AU2011213704A1 - Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes - Google Patents

Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes Download PDF

Info

Publication number
AU2011213704A1
AU2011213704A1 AU2011213704A AU2011213704A AU2011213704A1 AU 2011213704 A1 AU2011213704 A1 AU 2011213704A1 AU 2011213704 A AU2011213704 A AU 2011213704A AU 2011213704 A AU2011213704 A AU 2011213704A AU 2011213704 A1 AU2011213704 A1 AU 2011213704A1
Authority
AU
Australia
Prior art keywords
data streams
networks
radio access
data stream
service
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2011213704A
Inventor
Alan Edward Jones
Chandrika K. Worrall
Haris Zisimopoulos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IPWireless Inc
Original Assignee
IPWireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2007283554A external-priority patent/AU2007283554B2/en
Application filed by IPWireless Inc filed Critical IPWireless Inc
Priority to AU2011213704A priority Critical patent/AU2011213704A1/en
Publication of AU2011213704A1 publication Critical patent/AU2011213704A1/en
Abandoned legal-status Critical Current

Links

Abstract

APPLICATION-LAYER COMBINING OF MULTIMEDIA STREAMS DELIVERED OVER MULTIPLE RADIO ACCESS NETWORKS AND DELIVERY MODES The provisioning of a service, such as a multimedia service, over different networks is described. Transmission of first and second data streams is established in first and second transmission modes over first and second networks. The first and second data streams carry the same content, and the first and second networks employ first and second radio access technologies. At the receiver, the first and second data streams are combined at the application layer into a combined data stream, which is decoded into an output for presentation to a user. 5520004-1 895587DI

Description

S&F Ref: 895587D1 AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address IPWireless Inc, of 1001 Bayhill Drive, San Bruno, of Applicant: California, 94066, United States of America Actual Inventor(s): Alan Edward Jones Haris Zisimopoulos Chandrika K. Worrall Address for Service: Spruson & Ferguson St Martins Tower Level 35 31 Market Street Sydney NSW 2000 (CCN 3710000177) Invention Title: Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes The following statement is a full description of this invention, including the best method of performing it known to me/us: 5845c(5523599_1) APPLICATION-LAYER COMBINING OF MULTIMEDIA STREAMS DELIVERED OVER MULTIPLE RADIO ACCESS NETWORKS AND DELIVERY MODES This divisional application is related to Australian Patent Application No. 2007283554, 5 the entirety of which is incorporated herein by reference. BACKGROUND Mobile operators worldwide have launched streaming real-time services (such as mobile TV and radio) over their existing 3G Universal Mobile Telecommunications System ("UMTS") networks. However, the existing UMTS air-interface and overall network 10 architecture are not adequate to deliver high quality, bandwidth-demanding multimedia content, such as television for a large number of users. Consequently, the 3GPP standards consortium has introduced the Multimedia Broadcasting/Multicasting Service ("MBMS") framework. The MBMS framework identifies optimizations in the UMTS Radio Access Network ("UTRAN") and the core network system architecture to enable 15 deployment of multicast/broadcast multimedia applications over the UMTS air-interface and core network. Because MBMS is intended to serve a large user population, the usage of radio resources must be managed efficiently to avoid system overload due to MBMS services that could degrade the quality of the other services. In conventional MBMS/multimedia streaming, 20 the multimedia traffic is delivered over a single radio access network at a given time. Thus, the delivery is optimized for over-the-air signal combining, where such combining occurs at the lower protocol layers. This configuration still leaves much to be desired in the way of reliability and resolution of multimedia content seen and heard at the user equipment. It would thus be advantageous to improve the perceptual quality of 25 multimedia services delivered over wireless networks. 5520004-1 895587D1 2 SUMMARY The likelihood of an overload traffic condition for multimedia services can be reduced by delivering the multimedia traffic over a separate frequency band from that used for other services. One way of achieving this is to use an overlay network for the delivery of 5 multimedia services. The overlay network may be deployed in areas of high user concentration and service demand (e.g., hotspots). Such an overlay network may be optimized for the support of multimedia service to a large user population. However, in order to disperse the service availability over large geographical areas, the service may also be provided over the widespread network upon which it is overlaid. This large-scale 10 network may be optimized for a small number of users. Thus, the two networks may use different transmission modes for provision of the same multimedia content. Embodiments of the present invention provide methods and apparatus for provisioning multimedia services, where the service is provided over multiple Radio Access Technologies ("RATs"). In addition, embodiments of the invention employ different 15 transmission modes (i.e., delivery modes), which are independent of each other. Examples of such modes are "multicast MBMS bearer" and "unicast streaming bearer." A user who has activated the service may receive the service over more than one radio access network with the use of independent delivery modes. The different delivery modes limit over-the-air combining of the signals, and avoid signal combining at the 20 protocol layers defined by the radio access networks. Instead, the application layer at the user equipment ("UE") uses smart application procedures to exploit the transmission diversity in combining the multiple data streams, thereby achieving high perceptual multimedia quality. In particular, a service center for provisioning a service, such as a multimedia service, 25 over different networks may include apparatus for establishing transmission of first and second data streams in respective first and second transmission modes over respective first and second networks. The first and second data streams may carry the same content, and the first and second networks may employ respective first and second radio access technologies. The service center may also include apparatus for synchronizing the 5520004-1 895587DI 3 transmission of the two data streams over the first and second networks, and apparatus for signaling to user equipment identifiers for the two networks over which the two data streams are established. On the receiver side, user equipment may receive content in first and second data streams 5 in respective first and second transmission modes over respective first and second networks. The first and second data streams may carry the same content, and the first and second networks may respectively employ first and second radio access technologies. The user equipment may include apparatus for combining the first and second data streams at the application layer into a combined data stream, and a decoder for decoding 10 the combined data stream into an output for presentation to a user. The apparatus for combining may dynamically select a data unit from the first data stream for combining into the combined data stream based at least in part upon the relative signal reliability of the first data stream compared to the second data stream. BRIEF DESCRIPTION OF THE DRAWINGS 15 Figure 1 illustrates a network infrastructure according to embodiments of the invention. Figure 2 illustrates signal reception from multiple RATs according to embodiments of the invention. Figure 3 illustrates application-layer combining according to embodiments of the invention. 20 Figure 4 illustrates stream combining according to embodiments of the invention. Figure 5 further illustrates stream combining according to embodiments of the invention. Figure 6 illustrates signaling flow according to embodiments of the invention. Figure 7 illustrates an example of a 3GPP network architecture according to embodiments of the invention. 5520004-1 895587DI 4 Figure 8 illustrates a computer system that may be employed to implement embodiments of the invention. DETAILED DESCRIPTION Figure 1 illustrates an example of an overlay network architecture 100 including two 5 RATs 102, RATI and RAT2. Each RAT includes at least one radio controller in a 5520004-1 895587DI 5 corresponding radio access network for controlling at least one base station 104. Each radio controller handles radio resource and mobility management. A Service Center (SC) 106 is connected to a plurality of content provider/multimedia sources 108. The SC provides multimedia content to the core network 1 10, and then to User Equipment 112 5 over RATI and RAT2 at the same time. In embodiments of the invention, the receiving device (the UE) includes dual receiver capability, and is able to receive traffic simultaneously in two RATs. The service center may be shared by the radio access networks. Thus, the same multimedia content may be delivered over the plurality of networks represented by the RATs 102. The SC 106 10 synchronizes the multimedia data streams, and signals to the UE 112 the identity of the RATs 102 over which the particular data stream is transmitted, using the service description/advertisement message format known in UMTS. Figure 2 illustrates the signal strength received over RATI and RAT2 for period of time (To to T 2 ). The signal strength fluctuates due to fast and slow fading experienced in 15 wireless channels. The slow fading component of each signal is shown in dashed line. At time T1, the signal over RAT2 becomes stronger than the signal over RAT 1. However, due to the fast fading, the signal over RAT2 may be weaker than that of RATI at some instances (which are circled in the figure). Note that Tl may indicate the time instance when the UE reaches the edge of the coverage area of RATI. 20 The content is transmitted over two independent radio access networks which may use different air interface technologies and different delivery mechanisms. Thus, possibly distinct protocol stacks will exist on the terminal controlling the different modes, in which case signal combining at a lower protocol layer (RAT-specific protocol stack) at the receiving device is impossible. Consequently, according to embodiments of the present 25 invention, the data streams received over different radio access networks are delivered to the application layer at the receiving device. As illustrated in Figure 3, the UE 112 includes a smart application procedure 302 at the application layer that combines the plurality of data streams received over different radio 5520004-1 895587DI 6 access networks prior to decoding of the multimedia stream. The stream combining produces an input data stream to a decoder 304, which provides the decoded stream to a display unit 306. If soft decision decoding is employed at the multimedia decoder, the decoder extracts additional information from the received multiple data streams (inserted 5 by the SC) to assist in soft decision decoding. The UE 112 also time-synchronizes the data streams received over the separate RATs prior to combining at the application layer. Figure 4 illustrates the stream combining procedure implemented at the UE application layer. Data units are selected from the time-synchronized data streams to construct an input data stream to the multimedia decoder. A "data unit" refers to any application layer 10 grouping of bits, such as, for example, a data bit, a data block consisting of a (fixed or variable) number of bits, a transport data block (datagram), an application layer packet, or any other application layer bit grouping, such as, for example, a video frame, video packet, or macro-block. The data units are selected from different data streams to achieve high perceptual quality 15 of the media after decoding. The selection criterion may be based on, for example, the number of correctly received bits in each stream, the number of correctly received blocks, bit error rate, block error rate, or relative importance of the multimedia data in achieving high perceptual quality or decoder feedback, as measured over a moving time window, according to methods know in the prior of art. Figure 5 illustrates a correctly received 20 block based on the selection criterion. Figure 6 illustrates the signaling flow involved in provision of multimedia according to embodiments of the present invention. Some of the essentials within each step for establishing communication will be recognized by those skilled in the art. Step 1: The necessary signaling between the SC, the radio controller in RAT 1, and the 25 destination UE (through a base station in the radio access network of RATI) for the establishment of the radio bearer for multimedia delivery over RAT 1, which uses delivery method 1. Delivery methods include, for example, unicast or point-to multipoint. 5520004-1 895587DI 7 Step 2: The SC starts delivering the multimedia service over RAT1 using delivery method 1. Step 3: The UE receives the service over RATI using method 1. Step 4: The necessary signaling for the establishment of a radio bearer for multimedia 5 delivery over RAT2 which uses delivery method 2. Step 5: The SC starts delivering the service over RAT2, which uses delivery method 2. Step 6: The UE receives the service over RAT I and RAT2 simultaneously. Figure 7 illustrates an exemplary network architecture of an embodiment of the present invention pursuant to the 3GPP network architecture in which W-DCMA-based FDD and 10 TD-CDMA-based TDD radio access networks 702, 704 are used for the delivery of multimedia. According to this embodiment, Rel.6 TDD and pre-Rel.6 FDD networks are employed. (Rel. 6 refers to Release 6 of the 3GPP standard.) The multimedia service is provided-over TDD using a point-to-multipoint (p-t-m) MBMS bearer, while a unicast streaming bearer is used in FDD for multimedia service provisioning. 15 According to another embodiment, Rel.6 TDD and Rel.6 FDD networks may be employed. The service may be provisioned over TDD using a p-t-m MBMS bearer, and over FDD using a point-to-point (p-t-p) MBMS bearer. According to yet another embodiment, Rel.6 TDD and Rel.6 FDD networks may be employed, while the service is provided over TDD using a p-t-m MBMS bearer and over FDD using a p-t-m MBMS 20 bearer. The UE receives the data streams over the two radio access networks. After passing through protocol stacks of each of the radio access technologies, the two data streams are sent to the application layer for application layer combining. As a result of the combining procedure, the application layer produces a single decoded multimedia stream from the 25 received multiple input streams. 5520004-1 895587DI 8 While the invention has been described in terms of particular embodiments and illustrative figures, those of ordinary skill in the art will recognize that the invention is not limited to the embodiments or figures described. Although embodiments of the present invention are described, in some instances, using UMTS terminology, those skilled in the 5 art will recognize that such terms are also used in a generic sense herein, and that the present invention is not limited to such systems. Those skilled in the art will recognize that the operations of the various embodiments may be implemented using hardware, software, firmware, or combinations thereof, as appropriate. For example, some processes can be carried out using processors or other 10 digital circuitry under the control of software, Finrmware, or hard-wired logic. (The term "logic" herein refers to fixed hardware, programmable logic and/or an appropriate combination thereof, as would be recognized by one skilled in the art to carry out the recited functions.) Software and firmware can be stored on computer-readable media. Some other processes can be implemented using analog circuitry, as is well known to one 15 of ordinary skill in the art. Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the invention. Figure 8 illustrates a typical computing system 800 that may be employed to implement processing functionality in embodiments of the invention. Computing systems of this type may be used in the SC, the radio controllers, the base stations, and the UEs, for 20 example. Those skilled in the relevant art will also recognize how to implement the invention using other computer systems or architectures. Computing system 800 may represent, for example, a desktop, laptop or notebook computer, hand-held computing device (PDA, cell phone, palmtop, etc.), mainframe, server, client, or any other type of special or general purpose computing device as may be desirable or appropriate for a 25 given application or environment. Computing system 800 can include one or more processors, such as a processor 804. Processor 804 can be implemented using a general or special purpose processing engine such as, for example, a microprocessor, microcontroller or other control logic. In this example, processor 804 is connected to a bus 802 or other communications medium. 5520004-1 895587DI 9 Computing system 800 can also include a main memory 808, such as random access memory (RAM) or other dynamic memory, for storing information and instructions to be executed by processor 804. Main memory 808 also may be used for storing temporary variables or other intermediate information during execution of instructions to be 5 executed by processor 804. Computing system 800 may likewise include a read only memory ("ROM") or other static storage device coupled to bus 802 for storing static information and instructions for processor 804. The computing system 800 may also include information storage system 810, which may include, for example, a media drive 812 and a removable storage interface 820. The 10 media drive 812 may include a drive or other mechanism to support fixed or removable storage media, such as a hard disk drive, a floppy disk drive, a magnetic tape drive, an optical disk drive, a CD or DVD drive (R or RW), or other removable or fixed media drive. Storage media 818, may include, for example, a hard disk, floppy disk, magnetic tape, optical disk, CD or DVD, or other fixed or removable medium that is read by and 15 written to by media drive 814. As these examples illustrate, the storage media 818 may include a computer-readable storage medium having stored therein particular computer software or data. In alternative embodiments, information storage system 810 may include other similar components for allowing computer programs or other instructions or data to be loaded 20 into computing system 800. Such components may include, for example, a removable storage unit 822 and an interface 820, such as a program cartridge and cartridge interface, a removable memory (for example, a flash memory or other removable memory module) and memory slot, and other removable storage units 822 and interfaces 820 that allow software and data to be transferred from the removable storage unit 818 to computing 25 system 800. Computing system 800 can also include a communications interface 824. Communications interface 824 can be used to allow software and data to be transferred between computing system 800 and external devices. Examples of communications interface 824 can include a modem, a network interface (such as an Ethernet or other NIC 5520004-1 895587DI 10 card), a communications port (such as for example, a USB port), a PCMCIA slot and card, etc. Software and data transferred via communications interface 824 are in the form of signals which can be electronic, electromagnetic, optical or other signals capable of being received by communications interface 824. These signals are provided to 5 communications interface 824 via a channel 828. This channel 828 may carry signals and may be implemented using a wireless medium, wire or cable, fiber optics, or other communications medium. Some examples of a channel include a phone line, a cellular phone link, an RF link, a network interface, a local or wide area network, and other communications channels. 10 In this document, the terms "computer program product," "computer-readable medium" and the like may be used generally to refer to media such as, for example, memory 808, storage device 818, or storage unit 822. These and other forms of computer-readable media may store one or more instructions for use by processor 804, to cause the processor to perform specified operations. Such instructions, generally referred to as "computer 15 program code" (which may be grouped in the form of computer programs or other groupings), when executed, enable the computing system 800 to perform functions of embodiments of the present invention. Note that the code may directly cause the processor to perform specified operations, be compiled to do so, and/or be combined with other software, hardware, and/or firmware elements (e.g., libraries for performing 20 standard functions) to do so. In an embodiment where the elements are implemented using software, the software may be stored in a computer-readable medium and loaded into computing system 800 using, for example, removable storage drive 814, drive 812 or communications interface 824. The control logic (in this example, software instructions or computer program code), 25 when executed by the processor 804, causes the processor 804 to perform the functions of the invention as described herein. It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between 5520004-1 895587DI I1 different functional units, processors or domains may be used without detracting from the invention. For example, functionality illustrated to be performed by separate processors or controllers may be performed by the same processor or controller. Hence, references to specific functional units are only to be seen as references to suitable means for 5 providing the described functionality, rather than indicative of a strict logical or physical structure or organization. Although the present invention has been described in connection with some embodiments, it is not intended to be limited to the specific form set forth herein. Rather, the scope of the present invention is limited only by the claims. Additionally, although a 10 feature may appear to be described in connection with particular embodiments, one skilled in the art would recognize that various features of the described embodiments may be combined in accordance with the invention. Furthermore, although individually listed, a plurality of means, elements or method steps may be implemented by, for example, a single unit or processor. Additionally, although 15 individual features may be included in different claims, these may possibly be advantageously combined, and the inclusion in different claims does not imply that a combination of features is not feasible and/or advantageous. Also, the inclusion of a feature in one category of claims does not imply a limitation to this category, but rather the feature may be equally applicable to other claim categories, as appropriate. 20 All patents, applications, published applications and other publication referred to herein are incorporated by reference herein in their entirety, including the following references: [1]. 3GPP TS 23.246, "Multimedia/Broadcast Multicast Service (MBMS) User Services; Stage 1", Release 6. [2]. 3GPP TS 26.346, "Multimedia/Broadcast Multicast Service (MBMS); 25 Protocols and codecs", Release 6. [3]. 3GPP TR 29.846, "Multimedia/Broadcast Multicast Service (MBMS); CN I procedures", Release 6. 5520004-1 895587DI 12 [4]. 3GPP TS 33.246, "Security of Multimedia Broadcast/Multicast Service", Release 6. [5]. 3GPP TS 25.346, "Introduction of the Multimedia Broadcast/Multicast Service (MBMS) in the Radio Access Network (RAN); Stage 2", Release 6. 5 [6]. Internet Group Management Protocol, IGMPv2, http://www.ietf.org/rfc/rfc2236.txt [7]. "Multicast Listener Discovery (MLD) for IPv6", http://www.ietf.org/rfc/rfc2 7 I 0.txt [8]. 3GPP TS 32.240, "Charging management; Charging architecture and 10 principles", Release 6. [9]. 3GPP TS 24.008, "Mobile radio interface Layer 3 specification; Core network protocols; Stage 3", Release 6. [10]. 3GPP TS 29.060, "General Packet Radio Service (GPRS);GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface", Release 6. 15 [11]. 3GPP TS 25.331, "Radio Resource Control (RRC); Protocol specification", Release 6. 5520004-1 895587DI

Claims (20)

1. A service center for provisioning a service over different networks, the service center comprising: logic for establishing a transmission of first and second data streams in respective 5 first and second transmission modes over respective first and second networks, the first and second data streams for carrying the same content, the first and second networks employing respective first and second radio access technologies; and logic for synchronizing the transmission of the two data streams over the first and second networks. 10
2. The service center of claim 1, wherein the service is a multimedia service.
3. The service center of claim 1 or claim 2, comprising logic for signaling to user equipment identifiers for the two networks over which the two data streams are 15 established.
4. The service center of any preceding claim, wherein the first transmission mode is point-to-multipoint. 20
5. The service center of claim 4, wherein the second transmission mode is unicast.
6. The service center of any preceding claim, wherein the first radio access technology is time-division duplex. 25
7. The service center of claim 6, wherein the second radio access technology is frequency-division duplex.
8. The service center of any preceding claim, further comprising logic for inserting into the transmission of each data stream information to assist in soft decision decoding. 30
5520004-1 895587DI 14
9. A method for provisioning a service over different networks, the method comprising: establishing a transmission of first and second data streams in respective first and second transmission modes over respective first and second networks, the first and second 5 data streams for carrying the same content, the first and second networks employing respective first and second radio access technologies; and synchronizing the transmission of the two data streams over the first and second networks.
10 10. The method of claim 9, wherein the service is a multimedia service.
11. The method of claim 9 or claim 10, wherein establishing comprises signaling to user equipment identifiers for the two networks over which the two data streams are established. 15
12. The method of any of preceding claims 9 to 11, wherein the first transmission mode is point-to-multipoint.
13. The method of claim 12, wherein the second transmission mode is unicast. 20
14. The method of any of preceding claims 9 to 13, wherein the first radio access technology is time-division duplex.
15. The method of claim 14, wherein the second radio access technology is 25 frequency-division duplex.
16. The method of any of preceding claims 9 to 15, further comprising inserting into the transmission of each data stream information to assist in soft decision decoding. 30
17. A computer-readable medium comprising instructions for provisioning a service over different networks, the instructions for causing performance of a method comprising: 5520004-1 895587DI 15 establishing a transmission of first and second data streams in respective first and second transmission modes over respective first and second networks, the first and second data streams for carrying the same content, the first and second networks employing respective first and second radio access technologies; and 5 synchronizing the transmission of the two data streams over the first and second networks.
18. The computer-readable medium of claim 17, wherein the service is a multimedia service. 10
19. The computer-readable medium of claim 17 or claim 18, wherein establishing comprises signaling to user equipment identifiers for the two networks over which the two data streams are established. 15 20. The computer-readable medium of any of preceding claims 17 to 19, wherein the first transmission mode is point-to-multipoint. 21. The computer-readable medium of claim 20, wherein the second transmission mode is unicast.
20 22. The computer-readable medium of any of preceding claims 17 to 21 , wherein the first radio access technology is time -division duplex. 23. The computer-readable medium of claim 22, wherein the second radio access 25 technology is frequency-division duplex. 24. The computer-readable medium of any of preceding claims 17 to 23, further comprising instructions for causing insertion into the transmission of each data stream information to assist in soft decision decoding. 30 5520004-1 895587DI 16 25. A wireless user equipment for receiving content in first and second data streams in respective first and second transmission modes over respective first and second networks, the first and second data streams for carrying the same content, wherein the first and second networks respectively employ first and second radio access technologies, the user 5 equipment comprising: logic for combining the first and second data streams at the application layer into a combined data stream; and a decoder for decoding the combined data stream into an output for presentation to a user. 10 26. The user equipment of claim 25, wherein the first and second data streams carry multimedia content. 27. The user equipment of claim 25 or claim 26, wherein the logic for combining is 15 operable to dynamically select a data unit from the first data stream for combining into the combined data stream based at least in part upon the relative signal reliability of the first data stream compared to the second data stream. 28. The user equipment of any of preceding claims 25 to 27, wherein the decoder 20 extracts soft decision information from each data stream to enable soft decision decoding. 29. The user equipment of any of preceding claims 25 to 28, further comprising logic for synchronizing the first and second data streams before combining the first and second data streams. 25 30. The user equipment of any of preceding claims 25 to 29, wherein the first transmission mode is point-to-multipoint. 31. The user equipment of claim 30, wherein the second transmission mode is unicast. 30 5520004-1 895587DI 17 32. The user equipment of any of preceding claims 25 to 31, wherein the first radio access technology is time-division duplex. 33. The user equipment of claim 32, wherein the second radio access technology is 5 frequency-division duplex. 34. A method for receiving content in first and second data streams, the method comprising, at a receiver: receiving the first and second data streams in respective first and second 10 transmission modes over respective first and second networks, wherein the first and second data streams carry the same content, and the first and second networks respectively employ first and second radio access technologies; combining the first and second data streams at the application layer into a combined data stream; and 15 decoding the combined data stream into an output for presentation to a user. 35. The method of claim 34, wherein the first and second data streams carry multimedia content. 20 36. The method of claim 34 or claim 35, wherein combining comprises dynamically selecting a data unit from the first data stream for combining into the combined data stream based at least in part upon the relative signal reliability of the first data stream compared to the second data stream. 25 37. The method of any of preceding claims 34 to 36, wherein decoding comprises extracting soft decision information from each data stream to enable soft decision decoding. 38. The method of any of preceding claims 34 to 37, further comprising, at the 30 receiver, synchronizing the first and second data streams before combining the first and second data streams. 5520004-1 895587DI 18 39. The method of any of preceding claims 34 to 38, wherein the first transmission mode is point-to-multipoint. 5 40. The method of claim 39, wherein the second transmission mode is unicast. 41. The method of any of preceding claims 34 to 40, wherein the first radio access technology is time-division duplex. 10 42. The method of claim 41 , wherein the second radio access technology is frequency-division duplex. 43. A computer-readable medium comprising instructions for receiving content in first and second data streams, the instructions for causing performance of a method 15 comprising, at a receiver: receiving the first and second data streams in respective first and second transmission modes over respective first and second networks, wherein the first and second data streams carry the same content, and the first and second networks respectively employ first and second radio access technologies; 20 combining the first and second data streams at the application layer into a combined data stream; and decoding the combined data stream into an output for presentation to a user. 44. The computer-readable medium of claim 43, wherein the first and second data 25 streams carry multimedia content. 45. The computer-readable medium of claim 43 or claim 44, wherein combining comprises dynamically selecting a data unit from the first data stream for combining into the combined data stream based at least in part upon the relative signal reliability of the 30 first data stream compared to the second data stream. 5520004-1 895587DI 19 46. The computer-readable medium of any of preceding claims 43 to 45, wherein decoding comprises extracting soft decision information from each data stream to enable soft decision decoding. 5 47. The computer-readable medium of any of preceding claims 43 to 46, further comprising instructions for causing, at the receiver, synchronization of the first and second data streams before combining the first and second data streams. 48. The computer-readable medium of any of preceding claims 43 to 47, wherein the 10 first transmission mode is point-to-multipoint. 49. The computer-readable medium of claim 48, wherein the second transmission mode is unicast. 15 50. The computer-readable medium of any of preceding claims 43 to 49, wherein the first radio access technology is time -division duplex. 51. The computer-readable medium of claim 50, wherein the second radio access technology is frequency-division duplex. 20 52. A service centre for provisioning a service over different networks, the service being substantially as hereinbefore described with reference to the accompanying drawings. 25 53. A method for provisioning a service over different networks, the method being substantially as hereinbefore described with reference to the accompanying drawings. 5520004-1 895587DI 20 54. A wireless user equipment being substantially as hereinbefore described with reference to the accompanying drawings. 5 DATED this Fifteenth Day of August, 2011 IP Wireless, Inc. Patent Attorneys for the Applicant SPRUSON & FERGUSON 5520004-1 895587DI
AU2011213704A 2006-08-11 2011-08-16 Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes Abandoned AU2011213704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2011213704A AU2011213704A1 (en) 2006-08-11 2011-08-16 Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/502,928 2006-08-11
AU2007283554A AU2007283554B2 (en) 2006-08-11 2007-08-08 Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes
AU2011213704A AU2011213704A1 (en) 2006-08-11 2011-08-16 Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2007283554A Division AU2007283554B2 (en) 2006-08-11 2007-08-08 Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes

Publications (1)

Publication Number Publication Date
AU2011213704A1 true AU2011213704A1 (en) 2011-09-08

Family

ID=45439843

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011213704A Abandoned AU2011213704A1 (en) 2006-08-11 2011-08-16 Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes

Country Status (1)

Country Link
AU (1) AU2011213704A1 (en)

Similar Documents

Publication Publication Date Title
US8396472B2 (en) Providing multiple data streams by different networks for the same content
US11700544B2 (en) Communicating over multiple radio access technologies (RATs)
US20050152392A1 (en) Method and apparatus for converging broadcast service and multicast service a mobile communication system
AU2011213704A1 (en) Application-layer combining of multimedia streams delivered over multiple radio access networks and delivery modes

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application