AU2010363287A1 - Flat panel display remote-controlled viewing angle adjustment system - Google Patents

Flat panel display remote-controlled viewing angle adjustment system Download PDF

Info

Publication number
AU2010363287A1
AU2010363287A1 AU2010363287A AU2010363287A AU2010363287A1 AU 2010363287 A1 AU2010363287 A1 AU 2010363287A1 AU 2010363287 A AU2010363287 A AU 2010363287A AU 2010363287 A AU2010363287 A AU 2010363287A AU 2010363287 A1 AU2010363287 A1 AU 2010363287A1
Authority
AU
Australia
Prior art keywords
panel member
support panel
display
support
driving mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2010363287A
Inventor
Jin Fang
Andrew H. Lew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of AU2010363287A1 publication Critical patent/AU2010363287A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/64Constructional details of receivers, e.g. cabinets or dust covers
    • H04N5/655Construction or mounting of chassis, e.g. for varying the elevation of the tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/08Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a vertical axis, e.g. panoramic heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon Stands for scientific apparatus such as gravitational force meters
    • F16M11/20Undercarriages with or without wheels
    • F16M11/2007Undercarriages with or without wheels comprising means allowing pivoting adjustment
    • F16M11/2014Undercarriages with or without wheels comprising means allowing pivoting adjustment around a vertical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle

Abstract

A flat panel display remote-controlled viewing angle adjustment system (1 ) comprising a support assembly (2) for supporting a flat panel display (9), an electrical driving assembly for driving the support assembly (2), and an angular control assembly attached to the support assembly (2). The adjustable system (1) is configured such that when the electrical driving assembly is started, the flat panel display (9) is rotated about a vertical axis that passes through one of the left side and the right side of the flat panel display (9) and only when the flat panel display (9) returns to zero angle position can it rotate about a vertical axis that passes through the other of the left side and the right side of the flat panel display (9).

Description

WO 2012/056260 PCT/IB2010/002721 Flat Panel Display Remote-Controlled Viewing Angle Adjustment System Technical Field [0001] The present invention generally relates to a flat panel display remote-controlled viewing angle adjustment system, and more particularly to such a device for which the viewing angle of the flat panel display can be remotely adjusted. Background of Invention [0002] Flat panel displays, such as LCD and plasma television, have become increasingly popular and now almost dominate the market which used to belong to traditional CRT. Because flat panel displays are thin in profile, they are often mounted on walls, brackets, or other vertical flat surfaces in order to save space. For a better viewing angle, flat panel displays are often mounted on a support device which can be rotated to a desired angle. Numerous patents directed to mounting devices allow the viewing angle to be adjusted can be found. [0003] US 7,296,774 (Sung I. Oh) is directed to a viewing angle adjustment system, which provides a support arm to couple a monitor to a surface such as a wall or ceiling to remotely adjust the viewing angle of the monitor. The support arm includes at least one motor along a pivot axis in the support arm. The motor can be activated by a processor that receives the control signal provided by a remote control. The support arm may include a plurality of pivot axes with a motor mounted on each of the pivot axes to adjust the viewing angle with respect to the vertical and horizontal planes. [0004] US 2007/0125917A1 (Sung I Oh et al.) is directed to a motorized mount system for repositioning a monitor capable of extending a monitor from a reference plane, and tilting and swiveling the monitor in reference to X, Y, and Z axes. The motorized mount system includes a first pair of arms between a base plate and an adapter plate. The base plate is adapted to attach to a wall and the adapter plate is adapted to attach to a back side of the monitor. The first pair of arms includes two pivoting arms which are symmetrical with respect to each other. The proximal ends of the two pivoting arms are pivotally coupled to - 1 OAMAICIDluATnkI PADV WO 2012/056260 PCT/IB2010/002721 the base plate and the distal ends of the two pivoting arms are pivotally coupled to the adapter plate. At least one of the proximal ends of the first pair of arms can be engaged with a motor to rotate the distal end about its axis, which in turn extends or retracts the distal ends of the first pair of arms. Another motor can be coupled to the distal end of the first pair of arms to swivel the monitor side to side. Yet another motor can be coupled to the distal end of the first pair of arms to tilt the monitor up and down. [0005] It is noted that the mechanisms shown in the above patents are generally in the form of links or arms. The links or arms have the advantage of structural simplicity, but are weak or too large when they are used to support an object having substantial weight, particularly if they are required to be rotatable. Furthermore, as the display panel gets larger and heavier, the structure of a support device formed of links or arms can be too weak to safely support it. [0006] Furthermore, when the angle of a display is adjusted, the center of gravity of the device as disclosed above will be displaced away from the wall or the surface where the device/display is mounted, and the displacement will impose additional stress on the support device, especially in translational movement, further aggravating the problem of structural weakness of the support device. [0007] US 7,648,112 is directed to a flat panel display mounting device for securing a flat panel display to a support surface. The flat panel display mounting device comprises a plurality of members in the form of support panels pivotally connected together and a rotation control mechanism connected thereto so that the flat panel display mounted on the device can be rotated to a desired angle and the center of gravity of the flat panel display during rotation can be maintained as close to the support surface as possible, so as not to generate additional stress to the flat panel display mounting device. The inventors of the present invention, Jin Fang and Andrew H. Lew, are co-assignees of US 7,648,112, which is incorporated herein by reference. The mechanism of the mounting device disclosed in US 7,648,112 is applied to the present invention with some components added therein to electrically drive and control the mechanism. Summary of the Invention [0008] One object of the present invention is to provide a flat panel display -2- WO 2012/056260 PCT/IB2010/002721 remote-controlled viewing angle adjustment system that can overcome the weakness in the structure inherent to most support devices for flat panel displays in which links or arms are used. [0009] Another object of the present invention is to provide a flat panel display remote-controlled viewing angle adjustment system that is motor driven such that the flat panel display remote-controlled viewing angle adjustment system can be operated automatically. [0010] Another object of the present invention is to provide a flat panel display remote-controlled viewing angle adjustment system which is remotely controlled such that a user can easily adjust the viewing angle of the flat display panel. [0011] In one aspect, the present invention is directed to a flat panel display remote-controlled viewing angle adjustment system comprising a support assembly for supporting a flat panel display having six rigid and rectangular panels connected by hinges, an electrical driving assembly for driving the support assembly arranged at the support assembly, and an angular control assembly having two electric stoppers attached to the support assembly. In one embodiment, the electric stoppers are electrically connected with the electrical driving assembly. [0012] In another aspect, the present invention is directed to a flat panel display remote-controlled viewing angle adjustment system comprising a support assembly for supporting a flat panel display having six rigid and rectangular panels connected by hinges, an electrical driving assembly for driving the support assembly arranged at the support assembly, and a angular control assembly which is a rotation control mechanism attached to the support assembly. [0013] In a further aspect, the present invention is directed to a flat panel display remote-controlled viewing angle adjustment system comprising a support assembly for supporting a flat panel display having four rigid and rectangular panels connected by hinges, an electrical driving assembly for driving the support assembly arranged at the support assembly, and an angular control assembly which is a rotation control mechanism attached to the support assembly. -3- WO 2012/056260 PCT/IB2010/002721 Brief Description of the Drawings [0014] Fig. I shows a first embodiment of the flat panel display remote-controlled viewing angle adjustment system of the present invention. [0015] Figs. 2A-2D show an operating process of the first embodiment of the present invention. [0016] Figs. 3A-3D show another operating process of the first embodiment of the present invention. [0017] Fig. 4 shows a second embodiment of the flat panel display remote-controlled viewing angle adjustment system of the present invention. [0018] Figs. 5A-5D show an operating process of the second embodiment of the present invention. [0019] Figs. 6A-6D show another operating process of the second embodiment of the present invention. [0020] Fig. 7 shows a third embodiment of the flat panel display remote-controlled viewing angle adjustment system of the present invention. [0021] Figs. 8A-8D show an operating process of the third embodiment of the present invention. [0022] Figs. 9A-9D show another operating process of the third embodiment of the present invention. [0023] Fig. 10 shows a fourth embodiment of the flat panel display remote-controlled viewing angle adjustment system of the present invention. -4- WO 2012/056260 PCT/IB2010/002721 [0024] Figs. I IA-Il D show an operating process of the fourth embodiment of the present invention. [0025] Figs. 12A-12D show another operating process of the fourth embodiment of the present invention. [0026] Fig. 13 shows a fifth embodiment of the flat panel display remote-controlled viewing angle adjustment system of the present invention. [0027] Figs. 14A-14D show an operating process of the fifth embodiment of the present invention. [0028] Figs. 15A-15D show another operating process of the fifth embodiment of the present invention. Detailed Description of the Invention [0029] Fig. I and Figs. 2A-2D show a first embodiment of the flat panel display remote-controlled viewing angle adjustment system 1. The system I comprises a support assembly 2, which further comprises a base support panel member 21, a display support panel member 23, a first support panel member 233, a second support panel member 213, a third support panel member 231, and a fourth support panel member 211. The base support panel member 21 can be fixed to a support or on a wall and the display support panel member 23 is to support a flat panel display 9. The right edge of the base support panel member 21 is pivotally connected to the left edge of the second support panel member 213 and the left edge of the base support panel member 21 is pivotally connected to the right edge of the fourth support panel member 211. The right edge of the display support panel member 23 is pivotally connected to the left edge of the first support panel member 233 and the left edge of the display support panel member 23 is pivotally connected to the right edge of the third support panel member 231. Moreover, the left edge of the third support panel member 231 is pivotally connected to the left edge of the fourth support panel member 211 and the right edge of the first support panel member 233 is pivotally connected to the right edge of the second support panel member 213. -5- WO 2012/056260 PCT/IB2010/002721 [0030] A first driving mechanism 25 is arranged substantially at the pivot joint of the base support panel member 21 and the second support panel member 213. The first driving mechanism 25 comprises a motor 251 and a gear box 255 for reducing the speed of the motor 251. When the motor 251 is started, the first driving mechanism 25 will drive the second support panel member 213 to rotate about the pivot joint of the second support panel member 213 and the base support panel member 21. A first control unit 27 is arranged substantially at the pivot joint of the base support panel member 21 and the second support panel member 213 and electrically connected to the first driving mechanism 25. In particular, the first control unit 27 is attached to the first driving mechanism 25. Further, the first control unit 27 comprises a first positioning switch 271 and a first limit switch 272. [0031] A second driving mechanism 26 is arranged substantially at the pivot joint of the base support panel member 21 and the fourth support panel member 211. The second driving mechanism 26 comprises a motor 261 and a gear box 265 for reducing the speed of the motor 261. When the motor 261 is started, the second driving mechanism 26 will drive the fourth support panel member 211 to rotate about the pivot joint of the fourth support panel member 211 and the base support panel member 21. A second control unit 29 is arranged substantially at the pivot joint of the base support panel member 21 and the fourth support panel member 211 and electrically connected to the second driving mechanism 26. In particular, the second control unit 29 is attached to the second driving mechanism 26. Further, the second control unit 29 comprises a second positioning switch 291 and a second limit switch 292. [0032] Further, the first driving mechanism 25 and the second driving mechanism 26 can be remotely controlled. [0033] Moreover, a first electric stopper 31 is arranged between the display support panel member 23 and the first support panel member 233, and the second electric stopper 32 is arranged between the display support panel member 23 and the third support panel member 231. The first electric stopper 31 and the second electric stopper 32 are electrically connected to the first driving mechanism 25 and the second driving mechanism 26. In particular, the first electric stopper 31 and the second electric stopper 32 can be solenoid valves. -6- WO 2012/056260 PCT/IB2010/002721 [0034] In addition, the first positioning switch 271 and the first limit switch 272 cooperate with the motor 251. When the first positioning switch 271 or the first limit switch 272 is turned on, the motor 251 will stop. Likewise, the second positioning switch 291 and the second limit switch 292 cooperate with the motor 261 of the second driving mechanism 26. When the second positioning switch 291 or the second limit switch 292 is turned on, the motor 261 will stop. [0035] Further, the first electrical stopper 31 and the second electrical stopper 32 cooperate with the motor 251 and the motor 261. When the first driving mechanism 25 is started, the first electric stopper 31 is set to non-actuate position and the second electric stopper 32 is set to actuate position. When the second driving mechanism 26 is started, the second electric stopper 32 is set to non-actuate position and the first electric stopper 31 is set to actuate position. [0036] Figs. 2A-2D show an operating process of the first embodiment of the present invention. As shown in Fig. 2A, when the flat panel display remote-controlled viewing angle adjustment system I is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member 231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, the first limit switch 272 and the second limit switch 292 are in the "off' mode As shown in Figs. 2B and 2C, when the first driving mechanism 25 is started, the first electric stopper 31 is set to non-actuate position, the second electric stopper 32 is set to actuate position, and the motor 251 will drive the second support panel member 213 to rotate clockwise about the pivot joint of the second support panel member 213 and the base support panel member 21. The first positioning switch 271 will thus be turned off, and the display support panel member 23 as well as the third support panel member 231 will rotate clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its left edge as shown in Figs. 2A-2D. [0037] When the flat panel display remote-controlled viewing angle adjustment system I continues to rotate to a predetermined angular position (as shown in Fig. 2D), the first limit -7- WO 2012/056260 PCT/IB2010/002721 switch 272 is turned on and the motor 251 will stop, and so will the second support panel member 213. [0038] In the mode that the first limit switch 272 is turned on, if the first driving mechanism 25 is started once more, it will only rotate counter-clockwise. The first driving mechanism 25 will drive the second support panel member 213 to rotate counter-clockwise about the pivot joint of the second support panel member 213 and the base support panel member 21. When the second support panel member 213 is driven to rotate counter-clockwise, the first limit switch 272 will be turned off. Thus, the display support panel member 23 and the third support panel member 231 will rotate counter-clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system I will rotate back to the initial position as shown in Fig. 2A, and the first the positioning switch 271 is turned on, and thus the motor 251 will stop. [0039] Figs. 3A-3D show another operating process of the first embodiment of the present invention. As shown in Fig. 3A (a replicate of Fig. 2A), when the flat panel display remote-controlled viewing angle adjustment system 1 is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member 231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, the first limit switch 272 and the second limit switch 292 are in the "off' mode. As shown in Figs. 3B and 3C, when the second driving mechanism 26 is started, the first electric stopper 31 is set to actuate position and the second electric stopper 32 is set to non-actuate position, and the motor 261 will drive the fourth support panel member 211 to rotate counter-clockwise about the pivot joint of the fourth support panel member 211 and the base support panel member 21. The second positioning switch-291 will thus be turned off, and the display support panel member 23 as well as the first support panel member 233 will rotate counter-clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its right edge as shown in Figs. 3A-3D. -8- WO 2012/056260 PCT/IB2010/002721 [0040] When the flat panel display remote-controlled viewing angle adjustment system 1 continues to rotate to a predetermined angular position (as shown in Fig. 3D), the second limit switch 292 is turned on and the motor 261 will stop, and so will the fourth support panel member 211. [0041] In the mode that the second limit switch 292 is turned on, if the second driving mechanism 26 is started once more, it will only rotate clockwise. The second driving mechanism 26 will drive the fourth support panel member 211 to rotate clockwise about the pivot joint of the fourth support panel member 211 and the base support panel member 21. When the fourth support panel member 211 is driven to rotate clockwise, the second limit switch 292 will be turned off. Thus, the display support panel member 23 and the first support panel member 233 will rotate clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system 1 will rotate back to the initial position as shown in Fig. 3A, and the second the positioning switch 291 is turned on, and thus the motor 261 will stop. [0042] The above rotating operation ensures a minimum displacement of the center of gravity of the flat panel display 9 away from the surface of the wall or the support. In other words, there is only an angular component of movement of the center of gravity of the flat panel display 9 and no translational component during angular adjustment of the flat panel display 9. Thus, the load, i.e., the combined weight of the flat panel display remote-controlled viewing angle adjustment system I and the flat panel display 9 and the moment that it generates and which is exerted on the support assembly 2 during the rotation can be as low as possible. [0043] Fig. 4 shows a second embodiment of the flat panel display remote-controlled viewing angle adjustment system 1. The system I comprises a support assembly 2, which further comprises a base support panel member 21, a display support panel member 23, a first support panel member 233, a second support panel member 213, a third support panel member 231, and a fourth support panel member 211. The base support panel member 21 can be fixed to a support or on a wall and the display support panel member 23 is to support a flat panel display 9. The right edge of the base support panel member 21 is pivotally connected to the left edge of the second support panel member 213 and the left edge of the -9- WO 2012/056260 PCT/IB2010/002721 base support panel member 21 is pivotally connected to the right edge of the fourth support panel member 211. The right edge of the display support panel member 23 is pivotally connected to the left edge of the first support panel member 233 and the left edge of the display support panel member 23 is pivotally connected to the right edge of the third support panel member 231. Moreover, the left edge of the third support panel member 231 is pivotally connected to the left edge of the fourth support panel member 211 and the right edge of the first support panel member 233 is pivotally connected to the right edge of the second support panel member 213. [00441 A first driving mechanism 25 is arranged substantially at the pivot joint of the first support panel member 233 and the display support panel member 23. The first driving mechanism 25 comprises a motor 251 and a gear box 255 for reducing the speed of the motor 251. When the motor 251 is started, the first driving mechanism 25 will drive the first support panel member 233 to rotate about the pivot joint of the first support panel member 233 and the display support panel member 23. A first control unit 27 is arranged substantially at the pivot joint of the first support panel member 233 and the display support panel member 23 and electrically connected to the first driving mechanism 25. In particular, the first control unit 27 is attached to the first driving mechanism 25. Further, the first control unit 27 comprises a first positioning switch 271 and a first limit switch 272. [0045] A second driving mechanism 26 is arranged substantially at the pivot joint of the third support panel member 231 and the display support panel member 23. The second driving mechanism 26 comprises a motor 261 and a gear box 265 for reducing the speed of the motor 261. When the motor 261 is started, the second driving mechanism 26 will drive the third support panel member 231 to rotate about the pivot joint of the third support panel member 231 and the display support panel member 23. A second control unit 29 is arranged substantially at the pivot joint of the third support panel member 231 and the display support panel member 23 and electrically connected to the second driving mechanism 26. In particular, the second control unit 29 is attached to the second driving mechanism 26. Further, the second control unit 29 comprises a second positioning switch 291 and a second limit switch 292. [0046] Further, the first driving mechanism 25 and the second driving mechanism 26 can be remotely controlled. - 10- WO 2012/056260 PCT/IB2010/002721 [0047] Moreover, a first electric stopper 31 is arranged between the base support panel member 21 and the second support panel member 213, and the second electric stopper 32 is arranged between the base support panel member 21 and the fourth support panel member 211. The first electric stopper 31 and the second electric stopper 32 are electrically connected to the first driving mechanism 25 and the second driving mechanism 26. In particular, the first electric stopper 31 and the second electric stopper 32 can be solenoid valves. [0048] In addition, the first positioning switch 271 and the first limit switch 272 cooperate with the motor 251. When the first positioning switch 271 or the first limit switch 272 is turned on, the motor 251 will stop. Likewise, the second positioning switch 291 and the second limit switch 292 cooperate with the motor 261 of the second driving mechanism 26. When the second positioning switch 291 or the second limit switch 292 is turned on, the motor 261 will stop. [0049] Further, the first electrical stopper 3 1 and the second electrical stopper 32 cooperate with the motor 251 and the motor 261. When the first driving mechanism 25 is started, the first electric stopper 31 is set to non-actuate position and the second electric stopper 32 is set to actuate position. When the second driving mechanism 26 is started, the second electric stopper 32 is set to non-actuate position and the first electric stopper is set to actuate position. [0050] Figs. 5A-5D show an operating process of the second embodiment of the present invention. As shown in Fig. 5A, when the flat panel display remote-controlled viewing angle adjustment system I is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member 231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, the first limit switch 272 and the second limit switch 292 are in the "off' mode As shown in Figs. 5B and 5C, when the first driving mechanism 25 is started, the first electric stopper 31 is set to non-actuate position, the second electric stopper 32 is set to actuate position, and the motor 251 will drive the first support panel member 233 to rotate counter-clockwise about the pivot joint of the first support panel member 233 and the display - I l - WO 2012/056260 PCT/IB2010/002721 support panel member 23. The first positioning switch 271 will thus be turned off, and the display support panel member 23 as well as the third support panel member 231 will rotate clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its left edge as shown in Figs. 5A-5D. [00511 When the flat panel display remote-controlled viewing angle adjustment system I continues to rotate to a predetermined angular position (as shown in Fig. 5D), the first limit switch 272 is turned on and the motor 251 will stop, and so will the first support panel member 233. [0052] In the mode that the first limit switch 272 is turned on, if the first driving mechanism 25 is started once more, it will only rotate clockwise. The first driving mechanism 25 will drive the first support panel member 233 to rotate clockwise about the pivot joint of the first support panel member 233 and the display support panel member 23. When the first support panel member 233 is driven to rotate clockwise, the first limit switch 272 will be turned off. Thus, the display support panel member 23 and the third support panel member 231 will rotate counter-clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system I will rotate back to the initial position as shown in Fig. 5A, and the first the positioning switch 271 is turned on, and thus the motor 251 will stop. [0053] Figs. 6A-6D show another operating process of the second embodiment of the present invention. As shown in Fig. 6A (a replicate of Fig. 5A), when the flat panel display remote-controlled viewing angle adjustment system I is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member 231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, the first limit switch 272 and the second limit switch 292 are in the "off" mode. As shown in Figs. 6B and 6C, when the second driving mechanism 26 is started, the first electric stopper 31 is set to actuate position and the second electric stopper 32 is set to non-actuate position, and the motor 261 will drive the third - 12- WO 2012/056260 PCT/IB2010/002721 support panel member 231 to rotate clockwise about the pivot joint of the third support panel member 231 and the display support panel member 23. The second positioning switch 291 will thus be turned off, and the display support panel member 23 as well as the first support panel member 233 will rotate counter-clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its right edge as shown in Figs. 6A-6D. [0054] When the flat panel display remote-controlled viewing angle adjustment system I continues to rotate to a predetermined angular position (as shown in Fig. 6D), the second limit switch 292 is turned on and the motor 261 will stop, and so will the third support panel member 231. [0055] In the mode that the second limit switch 292 is turned on, if the second driving mechanism 26 is started once more, it will only rotate counter-clockwise. The second driving mechanism 26 will drive the third support panel member 231 to rotate counter-clockwise about the pivot joint of the third support panel member 231 and the display support panel member 23. When the third support panel member 231 is driven to rotate counter-clockwise, the second limit switch 292 will be turned off. Thus, the display support panel member 23 and the first support panel member 233 will rotate clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system I will rotate back to the initial position as shown in Fig. 5A, and the second the positioning switch 291 is turned on, and thus the motor 261 will stop. [0056] The above rotating operation ensures a minimum displacement of the center of gravity of the flat panel display 9 away from the surface of the wall or the support. In other words, there is only angular component of movement of the center of gravity of the flat panel display 9 and no translational component during angular adjustment of the flat panel display 9. Thus, the load, i.e., the combined weight of the flat panel display remote-controlled viewing angle adjustment system I and the flat panel display 9 and the moment that it generates and which is exerted on the support assembly 2 during the rotation can be as low as possible. [0057] Fig. 7 shows a third embodiment of the flat panel display remote-controlled viewing - 13 - WO 2012/056260 PCT/IB2010/002721 angle adjustment system 10. The structures of the support assembly 2, the first driving mechanism 25, the second driving mechanism 26, the first control unit 27, and the second control unit 29 are identical to those of the first embodiment. The difference between the first embodiment and the third embodiment is that the first electrical stopper 31 and the second electrical stopper 32 of the first embodiment are replaced with a rotation control mechanism 30. The rotation control mechanism 30 comprises a base support extension 301, a display support extension 305, a first link 302, and a second link 304. The base support extension 301 is attached to the base support panel member 21 and the display support extension 305 is attached to the display support panel member 23. Further, the left end of the first link 302 is pivotally connected to the left end of the base support extension 301 and the right end of the first link 302 is pivotally connected to the right end of the display support extension 305, and the left end of the second link 304 is pivotally connected to the left end of the display support extension 305 and the right end of the second link 304 is pivotally connected to the right end of the base support extension 301. [0058] Figs. 8A-8D show an operating process of the third embodiment of the present invention. As shown in Fig. 8A, when the flat panel display remote-controlled viewing angle adjustment system 10 is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member 231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, and the first limit switch 272 and the second limit switch 292 are in the "off' mode. As shown in Figs. 8B and 8C, when the first driving mechanism 25 is started, the motor 251 will drive the second support panel member 213 to rotate clockwise about the pivot joint of the second support panel member 213 and the base support panel member 21. The first positioning switch 271 will thus be turned off, and the display support panel member 23 as well as the third support panel member 231 will rotate clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its left edge as shown in Figs. 8A-8D. [0059] When the first driving mechanism 25 continues to drive the second support panel member 213 to rotate clockwise, the display support panel member 23 and the third support - 14- WO 2012/056260 PCT/IB2010/002721 panel member 231 will rotate clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211 and the display support extension 305 of the rotation control mechanism 30 will rotate clockwise about its left end. Therefore, the flat panel display 9 supported at the display support panel member 23 will rotate substantially about its left edge. [0060] When the flat panel display remote-controlled viewing angle adjustment system 10 is rotated to a predetermined angular position (as shown in Fig. 8D), the first limit switch 272 will be turned on and the motor 251 will stop, and so will the second support panel member 213. [0061] In the mode that the first limit switch 272 is turned on, if the first driving mechanism 25 is started once more, the motor 251 will only rotate counter-clockwise. The first driving mechanism 25 will drive the second support panel member 213 to rotate counter-clockwise about the pivot joint of the second support panel member 213 and the base support panel member 21. When the second support panel member 213 is driven to rotate counter-clockwise, the first limit switch 272 will be turned off. Thus, the display support panel member 23 and the third support panel member 231 will rotate counter-clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system 10 will rotate back to the initial position as shown in Fig. 8A, and the first the positioning switch 271 is turned on, and thus the motor 251 will stop. [0062] Figs. 9A-9D show another operating process of the second embodiment of the present invention. As shown in Fig. 9A, when the flat panel display remote-controlled viewing angle adjustment system 10 is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member 231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, and the first limit switch 272 and the second limit switch 292 are in "off' mode. As shown in Figs. 9B and 9C, when the second driving mechanism 26 is started, the motor 261 will drive the fourth support panel member 211 to rotate counter-clockwise about the pivot joint of the fourth support panel member 211 and the base - 15- WO 2012/056260 PCT/IB2010/002721 support panel member 21. The second positioning switch 291 will thus be turned off, and the display support panel member 23 as well as the first support panel member 233 will rotate counter-clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its right edge as shown in Figs. 9A-9D. [0063] When the second driving mechanism 26 continues to drive the fourth support panel member 211 to rotate counter-clockwise, the display support panel member 23 and the first support panel member 233 will rotate counter-clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213 and the display support extension 305 of the rotation control mechanism 30 will rotate counter-clockwise about its right end. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its right edge. [0064] When the flat panel display remote-controlled viewing angle adjustment system 10 is rotated to a predetermined angular position (as shown in Fig. 9D), the second limit switch 292 is turned on and the motor 261 will stop, and so will the fourth support panel member 211. [0065] In the mode that the first limit switch 292 is turned on, if the second driving mechanism 26 is started once more, it will only rotate clockwise. The second driving mechanism 26 will drive the fourth support panel member 211 to rotate clockwise about the pivot joint of the fourth support panel member 211 and the base support panel member 21. When the fourth support panel member 211 is driven to rotate clockwise, the second limit switch 272 will be turned off. Thus, the display support panel member 23 and the first support panel member 233 will rotate clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system 10 will rotate back to the initial position as shown in Fig. 9A, and the second positioning switch 291 is turned on, and thus the motor 261 will stop. [0066] Fig. 10 shows a fourth embodiment of the flat panel display remote-controlled viewing angle adjustment system 10. The structures of the support assembly 2, the first driving mechanism 25, the second mechanism 26, the first control unit 27, and the second - 16- WO 2012/056260 PCT/IB2010/002721 control unit 29 are identical to those of the second embodiment. The difference between the second embodiment and the fourth embodiment is that the first electrical stopper 31 and the second electrical stopper 32 of the second embodiment are replaced with a rotation control mechanism 30. The rotation control mechanism 30 comprises a base support extension 301, a display support extension 305, a first link 302, and a second link 304. The base support extension 301 is attached to the base support panel member 21 and the display support extension 305 is attached to the display support panel member 23. Further, the left end of the first link 302 is pivotally connected to the left end of the base support extension 301 and the right end of the first link 302 is pivotally connected to the right end of the display support extension 305, and the left end of the second link 304 is pivotally connected to the left end of the display support extension 305 and the right end of the second link 304 is pivotally connected to the right end of the base support extension 301. [0067] Figs. 1lA-i lD show an operating process of the third embodiment of the present invention. As shown in Fig. IlA, when the flat panel display remote-controlled viewing angle adjustment system 10 is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member.231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, and the first limit switch 272 and the second limit switch 292 are in the "off' mode. As shown in Figs. II B and II C, when the first driving mechanism 25 is started, the motor 251 will drive the first support panel member 233 to rotate counter-clockwise about the pivot joint of the first support panel member 233 and the display support panel member 23. The first positioning switch 271 will thus be turned off, and the display support panel member 23 as well as the third support panel member 231 will rotate clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its left edge as shown in Figs. I IA-I ID. [0068] When the first driving mechanism 25 continues to drive the first support panel member 233 to rotate counter-clockwise, the display support panel member 23 and the third support panel member 231 will rotate clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211 and the display support -17- WO 2012/056260 PCT/IB2010/002721 extension 305 of the rotation control mechanism 30 will rotate clockwise about its left end. Therefore, the flat panel display 9 supported at the display support panel member 23 will rotate substantially about its left edge. [0069] When the flat panel display remote-controlled viewing angle adjustment system 10 is rotated to a predetermined angular position (as shown in Fig. I I D), the first limit switch 272 will be turned on and the motor 251 will stop, and so will the second support panel member 213. [0070] In the mode that the first limit switch 272 is turned on, if the first driving mechanism 25 is started once more, the motor 251 will only rotate clockwise. The first driving mechanism 25 will drive the first support panel member 233 to rotate clockwise about the pivot joint of the first support panel member 233 and the display support panel member 23. When the first support panel member 233 is driven to rotate clockwise, the first limit switch 272 will be turned off. Thus, the display support panel member 23 and the third support panel member 231 will rotate counter-clockwise about the pivot joint of the third support panel member 231 and the fourth support panel member 211. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system 10 will rotate back to the initial position as shown in Fig. lIA, and the first the positioning switch 271 is turned on, and thus the motor 251 will stop. [0071] Figs. 12A-12D show another operating process of the fourth embodiment of the present invention. As shown in Fig. 12A, when the flat panel display remote-controlled viewing angle adjustment system 10 is at the initial position, the base support panel member 21, the second support panel member 213, and the fourth support panel member 211 form one plane, and the display support panel member 23, the first support panel member 233, and the third support panel member 231 form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271 and second positioning switch 291 are in the "on" mode, and the first limit switch 272 and the second limit switch 292 are in "off' mode. As shown in Figs. 12B and 12C, when the second driving mechanism 26 is started, the motor 261 will drive the third support panel member 231 to rotate clockwise about the pivot joint of the third support panel member 231 and the display support panel member 23. The second positioning switch 291 will thus be turned off, and the display support panel member 23 as well as the first support panel member 233 will rotate - 18- WO 2012/056260 PCT/IB2010/002721 counter-clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its right edge as shown in Figs. 12A-12D. [0072] When the second driving mechanism 26 continues to drive the third support panel member 231 to rotate clockwise, the display support panel member 23 and the first support panel member 233 will rotate counter-clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213 and the display support extension 305 of the rotation control mechanism 30 will rotate counter-clockwise about its right end. Therefore, the flat panel display 9 supported on the display support panel member 23 will rotate substantially about its right edge. [0073] When the flat panel display remote-controlled viewing angle adjustment system 10 is rotated to a predetermined angular position (as shown in Fig. 12D), the second limit switch 292 is turned on and the motor 261 will stop, and so will the fourth support panel member 211. [0074] In the mode that the first limit switch 292 is turned on, if the second driving mechanism 26 is started once more, it will only rotate counter-clockwise. The second driving mechanism 26 will drive the third support panel member 231 to rotate counter-clockwise about the pivot joint of the third support panel member 231 and the display support panel member 23. When the third support panel member 231 is driven to rotate counter-clockwise, the second limit switch 272 will be turned off. Thus, the display support panel member 23 and the first support panel member 233 will rotate clockwise about the pivot joint of the first support panel member 233 and the second support panel member 213. As that rotation continues, the flat panel display remote-controlled viewing angle adjustment system 10 will rotate back to the initial position as shown in Fig. 12A, and the second positioning switch 291 is turned on, and thus the motor 261 will stop. [0075] Fig. 13 shows a fifth embodiment of the flat panel display remote-controlled viewing angle adjustment system 100. The system 100 comprises a support assembly 2', which further comprises a base support panel member 21', a display support panel member 23', a first support panel member 233', and a second support panel member 213'. The base support - 19- WO 2012/056260 PCT/IB2010/002721 panel member 21' can be fixed to a support or on a wall and the display support panel member 23' is to support a flat panel display 9. The right edge of the base support panel member 21' is pivotally connected to the left edge of the second support panel member 213'. The right edge of the display support panel member 23' is pivotally connected to the left edge of the first support panel member 233'. Moreover, the right edge of the first support panel member 233' is pivotally connected to the right edge of the second support panel member 213'. [0076] Further, a rotation control mechanism 30 is attached to the support assembly 2'. The rotation control mechanism 30 comprises a base support extension 301, a display support extension 305, a first link 302 and, a second link 304. The base support extension 301 is attached to the base support panel member 21' of the support assembly 2' and the display support extension 305 is attached to the display support panel member 23' of the support assembly 2'. Further, the left end of the first link 302 is pivotally connected to the left end of the base support extension 301 and the right end of the first link 302 is pivotally connected to the right end of the display support mechanism 305, and the left end of the second link 304 is pivotally connected to the left end of the display support extension 305 and the right end of the second link 304 is pivotally connected to the right end of the base support extension 301. [0077] A first driving mechanism 25' is arranged substantially at the pivot joint of the base support extension 301 and the first link 302. The first driving mechanism 25' comprises a motor 251' and a gear box 255' for reducing the speed of the motor 251'. When the motor 251' is started, the first driving mechanism 25' will drive the first link 302 to rotate about the pivot joint of the base support extension 301 and the first link 302. A first control unit 27' is arranged substantially at the pivot joint of the base support extension 301 and the first link 302 and electrically connected to the first driving mechanism 25'. In particular, the first control unit 27' is attached to the first driving mechanism 25'. Further, the first control unit 27' comprises a first positioning switch 271' and a first limit switch 272'. [0078] A second driving mechanism 26' is arranged substantially at the pivot joint of the base support extension 301 and the second link 304. The second driving mechanism 26' comprises a motor 261' and a gear box 265' for reducing the speed of the motor 261'. When the motor 261' is started, the second driving mechanism 26' will drive the second link 304 to rotate about the pivot joint of the base support extension 301 and the second link 304. A second control unit 29' is arranged substantially at the pivot joint of the base support -20 - WO 2012/056260 PCT/IB2010/002721 extension 301 and the second link 304 and electrically connected to the second driving mechanism 26'. In particular, the second control unit 29' is attached to the second driving mechanism 26'. Further, the second control unit 29' comprises a second positioning switch 291' and a second limit switch 292'. [0079] Further, the first driving mechanism 25' and the second driving mechanism 26' can be remotely controlled. [0080] In addition, the first positioning switch 271' and the first limit switch 272' cooperate with the motor 251'. When the first positioning switch 271' or the first limit switch 272' is turned on, the motor 251' will stop. Likewise, the second positioning switch 291' and the second limit switch 292' cooperate with the motor 261'. When the second positioning switch 291' or the second limit switch 292' is turned on, the motor 261' will stop. [0081] Figs. 14A-14D show an operating process of the fifth embodiment of the present invention. As shown in Fig. 14A, when the flat panel display remote-controlled viewing angle adjustment system 100 is at the initial position, the base support panel member 21' and the second support panel member 213' form one plane, and the display support panel member 23' and the first support panel member 233' form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271' and second positioning switch 291' are in the "on" mode, and the first limit switch 272' and the second limit switch 292' are in the "off' mode. As shown in Figs. 14B and 14C, when the first driving mechanism 25' is started, the motor 251' will drive the first link 302 to rotate clockwise about the pivot joint of the base support extension 301 and the first link 302. The first positioning switch 271' will thus be turned off, and the display support extension 305 of the rotation control mechanism 30 will rotate clockwise about its left end. Therefore, the flat panel display 9 supported at the display support panel member 23' will rotate about its left edge as shown in Figs. 14A-14D. [0082] When the flat panel display remote-controlled viewing angle adjustment system 100 is rotated to a predetermined angular position (as shown in Fig. 14D), the first limit switch 272' will be turned on and the motor 251' will stop, and so will the second support panel member 213'. -21 - WO 2012/056260 PCT/IB2010/002721 [0083] In the mode that first limit switch 272' is turned on, if the first driving mechanism 25' is started once more, the motor 251' will only rotate counter-clockwise. Thus, the first limit switch 272' is turned off. Further, the first driving mechanism 25' will drive the first link 302 to rotate counter-clockwise about the pivot joint of the base support extension 301 and the first link 302. Thus, the display support extension 305 of the rotation control mechanism 30 will rotate counter-clockwise about its left end. Finally, the flat panel display remote-controlled viewing angle adjustment system 100 will rotate back into its initial position, and the first the positioning switch 271' is turned on and the motor 251' will stop. [00841 Figs. 15A-15D show another operating process of the fifth embodiment of the present invention. As shown in Fig. 15A, when the flat panel display remote-controlled viewing angle adjustment system 100 is at the initial position, the base support panel member 21' and the second support panel member 213' form one plane, and the display support panel member 23' and the first support panel member 233' form another plane parallel to and directly in front of the former plane. At this position, the first positioning switch 271' and second positioning switch 291' are in the "on" mode, and the first limit switch 272' and the second limit switch 292' are in the "off' mode. As shown in Figs. 15B and 15C, when the second driving mechanism 26' is started, the motor 261' is started and the second positioning switch 291' is turned off. Further, the second driving mechanism 26' will drive the second link 304 to rotate counter-clockwise about the pivot joint of the base support extension 301 and the second link 304. The display support extension 305 of the rotation control mechanism 30 will rotate counter-clockwise about its right end. Therefore, the flat panel display 9 supported at the display support panel member 23' will rotate about its right edge as shown in Figs. 15A-15D. [0085] When the flat panel display remote-controlled viewing angle adjustment system 100 is rotated to a predetermined angular position (as shown in Fig. 15D), the second limit switch 292' is turned on and the motor 261' will be stop, and so will the first support panel member 233' and the second support panel member 213'. [0086] In the mode that the second limit switch 292' is turned on, if the second driving mechanism 26' is actuated once more, the motor 261' will only rotate clockwise. Thus, the second limit switch 292' will be turned off. The second link 304 will rotate clockwise about the pivot joint of the base support extension 301 and the second link 304. Thus, the display - 22 - WO 2012/056260 PCT/IB2010/002721 support extension 305 of the rotation control mechanism 30 will rotate clockwise about its right end. Finally, the flat panel display remote-controlled viewing angle adjustment system 100 will rotate back into its initial position, and the second the positioning switch 291' is turned on and the motor 26 1 will stop. [0087] The invention may also be implemented in other specific modes without departing from the spirit of the invention. Thus, the above-mentioned embodiments shall be regarded as explanatory but not restrictive. All changes that are consistent with the meaning and range of the claims and the equivalents shall fall within the scope claimed by the invention. - 23 -

Claims (29)

1. A flat panel display remote-controlled viewing angle adjustment system (1), comprising: a support assembly (2) for supporting a flat panel display (9); an electrical driving assembly for driving the support assembly (2) being mounted on the support assembly (2); and a dual-axis angular control assembly attached to the support assembly (2) such that when the electrical driving assembly is started, the flat panel display (9) is rotated about a vertical axis that passes through either the left side or the right side of the flat panel display (9) and only when the flat panel display (9) returns to zero angle position can it rotate about a vertical axis that passes through the other side of the flat paneldisplay (9).
2. The system according to Claim 1, wherein the support assembly (2) comprises: a base support panel member (21) fixed to a support surface; a display support panel member (23) for supporting the flat panel display (9); a first support panel member (233) with its left edge pivotally connected to the right edge of the display support panel member (23); a second support panel member (213) with its left edge pivotally connected to the right edge of the base support panel member (21) and its right edge pivotally connected to the right edge of the first support panel member (233); a third support panel member (231) with its right edge pivotally connected to the left edge of the display support panel member (23); and a fourth support panel member (211) with its right edge pivotally connected to the left edge of the base support panel member (21) and its left edge pivotally connected to the left edge of the third support panel member (231).
3. The system according to Claim 1, wherein the electrical driving assembly is remotely controlled.
4. The system according to Claim 1, wherein the electrical driving assembly comprises: a first driving mechanism (25) mounted substantially at the pivot joint of the base support panel member (21) and the second support panel member (213); a second driving mechanism (26) mounted substantially at the pivot joint of the base -24 - WO 2012/056260 PCT/IB2010/002721 support panel member (21) and the fourth support panel member (211); a first control unit (27) arranged substantially at the pivot joint of the base support panel member (21) and the second support panel member (213) and electrically connected to the first driving mechanism (25); a second control unit (29) arranged substantially at the pivot joint of the base support panel member (21) and the fourth support panel member (211) and electrically connected to the second driving mechanism (26).
5. The system according to Claim 1, wherein the electrical driving assembly comprises: a first driving mechanism (25) mounted substantially at the pivot joint of the first support panel member (233) and the display support panel member (23); a second driving mechanism (26) mounted substantially at the pivot joint of the third support panel member (231) and the display support panel member (23); a first control unit (27) arranged substantially at the first support panel member (233) and the display support panel member (23) and electrically connected to the first driving mechanism (25); a second control unit (29) arranged substantially at the pivot joint of the third support panel member (231) and the display support panel member (23) and electrically connected to the second driving mechanism (26).
6. The system according to Claim 4, wherein the first control unit (27) comprises a first positioning switch (271) and a first limit switch (272).
7. The system according to Claim 5, wherein the first control unit (27) comprises a first positioning switch (271) and a first limit switch (272).
8. The system according to Claim 4, wherein the second control unit (29) comprises a second positioning switch (291) and a second limit switch (292).
9. The system according to Claim 5, wherein the second control unit (29) comprises a second positioning switch (291) and a second limit switch (292).
10. The system according to Claim 4, wherein the first driving mechanism (25) comprises a motor (25 1) and a gear box (255). - 25 - WO 2012/056260 PCT/IB2010/002721
11. The system according to Claim 5, wherein the first driving mechanism (25) comprises a motor (25 1) and a gear box (255).
12. The system according to Claim 4, wherein the second driving mechanism (26) comprises a motor (261) and a gear box (265).
13. The system according to Claim 5, wherein the second driving mechanism (26) comprises a motor (261) and a gear box (265).
14. The system according to Claim 4, wherein the angular control assembly comprises a first and a second electric stoppers (31, 32), and the first electric stopper (31) is arranged between the display support panel member (23) and the first support panel member (233), and the second electric stopper (32) is arranged between the display support panel member (23) and the third support panel member (231), and the first and second electric stoppers (31, 32) are electrically connected to the first driving mechanism (25) and the second driving mechanism (26).
15. The system according to Claim 5, wherein the angular control assembly comprises a first and a second electric stoppers (31, 32), and the first electric stopper (31) is arranged between the base support panel member (21) and the second support panel member (213), and the second electric stopper (32) is arranged between the base support panel member (21) and the fourth support panel member (211), and the first and second electric stoppers (31, 32) are electrically connected to the first driving mechanism (25) and the second driving mechanism (26), respectively.
16. The system according to Claim 14, wherein each of the electric stoppers (31, 32) is a solenoid valve.
17. The system according to Claim 15, wherein each of the electric stoppers (31, 32) is a solenoid valve.
18. The system according to Claim 14, wherein the first electric stopper (31) is not actuated and the second electric stopper (32) is actuated when the first driving mechanism (25) is - 26 - WO 2012/056260 PCT/IB2010/002721 started, and wherein the second electric stopper (32) is not actuacted and the first electric stopper (31) is actuated when the second driving mechanism (26) is driven.
19. The system according to Claim 15, wherein the first electric stopper (31) is not actuated and the second electric stopper (32) is actuated when the first driving mechanism (25) is started, and wherein the second electric stopper (32) is not actuated and the first electric stopper (3 1) is actuated when the second driving mechanism (26) is driven.
20. The system according to Claim 1, wherein the angular control assembly is a rotation control mechanism (30) comprising a base support extension (301), a display support extension (305), a first link (302), and a second link (304), and wherein the base support extension (30 1) is attached to the base support panel member (21) and the display support extension (305) is attached to the display support panel member (23), and the left end of the first link (302) is pivotally connected to the left end of the base support extension (301) and the right end of the first link (302) is pivotally connected to the right end of the display support mechanism (305), and the left end of the second link (304) is pivotally connected to the left end of the display support extension (305) and the right end of the second link (304) is pivotally connected to the right end of the base support extension (301).
21. A flat panel display remote-controlled viewing angle adjustment system (1), comprising: a support assembly (2) for supporting a flat paneldisplay (9); a dual-axis angular control assembly attached to the support assembly (2); and an electrical driving assembly for driving the support assembly (2) being mounted on the dual-axis angular control assembly; wherein when the electrical driving assembly is started, the flat panel display (9) is rotated about a vertical axis that passes through either the left side or the right side of the flat panel display (9) and only when the flat panel display (9) returns to zero angle position can it rotate about a vertical axis that passes through the other side of the flat panel display (9).
22. The system according to Claim 21, wherein the support assembly (2') comprises: a base support panel member (21') fixed to a support surface; - 27 - WO 2012/056260 PCT/IB2010/002721 a display support panel member (23') for supporting the flat panel display (9); a first support panel member (233') with its left edge pivotally connected to the right edge of the display support panel member (23'); and a second support panel member (213') with its left edge pivotally connected to the right edge of the base support panel member (21') and its right edge pivotally connected to the right edge of the first support panel member (233').
23. The system according to Claim 21, wherein the angular control assembly is a rotation control mechanism (30) comprising a base support extension (301), a display support extension (305), a first link (302), and a second link (304), and wherein the base support extension (301) is attached to the base support panel member (21') and the display support extension (305) is attached to the display support panel member (23'), and the left end of the first link (302) is pivotally connected to the left end of the base support extension (301) and the right end of the first link (302) is pivotally connected to the right end of the display support mechanism (305), and the left end of the second link (304) is pivotally connected to the left end of the display support extension (305) and the right end of the second link (304) is pivotally connected to the right end of the base support extension (301).
24. The system according to Claim 23, wherein the electrical driving assembly comprises: a first driving mechanism (25') mounted substantially at the pivot joint of the base support extension (301) and the first link (302); a second driving mechanism (26') mounted substantially at the pivot joint of the base support extension (301) and second link (304); a first control unit (27') arranged substantially at the pivot joint of the base support extension (301) and the first link (302) and electrically connected to the first driving mechanism (25'); a second control unit (29') arranged substantially at the pivot joint of the base support extension (301) and second link (304) and electrically connected to the second driving mechanism (26').
25. The system according to Claim 24, wherein the first control unit (27') comprises a first positioning switch (271') and a first limit switch (272'). - 28 - WO 2012/056260 PCT/IB2010/002721
26. The system according to Claim 24, wherein the second control unit (29') comprises a second positioning switch (291') and a second limit switch (292').
27. The system according to Claim 24, wherein the first driving mechanism (25') comprises a motor (251') and a gear box (255').
28. The system according to Claim 24, wherein the second driving mechanism (26') comprises a motor (261') and a gear box (265').
- 29 -
AU2010363287A 2010-10-25 2010-10-25 Flat panel display remote-controlled viewing angle adjustment system Abandoned AU2010363287A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2010/002721 WO2012056260A1 (en) 2010-10-25 2010-10-25 Flat panel display remote-controlled viewing angle adjustment system

Publications (1)

Publication Number Publication Date
AU2010363287A1 true AU2010363287A1 (en) 2013-05-23

Family

ID=45993221

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2010363287A Abandoned AU2010363287A1 (en) 2010-10-25 2010-10-25 Flat panel display remote-controlled viewing angle adjustment system

Country Status (4)

Country Link
US (1) US8941978B2 (en)
CN (1) CN103314578B (en)
AU (1) AU2010363287A1 (en)
WO (1) WO2012056260A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10126634B1 (en) * 2015-03-18 2018-11-13 Davo Scheich Variable radius camera mount
US9743769B2 (en) * 2015-10-09 2017-08-29 Panasonic Avionics Corporation Entertainment display mount
US10589727B1 (en) * 2015-11-09 2020-03-17 Kelvin Lee Myrex Adjustable motor mount for semi-trailer landing gear
EP3396226B1 (en) * 2017-04-27 2023-08-23 Advanced Digital Broadcast S.A. A method and a device for adjusting a position of a display screen
US11196941B2 (en) * 2017-06-12 2021-12-07 Christie Digital Systems Usa, Inc. Fixture for aligning tiled displays

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7296774B2 (en) * 2004-01-02 2007-11-20 Clo Systems, Llc Viewing angle adjustment system for a monitor
KR100797063B1 (en) * 2005-04-04 2008-01-23 시엘오 시스템즈, 엘엘씨 Mounting System Capable of Repositioning an Apparatus Relative to a Reference Plane
CN201051411Y (en) * 2007-04-17 2008-04-23 张钟月 Flat TV wall hang supporter
US7648112B2 (en) * 2007-09-10 2010-01-19 Andrew H. Lew Flat panel display mounting device
CN101772285A (en) * 2009-01-07 2010-07-07 鸿富锦精密工业(深圳)有限公司 Electronic equipment

Also Published As

Publication number Publication date
US20130038991A1 (en) 2013-02-14
CN103314578A (en) 2013-09-18
WO2012056260A1 (en) 2012-05-03
US8941978B2 (en) 2015-01-27
CN103314578B (en) 2016-08-03

Similar Documents

Publication Publication Date Title
US8941978B2 (en) Flat panel display remote-controlled viewing angle adjustment system
US7648112B2 (en) Flat panel display mounting device
US7780131B2 (en) Mounting system capable of repositioning an apparatus relative to a reference plane
KR100808141B1 (en) Mounting System Capable of Adjusting Viewing Angle of a Monitor And Method Thereof
US7661642B2 (en) Motorized mount to pivot a monitor
US7490804B2 (en) Mount system for a monitor having a motorized tilt
US20090050757A1 (en) Mount System Adapted to Rotate and Extend a Monitor
US9038972B2 (en) Tilt mechanism for a monitor
JP2004304679A (en) Motor-driven rotating mechanism for display
JP5385293B2 (en) System and method for variable display stand
KR20050080139A (en) A remote automatic of a tv mount support control device
KR100838592B1 (en) Display tilting apparatus and display rotation apparatus
CA2667848A1 (en) Support arm
JP2002244570A (en) Display unit and mounting device for display
JP2004258055A (en) Motor-driven rotating mechanism for display
KR200430805Y1 (en) hinge assembly in display device
KR100872350B1 (en) Angle regulation structure of display panel
KR100845597B1 (en) Stand System Capable of Lifting a Flat Panel Monitor
KR200248227Y1 (en) Unit to fix PDP moniter on the wall
KR100845598B1 (en) Motorized mounting system capable of repositioning a monitor
CN201036013Y (en) Display apparatus support
TWI517713B (en) Flat panel display remote-controlled viewing angle adjustment system
KR200241393Y1 (en) Unit to fix PDP moniter
WO2009139526A1 (en) Mounting device for adjusting tilt of display panel
KR200355619Y1 (en) Display position control device

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application