AU2010332971B2 - Integrated reactance module - Google Patents

Integrated reactance module

Info

Publication number
AU2010332971B2
AU2010332971B2 AU2010332971A AU2010332971A AU2010332971B2 AU 2010332971 B2 AU2010332971 B2 AU 2010332971B2 AU 2010332971 A AU2010332971 A AU 2010332971A AU 2010332971 A AU2010332971 A AU 2010332971A AU 2010332971 B2 AU2010332971 B2 AU 2010332971B2
Authority
AU
Australia
Prior art keywords
reactance
magnetic
elements
integrated
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2010332971A
Other versions
AU2010332971A1 (en
Inventor
Robert Maslanka
Cezary Worek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akademia Gomiczo Hutnicza
Original Assignee
Akademia Gomiczo Hutnicza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PL389907A external-priority patent/PL215083B1/en
Application filed by Akademia Gomiczo Hutnicza filed Critical Akademia Gomiczo Hutnicza
Publication of AU2010332971A1 publication Critical patent/AU2010332971A1/en
Application granted granted Critical
Publication of AU2010332971B2 publication Critical patent/AU2010332971B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

INTEGRATED REACTANCE MODULE
DESCRIPTION TECHNICAL FIELD
The present invention relates to an integrated reactance module intended for use in DC/DC resonant converters and particularly to contactless energy transfer circuits enabling safe and sparkless connection of electrical devices.
BACKGROUND ART
Inductive contactless energy transfer systems are particularly suitable for environments where gas or dust ignition hazard occurs, such as mines, fuel stations and chemical laboratories, as well as those environments where the use of direct connections is impracticable, such as implants or rotating components.
Contemporary DC/DC resonant converters comprise a number of inductive elements which, depending on the applied resonant circuit, can additionally be magnetically coupled or magnetically non-coupled. The cylindrical shape of inductive elements is not suited for optimal utilization of mounting surface area. Where a plurality of inductive elements is used, the distances between inductive elements should be increased in order to avoid undesired couplings. In such case integrated inductive elements may advantageously be used.
A prior art inductive module known from the US Patent No. 7,598,839 comprises N inductors and N+1 core elements. Each magnetic element has a cavity to situate a winding. These magnetic elements are stacked in such a manner that the back of a preceding magnetic element closes the magnetic circuit of a subsequent magnetic element. A structure described in the US Patent No. 7,525,406 comprises a plurality of coupling and non-coupling inductive elements and at least one closed magnetic circuit composed of adjacent magnetic elements, which have penetrated grooves for electric current conductors along an X-axis and a Y-axis orthogonal to the X-axis. The current conductors situated along the same axis provide mutual inductance whereas there is no coupling between mutually orthogonal current conductors.
From the US Patent No. 7,242,275 there is known a variable inductive element immune to high voltage between a control circuit and the controlled inductance. This variable inductor includes two cores of a permeable magnetic material formed in the shape of the letter "E" having three legs, including a centre leg and two outer legs. The main winding is wound around the centre leg of the first core, whereas the control winding is wound around the outer legs of the second core. Both cores are separated by means of a dielectric insulating spacer. The use of an additional magnetic flux conductor is optional. The described variable inductive element is intended for use in voltage converter resonant circuits.
The aforementioned examples illustrate embodiments of integrated reactance elements and an embodiment of a controlled reactance element. These components can be used in typical DC/DC resonant converters implementations. However, the aforementioned integrated reactance elements are not entirely suitable for use in resonant converters that provide contactless energy transfer to a separate receiver. For example, a contactless energy transfer circuit is known from the Polish patent application No. P-381975. This circuit comprises a plurality of reactance elements in its transmitter part and an inductive element including a magnetic element in a portable receiver part. For the purpose of said disconnectable and contactless energy converter it is advisable to develop a specific integrated reactance module, which would include all essential inductive power elements. This module should also ensure reliable operation with open magnetic circuit, optimal energy transfer to a receiver with closed, or partially closed, magnetic circuit, and allow for correction of the resonant frequency changes caused by proximity of an inductive receiving element.
DISCLOSURE OF THE INVENTION
The integrated reactance module according to the invention has windings of integrated reactance elements situated in a common magnetic element and magnetically isolated and separated from each other by means of magnetic flux conductors being an integral part of the magnetic element. The magnetic element is specifically designed for concentration of magnetic field lines produced by the said reactance elements.
BRIEF DESCRIPTION OF DRAWINGS The object of the invention is shown in exemplary embodiments in drawings, where:
Fig. 1 shows the view of the integrated reactance module and the reactance receiving element,
Fig. 2 shows an example of application circuit which utilizes reactance elements of the integrated module shown in Fig. 1 ,
Fig. 3 shows a simplified version of the integrated reactance module, and
Fig. 4 shows the proposed application circuit of the simplified reactance module according to Fig. 3. MODES FOR CARRYING OUT THE INVENTION
Exemplary embodiment I
The integrated reactance module ZMR shown in Fig. 1 comprises reactance elements L1_, L2, L3 situated on a magnetic element EM and separated from each other by magnetic flux conductors SM. Such module is applicable to a device for contactless charging of batteries of portable mining equipment. The device for contactless charging of portable mining equipment, shown in Fig. 2, comprises an arrangement of current switches K1_, K2, connected with the reactance elements L1_, L2, L3 of the integrated reactance module and auxiliary reactance elements C1_, C2, C3, C4, C5. The reactance element U_ in connection with the reactance element C_l constitutes the main resonant circuit, wherein the main portion of the energy of the whole circuit is stored. The magnetic element EM provides concentration of magnetic field lines. The magnetic field energy from the neighbourhood of this element can be received by means of the reactance receiving element L4 provided with the magnetic receiving element EMO. Both magnetic elements EM and EMO are separated by means of an insulating spacer \. When the reactance receiving element L4 is brought close, an alternating voltage is induced across its terminals, which after rectification is applied to the battery of portable mining equipment. The reactance elements L2, L3 ensure optimum commutation conditions for the switches K1_, K2. The diodes D1_, D2 limit the maximum values of voltage and current in the main resonant circuit, thereby ensuring reliable operation in transient states when rapid changes in operating conditions occur. The reactance elements L2 and L3 integrated with the reactance element U_ enable correction of self-resonant frequency of the main resonant circuit.
The integrated reactance module ZMR according to the invention allows energy transfer to the reactance element L4 incorporated within the energy receiver. Owing to the fact that all three reactance power elements L1_, L2, L3 are incorporated in a single magnetic element EM, the structure comprising the resonant circuits is compact and the connections between the reactance elements are contained within the module. The integral structure of the integrated reactance elements allows for "parametric" correction of the resonant frequency correction depending on the distance from reactance receiving element. Such correction is particularly advantageous if the commutation circuit operates at a set frequency. Then, in case of connecting the load by bringing close the reactance receiving element L4, the self-resonant frequency of the main resonant circuit will be tuned towards higher frequencies. Since the reactance receiving element L4 is provided with the magnetic element EMO, its approaching to the integrated reactance module ZMR changes the reluctances of the other reactance elements L2, L3 and, consequently, their reactances will increase. Since both reactance elements L2, L3 are connected with the main resonant circuit, a partial correction of self-resonant frequency of the main resonant circuit is possible. This property allows for construction of simple and highly reliable converters without the need for complex systems of output parameters control.
Exemplary embodiment II
A simplified version of the integrated reactance module ZMR, shown in Fig. 3, is applicable to a device for contactless charging of batteries of miner's lamps. The module comprises reactance elements L1_, L2 situated on the magnetic element EM and separated from each other by means of the magnetic flux conductor SM. The device for contactless charging of batteries of miner's lamps, as shown in Fig. 4, includes an arrangement of current switches K1_, K2, connected with reactance elements L1_, L2, of the integrated reactance module and auxiliary reactance elements C1_, C2, C3, C4, C5. The reactance element L1 , in connection with the reactance element C_l constitutes the main resonant circuit wherein the main portion of the energy of the whole circuit is stored. The magnetic element EM provides concentration of magnetic flux. The magnetic field energy from the neighbourhood of this element can be received by means of the reactance receiving element L4 provided with the magnetic receiving element EMO. Both magnetic elements EM and EMO are separated by means of an insulating spacer \. As a result of nearing the reactance receiving element L4, an alternating voltage is induced across its terminals, which after rectification is applied to the battery of the miner's lamp.

Claims (1)

1 . An integrated reactance module comprising a magnetic core and a plurality of windings of reactance elements, characterised in that it has at least two windings of reactance elements (L1 ), (L2)...(LN) situated in a common magnetic element (EM) and separated from each other by means of magnetic flux conductors (SM) constituting an integral part of the magnetic element (EM), which is configured to concentrate magnetic field lines generated by the reactance elements (L1 ), (L2)...(LN).
AU2010332971A 2009-12-14 2010-12-13 Integrated reactance module Ceased AU2010332971B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PL389907A PL215083B1 (en) 2009-12-14 2009-12-14 Integrated reactance module
PL389907 2009-12-14
PCT/EP2010/069552 WO2011073156A1 (en) 2009-12-14 2010-12-13 Integrated reactance module

Publications (2)

Publication Number Publication Date
AU2010332971A1 AU2010332971A1 (en) 2012-07-19
AU2010332971B2 true AU2010332971B2 (en) 2016-03-31

Family

ID=

Similar Documents

Publication Publication Date Title
CN108565102B (en) Coil module, wireless charging transmitting device, wireless charging receiving device, wireless charging system and wireless charging terminal
EP3036817B1 (en) Systems, apparatus, and method for a dual mode wireless power receiver
EP1368815B1 (en) Inductive coupling system with capacitive parallel compensation of the mutual self-inductance between the primary and the secondary windings
Villa et al. High-misalignment tolerant compensation topology for ICPT systems
KR101198880B1 (en) Contact-less Charging Module and Reception-side and Transmission-side Contact-less Charging Devices Using the Same
KR101438910B1 (en) The Wired-Wireless Combined Power Transmission Apparatus and The Method using the same
CN105720695B (en) Inductive wireless power transfer system
JP2004501540A (en) Device for contactless transmission of electrical signals or energy
EP3427366A1 (en) Bi-plane wireless power transmission pad
CN102386684A (en) Electronic component, power feeding apparatus, power receiving apparatus, and wireless power feeding system
EP2513923B1 (en) Integrated reactance module
Kiruthiga et al. Wireless charging for low power applications using Qi standard
US6781346B2 (en) Charging unit for a contactless transfer of electric power as well as a power absorbing device and a charging system
AU2010332971B2 (en) Integrated reactance module
US10964473B2 (en) Coil unit, wireless power transmission device, wireless power receiving device, and wireless power transmission system
US20190333692A1 (en) Isolation Transformer with Low Unwanted Resonances, Energy Transfer Device Having an Isolation Transformer and Energy Transfer Device for Wireless Transfer of Energy Having an Isolation Transformer
CN102957220A (en) Non-contact power supply system of active current/voltage transformer
KR101810869B1 (en) Wireless power transmission apparatus, coil for wireless power transmission and system for transmitting/receiving wireless power
Cho et al. Wireless energy transfer by using 1.8 MHz magnetic resonance coils considering limiting human exposure to EM fields
Yi et al. A Comparative Study on the Influence of Inductive Coupling WPT Using 6.78 MHz and 120kHz Dual Bands for Mobile Electronic Devices
CN113972755A (en) Compensation structure of wireless charging primary coil capable of being automatically turned off
JP3181263U (en) Non-contact transformer
CN114696474A (en) Multidirectional wireless power transmission system of magnetic dipole coil