AU2010206097B2 - Improved positive displacement flowmeter - Google Patents

Improved positive displacement flowmeter Download PDF

Info

Publication number
AU2010206097B2
AU2010206097B2 AU2010206097A AU2010206097A AU2010206097B2 AU 2010206097 B2 AU2010206097 B2 AU 2010206097B2 AU 2010206097 A AU2010206097 A AU 2010206097A AU 2010206097 A AU2010206097 A AU 2010206097A AU 2010206097 B2 AU2010206097 B2 AU 2010206097B2
Authority
AU
Australia
Prior art keywords
positive displacement
displacement flowmeter
sensor
pole
flowmeter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2010206097A
Other versions
AU2010206097A1 (en
Inventor
Wayne Fuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trimec Industries Pty Ltd
Original Assignee
Trimec Industries Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2009903775A external-priority patent/AU2009903775A0/en
Application filed by Trimec Industries Pty Ltd filed Critical Trimec Industries Pty Ltd
Priority to AU2010206097A priority Critical patent/AU2010206097B2/en
Publication of AU2010206097A1 publication Critical patent/AU2010206097A1/en
Application granted granted Critical
Publication of AU2010206097B2 publication Critical patent/AU2010206097B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/04Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
    • G01F3/06Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
    • G01F3/10Geared or lobed impeller meters

Abstract

There is a positive displacement flownieter which includes two primary measuring elements 6, 7 rotatable on respective spaced apart axes 9, 10 within a housing 5 between a fluid inlet and fluid outlet. The elements 6, 7 are linked to rotate in accordance with volumetric flow through the flowmeter from the inlet to the outlet. There are two opposed pole magnets 16, 17 disposed at separated positions on one of the elements 6 and a pole sensitive sensor 13 located in a rotational path of said magnets whereby the sensor 13 is adapted to emit an output signal only upon activation by said two opposed pole magnets. -8 - Figure 1

Description

COMMONWEALTH OF AUSTRALIA PATENTS ACT 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title: IMPROVED POSITIVE DISPLACEMENT FLOWMETER The following statement is a full description of this invention including the best method of performing known to us. - 1 - This invention relates to apparatus for flow measurement. More particularly, although not exclusively it discloses improvements to positive displacement flowmeters to achieve improved electrical signal generation. Positive displacement flowmeters typically include oval rotor, rotary vane and gear wheel flowmeters. Oval rotor flowmeters for example comprise a pair of oval shaped rotors as the primary measuring elements. With those meters having direct pulse generation magnets are fitted to the rotors. These rotors rotate in accordance with fluid flow passing through the meter. One or more fixed sensors or signal generating means such as reed switches, hall effect devices, coils or proximity switches etc. are excited to generate an electrical pulse each time one of the rotor mounted magnets passes. An output train or series of such pulses is necessary for the purpose of flow rate integration and calculation. One disadvantage with such prior art flowmeters is that transient flow reversals adversely affect the quality and point accuracy of the flowmeter output. Such flow reversals occur for example in internal combustion engine fuel supply systems and pulsating flow lines. They can cause substantial inaccuracies in the measurement of fluid flow in the forward direction. More specifically, with prior art devices such as that shown schematically in figure 1, magnets 1 are mounted on respective lobes 2 of rotors 3. As the rotors rotate these magnets each pass a single fixed sensor 4 which is thereby activated to generate one pulse. After the magnetic field from each magnet passes out of the sensor activation zone the sensor automatically resets itself for the next pass. If at any time during this process the fluid flow direction and rotor rotation briefly reverses, the last activating magnet after leaving -2can re-enter the sensor activation zone to cause generation of an additional aberrant pulse. This can produce a point error of as much as 50% to 100%. This condition can apply to a magnet either approaching or leaving the sensor activation zone. Generally the greater the order of reverse flow the larger is the potential for erroneous pulses. These pulses result in inconsistent and inaccurate readings being transmitted to the receiving instrument. It is therefore an object of this invention to ameliorate the aforementioned disadvantage and accordingly a positive displacement flowmeter is disclosed which includes at least two primary measuring elements rotatable on respective spaced apart axes within a housing between a fluid inlet and a fluid outlet, said elements being linked to rotate in accordance with volumetric flow through the flowmeter from said inlet to said outlet, at least two opposed pole magnets disposed at respective separated magnet positions on one or more of the elements and a pole sensitive sensor located closely adjacent a rotational path of said magnet positions wherein said pole sensitive sensor is of a type to adopt a first electrical state upon passing of one of said at least two opposed pole magnets and retain said first electrical state until another of said at least two opposed pole magnets passes whereby said sensor adopts a second electrical state to emit an output signal. Preferably said opposed pole magnets are positioned at about 180 degrees apart on one of said elements. It is further preferred that said pole sensitive sensor is a bi-polar hall effect device or other pole sensitive status latching sensor. It is further preferred that primary measuring elements are rotors and said opposed pole magnets are disposed on opposite lobes of one of said rotors.
One currently preferred embodiment of the invention will now be described with reference to the attached figure 2 which shows a schematic cross sectional view of a flowmeter constructed in accordance with said invention. There is a flowmeter housing 5 from which the cover (not shown) has been removed to show a pair of oval rotors 6, 7 within an operating chamber 8. The rotors are offset by 90 degrees as shown and meshed together to rotate around spaced apart parallel axis 9, 10 in directions indicated for example by arrows 11, 12 as fluid passes through the meter. In accordance with the invention there is a pole sensitive status latching sensor such as a bi-polar hall effect device 13 fixed in the housing closely adjacent the rotational path of the rotor lobes 14, 15. These lobes have opposed pole magnets 16, 17 mounted in them which upon rotor rotation alternately pass their facing north and south magnetic poles closely over the sensor. The sensor is of a type to adopt a first electrical state upon the passing of one magnetic pole and retain that state until the other opposite pole passes whereby it adopts a second electrical state to emit an output pulse. The effect of this novel arrangement is that the rotational operating window required for the sensor pulse generation is substantially increased to the extent that typical transient flow reversals and associated rotor reversals are not registered by the meter. Forward flow measurement of the meter is thus not compromised by transient flow reversals as with prior art meters. It will thus be appreciated that this invention at least in the form of the embodiment disclosed provides a novel and useful improvement in the construction of positive displacement flowmeters. Clearly however the -4example described is only the currently preferred form of the invention and a wide variety of modifications may be made which would be apparent to a person skilled in the art. For example the shape, configuration and number of rotors, the placement of the magnets and the type and positioning of the sensor may change following further development work by the inventors. -5 -

Claims (8)

  1. 2. The positive displacement flowmeter as claimed in claim 1 wherein said at least two of said opposed pole magnets are positioned at about 180 degrees apart on said one or more of the elements.
  2. 3. The positive displacement flowmeter as claimed in claim 1 wherein said pole sensitive sensor is a pole sensitive latching sensor.
  3. 4. The positive displacement flowmeter as claimed in claim 3 wherein said pole sensitive latching sensor is a bi-polar hall effect device.
  4. 5. The positive displacement flowmeter as claimed in claim 1 wherein said primary measuring elements are oval rotors with rotor lobes. -6-
  5. 6. The positive displacement flowmeter as claimed in claim 5 wherein said rotors are offset by 90 degrees and are meshed together to rotate around said spaced apart axes.
  6. 7. The positive displacement flowmeter as claimed in claim 6 wherein said opposed pole magnets are disposed one each on respective ones of said rotor lobes.
  7. 8. The positive displacement flowmeter as claimed in claim 1 wherein said pole sensitive sensor is fixed to said housing.
  8. 9. A positive displacement flowmeter substantially as described herein with reference to figure 2. Dated this 30th day of November, 2012 Trimec Industries Pty Ltd By Their Patent Attorney MICHAEL ANDERSON-TAYLOR
AU2010206097A 2009-08-13 2010-08-03 Improved positive displacement flowmeter Ceased AU2010206097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2010206097A AU2010206097B2 (en) 2009-08-13 2010-08-03 Improved positive displacement flowmeter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2009903775 2009-08-13
AU2009903775A AU2009903775A0 (en) 2009-08-13 Improvements in positive displacement flowmeters
AU2010206097A AU2010206097B2 (en) 2009-08-13 2010-08-03 Improved positive displacement flowmeter

Publications (2)

Publication Number Publication Date
AU2010206097A1 AU2010206097A1 (en) 2011-03-03
AU2010206097B2 true AU2010206097B2 (en) 2013-02-14

Family

ID=43629938

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2010206097A Ceased AU2010206097B2 (en) 2009-08-13 2010-08-03 Improved positive displacement flowmeter

Country Status (1)

Country Link
AU (1) AU2010206097B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642001A2 (en) * 1990-08-20 1995-03-08 Oval Engineering Co., Ltd. Positive displacement flowmeter
WO2006131134A1 (en) * 2005-06-08 2006-12-14 Ecolab Inc. Oval gear meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0642001A2 (en) * 1990-08-20 1995-03-08 Oval Engineering Co., Ltd. Positive displacement flowmeter
WO2006131134A1 (en) * 2005-06-08 2006-12-14 Ecolab Inc. Oval gear meter

Also Published As

Publication number Publication date
AU2010206097A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
US8757011B2 (en) Flow meter apparatus including two polarized magnets in opposite direction and magnetic field sensors to sense direction and intensity of magnetic field
ES2639538T3 (en) Flow detector and procedure to measure the volume and / or flow rate of a medium
US20090126478A1 (en) Oval Gear Meter
US6945125B2 (en) High resolution pulse count interface
US8544345B2 (en) Positive displacement flow meter
AU2010206097B2 (en) Improved positive displacement flowmeter
EP3783319B1 (en) Flow meter
CA2752078A1 (en) Improved positive displacement flow meter
JP3063809B2 (en) Volumetric flow meter
CN111024175A (en) Bidirectional meter for reducing backflow error
US7007558B1 (en) Pulse transmitter
EP2286186B1 (en) Diaphragm flow meter with rotating magnets
AU2006228061A1 (en) Improvements in oval rotor flowmeters having direct pulse generation
JP4245414B2 (en) Rotation detector, positive displacement flow meter, and rotation detection method
RU195321U1 (en) The conversion unit into an electrical signal of the rotation parameters made in the form of an impeller of a measuring device element
JPH04318426A (en) Flowmeter
KR20020076418A (en) A turbine flow meter
AU2007251522B2 (en) Oval gear meter
AU2010202591A1 (en) Improved Positive Displacement Flowmeter
JP2008164295A (en) Flow measuring apparatus
UA52003A (en) Measuring system
JP2017181425A (en) Film type gas meter
RU2015104744A (en) METHOD FOR MEASURING LIQUID FLOWS PROTECTED FROM UNAUTHORIZED ACCESS AND DEVICE FOR ITS IMPLEMENTATION
UA47424U (en) Stepan filipchuk's device for measurement of gas flow rate

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired