AU2008243069A1 - Remotely Controlled Traffic Beacon - Google Patents

Remotely Controlled Traffic Beacon Download PDF

Info

Publication number
AU2008243069A1
AU2008243069A1 AU2008243069A AU2008243069A AU2008243069A1 AU 2008243069 A1 AU2008243069 A1 AU 2008243069A1 AU 2008243069 A AU2008243069 A AU 2008243069A AU 2008243069 A AU2008243069 A AU 2008243069A AU 2008243069 A1 AU2008243069 A1 AU 2008243069A1
Authority
AU
Australia
Prior art keywords
cellular telephone
communications system
receive instructions
assembly
telephone modem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2008243069A
Inventor
Andrew Evans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AU2008243069A priority Critical patent/AU2008243069A1/en
Publication of AU2008243069A1 publication Critical patent/AU2008243069A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F9/00Arrangement of road signs or traffic signals; Arrangements for enforcing caution
    • E01F9/60Upright bodies, e.g. marker posts or bollards; Supports for road signs
    • E01F9/604Upright bodies, e.g. marker posts or bollards; Supports for road signs specially adapted for particular signalling purposes, e.g. for indicating curves, road works or pedestrian crossings
    • E01F9/615Upright bodies, e.g. marker posts or bollards; Supports for road signs specially adapted for particular signalling purposes, e.g. for indicating curves, road works or pedestrian crossings illuminated
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Telephonic Communication Services (AREA)
  • Selective Calling Equipment (AREA)

Description

AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT REMOTELY CONTROLLED TRAFFIC BEACON The following statement is a full description of this invention, including the best method of performing it known to me: Specification: Remotely Controlled Traffic Beacon Background This invention pertains to traffic beacons. More specifically this invention pertains to solar powered traffic beacons containing a communications technology that enables the beacons to be remotely controlled. Remote controlled solar-powered traffic beacons are commonly installed by government agencies along roadways to alert motorists to intermittent road safety conditions. The beacons may be activated according to a daily schedule, such as when children are traveling to and from school, or the beacons may be activated during urgent traffic situations, such as emergency road closures. Although they have achieved popularity and commercial success, there has been a continuing need for improvement, particularly with regards to the geographic range of operation and the promptness of the communications signal reaching the beacon. The invention possesses advantages over existing beacons. The invention utilizes a cellular telephone modem and public cellular telephone networks for communications between the user and the beacon. Thus it enables the beacon to be installed in wider geographic regions without ) the installation of additional communications infrastructure. The invention therefore increases the geographic range of installation and reduces installation cost. In addition, because cellular telephone modems use relatively less electrical energy than conventional communication system hardware, the communications system can remain active 24-hours a day, thus allowing for immediate communications and activation/deactivation of the solar-powered traffic beacon. 1 A practical example of the benefits possessed by the invention resides in the ability to install the beacons, without modification and without additional communications infrastructure, anywhere in the world that can be reached by a cellular telephone signal. For instance, user specifications may demand that beacons be positioned along a remote highway. Generally speaking, conventional devices make use of either public pager networks which are limited in range to major cities, or private radio broadcasts which necessitate the building of private radio towers positioned to transmit radio signals to the beacons. The present invention, given its use of a cellular telephone modem, is suited to take advantage of the wide geographic spread of public cellular telephone networks. Furthermore, the communications technologies contained within conventional beacons have a relatively high electrical power requirement, such that the communications system might only be activated periodically. The low power consumption requirement of a cellular telephone modem allows the communications system to be active 24-hours a day. It can thus be seen that the present invention provides a novel and improved remotely controlled solar powered traffic beacons. 2 Summary of the Invention The invention provides an improved remotely controlled solar-powered traffic beacons. Remote control is provided by a communications system that utilizes a cellular telephone modem, positioned inside the beacon, to receive a schedule of activation/deactivation or alternatively to receive immediate on/off commands. Furthermore, the communications system allows for the transmission of operational feedback data from the solar-powered traffic beacon to the user. The remotely controlled, solar-powered traffic beacon comprises at least one traffic beacon including a lamp to warn traffic, solar panels to recharge batteries, batteries to store and supply power, communications circuitry containing a cellular telephone modem and software to receive the remote instructions and operational circuitry and software to manage the operation of all components. Within the communications circuitry, the cellular telephone modem receives preformatted signals transmitted via public cellular telephone networks. Such preformatted signals originate from a text-message sent from a cellular telephone, or alternatively originate from a textual message sent from the Internet via SMS gateway, or alternatively originate from a textual message sent from the Internet via file transfer, or alternatively originate from a binary file sent from the Internet via file transfer. Such signals contain a predefined schedule of activation/deactivation for the beacon. ) Alternatively, such signals contain immediate on/off commands for the beacon. The communications circuitry transmits on/off commands by wire or alternatively by radio signal to the operational circuitry in the beacon. The operational circuitry contains the on/off controls of the lamp as well as energy management system for the solar panels and batteries. Alternatively, the communications circuitry sends on/off commands by radio signal to operational circuitry positioned within other beacons located within a range of 1 kilometer. Furthermore, the 3 communications circuitry transmits, by use of the cellular telephone modem, operational feedback information on the condition of the solar-powered traffic beacon to the user. The communications circuitry is affixed with two antennae. One of these antennas is connected to the cellular telephone modem and is used to receive/transmit the cellular telephone signal. The other antenna is connected to a radio transmitter and is used to transmit on/off commands to operational circuitry contained within that beacon and within other beacons located within a range or 1 kilometer. The operational circuitry is affixed with one antenna. This antenna is connected to a radio receiver and is used to receive on/off commands from the communications circuitry. Considered broadly, traffic beacons according to the invention consist of: * Solar panels used to derive electrical energy available from sunshine * Batteries used to store electrical energy and provide electrical energy to the beacon during periods when the sun is not visible. " Circuitry used to manage the electrical energy and operate the lamp. * Circuitry used to receive and manage remote activation messages. * A lamp meeting government and traffic industry requirements for colour and luminous intensity. e A lamp head meeting government and traffic industry requirements for construction. 4 Brief description of the drawings In the drawings, which form a part of this specification, figures 1, 2 and 4 show a standard configuration for remotely activated single-head solar-powered traffic beacons: Fig. 1: Single-head beacon, front view Fig. 2: Single-head beacon, side view Fig. 4: Single-head beacon, top view With emphasis on the Power plant sub-assembly: Fig. 3: Power plant sub-assembly, front view Fig. 4: Power plant sub-assembly, top view Fig. 5: Power plant sub-assembly, side view Fig. 6: Power plant sub-assembly, internal top view Within figures 1 and 2 the following standard components are visible in the diagrams: 1. Signal light sub-assembly 2. Lamp 3. Lamp head with visor 4. Mounting collar 5. Connection collar 6. Power plant sub-assembly 7. Power plant housing 8. Solar panels 9. Radio antenna 10. Cellular telephone modem antenna 11. Pole 5 Within the power plant sub-assembly in figures 3, 4 and 5, the following components are visible in the diagram: 7. Power plant housing 8. Solar panels 9. Radio antenna 10. Cellular telephone modem antenna Within figure 6, the internal top view of the power plant sub-assembly, the following components are visible in the diagram: 5. Connection collar with bolt hole and wire hole 7. Power plant housing 9. Communications circuitry radio antenna 10. Cellular-telephone modem antenna 12. Communications circuitry sub-assembly 13. Operational circuitry radio antenna 14. Operational circuitry sub-assembly 15. Battery pack Figure 7 illustrates the internal top view of the communications circuitry sub-assembly 12 including the circuit box 24 and various circuitry components as described within the detailed description of the invention. Figure 8 illustrates the internal top view of the operational circuitry sub-assembly 14 including the circuit box 25 and various circuitry components as described within the detailed description of the invention. 6 Detailed Description of the Invention Figures 1 and 2 and 4 illustrate the remotely controlled solar-powered traffic beacon according to the preferred embodiment. The principal components of the beacon are the signal light sub assembly 1 and power plant sub-assembly 6. As visible in Figures 1 and 2, the signal light sub-assembly 1, includes at least one lamp 2 mounted within a lamp head with visor 3 in a conventional manner, mounting collar 4 and connection collar 5, which are deployed on pole 11 by means of set-screws (not shown). The power plant sub-assembly 6, as visible in Figures 1, 2, 3, 4 and 5, consists of the power plant box 7, a plurality of solar panels 8, radio antenna 9, and cellular telephone modem antenna 10. The open power plant sub-assembly 6, is visible in Figure 6, consisting of battery pack 15, communications circuitry sub-assembly 12, cellular telephone modem antenna 10, communications circuitry radio antenna 9, operational circuitry sub-assembly 14, and operational circuitry radio antenna 13. The power plant sub-assembly combines the functions of providing power to all components of the beacon, receiving remotely transmitted operational commands, controlling the flashing, diagnostic and maintenance of all components of the beacon and effecting communication with companion beacons. Power plant sub-assembly 6 and light head sub-assembly 1 are connected with a bolt (not shown) inserted through the bolt hole in connecting collar 5. Wires (not shown) between the operational circuitry 14 and lamp 2 are passed through the wire hole in the connecting collar 5. 7 Power plant sub-assembly 6 comprises a plurality of solar panels 8, mounted on top as shown in figure 4. The solar panels 8 are affixed to the power plant housing by means of glue. The solar panels 8 are used to derive electrical energy available from sunshine. Also mounted on top of power plant sub-assembly 6, by means of threaded connectors, are cellular telephone modem antenna 10, and communications circuitry radio antenna 9. Mounted inside power plant sub-assembly 6 are a plurality of batteries contained within a battery pack 15, affixed to the housing by means of Velcro straps; communications circuitry sub assembly 12 and operational circuitry sub-assembly 14 affixed by means of bolts; and operational circuitry radio antenna 13 affixed by means of a Velcro strap. As illustrated in Figure 7 of the communications circuitry sub-assembly 12, the open communications circuitry sub-assembly box 24 with lid 26, contains a cellular telephone modem 16 along with a real-time clock 19, and the circuitry and software required to receive, store, manage and transmit on/off commands to the operational circuitry sub-assembly 14. Communications circuitry sub-assembly 12 contains a single control dial 17 with settings for run; training; reset; test; diagnostics. The run setting is used for normal operation of the beacon. The training setting is used to send a training command to the operational circuitry sub-assembly such that the operational circuitry sub-assembly will only respond to on/off commands transmitted from the desired communications circuitry sub-assembly, and not from another system located within radio range of 1 kilometer. The reset setting is used to reset the communications system. The test setting is used to send short on/off commands to the operational circuitry sub-assembly, ensuring that it will respond properly to the communications circuitry sub-assembly. The diagnostic setting is used to diagnose the operation of the communications circuitry sub-assembly by connecting a properly formatted computer via the serial port 18. 8 As illustrated in Figure 8 of the operational circuitry sub-assembly 14, the open operational circuitry sub-assembly box 25 with lid 27, contains all of the circuitry and software required for local operation of the beacon, including monitoring and managing the energy derived from the solar panels 8, managing the charging of the batteries 15, providing power to the communications circuitry sub-assembly 12, the receipt of on/off commands through the operational circuitry sub assembly radio antenna 13 transmitted from the communications circuitry sub-assembly 9, receipt of programming instructions through serial port connector 23, and controlling the lamp 2 illumination cycle. The operational circuitry sub-assembly contains three control dials: Control dial 20 has a setting to receive training commands from the communications circuitry and a run setting for normal operation of the beacon. Control dial 21 contains a series of network addresses, such that beacons positioned in proximity closer than 300 meters will/will not communicate with each other as desired. Control dial 22 contains setting for individual lamp illumination and flash patterns, as well as a system reset function. In operation, a text message on/off command sent from the operator's cellular telephone is received by the cellular telephone modem antenna 9 and cellular telephone modem 16. The command is managed by the communications circuitry sub-assembly 12 and transmitted through the communications circuitry radio antenna 9 to the operational circuitry radio antenna 13 and ) operational circuitry sub-assembly 14. The operational circuitry sub-assembly manages the command, resulting in the lamp being activated/deactivated as desired. Alternatively, a long term activation schedule for the beacon, sent by a textual message from the Internet via SMS gateway, or alternatively sent by a textual message from the Internet via file transfer, or alternatively sent by a binary file from the Internet via file transfer, is received by the 9 cellular telephone modem antenna 9 and cellular telephone modem 16. The schedule is stored and managed within the communications circuitry sub-assembly making use of the real-time clock 19. As scheduled, on/off commands are transmitted through the communications circuitry radio antenna 9 to the operational circuitry sub-assembly 14, resulting in the lamp being activated/deactivated as scheduled. The preferred embodiment of the invention has been described in some detail but the reader is reminded that this is the preferred embodiment only. Variations and modifications thereto may be implemented without thereby departing from the scope of the invention, which is more particularly defined by the following claims. 10

Claims (11)

1. A solar powered traffic beacon assembly containing a communications system comprised of a cellular telephone modem.
2. The communications system of claim 1 wherein said cellular telephone modem comprises a means to receive instructions remotely transmitted via public cellular telephone networks.
3. The means to receive instructions of claim 2 comprises means to receive instructions originating from a text-message sent from the operator's cellular telephone.
4. The means to receive instructions of claim 2 comprises means to receive instructions originating from a textual message sent from the Internet via SMS gateway.
5. The means to receive instructions of claim 2 comprises means to receive instructions originating from a textual message sent from the Internet via file transfer.
6. The means to receive instructions of claim 2 comprises means to receive instructions originating from a binary file sent from the Internet via file transfer.
7. The communications system of claim 1 wherein said communication system and said cellular telephone modem are functioning at all times.
8. The communications system of claim 1 wherein said communications system and said cellular telephone modem are functioning periodically.
9. The communications system of claim 1 comprising communication software to coordinate the receipt of remotely transmitted instructions of claim 2 and the transmission of on and off commands to an operational system.
10. The communications system of claim 1 wherein said communications system comprises a means to transmit, by means of said cellular telephone modem, system 11 feedback information to the operator by a textual message sent over the Internet via SMS gateway.
11. The communications system of claim 1 wherein said communications system comprises a means to transmit, by means of said cellular telephone modem, system feedback information to the operator by a textual message sent over the Internet via file transfer. Name Of Applicant: Signature: Date: Andrew Evans 4!-- '--- October 24, 2008 12
AU2008243069A 2008-11-03 2008-11-03 Remotely Controlled Traffic Beacon Abandoned AU2008243069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2008243069A AU2008243069A1 (en) 2008-11-03 2008-11-03 Remotely Controlled Traffic Beacon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2008243069A AU2008243069A1 (en) 2008-11-03 2008-11-03 Remotely Controlled Traffic Beacon

Publications (1)

Publication Number Publication Date
AU2008243069A1 true AU2008243069A1 (en) 2010-05-20

Family

ID=42173666

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2008243069A Abandoned AU2008243069A1 (en) 2008-11-03 2008-11-03 Remotely Controlled Traffic Beacon

Country Status (1)

Country Link
AU (1) AU2008243069A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112627526A (en) * 2020-12-08 2021-04-09 中国建筑第七工程局有限公司 Safety device is used in construction engineering night construction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112627526A (en) * 2020-12-08 2021-04-09 中国建筑第七工程局有限公司 Safety device is used in construction engineering night construction

Similar Documents

Publication Publication Date Title
US6064318A (en) Automated data acquisition and processing of traffic information in real-time system and method for same
US20090054052A1 (en) Remotely controlled traffic beacon
CN111511065A (en) Multi-functional wisdom street lamp
CN104247571A (en) Road and path lighting system
CN107135554A (en) A kind of LoRa base stations based on communication chip
WO2010142764A2 (en) Lighting unit, network of lighting units and method for controlling the light intensity of a lighting network comprising at least one lighting unit
CN108834279B (en) Urban illumination intelligent management system based on multi-network fusion and positioning method
EP2282108B1 (en) Energy saving road lighting device with telephone helpline functions
CN204291533U (en) LED street lamp management system for internet of things
CN201479373U (en) Rural fire control early warning system
CN109257846A (en) Intelligent streetlamp monitoring system and method
AU2008243069A1 (en) Remotely Controlled Traffic Beacon
CA2597118A1 (en) Remotely controlled traffic beacon
CN105096619A (en) Intelligent traffic information caution board system
KR20050066403A (en) Control system for street lamp
CN201622683U (en) Signal remote controller and signal machine control system construct based on the remote controller
CN202514109U (en) LED streetlight having communication function
CN204833720U (en) Intelligent transportation information warning sign system
CN201392592Y (en) Solar remote traffic-signal centralized control system
US11149926B2 (en) Luminaire control device with universal power supply
CN210725343U (en) Intelligent spike based on short-distance Internet of things communication technology
CN103338552A (en) Community led lighting remote control system
CN211526249U (en) Novel modified intelligent street lamp
CN209462673U (en) Roam lamp control device
CN106594584A (en) Tunnel lamp based on visible light communication technology and communication control method thereof

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application