AU2011202598B2 - Magnetic Vehicle Rack - Google Patents

Magnetic Vehicle Rack Download PDF

Info

Publication number
AU2011202598B2
AU2011202598B2 AU2011202598A AU2011202598A AU2011202598B2 AU 2011202598 B2 AU2011202598 B2 AU 2011202598B2 AU 2011202598 A AU2011202598 A AU 2011202598A AU 2011202598 A AU2011202598 A AU 2011202598A AU 2011202598 B2 AU2011202598 B2 AU 2011202598B2
Authority
AU
Australia
Prior art keywords
incurvate
spine
elongated body
vehicle
vehicle rack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2011202598A
Other versions
AU2011202598A1 (en
Inventor
Yevgeniy M. Gisin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of AU2011202598A1 publication Critical patent/AU2011202598A1/en
Application granted granted Critical
Publication of AU2011202598B2 publication Critical patent/AU2011202598B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

A magnetic vehicle rack having an elongated body constructed from a flexible polymeric material. The elongated body generally including an arciform cross sectional profile, an oblate top surface, a planar bottom surface having a one or more 5 permanent magnet(s) disposed flush with the bottom surface and an axially aligned aperture dimensioned to axially receive an incurvate spine therethrough. Positioning of the incurvate spine within the elongated body uniformly distributes static and dynamic loads throughout the magnetic vehicle rack. 46 & 35 " 35 35 10'

Description

AUSTRALIA PATENTS ACT 1990 Complete Patent Specification Magnetic Vehicle Rack The following statement is a full description of this invention, including the best method of performing the invention known to the applicant: 1 Magnetic Vehicle Rack CROSS-REFERENCE TO RELATED APPLICATIONS This application is a continuation in part of co-pending US patent application 5 12/794,726 filed 06/05/2010 to the instant inventor. The instant application takes priority from co-pending patent application 12/794,726 and is hereby incorporated by reference as if fully set forth herein. RELEVANT FIELD 10 This application is directed generally toward a vehicle rack and more specifically toward a magnetically coupled vehicle rack. BACKGROUND The reference to any prior art in the following discussion is not to be interpreted as 15 any admission, or evidence, that such prior art formed or forms part of the common general knowledge. Numerous types of vehicle racks for carrying surfboards, skis, snowboards, kayaks and other elongated objects are known in the relevant art. Each of these vehicle racks 20 has various advantages and disadvantages, including initial cost of the vehicle rack itself, the ease with which the vehicle rack can be mounted and removed from the vehicle, the relative ease with which the elongated object(s) can be secured in the vehicle rack, the number of elongated object(s) readily mounted therein, etc. In the past, a common type of vehicle rack included a pair of static vehicle rack assemblies 25 adapted to be secured across the vehicle, typically in a paired spaced relationship upon a vehicle rooftop. Each assembly typically included a lower elongated member and an upper elongated member attached to the lower member so as to form an inverted U shaped structure. The raised cross-sectional profile adds to aerodynamic resistance and allows aerodynamic forces to be generated on the undersides of the elongated 30 object(s) which requires additional structural integrity to ensure that the added 1 aerodynamic forces do not overcome the restraints used to anchor the elongated object(s) to the vehicle rack assemblies. In addition, metal frame based vehicle racks tend to be heavy, cumbersome to setup 5 and disassemble, require multiple parts, are subject to corrosion, particularly when exposed to saltwater environments and lastly are bulky to store. Accordingly, there is a need in the relevant art for a lightweight and low cost vehicle rack that is simple to setup, remove and store and avoids one or more of the undesirable properties of vehicle racks known in the relevant art. 10 SUMMARY In view of the foregoing, various exemplary embodiments of a magnetic vehicle rack are disclosed herein. The exemplary embodiments described provide a lightweight, easily installed and removed vehicle rack which is compact, offers reduced 15 aerodynamic resistance and is adaptable to a wide variety of vehicles without specialized parts. In an exemplary embodiment, the magnetic vehicle rack may include an elongated body constructed from a deformable polymeric material. The elongated body may include an arciform or wedge shaped cross-sectional profile, an oblate top surface and a planar bottom surface. The elongated body may be provided 20 with one or more axially aligned apertures dimensioned to receive an incurvate spine therethrough. The aperture facilitates insertion and axial positioning of an incurvate spine in a slidable and snug fit relationship. The incurvate shape of the incurvate spine and 25 dimensions of the aperture(s) within the elongated body further allows the incurvate spine to uniformly distribute static and dynamic forces arising from an elongated payload coupled with the oblate top surface throughout the elongated body. The elongated payload may be coupled with the magnetic vehicle rack using a plurality of restraints. 30 The magnetic vehicle rack may be removably coupled to the non-planar vehicle surface with a one or more permanent magnet(s) disposed along the bottom surface of 2 the elongated body, generally between proximal and distal ends of the elongated body. The one or more permanent magnet(s) cumulatively provides sufficient magnetic attractive force to allow the magnetic vehicle rack and elongated payload to remain coupled to the non-planar vehicle surface at vehicular speeds below a predetermined 5 vehicle speed, typically 100 miles per hour exclusive of head or cross winds. According to a first aspect of the present invention there is provided a vehicle rack comprising: a flexible elongated body having a proximal end, a distal end, an upper support 10 element, an aperture which axially spans a long dimension of the elongated body, and a magnetic base element adapted to conform the elongated body to an exterior surface of a vehicle by magnetic attraction; an incurvate spine formed from a generally rigid rod-like material, the incurvate spine dimensioned to span through a length of the aperture and protrude 15 from at least the proximal end of the elongated body; the aperture dimensioned to receive the incurvate spine in an axial rotational relationship within the elongated body such that a curvature of the incurvature spine is positioned in conformational alignment with the exterior surface of a vehicle when inserted therethrough; 20 a plurality of posts axially coupled directly with the incurvate spine for anchoring an elongated payload to the upper support element of the vehicle rack with one or more restraints coupled thereto. At least a pair of the plurality of posts may be disposed at contralateral positions 25 which allow the forces arising from a payload anchored to the magnetic vehicle rack to be resisted by an interaction between the body and the incurvate spine in such a way so that the applied force does not generate an axial rotation-causing moment around a centroidal axis of the incurvate spine. 30 3 According to a further aspect of the present invention there is provided a vehicle rack comprising: an elongated body formed primarily from a flexible polymeric material including, a length of the elongated body dimensioned to laterally span a substantial 5 portion of a exterior surface of a vehicle, a proximal end and a distal end; a magnetic base element having a generally planar bottom surface, the magnetic base element including one or more permanent magnets coupled in planar alignment with the bottom surface thereof, the one or more permanent magnets having sufficient magnetic attractive force to maintain the vehicle rack and elongated payload 10 anchored thereto magnetically coupled to the non-planar vehicle surface under both static and dynamic load conditions; an upper support element aligned generally in parallel with the magnetic base element and dimensioned to receive an elongated payload thereupon intermediate the proximal and distal ends; 15 an aperture spanning a long dimension of the elongated body intermediate the upper support and magnetic base elements, the aperture dimensioned to receive therethrough an incurvate spine in an axial rotational relationship within the elongated body such that a curvature of the incurvate spine is in conformational alignment with the exterior surface of the vehicle; 20 the incurvate spine formed from a generally rigid material and longitudinally dimensioned to extend through the aperture beyond the length of the elongated body; means for anchoring an elongated payload to the upper support element of the vehicle rack. 25 According to another aspect of the present invention there is provided a vehicle rack comprising: an elongated body constructed from a deformable polymeric material, the elongated body having a generally arciform cross-sectional profile, an oblate top surface and a planar bottom surface; 30 an aperture dimensioned to axially receive an incurvate spine in a slidable and snug fit relationship; 4 the incurvate spine configured to conform with a non-planar surface of a vehicle by coincident engagement with an internal structure maintained with the elongated body; one or more permanent magnets disposed along the bottom surface of the 5 elongated body having sufficient magnetic attractive force to conform the elongated body to the non-planar surface of the vehicle; a plurality of restraints adapted to anchor an elongated payload to the vehicle rack at symmetric contralateral positions in which an axial centerline of the incurvate spine converges with a centroidal axis of the incurvate spine. 10 According to a further aspect of the present invention there is provided a vehicle rack comprising: an elongate flexible base; magnetic material located along said base for attraction of the base to metal of 15 a vehicle; a force distribution member arranged to distribute force along the base; and fastening means coupled to the force distribution member for securing a payload. 20 BRIEF DESCRIPTION OF DRAWINGS The features and advantages of the various exemplary embodiments will become apparent from the following detailed description when considered in conjunction with the accompanying drawings. Where possible, the same reference numerals and 25 characters are used to denote like features, elements, components or portions of the inventive embodiments. It is intended that changes and modifications can be made to the described exemplary embodiments without departing from the true scope and spirit of the inventive embodiments as is defined by the claims. FIG. 1 - depicts a first transparent isometric view of a magnetic vehicle rack in 30 accordance with an exemplary embodiment. FIG.2A - depicts a first transparent side view of a magnetic vehicle rack in accordance with an exemplary embodiment. 5 FIG.2B - depicts a second transparent side view of a magnetic vehicle rack in accordance with an exemplary embodiment. FIG.2C - depicts a first end view of a magnetic vehicle rack in accordance with an exemplary embodiment. 5 FIG.2D - depicts a side view of an incurvate spine in accordance with an exemplary embodiment. FIG.3A - depicts a top transparent view of a magnetic vehicle rack in accordance with an exemplary embodiment. FIG.3B - depicts a first bottom view of a magnetic vehicle rack in accordance 10 with an exemplary embodiment. FIG.3C - depicts a second bottom view of a magnetic vehicle rack in accordance with an exemplary embodiment. FIG.4 - depicts a second transparent isometric view of a magnetic vehicle rack in accordance with an exemplary embodiment. 15 FIG.5 - depicts a third bottom view of a magnetic vehicle rack in accordance with an exemplary embodiment. FIG.6A - depicts a second end view of a magnetic vehicle rack in accordance with an exemplary embodiment. FIG.6B - depicts a third end view of a magnetic vehicle rack in accordance 20 with an exemplary embodiment. FIG.7 - depicts a front view of a post in accordance with an exemplary embodiment. FIG.8 - depicts a top view of a magnetic vehicle rack mounted on a vehicle in accordance with an exemplary embodiment. 25 DETAILED DESCRIPTION Various exemplary embodiments of a magnetic vehicle rack are disclosed herein. In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the present inventive embodiments. It will be 30 apparent, however, to one skilled in the art that the present inventive embodiments may be practiced without these specific details. In other instances, well-known 6 structures, devices or components may be shown in block diagram form in order to avoid unnecessarily obscuring the present inventive embodiments. Referring to FIG.1, a transparent isometric view of a magnetic vehicle rack 100 in 5 accordance with an exemplary embodiment is depicted. In this exemplary embodiment, the magnetic vehicle rack 100 includes an elongated body 5 dimensioned to substantially span a width of a common vehicle surface, for example, a hood, roof or trunk of an automobile. Typically, a length in a range of 30 - 36 inches should suffice. Other lengths, for example 15 - 32 inches may be provided to 10 accommodate other elongated payloads such as snow boards, skis, boogie boards and the like. The elongated body 5 may be constructed of a deformable polymeric material. The polymeric material selected for construction of the magnetic vehicle rack 100 should provide sufficient rigidity and strength to support an elongated payload, (e.g., surfboard, lumber, panels and the like) and also be sufficiently flexible 15 to allow temporary deformation to conform to an exterior ferromagnetic surface of a vehicle. Suitable polymers for construction of the elongated body 5 and related polymeric components include but are not limited to acrylonitrile butadiene styrene (ABS), polyvinyl chloride (PVC), neoprene, ethylene propylene-diene monomer (EPDM), nylon and/or other thermoplastics having sufficient plasticizer to allow the 20 temporary deformation with a preferred hardness in a range of Shore D70-D90. Preferably, the polymers selected for forming the elongated body 5 and related components 330, 330' (FIG.3A) include stabilization for ultraviolet light exposure. The elongated body 5 may be formed using common construction techniques including injection molding, extrusion and/or machining from a block, bar or rod. 25 The elongated body 5 includes an aperture 10 which axially spans a long dimension of the vehicle rack 100. The aperture 10 is dimensioned to receive an incurvate spine 15 which may extend beyond proximal and distal ends 40, 45 of the elongated body 5. The aperture 10 may be aligned to allow the incurvate spine 15 to be inserted with the 30 curved profile generally in parallel with a base element 30 of the elongated body 5. The base element 30 preferably including a width approximately 1.4 - 1.6 times greater than a width of an upper support element 25. The exact relationship of the 7 width of the base element 30 and upper support element 25 may be varied to accommodate other design objectives. To reduce wind resistance across the longitudinal dimension of the elongated body 5, a wedge or arciform shape is preferred. 5 In an exemplary embodiment, an interior wall 10' surrounding the aperture 10 forms coincident engagement element(s) 330 (FIG.3A) which allows static and dynamic loads to be uniformly distributed via the incurvate spine 15 among the one or more permanent magnets 35 when the incurvate spine 15 is axially positioned within the 10 aperture 10. The aperture 10 provides a slidable and snug fit for receiving the incurvate spine therethrough. The elongated body 5 may include a generally arciform or wedge shape cross-sectional profile 20. An upper support element 25 of the elongated body 5 may be provided with an oblate top surface 60 (FIG.2C) which allows an elongated payload to be supported thereupon. The arciform profile 20 15 minimizes aerodynamic resistance when a vehicle on which the magnetic vehicle rack 100 is mounted is in motion. In another exemplary embodiment, the elongated body 5 may be covered with a polymer foam coating 70 (FIG.2C) to reduce wear and tear on the elongated payload 810 (FIG.8) during transport. The polymer foam coating 70 preferably having firmness in a range of psi 9-15 (25% Deflection). 20 The elongated body 5 likewise minimizes aerodynamic lifting forces on an anchored payload 810 (FIG.8) which may otherwise occur when a void space is present between a vehicle rack and the curved surface of a vehicle as is commonly found in vehicle racks known in the relevant art. 25 A base element 30 of the elongated body 5 includes one or more permanent magnet(s) 35 disposed therewith. The one or more permanent magnet(s) 35 may be periodically disposed along the base element 30 of the elongated body 5 in either a regular or staggered pattern. The one or more permanent magnet(s) 35 may be incorporated into 30 the polymeric construction of the elongated body 5 at the time of formation or separately added thereafter. The cumulative magnetic attractive force generated by the one or more permanent magnet(s) 35 temporarily deforms the elongated body 5 into 8 conformational alignment with the exterior surface of a vehicle. Conformational alignment occurs when the base element 30 of the magnetic vehicle rack 100 is in a direct face-to-face relationship with a symmetrically curved surface of the vehicle such that void spaces between the vehicle rack 100 and the curved surface of the 5 vehicle are minimized. The one or more permanent magnet(s) 35 should cumulatively provide a magnetic pull strength which preferably exceeds 120 pounds. The magnetic strength of the one or more permanent magnet(s) 35 may be staggered to provide greater attractive forces 10 for the outer sets of permanent magnet(s) than those disposed approximately about the longitudinal center of the elongated body 5. The one or more permanent magnet(s) 35 cumulatively provide sufficient magnetic attractive force to maintain the magnetic vehicle rack 100 and payload 810 (FIG.8) anchored thereto to be magnetically coupled to the non-planar vehicle surface at least for vehicular speeds up to 100 miles per 15 hour, excluding cross or headwinds. In one exemplary embodiment, the bottom surfaces of the one or more permanent magnet(s) 35 may include a non-abrasive surface to prevent marring of the non-planar vehicle surface (not shown). In another exemplary embodiment, the one or more 20 permanent magnet(s) 35 may be formed from a unitary flexible sheet of magnet embedded polymeric material. For example, PlastalloyTM Flexible Magnets, available from The Electrodyne Company, Inc., 4188 Taylor Road, Batavia, OH 45103. The magnet embedded polymer should provide a magnetic attraction force in a range of 0.5 to 2.0 pounds per square inch. The base element 30 incorporating the embedded 25 magnetic material may be flared in a somewhat biconical arrangement at about the proximal 510 and distal ends 510, 530 (FIG.5) to provide greater magnetic attractive forces at the proximal and distal ends of the magnetic vehicle rack 100. In one exemplary embodiment, a length of the base element 30 is greater than a length of the elongated body 5. 30 In one exemplary embodiment, the one or more permanent magnet(s) 35 may be constructed from a rare earth, for example, neodymium or samarium based alloys. In 9 this exemplary embodiment, the shape of the one or more permanent magnet(s) 35 is generally elongated with at least one planar surface which allows maximum attractive force to be applied to a ferromagnetic surface of a vehicle. In all embodiments, the one or more permanent magnet(s) 35 include sufficient magnetic attractive forces to 5 deform the elongated body 5 to match a surface contour of a vehicle. Uniform load distribution through the elongated body 5 is accomplished by insertion and axial positioning of the incurvate spine 15 as is discussed below. In another exemplary embodiment, insertion of the incurvate spine 15 may be used to align the one or more permanent magnet(s) 35 into a proper orientation for mounting or dismounting of the 10 magnetic vehicle rack 100 onto or from a vehicle. Referring to FIGS.2A-2D, various side views and an end view of a magnetic vehicle rack 100 in accordance with an exemplary embodiment are depicted. In one exemplary embodiment, the incurvate spine 15 is shown extending beyond the 15 proximal and distal ends 40, 45 of the elongated body 5. The incurvate spine 15 is oriented such that the curved profile 215 (FIG.2D) is axially positioned within the aperture 10 and in contact with a wall 10'as depicted in the end view of a magnetic vehicle rack 100 of FIG.2C. In practice, the amount of deformation of the elongated body 5 is determined by the shape of the vehicle surface in which the magnetic vehicle 20 rack 100 is mounted. Axial positioning 205 of the incurvate spine 15 is intended to align the incurvate spin in conformation with the surface contour of the vehicle on which the magnetic vehicle rack 100 is mounted. The incurvate spine 15 when properly positioned within the 25 aperture 10 distributes lifting forces incident on a payload anchored to the magnetic vehicle rack 100 equally throughout the elongated body 5 and the one or more permanent magnet(s) 35. The incurvate spine 15 should have sufficient strength to transmit restraining forces to each of the one or more permanent magnet(s) 35 without substantial self deformation while remaining generally congruent with a surface 30 contour of the vehicle on which the magnetic vehicle rack 100 is mounted. Referring to FIG.2D, a side view of the incurvate spine 15 in accordance with an exemplary embodiment is depicted. In this exemplary embodiment, the incurvate 10 spine 15 includes an incurvate shape. In an exemplary embodiment, the ends of the incurvate spine 15 are symmetrically deflected in a range 0 of about 1.0 - 5.0 degrees from linear when measured from the center of the incurvate spine 15 to an end of the incurvate spine 15. The amount of curvature of the incurvate spine 15 allows the 5 vehicle rack 100 to conform with a wide range of symmetrically 5 curved vehicle surfaces. The incurvate spine 15 may be constructed from any suitable rigid material, preferably a non-ferromagnetic rod-like material and should have a length in a range of 5 - 15% greater than the length of the elongated body 5. The incurvate spine 15 may be either a solid cylindrical rod or hollow tube having sufficient strength to 10 transmit static and dynamic forces throughout the magnetic vehicle rack 100 via contact with at least the 10' wall surrounding the aperture without substantial bending or flexing. Suitable construction materials for the incurvate spine 15 include but are not limited 15 to fiberglass, aluminum alloys, carbon fiber and austenitic stainless steel. In one exemplary embodiment, contralateral attachment positions 220, 225 for coupling of restraints 305 (FIG.3A) are provided at locations where a longitudinal centerline axis 210 (dotted line) of the incurvate spine 15 converges with a longitudinal centroidal axis (dashed line) 215 of the incurvate spine 15. Coupling of restraints at these 20 locations 220, 225 ensures that static and dynamic forces arising from a payload anchored to the magnetic vehicle rack 100 are uniformly distributed through the elongated body 5 (FIG.2A) and among the one or more permanent magnet(s) 35 without generating an axial rotation-causing moment which would act to move the incurvate spine out of alignment with the elongated body 5 and potentially dislodge 25 the magnetic vehicle rack 100 from the vehicle. While being inserted into conformational alignment and/or congruence with a vehicle's surface contour, the incurvate spine 15 is rotated into a downward facing arc relative to a contact surface of the vehicle by the magnetic attractive force generated 30 by the one or more permanent magnets 35. The arced position prevents axial rotation by the incurvate spine 15 and may assist in maintaining the magnetic base element in conformational alignment with the vehicle's surface. In an exemplary embodiment, a 11 locking mechanism may used to lock the incurvate spine 15 within the elongated body 5 (not shown). By way of example and not limitation, a locking mechanism may include a star-patterned plug on a portion of the incurvate spine 15 with a counterpart star-patterned socket included in a portion of the elongated body 5, insertion of a 5 locking pin which traverses portions of both the elongated body 5 and incurvate spine 15 and/or a clamping mechanism which is engaged by the user when the incurvate spine 15 is properly aligned within the aperture(s) 10. A lock tab extending from a side of the incurvate spine 15 may also be provided to prevent unauthorized removal of the magnetic vehicle rack 100 from the vehicle (not shown.) Alternately, a C-clip or 10 Cotter pin may be provided at about the distal end of the incurvate spine 15 (not shown) in order to prevent the incurvate spine 15 from becoming dislodged from the aperture 15. In one exemplary embodiment, the contralateral attachment positions 220, 225 are 15 symmetrically at about 21% and about 79% of the length of the incurvate spine 15 (FIG.2D). One skilled in the art will appreciate that alternate mechanisms to uniformly distribute forces among the elongated body 5 (FIG.2A) and the one or more permanent magnet(s) 35 (FIG.2A) may be employed as well. In another exemplary embodiment, the contralateral attachment positions 220, 225 are disposed through the 20 upper support element 25 of the elongated body 5 (FIGS.7A, 7B.) Referring to FIG.3A, a top view of the magnetic vehicle rack 100 in accordance with an exemplary embodiment is depicted. In this exemplary embodiment, the elongated body 5 of the magnetic vehicle rack 100 is provided with restraints 305, 305' to 25 anchor a payload 810 (FIG.8) in contact with the rack's upper support element 25. The restraints 305, 305' may be of any convenient type including straps, elastic bands, cables, and/or rope. The restraints 305, 305' may include a locking means 310, 310' including but not limited to buckles and/or hooks, hook/loop fasteners, mechanical fasteners or may simply be hand tied in a knot (not shown) to anchor the payload with 30 the vehicle rack 100. The proximal end of the incurvate spine 15 should extend a sufficient amount beyond the proximate end 40 of the elongated body 5 to allow for grasping and/or manipulation by a user. In an exemplary embodiment a grasping cap 12 55 is provided over the incurvate spine 15 to allow for greater control when manipulating the incurvate spine 15. The restraints 305, 305' may be coupled with posts 330, 330' disposed at the 5 contralateral attachment positions 220, 225 (FIG.2B) and/or other contralateral positions along a longitudinal axis of the elongated body 5 or incurvate spine 15. The posts 330, 330' are directly coupled with the incurvate spine 15 and not the upper support element 25 for proper static and dynamic load distribution throughout the elongated body 5 and one or more permanent magnets 35. 10 Referring to FIG.3B-3C, first and second bottom views of a magnetic vehicle rack 100 in accordance with an exemplary embodiment is depicted. In this exemplary embodiment, the base element 30 of the elongated body 5 is shown having a generally planar surface. The one or more permanent magnet(s) 35 are shown periodically 15 distributed or staggered as illustrated in FIG.3C across the base element 30 to provide greater magnetic attractive forces at the proximal and distal 40, 45 ends of the elongated body 5. One skilled in the art will appreciate that the one or more permanent magnet(s) 35 may be distributed so as to maximize attractive forces with a vehicle surface at locations receiving the greatest lifting forces during vehicular 20 motion. In one exemplary embodiment, the one or more permanent magnet(s) 35 are mounted flush with the base element 30 of the elongated body 5 so as to ensure minimal aerodynamic forces are exerted on the magnetic vehicle rack 100 and/or elongated 25 payload 810 (FIG.8) anchored thereto. As previously discussed, the one or more permanent magnet(s) 35 may be bound to the elongated body 5 during formation of the elongated body 5 or bonded afterward thereto using epoxy or other types of adhesives. In one exemplary embodiment, the one or more permanent magnet(s) 35 are oriented so as to minimize attractive (opposite) polarities. 30 Referring to FIGS.4-5, an isometric and a bottom view of a magnetic vehicle rack 100 in accordance with an exemplary embodiment is depicted. In this exemplary 13 embodiment, the elongated body 5 is formed from a generally C-shaped polymer. An exterior surface of the elongated body 5 may include a polymeric foam covering 70 for cushioning of an elongated payload 810 (FIG.8) during transport. In an exemplary embodiment, the polymeric foam covering 70 is provided at least upon an oblate top 5 surface 60 of the elongated body 5. In this exemplary embodiment, the oblate top surface 60 forms an upper support element 25. A pair of posts 330, 330' extend generally perpendicularly through slots 425, 425' provided in the upper support element 25 and foam 70 covering. The posts 330, 330' provide symmetric contralateral attachment points 220, 225 (FIG.2D) for the restraints 305 (FIG.3A). 10 The posts 330, 330' also perform the function of coincident engagement element(s) 330, 330' (FIG.3A) which positions the incurvate spine 15 into a geometry which maintains the elongated body 5 in conformational alignment with a vehicle surface as discussed with respect to FIG.6A below. The elongated body 5 is coupled at its base 15 with a thin mild steel plate 420 dimensioned to surround a footprint formed by the elongated body 5. The steel plate 420 may be coupled to the elongated body 5 by bonding with an adhesive or a tab and slot arrangement as is shown and discussed with respect to FIG.6B below. 20 A unitary flexible sheet of polymeric material embedded with permanent magnetic material coupled to an underside face of the mild steel plate 420 forms a magnetic base element 30 which is used to magnetically couple the magnetic vehicle rack 100 to an exterior surface of a vehicle. The one or more permanent magnets 35 are incorporated within the magnetic base element 30. The mild steel plate 420 is 25 intended to improve magnetic permeability and coupling with the ferromagnetic surface of the vehicle. The proximal 510 and distal ends 530 of the magnetic base element 30 may be provided in a general biconical 510, 520, 530 relationships which provide greater magnetic surface area at the proximal 40 and distal ends 45 of the elongated body 5. The increased magnetic surface area provided by the biconical 30 shape improves magnetic coupling of the magnetic vehicle rack 100 to the exterior surface of the vehicle. One skilled in the art will appreciate that other shapes and/or 14 increasing the length of the magnetic base element 30 may be implemented to increase the magnetic attractive force as required to meet a particular design objective. Referring to FIG.6A, a proximal end view of the magnetic vehicle rack 100 in 5 accordance with an exemplary embodiment is depicted. In this exemplary embodiment, the proximal end of the magnetic vehicle rack 100 is shown with the grip cap 55 installed on an end of the incurvate spine 15. The incurvate spine is rotationally 600 positioned within the aperture 10 of the elongated body 5 and utilizes an aperture 710 (FIG.7) provided in the post 330 as a routing guide during insertion or 10 removal. During manipulation of the incurvate spine 15, a user may push, pull and/or axially rotate the incurvate spine 15 with the grip cap 55. The incurvate spine 15 includes a diameter sufficient to provide a slidable yet snug fit within the aperture 10. A wall 10' surrounding the aperture 10 provides an axial contact surface with the incurvate spine 15 to allow for uniform static and dynamic load transfers throughout 15 the elongated body 5 and magnetic base element 30. A polymeric spacer 625 may be provided to radially position the incurvate spine 15 to allow a sufficient amount of clearance for user to manipulate the grasping cap 55. Referring to FIG.6B, a distal end view of the magnetic vehicle rack 100 in accordance 20 with an exemplary embodiment is depicted. In this exemplary embodiment, the distal end of the magnetic vehicle rack 100 is positioned within the aperture of the elongated body 5 and likewise utilizes an aperture 710 (FIG.7) provided in a second post 330' as a routing guide during insertion or removal. The curvature of the incurvate spine 15 is generally symmetrical which disposes the ends of the incurvate spine 15 at 25 complementary positions at opposite ends of the elongated body 5. As mentioned above, the elongated body 5 may be coupled to the mild steel plate 420 using a slot and tab arrangement. The elongated body 5 includes opposing lateral base tabs 610, 610' which are affirmatively engaged with opposing interior slots 615, 615' 30 formed into the mild steel plate 420. Perpendicular stops 605, 605' are also formed into the mild steel plate 420 which prevents the opposing lateral base tabs 610, 610' from being displaced from the opposing interior slots 615, 615'. In effect, the 15 opposing interior slots 615, 615' and perpendicular stops 605, 605' form parallel channels in which the opposing lateral base tabs 610, 610' of the elongated body 5 are affirmatively coupled to the magnetic base element 30. To ensure that the elongated body 5 remains affirmatively coupled to the magnetic base element 30, an adhesive 5 should be used to bond the opposing lateral base tabs 610, 610' to a top face of the mild steel plate 420 and directly with permanent magnet(s) 35 coupled to the underside face of the mild steel plate 420. Referring to FIG.7, a frontal view of a post 330, 330' in accordance with an 10 exemplary embodiment is depicted. In this exemplary embodiment, the post 330, 330' is formed from any of the previously discussed suitable polymeric materials. The post 330, 330' includes a generally quadrilateral frontal profile with contralateral bulbous sections 720, 720' formed into the lower side portions of the posts 330, 330'. The contralateral bulbous side sections 720, 720'are dimensioned to provide interference 15 fits through the slots 425, 425' (FIG.4) formed into the upper support element 25. Once inserted through the slots 425, 425' (FIG.4), the posts 330, 330' remain within the aperture 10 of the elongated body 5 with the main aperture 710 axially aligned to receive the incurvate spine 15 therethrough. Contralateral upper side portions 715, 715' are generally aligned in parallel. 20 A width of the contralateral upper side portions 715, 715' is slightly less than long dimensions of the slots 425, 425' (FIG.4), allowing for minimal movement of the posts 330, 330' once the incurvate spine 15 is inserted through the main aperture 710. The posts 330, 330' include a second aperture 730 dimensioned to receive a restraint 25 305, 305' (FIG.4) therethrough for example, a strap. The main aperture 710 includes a general omegoid shape and is dimensioned to receive the incurvate spine 15 therethrough in a sliding and snug fit rotational relationship. A wall 725 surrounding the main aperture 710 may be reinforced with a partial metal ring 730 which prevents opening at the base of the omegoid shape under load. The metal reinforcement ring 30 730 may be constructed from chromoly steel or another high tensile strength metal. The overall dimension of the posts 330, 330' are not critical. However, care should be 16 exercised to minimize the extent in which the post 330, 330' may interfere with anchoring the elongated payload 810 (FIG.8) directly to the upper support element 25. Referring to FIG.8, a top view of the magnetic vehicle rack 100 installed on a vehicle 5 800 in accordance with an exemplary embodiment is depicted. In this exemplary embodiment, a pair of magnetic vehicle racks 100 is shown laterally coupled to a roof 805 of the vehicle 800. An elongated payload 810 (e.g., surfboard) is anchored to the magnetic vehicle racks 100 with restraints 305, 305'. In this exemplary embodiment, the restraints 305, 305' are retained against the elongated payload 810 with buckles 10 310, 310'. Each magnetic vehicle rack 100 is magnetically mounted to the roof 805 of the vehicle 800 as described below. A magnetic vehicle rack 100 is typically placed on a non-planar vehicle surface (e.g., roof) 805 and laterally aligned with respect to a long dimension of the vehicle 800. 15 The one or more permanent magnet(s) 35 are attracted to the ferromagnetic construction of the vehicle's roof 805 causing the magnetic vehicle rack 100 to conform to the contour of the vehicle's roof 805. The user may adjust the position of the magnetic vehicle rack 100 by sequentially lifting a section(s) of the magnetic vehicle rack 100 and repositioning as is necessary to allow the magnetic vehicle rack 20 100 to conform to the contour of the vehicle's roof 805. Once the magnetic vehicle rack 100 is properly positioned, the incurvate spine 15 (FIG.1) is inserted into the aperture(s) 10 (FIG.1) typically with the curved profile remaining generally in parallel to the vehicle's roof 805. Once the incurvate spine is 25 fully inserted into the aperture(s) 10 (FIG.1), the incurvate spine remains axially positioned in conformational alignment with the curved surface of the vehicle's roof 805. In this exemplary embodiment, the curved surface of the vehicle 800 is the vehicle's roof 805. This procedure may then be repeated for a second magnetic vehicle rack 100 which is placed in a spaced parallel relationship with the first 30 mounted magnetic vehicle rack 100 on the vehicle's roof 805. 17 The elongated payload (surfboard 810) is then placed upon the magnetic vehicle racks 100 and anchored thereto with the restraints 305, 305' and attachment means 310, 310'. The procedure is easily reversed to remove the magnetic vehicle racks 100 from the vehicle's roof 805. It is important to note that the magnetic vehicle racks 100 5 cannot be easily removed from the vehicle's roof 805 until the incurvate spine(s) 15 are removed from the elongated body(s) 5 of the vehicle racks 100. Once the incurvate spine(s) 15 are removed, the deformable polymeric material from which the magnetic vehicle racks 100 are constructed provides sufficient flexibility to sequentially remove each section containing a permanent magnet 35 from the vehicle's roof 805. In 10 embodiments where a unitary permanent magnet is employed, the elongated body 5 may be successively pulled away from the surface of the vehicle 800 until removal is completed. The various exemplary inventive embodiments described herein are intended to be 15 merely illustrative of the principles underlying the inventive concept. It is therefore contemplated that various modifications of the disclosed embodiments will without departing from the inventive spirit and scope be apparent to persons of ordinary skill in the art. They are not intended to limit the various exemplary inventive embodiments to any precise form described. In particular, it is contemplated that the 20 magnetic vehicle rack may be constructed from any suitable material with different dimensions and/or cross-sectional profiles. No specific limitation is intended to a particular construction material(s), assembly order, shape or sequence described. Other variations and inventive embodiments are possible in light of the above teachings, and it is not intended that the inventive scope be limited by this 25 specification, but rather by the Claims following herein. Throughout this specification, the term "comprising" and its grammatical equivalents shall be taken to have an inclusive meaning, unless the context of use clearly indicates otherwise. 30 18

Claims (20)

1. A vehicle rack comprising: 5 a flexible elongated body having a proximal end, a distal end, an upper support element, an aperture which axially spans a long dimension of the elongated body, and a magnetic base element adapted to conform the elongated body to an exterior surface of a vehicle by magnetic attraction; an incurvate spine formed from a generally rigid rod-like material, the 10 incurvate spine dimensioned to span through a length of the aperture and protrude from at least the proximal end of the elongated body; the aperture dimensioned to receive the incurvate spine in an axial rotational relationship within the elongated body such that a curvature of the incurvate spine is positioned in conformational alignment with the exterior surface of a vehicle when 15 inserted therethrough; a plurality of posts axially coupled directly with the incurvate spine for anchoring an elongated payload to the upper support element of the vehicle rack with one or more restraints coupled thereto. 20
2. The vehicle rack of Claim 1 or Claim 2, wherein each of the plurality of posts is aligned in a plane generally perpendicular to a long dimension of the upper support element.
3. The vehicle rack of any one of the preceding claims, wherein each of the 25 plurality of posts includes an aperture dimensioned to axially receive the incurvate spine therethrough, each aperture dimensioned to allow axial rotation of the incurvate spine therein.
4. The vehicle rack of any one of the preceding claims, wherein at least a pair of 30 the plurality of posts are disposed at about 21% and 79% of a length of the incurvate spine. 19
5. The vehicle rack of any one of the preceding claims, wherein the incurvate spine axially protrudes a predetermined length from the proximal end of the elongated body sufficient for grasping by a user. 5
6. The vehicle rack of any one of the preceding claims, wherein at least the upper support element includes an exterior polymeric foam coating in contact therewith.
7. The vehicle rack of any one of the preceding claims, wherein the magnetic base element is formed with a unitary sheet of flexible permanent magnet material. 10
8. The vehicle rack of any one of the preceding claims, wherein the magnetic base element is formed with a plurality of permanent magnets embedded in a flexible polymeric material. 15
9. The vehicle rack of any one of the preceding claims, wherein the flexible elongated body includes a generally arciform cross sectional profile with an oblate top surface forming the upper support element and a planar bottom surface forming the magnetic base element. 20
10. The vehicle rack of any one of the preceding claims, wherein each of the plurality of posts includes means for preventing displacement from the aperture of the elongated body.
11. A vehicle rack comprising: 25 an elongated body formed primarily from a flexible polymeric material including, a length of the elongated body dimensioned to laterally span a substantial portion of a exterior surface of a vehicle, a proximal end and a distal end; a magnetic base element having a generally planar bottom surface, the magnetic base element including one or more permanent magnets coupled in planar 30 alignment with the bottom surface thereof, the one or more permanent magnets having sufficient magnetic attractive force to maintain the vehicle rack and elongated payload 20 anchored thereto magnetically coupled to the non-planar vehicle surface under both static and dynamic load conditions; an upper support element aligned generally in parallel with the magnetic base element and dimensioned to receive an elongated payload thereupon intermediate the 5 proximal and distal ends; an aperture spanning a long dimension of the elongated body intermediate the upper support and magnetic base elements, the aperture dimensioned to receive therethrough an incurvate spine in an axial rotational relationship within the elongated body such that a curvature of the incurvate spine is in conformational alignment with 10 the exterior surface of the vehicle; the incurvate spine formed from a generally rigid material and longitudinally dimensioned to extend through the aperture beyond the length of the elongated body; means for anchoring an elongated payload to the upper support element of the vehicle rack. 15
12. The vehicle rack of Claim 11 wherein the incurvate spine is configured to uniformly transfer static and dynamic loads throughout the elongated body and magnetic base element at least by direct axial contact with a wall of the aperture. 20
13. The vehicle rack of claim 11 or claim 12, wherein the means for anchoring an elongated payload to the upper support element of the vehicle rack comprises a plurality of posts aligned in a plane generally perpendicular to a long axis of the elongated body and directly coupled with the incurvate spine. 25
14. The vehicle rack of any one of the preceding claims, wherein the elongated body further includes an arciform cross-sectional profile with the greatest width forming the magnetic base element.
15. The vehicle rack of claim 13 wherein the posts are disposed at symmetric 30 contralateral positions in which an axial centerline of the incurvate spine converges with a centroidal axis of the incurvate spine. 21
16. The vehicle rack of any one of claims 11 to 15, wherein the elongated payload is a surfboard.
17. A vehicle rack comprising: 5 an elongated body constructed from a deformable polymeric material, the elongated body having a generally arciform cross-sectional profile, an oblate top surface and a planar bottom surface; an aperture dimensioned to axially receive an incurvate spine in a slidable and snug fit relationship; 10 an incurvate spine configured to conform with a non-planar surface of a vehicle by coincident engagement with an internal structure maintained with the elongated body; one or more permanent magnets disposed along the bottom surface of the elongated body having sufficient magnetic attractive force to conform the elongated 15 body to the non-planar surface of the vehicle; a plurality of restraints adapted to anchor an elongated payload to the vehicle rack at symmetric contralateral positions in which an axial centerline of the incurvate spine converges with a centroidal axis of the incurvate spine. 20
18. The vehicle rack of Claim 17 wherein the incurvate spine is a non ferromagnetic rigid rod or a tube.
19. The vehicle rack of claim 17 or claim 18, wherein a long dimension of the incurvate spine is dimensioned to coincidentally align within the aperture with the 25 bottom surface of the elongated body in a face-to-face relationship with a symmetrically curved vehicle surface.
20. The vehicle rack of Claim any one of claims 17 to 19, wherein a width of the planar bottom surface is approximately 1.3 - 2.0 times wider than a width of the oblate 30 top surface. 22
AU2011202598A 2010-06-05 2011-06-02 Magnetic Vehicle Rack Ceased AU2011202598B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US79472610A 2010-06-05 2010-06-05
US12/794,726 2010-06-05

Publications (2)

Publication Number Publication Date
AU2011202598A1 AU2011202598A1 (en) 2011-12-22
AU2011202598B2 true AU2011202598B2 (en) 2015-11-26

Family

ID=45442558

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2011202598A Ceased AU2011202598B2 (en) 2010-06-05 2011-06-02 Magnetic Vehicle Rack

Country Status (1)

Country Link
AU (1) AU2011202598B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245764A (en) * 1979-03-29 1981-01-20 Four Star Corporation Article carrier having variably positionable cross-rail bracket
US5067644A (en) * 1990-09-21 1991-11-26 Coleman Robert A Rack protective device
US5312030A (en) * 1993-04-27 1994-05-17 Fapa S.P.A. Magnetically attached roof rack for a motor vehicle
US20070181622A1 (en) * 2006-02-07 2007-08-09 Mark Rocchio Carrying rack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245764A (en) * 1979-03-29 1981-01-20 Four Star Corporation Article carrier having variably positionable cross-rail bracket
US5067644A (en) * 1990-09-21 1991-11-26 Coleman Robert A Rack protective device
US5312030A (en) * 1993-04-27 1994-05-17 Fapa S.P.A. Magnetically attached roof rack for a motor vehicle
US20070181622A1 (en) * 2006-02-07 2007-08-09 Mark Rocchio Carrying rack

Also Published As

Publication number Publication date
AU2011202598A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US8561864B2 (en) Magnetic vehicle rack
US5351367A (en) Line tensioner
US20070130734A1 (en) Hook
US7789360B2 (en) Constant tension pole mount bracket
US5515656A (en) Portable anchorage and fastener
US20070181622A1 (en) Carrying rack
US7464443B2 (en) Device for quick fastening and tension adjustment of multiple cord configurations
US6471454B1 (en) Device for provisionally connecting a fastening strap to an anchor point
CN1261039A (en) Bounding system
US20140007389A1 (en) Adjustable flexible cargo strap
US20220362614A1 (en) Strap connection systems, quick connectors, and related systems and methods
NZ516323A (en) Tie down device and method of use
AU2011202598B2 (en) Magnetic Vehicle Rack
US7219398B1 (en) Flexible loop bungee cord terminus
US20100156165A1 (en) Seat tightening mechanism for child safety seat
US20210114528A1 (en) Vehicle roof rack system
WO1999054168A1 (en) Roof rack or load carrier
WO2019144210A1 (en) Adjustable apparatus for securing an article
US5628440A (en) Bicycle carrier
EP1893445A1 (en) Load carrier foot for fastening of a load carrier
FI58093C (en) ANORDNING VID GRIPBYGLAR FOER HJUL PAO FORDON
US20120234997A1 (en) Crossarm bracket
US6195846B1 (en) Fastener having a block with cradle and method
CA3112112A1 (en) Adjustable locking mechanism
US20100127026A1 (en) Lockdown soft roofrack

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired