AU2009203064B2 - Air flow control method and system - Google Patents
Air flow control method and system Download PDFInfo
- Publication number
- AU2009203064B2 AU2009203064B2 AU2009203064A AU2009203064A AU2009203064B2 AU 2009203064 B2 AU2009203064 B2 AU 2009203064B2 AU 2009203064 A AU2009203064 A AU 2009203064A AU 2009203064 A AU2009203064 A AU 2009203064A AU 2009203064 B2 AU2009203064 B2 AU 2009203064B2
- Authority
- AU
- Australia
- Prior art keywords
- refrigeration
- zone
- air
- produce
- storage zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D17/00—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
- F25D17/005—Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces in cold rooms
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
An integrated airflow control facility for force cooling of produce in a cool room (10), said facility comprising a dedicated storage zone (1) for storage of said produce and a dedicated refrigeration zone (2) separated by a physical divider (34) wherein said divider includes one or more integral extraction fan means (24) to extract air form said storage zone and direct said air through refrigeration coil means (40/42) positioned in said refrigeration zone for cooling thereof, wherein the divider further includes one or more air outlet means (44/46) to direct the cooled air exiting the refrigeration zone into the storage zone and wherein said storage zone, refrigeration zone and said physical divider are integrated into a single airflow control facility. 291613_1
Description
AUSTRALIA FB RICE & CO Patent and Trade Mark Attorneys Patents Act 1990 COOL DYNAMICS REFRIGERATION PTY LTD, POST HARVEST TECHNOLOGY CONSULTANTS PTY LTD COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Airflow control method and system The following statement is a full description of this invention including the best method of performing it known to us:- 2 Cross-Reference to Related Applications The present application claims priority from Australian Provisional Patent Application No 2008903908 filed on 30 July 2008, the content of which is incorporated herein by reference. 5 Field Embodiments generally relate to a method and system for air flow control and more particularly to a method and system for the control of air flow in cool rooms where a product is required to be force cooled. 10 Background Produce, such as fruit and vegetables, are force cooled prior to storage and/or transportation. This type of cooling requires cool air to be drawn through the produce, which is usually contained within crates, boxes or cartons and can be stacked on one or more transportation pallets. The storage of the produce is such that it enables air to 15 flow through the sides of the crates (or boxes or cartons) and thus, through the produce within that storage area. The produce is stacked on one or more transport pallets that can be stacked in a cool room in rows and if necessary on more than one tier or level. At an end opposite an entry to the cool room there is generally located, one or more fans which is used to 20 draw warm air out of the cool room and circulate cool air through the cool room, after introducing cool air down the sides of the cool room. This air is then able to move through the pallets and over the produce in order to force cool the produce or at least maintain it within a predetermined range of temperature. In existing cool room installations, a refrigeration coil unit is generally installed 25 at the end where the fans are located inside the cool room. That is, the refrigeration coil unit is installed on an interior face of the back wall at a height which is above the fans and above the pallets. Air passing through the refrigeration coil is then cooled and redirected to the sides of the cool room. With the position of such refrigeration coils, it has the disadvantage of having to 30 allow for the height of the refrigeration coil unit which adds to the overall height of the cool room tiers, as a refrigeration coil unit is required for each tier. Its position on the internal face of the rear wall also limits the amount of pallets or stacks of pallets that can be stored within a cool room having a predefined height. Thus, for example there may be a situation where four tiers can be used for storage instead of three tears where 35 the refrigeration coil is located at a position other than at the upper surface of the internal rear wall.
3 Embodiments seek to overcome one or more of the above disadvantages or to at least provide a viable alternative. Summary Some embodiments relate to an integrated airflow control facility for force 5 cooling of produce in a cool room, said facility comprising a dedicated storage zone for storage of said produce and a dedicated refrigeration zone separated by a physical divider wherein said divider includes one or more integral extraction fan means to extract air form said storage zone and direct said air through refrigeration coil means positioned in said refrigeration zone for cooling thereof, wherein said divider further 10 includes one or more air outlet means to return said cooled air exiting said refrigeration zone into said storage zone and wherein said storage zone, refrigeration zone and said physical divider are integrated into a single airflow control facility. The outlet means may be formed with or arranged adjacent the refrigeration coil means. The cooled air directed through the outlet means may be directed along the 15 sides of the produce storing zone for subsequent distribution through the produce. The refrigeration coil means may be positioned between the extraction fan and the air outlet. The produce may be stored in rows of pallets and in one or more tiers, such that at least one row of pallets of produce are in each tier. In each tier the outlet means may 20 comprise one or more outlets with each outlet adapted to have cooled air directed therethrough onto a corresponding row of pallets. The area in which the refrigeration coil means, or evaporators, is located may be bounded by at least opposed side walls of the cool room, a rear wall of the cool room and the divider (or front plenum wall). The refrigeration coil means may extend wholly 25 or partially between the divider and the rear wall of the cool room and be arranged in any orientation that enables air exiting from the extraction fan means to be cooled. The refrigeration coil means may be one or more separate units that extend upwardly from the floor or downwardly from a ceiling of the cool room. The refrigeration coil means may be at an acute angle with respect to the plane of the divider and the rear wall. 30 Each of the refrigeration coil units may be rectangular slabs of coils. The zone containing the refrigeration coil means may be partitioned such that a refrigeration coil unit, an outlet and one or more extraction fans direct air from the produce storing zone through separate compartments for cooling and redirected through an outlet to cool a row of pallets storing the produce. In this way, the number of rows 35 of pallets to be cooled can be controlled.
4 For a cool room having more than one tier, each tier may be separated and have separate extraction fan means, refrigeration coil means and outlet means. Some embodiments relate to an airflow control facility, the facility sized to receive at least one pallet of produce to be cooled, the facility comprising: a storage 5 zone to store at least one pallet; a refrigeration zone, positioned horizontally adjacent to the storage zone; a vertical divider separating the refrigeration zone from the storage zone; at least one fan to draw air from the storage zone into the refrigeration zone; refrigeration means, positioned in the refrigeration zone to cool the air; and at least one outlet to allow the cooled air to flow from the refrigeration zone into the storage zone, 10 wherein the refrigeration means is positioned such that air drawn from the storage zone into the refrigeration zone by the at least one fan must pass through the refrigeration means before exiting the refrigeration zone through the at least one outlet. The facility may comprise multiple refrigeration zones. The facility may comprise two or more horizontally adjacent and separate refrigeration zones. The 15 facility may comprise two or more vertically adjacent and separate refrigeration zones. The storage zone may be sized to house a plurality of pallets. The facility may further comprise a structure within the storage zone capable of supporting multiple tiers of pallets arranged vertically. The facility may be configured to allow air flow to be controlled to flow through one of the refrigeration zones and not the others, or all of the 20 refrigeration zones at the same time. The storage zone may be configured to receive multiple rows of pallets of produce, each row of pallets being aligned with one of the refrigeration zones to be cooled therewith. The refrigeration means may comprise two vertically extending refrigeration units positioned one on each laterally opposing side of the at least one fan. Two outlets 25 may be provided one on each laterally opposing side of the refrigeration means. At least part of the refrigeration means may be positioned at an angle relative to the divider. The refrigeration means may comprise a refrigeration unit adjacent at least one outlet. The refrigeration means may comprise an evaporator coil. The at least one fan and at least one outlet may be positioned to promote 30 substantially horizontal airflow in the storage zone. The facility may be configured such that one or more pallets of produce placed in the storage zone are cooled by air flowing substantially horizontally from the refrigeration zone, through the at least one 5 outlet, along the sides of the one or more pallets of produce, through the produce, and back into the refrigeration zone through the at least one fan. Other embodiments relate to a cool room for cooling or ripening produce, the cool room sized to receive at least one pallet of produce, the cool room comprising: a 5 storage zone to store at least one pallet; a refrigeration zone, positioned horizontally adjacent to the storage zone; a vertical divider separating the refrigeration zone from the storage zone; at least one fan to draw air from the storage zone into the refrigeration zone; refrigeration means, positioned in the refrigeration zone to cool the air; and at least one outlet to allow the cooled air to flow from the refrigeration zone into the 10 storage zone, wherein the refrigeration means is positioned such that air drawn from the storage zone into the refrigeration zone by the at least one fan must pass through the refrigeration means before exiting the refrigeration zone through the at least one outlet. The cool room may be configured such that one or more pallets of produce placed in the storage zone are cooled by air flowing substantially horizontally from the 15 refrigeration zone, through the at least one outlet, along the sides of the one or more pallets of produce, through the produce, and back into the refrigeration zone through the at least one fan. The cool room may comprise multiple refrigeration zones. The cool room may comprise two or more horizontally adjacent and separate refrigeration zones. The cool 20 room may comprise two or more vertically adjacent and separate refrigeration zones. The cool room may further comprise a structure within the storage zone capable of supporting multiple tiers of pallets arranged vertically. The cool room may be configured such that air flow can be controlled to flow through one of the refrigeration zones and not the others, or all of the refrigeration zones at the same time. 25 The storage zone of the facility or the cool room may be configured to receive multiple rows of pallets of produce, each row of pallets being aligned with one of the refrigeration zones to be cooled therewith. Brief Description of the Drawings and Legend 30 Legend 1. Storage zone 6 2. Refrigeration zone 10. Cool room 12. Central frame structure 14. Spacer 16. Spacer 18. Tracks 20. Vertical struts 24. Extraction fan 24A. Upper fan 24B. Lower fan 34. Divider 36. Compartment (plenum) 38. Rear wall 40. Refrigeration coil unit 41. Spacer 42. Refrigeration coil unit 43. Spacer 44. Air outlet 45. Infill walls 46. Air outlet 49. Single wall 51. Refrigeration coil support 60. Spacers 61. Spacers Embodiments will hereinafter be described, by way of example only, with reference to the drawings in which: Figs 1A, B and C are respectively plan, front and side views of a two tier 5 cooling assembly used in a cool room according to one embodiment; Figs 2A and B are respectively front and side views of a single tier cooling assembly used in a cool room according to a further embodiment; Fig. 3 is a plan view of a two line single tier cooling assembly according to a further embodiment; 10 Fig 4 shows plan, front and side views of a two tier cooling assembly according to a further embodiment; 7 Figs 5A, B and C are respectively plan, front and side views of a two tier cooling assembly according to a further embodiment; Figs 6A, B and C are respectively plan, front and side views of a single or two tier cooling assembly having refrigeration coil units at an angle according to a further 5 embodiment; and Figs 7A, B and C are respectively plan, front and side views of a single or two tier cooling assembly having horizontally disposed refrigeration coil units according to a further embodiment. Fig 8 is an end perspective view of a two tier cool room in another embodiment; 10 Detailed Description Referring firstly to Fig 1A, one embodiments comprises an integrated air flow control facility for forced cooling of produce stored in a cool room 10. The air flow control facility is preferably integrated into the construction of the cool room 10 15 and comprises discrete and dedicated zones including a storage zone 1 for the storage of produce for cooling where the storage zone 1 generally forms the bulk of the cooling room. The air flow control facility also includes a dedicated and discrete refrigeration zone 2 formed as part of the cool room 10 but specifically separated from the storage zone 1 by virtue of a physical divider 34. The physical divider 34 is provided with one 20 or more integral extraction fans 24 so as to provide for the drawing of air from the storage zone 1 into the refrigeration zone 2 for subsequent passage past refrigeration coil means 40 and 42 positioned within the refrigeration zone 2. The divider 34 further includes one or more outlets 44 and 46 so as to provide for the movement of air cooled by way of the refrigeration coil means to escape for a refrigeration zone and return to 25 the storage zone 1. The specific separation of the storage zone 1 and refrigeration zone 2 of the air flow control facility allows the facility to be incorporated into a cool room 10 in such a manner to allow maximum design flexibility and optimisation of the storage zone 1 in contrast to the refrigeration zone 2. 30 Referring now to Figures IA through to 1C, the rear of the cool room is provided with a divider 34, being an interior wall or front plenum wall, in which is mounted one or more fans 24. A compartment or plenum 36 is formed between the wall 34 and a rear wall 38 of the cool room 10 so as to provide the refrigeration zone 2. A pair of upstanding refrigeration coil units (evaporators) 40 and 42 in the refrigeration 35 zone extend between the front plenum wall and rear wall 38. Air flow through the fans 24 is directed through each of the coil units 40 and 42 to respective outlets 44 and 46 so 8 that the cooled air exiting from each of the units 40 and 42 is directed down the sides of the cool room 10 to then be drawn through the produce stored in pallet stacks positioned in the storage zone 1. In different embodiments, the coil units 40 and 42 may be at different 5 orientations, such as at an acute angle with respect to the longitudinal axis of the cool room and may not extend entirely from wall 34 to wall 38. Alternatively, the units 40 and 42 may be combined with the respective outlets 44 and 46 as shown in Fig. 4. Alternatively, a partition may exist in the space or compartment 36 extending between walls 34 and 38 so that two compartments are formed. A fan 24 may be used in each 10 compartment to draw air out of the cool room and through a separate coil unit which may be free-standing within the respective compartment or be formed at the outlet 44 or 46. In this manner air flow can be controlled to flow in one compartment and not the other or flow through both compartments at the same time. This would be dependent on the amount of produce that needs to be force cooled. The fan configuration may 15 either be forced draught or induced draught air flow through the units 40 and 42. Alternatively, a horizontal divider may split the compartment into upper and lower compartments respectively. Each compartment would have its own fan or bank of fans 24 and its own separate outlets which may be combined with respective coil units. Alternatively free-standing coil units may be arranged within the refrigeration 20 zone. Thus the coil units may extend from the floor or from the top of each compartment and need not extend over the entire height from floor to top. Any remaining space between a coil unit and the top (or floor) may be filled in with material in order to more efficiently direct the air to the outlet. The coil units may also extend horizontally across the plenum 36 between the side walls or a portion thereof. 25 In Fig 1A air from the produce storing area is returned through fans 24 and directed through vertically-mounted refrigeration coil units 40 and 42 and then through respective outlets 44 and 46 back into the produce storing area. Fig 1C, a side view corresponding to the front view of Fig 1B, shows a two tier assembly where there is an upper fan 24A and a lower fan 24B which direct the air through the refrigeration coil 30 units 40 and 42 and having spacers 41 and 43 above and below the coil units which would be infilled in order to better direct the air through the units 40 and 42. With reference to Fig 1B there is shown a front elevation of the two tier system of Figs 1 A and 1 C, in which for each tier there is a extraction fan 24 which directs air through respective refrigeration coil units 40 and 42 which are suspended between the 35 ceiling and floor of the cool room 10. The gaps between the ceiling and each refrigeration coil unit and the gaps between the floor and each refrigeration coil support 9 (51) are all infilled with material in order to direct the air to be cooled through each of the units 40 and 42 and out through outlets 44 and 46. Figs 2A and 2B respectively show front and side elevations of a single tier cool room in which air drawn from the storage zone 1 and directed through fan 24 which is 5 then directed to flow through the vertically-mounted refrigeration coil units 40 and 42 and out through respective outlets 44 and 46 as shown in Fig 2B. Infill walls 45 close off any gaps through which the air to be cooled would escape and is therefore directed through the coil units 40 and 42. Fig 3 shows two side-by-side flow control facilities which include a much larger 10 cool room area all on a single level in which each system operates similar to that disclosed with reference to Fig 1. The two compartments 36 forming two refrigeration zones 2 are divided by a single wall 49 either side of which is a respective outlet 46 and 46 which returns cooled air back into the main produce storing area. Two or more tiers may be used for this system. 15 In Fig 4 there is shown front 4B, side 4C and plan 4A views of a further embodiment in which the extraction fans 24 are placed closer to the ceiling and floor within the divider 34 in a two tier system. The side view shows the refrigeration coil units 40 and 42 having a space existing to the ceiling and to the floor and also a space existing between the back wall of the cool room and the units 40 and 42. All of these 20 spaces would be filled in by a suitable material. With reference to Fig 5A, B and C there is shown respectively plan, front, and side elevations of a two tier system that has separate split vertical refrigeration coil units 40A and 42A on a second tier and 40B and 42B on a first lower tier. Air from the exhaust fan 24 on each level flows through the refrigeration coil units and out through 25 outlets 44 and 46 back into the main cool room storage area. The mounting of each of the refrigeration coil units on each tier is intermediate the ceiling and floor of each tier. Each of the tiers form respective spacers 60 and 61 which are included in the plenum or compartment 36. Parts of the plenum 36 that are not taken up by the space occupied by spacers 60 and 61 are infilled with material so that the air distribution is directed 30 through the refrigeration coil units and into the discharge outlets 44 and 46. Referring to Fig 6A, B and C, there is shown respectively plan, front and side elevations of a system that is equally applicable to single or dual tiers. It includes in the plenum or compartment 36 forming the refrigeration zone 2 with one embodiment showing refrigeration coil units 40A and 42A either side of fan 24, the units extending 35 at an angle across the compartment between the rear wall and the divider or front wall of the plenum 34 and having a height such that they are disposed between the ceiling 10 and floor of the tier(s). These angles are typically between 45 and 60 degrees but may be at any other suitable angle. Spaces between the first angled refrigeration coil units 40A and 42A and the divider 34, and spaces between the ceiling and the floor and the units would be filled in by suitable material so that air does not go through that gap. In 5 a second embodiment and as an alternative to having coil units 40A and 42A, another pair of refrigeration coil units 40B and 42B are disposed at the sides of the divider 34 and parallel to and adjacent the outlets 44 and 46. This second pair of refrigeration coil units extends from the ceiling to the floor so that the entire outlet is covered by the second set of refrigeration coil units. 10 In Figs 7A, B and C there is shown dual tier system (that could also apply to a single tier system) in which a refrigeration coil unit 40 extends horizontally almost across the entire width of the space 36 of the refrigeration zone above a respective fan 24. This is more clearly seen in the plan view of Fig 7A. It extends from the rear wall to the divider or front wall of the plenum 34 and has a space above and below the 15 refrigeration coil unit 40. Thus air is directed from the fans 24 upwardly and through the coil 40 which is then cooled and expelled through respective side outlets 44 and 46. With any of the above arrangements, the volume of air that would require to be cooled from the interior of the cool room is much reduced as the space taken up by the refrigerant coil units is not a factor. As such, improved cooling efficiency is achieved 20 as there is not as great a volume of air to be cooled. The evaporator (refrigeration coil) capacity can be increased by increasing the size of the plenum between the rear wall 38 and front plenum wall 34. The system can be used for multiple forced air cooling blinds adjacent to one another, or in different positions around the cool room walls. 25 An embodiment of the air flow control facility as a cool room 10 is shown in Fig 8. The cool room 10 has two tiers and cools produce that is adapted to be held in containers or pallets. In this particular case the produce is banana and the cool room is used to ripen the banana which is held or stored in up to forty-four containers or pallets. The cool room 10 has a central frame structure 12 that separates two rows of stacked 30 pallets (not shown) that are loaded into spaces 14 and 16 of the cool room, typically by fork lift. The lower tier of rows of pallet stacks are placed on the floor of the cool room whilst the upper tier rows of pallet stacks are supported on each side of the cool room 10 on tracks 18 which are carried by vertical struts 20. Similar tracks are carried by the central frame 12 to support the inner edges of the lowermost pallets of the upper tier 35 stacks.
11 The lower rows of pallet stacks extend to a height less than the height of the tracks 18 so that air flow occurs across the top of the lower stacks. A similar air flow occurs across the top of the upper pallet stacks and an air corridor exists between the opposed pallet stacks. One or more air extraction fans 24 draw air from the air corridor 5 between the opposed pallet stacks, with that air being replaced by air drawn through the sides of the pallet stacks and through the produce contained within the stacks of pallets. Refrigerated air is thus directed horizontally along the face of the cartons/containers being forced air cooled or ripened, minimising the mixing of air leaving the refrigeration coil units or evaporators with room air before coming into contact with the 10 produce. With a multi-tier configuration, room heights are reduced or at least minimised, as the coil units/evaporators are generally installed or fitted in a vertical plane position and not in a front plenum wall positioned horizontally above the produce pallets that are being cooled or ripened. 15 In the described embodiments, the refrigeration evaporator coils are positioned in a vertical plane or horizontal plane between two walls, being a front plenum wall and a rear wall of the cool room, and a ceiling. This creates a space or plenum to allow fans to draw or force (induced draught or forced draught) air through the installed coil units. The air is then discharged from the plenum cavity through an opening or openings, 20 creating a curtain of air along the face of the pallets or cartons, crates or bins being forced air cooled or ripened. The air is then returned to the evaporator/refrigeration coils through holes in the face cartons minimising the mixing of air leaving the coil units with the room air before contacting the produce being cooled or ripened. The invention in the integrated air flow control facility of the invention provides 25 the dedicated separation of a storage zone of a cool room and the refrigeration zone so as to maximise the efficiency of both these two zones in a manner not found in any of the prior art. The separation of these two important zones allows improved efficiency and operation where the refrigeration zone can be specifically engineered for the purposes of maximising efficiency of the cooling function and a storage zone can be 30 engineered in accordance with the different requirements for maximising storage and air flow movement through to produce stored in the cool room. The described embodiments allow cooling air to be directed along the face or surface of the produce or product to be cooled with minimal contact with the storage zone air prior to the cool air being drawn into contact with the produce or products and 35 returned to the cooling evaporators thereby minimising any dilution of the cooling air and maximising the cooling affect.
12 It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative 5 and not restrictive.
Claims (20)
1. An airflow control facility, the facility sized to receive at least one pallet of produce to be cooled, the facility comprising: 5 a storage zone to store at least one pallet; a refrigeration zone, positioned horizontally adjacent to the storage zone; a vertical divider separating the refrigeration zone from the storage zone; at least one fan to draw air from the storage zone into the refrigeration zone; refrigeration means, positioned in the refrigeration zone to cool the air; and 10 at least one outlet to allow the cooled air to flow from the refrigeration zone into the storage zone, wherein the refrigeration means is positioned such that air drawn from the storage zone into the refrigeration zone by the at least one fan must pass through the refrigeration means before exiting the refrigeration zone through the at least one outlet. 15
2. A facility according to claim 1, wherein the at least one fan and at least one outlet are positioned to promote substantially horizontal airflow in the storage zone.
3. A facility according to claim 1 or 2, wherein the storage zone is sized to house a 20 plurality of pallets.
4. A facility according to any one of claims 1 to 3, comprising two or more horizontally adjacent and separate refrigeration zones. 25
5. A facility according to any one of claims 1 to 4, comprising two or more vertically adjacent and separate refrigeration zones.
6. A facility according to claim 4 or 5, wherein air flow can be controlled to flow through one of the refrigeration zones and not the others, or all of the refrigeration 30 zones at the same time.
7. A facility according to any one of claims 1 to 6, wherein the refrigeration means comprises two vertically extending refrigeration units positioned one on each laterally opposing side of the at least one fan. 35 14
8. A facility according to claim 7, wherein two outlets are provided one on each laterally opposing side of the refrigeration means.
9. A facility according to any one of claims 1 to 8, wherein at least part of the 5 refrigeration means is positioned at an angle relative to the divider.
10. A facility according to any one of claims 1 to 9, wherein the refrigeration means comprises a refrigeration unit adjacent at least one outlet. 10
11. A facility according to any one of claims 1 to 10, wherein the refrigeration means comprises at least one evaporator coil.
12. A facility according to any one of claims 1 to 11, configured such that one or more pallets of produce placed in the storage zone are cooled by air flowing 15 substantially horizontally from the refrigeration zone, through the at least one outlet, along the sides of the one or more pallets of produce, through the produce, and back into the refrigeration zone through the at least one fan.
13. A facility according to any one of claims 1 to 12, further comprising a structure 20 within the storage zone capable of supporting multiple tiers of pallets arranged vertically.
14. A cool room for cooling or ripening produce, the cool room sized to receive at least one pallet of produce, the cool room comprising: 25 a storage zone to store at least one pallet; a refrigeration zone, positioned horizontally adjacent to the storage zone; a vertical divider separating the refrigeration zone from the storage zone; at least one fan to draw air from the storage zone into the refrigeration zone; refrigeration means, positioned in the refrigeration zone to cool the air; and 30 at least one outlet to allow the cooled air to flow from the refrigeration zone into the storage zone, wherein the refrigeration means is positioned such that air drawn from the storage zone into the refrigeration zone by the at least one fan must pass through the refrigeration means before exiting the refrigeration zone through the at least one outlet. 35 15
15. A cool room according to claim 14, configured such that one or more pallets of produce placed in the storage zone are cooled by air flowing substantially horizontally from the refrigeration zone, through the at least one outlet, along the sides of the one or more pallets of produce, through the produce, and back into the refrigeration zone 5 through the at least one fan.
16. A cool room according to claims 14 or 15, comprising two or more horizontally adjacent and separate refrigeration zones. 10
17. A cool room according to any one of claims 14 to 16, comprising two or more vertically adjacent and separate refrigeration zones.
18. A cool room according to claim 16 or 17, wherein air flow can be controlled to flow through one of the refrigeration zones and not the others, or all of the refrigeration 15 zones at the same time.
19. A cool room according to any one of claims 14 to 18, further comprising a structure within the storage zone capable of supporting multiple tiers of pallets arranged vertically. 20
20. A facility according to any one of claims 1 to 13 or a cool room according to any one of claims 14 to 19, comprising multiple refrigeration zones, wherein the storage zone is configured to receive multiple rows of pallets of produce, each row of pallets being aligned with one of the refrigeration zones to be cooled therewith. 25
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2009203064A AU2009203064B2 (en) | 2008-07-30 | 2009-07-29 | Air flow control method and system |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2008903908A AU2008903908A0 (en) | 2008-07-30 | Air flow control method and system | |
AU2008903908 | 2008-07-30 | ||
AU2009203064A AU2009203064B2 (en) | 2008-07-30 | 2009-07-29 | Air flow control method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2009203064A1 AU2009203064A1 (en) | 2010-02-18 |
AU2009203064B2 true AU2009203064B2 (en) | 2014-11-06 |
Family
ID=41606914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2009203064A Active AU2009203064B2 (en) | 2008-07-30 | 2009-07-29 | Air flow control method and system |
Country Status (3)
Country | Link |
---|---|
US (1) | US20100024465A1 (en) |
AU (1) | AU2009203064B2 (en) |
NZ (1) | NZ578719A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201509661D0 (en) * | 2015-06-03 | 2015-07-15 | Ocado Innovation Ltd | Temperature controlled storage system |
US20160370019A1 (en) * | 2015-06-18 | 2016-12-22 | Technologies Holdings Corp. | Heating and cooling system for hazardous environments |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2708090A1 (en) * | 1993-07-01 | 1995-01-27 | Profroid Ind Sa | Fixed refrigeration chamber with external evaporator |
JPH10267495A (en) * | 1997-03-28 | 1998-10-09 | Sanyo Electric Co Ltd | Cooling refrigerator |
US5826432A (en) * | 1995-08-18 | 1998-10-27 | El Cold, Inc. | Blast chiller |
US6796142B2 (en) * | 2001-08-30 | 2004-09-28 | Integrated Marine Systems, Inc. | Continuous throughput blast freezer |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US659468A (en) * | 1899-07-03 | 1900-10-09 | Madison Cooper | Cold-storage apparatus. |
US3009333A (en) * | 1961-04-12 | 1961-11-21 | Warren Company Inc | Island type refrigerated display case |
US5671609A (en) * | 1996-08-15 | 1997-09-30 | Lionetti; Nicola | Refrigeration storage trailer |
DE10353046A1 (en) * | 2003-11-13 | 2005-06-09 | Lessing, Jürgen | Cooling device, in particular for cooling cold rooms |
-
2009
- 2009-07-29 NZ NZ578719A patent/NZ578719A/en not_active IP Right Cessation
- 2009-07-29 US US12/511,501 patent/US20100024465A1/en not_active Abandoned
- 2009-07-29 AU AU2009203064A patent/AU2009203064B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2708090A1 (en) * | 1993-07-01 | 1995-01-27 | Profroid Ind Sa | Fixed refrigeration chamber with external evaporator |
US5826432A (en) * | 1995-08-18 | 1998-10-27 | El Cold, Inc. | Blast chiller |
JPH10267495A (en) * | 1997-03-28 | 1998-10-09 | Sanyo Electric Co Ltd | Cooling refrigerator |
US6796142B2 (en) * | 2001-08-30 | 2004-09-28 | Integrated Marine Systems, Inc. | Continuous throughput blast freezer |
Also Published As
Publication number | Publication date |
---|---|
US20100024465A1 (en) | 2010-02-04 |
NZ578719A (en) | 2010-10-29 |
AU2009203064A1 (en) | 2010-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3887288B1 (en) | Multiple temperature automated storage system and method | |
US9297570B2 (en) | Rack-aisle freezing system for palletized product | |
US10202240B2 (en) | Storage system | |
AU2018101944A4 (en) | Produce box | |
KR101876581B1 (en) | Improvements in or relating to refrigerated display appliances | |
JP5556208B2 (en) | Showcase | |
US20140196496A1 (en) | Delivery container for temperature sensitive goods | |
US6405644B1 (en) | Environmentally controlled storage and ripening apparatus | |
US20160025402A1 (en) | Supercooling refrigerator | |
US7017366B2 (en) | Retail banana storage unit | |
US20130002098A1 (en) | Modular Refrigerated Merchandise Display System | |
JP2022546373A (en) | Automated storage and retrieval system with channels extending through multiple stacked containers | |
AU2009203064B2 (en) | Air flow control method and system | |
US20130002099A1 (en) | Modular Refrigerated Merchandise Display System | |
CN116157638A (en) | Temperature control system in automatic storage system | |
US6453694B1 (en) | Air curtain horizontal merchandiser | |
GB2627471A (en) | Roll-in dairy refrigerated cabinet and method | |
WO2023110531A1 (en) | System and method of temperature control in an automated grid based storage and retrieval system | |
KR970001298B1 (en) | Constructional things for a refrigerator | |
JPH01234782A (en) | Facing sale type show case | |
GB2619027A (en) | Multi-temperature storage system | |
JPH09280715A (en) | Freezer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FGA | Letters patent sealed or granted (standard patent) |