direct communication between, for instance, the first instrument 104 and the second instrument 104' enables the first instrument 104 to access patient data acquired by the second instrument 104'. Likewise, the direct communication between the other instruments 104 enable one instrument (e.g., the second instrument 104') to access patient data acquired by 10 another instrument (e.g., the third instrument 104") in direct communication with the instrument 104 (e.g., the second instrument 104'). In one embodiment, the direct communication between two or more instruments 104 is bidirectional. For example, when the first and second instruments, 104, 104' are in direct communication, the first instrument 104 can communicate with and obtain information from the second 15 instrument 104' and the second instrument 104' can likewise communicate with and obtain information from the first instrument 104. In another embodiment, the direct communication in unidirectional such that the first instrument 104 can communicate with and obtain information from the second instrument 104' but the second instrument 104' cannot initiate communications with and obtain formation for the 20 first instrument 104. Thus, independent of which instrument's sampling member 120 samples a patient's body fluid, any instrument 104 communicating over the network 116 can access data associated with the body fluid directly from the instrument 104 that sampled the body fluid. [0025] FIG. 2 is a block diagram of a system operating in such a manner that an 25 agent-instrument 204 communicates with the first instrument 104 and the second instrument 104' over a network according to another illustrative embodiment of the invention. In one embodiment, the agent-instrument 204 acts as an agent for the first instrument 104 and the second instrument 104;, i.e., the agent-instrument 204 can perform the functions that can be performed on the first and second instruments 30 104 and 104'. For example, the agent-instrument 204 stores the clinical data associate with a sample obtained by a sampling member of one or more of the 7 instruments 104. Thus, in one embodiment, the agent-instrument 204 enables an instrument 104 to access patient data acquired by another instrument 104 by storing the patient data in a database and performing other centralized data processing functions. Thus, when a sampling member 120 samples a body fluid from a patient, 5 the instrument 104 stores the patient data obtained from the sample. Additionally, the instrument 104 that acquired the sample also transmits the patient data to the agent-instrument 204. The agent-instrument 204 enables the other instruments 104 to access all patient data from a single instrument (rather than having to access patient data at all instruments 104 that sampled a sample from the patient). 10 Alternatively, instruments 104 can communicate with the instrument 104 that sampled the patients' body fluid to obtain data associated with the body fluid. [00261 In one embodiment, the agent-instrument 204 also transmits the patient data to a hospital information system 208. For example, the agent-instrument 204 transmits the patient data to the hospital information system 208 through a 15 laboratory information system (LIS) interface. The hospital information system 208 can be, for example, another computer in the same (or different) hospital as the medical facility where the instruments 104 are located. The hospital information system 208 maintains a patient database for the hospital's patients. The agent instrument 204 may also retrieve information from the hospital information system 20 208. [0027] In one embodiment, one instrument 104 (e.g., the first instrument 104) directly communicates with another instrument 104 (e.g., the second instrument 104') to control the instrument (e.g., the second instrument 104'). If, for instance, the first instrument 104 is controlling the second instrument 104', the first 25 instrument 104 calibrates the second instrument 104', initiates the processing of a patient sample on the second instrument 104' turns the second instrument 104' on and/or turns the second instrument 104' off. The first instrument 104 can also control the second instrument 104' by initiating a specific measurement of an analyte in the patient sample. 8 [00281 Additionally, in one embodiment, the first instrument 104 controls a heterogeneous second instrument 104', i.e., the second instrument 104' is a different model or type compared with the first instrument 104. For example, in one embodiment the first instrument 104 is a GEM Intelligent Quality Management 5 (iQM) 4000 analyzer and the second instrument 104' is a GEM Intelligent Quality Management (iQM) 3000 analyzer (both from Instrumentation Laboratory, Lexington, Massachusetts). Moreover, in one embodiment the first instrument 104 controls a second instrument 104' that is manufactured by a different company altogether. For example, the first instrument 104 is a GEM iQM 4000 analyzer and 10 the second instrument 104' is a VITROL DT60 II Chemistry System (Johnson & Johnson, Piscataway, New Jersey). [0029] FIG. 3 is a block diagram of an instrument 104 having a user interface 316 and a data management module 320 according to an illustrative embodiment of the invention. In the illustrated embodiment, the sampling member 120 of the 15 instrument 104 has an analytical module 304 for analyzing patient data. In particular, the analytical module 304 is a software module providing a programmed series of steps that analyzes a target analyte in a body fluid sample from a patient. For example, the target analyte is blood platelet concentration, white blood cell concentration, red blood cell concentration, blood urea nitrogen (BUN), blood gases, 20 electrolytes, metabolites, and/or hematocrit. [00301 The instrument 104 also includes a user interface 316 and a data management module 320. The data management module 320 enables management of the patient data. The data management module 320 can manage patient data that is stored on the instrument 104 that the data management module 320 is executing 25 on and/or can manage patient data stored on another instrument 104. For example, data management module 320 of the first instrument 104 can perform management functions on data associated with a particular patient that the first instrument 104 accesses from the second instrument 104'. [0031] The user interface 316 enables a uses of the instrument 104 to perform 30 functions associated with the analytical module 304 and the data management module 320. Specifically, the user interface 316 performs functions and displays 9 patient data in a common format on the instrument 104. Thus, the user interface 316 enables the user of the instrument 104 to experience a single "look and feel" when sampling a body fluid sample, analyzing the sample, and/or managing patient data regardless of the instrument. As an example, a common menu structure can be 5 employed such that the messaging functions all appear under one menu option that is consistent across all instruments 104, and operational functions such as processing a patient sample can be described using common terminology, with like screen coloring, command controls, and help text. The analytical module 304, the user interface 316, and the data management module 320 are software modules that can 10 be written in any computer programming language, such as Java or C++. In some embodiments where the instruments 104 are manufactured by different vendors, a browser-like interface may be included as the user interface 316, thus enabling the use of standard data rendering, data transmission, and data presentation technologies such as HTML, HTTP/HTTPS, XML, SOAP, Web Services, and the like, Examples 15 of browser interfaces include, but are not limited to applications such as Internet Explorer, by MICROSOFT CORPORATION of Redmond, Washington, NETSCAPE NAVIGATOR, by AOL/TIME WARNER of Sunnyvale, California, and MOZILLA FIREFOX by the MOZILLA FOUNDATION of Mountain View, California. 20 [0032] The user interface 316 enables a user to, for example, view a snapshot of the instrument screen display, review patient data or quality control results, review the instrument's status, enable or disable analytes, enable or disable operation access, lock the instrument 104, calibrate the instrument 104, configure the instrument 104 according to predetermined acceptable ranges of the results of the 25 analysis of the patient data, and/or post a message on the instrument 104. Moreover, the user of an instrument 104 can use the user interface 316 to perform these functions on any other instrument (e.g., the second instrument 104'). Thus, a user can use the user interface 316 to view patient data acquired by the instrument 104 including the user interface 316 or another instrument 104, view the status of this or 30 another instrument 104, view operations performed on this or another instrument 104 (e.g., analyze a patient sample, prepare a pie chart for all patient data for a particular patient, etc.) and/or search patient results on this or another instrument 10 104. As described above, the instruments 104 may be heterogeneous types, e.g., instruments manufactured by different companies altogether. [00331 Examples of data management functions that the data management module 320 can perform include generating a report, managing security information, 5 performing competency testing, and determining the workload of the instrument 104. For instance, the data management module 320 can automatically generate a table of the previous ten data points obtained for a target analyte of a patient's body sample. The data management module 320 can also report (e.g., a table) on demand or periodically as based on a predetermined schedule. The user of the instrument 10 104 can also use the data management 320 module to search patterns, such as a pattern in a patient's clinical data. Moreover, the user can additionally use the data management module 320 to discern data patterns associated with one or more instruments 104. For example, the data management module 320 can determine that a particular instrument, such as the third instrument 104", has the highest number of 15 analytical failures. [0034] Further, the data management module 320 can provide operator competency information. For example, the data management module 320 of the first instrument 104 may determine that the third instrument 104" has the highest number of discarded samples. Such information may be useful in assessing operator 20 performance. The operator using the third instrument 104" may, in such cases, require additional training in the use of the instruments 104. [00351 Additionally, the data management module 320 can perform inventory management. For example, if the sampling member 120 employs cartridges to sample a patient's body fluid, the data management module 320 can determine the 25 number of times the cartridge has been used and indicate when a user of the instrument 104 needs to replace the cartridge. Further, the data management module 320 of one instrument 104 (e.g., the first instrument 104) can determine when the cartridge supply of another instrument (e.g., the second instrument 104') need to be replaced. 11 [00361 As described above, the data management module 320 can also determine the workload of an instrument 104. In one embodiment, the data management module 320 can determine the workload of the instrument 104 that the data* management module 320 is executing on. The data management module 320 can 5 also determine the workload of another instrument 104 communicating with the instrument 104 that the data management module 320 is executing on. For example, a user of the first instrument 104 can use the data management module 320 to determine the frequency that the third instrument 104" is being used (e.g., once a day, ten times a day, etc.). The user can use this information to determine whether 10 to remove an instrument 104 (e.g., the third instrument 104") from the particular location (e.g., if the instrument 104 is not being used enough to warrant its positioning at the location), to add another instrument 104 to the same location (e.g., if the instrument 104 is being overworked) or to regulate the distribution and usage of the instruments 104. 15 [0037] In a particular embodiment, a user can access the user interface 316 and the data management module 320 for a web browser (e.g., Internet Explorer developed by Microsoft Corporation, Redmond, Washington). For instance, a user can use the web browser executing on a personal computer (e.g., in the user's office in the hospital) to access the data management module 320 and/or the user interface 316. 20 Moreover, the user interface and data management module displayed in the web browser have the same "look and feel" as the user interface 316 and data management module 320 executing on the instrument 104. The web browser enables a remote user to perform the same functions that a user using the interface 316 on the instrument 104 can perform. Thus, a remote user can, for instance, view 25 a snapshot of the instrument screen display, review patient or quality control results, review the instrument's status, enable or disable analysis, enable or disable operator access, lock the instrument, calibrate the instrument 104, and post a message on the instrument 104. [0038] Continuing to refer to FIG. 3, and as described above with reference to 30 FIG. 1, each instrument 104 comprises a communications module 124 to facilitate inter-instrument communication. In some embodiments, the communications 12 module 124 is an eternal component of the instrument 104 that (i.e., an internal wireless network interface card, transponder, or other signal-generating device). In other embodiments the communications module 124 is an external device that, for example, can be periodically connected to the instruments 104 via an interface. 5 [0039] FIG. 4 is a flow diagram of the steps performed for configuring the instruments 104 of FIG. 1 according to an illustrative embodiment of the invention. The instruments 104 in the illustrative embodiment are connected to the network 116 so that each instrument 104 is in direct communication with one or more of the other instruments 104 (step 410). The sampling member 120 of the first instrument 10 104 then samples a body fluid from a patient (step 415). The first instrument 104 then analyzes the body fluid sample (step 420) and obtains patient data. The second instrument 104')or any other instrument 104) the accesses, directly from the first instrument 104, the patient data corresponding with the analysis of the sample (step 425). Alternatively, the second instrument 104' instructs the first instrument 104 to 15 sample a body fluid and steps 415, 420, 425 are started. For example, upon receipt of the instruction, the first instrument 104 samples a body fluid (e.g., blood) from a patient, as shown in step 415. Moreover, any number of the steps shown in FIG. 4 may occur. For instance, the first instrument 104 may only sample a body fluid (Step 415) and then analyze the body fluid sample (Step 420). Another instrument 20 104 may not access patient data associate with the analysis of the sample or may access the patient data after a long time delay (e.g., four days later). [00401 With reference to FIG. 5, and in one exemplary embodiment, a laboratory technician needing a particular test, analysis, or collection of a patient sample utilizes a first instrument 104 to initiate a request for a patient sample (STEP 510). 25 A doctor, nurse, or other medical technician receives the request on a second instrument 104' (STEP 515). The request may be in the form of a screen message, audible message, or other recognizable indication that a request has been received. The medical technician may then acknowledge receipt of the request and, if no sample was previously taken (STEP 520) draw the patient sample using the 30 sampling member of the second instrument 104' (STEP 525) after which the second instrument 104' the performs the requested analysis (STEP 530). The second 13 C:\NRfobDCC\MKAU35606_.DOC4-59/2011 -14 instrument 104' then performs the requested analysis (STEP 530). The second instrument 104' then transmits the results of the analysis (STEP 535) where it re received by the first instrument 104 (STEP 540), thereby providing the laboratory technician with the necessary data. Such requests may be made in conjunction with scheduled rounds, patient care 5 protocols, or on an as needed (i.e., random) basis. [00411 In another embodiment a medical technician tending to a patient and using a first instrument 104 requests an analysis of a previously drawn sample of the patient. At another location, such as a laboratory where multiple patient samples are stored awaiting analysis, the second instrument 104' receives the request from the first instrument 104 and 10 introduces the sampling member of the second instrument 104' into the patient sample (STEP 550). The analysis is conducted by the second instrument 104' (STEP 535) back to the first instrument 104 (STEP 540), where the results are displayed. Alternatively, or in conjunction with this approach, the patient samples are arranged in a tray such that an automated sampling member probe of the second instrument 104' extends to and selects the 15 desired patient sample and samples the patient sample (STEP 560) such that the appropriate analysis of the sample directed by the first instrument 104 is conducted by the second instrument 104' (STEP 530). [00421 In another example, the second instrument 104' may be connected directly to a patient via an extracorporeal device such as a blood pump used during a cardio-bypass 20 procedure. In such cases, the sampling member of the second instrument 104' is in contact with the patient sample on a frequent, or in some cases continuous basis, and requests for sampling and analysis by the first instrument 104 directed by the second instrument 104' can be serviced in real-time. [00431 Having described certain embodiments of the invention, it will now become 25 apparent to one of skill in the art that other embodiments incorporating the concepts of the invention may be used. [00441 Throughout this specification and claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps 30 but not the exclusion of any other integer or step or group of integers or steps.
CINWRfbDCCVMXA 356OS6_1.DOC.SM9I2OlI - 15 10045] The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general 5 knowledge in the field of endeavour to which this specification relates.

Claims (19)

  1. 2. The method of claim 1, wherein the first instrument in electronic bidirectional communication with the second instrument accesses acquired patient data acquired by the sampling member on the second instrument using the communication module of the first 20 instrument.
  2. 3. The method of claim 1 or 2, wherein the acquired patient data comprises an analyzed target component of said patient's body fluid. 25 4. The method of any one of claims I to 3, wherein the first instrument in the plurality of instruments is in electronic bidirectional direct communication with at least the second instrument and a third instrument in the plurality of instruments.
  3. 5. The method of any one of claims 1 to 4, wherein the sampling member further 30 comprises an analytical module for analyzing a target component in the body fluid sample. C:W4RPotblDCC\MKA\4520457 _ DOC-708/2012 - 17
  4. 6. The method of any one of claims I to 5, wherein the first instrument in the plurality of instruments further comprises a user interface comprising a display for operator management of the analysis of the body fluid sample and for operator management of 5 patient data.
  5. 7. The method of claim 6, wherein the display of the acquired patient data by first instrument displays information in a format that is common to the plurality of instruments and is directly accessible by the second instrument in the plurality of instruments. 10
  6. 8. The method of any one of claims I to 7, wherein the direct electronic bidirectional communication between the first instrument and the second instrument is without the aid of a server. 15 9. The method of any one of claims I to 8, wherein the sampling member of at least one of the plurality of instruments analyzes a first analyte and the sampling member of another of the plurality of instruments analyzes a second analyte.
  7. 10. The method of any one of claims I to 9, wherein the first instrument further 20 comprises a display for viewing of electronic data, wherein the electronic data is selected from the group consisting of viewing status of the second instrument on the display of the first instrument, viewing operations of the second instrument or viewing operations of the first instrument on the display of the first instrument, and viewing acquired patient data on the second instrument or the first instrument. 25
  8. 11. The method of claim 10 wherein the first acquired patient data is displayed using a browser application on the display.
  9. 12. The method of any one of claims I to 11, wherein the plurality of instruments is 30 members of a peer-to-peer electronic communications network. C\NRPonb\DCCMKA\45204571 DOC-7Ms/212 - 18
  10. 13. The method of any one of claims I to 11, wherein the plurality of instruments are members of a mesh-type electronic communications network.
  11. 14. The method of any one of claims I to 13, wherein at least one of the plurality of 5 instruments is configured to assist with transmission of electronic communications messages between two other of the plurality of instruments.
  12. 15. The method of any one of claims I to 14, wherein the communications module maintains identification information related to the plurality of instruments. 10
  13. 16. The method of any one of claims 1 to 15, wherein the communications module packages information as electronic communications messages.
  14. 17. The method of any one of claims 1 to 16, wherein the communications module 15 receives, decodes, and decrypts electronic communications messages.
  15. 18. The method of any one of claims 1 to 17, wherein the communications module confirms that electronic communications messages have been received. 20 19. The method of any one of claims 1 to 18, wherein the communications module comprises routing information comprising information in a communication message necessary for the communication message to reach its intended destination.
  16. 20. The method of any one of claims 1 to 19, wherein the control of the first instrument 25 by the second instrument comprises calibrating the first instrument.
  17. 21. The method of any one of claims I to 20, wherein the control of the first instrument by the second instrument comprises initiating a measurement of an analyte in a patient sample on the first instrument. 30 C:\NRPonbl\DCC\AKA\4520457_l.DOC-7//212 -19
  18. 22. The method of any one of claims I to 21, wherein the control of the first instrument by the second instrument comprises the second instrument instructing the first instrument to analyze a sample. 5 23. The method of any one of claims I to 22, wherein the control of the first instrument by the second instrument comprises the second instrument switching on the first instrument.
  19. 24. The method of any one of claims 1 to 23, substantially as hereinbefore described 10 with reference to the accompanying drawings.
AU2011221379A 2005-01-27 2011-09-07 Method for accessing patient data Active AU2011221379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011221379A AU2011221379B2 (en) 2005-01-27 2011-09-07 Method for accessing patient data

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/044,626 2005-01-27
AU2006208341A AU2006208341B2 (en) 2005-01-27 2006-01-17 Method and system for managing patient data with analytical instruments in direct communication with each other
AU2011221379A AU2011221379B2 (en) 2005-01-27 2011-09-07 Method for accessing patient data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2006208341A Division AU2006208341B2 (en) 2005-01-27 2006-01-17 Method and system for managing patient data with analytical instruments in direct communication with each other

Publications (2)

Publication Number Publication Date
AU2011221379A1 AU2011221379A1 (en) 2011-09-29
AU2011221379B2 true AU2011221379B2 (en) 2012-08-23

Family

ID=45439731

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011221379A Active AU2011221379B2 (en) 2005-01-27 2011-09-07 Method for accessing patient data

Country Status (1)

Country Link
AU (1) AU2011221379B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040249253A1 (en) * 2003-06-06 2004-12-09 Joel Racchini Devices, systems and methods for extracting bodily fluid and monitoring an analyte therein

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040249253A1 (en) * 2003-06-06 2004-12-09 Joel Racchini Devices, systems and methods for extracting bodily fluid and monitoring an analyte therein

Also Published As

Publication number Publication date
AU2011221379A1 (en) 2011-09-29

Similar Documents

Publication Publication Date Title
AU2006208341B2 (en) Method and system for managing patient data with analytical instruments in direct communication with each other
Nichols Point of care testing
EP3091457A1 (en) Point-of-care testing system
JP4951216B2 (en) Clinical examination information processing apparatus and system, analyzer, and clinical examination information processing program
US11308433B2 (en) Point-of-care testing system
JPH10124601A (en) Distributed health management system
US20050283380A1 (en) Delivery service for a health management system
AU2011221379B2 (en) Method for accessing patient data
AU2022203009A1 (en) Patient test data processing system and method
AU2018367618B2 (en) User interface for managing a multiple diagnostic engine environment
JP2023518516A (en) Clinical decision support for clinical analyzers
JP2000099598A (en) Diagnosis support system and report generating method in the system
Felder The distributed laboratory: Point-of-care services with core laboratory management
WO2019099842A1 (en) Multiple diagnostic engine environment
JP4951594B2 (en) Clinical examination information processing apparatus, system, analysis apparatus, and program thereof
US20220084638A1 (en) Patient test data processing system and method
Taylor et al. Design of an integrated clinical data warehouse
JP2008269653A (en) Clinical examination information processing device, system, analysis device, and program for them
Lynch Point of Care Healthcare Quality Control for Patients Using Mobile Devices
Jacobs et al. Blood glucose point-of-care testing quality assessment and harmonization with central laboratory assays

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)