AU2009200585B2 - Method for Physical Layer Automatic Repeat Request for a Subscriber Unit - Google Patents

Method for Physical Layer Automatic Repeat Request for a Subscriber Unit Download PDF

Info

Publication number
AU2009200585B2
AU2009200585B2 AU2009200585A AU2009200585A AU2009200585B2 AU 2009200585 B2 AU2009200585 B2 AU 2009200585B2 AU 2009200585 A AU2009200585 A AU 2009200585A AU 2009200585 A AU2009200585 A AU 2009200585A AU 2009200585 B2 AU2009200585 B2 AU 2009200585B2
Authority
AU
Australia
Prior art keywords
data
packet
physical layer
packets
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2009200585A
Other versions
AU2009200585A1 (en
Inventor
Joseph A. Kwak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002313803A external-priority patent/AU2002313803A1/en
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to AU2009200585A priority Critical patent/AU2009200585B2/en
Publication of AU2009200585A1 publication Critical patent/AU2009200585A1/en
Application granted granted Critical
Publication of AU2009200585B2 publication Critical patent/AU2009200585B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1803Stop-and-wait protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1822Automatic repetition systems, e.g. Van Duuren systems involving configuration of automatic repeat request [ARQ] with parallel processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

Pool Section 29 Regulation 3.2(2) AUSTRALIA Patents Act 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: Invention Title: Method for Physical Layer Automatic Repeat Request for a Subscriber Unit The following statement is a full description of this invention, including the best method of performing it known to us: P111AHAU/1107 METHOD FOR PHYSICAL LAYER AUTOMATIC REPEAT REQUEST FOR A SUBSCRIBER UNIT BACKGROUND The present invention relates to wireless communication systems. More particularly, it relates to a modification to such systems by employing a physical layer (PHY) automatic repeat request (ARQ) scheme. Proposed broadband fixed wireless access (BFWA) communication systems, using either single carrier-frequency domain equalization (SC-FDE) or orthogonal frequency division multiplex (OFDM) plan on using a high speed downlink packet access (HSDPA) application. This application will transmit downlink packet data at high speeds. In BFWA, a building or group of buildings are connected, either wirelessly or wired, and operate as a single subscriber site. The data demand for such a system is quite high for the single site's multiple end users requiring large bandwidths. The current proposed system employs a layer 2 automatic repeat request (ARQ) system. Data blocks unsuccessfully transmitted to the subscribers are buffered and retransmitted from layer 2. The data blocks stored in layer 2 are typically large, are transmitted for high signal to noise ratio (SNR) reception, are received with a low block error rate (BLER), and are infrequently retransmitted. Additionally, layer 2 ARQ signaling is typically slow requiring large buffers and long retransmission intervals. Accordingly, it is desirable to have alternatives in addition to a layer 2 ARQ system. SUMMARY A physical automatic request repeat system comprises a transmitter and a receiver. A physical layer transmitter, at the transmitter, receives data and formats the received data into packets having a particular encoding/data modulation. The physical -1- 2 layer transmitter contains n channels which transmit the packets and retransmits packets in response to not receiving a corresponding acknowledgment for a given packet. An adaptive modulation and coding controller in the transmitter collects retransmission statistics and adjusts the particular encoding/data modulations 5 using the collected statistics. The receiver has a physical layer n-channel receiver for receiving the packets. The receiver contains an n-channel hybrid ARQ combiner/decoder which combines packet transmissions, decodes packets and detects packet errors. The receiver contains an acknowledgment transmitter which transmits an acknowledgment for each packet, if that packet has an 10 acceptable error rate. The receiver contains an in-sequence delivery element which delivers acceptable packets to higher layers. According to a first aspect, the present invention provides a user equipment, including: a higher layer automatic repeat request (ARQ) mechanism configured to 15 generate data for transmission; a physical layer transmitter configured to receive the data for transmission from the higher layer ARQ mechanism, and wherein the received data is received in data blocks from the higher layer ARQ mechanism, and to format the received data into packets for transmission, wherein the packets are smaller in size than 20 the data blocks, and each packet has a forward error correction (FEC) encoding/data modulation, and wherein the packets are transmitted using an orthogonal frequency division multiple access (OFDMA) air interface, the physical layer transmitter configured to retransmit an original or selectively modified packet at, if an acknowledgment for that packet has not been received within a 25 predetermined period of time; and wherein the physical layer ARQ mechanism and physical layer transmitter operate transparently with respect to the higher layer ARQ mechanism; a physical layer receiver configured to receive and demodulate received packets and retransmission statistics; 30 an ACK transmitter configured to transmit a corresponding acknowledgment for a given packet at the physical layer receiver, wherein a mechanism configured to receive the corresponding acknowledgment for the 2a given packet operates transparently with respect to the higher layer ARQ mechanism; and an adaptive modulation and control (AMC) unit configured to adjust the particular encoding/data modulation of each packet using collected 5 retransmission statistics; wherein if the collected retransmission statistics indicate a low number of retransmissions, a higher capacity encoding/data modulation scheme is selected as the particular encoding/data modulation and if the collected retransmission statistics indicate a high number of retransmissions, a lower capacity encoding/data modulation scheme is selected as the particular 10 encoding/data modulation; and wherein subchannels from an OFDM frequency set are selectively nulled wherein the use of a poor quality subchannel is precluded for a predetermined period and adding a previously nulled subchannel back into the OFDM frequency set where a retransmission rate or link quality indicates a high quality for the 15 previously nulled subchannel. BRIEF DESCRIPTION OF THE DRAWINGS Figures la and lb are simplified block diagrams of downlink and uplink physical ARQs. Figure 2 is a flow chart for using retransmission statistics for adaptive 20 modulation and coding. Figure 3 is block diagram showing a multi-channel stop and wait architecture. DETAILED DESCRIPTION OF PREFERRED EMBODIMENT Figures la and lb respectively show a downlink physical ARQ 10 and 25 uplink physical ARQ 20. The downlink physical ARQ 10 comprises a base station 12 receiving packets from the higher layer ARQ transmitter 14a provided in network 14. The packets from transmitter 14a are applied to the physical layer ARQ transmitter 12a in base station 12. The ARQ transmitter 12a encodes the data with a forward 30 error correcting code (FEC), appends error check sequences (ECSs), modulates the data as directed by the adaptive modulation and coding (AMC) controller 12c, such as by using binary phase shift keying (BPSK), quadrature phase shift keying (QPSK) or m ary quadrature amplitude modulation (i.e. 16-QAM or 64-QAM). Additionally, for orthogonal frequency division multiple access (OFDMA), the AMC controller 12a may vary the subchannels used to carry the packet data. The physical layer ARQ transmitter 12a transmits packets to the subscriber unit 16 through air interface 14 by way of switch, circulator or duplexor 12d and antenna 13. The transmitter 12a also temporarily stores the message for retransmission, if necessary, in a buffer memory incorporated in the transmitter 12a. (0016] Antenna 15 of subscriber unit 16 receives the packet. The packet is input into physical layer ARQ receiver 16a through switch, circulator or duplexor 16b. At the receiver 16a, the packet is FEC decoded and checked for errors using the ECS. The receiver 16a then controls acknowledgment transmitter 16c to either acknowledge (ACK) receipt of a packet with an acceptable error rate or to request retransmission by, preferably, withholding an acknowledgment signal or transmitting a negative acknowledgment (NAK). [0017] The ACK is sent by ACK transmitter 16c to the base station 12 through switch 16b and antenna 15. The ACK is sent via the air interface 14 to antenna 13 of base station 12. The received ACK is processed by an acknowledgment receiver 12b in the base station. The ACK receiver 12b delivers the ACK/NAKs to the adaptive modulation and coding (AMC) controller 12c and to the transmitter 12a. The AMC controller 12c analyzes the channel quality to the subscriber unit 16 using statistics of the received ACKs and may vary the FEC encoding and modulation techniques of subsequent transmissions of the message, as will be described in more detail. If the subscriber unit 16 acknowledges receipt of the packet, receipt of this ACK at base station 12 causes the original packet, which was temporarily stored in a buffer memory, to be cleared in readiness for the next packet. [0018) If no ACK is received or a NAK is received, the physical layer transmitter 12a retransmits the original message or selectively modified version of the -3original message to subscriber 16. At the subscriber unit 16, the retransmission is combined with the original transmission, if available. This technique facilitates receipt of a correct message by use of data redundancy or selective repeat combining. The packets having an acceptable error rate are transferred to higher layers 16d for further processing. The acceptable received packets are delivered to the higher layers 16d in the same data order in which the data was provided to transmitter 12a in the base station (i.e. in-sequence delivery). The maximum number of retransmissions is limited to an operator-defined integer value, such as in the range of I to 8. After the maximum number of retransmissions are attempted, the buffer memory is cleared for use by the next packet. Decoding an acknowledgment using small packets at the physical layer reduces transmission delays and message handling time. [0019] Since PHY ARQ occurs at the physical layer, the number of retransmission occurrences for a particular channel, retransmission statistics, is a good measure of that channel's quality. Using the retransmission statistics, the AMC controller 12c may vary the modulation and coding schemes for that channel, as shown in Figure 2. Additionally, the retransmission statistics can also be combined with other link quality measurements, such as bit error rates (BERs) and block error rates (BLERs), by the AMC controller 12c to gauge the channel quality and determine whether a change in the modulation and coding scheme is required. [0020] To illustrate for SC-FDE, the retransmission occurrences for a particular channel are measured to produce retransmission statistics, (60). A decision on whether to change the modulation scheme is made using the retransmission statistics, (62). If the retransmissions are excessive, a more robust coding and modulation scheme is used, (64), usually at a reduced data transfer rate. The AMC controller 12c may increase the spreading factor and use more codes to transfer the packet data. Alternately or additionally, the AMC controller may switch from a high data throughput modulation scheme to a lower one, such as from 64-QAM to 16-QAM or QPSK. If the rate of retransmissions is low, a switch to a higher capacity modulation -4scheme is made, such as from QPSK to 16-ary QAM or 64-ary QAM, (66). The decision preferably uses both the retransmission rate and other link quality measurements signaled from the receiver, such as BER or BLER, (62). The decision limits are preferably set by the system operator. [0021] For OFDMA, the retransmission occurrences are used to monitor the channel quality of each subchannel. If the retransmission rate or retransmission rate/link quality for a particular subchannel indicates poor quality, that subchannel may be selectively nulled from the OFDM frequency set, (64), in order to preclude use of such poor quality subchannels for some future period. If the retransmission rate or retransmission rate/link quality indicates high quality, a previously nulled subchannels may be added back to the OFDM frequency set, (66). [0022] Using the retransmission occurrences as a basis for AMC provides a flexibility to match the modulation and coding scheme to the average channel conditions for each user. Additionally, the retransmission rate is insensitive to measurement error and reporting delay from the subscriber unit 16. [0023] The uplink ARQ 20 is similar in nature to the downlink ARQ 10 and is comprised of a subscriber unit 26 in which packets from a higher layer ARQ transmitter 28a of the higher layers 28 are transferred to physical layer ARQ transmitter 26a. The message is transmitted to the base station antenna through switch 26d, subscriber antenna 25 and air interface 24. The AMC controller, likewise, may vary the modulation and coding scheme using the retransmission statistics of a channel. [0024] Physical layer ARQ receiver 22a, similar to receiver 16a of Figure la, determines if the message has an acceptable error rate requiring retransmission. The acknowledgment transmitter reports status to subscriber unit 26, causing the transmitter 26a to retransmit or alternatively to clear the original message temporarily stored at transmitter 26a in readiness to receive the next message from the higher layers 28. Successfully received packets are sent to the network 24 for further processing. -5- [0025] Although not shown for purposes of simplicity, the system is preferably used for a HSDPA application in a BFWA system, although other implementations may be used. The BFWA system may use frequency division duplex or time division duplex SC-FDE or OFDMA. In such a system, the base station and all of the subscribers are in fixed locations. The system may comprise a base station and a large number of subscriber units. Each subscriber unit may serve multiple users within one building or several neighboring buildings, for example. These applications typically require a large bandwidth due to the large number of end users at one subscriber unit site. [0026] A PHY ARQ deployed in such a system is transparent to the higher layers, such as the medium access controllers (MACs). As a result, PHY ARQ can be used in conjunction with higher layer ARQs, such as layer 2. In such cases, the PHY ARQ reduces the retransmission overhead of the higher layer ARQs. [0027] Figure 3 is an illustration of an N-channel stop and wait architecture for a PHYARQ 30. The Physical Layer ARQ transmit function 38 may be located at the base station, subscriber unit or both depending on whether downlink, uplink or both PHYARQs are used. Blocks 34a of data arrive from the network. The network blocks are placed in a queue 34 for transmission over the data channel 41 of the air interface 43. An N-channel sequencer 36 sends data of the blocks sequentially to the N transmitters 40-1 to 40-n. Each transmitter 40-1 to 40-n is associated with a transmit sequence in the data channel 41. Each transmitter 40-1 to 40-n FEC encodes and provides ECS for the block data to produce packets for AMC modulation and transmission in the data channel 41. The FEC encoded/ECS data is stored in a buffer of the transmitter 40-1 to 40-n for possible retransmission. Additionally, control information is sent from the PHYARQ transmitter 38 to synchronize reception, demodulation and decoding at the receivers 46-1 to 46-n. [0028] Each of the N receivers 46-1 to 46-n receives the packet in its associated timeslot. The received packet is sent to a respective hybrid ARQ decoder 50-1 to 50-n -6- (50). The hybrid ARQ decoder 50 determines the error rate, such as BER or BLER, for the received packet. If the packet has an acceptable error rate, it is released to the higher levels for further processing and an ACK is sent by the ACK transmitter 54. If the error rate is unacceptable or no packet was received, no ACK is sent or a NAK is sent. Packets with unacceptable error rates are buffered at the decoder 50 for potential combining with a retransmitted packet. [0029] One approach for combining packets using turbo codes is as follows. If a turbo encoded packet is received with an unacceptable error rate, the packet data is retransmitted to facilitate code combining. The packet containing the same data is encoded differently. To decode the packet data, both packets are processed by the turbo decoder to recover the original data. Since the second packet has a different encoding, its soft symbols are mapped to different points in the decoding scheme. Using two packets with different encoding adds coding diversity and transmission diversity to improve the overall BER. In another approach, the identical signal is transmitted. The two received packets are combined using a maximum ratio combining of symbols. The combined signal is subsequently decoded. [0030] The ACK for each receiver 46-1 to 46-n is sent in a fast feedback channel (FFC) 45. The fast feedback channel 45 is preferably a low latency channel. For a time division duplex system, the ACKs may be sent in idle periods between upstream and downstream transmissions. The FFC 45 is preferably a low speed, high bandwidth CDMA channel overlaying other in-band transmissions. The FFC CDMA codes and modulations are selected to minimize interference to other in-band transmissions. To increase the capacity of such a FFC 45, multiple codes may be used. [0031] The ACK receiver 56 detects the ACKs and indicates to the corresponding transmitter 40-1 to 40-n whether the ACK was received. If the ACK was not received, the packet is retransmitted. The retransmitted packet may have a different modulation and coding scheme as directed by the AMC controller 12c, 26c. -7- If the ACK is received, the transmitter 40-1 to 40-n clears the previous packet from the buffer and accepts a subsequent packet for transmission. [0032] The number of transmitters and receivers N is based on various design considerations, such as the channel capacity and ACK response time. For the preferred system previously described, a 2-channel architecture is preferably utilized, with even and odd transmitters and receivers. [0033] The PHY ARQ technique of the preferred embodiment provides a 7 db gain in signal to noise ratio (SNR) as compared to a system using only higher layer ARQ. This occurs by operating at higher block error rates (BLERs) (5-20% BLER) and using smaller block sizes for layer I than is practical with higher layer ARQ alone. The decreased SNR requirement allows for: increased capacity by switching to high order modulation employing an adaptive modulation and coding (AMC) technique; lower customer premise equipment (CPE) costs by using lower grade RF (radio frequency) components with the PHY ARQ compensating for reduced implementation performance; increased downlink range which extends the cell radius; reduced downlink power in the base station (BS) to minimize cell-cell interference; and increased power amplifier (PA) back-off when employing a multi-carrier technique. -8-

Claims (3)

1. A user equipment, including: a higher layer automatic repeat request (ARQ) mechanism configured to generate data for transmission; 5 a physical layer transmitter configured to receive the data for transmission from the higher layer ARQ mechanism, and wherein the received data is received in data blocks from the higher layer ARQ mechanism, and to format the received data into packets for transmission, wherein the packets are smaller in size than the data blocks, and each packet has a forward error correction (FEC) 10 encoding/data modulation, and wherein the packets are transmitted using an orthogonal frequency division multiple access (OFDMA) air interface, the physical layer transmitter configured to retransmit an original or selectively modified packet at, if an acknowledgment for that packet has not been received within a predetermined period of time; and wherein the physical layer ARQ mechanism 15 and physical layer transmitter operate transparently with respect to the higher layer ARQ mechanism; a physical layer receiver configured to receive and demodulate received packets and retransmission statistics; an ACK transmitter configured to transmit a corresponding 20 acknowledgment for a given packet at the physical layer receiver, wherein a mechanism configured to receive the corresponding acknowledgment for the given packet operates transparently with respect to the higher layer ARQ mechanism; and an adaptive modulation and control (AMC) unit configured to adjust the 25 particular encoding/data modulation of each packet using collected retransmission statistics; wherein if the collected retransmission statistics indicate a low number of retransmissions, a higher capacity encoding/data modulation scheme is selected as the particular encoding/data modulation and if the collected retransmission statistics indicate a high number of retransmissions, a 30 lower capacity encoding/data modulation scheme is selected as the particular encoding/data modulation; and 10 wherein subchannels from an OFDM frequency set are selectively nulled wherein the use of a poor quality subchannel is precluded for a predetermined period and adding a previously nulled subchannel back into the OFDM frequency set where a retransmission rate or link quality indicates a high quality for the 5 previously nulled subchannel.
2. The UE of claim 1, wherein the packets are transmitted using a single carrier having a frequency domain equalization (SC-FDE) air interface.
3. The UE of claim 1 and substantially as hereinbefore described with reference to the accompanying figures.
AU2009200585A 2001-08-24 2009-02-13 Method for Physical Layer Automatic Repeat Request for a Subscriber Unit Ceased AU2009200585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2009200585A AU2009200585B2 (en) 2001-08-24 2009-02-13 Method for Physical Layer Automatic Repeat Request for a Subscriber Unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/939,410 2001-08-24
US10/085,187 2002-02-27
AU2002313803A AU2002313803A1 (en) 2001-08-24 2002-08-23 Method for physical layer automatic repeat request for a subscriber unit
AU2009200585A AU2009200585B2 (en) 2001-08-24 2009-02-13 Method for Physical Layer Automatic Repeat Request for a Subscriber Unit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002313803A Division AU2002313803A1 (en) 2001-08-24 2002-08-23 Method for physical layer automatic repeat request for a subscriber unit

Publications (2)

Publication Number Publication Date
AU2009200585A1 AU2009200585A1 (en) 2009-03-05
AU2009200585B2 true AU2009200585B2 (en) 2010-11-25

Family

ID=40436139

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2007200745A Ceased AU2007200745B2 (en) 2001-08-24 2007-02-20 Method for physical layer automatic repeat request for a subscriber unit
AU2009200585A Ceased AU2009200585B2 (en) 2001-08-24 2009-02-13 Method for Physical Layer Automatic Repeat Request for a Subscriber Unit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2007200745A Ceased AU2007200745B2 (en) 2001-08-24 2007-02-20 Method for physical layer automatic repeat request for a subscriber unit

Country Status (1)

Country Link
AU (2) AU2007200745B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012303A1 (en) * 1997-08-29 1999-03-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for block arq with reselection of fec coding and/or modulation
EP1030484A2 (en) * 1999-01-29 2000-08-23 Nortel Networks Corporation Data link layer quality of service for UMTS
US6128276A (en) * 1997-02-24 2000-10-03 Radix Wireless, Inc. Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays
WO2001037433A1 (en) * 1999-11-17 2001-05-25 Motorola Inc. Adaptive hybrid arq using turbo code structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1312656C (en) * 1989-08-24 1993-01-12 Steven Messenger Wireless communications systems
US5726978A (en) * 1995-06-22 1998-03-10 Telefonaktiebolaget L M Ericsson Publ. Adaptive channel allocation in a frequency division multiplexed system
US5828677A (en) * 1996-03-20 1998-10-27 Lucent Technologies Inc. Adaptive hybrid ARQ coding schemes for slow fading channels in mobile radio systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128276A (en) * 1997-02-24 2000-10-03 Radix Wireless, Inc. Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays
WO1999012303A1 (en) * 1997-08-29 1999-03-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for block arq with reselection of fec coding and/or modulation
EP1030484A2 (en) * 1999-01-29 2000-08-23 Nortel Networks Corporation Data link layer quality of service for UMTS
WO2001037433A1 (en) * 1999-11-17 2001-05-25 Motorola Inc. Adaptive hybrid arq using turbo code structure

Also Published As

Publication number Publication date
AU2009200585A1 (en) 2009-03-05
AU2007200745A2 (en) 2007-03-15
AU2007200745A1 (en) 2007-03-15
AU2007200745B2 (en) 2008-11-13

Similar Documents

Publication Publication Date Title
EP2214330B1 (en) Implementing a physical layer automatic repeat request for a subscriber unit
AU2002326706A1 (en) Physical layer automatic repeat request (ARQ)
CA2457883C (en) Implementing a physical layer automatic repeat request for a subscriber unit
AU2002326744A1 (en) Implementing a physical layer automatic repeat request for a subscriber unit
CA2457223C (en) Base station implementing a physical layer automatic repeat request
AU2002324584A1 (en) Base station implementing a physical layer automatic repeat request
AU2002332602B2 (en) Method for physical layer automatic repeat request for a base station
AU2002332602A1 (en) Method for physical layer automatic repeat request for a base station
CA2457881C (en) Method for physical layer automatic repeat request for a subscriber unit
AU2009200585B2 (en) Method for Physical Layer Automatic Repeat Request for a Subscriber Unit
AU2002313803A1 (en) Method for physical layer automatic repeat request for a subscriber unit

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired