AU2010257352A1 - Biologically active oils - Google Patents

Biologically active oils Download PDF

Info

Publication number
AU2010257352A1
AU2010257352A1 AU2010257352A AU2010257352A AU2010257352A1 AU 2010257352 A1 AU2010257352 A1 AU 2010257352A1 AU 2010257352 A AU2010257352 A AU 2010257352A AU 2010257352 A AU2010257352 A AU 2010257352A AU 2010257352 A1 AU2010257352 A1 AU 2010257352A1
Authority
AU
Australia
Prior art keywords
oil
phase
lipid
extracts
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2010257352A
Other versions
AU2010257352B2 (en
Inventor
Athol Gillies Turner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ATHOL TURNER
Original Assignee
ATHOL TURNER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2003902823A external-priority patent/AU2003902823A0/en
Application filed by ATHOL TURNER filed Critical ATHOL TURNER
Priority to AU2010257352A priority Critical patent/AU2010257352B2/en
Publication of AU2010257352A1 publication Critical patent/AU2010257352A1/en
Application granted granted Critical
Publication of AU2010257352B2 publication Critical patent/AU2010257352B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/82Theaceae (Tea family), e.g. camellia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/58Meliaceae (Chinaberry or Mahogany family), e.g. Azadirachta (neem)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0014Skin, i.e. galenical aspects of topical compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0087Galenical forms not covered by A61K9/02 - A61K9/7023
    • A61K9/0095Drinks; Beverages; Syrups; Compositions for reconstitution thereof, e.g. powders or tablets to be dispersed in a glass of water; Veterinary drenches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4841Filling excipients; Inactive ingredients
    • A61K9/4858Organic compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Dermatology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

S&F Ref: 638875AUD1 AUSTRALIA PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address Athol Gillies Turner, of Applicant: Australian Citizen, of 19 Norris Place, Narellan Vale, New South Wales, 2567, Australia Actual Inventor(s): Athol Gillies Turner Address for Service: Spruson & Ferguson St Martins Tower Level 35 31 Market Street Sydney NSW 2000 (CCN 3710000177) Invention Title: Biologically active oils The following statement is a full description of this invention, including the best method of performing it known to me/us: 5845c(3236356_1) BIOLOGICALLY ACTIVE OILS Technical Field The present invention relates to fungal metabolism/transformation of lipid substrates to produce fats and more particularly oils and their extracts containing s biologically-active chemical compounds for the treatment or prophylaxis of diseases, disorders or conditions in humans and other animals. Background of the Invention With the growth of the alternative/complementary medicine industry and the general perception in some areas that the products are "snake oil" remedies, there is a 10 pressing need to ensure that products supplied by this alternative industry have reproducible efficacy and are safe for use by the general public. However, due to recent adverse publicity by the press and government regulators there is an absolute requirement for alternative medicines to meet strict guidelines regarding the quality of the raw materials and the method of manufacture. One of the major difficulties with alternative is medicines is that the ingredients used are often composed of materials which in most cases may contain many different chemical compounds. Hence there is an enormous challenge involved to ensure efficacy and safety of the products for use by society. One of the major reasons for the lack of knowledge of the effectiveness of these products is that the alternative and complementary medical industry generally pride themselves on 20 the fact these products are not animal tested, hence their claims cannot be validated. Historically, the animal and plant oil industries are among the oldest in the world, hence procedures used in this industry are well established. In addition the industrial and medical applications, of which there are many, are well documented in the literature. However, many oils such as olive, evening primrose oil, flaxseed oil, cod liver oil and 25 emu oil are used to treat a variety of medical conditions and diseases but virtually no attention has been paid to the difficulty in reproducing efficacy and safety data for these type of products. In fact, over the past thirteen years of animal and chemical testing of a large variety of many different types and batches of animal and plant oils, large variation in biological activity and chemical composition has been observed. 30 It has been increasingly recognised in this area that in order to increase the credibility of complementary/alternative medicines based on animal and plant extracts, particularly oils, quality control in terms of reproducibility of efficacy and safety data for these type of products is of foremost concern.
-2 Object of the Invention It is therefore an object of the present invention to provide processes for the production of animal and plant-derived oils and their extracts containing biologically active chemical compounds having therapeutic and prophylactic activity in respect of a 5 wide range of diseases and conditions in humans and other animals. It is another object of the present invention to provide pharmaceutical compositions formulated for administration by any route, including without limitation, oral, buccal, sublingual, rectal, parenteral, topical, inhalational, injectable and transdermal, preferably oral or topical, including biologically-active oils and/or their extracts which demonstrate 10 efficacy across a broad spectrum of diseases, disorders or conditions in humans and other animals, together with pharmaceutically acceptable excipients, carriers or adjuvants. It is also an object of the present invention to provide a method for the treatment or prophylaxis of a wide range of diseases, disorders and conditions in humans and other animals by the administration of biologically-active oils and/or their extracts obtained is according to the processes of the present invention. It is also an object of the present invention to provide a method for the treatment or prophylaxis of a wide range of diseases, disorders and conditions in humans and other animals by the administration of the fatty acid esters and aides of biologically-active oils and/or their extracts. 20 It is a further object of the present invention to provide the use of biologically active oils and/or their extracts in the manufacture of pharmaceutical formulations for the treatment or prophylaxis of a wide range of diseases and conditions in humans and other animals. Summary of the Invention 25 This invention is based on the identification of the major factor/s responsible for the variation in quality of plant and animal derived oils, namely the transformation of the lipid substrates by fungi growing in and on the lipid substrate. The quality of the fat or oil produced depends on the type and number of fungi (enzymes), lipid substrate, temperature, humidity and length (time) of incubation prior to rendering. The basis of 30 this invention therefore relates to the controlled use of fungi to transform lipid substrate/s to produce oils which contain biologically-active chemical compounds. It has been established by the present inventor that exposure of the lipid substrate to fungi is responsible for the major variation in biological activity (efficacy) rather than temperature, oxygen and light during processing and storage, although these latter factors 35 may have some minor influence.
-3 Accordingly, a first aspect of the present invention provides a process for the production of fats or oils and their extracts containing biologically-active chemical compounds from a lipid substrate, the process comprising: a) inoculation of a lipid substrate with a fungal mixture, s b) incubating the inoculated substrate for a period of between about 7-120 days at a temperature of between about 4-35*C, at a humidity of between about 75 100%, and c) processing, said incubated substrate mixture to obtain a biologically active fat or oil. 10 A related aspect of the present invention provides a process for the production of oils and their extracts containing biologically-active chemical compounds from a lipid substrate, the process comprising a) inoculation of a lipid substrate with fungally derived lipolytic enzymes b) incubating the inoculated substrate for a period of between about 7-120 days is at a temperature of between about 4-35*C, at a humidity of between about 75 100%, and c) processing said substrate mixture to obtain a biologically active fat or oil. In step b) typically the period of incubation is between about 7 to 28 days at high humidity of between about 80-100%. 20 In step c), if the lipid is animal derived, it is typical that the product is a biologically active oil obtained by rendering said inoculated substrate. Alternatively, if said lipid is plant or seed derived, the biologically active oil is obtained by cold pressing or solvent extraction of said inoculated substrate mixture. There is also provided a biologically active product, particularly an oil when 25 produced by the process of the first aspect of the present invention described above. The typical steps/procedures which must be performed in order to produce the biologically-active oils and fats; assuming we have pure fungi in storage are: I. Inoculating the sterilised lipid substrate (e.g. animal lipid) with the appropriate fungal mixture; 30 2. Incubating the above mixture for a specified period of time and humidity; 3. Rendering the above mixture; 4. Centrifuging the rendered mixture produced in step 3; 5. Filtering the oil produced from the centrifuge step; 6. Sterilising the oil at 135*C for two hours; 35 7. Filtering the oil after sterilising; -4 8. Storage of the oil; 9. Extraction of the oil if required. Providing the above procedures are repeated the oil produced will be reproducible within experimental error, as this is a biological process in which some variation will be s certain to occur. Bacteria are not involved in the transformation process. While not wishing to be bound by any theory, it appears that the fungi penetrate the lipid cell and excrete enzymes that digest the lipid within the cell. Breakdown products are released and some are absorbed by the fungus and transformed internally while others appear in the supernatant. 10 The fungal mixture used to inoculate the lipid substrate and which is the source of the fungally- derived lipolytic enzymes may be intact/whole fungal organisms, pure fungi, single fungi or mixed fungi, active enzyme extracts thereof, genetically modified organisms or modified enzymes. The process of the present invention transforms the lipids, resulting in fats or oils containing biologically-active chemical compounds which 15 are suitable for treating a wide range of human and veterinary diseases. It is noted that using this method of producing oils and their extracts the amount of free fatty acids, mono and diglycerides are enriched, for example the level of total free fatty acids some plant animal and plant oils is up to or exceeding 14%. The compounds found in the oils and their extracts act synergistically to give the desired biochemical action in humans and 20 animals for the treatment of a wide range of diseases and conditions. Typically, the lipid substrate can be selected from animal or plant sources, of either terrestrial or marine origin, or the substrate can be constituted from lipids or their extracts impregnated onto artificial substrates supplemented with mineral and organic amendments (see Waller et al 2002, Plant Pathologists Pocketbook 3rd Edition, CABI, 25 New York). Sources of animal lipids include goanna, sheep, chicken, emu, ostrich, camel, duck, geese, pig, cattle, horse, mutton bird, fish and shellfish including mussels. Sources of plant oils include seeds/nuts of Macadamia sp, Canarium spp, peanut, sunflower, safflower, linseed, soybean, wheat, oats, barley, almond, avocado, cashew, quandong, maize, wattle, olive, palm and rice. Other vegetable/plant/seed sources include 30 coconut, pili nut, ngali nut, neem seed, sesame and canola. Typically, the fungi inoculated onto the lipid substrate will have been isolated from the substrate (ie is endogenous to the lipid substrate) and found to transform the specific or similar substrates. Such fungi are typically found in the sexual and asexual states of the Phyla Zygomycotina, Ascomycotina and Basidiomycotina. This is therefore 3s understood to cover the fungi Deuteromycetes which is the asexual state of the main -5 phyla. Fungi also typically found to transform lipid substrates include Phoma sp, Cladosporium sp, Rhodotorula mucilaginosa, Cryptococcus albidus, Trichosporon pullulans, Mucor spp, Epicoccom purpurescens, Rhizopus stolonifer, Penicillium chrysogenum, Nigrospora sphaerica, Chaetomium globosum. Fungi demonstrating the 5 ability to transform or having this potential may be typically improved by either traditional or molecular genetic techniques to enhance enzyme formation and activity. The substrate may also or instead be inoculated with enzymes derived from fungi. Typically the additional enzymes are endogenous to the fungi, but can also be developed from alternative sources or genetically modified isolates. Such enzymes may also be to purified and their activity increased by alteration of their structure using physical, chemical or other techniques. Typically, the lipid substrate is sterilised and then inoculated with one or more fungi or their enzymes as required. The substrate may be sliced, minced, chopped or ground to enable it to be spread in a layer typically between 0.5 and 10cm on a surface that may be i5 a solid sheet, or perforated to allow oxygen to the lower surface and oil to drip from the substrate and be collected in a suitable container. Inoculation uses standard procedures (see Waller et al 2002) including spraying or painting the lipid surface with fungal spores suspended in sterile water. The substrate is then typically incubated for a period between about 7 days and about 120 days, more typically between about 7 and 65 days, or about 7 20 and 56 days, or about 7 and 42 days, or about 7 and 35 days. Even more typically, the substrate is incubated for a period between about 7 and 28 days or about 7 and 21 days and most typically between 14, 21, 28, 35, 42, 56, and 65 days. The inoculated lipid substrate is incubated at a temperature between 4 - 35"C, typically around 15-20*C, and a relative humidity between 80-100%, typically 95%. 25 Following incubation the animal lipid substrate containing the fungi is minced or ground and transferred to a stainless vessel prior to the rendering process. This process typically involves rendering at a temperature between 40-80*C, typically around 70-75 0 C with constant slow speed stirring until the lipid substrate has melted into oil. This oil is then typically centrifuged and filtered and can be further extracted. The filtrate which 30 contains the biologically active oil is then typically further sterilised by heating for a period of between about 15 minutes and about 8 hours, more typically between about 1 hour and 6 hours, even more typically between about 1 hour .and 4 hours. Typically the filtrate is heated to a temperature between about 100-160*C, more typically between about 110-150*C and even more typically between about 120-140 0 C, most typically about 3s 130-135 0
C.
-6 In the case of plant seed, nut oils or other lipid sources not of animal origin, the inoculated and incubated lipid substrate/s containing fungi may be minced or ground prior to cold pressing using a screw press, the oil from the screw press then being centrifuged and filtered. This oil is then typically sterilised by heating for a period of between about 5 15 minutes and about 8 hours, more typically between about 1 hour and 6 hours, even more typically between about 1 hour and 4 hours. Typically the oil is heated to a temperature between about 100-160'C, more typically between about 110-150*C and even more typically between about 120-140*C, most typically about 130-135*C. The oil produced is then treated as for animal substrates. 10 The oil obtained from the above processes may then be subjected to solvent extraction which typically involves mixing the oil on a mass or volume basis in the ratio of 1/1 or 2/1 solvent to oil then cooling over a temperature range of 20*C to -40*C for a time period from 30 minutes up to 24 hours. The solvent is decanted or poured off, centrifuged if required containing, and evaporated dryness to obtain the extract. The is resulting residue contains the biologically-active chemical compounds. The oil or extracts from the above processes may also be subjected (including any derivatives obtained by chemical treatment of oils and their extracts) to the following processes in order to obtain specific fractions or chemical compounds, (1) High performance liquid chromatography, experimental conditions used 20 will depend on the chemical and physical properties of chemical compounds required for treatment of specific human and animal diseases and conditions. (2) Super fluid chromatography, experimental conditions used will depend on the chemical and physical properties of chemical compounds required for 25 treatment of specific human and animal diseases and conditions. (3) Wiped-Film Molecular Still or Evaporator (eg Pope), experimental conditions used will depend on the chemical and physical properties of chemical compounds required for treatment of specific human and animal diseases and conditions. 30 (4) Hybrid Still incorporating Wiped-Film Evaporator and Fractional Distillation Column. (5) Molecular Distillation Plant or any combination of the above items in (3), (4) and (5), experimental conditions used will depend on the chemical and physical properties of chemical compounds required for treatment of 35 specific human and animal diseases and conditions.
-7 A second aspect of the present invention provides a method for the treatment or prophylaxis of a wide range of diseases, disorders and conditions in humans and other animals by the administration of the fatty acid esters and/or aides of biologically-active oils and/or their extracts. Esters include methyl, ethyl, propyl and isopropyl groups. s Methyl and isopropyl esters of the extracts of these oils have been in-vivo tested successfully on rats for the treatment of arthritis with success. A related aspect of the present invention provides the use of the fatty acid esters and/or amides of biologically-active oils produced according to the present invention, and/or their extracts, for the preparation of a medicament for the treatment or prophylaxis 10 of a wide range of diseases, disorders and conditions in humans and other animals by the administration. Typically, the biologically active oils produced can be used to treat and/or prevent a wide range of diseases, disorders or conditions in humans and other animals. Typical diseases, disorders or conditions which may be treated or prevented include: respiratory is diseases or conditions such as asthma, bronchial disease and chronic obstructive pulmonary disease (COPD), vascular diseases or conditions such as atherosclerosis, coronary artery diseases, hypertension and sickle cell disease-associated vaso-occlusion, skin diseases or conditions such as various dermatitis, psoriasis and atopic eczema, all types of bums, gastrointestinal diseases or conditions such as ulcers, gastric reflux, 20 inflammatory bowel disease, ulcerative colitis, Crohn's disease, pancreatitis and periodontal disease, cancers including bowel cancer and prostate cancer, sarcoidosis, septic shock, musculo-skeletal diseases or conditions such as arthritis including osteoarthritis and rheumatoid arthritis, chronic joint and ligament pain, leukemia, diabetes, allergy including otitis media and ocular allergy, uveitis, dysmenorrhoea, kidney 25 diseases or conditions including glomerulonephritis and nephritic syndrome and prostate diseases or conditions such as benign prostate hyperplasia, and a wide variety of inflammatory disorders. The biologically active oils produced can also increase bone mass density and improve bone strength and connective tissue disorders. The biologically active oils and their extracts appear to inhibit the synthesis of the C 30 reactive protein ie they are C reactive protein inhibitors. (Refer to test results for patient 7 in the examples of therapeutic activity below). Hence these oils and their extracts may used to treat a wide range of human and animal diseases and conditions associated with the production of the C reactive protein. C-Reactive Protein (CRP) belongs to the pentraxin family of proteins, so-called 3s because it has five identical subunits, encoded by a single gene on chromosome 1, which -8 associate to form a stable disc-like pentameric structure. It was so named because it reacts with the somatic C polysaccharide of Streptococcus pneumoniae, and was first discovered in 1930 by Tillet and Frances. In the presence of calcium, CRP specifically binds to phosphocholine moieties. This gives CRP a host-defensive role, as phosphocholine is s found in microbial polysaccharides (where CRP-binding activates the classical complement pathway and opsonises ligands for phagocytosis), the pro-inflammatory platelet-activating factor (PAF) (which is neutralised), and polymorphs (which are down regulated). CRP is exclusively made in the liver and is secreted in increased amounts within 6 10 hours of an acute inflammatory stimulus. The plasma level can double at least every 8 hours, reaching a peak after about 50 hours. After effective treatment or removal of the inflammatory stimulus, levels can fall almost as rapidly as the 5-7-hour plasma half-life of labelled exogenous CRP. The only condition that interferes with the "normal" CRP response is severe hepatocellular impairment. is Some of the most common conditions associated with major elevations of CRP levels are: (a) Inflammatory diseases such as various forms of arthritis including rheumatoid arthritis, psoriatic arthritis and juvenile chronic arthritis, Crohn's disease, ulcerative colitis, Reiter's disease etc. 20 (b) Malignancy such as lymphoma, sarcoma. (c) Necrosis such as myocardial infarction, tumour embolisation and acute pancreatitis. (d) Trauma such as burns and fractures. (e) Rheumatic fever, tuberculosis, allograft rejection and leukemia. 25 The biologically active oils and their extracts appear to inhibit the secretion of prostaglandin PGE 2 from the mouse fibroblast cell line. Hence this result (see Table 9 which summarises the Percent Inhibition of Secreted PGE 2 from 3T3 cells exposed to Oil Extracts) confirms that these oils and extracts appear to inhibit Cyclooxygenase pathways although this assay is a general assay which gives results for both COX-1 and COX-2 but 30 from adhoc human data and animal studies these oils and extracts inhibit bleeding hence COX-1 pathway may not be involved. Hence these oils and extracts can be used to treat a wide range of human and animal diseases and condition associated with the COX -9 pathway. These types of inhibitors may be used to treat diseases and conditions in humans and animals such as rheumatoid arthritis, osteoarthritis, pain, etc. The biologically active extracts appear to inhibit leukotriene synthesis ie they are 5 lipoxygenase inhibitors. 5 The biologically active oils produced have also been noted to synergistically enhance the efficacy of a variety of pharmaceuticals including dexamethasone and prednisone. Such synergy is of great clinical benefit as raised levels of pro-inflammatory leukotrienes or 5-lipoxygenase are associated not only with asthma but also with rheumatoid arthritis, osteoarthritis, scleroderma and inflammatory bowel diseases such as to Crohn's disease, and the administration of an active oil of the present invention allows lower doses of steroids to be used. (See Figure 4 for the synergistic action of a lipoxygenase inhibitor plus a steroid.) A third aspect of the present invention provides a pharmaceutical composition comprising a biologically active oil, or a fatty acid ester and/or amide of a biologically 15 active oil and/or an extract thereof, together with a pharmaceutically acceptable carrier, excipient or adjuvant. Typically, the compositions can be in the form of immediate release, extended release, pulse release, variable release, controlled release, timed release, sustained release, delayed release, long acting, and combinations thereof. Brief Description of the Drawings 20 A preferred form of the present invention will now be described by way of example with reference to the accompanying drawings wherein: Figure 1 is a flow chart of the process for extraction of biologically active oils from the crude oil/filtrate. Figure 2 is a flow chart of the process for production of biologically active oils 25 according to the present invention. Figure 3 is a summary of the enzymatic pathways acted upon by the biologically active oils to suppress pro-inflammatory leukotrienes Figure 4 Shows how steroids and the lipoxygenase inhibitor(s)(LI) from a biologically-active emu oil can act co-operatively to suppress pro-inflammatory 30 leukotrienes. Detailed Description of the Preferred Embodiments As is clear from the foregoing, this invention relates to the fungal metabolism/transformation of lipid substrates. The fungi can be endogenous or exogenous to the lipid substrate. However, only fungi with very specific capabilities will 35 grow on lipid substrates. Not all have the potential to transform the lipid substrate from -10 which they were isolated, or other lipid substrates. Hence the present invention can utilise all fungi which grow on and metabolise/transform lipid substrates to produce oils which contain biologically-active chemical compounds. a) Isolation of fungi s Fungi are isolated and cultured from lipids using standard methods (see Waller et al 2002 for some common methods). Fungi can be found growing on or near the surface of naturally colonised lipidic substrates. Typically, the fungi are isolated from lipidic substrates naturally colonised by the fungi onto various standard agar media using standard techniques. Typically, fungi growing on the surface of lipid substrates are 1o obtained by removing fragments of fungus with a sterile probe and placing the fragment on media for subsequent growth and identification. Typically endogenous fungi are obtained following surface sterilisation of the lipid substrate with alcohol or hypochlorite. Fragments of the lipid substrate are then placed on media containing antibiotics to suppress bacterial growth. Emerging fungi are sub-cultured to fresh sterile media for is growth and subsequent identification. Media typically include Potato Dextrose agar, Malt Extract agar, V8 juice agar, Cornmeal agar, Oatmeal agar. Typically, the fungi can be subcultured from isolation plates on the same or other standard media. Such fungi can undergo traditional or genetic techniques to enhance formation and activity of target compounds. Fungi isolated from lipidic substrates can be tested for their 20 transformation of lipid substrates. Those fungi found to transform most effectively can replace less effective isolates to increase production of biologically-active compounds. These processes are used widely to enhance production of biologically active compounds and were used, for instance, to enhance production of penicillin. Enzymes can be isolated and purified from the fungi and their activity maximised using physical or chemical 25 treatment techniques, according to R. K. Saxena, Anita Sheoran, Bhoopander Giri, W. Sheba Davidson, (2003) Review of Purification Strategies for Microbial Lipases, 52, 1-18 which is incorporated herein by reference. Enzymes are only isolated from fungi which are known to grow on and transform/metabolise lipid substrates to produce oil containing biologically-active chemical compounds. 30 b) Storage of fungi and enzymes Fungi are stored using standard techniques such as lyophilisation, storage at low temperatures, in sterile water, on nutrient agar under oil, or when desiccated (see Waller et al 2002 for some standards techniques of storing fungi). c) Storage of lipid substrates - 11 Animal and plant lipid substrates are stored in enclosed containers. Animal lipids are stored at temperatures typically below -18 0 C. Animal lipids may be freeze-dried and ground or minced prior to storage at low temperatures. Plant lipid substrates are stored under standard conditions of low humidity, typically below 9%. Temperature is s maintained below 30*C. d) Sterilisation of animal and plant lipid substrates (of marine and terrestrial origin) prior to inoculation Prior to transformation, the lipid substrate is sterilised in order to remove endogenous microbes. Sterilisation may include washing in ethanol or hypochlorite 10 solution, gamma irradiation or its equivalent, or heat treatment (see Waller et al 2002, Plant Pathologists Pocketbook 3 rd Edition, CABI, New York for examples of techniques in common use). In addition, lipid substrate/s may be modified by addition of specific mineral and organic additives such as found in Czapek Dox agar (see Waller for a recipe for Czapek Dox, a commonly used mineral supplement). 15 Similarly, prior to transformation, the plant substrate is sterilised in order to remove endogenous microbes. Sterilisation may include washing in ethanol or hypochlorite solution, gamma irradiation or its equivalent, or heat treatment (see Waller et al 2002, Plant Pathologists Pocketbook 3 rd Edition, CABI, New York for examples of techniques in common use). In addition, lipid substrate/s may be modified by addition of specific 20 mineral and organic additives such as those found in Czapek Dox agar (see Waller for a recipe for Czapek Dox). e) Inoculation of lipid substrate The lipid substrate is inoculated with one or more fungi or their enzymes as required. The substrate may be sliced, minced, chopped or ground to enable it to be 25 spread in layer typically between 0.5 and 10cm on a surface that may be a solid sheet, or perforated to allow oxygen to the lower surface and oil to drip from the substrate and be collected in a suitable container. Inoculation uses standard procedures (see Waller et al 2002) including spraying or painting the lipid surface with fungal spores suspended in sterile water. The inoculated lipid substrate is incubated at a temperature between 4 30 35*C commonly around 15-20 0 C, and a relative humidity between 80-100%, typically 95%. The substrate is then typically incubated for a period between 7 days and about 120 days, and typically between 7, 14, 28, 35, 42, 56, 65 days. f) Production of oils and extraction of biologically active compounds The lipid substrate used during fungal metabolism will determine the method used 35 to extract the biologically active oil. The three main methods that may be used are: - 12 temperature rendering, solvent extraction and cold pressing. The latter two methods are used only in respect of the production of plant oils. Following incubation the animal lipid substrate containing the fungi is minced or ground and transferred to a stainless vessel prior to the rendering process. This process s typically involves rendering at a temperature between 40-80*C, usual temperature set around 70-75*C with constant slow speed stirring until the lipid substrate has melted into oil; heating may be electrical, or by steam or hot water. The liquid in the vessel that contains the oil is then centrifuged, followed by filtration. The residue that remains from the centrifuging step may then be subjected to further extractions, generally using 1o standard procedures used in the plant-seed oil and pharmaceutical industries as well as in natural product isolations used in research. The filtrate, which contains the biologically active oil, is then heated for a further period of between 15 minutes and about 8 hours at temperatures ranging from 100 to about 160*C under inert gas atmosphere or at normal atmospheric conditions. Typical conditions that are commonly used are 135*C for 2 is hours under inert gas atmosphere such as nitrogen. This step sterilises the oil, and in addition denatures any protein/s present. After cooling to a suitable temperature using a heat exchanger the oil is then filtered again to remove any residual precipitated protein and/or fungi particulate which may be present. The oil is packaged into 20 and or 200 litre pharmaceutical grade drums for storage. For extraction of biologically active 20 compounds from oil refer to Figure 1. In the case of plant seed, nut oils or other lipid sources not of animal origin the inoculated and incubated lipid substrate/s containing fungi may be minced or ground prior to cold pressing using a screw press, the oil from the screw press then being centrifuged and filtered. This oil is heated for a further period of between 15 minutes and about 8 25 hours at temperatures ranging from 100 to about 160*C under inert gas atmosphere or at normal atmospheric conditions. Typical conditions commonly used are 135*C for 2 hours under inert gas atmosphere such as nitrogen. This step sterilises the oil, and in addition denatures any protein/s that may be present. After cooling to a suitable temperature using a heat exchanger the oil is filtered again to remove any residual precipitated protein 30 and/or fungi particulate. The oil is packaged into 20 and or 200 litre pharmaceutical grade drums for storage. The cake from the press is solvent extracted using a range of common solvents selected from such as hexane, isohexane, petroleum spirits, methanol, isopropanol, propanol, ethanol and diethyl ether. The solvent is then removed by evaporation and recovered for future use. The techniques used are standard in plant oil 35 industry. The oil produced is then treated as described for animal substrates.
-13 The oil obtained from the above processes may then be subjected to solvent extraction at various temperatures typically using one or more of the following solvents: methanol, ethanol, propanol, isopropanol, diethyl ether, light petroleum spirits, butanol, acetone and acetonitrile. This procedure involve mixing the oil on a mass or volume s basis in the ratio of 1/1 or 2/1 solvent to oil then cooling over a temperature range of 20*C to -40*C for a time period from 30 minutes up to 24 hours. The solvent is decanted or poured off, centrifuged if required containing the biologically-active molecules and evaporated dryness to obtain the extract. Typical conditions provide 100gm of oil thoroughly mixed with 100gm methanol and held at 0*C for 16 hours, then centrifuged if 10 required and solvent evaporated on laboratory scale using a rotary film evaporator. The resulting residue contains the biologically-active chemical compounds. Solvent should be recovered for recycling. Forms of administration: It is possible in the pharmaceutical composition of the inventive subject matter for 15 the dosage form to combine various forms of release, which include without limitation, immediate release, extended release, pulse release, variable release, controlled release, timed release, sustained release, delayed release, long acting, and combinations thereof. The ability to obtain immediate release, extended release, pulse release, variable release, controlled release, timed release, sustained release, delayed release, long acting 20 characteristics and combinations thereof is performed using well known procedures and techniques available to the ordinary artisan. Each of these specific techniques or procedures for obtaining the release characteristics is well known to those persons skilled in the art. As used herein, a "controlled release form" means any form having at least one component formulated for controlled release. As used herein, "immediate release form" 25 means any form having at least some of its pharmaceutically active components formulated for immediate release. A variety of administration routes are available and the route selected will depend on the particular condition being treated and the dosage required for therapeutic efficacy. In the methods and compositions of the present invention, any mode of administration is 30 acceptable and include oral, rectal, topical, nasal, transdermal or parenteral (eg subcutaneous, intramuscular and intravenous) routes. Any biologically-acceptable dosage form, and combinations thereof, are contemplated by the inventive subject matter. Examples of such dosage forms include, without limitation, chewable tablets, quick dissolve tablets, effervescent tablets, 35 reconstitutable powders, elixirs, liquids, solutions, suspensions, emulsions, tablets, multi- -14 layer tablets, bi-layer tablets, capsules, soft gelatin capsules, lard gelatin capsules, caplets, lozenges, chewable lozenges, beads, powders, granules, particles, microparticles, dispersible granules, cachets, douches, suppositories, creams, lotions, topicals, inhalants, aerosol inhalants, patches, particle inhalants, implants, depot implants, ingestibles, s injectables, infusions, functional foods and combinations thereof. The preparation of the above dosage is well known to those persons skilled in the art. Generally, each would contain a predetermined amount of the active component in association with a carrier which constitutes one or more appropriate ingredients. Compositions suitable for parenteral administration conveniently comprise a sterile 1o aqueous preparation of the active component which is formulated according to known methods using suitable dispersing and suspending agents. A sterile injectable preparation may be formulated as a solution or suspension in a non-toxic parenterally acceptable diluent or solvent (eg water, isotonic sodium chloride solution). Sterile fixed oils can also be employed as a solvent or suspending medium. 15 Typical dosages extracts from 0.01mg to 1000mg per kilogram, several doses may be necessary throughout the day, oil from 5mL to 20 mL per day in 5 mL doses. Initial daily doses of 30 or 40 ml of pure oil is also typical. Multiple doses per day are contemplated to achieve appropriate systemic levels of the active component. The formulation of therapeutic compositions is well known to persons skilled in this field. 20 Suitable pharmaceutically acceptable carriers and/or diluents include any and all conventional solvents, dispersion media, fillers, solid carriers, aqueous solutions, coatings, isotonic and absorption delaying agents and the like. Such formulations and formulating is described in Remingtons's Pharmaceutical Sciences ( 18 *h Edn), Mack Publishing CO, Pennsylvania,
USA.
- 15 Examples A) Preparation of topical medicaments using biologically-active oils Examples of creams for topical application were prepared according to the following protocols: s Formulation 1 PHASE A DESCRIPTION COMPOSITION (%w/w) Water Water 52.475 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTM Poly(methyl vinyl ether/maleic anhydride) 0.350 decadiene crosspolymer PHASE B Oil Biologically-active oil 30.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 5.000 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Cerasynt 840Tm PEG-20 stearate 1.000 Ceraphyl 230Tm Di-isopropyl adipate 4.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 0.875 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 -16 MANUFACTURING PROCEDURE 1. In phase A combine water and glycerol, and mix well 2. Sprinkle Stabileze QMTM into the pre-mixed solution with stirring at room 5 temperature, until uniformly dispersed. Then heat to 75-80*C while stirring, for at least 30 minutes. 3. In a separate vessel, combine ingredients of phase B; mix and heat to 75 80 0 C. 4. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the 10 heat source. 5. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 6. Remove homogeniser and thoroughly mix and while cooling to 38-40*C. 7. Add phase D to batch and mix until uniform. Is 8. Adjust for water loss and mix until uniform. NOTES (a) Adjustments to the amounts of preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration 20 to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance if required. (d) Stabileze QM, Cerasynt 840, Ceraphyl 230, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps 25 Road Wayne NJ 07470 -17 Formulation 2 PHASE A DESCRIPTION COMPOSITION (%w/,W) Water Water 51.950 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTM Poly(methyl vinyl ether/maleic anhydride) 0.500 decadiene crosspolymer PHASE B Oil Biologically-active oil 25.000 Neem seed oil Neem seed oil 4.000 Tea tree oil Tea tree oil 1.000 Prolipid 141Tm Emulsifier blend of stearic acid, behenyl 5.000 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Cerasynt 840TM PEG-20 stearate 1.000 Ceraphyl 230TM Di-isopropyl adipate 4.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH 1.250 Water 2.000 PHASE D Liquapar'OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 5 - 18 MANUFACTURING PROCEDURE 9. In phase A combine water and glycerol, and mix well 10. Sprinkle Stabileze QMTM into the pre-mixed solution with stirring at room temperature, until uniformly dispersed. Then heat to 75-80 0 C while stirring, for at 5 least 30 minutes. 11. In a separate vessel, combine ingredients of phase B; mix and heat to 75 800C. 12. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 10 13. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 14. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 15. Add phase D to batch and mix until uniform. 16. Adjust for water loss and mix until uniform. 15 NOTES (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance 20 if required. (d) Stabileze QM, Cerasynt 840, Ceraphyl 230, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 -19 Formulation 3. PHASE A DESCRIPTION COMPOSITION (%w/w) Water Water 46.425 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTM Poly(methyl vinyl ether/maleic anhydride) 0.650 decadiene crosspolymer PHASE B Oil Biologically-active oil 25.000 Neem seed oil Neem seed oil 5.000 Cerasynt 945Tm Glyceryl stearate & Laureth 23 6.000 Cerasynt 840Tm PEG-20 stearate 4.000 Ceraphyl 230Tm Di-isopropyl adipate 5.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 1.625 Water Water 2.000 PHASE D Liquapar OptimaTm Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 s MANUFACTURING PROCEDURE 17. In phase A combine water and glycerol, and mix well - 20 18. Sprinkle Stabileze QMTm into the pre-mixed solution with stirring at room temperature, until uniformly dispersed. Then heat to 75-80 0 C while stirring, for at least 30 minutes. 19. In a separate vessel, combine ingredients of phase B; mix and heat to 75 5 80 0 C. 20. Add phase B to phase A and homogenise for 15 minutes, then turn off the heat source. 21. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes without further heating. 10 22. Remove homogeniser and thoroughly mix with cooling to 38-40*C. 23. Add phase D to batch and mix until uniform. 24. Adjust for water loss and mix until uniform. NOTES (a) Adjustments to the amount of preservative may have to be made after 15 challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTm concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance if required. 20 (d) Stabileze QM, Cerasynt 945, Cerasynt 840, Ceraphyl 230, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 -21 Formulation 4 PHASE A DESCRIPTION COMPOSITION (%w/w) Water Water 51.475 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTM Poly(methyl vinyl ether/maleic anhydride) 0.350 decadiene crosspolymer PHASE B Oil Biologically active oil 25.000 Neem seed oil Neem seed oil 4.000 Tea tree oil Tea tree oil 1.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 5.000 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Cerasynt 840Tm PEG-20 stearate 1.000 Ceraphyl 230TM Di-isopropyl adipate 4.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 0.875 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben 1Total 100.000 5 - 22 MANUFACTURING PROCEDURE 25. In phase A combine water and glycerol, and mix well 26. Sprinkle Stabileze QMTm into the pre-mixed solution with stirring at room temperature, until uniformly dispersed. Then heat to 75-80 C while stirring, s for at least 30 minutes. 27. In a separate vessel, combine ingredients of phase B; mix and heat to 75 80 0 C. 28. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 10 29. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 30. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 31. Add phase D to batch and mix until uniform. 32. Adjust for water loss and mix until uniform. is NOTES (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance 20 if required. (d) Stabileze QM, Cerasynt 840, Ceraphyl 230, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 -23 Formulation 5 PHASE A DESCRIPTION COMPOSITIOl' (%w/w) Water Water 51.475 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTM Poly(methyl vinyl ether/maleic anhydride) 0.350 decadiene crosspolymer PHASE B Oil Biologically-active oil 25.000 Neem seed oil Neem seed oil 4.000 Tea tree oil Tea tree oil 1.000 Prolipid 141Tm Emulsifier blend of stearic acid, behenyl 5.000 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Cerasynt 840Tm PEG-20 stearate 1.000 Eucalyptus oil Eucalyptus oil 4.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 0.875 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 -24 MANUFACTURING PROCEDURE 33. In phase A combine water and glycerol, and mix well 34. Sprinkle Stabileze QMTM into the pre-mixed solution with stirring at room temperature, until uniformly dispersed, then heat to 75-80 0 C while stirring, 5 for at least 30 minutes. 35. In a separate vessel, combine ingredients of phase B; mix and heat to 75 80 0 C. 36. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 10 37. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 38. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 39. Add phase D to batch and mix until uniform. 40. Adjust for water loss and mix until uniform. Is NOTES (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. 20 (c) Small adjustments in composition will have to be made, to allow for fragrance if required. (d) Stabileze QM, Cerasynt 840, Ceraphyl 230, Prolipid 141 and Liquapar Optima are trade marks of Intemational Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 - 25 FORMULATION 6 PHASE A DESCRIPTION COMPOSITION (%w/w) Water Water 53.525 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTM Poly(methyl vinyl ether/maleic anhydride) 0.350 decadiene crosspolymer PHASE B Oil Biologically-active oil 20.000 Neem seed oil Neem seed oil 4.000 Tea tree oil Tea tree oil 1.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 6.250 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Vitamin E acetate Vitamin E acetate 0.200 Ceraphyl 230TM Di-isopropyl adipate 7.500 PHASE C 10 %w/v NaOH Sodium hydroxide 0.875 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 s MANUFACTURING PROCEDURE 41. In phase A combine water and glycerol, and mix well - 26 42. Sprinkle Stabileze QMTm into the pre-mixed solution with stirring at room temperature, until uniformly dispersed, then heat to 75-80 0 C while stirring, for at least 30 minutes. 43. In a separate vessel, combine ingredients of phase B; mix and heat to 75 5 80 0 C. 44. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 45. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 10 46. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 47. Add phase D to batch and mix until uniform. 48. Adjust for water loss and mix until uniform. NOTES 15 (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance if required. 20 (d) Stabileze QM, Ceraphyl 230, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 - 27 FORMULATION 7 PHASE A DESCRIPTION COMPOSITION (%w/w) Water Water 53.525 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTm Poly(methyl vinyl ether/maleic anhydride) 0.350 decadiene crosspolymer PHASE B Oil Biologically-active oil 20.000 Neem seed oil Neem seed oil 4.000 Tea tree oil Tea tree oil 1.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 6.250 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Ceraphyl 140ATM Isodecyl Oleate 7.5 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 0.875 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 s MANUFACTURING PROCEDURE 49. In phase A combine water and glycerol, and mix well -28 50. Sprinkle Stabileze QMTu into the pre-mixed solution with stirring at room temperature, until uniformly dispersed, then heat to 75-80 0 C while stirring, for at least 30 minutes. 51. In a separate vessel, combine ingredients of phase B; mix and heat to 75 s 80 0 C. 52. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 53. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. to 54. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 55. Add phase D to batch and mix until uniform. 56. Adjust for water loss and mix until uniform. NOTES is (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance if required. 20 (d) Stabileze QM, Ceraphyl 140A, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 -29 FORMULATION 8 PHASE A DESCRIPTION COMPOSITIOl (%w/w) Water Water 53.525 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QM T M Poly(methyl vinyl ether/maleic anhydride) 0.350 decadiene crosspolymer PHASE B Oil Biologically-active oil 25.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 6.250 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Ceraphyl 140TM Isodecyl Oleate 5.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 0.875 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 s MANUFACTURING PROCEDURE 57. In phase A combine water and glycerol, and mix well 58. Sprinkle Stabileze QMTM into the pre-mixed solution with stirring at room temperature, until uniformly dispersed, then heat to 75-80 0 C while stirring, for at least 30 minutes.
-30 59. In a separate vessel, combine ingredients of phase B; mix and heat to 75 80 0 C. 60. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. s 61. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 62. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 63. Add phase D to batch and mix until uniform. 64. Adjust for water loss and mix until uniform. 10 NOTES (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. 15 (c) Small adjustments in composition will have to be made, to allow for fragrance if required. (e) Stabileze QM, Ceraphyl 140A, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 -31 FORMULATION 9 PHASE A DESCRIPTION COMPOSITION (%w/w) Water Water 51.475 Glycerol lycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QM T M Poly(methyl vinyl ether/maleic anhydride) 0.400 decadiene crosspolymer PHASE B Oil Biologically-active oil 20.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 5.000 alcohol, glycerol-monostearate, lecithin, C I2-C 16 alcohols and palmitic acid Ceraphyl 140ATM Isodecyl Oleate 5.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 1.000 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 5 MANUFACTURING PROCEDURE 65. In phase A combine water and glycerol, and mix well -32 66. Sprinkle Stabileze QMTM into the pre-mixed solution with stirring at room temperature, until uniformly dispersed, then heat to 75-80 0 C while stirring, for at least 30 minutes. 67. In a separate vessel, combine ingredients of phase B; mix and heat to 75 5 80&C. 68. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 69. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. to 70. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 71. Add phase D to batch and mix until uniform. 72. Adjust for water loss and mix until uniform. NOTES 15 (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance if required. 20 (d) Stabileze QM, Ceraphyl 140A, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 -33 FORMULATION 10 PHASE A DESCRIPTION COMPOSITION (%w/w) Water Water 67.950 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTm Poly(methyl vinyl ether/maleic anhydride) 0.500 decadiene crosspolymer PHASE B Oil Biologically-active oil 10.000 Vitamin E Vitamin E 2.000 Vitamin C Palmitate Vitamin C Palmitate 3.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 4.000 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Ceraphyl 140ATm Isodecyl Oleate 5.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 1.250 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben _Total 100.000 MANUFACTURING PROCEDURE 5 73. In phase A combine water and glycerol, and mix well -34 74. Sprinkle Stabileze QMTM into the pre-mixed solution with stirring at room temperature, until uniformly dispersed, then heat to 75-80 0 C while stirring, for at least 30 minutes. 75. In a separate vessel, combine ingredients of phase B; mix and heat to 75 5 80oC. 76. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 77. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 10 78. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 79. Add phase D to batch and mix until uniform. 80. Adjust for water loss and mix until uniform. NOTES 15 (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance if required. 20 (d) Stabileze QM, Ceraphyl 140A, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 -35 FORMULATION 11 PHASE A DESCRIPTION COMPOSITIOD (%w/w) Water Water 57.300 Glycerol Glycerol 3.000 Disodium EDTA Disodium EDTA 0.100 Stabileze QMTM Poly(methyl vinyl ether/maleic anhydride) 0.400 decadiene crosspolymer PHASE B Oil Biologically-active oil 20.000 Prolipid 141TM Emulsifier blend of stearic acid, behenyl 5.000 alcohol, glycerol-monostearate, lecithin, C12-C16 alcohols and palmitic acid Methyl Salicylate Methyl Salicylate 10.000 Vitamin E acetate Vitamin E acetate 0.200 PHASE C 10 %w/v NaOH Sodium hydroxide 1.000 Water Water 2.000 PHASE D Liquapar OptimaTM Phenoxyethanol, methylparaben, 1.000 Isopropylparaben, isobutylparaben butylparaben Total 100.000 s MANUFACTURING PROCEDURE 81. In phase A combine water and glycerol, and mix well -36 82. Sprinkle Stabileze QMTM into the pre-mixed solution with stirring at room temperature, until uniformly dispersed, then heat to 75-80 0 C while stirring, for at least 30 minutes. 83. In a separate vessel, combine ingredients of phase B; mix and heat to 75 s 80 0 C. 84. Add phase B to phase A and homogenise for 3-5 minutes, then turn off the heat source. 85. Add phase C into homogenate of phases A & B and then homogenise for 3-5 minutes with no further heating. 10 86. Remove homogeniser and thoroughly mix and while cooling to 38-40 0 C. 87. Add phase D to batch and mix until uniform. 88. Adjust for water loss and mix until uniform. NOTES 15 (a) Adjustments to preservative may have to be made after challenge testing. (b) Small adjustments may have to be made to the Stabileze QMTM concentration to give correct viscosity depending on the application. (c) Small adjustments in composition will have to be made, to allow for fragrance if required. 20 (d) Stabileze QM, Prolipid 141 and Liquapar Optima are trade marks of International Specialty Products, Inc. 1361 Alps Road Wayne NJ 07470 - 37 B) Oral Formulations containing biologically active oils: 1. Hard gel capsules (0.95 mL) made of gelatine or equivalent polymer containing approximately 0.9 gm of oil containing 0.1% Tocopheryl acetate. 5 2. Hard gel capsules (0.95 mL) made of gelatine or equivalent polymer containing 0.50 gm of oil dispersed in macadamia oil or equivalent. 3. Soft gel capsules (100ptL up to 1.OmL capacity) made from gelatine or equivalent polymer containing from 100piL up to 1.OmL of oil with 0.1% anti oxidant added if required. 10 4. Soft gel capsules (100iL up to 1.OmL capacity) made of gelatine or equivalent polymer containing from 10mg up to 1000mg of extract from the oil containing if required an anti-oxidant and another oil for example macadamia oil, soybean oil or equivalent. 5. Soft gel suppositories as for 3 & 4 above. is 6. Syrups and lotions made from oil and extracts with the addition of other oils such as olive, macadamia and flavours such as raspberry, strawberry, banana and with the addition of anti-oxidants if required. Dose by spoon or syringe. 7. Oral dose 5.OmL oil by spoon or syringe. 20 C) In vivo rat model test procedures used to analyse the biological activity of various animal and plant oils and their extracts 1. Anti-inflammatory efficacy was measured in rats developing the adjuvant induced polyarthritis, the test agents being given either transdermally or orally from the time the arthritis was first expressed. Synergistic activity with low-dosed steroid was 25 measured either in i) rats with fully established adjuvant arthritis or ii) rats with chronic paw oedema induced by injecting 0.5mg zymosan (in 0.2mL saline) then waiting 3 hours for the acute oedema to peak (associated with histamine/serotonin release) and measuring residual paw swelling 21-45 hours later. For transdermal administration, oils were diluted with 0.1 5vol of cineole to facilitate skin penetration and applied once daily to the shaved 30 dorsal skin (6cm 2 ) with brief rubbing. (See Tables 1 and 2 below). 2. Co-arthritigenic activity was measured in Dark Agouti rats by first dispersing finely-ground heat-killed Mycobacterium. tuberculosis in test oils (10mg/kg) and then injecting 0.1 mL into the tailbase of female Dark Agouti rats. Signs of arthritis were recorded on day 15. Extracts from emu oils were obtained by mixing equal masses of oil 3s and methanol then storing in a cold room or freezer at 0*C for at least 12 hours, decanting -38 the liquid layer, evaporating the solvent using a rotary film evaporator. Residue remaining in the flask contains the extract. These extracts were first dissolved in jojoba bean oil and diluted with an equal volume of a dispersion of Mycobacterium. tuberculosis (10mg/ml)freshly prepared injojoba bean oil. (See Table 3 below). s 3. Gastroprotectant activity was ascertained in a) disease stressed (untreated) polyarthritic female Dark Agouti or Wistar rats and b) normal Dark Agouti or Wistar rats which had been fasted overnight and injected with the cholinergic drug, methacholinehydrochloride (5mg/kg i.p.). Test materials were emulsified with 0.04% v/v Tween-20 using a Vortex homogeniser, then co-dosed with a dispersion of OTC 10 ibuprofen (NUROFEN) 55mg/kg used as the gastrotoxin. The stomachs were removed 2.5 hours later, briefly rinsed in saline and scored for number and severity of macroscopic haemorrhagic lesions in the gastric mucosa. (See Tables 4 and 5 below). 4. Synergistic activities of emu and macadamia oils with corticosteroids for suppressing Zymosan-induced paw oedema in rats. A single treatment of whole oil, or i5 extract, plus either P = prednisone 2.5 mg/kg or D = dexamethasone 0.1 mg/kg in Tween 20 was administered orally 3 hours after injecting 0.5 mg zymosan into each rear paw. Data are the relative reduction in paw swelling compared with controls treated with olive oil only, expressed as percentage inhibition. (see Table 6 below). 5. For in vitro tests, oils were processed to remove the bulk of the triglycerides 20 using solvent extraction at low temperature or solid-phase extraction in accordance with normal laboratory procedures. For in vivo tests, the oils were filtered at 22*C to remove solids, varying from 5-45% by weight. Exceptionally stiff samples were diluted either with 0.1 volume n-octanol or up to 0.5 volumes isopropyl myristate to help 'liquefy' them, these solvents being inert vehicles for the assays described. 25 Note: All Mycobacterium. tuberculosis used is finely ground and heat killed prior to use. Results 1. Wistar rats were injected with 0.8mg Mycobacteriun. tuberculosis in 0.1mL squalene in tailbase (day 0). Treatments with biologically active oils were given either A) transdermally on days 10-13 only (4 rats/gp) or 30 B) orally on days 15-17 together with prednisone (2.5mg/kg, 3 rats/gp) The changes in arthritic signs are shown below. An increase in weight is good, a decrease indicates possible toxicity. The lower the arthritic score, the better: Note: For information on oils refer to chromatogram number and table 6 which contains process conditions.
-39 Process conditions and chromatograph for each sample in Tables 1 to 8 are summarised in Table 11. The corresponding chromatograms are numbered 1 to 32. As an example, emu-type 2 oil in Table 3 was obtained according to the process conditions set out in line 4 of Table 11 (sample code Type 2) and the biological activity of the s sample is shown in chromatogram 4.
-40 TABLE 1. A. Treatment (transdermaf) Mean Changes In Arthritic Signs (Days 10->14) Sample Dose/kg/day Rear paw Forepaw AWeight Arthritis thickness inflammation gm Score Olive Oil - Control 2.0 mL 0.89 mm -2+ +05 2+ Emu- A Chrom. 1. 0.5 mL 0.15 mm 0.5+ +14 0.5+ Emu- C Chrom.2. 1.0 mL 0.37 mm 1.4+ +18 1+ Emu- Kalaya Chrom. 3. 0.5 mL 0.08 mm -0.2+ +05 0.2+ TABLE 2. B. Treatme t (Oral) Mean Changes in Arthritic Signs (Days 15-+18) Sample Dose/kg/day Rear paw Tail thickness Forepaw AWeight Arthritis thickness inflammation gm Score Olive 2.mL 00mm +0.42mm 0.6+ +02 0.5+ (00) only -2. . 0,mm 0.2m 0.+02.5 control Prednisone with: Olive Oil 2.0 mL -0.05 0.15 mm 0.3+ +03 0 mm Emu-A Chrom. 1 2.0 mL -0.59 -0.82 mm -0.8+ 0 -0.9+ mm Emu-C Chrom. 2 2.0 mL +0.13 -0.14 mm 0.8+ -01 0.3+ nun TABLE 3: Arthritigenic activity of some emu/other oils Oils were admixed with finely ground heat-killed M.tuberculosis (10 mg/mL) and 0.1 mL injected into the tail base of female Dark Agouti rats. Dispersions with jojoba bean oil contained a final concentration of only 5 mg/mL 10 M.tuberculosis. Signs of arthritis were scored on day 15 for groups of 3 rats.
-41 Mean values for Test Oil Rear paw AWeight Arthritis swelling Score Olive Oil 1.22 mm +01 2.3+ Lard Oil (pig) 1.03 +14 2.3+ Emu-A Chrom. 1 0.23 +08 0.5+ Emu-C Chrom. 2 0.73 -10 2+ Emu-Kalaya Chrom. 3 0.08 +21 0.7+ Emu-Type 2 Chrom. 4 0.20 +12 0.5+ Jojoba Bean 1.24 +02 2.8+ -with extr. Emu-A (5 mg/rat) 0.23 +11 0.7+ -with extr. Emu-C (5 mg/rat) 0.92 +07 1.5+ -with extr. Emu-Ka (5 mg/rat) 0.08 +11 0.3+ -with extr. Emu-Ka (10 mg/rat) 0.09 +20 0.5+ TABLES 4/5: Gastroprotective activity of some emu oils in rats Gastro-irritant = 55 mg/kg ibuprofen given orally to animals fasted overnight, 5 together with test emulsions = 0.4 mL oil/kg prepared with 0.04% v/v Tween-20 along with or without methacholine given i.p. A. In disease-stressed female Wistar or Dark Agouti rats with fully developed polyarthritis (on or after day 15), without methacholine. TABLE 4: 10 Gastric lesion indices in Treatment Wistar rats n=3/gp Dark Agouti rats n=4/gp Tween-20 only 32 44 Emu-A Chrom. 1 07 22 Emu-C Chrom. 2 21 51 Emu-Kalaya Chrom. 3 not tested 27 B. In normal rats stimulated with Beta-methacholine (5 mg/kg in Wistar rats or 8 mg/kg in Dark Agouti rats).
-42 TABLE 5: Gastric lesion indices in Treatment Wistar rats n=3/gp Dark Agouti rats n=3/gp Tween-20 only 17 52 Emu-A Chrom. 1 05 17 Emu-C Chrom. 2 19 39 Emu-Kalaya Chrom. 3 05 23 Olive oil (00) 19 31 Extr.A = 50 mg/kg in 00 06 10 5 TABLE 6: Synergistic activities of emu and macadamia oils with corticosteroids for suppressing Zymosan-induced paw oedema in rats. A single treatment of whole oil, or extract, plus either P = prednisone 2.5 mg/kg or D = dexamethasone 0.1 mg/kg in Tween-20 was administered orally 3 hours after injecting 10 0.5 mg zymosan into each rear paw. Data are the relative reduction in paw swelling compared with controls treated with olive oil only, expressed as percentage inhibition. Treatment Dose/k Wistar rats Dark Agouti rats Day 1 Day 2 Day 1 Day 2 P + olive oil (00) 2 mL 4% 1% 15% 2% P+ Emu - A Chrom. 1 2 mL 52 81 56 63 0.5 43 52 P + Emu- C Chrom. 2 2 mL -05 -16 -14 -12 P + Lyprinol in 00 20 mg 57 31 65 66 D + olive oil (00) 2 mL 05 0 D+Emu-A Chrom. 1 2 mL 77 40 D + Emu - C Chrom. 2 2 mL 22 -15 D + Lyprinol in 00 20 mg 56 50 - 43 P +Olive oil (00) 2.0OmL 0 P +Macadamia -19 1.6 mL 1 Chrom. 30 ____ P +Macadaniia -20 1.6 mL 41 Chrom. 31 P + Oleic acid (90%) 2.0 niL -11 ____ P + Isostearic acid 2.0 niL 39 (comm.) _ _ _ P +Lyprinol in 00 20 mg 46 __________ -44 D) In-vitro LOX assays of Several Different Oil Samples NEUTROPHIL 5-LIPOXYGENASE PATHWAY s Overview Arachidonic acid is converted into eicosanoids (or prostanoids) by two major pathways - the 5-lipoxygenase pathway, which leads to the formation of leukotrienes, and the cyclo-oxygenase pathway which leads to the formation of prostaglandins and thromboxanes. Some, but not all, of the products of both of these pathways have potent 1o pro-inflammatory properties. For example, LTB4 is a very potent chemotactic agent, and its peptido-metabolites, LTC4, LTD4 and LTE4 , which were originally known as "slow reacting substance of anaphylaxis" or SRS-A, are potent bronchoconstrictor agents. Many of the currently used anti-inflammatory drugs, in particular the non-steroidal anti-inflammatory drugs (NSAIDS), function via the inhibition of the cyclo-oxygenase is pathway. More recently, considerable effort around the world has focused on the development of inhibitors of the lipoxygenase pathway, or of dual inhibitors that block both pathways. The principal steps of the 5-lipoxygenase pathway of these cells is shown in Fig.3. In this pathway, arachidonic acid (AA), from membrane phospholipids, is released via the 20 action of phospholipase A2 (PLA2). This AA is then substrate for the first enzyme in the pathway - 5 lipoxygenase, which converts it to 5-hydroperoxyeicosatetraenoic acid (5 HPETE). 5-HPETE is then converted enzymatically to either 5-hydroxyeicosa-tetraenoic acid (5-HETE) by glutathione peroxidase, or to leukotriene A4 (LTA4) by LTA4 synthase. LTA4 is then converted either non-enzymatically to the all trans isomers of 25 LTB4, or hydrolysed by LTA4 hydrolase to leukotriene B4 (LTB4). Human PMN do not significantly metabolise LTB4 any further, although other cells, such as eosinophils convert it to the potent vasoconstrictor peptido-leukotrienes, SRS-A. The lipoxygenase pathways (Leukotrienes AND HETE) Assay The HPLC assay readily quantifies 5-HETE, 12-HETE, LTB4, and the two all 30 trans-isomers of LTB-4, and thus gives quantitative data on the relative activities of the enzymes in the 5-lipoxygenase of neutrophils, as well as data on thel2-lipoxygenase pathway of platelets. Thus it is an ideal system to test potential inhibitors of these pathways.
-45 The effects of inhibitory compounds may be tested on isolated human PMN and platelets, in which the pathways are activated by treating the PMN or platelets with arachidonic acid and the calcium ionophore A23187. The addition of arachidonic acid eliminates the PLA-2 step, and provides high levels of substrate for the pathway. s Furthermore, such activation is known to maximally drive the pathway to produce the greatest synthesis of all the metabolites, and thus is also the least sensitive to inhibition. Hence, compounds that do inhibit the pathway activated in this fashion are potentially potent inhibitors. PREPARATION OF TEST SAMPLES 1o All samples were dissolved in ethanol to give stock solutions of 10 mg/mL. Two further dilutions of each stock solution were made in ethanol at 5 and 1 mg/mL, making 10 test samples in all. 10 IiL of each of the diluted stocks was added to 1000 jiL of PMN suspension in Hank's Buffer, to give final test concentrations of 5, 10 and 50 ug/mL as required for the 15 analysis. PREPARATION OF HUMAN NEUTROPHTLS (PMN) 1. Up to 100 mL of blood was taken from a normal volunteer and anticoagulated with EDTA. Two mL of 4.5% EDTA in water was mixed with each 10 mL of blood. 2. A further 2 mL of 6.0% Dextran T500 was added to each of the 12 mL 20 mixtures in 1, and placed in a water bath at 37*C, to sediment the red blood cells. 3. Following sedimentation in 2, the supernatant was carefully laid over 5 mL of Percoll, density 1.070. This was then spun at 500g for 35 mins. 4. All the cells (PMN and remaining RBC) below the Percoll interface were removed with a plastic pipette and diluted at least 3-fold with Ca 2 +/Mg 2 +-free 25 Dulbecco's phosphate buffer, and centrifuged at 600g for 10 mins. 5. Following 4, the supernatant was carefully aspirated, and the pellet gently mixed with lmL of Ca 2 +/Mg 2 +-free Dulbecco's phosphate buffer by aspiration/deaspiration into a 1ml plastic disposable pipette. A further 40 mL of Ca 2 +/Mg 2 +-free Dulbecco's phosphate buffer was then added and mixed by inversion. 30 The cell suspension was then centrifuged at 600g for 10 mins. 6. Following centrifugation, the supernatant was removed and the PMN pellet lysed with 10 mL of a 0.2% cold sodium chloride solution for 20 secs, followed by the addition of 10 mL of a 1.6% cold sodium chloride solution, and centrifuged at 600g for 10 mins.
- 46 7. Following 6, the PMN pellet was vigorously mixed with mL of Hank's buffer by rapid aspiration/deaspiration into a lmL plastic disposable pipette, and then finally suspended in Hank's buffer at 2.4 x 106 PMN/ml (as measured using a Coulter counter), in preparation for the leukotriene assay. s ACTIVATION OF LEUKOTRIENE PATHWAY 1. 1 mL of PMN suspension (2.4 x10 6 PMN/ml) was transferred to a 13 mL glass tube chronicc acid washed) and placed in a water bath at 370C for 5 min prewarming. 2. Following prewarming, at time zero, 10 pL of each test compound in 1o methanol (or equivalent volumes of methanol as control) was added to quadruplicate tubes over a 20 sec period. 3. At 5 min, 5 mL of 2 mM arachidonic acid (10 pM final) was added (4 tubes/20 secs). 4. At 10 min, 5 ml of 1 mM calcium ionophore (A23187) (5 AM final) was is added (4 tubes/20 secs). 5. At 15 min the reaction was terminated by the addition of 100pL 100 mM citric acid. This lowers the pH of the aqueous phase to less than 3, which is necessary for the extraction of the leukotrienes into the organic phase. 6. The pH of several samples was checked to ensure pH < 3.0. (This is 20 important). 7. 40 ng Prostaglandin B2 and 166 ng 15-HETE were added to each tube as the internal standard for LTB4 and 5-HETE respectively, and samples were mixed. 8. For Standard Curves LTB4 (1 ng/pl] (for a standard curve in the range 0 - 50 ng) and 5-HETE [5ng/AL] (standard curve range 0-250 ng) were added to tubes 25 containing 1 mL PMN, 100 pL of 100 mM citric acid and 40 ng PGB 2 and 166 ng 15 HETE. 9. All tubes were vortexed. 10. 5 mL chloroform/methanol (7:3) was added and the tubes vortexed vigorously for 30 secs, then centrifuged for 10 min at 2000 rpm. 30 11. Approx. 3.5 mL of the lower chloroform layer (containing the extracted leukotrienes and hydroxy acids (HETES), as well as the internal standards) was transferred to a 3 mL borosilicate glass tube and the chloroform evaporated in a Savant centrifugal evaporator, under vacuum, at room temperature. 12. The samples were reconstituted in 100 pLof the LTB 4 mobile phase, vortexed 3s and transferred to Waters low volume inserts for injection (usually <25 g1).
- 47 13. The HPLC was setup for the LTB 4 conditions, and all the samples assayed for
LTB
4 and the all trans isomers of LTB4. HPLC ASSAY FOR LEUKOTRIENES and HYDROXY ACIDS Mobile Phases s LTB4 Assay: 70% Methanol/30% H20/0.08% Acetic Acid (pH adjusted to 6.2 with ammonium hydroxide). 5-HETE Assay: 80% Methanol/20% H20/0.08% Acetic Acid (pH adjusted to 6.2 with ammonium hydroxide). io HPLC Conditions Wavelength: 270 nm (LTB4), 234 nm (5-HETE) Analysis: Water's Millennium Flow Rate: 1mlmin Column and Guard Pak: C18 Nova Pak is LTB4 ASSAY Retention Times Prostaglandin B2 - 4.6 min 6-trans-leukotriene B4 - 6.6 min 6-trans-epi-leukotriene B4 - 7.4 min 20 Leukotriene B4 - 8.7min Full Chemical names of LTB4 and its 6-trans isomers Leukotriene B4: (5S,12R)-Dihydroxy-(Z,E,E,Z)-6,8,10,14-eicosatetraenoic acid. 6-trans-Leukotriene B4: (5S,12R)-Dihydroxy-(E,E,E,Z)-6,8,10,14-eicosatetraenoic acid. 6-trans-12-epi-LeukotrieneB4:(5S,12S)-Dihydroxy-(E,E,E,Z)-6,8,10,14 25 eicosatetraenoic acid 5-HETE ASSAY Retention times 15-HETE - 6.3 min 5-HETE - 8.5 min 30 Full Chemical Names 15-HETE: 15(S)-Hydroxy-(Z,Z,Z,E)-5,8,11,13-eicosatetraenoic acid 5-HETE: 5(S)-Hydroxy-(E,Z,Z,Z)-6,8,11,14-eicosatetraenoic acid -48 Effect of Emu Oil Methanol Extracts and pure 12-methyl tetradecanoic acid (12 MTA) on Leukotriene Synthesis (Expressed as a percentage of the Methanol control) Table 7 Control 100A22 100t22 100-4 10014 Emu-Type2 Chrom.4 50 yg/mL 0 0 11±8 10 5 Emu-Type 2 Chrom. 4 10 g/mL 88t12 71111 74 6 76+16 Emu-Type 2 Chrom. 4 5 tg/m1 94*12 99413 84A10 10212 Emu-Type 2* Chrom. 4 50 Ag/mL 213 2-4 17*11 1611 Emu-Type 2* Chrom. 4 10 gg/mL 78t6 76:+7 80±4 78t7 Emu-Type 2* Chrom. 4 5 ug/mL 95i9 9618 8812 90±7 Emu-Type-B Chrom. 24 50 pg/mL 0 0 0 4:2 Emu-Type-B Chrom. 24 10 pig/mL 82t14 86±14 88±9 66±9 Emu-Type-B Chrom. 24 5 pg/mL 110L11 137A9 95A8 92+1 12-MTA 50 ug/mL 0 0 0 0 12-MTA 20 pg/mL 0 0 0 2:4 12-MTA 10 pg/mL 59±14 68114 70±17 46±11 12-MTA 5 ig/mL 101112 97±9 101112 65±3 12-MTA 2 pg/mL 60±17 84:5 55+9 5 *Prior to extraction the original oil sample was treated by passing nitrogen gas at high flow rate through oil heated at 135 0 C for two hours with rapid stirring, to remove volatile compounds.
- 49 Effects of Fatty acid methyl ester of emu oil, methanol extracts of emu and ostrich oil produced by fungal inoculation and incubation on Leukotriene Synthesis (Expressed as a percentage of the Methanol control) s TABLE 8 Test Material Dilution Isomer 1__ some 2 LB 5-H Control 1100±9 100±10 100±6 10015 Eatty acid methyl ester of emu oil* 50 pig/mL 7±0.5 0 8±1 6±2 Fatty acid methyl ester of emu oil* 10 4g/mL 103±9 103±8 95±6 105±4 Emu oil-WB methanol extract 50 pg/mL 4±0.5 0 0 23±4 Chrom. 21 Emu oil-WB methanol extract 10 gg/mL 61±2 65±2 80±3 85±3 Chrom. 21 Ostrich oil methanol extract Cho.2 0 .g/mL 9±2 14±3 2±6 21±8 Chrom. 22 _________ Ostrich oil methanol extract 10 gig/mL 56±12 74±17 65±11 83±1I3 Chrom. 22 1 1 * Fatty acid methyl ester (FAME) of emu oil sample A, Chromatogram 1. Results and Discussion The data shows that all three samples in table were potent inhibitors of the 5-LOZ io pathway. The data are compared to 12-methyl tetradecanoic acid which showed 100% inhibition as low as 20 g/mL. With respect to samples in Table 8, FAME sample was the least effective, where as Emu oil-WB and Ostrich oil samples are approximately the same as the three samples in Table 7. This confirms that the process for the production of biologically-active oils may 15 be reproduced using different lipid substrates etc. E) In-vitro Prostaglandin PGE 2 (COX Pathways) Assay Oil Samples This assay was performed using Cayman chemicals Prostaglandin E 2 EIA Kit Monoclonal, according to kit protocol. Each sample was assayed at three dilutions in 20 duplicate. As can be seen from Table 9 the inhibition of the PGE 2 response to aspirin (50 [M) was around 72.6% of the control value. In particular the two samples produced dose -50 dependent inhibition of secreted PGE 2 from the mouse fibroblast cell line equivalent to or better than aspirin under the test conditions. Table 9 Percent Inhibition of Secreted PGE 2 from 3T3 cells exposed to Oil Extracts 5 Concentration Sample % Control jItg/mL_____ ___ DMSO + A23187 100 Aspirin 50 [M 72.6 Emu Oil Extract - P3 Chrom. 3 100 52 Emu Oil Extract - P3 Chrom. 3 20 59 Emu Oil Extract - P3 Chrom. 3 4 84.8 Lyprinol - P10 100 60.9 Lyprinol - P10 20 83.6 Lyprinol - P10 4 84.6 F) Examples of therapeutic activity 1) Patient suffering from ulcerative colitis for seven years had experienced 10 chronic diarrhoea and daily rectal bleeding. Patient ingested 5 mL of fungi-derived biologically-active emu oil twice daily. All anal bleeding associated with the ulcerative colitis disappeared after 2 months. This patient has also responded to fungi-derived biologically-active ostrich oil. 2) Patient suffering chronic pain from intestinal and duodenal ulcers ingested 5 1S mL of fungi-derived biologically-active emu oil twice daily and pain has ceased. Patient also observed that his unstable diabetes became more responsive to the insulin resulting in a reduction of dosage required. 3) Patient diagnosed with Crohn's disease 5 years ago and was suffering ongoing abdominal pain, diarrhoea or constipation, rectal bleeding, cold sweats and lethargy. 20 After weeks ingesting 5mL of fungi derived biologically-active emu oil twice daily. The patient's Crohn's disease is in remission (this has been confirmed by medical tests) with no further abdominal pains, diarrhoea or constipation.
-51 4) Patient diagnosed with breast cancer, had lumpectomy, radiation and chemotherapy. Topical application of cream produced from fungi-derived biologically active oil applied three times daily which reduced pain and inflammation in the breast. 5) Patient is a 54 year old Caucasian male with a 10 year history of mild to s moderate asthma, which was controlled with 400ug twice daily of beclomethasone and either salbutam'ol or turbutamine bronchodilator inhalers where needed. This was inadequate to control viral induced asthma following winter infections where oral prednisone at 5mg/day was required to reduce chronic wheezing and coughing to an acceptable level. The patient was administered 8g/day of fungi-derived biologically io active emu oil in divided doses-4g morning and night. Within 3 weeks all asthma symptoms reduced, and improvement continued following cessation of aerosol steroids. After 2 months on the oil, the patient controlled all symptoms of asthma with 4g/day of the oil and no other medication. In addition, the administration of the oil has reduced the need for LOSEC to be taken for the patient's gastric reflux. 15 6) Patient is a 62 year old female with a 51 year history of chronic asthma (Classified as chronic airways limited), which was controlled by 10-50mg/day of oral prednisone, 900mg/day of neulin, plus frequent use of ventolin/atrovent puffers and nebules was required to control chronic wheezing and coughing to an acceptable level. The patient was administered 6ml of fungi-derived biologically-active emu oil in divided 20 doses, 3mL morning and night. The patient has been on this dose of oil for 11 months and this has virtually eliminated the wheezing noise, reduced the level of coughing, plus the level of prednisone has been reduced to 5mg/day. Also use of puffers and nebules has been reduced. No longer needs to take Losec for gastric reflux. By increasing the emu oil to 9mL/day, three 3mL doses/day with a slight increase in prednisone to 10mg/day any 25 asthma attacks can be controlled (the oil synergistically increases activity of prednisone, as confirmed by a rat model). Her daily life style has been greatly improved since commencing use of this oil. 7) Patient is an eurasian Male patient 23 years of age, diagnosed by colonoscopy, and is prescribed 40 mg prednisone daily reduced 5 mg every two weeks, 2 grams of 30 mesalamine daily. 6 weeks later after blood results received, the patient is hospitalised and administered 7 days of hydrocortisone IV, lost 4 kg in weight, heads of hip bones began to die off as a resulting side effect of the medication. The patient is presecribed post-hospital medication of: 100 mg Imuran daily (intended four year treatment) 3s 50 mg of prednisone daily (reducing 5 mg every two weeks).
-52 The patient then began taking 5 ml of oil (batch 365) three times a day, and ceased all other medication within one month from starting on the oil. His medical problems continued to reduce in severity. Three months after starting on the oil the patient was instructed to take extract of oil (batch 365), two teaspoons daily, and has experienced no 5 chronic symptoms in four months. The patient's health continues to improve (digestive system, stamina, fitness etc), with a weight gain of 5 kg. Cumulative C Reactive Protein reduced over a period of six months from 65.1 to 5.3 mg/L, Range (0.0 - 5.0) mg/L. The patient's results are summarised in Table 10 below. 10 CRP and ESR Results TABLE 10 C Reactive Protein ESR Date (High Sensitivity) Range (0.0 - 5.0) mg/L Range (0 -20) mm/hr 07/08/03 65.1 9/09/03 25.9 21/10/03 33.5 09/12/03 5.2 4 10/02/03 4.9 3 13/04/03 5.3 1 -53 C - D4C 0A 0 0 0N Wl 0l 0 0 a .- 0 00 0 Z0 00 Z0 0~ 0 0 a~ 0 as ~ 2 "0 CE 6.1 0 g 0~ 0 0 0 0 4 0,~ 0 0 0 (D 00 ou r.A*. ,-a4) > 9~ Bo Q. or m) 0 10 o co 0 ~0 0 0 0. 0 0 0 0 r.4 V0- 0 o800)- ' cl 0 u 0 V 0 u O 0 0 u 02 00 0~~ 0~ OuQ r- 2 40 4)4))4 m) 8) 00 4 4)) ccD C4 tn00 cc0 - 54 e'J rq Cl 4 C'4 C4 C C4 C4 C4 Nl N C4 C14 .0~~~ -I- .M ~. Q0 00 o .0 0o 2 0 ou 060 00 000 0O 4) 0O 00 4.) V. 0 7'A -r 0 -C 0 0) 00 u 0000 0 9 0 0 - 00 - CC) C.) :)~0 CO22 - 55 m ~ 00 W )W 0 C> C 0- 0 0 el (N 6 oU V l( lC 2 2 2 20 2) 2 2 2 0) 8) 00 0 c -0 go .k -000. -00 5 0 0~. 0 0 0 00 00 -5LO)00 0 0 Cd a~ 0 .8) 00 * - ZO L)-o8 CZ 0 0 00 -S. : "Ou mu 0"EOco '3 us50 'E on ,O u8E)08uQ. 0 2t 8)00 CO 01c)4 m 0 w OC 0 000IC4 -56 in00 00 CliC1 C4 00 00 (0 CO m co oo 0 00 0 00 , 1 C1 C14 en

Claims (15)

1. A process for the production of fats or oils and their extracts containing biologically-active chemical compounds from a lipid substrate, the process comprising: a) inoculation of a lipid substrate with fungally derived lipolytic enzymes s b) incubating the inoculated substrate for a period of between about 7-120 days at a temperature of between about 4-35*C, at a humidity of between about 75-100%, and c) processing said substrate mixture to obtain a biologically active fat or oil.
2. The process according to claim 1 wherein in step b) typically the period of incubation is between about 7 to 28 days at high.humidity of between about 80-100%. 1o
3. The process according to claim 1 wherein in step c), if the lipid is animal derived, it is typical that the product is a biologically active oil obtained by rendering said inoculated substrate.
4. The process according to claim 1 wherein in step c), if the lipid is plant or seed derived, the biologically active oil is obtained by cold pressing or solvent extraction is of said inoculated substrate mixture.
5. The process according to claim 1 wherein the oil is prepared by solvent extraction using methanol at low temperature.
6. A biologically active fat or oil and extracts thereof produced according to the process of any one of claims 1 to 5. 20
7. A method of treating inflammatory conditions in a human or animal patient, which comprises administration to the patient of an effective amount of a biologically active oil or extract where the oil is prepared by fungal metabolism/transformation of lipid substrates to produce fats and more particularly oils and their extracts containing biologically-active chemical compounds. 25
8. The method according to claim 7, wherein the said administration is oral, transdennal or subcutaneous administration.
9. T method according to claim 7, wherein the said inflammatory conditions include musculo-skeletal disorders such as arthritis, including rheumatoid arthritis and osteoarthritis. 30
10. The method according to claim 7, wherein said inflammatory conditions include gastrointestinal disorders such as irritable bowel disease including Crohn's disease and ulcerative colitis.
11. The method according to claim 7, wherein said inflammatory conditions are respiratory diseases, including asthma. - 58
12. The method according to claim 7, wherein the oil or extract is used as a phannaceutically cream, prepared with one or more acceptable carriers or diluents.
13. Use of the oil and/or extracts as claimed in claim 6, in the manufacture of a medicament for use in the inhibition of LOX pathways, including inhibition of 5-HETE s and/or 12-HETE.
14. Use of the oil and/or extracts as claimed in claim 6, in the manufacture of a medicament for use in the inhibition of cyclooxygenase enzymes (COX) pathways.
15. Use of the oil and/or extracts as claimed in claim 6, in the preparation of a medicament for the inhibition of C reactive protein pathway. 10 Dated 21 December, 2010 Athol Gillies Turner Patent Attorneys for the Applicant/Nominated Person SPRUSON & FERGUSON
AU2010257352A 2003-06-04 2010-12-21 Biologically active oils Ceased AU2010257352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2010257352A AU2010257352B2 (en) 2003-06-04 2010-12-21 Biologically active oils

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2003902823A AU2003902823A0 (en) 2003-06-04 2003-06-04 Biologically active oils
AU2003902823 2003-06-04
AU2004245575A AU2004245575A1 (en) 2003-06-04 2004-06-04 Biologically active oils
AU2010257352A AU2010257352B2 (en) 2003-06-04 2010-12-21 Biologically active oils

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2004245575A Division AU2004245575A1 (en) 2003-06-04 2004-06-04 Biologically active oils

Publications (2)

Publication Number Publication Date
AU2010257352A1 true AU2010257352A1 (en) 2011-01-20
AU2010257352B2 AU2010257352B2 (en) 2012-07-12

Family

ID=43478375

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2010257352A Ceased AU2010257352B2 (en) 2003-06-04 2010-12-21 Biologically active oils

Country Status (1)

Country Link
AU (1) AU2010257352B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172177B2 (en) * 1990-11-14 2001-06-04 イミュー プロダクツ ウェスターン オーストレイリア ピーティーワイ. リミテッド Anti-flame mixtures derived from emu oil
US5834027A (en) * 1996-04-03 1998-11-10 Cardinale Fezler; Donna L. Injection of rhea and ostrich oils in animals

Also Published As

Publication number Publication date
AU2010257352B2 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
US8039512B2 (en) Biologically active oils
CA2319093C (en) Sea cucumber carotenoid lipid fraction products and methods of use
Habashy et al. Anti-inflammatory effects of jojoba liquid wax in experimental models
US6399105B1 (en) Sea cucumber carotenoid lipid fraction products and methods of use
AU3138199A (en) Novel synergistic compositions containing aromatic compounds and terpenoids present in alpinia galanga
JP2016504999A (en) Eicosapentaenoic acid (EPA) formulation
CN105814209B (en) Microbial oils containing dihomo-gamma-linolenic acid and microbial biomass containing dihomo-gamma-linolenic acid
Megwas et al. Effect of Bambara nut consumption on blood glucose level and lipid profile of Wistar rats
JPH0920672A (en) Antiallergic substance, its production, antiallergic agent and functional food
Sachan et al. In-Vitro & In-Vivo Efficacy Of Moringa Oleifera Plant Constituents In Urolithiasis As Antilithiatic Drug
AU2010257352B2 (en) Biologically active oils
Gaber et al. Biological in Vitro and in Vivo Studies of the Milk Thistle Seed Oil
FR2481927A1 (en) ANTI-ALLERGIC COMPOSITION AND PROCESS FOR THE PREPARATION THEREOF FROM A LACTIC ACID BACTERIUM OF THE GENUS STREPTOCOCCUS
JPH03259049A (en) Functional food material
WO2024075835A1 (en) Action for suppressing any increase in body weight by aqueous extract of nannochloropsis algae
JP2007230882A (en) Plasminogen activator inhibitor-i inhibitor and food composition compounded therewith
RU2767908C1 (en) Lipid-correcting agent of seaweed
Olasunkanmi et al. Evaluation of Invitro Anti-Inflammatory Potential of Aqueous Solanum Aethiopicup (Garden Egg) Leaf Extract
WO2003086436A1 (en) Enteric fat absorption inhibitors contaiing plant extract and foods containing the same
Cao et al. Protective effect of cellulose and soluble dietary fiber from Saccharina japonica by-products on regulating inflammatory responses, gut microbiota, and SCFAs production in colitis mice
Yu et al. Radical Scavenging and Hypolipidemic Activity of Aqueous Extracts from Labadou (A Traditional Fermented Soybean Food of Southern China)
Abd El-Rahman Extraction and separation of γ-oryzanol from rice bran oil by HPLC
JPH0253726A (en) Agent for lowering cholesterol and novel phospholipid
Ajdari et al. Research Article Hypocholesterolemic Activity of Monascus Fermented Product in the Absence of Monacolins with Partial Purification for Functional Food Applications
MXPA00007136A (en) Sea cucumber carotenoid lipid fraction products and methods of use

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired