AU2008240084B2 - Pyrimidine derivatives - Google Patents

Pyrimidine derivatives

Info

Publication number
AU2008240084B2
AU2008240084B2 AU2008240084A AU2008240084A AU2008240084B2 AU 2008240084 B2 AU2008240084 B2 AU 2008240084B2 AU 2008240084 A AU2008240084 A AU 2008240084A AU 2008240084 A AU2008240084 A AU 2008240084A AU 2008240084 B2 AU2008240084 B2 AU 2008240084B2
Authority
AU
Australia
Prior art keywords
heteroaryl
aryl
methyl
alkyl
indol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2008240084A
Other versions
AU2008240084A1 (en
Inventor
Yumin Cui
Jifeng Duan
Hong Jia
Yongxin Ren
Yang Sai
Wei-Guo Su
Xiaoqiang Yan
Weihan Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hutchmed Holdings Enterprises Ltd
Original Assignee
Hutchison Medipharma Enterprises Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hutchison Medipharma Enterprises Ltd filed Critical Hutchison Medipharma Enterprises Ltd
Priority claimed from PCT/US2008/060366 external-priority patent/WO2008128231A1/en
Publication of AU2008240084A1 publication Critical patent/AU2008240084A1/en
Application granted granted Critical
Publication of AU2008240084B2 publication Critical patent/AU2008240084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

PYRIMIDINE DERIVATIVES
CROSS REFERENCE TO RELATEDAPPLICATIONS
This application claims priority to U.S. Provisional Application Serial No. 60/911,921, filed April 16, 2007. The contents of the prior application are hereby incorporated by reference in their entireties.
BACKGROUND
Angiogenesis is a physiological process of growing new blood vessels from pre-existing vessels. It takes place in a healthy subject to heal wounds, i.e., restoring blood flow to tissues after injury or insult. Excessive blood vessel growth may be triggered by certain pathological conditions such as cancer, age-related macular degeneration, rheumatoid arthritis, and psoriasis. As a result, new blood vessels feed diseased tissues and destroy normal tissues. In cancer, new blood vessels also allow tumor cells to escape into the circulation and lodge in other organs. Vascular endothelial growth factor (VEGF), a homodimeric glycoprotein, and its receptors, e.g., kinase insert domain receptor (KDR), constitute an important angiogenic pathway. Studies have shown that inhibition of KDR resulted in endothelial cell apoptosis and, thus, suppression of angiogenesis. See Rubin M. Tuder, Chest, 2000; 117: 281. KDR inhibitors are therefore potential candidates for treating angiogenesis-related diseases.
SUMMARY
This invention is based on the discovery that a number of pyrimidine compounds inhibit the activity of KDR. One aspect of this invention features pyrimidine compounds of the following formula (I):
in which each of X and Y, independently, is O, S, or NR, wherein R is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, or aminosulfonyl; Z is CR' or N, wherein R' is H, halo, nitro, cyano, hydroxyl, alkoxy, aryloxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl,
or heterocycloalkyl; V, U, and T together represent , * 5 Vs "-"""OV, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl; R5 is alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; and R7 is alkyl.
Referring to formula (I), one subset of the compounds features that R1, R2, R3, and R4 is H and R5 is aryl or heteroaryl, optionally substituted with halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, sulfonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl. Another subset features that X is O or NH; Y is NH; V, U, and T together represent , in which R6 can be H and R7 can be methyl; or Z is CR', in which R' is H, halo, or alkyl.
The term "alkyl" herein refers to a straight or branched hydrocarbon, containing 1-10 carbon atoms. Examples of alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, /-propyl, n-butyl, /-butyl, and /-butyl. The term "alkoxy" refers to an -O-alkyl.
The term "aryl" refers to a 6-carbon monocyclic, 10-carbon bicyclic, 14- carbon tricyclic aromatic ring system wherein each ring may have 1 to 4 substituents. Examples of aryl groups include, but are not limited to, phenyl, naphthyl, and anthracenyl.
The term "cycloalkyl" refers to a saturated and partially unsaturated cyclic hydrocarbon group having 3 to 12 carbons. Examples of cycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl, cyclohexyl, cyclohexenyl, cycloheptyl, and cyclooctyl. The term "heteroaryl" refers to an aromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having one or more heteroatoms (such as O, N, or S). Examples of heteroaryl groups include pyridyl, furyl, imidazolyl, benzimidazolyl, pyrimidinyl, thienyl, quinolinyl, indolyl, and thiazolyl. The term "heteroaralkyl" refers to an alkyl group substituted with a heteroaryl group.
The term "heterocycloalkyl" refers to a nonaromatic 5-8 membered monocyclic, 8-12 membered bicyclic, or 11-14 membered tricyclic ring system having one or more heteroatoms (such as O, N, or S). Examples of heterocycloalkyl groups include, but are not limited to, piperazinyl, pyrrolidinyl, dioxanyl, morpholinyl, and tetrahydrofuranyl. Heterocycloalkyl can be a saccharide ring, e.g., glucosyl.
Alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, and alkoxy mentioned herein include both substituted and unsubstituted moieties. Examples of substituents include, but are not limited to, halo, hydroxyl, amino, cyano, nitro, mercapto, alkoxycarbonyl, amido, carboxy, alkanesulfonyl, alkylcarbonyl, carbamido, carbamyl, carboxyl, thioureido, thiocyanato, sulfonamido, alkyl, alkenyl, alkynyl, alkyloxy, aryl, heteroaryl, cycloalkyl, heterocycloalkyl, in which alkyl, alkenyl, alkynyl, alkyloxy, aryl, heteroaryl cycloalkyl, and heterocycloalkyl may further substituted.
The pyrimidine compounds described above include their pharmaceutically acceptable salts, hydrate and prodrug, if applicable.
Another aspect of this invention features a method of treating an angiogenesis- related disorder (e.g., cancer or age-related macula degeneration). The method includes administering to a subject having such an disorder an effective amount of one or more of the above-described pyrimidine compounds. Still another aspect of this invention features a method of inhibiting the activity of kinase insert domain receptor by contacting the receptor with an effective amount of a pyrimidine compound of formula (II):
. Ar X
Ri.γΛNAR3
(H), in which Ri is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, or heteroaryl; each of R2 and R3, independently, is H, halogen, nitro, amino, CN, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylcarbonyl, carboxy, or alkoxycarbonyl; each of X and Y, independently, is O, S, Or NR4, wherein R4 is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, or aminosulfonyl; and Ar is aryl or heteroaryl.
Referring to formula (II), one subset of the compounds features that Ar is indolyl, indazolyl, benzoimidazolyl, or benzoxazolyl; X is O or NH and Y is NH; or Ri is aryl or heteroaryl, optionally substituted with halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, sulfonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl.
Exemplary compounds 1-317 are shown in the Detailed Description section below. Yet another aspect of this invention features a method of inhibiting angiogenesis, or treating age-related macular degeneration, by administrating to a subject in need thereof an effective amount of a pyrimidine compound of formula (II) as described above. Also within the scope of this invention are (1) a composition containing one or more of the pyrimidine compounds described above and a pharmaceutically acceptable carrier for use in treating an angiogenesis-related disorder (e.g., such cancer or age-related macular degeneration) and (2) use of one or more of the pyrimidine compounds for the manufacture of a medicament for treating the disorder. The details of one or more embodiments of the invention are set forth in the description below. Other features, objects and advantages of the invention will be apparent from the description and from the claims.
DETAILED DESCRIPTION The compounds described above can be synthesized from commercially available starting materials by methods well known in the art. As an example, one can replace leaving groups (e.g., chloride, p-TsO, MeS, or MeSO2) at the active N2, N4-positions of a suitable pyrimidine compound with nucleophilic groups such as amino or hydroxyl via, e.g., Buchwald-Hartwig coupling reaction. The replacement can be first effected either at the N2 position or the N4 position.
The compounds thus obtained can be further modified at their peripheral positions to provide the desired compounds.
Synthetic chemistry transformations useful in synthesizing desirable pyrimidine compounds are described, for example, in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T.W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 3rd Ed., John Wiley and Sons (1999); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995) and subsequent editions thereof. Before use, the compounds can be purified by column chromatography, high performance liquid chromatography, crystallization, or other suitable methods. The pyrimidine compounds described above, when contacting with KDR, inhibit this receptor's activity. An effective amount of one or more of these compounds can be therefore used to inhibit angiogenesis and treat a subject having an angiogenesis-related disorder. The term "an effective amount" refers to the amount of a pyrimidine compound that is required to confer the intended effect in the subject. Effective amounts may vary, as recognized by those skilled in the art, depending on route of administration, excipient usage, and the possibility of co-usage with other agents. The term "treating" refers to administering one or more of the above-described pyrimidine compounds to a subject that has an angiogenesis-related disorder, or has a symptom of the disorder, or has a predisposition toward the disorder, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the disorder, the symptoms of the disorder, or the predisposition toward the disorder.
To practice this method, a composition having one or more of the pyrimidine compounds of this invention can be administered orally, parenterally, by inhalation spray, or via an implanted reservoir. The term "parenteral" as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques. An oral composition can be any orally acceptable dosage form including, but not limited to, tablets, capsules, emulsions and aqueous suspensions, dispersions and solutions. Commonly used carriers for tablets include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added to tablets. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions or emulsions are administered orally, the active ingredient can be suspended or dissolved in an oily phase combined with emulsifying or suspending agents. If desired, certain sweetening, flavoring, or coloring agents can be added.
A sterile injectable composition (e.g., aqueous or oleaginous suspension) can be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation can also be a sterile injectable solution or suspension in a nontoxic parenterally acceptable diluent or solvent, for example, as a solution in 1,3- butanediol. Among the acceptable vehicles and solvents that can be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium (e.g., synthetic mono- or di-glycerides). Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions can also contain a long-chain alcohol diluent or dispersant, or carboxymethyl cellulose or similar dispersing agents.
An inhalation composition can be prepared according to techniques well known in the art of pharmaceutical formulation and can be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
A topical composition can be formulated in form of oil, cream, lotion, ointment and the like. Suitable carriers for the composition include vegetable or mineral oils, white petrolatum (white soft paraffin), branched chain fats or oils, animal fats and high molecular weight alcohols (greater than C 12). The preferred carriers are those in which the active ingredient is soluble. Emulsifϊers, stabilizers, humectants and antioxidants may also be included as well as agents imparting color or fragrance, if desired. Additionally, transdermal penetration enhancers may be employed in these topical formulations. Examples of such enhancers can be found in U.S. Patents 3,989,816 and 4,444,762. Creams are preferably formulated from a mixture of mineral oil, self-emulsifying beeswax and water in which mixture the active ingredient, dissolved in a small amount of an oil, such as almond oil, is admixed. An example of such a cream is one which includes about 40 parts water, about 20 parts beeswax, about 40 parts mineral oil and about 1 part almond oil. Ointments may be formulated by mixing a solution of the active ingredient in a vegetable oil, such as almond oil, with warm soft paraffin and allowing the mixture to cool. An example of such an ointment is one which includes about 30% by weight almond and about 70% by weight white soft paraffin.
A carrier in a pharmaceutical composition must be "acceptable" in the sense that it is compatible with active ingredients of the formulation (and preferably, capable of stabilizing it) and not deleterious to the subject to be treated. For example, solubilizing agents, such as cyclodextrins (which form specific, more soluble complexes with one or more of active pyrimidine compounds of the extract), can be utilized as pharmaceutical excipients for delivery of the active ingredients. Examples of other carriers include colloidal silicon dioxide, magnesium stearate, cellulose, sodium lauryl sulfate, and D&C Yellow # 10.
Suitable in vitro assays can be used to preliminarily evaluate the efficacy of the above-described pyrimidine compounds in inhibiting the activity of KDR or inhibiting the activity of VEGF. The compounds can further be examined for its efficacy in treating an angiogenesis-related disorder by in vivo assays. For example, the compounds can be administered to an animal (e.g., a mouse model) having cancer and its therapeutic effects are then accessed. Based on the results, an appropriate dosage range and administration route can also be determined.
Without further elaboration, it is believed that the above description has adequately enabled the present invention. The following specific examples are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
Example 1 : Synthesis of N4-(2-methyl-lH-indol-5-yl)-N2-phenylpyrimidine-2,4- diamine (Compound 1)
Et3N (1 mmol) was added to a solution of 2,4-dichloropyrimidine (1 mmol) and 5-amino-2-methylindole (1 mmol) in 5 ml EtOH. The reaction mixture was refluxed for 5 hours. After removal of the solvent in vacuo and addition Of H2O, the mixture was extracted with EtOAc. The organic layers were combined, washed with saturated NaCl solution, dried over anhydrous Na2SO4, and concentrated in vacuo. The resulting residue was purified by column chromatography to give N-(2- chloropyrimidin-4-yl)-2-methyl-lH-indo 1-5 -amine in a yield of 80%.
N-(2-chloropyrimidin-4-yl)-2-methyl-lH-indol-5-amine(0.1 mmol) and aniline (0.1 mmol) were dissolved in 0.5ml DMF. To this was added p-TsOH monohydrate (0.2 mmol). The reaction mixture was stirred at 60 C for 5 hours, diluted with water, and extracted with ethyl acetate. The organic layer was washed with water and brine sequentially, dried over anhydrous Na2SO4, and concentrated. The resulting residue was purified by column chromatography to provide the title product in a yield of 85%.
1H NMR (CD3OD, 400 MHz): δ 7.831 (d, J=6.0Hz, IH), 7.633 (t, J=8.0- 7.6Hz, 3H), 7.262 (t, J=8.4-7.6 Hz, 3H), 7.064 (d, J=6.8 Hz, IH), 6.995 ((t, J=7.6-7.2 Hz, IH), 6.133 (t, J=6.4-2.0 Hz, 2H), 2.439 (s,3H); MS (m/e): 384.2 (M+l).
Example 2-283: Synthesis of Compounds 2-283 Compounds 2-283 were each synthesized in a manner similar to that described in Example 1.
(d, (d, J=6.4 (M)
J=6.0 Hz, IH), (m, J=8.0 Hz, 1) 7.746 (s, IH), Hz,
3H);
(d, (d, /=6.8 (d,
(s, IH),
Hz,
Hz, IH), .6 Hz,
IH),
Hz, IH), t, /=8.0 Hz, /=7.2 (s, 2H),
2H);
Hz, (s, (M+l)
IH),
7.399 IH), Hz,
/=6.0 Hz,
6.020 (M+l) Hz, Hz,
IH), 2.490
7.914( s, IH), Hz,
IH), 8.140 2H), Hz, 2H), 2.369
IH), 9.245 (m,
(d,
IH),
387.2
2H),
IH),
IH), 7.713(s,
2H),
IH), 9.754 (s,
IH), 343.4
(d, (d, /=7.6
(s, (d, /=2.8
/=3.2-
IH), /=8.0 Hz, IH), ( s, 3H),
Hz (s, IH), Hz, IH), Hz , 2H), ,2.165
(s, 1 H), 6.401- 6.012- 2.370 (m,
(s, IH), Hz,
3H);
(s,lH), IH), 7.703 IH),
(d,
2.591
IH),
2H),
416.5
Hz, (d,
Hz IH), (q,
IH), /=6.0 Hz, (d,
Hz 2H), Hz ,
(s, IH), 7.651 6.467 3H),
IH), 2H), IH), 1.480(s,
IH), IH),
( s, (br, IH), 3.787
IH), IH),
7.974(s,
6.200(
(m, IH), /=3.2 IH),
IH), 7.983(s, Hz, 6.528( 3.571
/=5.6 Hz, /=8.0
5.321
IH), 7.994 Hz,
(d,
(s, IH),
(d,
(s, 1 H), (m,
Hz, 6.139 IH), (m,
(s,
8.837
/=7.6 (s, 3H);
8.760 7.376 (s, /=8.8- (t, (s,
IH), 7.915 7.58(d,
(s, IH),
3H); IH), 8.898 (d,
(t,
IH), 8.775 (d,
(s,
8.959 Hz,
(s, IH), 8.745 2
(s,
IH), 8.209 (s,
IH), 8.143 IH),
(t, (m,
(s, IH), (d, /=5.6 Hz, IH),
l(d,
/=8.4- (d,
/=5.6Hz,
(m, 7.399
/=8.0 Hz, (m, (s,
7.347 6.410
2.401
IH), 7.378
Hz, (s,
7.418 (s, (m,lH), ,5.800 ,2H),
7.378 (s, (d,
1.562- 1) 8.005 (s, (d,
IH), 413.4
2H),
3.027 0.596
(s,
2H), IH, (d,
(s,
IH),
(s, 3H), 71 N-methyl-3-(4-(2-methyl-lH-indol-5- MS (m/e): 372.4 (M) ylamino)pyrimidin-2-ylamino)benzamide
72 N2-(2-fluorophenyl)-N4-(2-methyl- IH- MS (m/e): 350.1 (M+ 1) indol-5-yl)pyrimidine-2,4-diamine
73 3 -(4-(2-methyl- 1 H-indol-5- MS (m/e): 341.2(M+1) ylamino)pyrimidin-2- ylamino)benzonitrile
74 N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (τn/e): 362.3 (M+ 1)
(methylthio)phenyl)pyrimidine-2,4- diamine
75 N,N-dimethyl-3-(4-(2-methyl-lH-indol-5- MS (m/e): 423.5 (M+ 1) ylamino)pyrimidin-2- ylamino)benzenesulfonamide
76 N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (m/e): 465.4 (M+ 1)
(moφholinosulfonyl)phenyl)pyrimidine-
2,4-diamine
77 N2-(3,4-dimethoxyphenyl)-N4-(2-methyl- MS (m/e): 376.3(M+1) lH-indol-5-yl)pyrimidine-2,4-diamine
78 N2-(4-chlorophenyl)-N4-(2-methyl- 1 H- MS (m/e): 350.3 (M+ 1) indol-5-yl)pyrimidine-2,4-diamine
79 N2-(2,4-difluorophenyl)-N4-(2-methyl- MS (m/e): 352.2 (M+ 1) lH-indol-5-yl)pyrimidine-2,4-diamine
80 N2-(3-chloro-2-fluorophenyl)-N4-(2- MS (m/e): 368.3 (M+ 1) methyl-lH-indol-5-yl)pyrimidine-2,4- diamine
91 N2-(4-chloro-2-fluorophenyl)-N4-(2- MS (m/e): 368.3(M+1) methyl-lH-indol-5-yl)pyrimidine-2,4- diamine
92 N2-(3-(2- MS (m/e): 403.4 (M+ 1)
(dimethylamino)ethoxy)phenyl) -N4 - (2 - methyl- lH-indol-5-yl)pyrimidine-2,4- diamine
N2-(2-methyl-lH-indol-5-yl)-N4-(3-(3- MS (m/e): 452.3(M+1)
(methylsulfonyl)propoxy)phenyl)pyrimidi ne-2,4-diamine
94 2-(l-(3-(4-(2-methyl-lH-indol-5- MS (m/e): 457.4 (M+ 1) ylamino)pyrimidin-2- ylamino)benzyl)piperidin-4- yl)ethanol
95 N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (m/e):429Λ (M+ 1) (piperidin-4- ylmethoxy)phenyl)pyrimidine-2,4- diamine
96 N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (m/e):4l6Λ (M+ 1)
(piperidin-3-yloxy)phenyl)pyrimidine-
2,4-diamine
97 l-(3-(4-(2-methyl-lH-indol-5- MS (m/e): 429.4(M+1) ylamino)pyrimidin-2- ylamino)benzyl)piperidin-4-ol
98 (S)-N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (m/e): 401.4(M+l)
(pyrrolidin-3-yloxy)phenyl)pyrimidine-
2,4-diamine
99 (S)-N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (m/e): 479.5(M+1) ( 1 -(methylsulfonyl)pyrrolidin-3 - yloxy)phenyl)pyrimidine-2,4-diamine
100 N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (m/e): 415.5 (M+ 1)
(piperidin-4-yloxy)phenyl)pyrimidine-
2,4-diamine
101 N4-(2-methyl-lH-indol-5-yl)-N2-(3-(3- MS (m/e): 536.6 (M+ 1) (4-(methylsulfonyl)piperazin- 1 - yl)propoxy)phenyl)pyrimidine-2,4- diamine
NwN'
H H
102 N4-(2-methyl-lH-indol-5-yl)-N2-(3-(3- MS (m/e): 459.6 (M+ 1) moφholinopropoxy)phenyl) pyrimidine-
2,4-diamine
H
H H
103 (R)-N4-(2-methyl-lH-indol-5-yl)-N2-(3- MS (m/e): 479.5 (M+ 1) ( 1 -(methylsulfonyl)pyrrolidm-3 - yloxy)phenyl)pyπmidme-2,4-diamme
104 (E)-N,N-dimethyl-3 -(3 -(4-(2-methyl- 1 H- MS (m/e): 413.2(M+1) mdol-5-ylamino)pyπmidm-2- ylammo)phenyl)acrylamide
105 4-(4-fluoro-2-methyl-lH-mdol-5-yl)-N- MS (m/e): 507.5(M+l) (3- (3-(thiomoφholino-l ',r- dioxide)propoxy)phenyl)pyrimidm-2- amine
106 N4-(2-methyl-lH-indol-5-yl)-N2-(3-(2- MS (m/e): 389.5(M+1)
(methylammo)ethoxy)phenyl)pyrimidme-
2,4-diamme
CXJ-
107 4-(4-fluoro-2-methyl-lH-mdol-5-yloxy)- MS (m/e): 491.5 (M+ 1) N-(3- (3-(thiomoφholmo-l '-oxide) propoxy) phenyl) pyπmidin-2-amme
108 N-(2-(3-(4-(2-methyl-lH-indol-5- MS (m/e): 453.4 (M+ 1) ylammo)pyπmidm-2- ylammo)phenoxy)ethyl)methanesulfonam ide
136 N- (3 - (2 - (dimethylamino)ethoxy)phenyl) - MS (m/e): 404.4(M+l) 4-(2 -methyl- lH-mdol-5-yloxy)pyrimidin- 2 -amine
137 N-cyclopropyl-2-(3 -(4-(2 -methyl- IH- MS (τn/e):414.4 (M+ 1) indol-5-yloxy)pyrimidin-2- ylamino)phenyl)acetamide
138 4-(2-methyl-lH-indol-5-yloxy)-N-(3-(3- MS (m/e): 453.4 (M+ 1)
(methylsulfonyl)propoxy)phenyl)pyrimidi n-2-amine
139 4-(2-methyl-lH-indol-5-yloxy)-N-(3- MS (m/e): 448.2 (M+ 1)
(piperidin-4- ylmethoxy)phenyl)pyrimidin-2-amine
140 4-(2-methyl-lH-indol-5-yloxy)-N-(3- MS (m/e): 416.2 (M+ 1) (piperidin-3-yloxy)phenyl)pyrimidin-2- amine r il N'
H
141 4-(2-methyl-lH-indol-5-yloxy)-N-(3- MS (m/e): 416.4 (M+ 1) (piperidin-4-yloxy)phenyl)pyrimidin-2- amine
amine
172 N-(3-(2-aminoethoxy)phenyl)-4-(2- MS (m/e): 376.3(M+1) methyl-lH-indol-5-yloxy)pyrimidin-2- amine
173 N-(3-(4-(2-methyl-lH-indol-5- MS (m/e): 424.4 (M+ 1) yloxy)pyrimidin-2- ylamino)benzyl)methanesulfonamide
174 N-(2-hydroxyethyl)-3 -(4-(2-methyl- IH- MS (m/e):404Λ (M+ 1) indol-5-yloxy)pyrimidin-2- ylamino)benzamide
175 4-(2-methyl-lH-indol-5-yloxy)-N-(3-(2- MS (m/e): 444.5 (M) (piperazin- 1 -yl)ethoxy)phenyl)pyrimidin- 2 -amine
176 3 -(4-(2-methyl- 1 H-indol-5- MS (m/e): 431.2 (M+ 1) yloxy)pyrimidin-2 -ylamino) -N- (2 - (methylamino)-2-oxoethyl)benzamide
177 3-(4-(2-methyl-lH-indol-5- MS (m/e): 473.0 (M+ 1) yloxy)pyrimidin-2 -ylamino) -N- (2 - moφholinoethyl)benzamide -J- amme
184 N-methyl(3 -(4-(2-methyl- 1 H-indol-5- MS (m/e): 424.4 (M+ 1) yloxy)pyrimidin-2- ylamino)phenyl)methanesulfonamide
185 N-(6-methoxypyridin-3-yl)-4-(2-methyl- MS (m/e):348.2 (M+ 1) lH-indol-5-yloxy)pyrimidin-2-
Amine
186 methyl 2-(4-(4-(4-fluoro-2-methyl- IH- MS (m/ey.406.2 (M+ 1) indol-5-ylamino)pyrimidin-2- ylamino)phenyl)acetate
187 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 364.2 (M+ 1) N2 - (2 -methoxyphenyl)pyrimidine -2,4- diamine
188 N2-(3-bromophenyl)-N4-(4-fluoro-2- MS (τn/e):412.3 (M+ 1) methyl-lH-indol-5-yl)pyrimidine-2,4- diamine
189 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 412.3(M+1) N2-(3 -(methylsulfonyl) phenyl)pyrimidine-2,4-diamine
190 3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 359.3 (M+ 1) ylamino)pyrimidin-2- ylamino)benzonitrile
191 N2-(2-chloro-4-fluorophenyl)-N4-(4- MS (m/e): 386.2 (M+ 1) fluoro-2-methyl-lH-indol-5- yl)pyrimidine-2,4-diamine
192 N-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 427.3(M+1) ylamino)pyrimidin-2- ylamino)phenyl)methanesulfonamide
193 N2-(3,4-difluorophenyl)-N4-(4-fluoro-2- MS (m/e): 370.2(M+l) methyl-lH-indol-5-yl)pyrimidine-2,4- diamine
194 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 463.4 (M+ 1) N2-(3-(2- moφholinoethoxy)phenyl)pyrimidine- 2,4-diamine
195 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e):5403 (M+ 1) N2-(3 -(2-(4-(methylsulfonyl)piperazin- 1 - yl)ethoxy)phenyl)pyrimidine-2,4-diamine
196 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 462.3 (M) N2-(2-(2- moφholinoethoxy)phenyl)pyrimidine- 2,4-diamine
197 N2-(3-(3- MS (m/e): 435.4 (M+ 1) (dimethylamino)propoxy)phenyl)-N4-(4- fluoro-2-methyl-lH-indol-5- yl)pyrimidine-2,4-diamine
198 N-cyclopropyl-2-(3-(4-(4-fluoro-2- MS (m/e): 431.4(M+1) methyl-lH-indol-5-ylamino)pyrimidin-2- ylamino)phenyl)acetamide
199 N-(2-(3-(4-(4-fluoro-2-methyl-lH-indol- MS (m/e): 471.4 (M+ 1) 5-ylamino)pyrimidin-2-yl amino) phenoxy)ethyl)methanesulfonamide
200 2-(2-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 394.4 (M+ 1) ylamino)pyrimidin-2- ylamino)phenoxy)ethanol
201 N2-(3-(2- MS (m/e): 421.4(M+1)
(dimethylamino)ethoxy)phenyl) -N4 - (4 - fluoro-2-methyl-lH-indol-5- yl)pyrimidine-2,4-diamine
202 ( 1 -(3 -(4-(4-fluoro-2-methyl- 1 H-indol-5- MS (m/e): 461.5(M+1) ylamino)pyrimidin-2- ylamino)benzyl)piperidin-4-yl)methanol
203 3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (τn/e): 391.3(M+1) ylamino)pyrimidin-2-ylamino)-N- methylbenzamide
204 trifluoro-N-(3-(4-(4-fluoro-2-methyl-lH- MS (m/e): 481.3(M+1) indol-5-ylamino)pyrimidin-2- ylamino)phenyl)methanesulfonamide
205 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 446.22(M+1) N2-(3-(piperidin-4- ylmethoxy)phenyl)pyrimidine-2,4- diamine
206 (E)-3-(3-(4-(4-fluoiO-2-methyl-lH-indol- MS (m/e): 473.5 (M+ 1) 5-ylamino)pyrimidin-2-ylamino)phenyl)- 1 -moφholinoprop-2-en- 1 -one
207 trifluoro-N-(4-(4-(4-fluoro-2-methyl- 1 H- MS (/n/e):481.3 (M+ 1) indol-5-ylamino)pyrimidin-2- ylamino)phenyl)methanesulfonamide
208 N-(5-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 392.4 (M+ 1) ylammo)pyrimidm-2-ylamino)pyridin-2- yl)acetamide
209 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e):483.5 (M+ 1) N2-(3 -(moφholinosulfonyl) phenyl)pyrimidine-2,4- Diamine
210 3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 427.1(M+1) ylamino)pyrimidin-2-ylamino)-N- methylbenzenesulfonamide
211 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e):408.4 (M+ 1) N2-(3-(2- methoxyethoxy)phenyl)pyrimidine-2,4- diamine
212 4-(4-fluOTO-2-methyl-lH-indol-5-yl)-N- MS (m/e): 525.5(M+1) (3- (3-(thiomoφholino-l ',r- dioxide)propoxy)phenyl)pyrimidin-2- amine
213 N-(2-(dimethylamino)ethyl)-3-(4-(4- MS (m/e): 448.5 (M+ 1) fluoro-2-methyl-lH-indol-5- ylamino)pyrimidin-2- ylamino)benzamide
214 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 407.5(M+l)
N2-(3-(2-
(methylamino)ethoxy)phenyl)pyrimidine-
2,4- diamine
215 (E)-3-(3-(4-(4-fluoro-2-methyl-lH-indol- MS (m/e): 473.1(M+1) 5-ylamino)pyrimidin-2-ylamino)phenyl)- 1 -morpholinoprop-2-en- 1 -one
216 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 493.5(M+1) N2-(3-(3- thiomoφholinopropoxy)phenyl)pyrimidin e-2,4-diamine
217 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 511.4(M+1) N2-(3 -(2-moφholino ethylsulfonyl)phenyl)pyrimidine-2,4- diamine
218 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 479.4 (M+l) N2-(3 -(2-thiomoφholino ethoxy)phenyl)pyrimidine-2,4- diamine
219 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 447.4 (M+ 1) N2-(3-(2-(pyrrolidin-l- yl)ethoxy)phenyl)pyrimidine-2,4- diamine
220 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 510.4(M+l) N2-(3 -((4-(methylsulfonyl)piperazin- 1 - yl)methyl)phenyl)pyrimidine-2,4- diamine
221 2-(4-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 474.7 (M-I) ylamino)pyrimidin-2- ylamino)benzyl)piperazin- 1 - yl)ethanol
222 3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 428.4(M+1) ylamino)pyrimidin-2-ylamino) phenylmethanesulfonate
223 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 426.4(M+1) N2-(3 -(methylsulfonylmethyl) phenyl)pyrimidine-2,4- diamine
224 tert-butyl 4-(2-(3-(4-(2-methyl-lH-indol- MS (m/e): 544.4(M+1) 5-ylamino)pyrimidin-2-yl amino)phenoxy)ethyl)piperazine- 1 - carboxylate
225 tert-butyl 4-(2-(3-(4-(4-fluoiO-2-methyl- MS (m/e): 562.3 (M+ 1) lH-indol-5-ylamino)pyrimidin-2- ylamino)phenoxy)ethyl)piperazine- 1 - carboxylate
226 3-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 433.4 (M+ 1) ylamino)pyrimidin-2-ylamino))phenyl)- N,N-dimethylpropanamide
227 (E)-3-(3-(4-(4-fluoiO-2-methyl-lH-indol- MS (m/e): Ml 2 (M+ 1) 5-ylamino)pyrimidin-2-ylamino)phenyl)- N-methylacrylamide
228 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 448.4 (M+ 1) N2-(3 -((tetrahydro-2H-pyran-4- yl)methoxy)phenyl)pyrimidine-2,4- diamine
229 N2-(3-(2-aminoethoxy)phenyl)-N4-(4- MS (m/e): 393.2 (M+ 1) fluoro-2-methyl-lH-indol-5- yl)pyrimidine-2,4-diamine
diamine
240 l-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 441.4(M+1) ylamino)pyrimidin-2- ylamino)benzyl) sulphonyl - methylamine
241 N4-(4-fluoro-2-methyl-lH-indol-5-yl)- MS (m/e): 365.4 (M+ 1) N2 - (6 -methoxypyridin- 3 -yl)pyrimidine- 2,4-diamine
242 4-(4-fluoro-2-methyl-lH-indol-5-yloxy)- MS (m/e): 464.4 (M+ 1) N-(3 -(2-moφholinoethoxy) phenyl)pyrimidin-2 - amine
243 4-(4-fluoro-2-methyl-lH-indol-5-yloxy)- MS (m/e):478.4 (M+ 1) N-(3 -(3 -moφholino propoxy)phenyl)pyrimidin-2-amine
244 2-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 395.4 (M+ 1) yloxy)pyrimidin-2- ylamino)phenoxy)ethanol ylamino)benzamide
251 (l-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e):462A (M+ 1) yloxy)pyrimidin-2- ylamino)benzyl)piperidin-4- yl)methanol
252 2-(l-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 476.5(M+1) yloxy)pyrimidin-2- ylamino)benzyl)piperidin-4- yl)ethanol
253 4-(4-fluoro-2-methyl-lH-indol-5-yloxy)- MS (m/e): 408.4 (M+ 1) N-(3-(2-(methylamino)ethoxy) phenyl)pyrimidin-2 - amine
254 (E)-3-(3-(4-(4-fluoiO-2-methyl-lH-indol- MS (m/e): 474.5(M+1) 5-yloxy)pyrimidin-2-ylamino)phenyl)- 1 - moφholinoprop-2-en- 1 -one
255 4-(4-fluoro-2-methyl-lH-indol-5-yloxy)- MS (m/e):434.5 (M+ 1) N-(3 -(moφholino methyl)phenyl)pyrimidin-2 - amine
256 (S)-4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 498.4 (M+ 1) yloxy)-N-(3-(l- (methylsulfonyl)pyrrolidin-3 - yloxy)phenyl)pyrimidin-2 - amine
257 3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 392.4 (M+ 1) yloxy)pyrimidin-2-ylamino)-N- methylbenzamide
258 N-(2-(3-(4-(4-fluoro-2-methyl-lH-indol- MS (m/e): 472.4 (M+ 1) 5-yloxy)pyrimidin-2-ylamino)phenoxy) ethyl)me thane sulfonamide
259 trifluoro-N-(3-(4-(4-fluoro-2-methyl-lH- MS (m/e): 482.3(M+1) indol-5-yloxy)pyrimidin-2-yl amino) phenyl)methanesulfonamide
260 4-(4-fluoro-2-methyl-lH-indol-5-yloxy)- MS (m/e): 494.5 (M+ 1) N-(3 -(3 -thiomoφholinopropoxy) phenyl)pyrimidin-2 - amine
261 4-(4-fluoro-2-methyl-lH-indol-5-yloxy)- MS (m/e): 496.4 (M+ 1) N-(3 -(2-(pyrrolidin- 1 -yl)ethylsulfonyl) phenyl)pyrimidin-2-amine
yl)ethyl)benzamide
278 3-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 420.2 (M+ 1) yloxy)pyrimidin-2-ylamino)phenyl)-N- methylpropanamide
279 3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/ey.436.1 (M+ 1) yloxy)pyrimidin-2 -ylamino) -N- (2 - methoxyethyl)benzamide
280 N-(4-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 428.1(M+1) yloxy)pyrimidin-2-yl amino) phenyl)me thane sulfonamide
281 2-(3-(4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 505.1(M+l) yloxy)pyrimidin-2-ylamino)phenyl)-N-(2- moφholinoethyl)acetamide
282 4-(4-fluoro-2-methyl-lH-indol-5-yloxy)- MS (m/e): 457.2 (M+ 1) N-(3 -(2-(methylsulfonyl) ethoxy)phenyl)pyrimidin-2 - amine
Example 284: Synthesis of 3 -(4-(2 -methyl- lH-indol-5-ylamino)pyrimidin-2-yl amino)phenol (Compound 284):
Compound 8 Compound 284
A solution of N2-(3-methoxylphenyl)-N4-(2 -methyl- lH-indol-5- yl)pyrimidine-2,4-diamine (O.lmmol) in 5ml CH2Cl2 was placed in an ice bath. To this was added BBr3(0.5mmol). The reaction mixture was stirred overnight at room temperature, then poured into ice water, and extracted with ethyl acetate. The organic layer was washed sequentially with water and brine, dried over anhydrous Na2SO4, and concentrated. The residue was purified by column chromatography to provide the desired product in a yield of 83%.
1H NMR (DMSO-J6, 400 MHz): δ 10.501 (s, IH), 9.115 (s, IH), 8.956 (s, IH), 8.868 (s, IH), 7.908 (d, J=6Hz, IH), 7.716 (s,lH), 7.271 (d, J=8Hz, IH), 7.210 (d, J=8.4Hz, IH), 7.114 (d, J=8Hz, IH) ,6.968 (t, J=8Hz, IH), 6.322 (dd, J=8,1.6Hz, IH), 6.097 (m, 2H), 2.377 (s, 3H); MS (m/e): 331.4 (M+l). Examples 285-295: Syntheses of Compounds 285-295
Compounds 285-295 were each synthesized in a manner similar to that described in Example 284.
IH), Hz, Hz, Hz, 3H);
(d,
(s, 3H);
(d, 6.839(t, (s,
8.164 2H), Hz,
Example 296 : Synthesis of N-(2 -methoxypyrimidin-4-yl)-N-(2 -methyl- lH-indol-5- yl)pyrimidine-2,4-diamine (Compound 296 ):
The solution of 2-chloropyrimidin-4-amine (lmmol) and sodiumn methoxide (1.5mmol) in 10ml methanol was refluxed for 2h, after removing of solvent, the residue was dissolved in CH2Cl2 and washed with water, dried over anhydrous NaSO4, concentrated in vacuo to give 2-methoxypyrimidin-4-amine. compound 296 To a solution of 2-methoxypyrimidin-4-amine (O.lmmol) and N-(2- chloropyrimidin-4-yl)-2-methyl-lH-indol-5 -amine (O.lmmol) in 3ml dioxide, CsCC>3 (0.2mmol), Pd(OAc)2(I Ommol%) and Xantphos(10mmol%) were added. The mixture was stirred under microwave irradiation at 200°C for 40mins. After cooling the solution was filtered and the filtrate was concentrated in vacuo, the residue was purified by column chromatography(C-18) to give N-(2-methoxypyrimidin-4-yl)-N- (2 -methyl- lH-indol-5-yl)pyrimidine-2,4-diamine(yield 48%).
1H NMR(DMSO-t/5,400MHz): 10.839(s, 1 H), 9.718 (s, 1 H), 9.281 (s, 1 H), 8.162 (d, , J=6.0Hz, IH ), 8.032(m, 2H), 7.693 (s, IH), 7.251 (d, , J=8.8Hz, IH), 7.099 (d, , J=7.2 Hz, IH), 6.300 (d, , J=6.0 Hz, IH), 6.107 (s, IH), 3.863 (s,3H), 2.383 (s, 3H); MS (m/e): 348.2 (M+ 1)
Examples 297-299: Syntheses of Compounds 297-299
Compounds 297-299 were each synthesized in a manner similar to that described in Example 296. compound Name 1H NMR (DMSO-dg, 400 MHz)/MS
297 N-(2-methoxypyridin-4-yl)-N-(2-methyl- 10.837(s, 1 H), 9.421 (s, 1 H), 9.144 (s, 1 H), lH-indol-5-yl)pyrimidine-2,4-diamine 7.978 (d, /=6.0Hz, IH ), 7.838(d, /=6.0Hz, IH), 7.606 (s, IH), 7.333-7.303 (m, 2H), 7.249 (d, /=8.4 Hz, IH), 7.084 (d, /=8.0 Hz, IH), 6.205(d, /=5.6 Hz, IH), 6.088 (s, IH), 3.775 (s,3H), 2.382 (s, 3H); MS (m/e): 347.2 (M+ 1)
298 N- (2 -methoxypyridin-4 -yl) -N-(2 -methyl- 11.258 (s, 1 H), 10.400 (br, 1 H), 9.036 (s, 1 H), lH-indol-5-yl)pyrimidine-2,4-diamine 8.829 (s, 1 H), 8.509 (s, 1 H), 8.048 (d, /=8.4 Hz, IH), 7.911 (d, /=5.6 Hz, IH), 7.007-7.122 (m, 2H), 6.743 (dd, /=8.4 Hz, 1.6 Hz, IH ), 6.194 (s, IH), 6.012 (br,lH), 3.166 (s, 3H), 2.397 (s,3H); MS (m/e): 428.1 (M+ 1) 299 N-(5-(4-(2-methyl-lH-indol-5- MS (m/e): 411.4 (M+ 1) yloxy)pyrimidin-2-ylamino)pyridin-2- yl)methanesulfonamide
Example 300: Synthesis of N-(2-(4-fluorophenoxy)pyrimidin-4-yl)-2-methyl- 1 H- indol-5 -amine (Compound 300)
Compound 300 N-(2-chloropyrimidin-4-yl)-2-methyl-lH-indol-5 -amine (0.1 mmol) and p- fluorophenol (O.lmmol) were dissolved in 0.5 ml DMF. To this was added K2CO3 (0.2mmol). After stirred at 6O0C for 5 h, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine sequentially, dried by anhydrous Na2SO4, and concentrated. The resulting oil residue was purified by column chromatography to provide compound 300 in a yield of 76%.
1H NMR (DMSO-d6, 400 MHz): δ 10.802 (s, IH), 9.491 (s, IH), 7.990 (d, J=5.4 Hz IH), 7.495 (s, IH), 7.295 (m, J=8.4-3.6Hz, 4H), 7.236 (d, J=5.4 Hz IH), 7.133 (d, J=5.6 Hz, IH), 6.486 (d, J=5.6 Hz, IH), 5.902 (s, IH), 2.402 (s, 3H); MS (m/e): 335.1 (M+ 1). Example 301-303: Syntheses of Compounds 301-303
Compounds 301-303 were prepared in a similar manner to that described in Example 300. 7.681 (d, 2H), (d,
(s,
IH), /=8.0
Example 304: Synthesis of 5-(2-(3-methoxyphenoxy)pyrimidin-4-yloxy)-2-methyl- lH-indole (Compound 304):
Compound 304
To a solution of 2,4-dichloropyrimidine (1 mmol) and 5-hydroxy-2- methylindole (1 mmol) in 5ml EtOH was added Et3N(InImOl). The reaction mixture was refluxed for 5 h. After removal of the solvent in vacuo and addition of H2O, the mixture was extracted with EtOAc. The organic layers were combined, washed with a saturated NaCl aqueous solution, dried over anhydrous Na2SO4, and concentrated in vacuo. The resulting oil residue was purified by column chromatography to give 5- (2-chloropyrimidin-4-yloxy)-2 -methyl- lH-indole in a yield of 75%.
5-(2-Chloropyrimidin-4-yloxy)-2-methyl-lH-indole (0.1 mmol) and m- methoxyphenol (0.1 mmol) were dissolved in 0.5 ml DMF. K2CO3 (0.2 mmol) was then added. After the reaction mixture was stirred at 6O0C for 5 h, it was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine sequentially, dried over anhydrous Na2SO4, and concentrated. The crude product was purified by column chromatography to provide compound 304 in a yield of 76%.
1H NMR (CD3OD, 400 MHz): δ 8.303 (d, J=5.6 Hz, IH), 8.084 (s, IH), 7.305-7.262 (m, 3H), 6.908 (dd, J=8.8 Hz, J=2.4 Hz, IH), 6.816-6.764 (m, 3H), 6.463 (d, J=5.6 Hz, IH), 6.226 (s, IH), 3.780 (s,3H), 2.465 (s, 3H); MS (m/e): 346.5 (M-I).
Example 305: Synthesis of 3 -(4-(2 -methyl- lH-indol-5 -ylamino)pyrimidin-2- ylamino)benzonitrile (Compound 305)
Compound 305
To a solution of 2,4-dichloropyrimidine (1 mmol) and 5-Aminobenzimidazole (1 mmol) in 5ml EtOH, was added Et3N(I mmol). The reaction mixture was refluxed for 5 hours. After removal of the solvent in vacuo and addition of H2O, the mixture was extracted with EtOAc. The organic layers were combined, washed with a saturated NaCl aqueous solution, dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by column chromatography to give N-(2- chloropyrimidin-4-yl)-lH-benzo[d]imidazol-5-amine in a yield of 80%.
N-(2-chloropyrimidin-4-yl)-lH-benzo[d]imidazol-5-amine (0.1 mmol), 3- aminobenzonitrile (0.1 mmol), and p-TsOH monohydrate (0.2 mmol) were dissolved in 0.5ml DMF. After the reaction mixture was stirred at 6O0C for 5 h, it was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine sequentially, dried over anhydrous Na2SO4, and concentrated. The resulted oil was purified by column chromatography to provide compound 305 in a yield of 76%. 1H NMR (CD3OD, 400 MHz): δ 8.178 (s, IH), 7.942 (d, J=6.4Hz,2H), 7.825
(br, IH), 7.633-7.603 (m, 2H), 7.469 (dd, J=8.8Hz, 5Hz, IH), 7.212 (t, J=8.4 Hz, IH), 7.075 (d, J=8.0Hz, IH), 6.254 (d, J=6.0 Hz, IH), 3.345 (s, IH); MS: 327.2 (M+ 1).
Example 306: Synthesis ofN2-(3-methoxyphenyl)-N4-(2-methylbenzo[d]oxazol-6- yl) pyrimidine-2,4-diamine (Compound 306)
Compound 306
To a solution of 2,4-dichloropyrimidine (1 mmol) and 2 -methyl- 1,3- benzoxazol-5 -amine (1 mmol) in 5ml EtOH was added Et3N (1 mmol). The reaction mixture was refluxed for 5 h. After removal of the solvent in vacuo and addition of H2O, the mixture was extracted with EtOAc. The organic layers were combined, washed with a saturated NaCl aqueous solution, dried over anhydrous Na2SO4, and concentrated in vacuo. The residue was purified by column chromatography to give N-(2-chloro pyrimidin-4-yl)-2-methylbenzo[d]oxazol-6-amine in a yield of 73%. N-(2-chloropyrimidin-4-yl)-2-methylbenzo[d]oxazol-6-amine (0.1 mmol), 3- methoxyaniline (0.1 mmol), and p-TsOH monohydrate (0.2 mmol) were dissolved in 0.5ml DMF. After the reaction mixture was stirred at 6O0C for 5 h, it was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine sequentially, dried over anhydrous Na2SO4, and concentrated. The resulting oil residue was purified by column chromatography to provide compound 306 in a yield of 82%. 1H NMR (DMSO-d6, 400 MHz): δ 9.431 (s, IH), 9.158 (s, IH), 8.136 (s, IH),
8.022 (d, J=5.6 Hz,lH), 7.566 (d, J=8.8 Hz, IH), 7.517 (d, J=8.8 Hz, IH), 7.418 (s, IH), 7.367 (d, J=8.0 Hz IH), 7.126 (t, J=8.4 Hz, IH), 6.490 (m, IH), 6.224 (d, J=5.2 Hz,lH), 3.674 (s, 3H), 2.609 (s, 3H); MS(We): 348.3 (M+l).
Example 307: Synthesis of N2-(3-ethynylphenyl)-N4-(2-methylbenzo[d]oxazol-6-yl) pyrimidine-2,4-diamine (Compound 307).
Compound 307 was synthesized in a similar manner to that described in Example 306.
1H NMR (DMSO-d6, 400 MHz): δ 9.566 (d, J=5.2 Hz, IH), 9.309 (s, IH), 8.099 (s, IH), 8.038 (d, J=6.0 Hz, IH), 7.917 (s, IH), 7.805 (d, J=8.4 Hz, IH), 7.574 (m, 2H), 7.231 (m, IH), 6.996 (d, J=7.6 Hz, IH), 7.278 (d, J=5.6 Hz,lH), 4.059 (s, IH), 2.608 (s, 3H); MS(We): 342.2 (M+l).
Example 308: Synthesis ofN2-(3-ethynylphenyl)-N4-(lH-indazol-6-yl)pyrimidine- 2,4-diamine (Compound 308)
Compound 308
To a solution of 2,4-dichloropyrimidine (1 mmol) and 5-aminoindazole (1 mmol) dissolved in 5ml EtOH was added Et3N (1 mmol). The reaction mixture was refluxed for 5 h. After removal of the solvent in vacuo and addition of H2O, the mixture was extracted with EtOAc. The organic layers were combined, washed with a saturated NaCl aquesous solution, dried over anhydrous Na2SO4, and concentrated in vacuo. The resulted oil was purified by column chromatography to give N-(2- chloropyrimidin-4-yl)-lH-indazol-5 -amine in a yield of 80%.
N-(2-chloropyrimidin-4-yl)-lH-indazol-5 -amine (0.1 mmol), 3-ethnylaniline (0.1 mmol), and p-TsOH(0.2mmol, monohydrate) were dissolved in 0.5ml DMF. After the reaction mixture was stirred at 6O0C for 5 h, it was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine sequentially, dried over anhydrous Na2SO4, and concentrated. The residue was purified by column chromatography to provide compound 308 in a yield of 74%. 1H NMR (DMSO-de, 400 MHz): δ 12.966 (brs, IH), 9.344 (brs,lH), 9.234
(brs, IH), 8.145 (s, IH), 8.005 (m, 2H), 7.893 (s, IH), 7.795 (d, IH), 7.527 (d, J=8.8 Hz, IH), 7.471 (d, J=8.8 Hz, IH), 7.212 (t, IH), 7.021 (d, IH), 6.626 (d, IH), 4.037 (s, IH); MS (m/e): 327.2 (M+l).
Example 309: Synthesis of N2-(3-methoxylphenyl)-N4-(2-methyl-lH-indol-5-yl) pyrimidine-2,4-diamine (Compound 309)
Compound 309 2,4-Dichloro-5-fluoropyrimidine (1 mmol) and 5-amino-2-methylindole
(1.5 mmol) were dissolved in 3 ml CH3OH and 9 ml H2O. After the reaction mixture was stirred at room temperature for Ih, it was diluted with H2O, acidified with 2N
HCl, and sonicated. The reaction mixture was then filtered, washed with H2O and dried to give N-(2-chloro-5-fluoropyrimidin-4-yl)-2 -methyl- lH-indol-5 -amine in a yield of 78%.
N-(2-chloro-5-fluoropyrimidin-4-yl)-2-methyl-lH-indol-5 -amine (0.1 mmol), m-methoxyaniline (0. lmmol), p-TsOH monohydrate (0.2 mmol) were dissolved in
0.5 ml DMF. After the reaction mixture was stirred at 6O0C for 5 h, it was diluted with water and extracted with ethyl acetate. The organic layer was washed with water and brine sequentially, dried over anhydrous Na2SO4, and concentrated. The residue was purified by column chromatography to provide compound 309 in a yield of 60%.
1H NMR (CD3OD, 400 MHz, δ ppm ): 7.854 (d, J=4.0 Hz, IH), 7.703 (d, J =1.6, IH), 7.248 (s, 2H), 7.177 (br, 2H), 7.054 (t, J=4.2 Hz, 2H), 6.942 (s, 2H), 3.506 (s, 3H), 2.235 (s, 3H); MS(We): 364.2 (M+l).
Example 310: Synthesis of 2-(3-methoxyphenylamino)-4-(2 -methyl- lH-indol-5- ylamino) pyrimidine-5-carbonitrile (Compound 310)
Compound 310
2-Methyl-2-thiopseudourea (5 mmol) and ethyl ethoxymethylenecyanoacetate
(5 mmol) were dissolved in 20 ml EtOH. To this was added K2CO3 (10 mmol). After the mixture was refluxed for 48 h, it was cooled to room temperature and filtered. The solvent was concentrated in vacuo and purified by column chromatography to give 4-hydroxy-2-(methylthio) pyrimidine-5-carbonitrile in a yield of 65%. 4-Hydroxy-2-(methylthio) pyrimidine-5-carbonitrile (3 mmol) and m- anisidine (3 mmol) in pentan-1-ol was refluxed for 40 h under nitrogen. The reaction mixture was concentrated in vacuo. The residue was washed with water and dried to afford 4-hydroxy-2-(3-methoxyphenylamino)pyrimidine-5-carbonitrile. To a solution of 4-hydroxy-2-(3-methoxyphenylamino)pyrimidine-5- carbonitrile in POCI3 was added DMF 0.5 ml. The solution was refluxed for 3 h. The reaction mixture was cooled to room temperature and poured into ice-water. The solution was adjusted to pH=8-9 by aqueous sodium carbonate solution and extracted with dichloromethane. The combined organic layers were washed with brine, dried over anhydrous Na2SO4, concentrated in vacuo to afford 4-chloro-2-(3- methoxyphenylamino)pyrimidine-5-carbonitrile.
4-Chloro-2-(3-methoxyphenylamino)pyrimidine-5-carbonitrile was converted to compound 310 in a similar manner to that described in Example 1.
1H NMR (DMSO-d6, 400 MHz): δ 10.925(s, IH), 9.710 (d, J=I 1.2 Hz, IH), 9.349 (d, J=10.4 Hz, IH), 8.441 (s, IH), 7.474 (s, IH), 7.252 (s, IH), 7.223 (d, J=6.8 Hz, IH), 7.187 (s, IH), 7.062 (m, J= IH), 6.923 (d, J=2.0 Hz, IH), 6.485 (t, IH); 6.098 (s, IH), 3.453 (s, 3H), 2.387 (s, 3H); MS(We): 371.2 (M+l).
Example 311-317: Syntheses of Compounds 311-317
Compounds 311-317 were prepared in a similar manner to that described in Example 310.
compound Name/Structure 1HNMR(DMSO-d6,400Hz)/ MS
311 4-(2-methyl-lH-indol-5-ylamino)-2-(3-(3- 11.184 (s, IH), 10.745 (s, IH), 9.492 (s,lH), moφholinopropoxy)phenylamino)pyrimid 8.396 (s, IH), 7.322 (s, IH), 7.292 (d, J=7.2, ine-5-carbonitrile IH), 7.147 (m, IH), 6.919 (m, IH), 6.815 (d, j=8.8, IH), 6.416 (d, J=7.2, IH), 6.261 (t, j=4.8, IH), 6.129 (s, IH), 3.447 (m, 2H), 3.547 (m, 4H), 2.398 (s, 3H), 2.337 (m, 6H), 1.747 (m, 2H).MS (m/e): 484.2 (M+l)
312 4-(2-methyl-lH-indol-5-yloxy)-2-(3-(3- MS (m/e): 485.3 (M+l) moφholinopropoxy)phenylamino)pyrimid ine-5-carbonitrile
313 4-(2-metnyl-lH-indol-5-ylamino)-2-(3-(2- MS (m/e): 470.5 (M+l) moφholinoethoxy)phenylamino)pyrimidi ne - 5 - c arbonitrile
314 4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): Ml 2 (M+ 1) ylamino)-2-(3-
(trifluoromethyl)phenylamino) pyrimidine - 5 - carbonitrile
315 2-(3,4-dimethoxyphenylamino)-4-(2- MS (m/e): 401.4 (M+ 1) methyl-lH-indol-5-ylamino)pyrimidine-5- c arbonitrile
316 4-(4-fluoro-2-methyl-lH-indol-5- MS (m/e): 488.5 (M+ 1) ylamino)-2-(3-(2- moφholinoethoxy)phenylamino) pyrimidine - 5 - carbonitrile
317 2-(5-cyano-2-(3,4- MS (m/e): 391.1 (M+ 1) dimethoxyphenylamino) pyrimidin-4- ylamino)benzamide
Example 318: KDR kinase activity assay using Z'-lyte kinase assay kit
Inhibition of kinase activity of a recombinant KDR catalytic domain (Invitrogen, Carlsbad, CA, U.S.A., Cat. PV3660) was determined using Z'-LYTE™ Tyrl Peptide assay kit (Invitrogen, Cat. PV3190) in a black 384-well plate (Thermo labsystems, Cambridge, U.K., Cat. 7805). The assay was performed according to the procedures recommended by the manufacturer.
Briefly, a test compound (10 mM stock in DMSO) was diluted to 1 :4 with distilled water containing 8% DMSO. The solution was placed in a test well and three control wells (Cl, C2, and C3) at 2.5 μl/well. Coumarin- fluorescein double-labeled peptide substrate was mixed with the KDR catalytic domain ("kinase"). 5 μl of the kinase/peptide mixture was added to each of the test, Cl, and C2 wells, but not C3 (Final concentration: 0.3 μg/ml of Kinase, 2 μM of peptide). 5 μl of Phosphor-Tyrl peptide was added to the C3 well. 2.5 μl of 40 μM ATP was added to the test well and C2 well and 2.5 μl of 1.33 x kinase buffer (1 xbuffer: 50 mM HEPES, pH7.5, 0.01% Brij-35, 5 mM MgCl2, 5 mM MnCl2, and 1 mM EGTA) was added to the Cl and C3 wells. The plate was briefly spun at 1000 rpm to settle all solution down to the bottom of the wells and then sealed and shaken at 250 rpm and 250C for 1 hour.
A development reagent was diluted to 1 : 128 according to the recommendation of the manufacturer. 5 μl of the diluted development reagent was added to each well. The plate was spun at 1000 rpm to settle all solution down to the wells, and then sealed and shaken at 250 rpm and 250C for 1 hour.
5 μl of a stop reagent was added to each well. The plate was spun at 1000 rpm to settle all solution down to the wells, and then sealed at 250 rpm and 250C for 2 minutes. Emission of the solution at each well was measured by a VictorTM3 micro- plate reader at Excitation 400 nm/Emission 445 nm and 520 nm. The emission ratio and phosphorylation ("Phos.") percentage were calculated by the following equations:
Coumarin Emission (445 nm) Emission Ratio =
Fluorescein Emission (520 nm)
(Emission Ratio x FiOO%) - CiOO%
%Phosphorylation = 1 - (C0o/o - Cioo%) + [Emission Ratio x (F 100% - F0%)]
where: Cioo% = Average Coumarin emission signal of the 100% Phos. Control Co% = Average Coumarin emission signal of the 0% Phos. Control Fioo% = Average Fluorescein emission signal of the 100% Phos. Control Fo% = Average Fluorescein emission signal of the 0% Phos. Control
The inhibition ratio was calculated as follows:
Inhibition% = (Phos. in C2 well - Phos. in test well)/ (Phos. in C2 well) x 100%
The result showed that all of the tested compounds inhibited the activity of KDR. The IC50 values ranged from 0.001 to 10 μM.
Other Embodiments
All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.
From the above description, one skilled in the art can easily ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. For example, compounds structurally analogous to the compounds of this invention can be made and used to practice this invention. Thus, other embodiments are also within the claims.

Claims (25)

WHAT IS CLAIMED IS:
1. A compound of the following formula:
in which each of X and Y, independently, is O, S, or NR, wherein R is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, or aminosulfonyl;
Z is CR' or N, wherein R' is H, halo, nitro, cyano, hydroxyl, alkoxy, aryloxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, or heterocycloalkyl;
V, U, and T together represent , or
each of Ri, R2, R3, R4, and R6, independently, is H, halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl; R5 is alkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl; and
R7 is alkyl.
2. The compound of claim 1 , wherein X is O or NH.
3. The compound of claim 2, wherein Y is NH.
4. The compound of claim 3, wherein V, U, and T together represent
5. The compound of claim 4, wherein R6 is H and R7 is methyl.
6. The compound of claim 5, wherein R5 is aryl or heteroaryl, optionally substituted with halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, sulfonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl.
7. The compound of claim 1 , wherein V, U, and T together represent
and Z is CR', R' being H, halo, or alkyl.
8. The compound of claim 7, wherein R6 is H and R7 is methyl.
9. The compound of claim 1, wherein R5 is aryl or heteroaryl, optionally substituted with halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, sulfonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl.
10. The compound of claim 1 , wherein Y is NH.
11. The compound of claim 1 , wherein the compound is one of compounds 1-316.
12. A method of treating an angiogenesis-related disorder comprising, administering to a subject in need thereof an effective amount of a compound of claim 1.
13. The method of claim 12, wherein the angiogenesis-related disorder is cancer or age-related macula degeneration.
14. A method of inhibiting the activity of kinase insert domain receptor comprising contacting the receptor with an effective amount of a compound of formula (I):
,Ar
X
R-YΛNΛR3
(I), wherein:
Ri is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, or heteroaryl; each ofR2 and R3, independently, is H, halogen, nitro, amino, CN, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylcarbonyl, carboxy, or alkoxycarbonyl; each of X and Y, independently, is O, S, or NR4, wherein R4 is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, or aminosulfonyl; and
Ar is aryl or heteroaryl.
15. The method of claim 14, wherein Ar is indolyl, indazolyl, benzoimidazolyl, or benzoxazolyl.
16. The method of claim 15, wherein X is O or NH and Y is NH.
17. The method of claim 16, wherein Ri is aryl or heteroaryl, optionally substituted with halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, sulfonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl.
18. A method of inhibiting angiogenesis, comprising administrating to a subject in need thereof an effective amount of a compound of the formula:
wherein:
Ri is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, or heteroaryl; each of R2 and R3, independently, is H, halogen, nitro, amino, CN, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylcarbonyl, carboxy, or alkoxycarbonyl; each of X and Y, independently, is O, S, or NR4, wherein R4 is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, or aminosulfonyl; and Ar is heteroaryl.
19. The method of claim 18, wherein Ar is indolyl, indazolyl, benzoimidazolyl, or benzoxazolyl.
20. The method of claim 19, wherein X is O or NH and Y is NH.
21. The method of claim 20, wherein Ri is aryl or heteroaryl, optionally substituted with halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, sulfonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl.
22. A method of treating age-related macular degeneration, comprising administrating to a subject in need thereof an effective amount of a compound of the formula:
wherein:
Ri is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, or heteroaryl; each ofR2 and R3, independently, is H, halogen, nitro, amino, CN, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylcarbonyl, carboxy, or alkoxycarbonyl; each of X and Y, independently, is O, S, or NR4, wherein R4 is H, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkylcarbonyl, alkoxycarbonyl, aminocarbonyl, or aminosulfonyl; and
Ar is heteroaryl.
23. The method of claim 22, wherein Ar is indolyl, indazolyl, benzoimidazolyl, or benzoxazolyl.
24. The method of claim 23, wherein X is O or NH and Y is NH.
25. The method of claim 24, wherein Ri is aryl or heteroaryl, optionally substituted with halo, nitro, amino, cyano, hydroxy, alkyl, alkenyl, alkynyl, aryl, cycloalkyl, heterocycloalkyl, heteroaryl, alkoxy, alkylthio, alkylcarbonyl, carboxy, alkoxycarbonyl, sulfonyl, carbonylamino, sulfonylamino, aminocarbonyl, or aminosulfonyl.
AU2008240084A 2007-04-16 2008-04-15 Pyrimidine derivatives Active AU2008240084B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US91192107P 2007-04-16 2007-04-16
US60/911,921 2007-04-16
PCT/US2008/060366 WO2008128231A1 (en) 2007-04-16 2008-04-15 Pyrimidine derivatives

Publications (2)

Publication Number Publication Date
AU2008240084A1 AU2008240084A1 (en) 2008-10-23
AU2008240084B2 true AU2008240084B2 (en) 2013-08-08

Family

ID=

Similar Documents

Publication Publication Date Title
EP2154967B9 (en) Pyrimidine derivatives
ES2726882T3 (en) Thienopyrimidine derivatives that have inhibitory activity for protein kinase
TWI407962B (en) Quinazoline derivatives
TWI458724B (en) Quinazoline derivatives
JP2011504927A (en) BCR-ABL low molecular weight myristic acid ester inhibitor and method of using the same
WO2012059932A1 (en) 2, 4 -diaminopyrimidine derivatives as protein kinase inhibitors
JP5836963B2 (en) Quinazoline compounds
AU2008240084B2 (en) Pyrimidine derivatives
WO2010025138A2 (en) Pyrimidine compounds
KR20160147170A (en) Novel pazopanib derivatives and pharmaceutical composition comprising the same