AU2008201991A1 - Therapeutic Polypeptides, Nucleic Acids Encoding Same and Methods of Use - Google Patents

Therapeutic Polypeptides, Nucleic Acids Encoding Same and Methods of Use Download PDF

Info

Publication number
AU2008201991A1
AU2008201991A1 AU2008201991A AU2008201991A AU2008201991A1 AU 2008201991 A1 AU2008201991 A1 AU 2008201991A1 AU 2008201991 A AU2008201991 A AU 2008201991A AU 2008201991 A AU2008201991 A AU 2008201991A AU 2008201991 A1 AU2008201991 A1 AU 2008201991A1
Authority
AU
Australia
Prior art keywords
polypeptide
novx
nucleic acid
protein
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2008201991A
Inventor
David W. Anderson
Ferenc L. Boldog
Catherine E. Burgess
Stacie J. Casman
Shlomit R. Edinger
Katarzyna Furtak
Valerie Gerlach
Li Li
Xiaohong Liu
John R. Macdougall
Uriel M. Malyankar
Ann Mazur
Peter D. Mezes
Charles E. Miller
Meera Patturajan
Carol E. A. Pena
Luca Rastelli
Suresh G. Shenoy
Richard A. Shimkets
Glennda Smithson
Kimberly A. Spytek
Raymond J Taupier Jr
Corine A. M. Vernet
Edward Z. Voss
Bryan D. Zerhusen
Haihong Zhong
Mei Zhong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CuraGen Corp
Original Assignee
CuraGen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/115,479 external-priority patent/US20040006205A1/en
Priority claimed from AU2002257115A external-priority patent/AU2002257115A1/en
Application filed by CuraGen Corp filed Critical CuraGen Corp
Publication of AU2008201991A1 publication Critical patent/AU2008201991A1/en
Abandoned legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Description

00
O
NO
0
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name of Applicant: Address for Service: CuraGen Corporation CULLEN CO.
Level 26 239 George Street Brisbane Qld 4000 Invention Title: Therapeutic Polypeptides, Nucleic Acids Encoding Same and Methods of Use Details of Original Application: 2002257115 The following statement is a full description of this invention, including the best method of performing it, known to us: 00 THERAPEUTIC POLYPEPTIDES, NUCLEIC ACIDS ENCODING SAME AND METHODS OF USE FIELD OF THE INVENTION
NO
SThe present invention relates to novel polypeptides, and the nucleic acids encoding them, having properties related to stimulation of biochemical or physiological responses in a cell, a tissue, an organ or an organism. More particularly, the novel polypeptides are gene products of novel genes, or are specified biologically active fragments or derivatives thereof.
SMethods of use encompass diagnostic and prognostic assay procedures as well as methods of 00 treating diverse pathological conditions.
O
BACKGROUND OF THE INVENTION Eukaryotic cells are characterized by biochemical and physiological processes, which under normal conditions are exquisitely balanced to achieve the preservation and propagation of the cells. When such cells are components of multicellular organisms such as vertebrates or, more particularly, organisms such as mammals, the regulation of the biochemical and physiological processes involves intricate signaling pathways. Frequently, such signaling pathways include constituted of extracellular signaling proteins, cellular receptors that bind the signaling proteins and signal transducing components located within the cells.
Signaling proteins may be classified as endocrine effectors, paracrine effectors or autocrine effectors. Endocrine effectors are signaling molecules secreted by a given organ into the circulatory system, which are then transported to a distant target organ or tissue. The target cells include the receptors for the endocrine effector, and when the endocrine effector binds, a signaling cascade is induced. Paracrine effectors involve secreting cells and receptor cells in close proximity to each other, such as two different classes of cells in the same tissue or organ. One class of cells secretes the paracrine effector, which then reaches the second class of cells, for example by diffusion through the extracellular fluid. The second class of cells contains the receptors for the paracrine effector; binding of the effector results in induction of the signaling cascade that elicits the corresponding biochemical or physiological effect. Autocrine effectors are highly analogous to paracrine effectors, except that the same cell type that secretes the autocrine effector also contains the receptor. Thus the autocrine effector binds to receptors on the same cell, or on identical neighboring cells. The binding process then elicits the characteristic biochemical or physiological effect.
00 0 Signaling processes may elicit a variety of effects on cells and tissues including, by Ci way of nonlimiting example, induction of cell or tissue proliferation, suppression of growth or proliferation, induction of differentiation or maturation of a cell or tissue, and suppression of differentiation or maturation of a cell or tissue.
INO Many pathological conditions involve dysregulation of expression of important effector proteins. In certain classes of pathologies the dysregulation is manifested as diminished or suppressed level of synthesis and secretion of protein effectors. In other classes of pathologies the dysregulation is manifested as increased or up-regulated level of synthesis and secretion of protein effectors. In a clinical setting a subject may be suspected C of suffering from a condition brought on by altered or mis-regulated levels of a protein 00 0effector of interest. Therefore there is a need to assay for the level of the protein effector of C interest in a biological sample from such a subject, and to compare the level with that characteristic of a nonpathological condition. There also is a need to provide the protein effector as a product of manufacture. Administration of the effector to a subject in need thereof is useful in treatment of the pathological condition. Accordingly, there is a need for a method of treatment of a pathological condition brought on by a diminished or suppressed levels of the protein effector of interest. In addition, there is a need for a method of treatment of a pathological condition brought on by a increased or up-regulated levels of the protein effector of interest.
SUMMARY OF THE INVENTION The invention is based in part upon the discovery of isolated polypeptides including amino acid sequences selected from mature forms of the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between I and 45. The invention also is based in part upon variants of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed. In another embodiment, the invention includes the amino acid sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45. In another embodiment, the invention also comprises variants of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so 00 O changed. The invention also involves fragments of any of the mature forms of the amino acid ¢C sequences selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, or any other amino acid sequence selected from this group. The invention also comprises fragments from these groups in which up to 15% of the residues are changed.
ID In another embodiment, the invention encompasses polypeptides that are naturally occurring allelic variants of the sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45. These allelic variants include amino acid sequences that are the translations of nucleic acid sequences differing by a single nucleotide from nucleic acid sequences selected from the group consisting of SEQ ID NOS: 2n-1, NC wherein n is an integer between 1 and 45. The variant polypeptide where any amino acid 00 changed in the chosen sequence is changed to provide a conservative substitution.
In another embodiment, the invention comprises a pharmaceutical composition involving a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45 and a pharmaceutically acceptable carrier. In another embodiment, the invention involves a kit, including, in one or more containers, this pharmaceutical composition.
In another embodiment, the invention includes the use of a therapeutic in the manufacture of a medicament for treating a syndrome associated with a human disease, the disease being selected from a pathology associated with a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45 wherein said therapeutic is the polypeptide selected from this group.
In another embodiment, the invention comprises a method for determining the presence or amount of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45 in a sample, the method involving providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.
In another embodiment, the invention includes a method for determining the presence of or predisposition to a disease associated with altered levels of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between I and 45 in a first mammalian subject, the method involving measuring the level of expression of the polypeptide in a sample from the first mammalian subject; and comparing the amount of the polypeptide in this sample to the amount of the polypeptide present in a 00 O control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease.
IO In another embodiment, the invention involves a method of identifying an agent that binds to a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, the method including introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. The agent could be a cellular receptor or a downstream effector.
CN In another embodiment, the invention involves a method for identifying a potential 00 0therapeutic agent for use in treatment of a pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, the method including providing a cell expressing the polypeptide of the invention and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; and determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.
In another embodiment, the invention involves a method for screening for a modulator of activity or of latency or predisposition to a pathology associated with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, the method including administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of the invention, wherein the test animal recombinantly expresses the polypeptide of the invention; measuring the activity of the polypeptide in the test animal after administering the test compound; and comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of the invention. The recombinant test animal could express a test protein transgene or express the transgene under the control of a promoter at an increased level 00 O relative to a wild-type test animal The promoter may or may not b the native gene promoter of the transgene.
In another embodiment, the invention involves a method for modulating the activity of a polypeptide with an amino acid sequence selected from the group consisting of SEQ ID N NO:2n, wherein n is an integer between 1 and 45, the method including introducing a cell sample expressing the polypeptide with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of the polypeptide.
In another embodiment, the invention involves a method of treating or preventing a Spathology associated with a polypeptide with an amino acid sequence selected from the group C,1 consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, the method including 00 Sadministering the polypeptide to a subject in which such treatment or prevention is desired in (Ci an amount sufficient to treat or prevent the pathology in the subject. The subject could be human.
In another embodiment, the invention involves a method of treating a pathological state in a mammal, the method including administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45 or a biologically active fragment thereof.
In another embodiment, the invention involves an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide having an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45 wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45 or any variant of the polypeptide 00 O wherein any amino acid of the chosen sequence is changed to a different amino acid, C provided that no more than 10% of the amino acid residues in the sequence are so changed; and the complement of any of the nucleic acid molecules.
In another embodiment, the invention comprises an isolated nucleic acid molecule IN having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45, wherein the nucleic acid molecule Scomprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.
SIn another embodiment, the invention involves an isolated nucleic acid molecule Cl including a nucleic acid sequence encoding a polypeptide having an amino acid sequence 00 Sselected from the group consisting of a mature form of the amino acid sequence given SEQ 1 ID NO:2n, wherein n is an integer between 1 and 45 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.
In another embodiment, the invention comprises an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n-l, wherein n is an integer between 1 and In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 45; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45; and a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45 is changed from that selected 00 Fl from the group consisting of the chosen sequence to a different nucleotide provided that no 1 more than 15% of the nucleotides are so changed.
In another embodiment, the invention includes an isolated nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence IN selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 45, or a complement of the nucleotide sequence.
C, In another embodiment, the invention includes an isolated nucleic acid molecule 00 having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45, wherein the nucleic acid molecule has a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.
In another embodiment, the invention includes a vector involving the nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45. This vector can have a promoter operably linked to the nucleic acid molecule. This vector can be located within a cell.
In another embodiment, the invention involves a method for determining the presence or amount of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45 in a sample, the method including providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample. The presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type. The cell type can be cancerous.
00 O In another embodiment, the invention involves a method for determininmmg the presence C of or predisposition for a disease associated with altered levels of a nucleic acid molecule having a nucleic acid sequence encoding a polypeptide including an amino acid sequence selected from the group consisting of a mature form of the amino acid sequence given SEQ IDID NO:2n, wherein n is an integer between 1 and 45 in a first mammalian subject, the method including measuring the amount of the nucleic acid in a sample from the first mammalian subject; and comparing the amount of the nucleic acid in the sample of step to the amount of the nucleic acid present in a control sample from a second mammalian subject known not to have or not be predisposed to, the disease; wherein an alteration in the level of the nucleic C',I acid in the first subject as compared to the control sample indicates the presence of or 00 predisposition to the disease.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
Other features and advantages of the invention will be apparent from the following detailed description and claims.
DETAILED DESCRIPTION OF THE INVENTION The present invention provides novel nucleotides and polypeptides encoded thereby.
Included in the invention are the novel nucleic acid sequences, their encoded polypeptides, antibodies, and other related compounds. The sequences are collectively referred to herein as "NOVX nucleic acids" or "NOVX polynucleotides" and the corresponding encoded polypeptides are referred to as "NOVX polypeptides" or "NOVX proteins." Unless indicated otherwise, "NOVX" is meant to refer to any of the novel sequences disclosed herein. Table 1 provides a summary of the NOVX nucleic acids and their encoded polypeptides.
00 00 TABLE 1. Sequences and Corresponding SEQ DD Numbers SEQ ID SEQ ID NOVX Internal NO NO Hmlg Assignment Identiflcation (nucleic (amino Hm~~ acid) CG56908-02 1 2 Prorelaxin H2 Precursor 2a CG59783-01 3 t 4 CGI-67 2b CG59783-02 5 6 CGI-67 3 CG59873-01 7 8 Cystatin 4 CG906-01 10 Collagen Alpha I(XIV) Chain Precursor 4 CG906-01 CG89511_01 11 12 Plasma Kallekrein 6 CG89614 02 13 14 Neurophysin 7 CG90031-01 15 16 Cathepsin L 8 CG90155-01 17 18 Secreted Protein 9a CG90750-01 19 20 High (Glycine Tyrosine) Keratin 9b CG90750-02 21 22 High (Glycine Tyrosine) Keratin CG91235-01 23 24 Interleukin 8 IlIa CG91657-01 25 26 Brush Border 61.0 kDa Protein Precursor I1I b CG91657-02 27 28 Brush Border 6 1.0 kcDa Protein Precursor- 12a CG91678-01 29 30 MMP-I 12b 172557724 31 32 MMP-I 12c 172557764 33 34 12d 173877223 35 36 MMP-1 l2e 172557827 37 38 MMP-l 12f CG91678-03 39 40 MMP-1 13 CG91698-01 41 42 Heparanase 14a CG91708-01 43 44 MMP-3 14b CG91708-02 45 46 MMP-3 14c 240317953 47 48 MMP-3 14d 240317980 49 50 MMP-3 CG91729-01 51 52 MMP-13 CG91729-02 53 54 MMP-13 16a CG92489-01 55 56 BCG-Induced Integral Membrane Protein 16b 228495688 57 58 BCG-induccd Integral Membrane Protein 16c 228495693 59 60 BCG-Induced Integral Membrane Protein 16d 228495882 61 62 BCG-induced Integral Membrane Protein 17a CG93008-01 63 64 Prepro-Plasma Carboxypeptidase B 1 7b CG93008-02 65 66 Prepro-Plasma Carboxypeptidase B 1 7c CG93008-03 67 68 Prepro-Plasma Carboxypeptidase B 17d CG93008-04 69 70 Prepro-Plasma Carboxypeptidase B 18a CG93252-01 71 72 Procathepsin L 18b CG93252-02 73 74 Procathepsin L 1 8c CG93252-03 75 76 Procathepsin L 19 CG93285-01 77 78 Matrix Metalloprotease CG93387-01 1 79 80 Fibropellin I Precursor CG93387-02 81 82 Fibropellin I Precursor 21 CG93702-01 83 84 Intcrlcukin Rccptor 22 CG93792-01 85 86 Properdin 23 CG940i3-0i 87 88 Properdin 24 CG94442 01 89 90 Carboxylesterase Precursor Table I indicates homology of NOVX nucleic acids to known protein families. Thus, the nucleic acids and polypeptides, antibodies and related compounds according to the invention corresponding to a NOVX as identified in column 1 of Table I will be useful in 00 O therapeutic and diagnostic applications implicated in, for example, pathologies and disorders associated with the known protein families identified in column 5 of Table 1.
NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to O the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the 0family to which the NOVX polypeptides belong.
SConsistent with other known members of the family of proteins, identified in column C,1 5 of Table 1, the NOVX polypeptides of the present invention show homology to, and 00 0contain domains that are characteristic of, other members of such protein families. Details of 1 the sequence relatedness and domain analysis for each NOVX are presented in Examples 1-24.
The NOVX nucleic acids and polypeptides can also be used to screen for molecules, which inhibit or enhance NOVX activity or function. Specifically, the nucleic acids and polypeptides according to the invention may be used as targets for the identification of small molecules that modulate or inhibit diseases associated with the protein families listed in Table 1.
The NOVX nucleic acids and polypeptides are also useful for detecting specific cell types. Details of the expression analysis for each NOVX are presented in Example 27.
Accordingly, the NOVX nucleic acids, polypeptides, antibodies and related compounds according to the invention will have diagnostic and therapeutic applications in the detection of a variety of diseases with differential expression in normal vs. diseased tissues, e.g. a variety of cancers.
Additional utilities for NOVX nucleic acids and polypeptides according to the invention are disclosed herein.
NOVX clones NOVX nucleic acids and their encoded polypeptides are useful in a variety of applications and contexts. The various NOVX nucleic acids and polypeptides according to the invention are useful as novel members of the protein families according to the presence of domains and sequence relatedness to previously described proteins. Additionally, NOVX nucleic acids and polypeptides can also be used to identify proteins that are members of the family to which the NOVX polypeptides belong.
00 O The NOVX genes and their corresponding encoded proteins are useful for preventing, ,1 treating or ameliorating medical conditions, by protein or gene therapy. Pathological conditions can be diagnosed by determining the amount of the new protein in a sample or by determining the presence of mutations in the new genes. Specific uses are described for each IDof the NOVX genes, based on the tissues in which they are most highly expressed. Uses include developing products for the diagnosis or treatment of a variety of diseases and disorders.
The NOVX nucleic acids and proteins of the invention are useful in potential diagnostic and therapeutic applications and as a research tool. These include serving as a CK1 specific or selective nucleic acid or protein diagnostic and/or prognostic marker, wherein the 00 presence or amount of the nucleic acid or the protein are to be assessed, as well as potential C therapeutic applications such as the following: a protein therapeutic, (ii) a small molecule drug target, (iii) an antibody target (therapeutic, diagnostic, drug targeting/cytotoxic antibody), (iv) a nucleic acid useful in gene therapy (gene delivery/gene ablation), and a composition promoting tissue regeneration in vitro and in vivo (vi) biological defense weapon.
In one specific embodiment, the invention includes an isolated polypeptide comprising an amino acid sequence selected from the group consisting of: a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and wherein any amino acid in the mature form is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; an amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 1 5% of the amino acid residues in the sequence are so changed; and a fragment of any of through In another specific embodiment, the invention includes an isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and 45; a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID 00 SNO:2n, wherein n is an integer between 1 and 45 wherein any amino acid in the mature form C of the chosen sequence is changed to a different amino acid, provided that no more than of the amino acid residues in the sequence of the mature form are so changed; the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer IN between 1 and 45; a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, in which any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more 0than 15% of the amino acid residues in the sequence are so changed; a nucleic acid Sfragment encoding at least a portion of a polypeptide comprising the amino acid sequence C1 selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 00 or any variant of said polypeptide wherein any amino acid of the chosen sequence is i changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and the complement of any of said nucleic acid molecules.
In yet another specific embodiment, the invention includes an isolated nucleic acid molecule, wherein said nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of: the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45; a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between I and 45; and a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45 is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than of the nucleotides are so changed.
NOVX Nucleic Acids and Polypeptides One aspect of the invention pertains to isolated nucleic acid molecules that encode NOVX polypeptides or biologically active portions thereof. Also included in the invention are nucleic acid fragments sufficient for use as hybridization probes to identify NOVX-encoding nucleic acids NOVX mRNAs) and fragments for use as PCR primers for the amplification and/or mutation of NOVX nucleic acid molecules. As used herein, the 00 0 term "nucleic acid molecule" is intended to include DNA molecules cDNA or genomic NC DNA), RNA molecules mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule may be single-stranded or double-stranded, but preferably is comprised \O double-stranded DNA.
A NOVX nucleic acid can encode a mature NOVX polypeptide. As used herein, a "mature" form of a polypeptide or protein disclosed in the present invention is the product of \a naturally occurring polypeptide, precursor form, or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full-length OC' gene product encoded by the corresponding gene. Alternatively, it may be defined as the 00 Spolypeptide, precursor or proprotein encoded by an ORF described herein. The product "mature" form arises, by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell (host cell) in which the gene product arises. Examples of such processing steps leading to a "mature" form of a polypeptide or protein include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an ORF or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+l to residue N remaining. Further as used herein, a "mature" form of a polypeptide or protein may arise from a post-translational modification other than a proteolytic cleavage event. Such additional processes include, by way of non-limiting example, glycosylation, myristoylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.
The term "probe", as utilized herein, refers to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides and 100 nt, or as many as approximately, 6,000 nt, depending upon the specific use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are generally obtained from a natural or recombinant source, are highly specific, and much slower to hybridize than shorter-length oligomer probes. Probes may be single- or 00 O double-stranded and designed to have specificity in PCR, membrane-based hybridization C1 technologies, or ELISA-like technologies.
The term "isolated" nucleic acid molecule, as used herein, is a nucleic acid which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid sequences located at the and 3'-termini of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated NOVX nucleic acid molecules can contain less than about kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, 0.1 kb, or less ofnucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell/tissue from which the nucleic 00 0 acid is derived brain, heart, liver, spleen, etc.). Moreover, an "isolated" nucleic acid Smolecule, such as a cDNA molecule, can be substantially free of other cellular material, culture medium, or of chemical precursors or other chemicals.
A nucleic acid molecule of the invention, a nucleic acid molecule having the nucleotide sequence SEQ ID NOS: 2n-l, wherein n is an integer between 1 and 45, or a complement of this nucleotide sequence, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a portion of the nucleic acid sequence of SEQ ID NOS:2n-l, wherein n is an integer between I and 45, as a hybridization probe, NOVX molecules can be isolated using standard hybridization and cloning techniques as described in Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL 2 nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, New York, NY, 1993).
A nucleic acid of the invention can be amplified using cDNA, mRNA or, alternatively, genomic DNA as a template with appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to NOVX nucleotide sequences can be prepared by standard synthetic techniques, using an automated DNA synthesizer.
As used herein, the term "oligonucleotide" refers to a series of linked nucleotide residues. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably 00 about 15 nt to 30 nt in length. In one embodiment of the invention, an oligonucleotide tc comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, or a complement thereof. Oligonucleotides may be chemically synthesized and may also be Sused as probes.
In another embodiment, an isolated nucleic acid molecule of the invention comprises _a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NOS:2n-1, wherein n is an integer between I and 45, or a portion of this nucleotide sequence a fragment that can be used as a probe or primer or a fragment encoding a C biologically-active portion of A NOVX polypeptide). A nucleic acid molecule that is 00 Scomplementary to the nucleotide sequence shown SEQ ID NOS:2n-1, wherein n is an integer NC\ between 1 and 45,is one that is sufficiently complementary to the nucleotide sequence shown SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45,that it can hydrogen bond with few or no mismatches to the nucleotide sequence shown SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, thereby forming a stable duplex.
As used herein, the term "complementary" refers to Watson-Crick or Hoogsteen base pairing between nucleotides units of a nucleic acid molecule, and the term "binding" means the physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, van der Waals, hydrophobic interactions, and the like. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another polypeptide or compound, but instead are without other substantial chemical intermediates.
"Fragments" provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, and are at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice.
A full-length NOVX clone is identified as containing an ATG translation start codon and an in-frame stop codon. Any disclosed NOVX nucleotide sequence lacking an ATG start codon therefore encodes a truncated C-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 5' direction 00 O of the disclosed sequence. Any disclosed NOVX nucleotide sequence lacking an in-frame stop codon similarly encodes a truncated N-terminal fragment of the respective NOVX polypeptide, and requires that the corresponding full-length cDNA extend in the 3' direction of the disclosed sequence.
ID"Derivatives" are nucleic acid sequences or amino acid sequences formed from the native compounds either directly, by modification, or by partial substitution. "Analogs" are _nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound, e.g. they differ from it in respect to certain components or side chains. Analogs may be synthetic or derived from a different evolutionary origin and 00 may have a similar or opposite metabolic activity compared to wild type. Homologs are 00 0nucleic acid sequences or amino acid sequences of a particular gene that are derived from different species.
Derivatives and analogs may be full length or other than full length. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, or identity (with a preferred identity of 80-95%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the proteins of the invention under stringent, moderately stringent, or low stringent conditions. See e.g. Ausubel, et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, New York, NY, 1993, and below.
A "homologous nucleic acid sequence" or "homologous amino acid sequence," or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences include those sequences coding for isoforms of NOVX polypeptides. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the invention, homologous nucleotide sequences include nucleotide sequences encoding for A NOVX polypeptide of species other than humans, including, but not limited to vertebrates, and thus can include, frog, mouse, rat, rabbit, dog, cat, cow, horse, and other organisms.
Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous 00 O nucleotide sequence does not, however, include the exact nucleotide sequence encoding a 1 human NOVX protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, as well as a polypeptide possessing O NOVX biological activity. Various biological activities of the NOVX proteins are described below.
A NOVX polypeptide is encoded by the open reading frame of a NOVX Snucleic acid. An ORF corresponds to a nucleotide sequence that could potentially be Stranslated into a polypeptide. A stretch of nucleic acids comprising an ORF is uninterrupted CN1 by a stop codon. An ORF that represents the coding sequence for a full protein begins with 00 San ATG "start" codon and terminates with one of the three "stop" codons, namely, TAA, TAG, or TGA. For the purposes of this invention, an ORF may be any part of a coding sequence, with or without a start codon, a stop codon, or both. For an ORF to be considered as a good candidate for coding for a bonafide cellular protein, a minimum size requirement is often set, a stretch of DNA that would encode a protein of 50 amino acids or more.
The nucleotide sequences determined from the cloning of the human NOVX genes allows for the generation of probes and primers designed for use in identifying and/or cloning NOVX homologues in other cell types, e.g. from other tissues, as well as NOVX homologues from other vertebrates. The probe/primer typically comprises a substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 consecutive sense strand nucleotide sequence of SEQ ID NOS:2n-l, wherein n is an integer between 1 and 45; or an anti-sense strand nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45; or of a naturally occurring mutant of SEQ ID NOS:2n-1, wherein n is an integer between 1 and Probes based on the human NOVX nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe has a detectable label attached, e.g. the label can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissues which mis-express A NOVX protein, such as by measuring a level of A NOVX-encoding nucleic acid in a sample of cells from a subject detecting NOVX mRNA levels or determining whether a genomic NOVX gene has been mutated or deleted.
00 O "A polypeptide having a biologically-active portion of A NOVX polypeptide" refers CN to polypeptides exhibiting activity similar, but not necessarily identical, an activity of a polypeptide of the invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a IO "biologically-active portion of NOVX" can be prepared by isolating a portion SEQ ID NOS:2n-l, wherein n is an integer between I and 45, that encodes a polypeptide having A NOVX biological activity (the biological activities of the NOVX proteins are described below), expressing the encoded portion of NOVX protein by recombinant expression in vitro) and assessing the activity of the encoded portion of NOVX.
00 SNOVX Nucleic Acid and Polypeptide Variants The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and due to degeneracy of the genetic code and thus encode the same NOVX proteins as that encoded by the nucleotide sequences shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NOS:2n, wherein n is an integer between 1 and In addition to the human NOVX nucleotide sequences shown in SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of the NOVX polypeptides may exist within a population the human population). Such genetic polymorphism in the NOVX genes may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame (ORF) encoding A NOVX protein, preferably a vertebrate NOVX protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the NOVX genes. Any and all such nucleotide variations and resulting amino acid polymorphisms in the NOVX polypeptides, which are the result of natural allelic variation and that do not alter the functional activity of the NOVX polypeptides, are intended to be within the scope of the invention.
Moreover, nucleic acid molecules encoding NOVX proteins from other species, and thus that have a nucleotide sequence that differs from the human SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, are intended to be within the scope of the invention.
Nucleic acid molecules corresponding to natural allelic variants and homologues of the 00 NOVX cDNAs of the invention can be isolated based on their homology to the human Ci NOVX nucleic acids disclosed herein using the human cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions.
\ID Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45. In another embodiment, the nucleic acid is at least 10, 25, 100, 250, 500, 750, 1000, 1500, 2000 or more nucleotides in length. In yet another C embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding 00 0 region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least about 65% homologous to each other typically remain hybridized to each other.
Homologs nucleic acids encoding NOVX proteins derived from species other than human) or other related sequences paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning.
As used herein, the phrase "stringent hybridization conditions" refers to conditions under which a probe, primer or oligonucleotide will hybridize to its target sequence, but to no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures than shorter sequences. Generally, stringent conditions are selected to be about 5 C lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH and nucleic acid concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Since the target sequences are generally present at excess at Tm, of the probes are occupied at equilibrium. Typically, stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to M sodium ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30 C for short probes, primers or oligonucleotides 10 nt to 50 nt) and at least about 60 C for longer probes, primers and oligonucleotides. Stringent conditions may also be achieved with the addition of destabilizing agents, such as formamide.
00 O Stringent conditions are known to those skilled in the art and can be found in Ausubel, OC et al., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, N.Y.
(1989), 6.3.1-6,3.6. Preferably, the conditions are such that sequences at least about 75%, 85%, 90%, 95%, 98%, or 99% homologous to each other typically remain NO hybridized to each other. A non-limiting example of stringent hybridization conditions are hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HC1 (pH 1 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65 oC, followed by one or more washes in 0.2X SSC, 0.01% BSA at 50 OC. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequences SEQ ID NOS:2n-l, wherein n is an integer between 1 and 45, corresponds to a 00 Snaturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic Sacid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature encodes a natural protein).
In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:2n-l, wherein n is an integer between 1 and 45, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55 followed by one or more washes in IX SSC, 0.1% SDS at 37 Other conditions of moderate stringency that may be used are well-known within the art. See, Ausubel, et al. 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley Sons, NY, and Kriegler, 1990; GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY.
In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequences SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCI (pH 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40 followed by one or more washes in 2X SSC, 25 mM Tris-HCI (pH 5 mM EDTA, and 0.1% SDS at 50 OC. Other conditions of low stringency that may be used are well known in the art as employed for cross-species hybridizations). See, e.g., Ausubel, et al. 1993, CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley 00 O Sons, NY, and Kriegler, 1990, GENE TRANSFER AND EXPRESSION, A LABORATORY MANUAL, Stockton Press, NY; Shilo and Weinberg, 1981. Proc Natl Acad Sci USA 78: 6789-6792.
Conservative Mutations 0 In addition to naturally-occurring allelic variants of NOVX sequences that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequences SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, thereby leading to changes in the amino acid sequences of the encoded NOVX proteins, without altering the functional ability of the NOVX proteins. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid 00 Sresidues can be made in the sequence SEQ ID NOS:2n, wherein n is an integer between 1 and 45. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequences of the NOVX proteins without altering their biological activity, whereas an "essential" amino acid residue is required for such biological activity. For example, amino acid residues that are conserved among the NOVX proteins of the invention are predicted to be particularly non-amenable to alteration. Amino acids for which conservative substitutions can be made are well known within the art.
Another aspect of the invention pertains to nucleic acid molecules encoding NOVX proteins that contain changes in amino acid residues that are not essential for activity. Such NOVX proteins differ in amino acid sequence from SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 45% homologous to the amino acid sequences SEQ ID NOS:2n, wherein n is an integer between 1 and 45. Preferably, the protein encoded by the nucleic acid molecule is at least about 60% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 45; more preferably at least about homologous SEQ ID NOS:2n, wherein n is an integer between 1 and 45; still more preferably at least about 80% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and even more preferably at least about 90% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 45; and most preferably at least about 95% homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and An isolated nucleic acid molecule encoding A NOVX protein homologous to the protein of SEQ ID NOS:2n, wherein n is an integer between 1 and 45, can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide 00 O sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, such that one or
O
C1 more amino acid substitutions, additions or deletions are introduced into the encoded protein.
Mutations can be introduced into SEQ ID NOS:2n-I, wherein n is an integer between I and 45, by standard techniques, such as site-directed mutagenesis and PCR-mediated s mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted, non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined within the art. These families include amino acids with basic side chains lysine, arginine, histidine), acidic side chains aspartic acid, glutamic acid), uncharged polar side chains 00 0 glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side O chains alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains threonine, valine, isoleucine) and aromatic side chains tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted non-essential amino acid residue in the NOVX protein is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of A NOVX coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for NOVX biological activity to identify mutants that retain activity. Following mutagenesis SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, the encoded protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.
The relatedness of amino acid families may also be determined based on side chain interactions. Substituted amino acids may be fully conserved "strong" residues or fully conserved "weak" residues. The "strong" group of conserved amino acid residues may be any one of the following groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY, FYW, wherein the single letter amino acid codes are grouped by those amino acids that may be substituted for each other. Likewise, the "weak" group of conserved residues may be any one of the following: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, HFY, wherein the letters within each group represent the single letter amino acid code.
In one embodiment, a mutant NOVX protein can be assayed for the ability to form protein:protein interactions with other NOVX proteins, other cell-surface proteins, or biologically-active portions thereof, (ii) complex formation between a mutant NOVX protein 00 Sand A NOVX ligand; or (iii) the ability of a mutant NOVX protein to bind to an intracellular target protein or biologically-active portion thereof; avidin proteins).
In yet another embodiment, a mutant NOVX protein can be assayed for the ability to regulate a specific biological function regulation of insulin release).
O
Antisense Nucleic Acids Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, or C" fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide 00 sequence that is complementary to a "sense" nucleic acid encoding a protein C complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence). In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire NOVX coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of A NOVX protein of SEQ ID NOS:2n, wherein n is an integer between 1 and 45, or antisense nucleic acids complementary to A NOVX nucleic acid sequence of SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, are additionally provided.
In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding A NOVX protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons, which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding the NOVX protein. The term "noncoding region" refers to 5' and 3' sequences, which flank the coding region that are not translated into amino acids also referred to as and 3' untranslated regions).
Given the coding strand sequences encoding the NOVX protein disclosed herein, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of NOVX mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of NOVX mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of NOVX mRNA. An antisense oligonucleotide can be, for example, 00 O about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid 1 of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or O variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids phosphorothioate derivatives and acridine substituted nucleotides can be used).
Examples of modified nucleotides that can be used to generate the antisense nucleic C1 acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, 00 0xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, beta-D-mannosylqueosine, 5-carboxymethylaminomethyl-2-thiouridine, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, N6-adenine, 7-methylguanine, 5-methoxyaminomethyl-2-thiouracil, 5'-methoxycarboxymethyluracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).
The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding A NOVX protein to thereby inhibit expression of the protein by inhibiting transcription and/or translation). The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site.
Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense 00 O molecules can be modified such that they specifically bind to receptors or antigens expressed rC on a selected cell surface by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens). The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve NO sufficient nucleic acid molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.
In yet another embodiment, the antisense nucleic acid molecule of the invention is an a-anomeric nucleic acid molecule. A a-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual p-units, C the strands run parallel to each other. See, Gaultier, et al., 1987. Nucl. Acids Res. 00 S6625-6641. The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide (See, Inoue, et al. 1987. Nucl. Acids Res. 15: 6131-6148) or a chimeric RNA-DNA analogue (See, Inoue, et al., 1987. FEBSLett. 215: 327-330.
Ribozymes and PNA Moieties Nucleic acid modifications include, by way of non-limiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.
In one embodiment, an antisense nucleic acid of the invention is a ribozyme.
Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes hammerhead ribozymes as described in Haselhoff and Gerlach 1988. Nature 334: 585-591) can be used to catalytically cleave NOVX mRNA transcripts to thereby inhibit translation of NOVX mRNA. A ribozyme having specificity for a NOVX-encoding nucleic acid can be designed based upon the nucleotide sequence of A NOVX cDNA disclosed herein SEQ ID NOS:2n-l, wherein n is an integer between 1 and 45). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a NOVX-encoding mRNA. See, U.S. Patent 4,987,071 to Cech, et al. and U.S. Patent 5,116,742 to Cech, et al. NOVX mRNA can also be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, Bartel et al., (1993) Science 261:1411-1418.
00 O Alternatively, NOVX gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the NOVX nucleic acid the NOVX promoter and/or enhancers) to form triple helical structures that prevent transcription of the NOVX gene in target cells. See, Helene, 1991. Anticancer Drug Des. 6: 569-84; IND Helene, et al. 1992. Ann. N. Y. Acad. Sci. 660: 27-36; Maher, 1992. Bioassays 14: 807-15.
In various embodiments, the NOVX nucleic acids can be modified at the base moiety, sugar moiety or phosphate backbone to improve, the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. See, Hyrup, et al., 1996. Bioorg Med C' Chem 4: 5-23. As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic 00 Sacid mimics DNA mimics) in which the deoxyribose phosphate backbone is replaced by C'I a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup, et al., 1996.
supra; Perry-O'Keefe, et al., 1996. Proc. Natl. Acad. Sci. USA 93: 14670-14675.
PNAs of NOVX can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, inducing transcription or translation arrest or inhibiting replication.
PNAs of NOVX can also be used, for example, in the analysis of single base pair mutations in a gene PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, S 1 nucleases (See, Hyrup, et al., 1996.supra); or as probes or primers for DNA sequence and hybridization (See, Hyrup, et al., 1996, supra; Perry-O'Keefe, et al., 1996. supra).
In another embodiment, PNAs of NOVX can be modified, to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of NOVX can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes RNase H and DNA polymerases) to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (see, Hyrup, et al., 1996. supra).
The synthesis of PNA-DNA chimeras can be performed as described in Hyrup, et al., 1996.
00 0 supra and Finn, et al., 1996. Nucl Acids Res 24: 3357-3363. For example, a DNA chain can (C be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, 5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA. See, Mag, et NO al., 1989. NuclAcid Res 17: 5973-5988. PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment. See, Finn, et al., 1996. supra. Alternatively, chimeric molecules can be synthesized with a DNA segment and a 3' PNA segment. See, Petersen, et al., 1975. Bioorg. Med. Chem.
Lett. 5: 1119-11124.
CIn other embodiments, the oligonucleotide may include other appended groups such 00 as peptides for targeting host cell receptors in vivo), or agents facilitating transport Ci across the cell membrane (see, Letsinger, et al., 1989. Proc. Natl. Acad. Sci. U.S.A. 86: 6553-6556; Lemaitre, et al., 1987. Proc. Natl. Acad. Sci. 84: 648-652; PCT Publication No.
W088/09810) or the blood-brain barrier (see, PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (see, Krol, et al., 1988. BioTechniques 6:958-976) or intercalating agents (see, Zon, 1988. Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, a peptide, a hybridization triggered cross-linking agent, a transport agent, a hybridization-triggered cleavage agent, and the like.
NOVX Polypeptides A polypeptide according to the invention includes a polypeptide including the amino acid sequence of NOVX polypeptides whose sequences are provided in SEQ ID NOS:2n, wherein n is an integer between 1 and 45. The invention also includes a mutant or variant protein any of whose residues may be changed from the corresponding residues shown in SEQ ID NOS:2n, wherein n is an integer between 1 and 45, while still encoding a protein that maintains its NOVX activities and physiological functions, or a functional fragment thereof.
In general, A NOVX variant that preserves NOVX-like function includes any variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.
00 O One aspect of the invention pertains to isolated NOVX proteins, and biologically-active portions thereof, or derivatives, fragments, analogs or homologs thereof.
Also provided are polypeptide fragments suitable for use as immunogens to raise anti-NOVX antibodies. In one embodiment, native NOVX proteins can be isolated from cells or tissue I sources by an appropriate purification scheme using standard protein purification techniques.
In another embodiment, NOVX proteins are produced by recombinant DNA techniques.
_Alternative to recombinant expression, A NOVX protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.
An "isolated" or "purified" polypeptide or protein or biologically-active portion C1 thereof is substantially free of cellular material or other contaminating proteins from the cell 00 C or tissue source from which the NOVX protein is derived, or substantially free from chemical C( precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of NOVX proteins in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly-produced. In one embodiment, the language "substantially free of cellular material" includes preparations of NOVX proteins having less than about 30% (by dry weight) of non-NOVX proteins (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-NOVX proteins, still more preferably less than about of non-NOVX proteins, and most preferably less than about 5% of non-NOVX proteins.
When the NOVX protein or biologically-active portion thereof is recombinantly-produced, it is also preferably substantially free of culture medium, culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about of the volume of the NOVX protein preparation.
The language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins in which the protein is separated from chemical precursors or other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of NOVX proteins having less than about 30% (by dry weight) of chemical precursors or non-NOVX chemicals, more preferably less than about 20% chemical precursors or non-NOVX chemicals, still more preferably less than about 10% chemical precursors or non-NOVX chemicals, and most preferably less than about 5% chemical precursors or non-NOVX chemicals.
Biologically-active portions of NOVX proteins include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequences of the 00 NOVX proteins the amino acid sequence shown in SEQ ID NOS:2n, wherein n is an tc integer between 1 and 45) that include fewer amino acids than the full-length NOVX proteins, and exhibit at least one activity of A NOVX protein. Typically, biologically-active portions comprise a domain or motif with at least one activity of the NOVX protein. A I biologically-active portion of A NOVX protein can be a polypeptide which is, for example, 25, 50, 100 or more amino acid residues in length.
SMoreover, other biologically-active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native NOVX protein.
Cl In an embodiment, the NOVX protein has an amino acid sequence shown SEQ ID 00 SNOS:2n, wherein n is an integer between 1 and 45. In other embodiments, the NOVX C protein is substantially homologous to SEQ ID NOS:2n, wherein n is an integer between 1 and 45, and retains the functional activity of the protein of SEQ ID NOS:2n, wherein n is an integer between 1 and 45, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail, below. Accordingly, in another embodiment, the NOVX protein is a protein that comprises an amino acid sequence at least about homologous to the amino acid sequence SEQ ID NOS:2n, wherein n is an integer between 1 and 45, and retains the functional activity of the NOVX proteins of SEQ ID NOS:2n, wherein n is an integer between 1 and DETERMINING HOMOLOGY BETWEEN TWO OR MORE SEQUENCES To determine the percent homology of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared.
When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity").
The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. See, Needleman and Wunsch, 1970. JMol Biol 48: 443-453. Using GCG GAP software with the following 29 00 O settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and GAP Sextension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence shown in SEQ ID SNOS:2n-1, wherein n is an integer between 1 and The term "sequence identity" refers to the degree to which two polynucleotide or Spolypeptide sequences are identical on a residue-by-residue basis over a particular region of Scomparison. The term "percentage of sequence identity" is calculated by comparing two Soptimally aligned sequences over that region of comparison, determining the number of rCl positions at which the identical nucleic acid base A, T, C, G, U, or I, in the case of 00 Snucleic acids) occurs in both sequences to yield the number of matched positions, dividing Sthe number of matched positions by the total number of positions in the region of comparison the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term "substantial identity" as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region.
CHIMERIC AND FUSION PROTEINS The invention also provides NOVX chimeric or fusion proteins. As used herein, A NOVX "chimeric protein" or "fusion protein" comprises A NOVX polypeptide operatively-linked to a non-NOVX polypeptide. An "NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to A NOVX protein SEQ ID NOS:2n, wherein n is an integer between 1 and 45, whereas a "non-NOVX polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the NOVX protein, a protein that is different from the NOVX protein and that is derived from the same or a different organism. Within A NOVX fusion protein the NOVX polypeptide can correspond to all or a portion of A NOVX protein.
In one embodiment, A NOVX fusion protein comprises at least one biologically active portion of A NOVX protein. In another embodiment, A NOVX fusion protein comprises at least two biologically active portions of A NOVX protein. In yet another embodiment, A NOVX fusion protein comprises at least three biologically active portions of A NOVX protein. Within the fusion protein, the term "operatively-linked" is intended to indicate that 00 O the NOVX polypeptide and the non-NOVX polypeptide are fused in-frame with one another.
1 The non-NOVX polypeptide can be fused to the N-terminus or C-terminus of the NOVX polypeptide.
In one embodiment, the fusion protein is a GST-NOVX fusion protein in which the SNOVX sequences are fused to the C-terminus of the GST (glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant NOVX Spolypeptides.
In another embodiment, the fusion protein is A NOVX protein containing a heterologous signal sequence at its N-terminus. In certain host cells mammalian host 00 0signal sequence.
1 In yet another embodiment, the fusion protein is a NOVX-immunoglobulin fusion protein in which the NOVX sequences are fused to sequences derived from a member of the immunoglobulin protein family. The NOVX-immunoglobulin fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject to inhibit an interaction between A NOVX ligand and A NOVX protein on the surface of a cell, to thereby suppress NOVX-mediated signal transduction in vivo. The NOVX-immunoglobulin fusion proteins can be used to affect the bioavailability of A NOVX cognate ligand. Inhibition of the NOVX ligand/NOVX interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, as well as modulating promoting or inhibiting) cell survival. Moreover, the NOVX-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-NOVX antibodies in a subject, to purify NOVX ligands, and in screening assays to identify molecules that inhibit the interaction of NOVX with A NOVX ligand.
A NOVX chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified 00 O to generate a chimeric gene sequence (see, Ausubel, et al. (eds.) CURRENT PROTOCOLS IN SMOLECULAR BIOLOGY, John Wiley Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety a GST polypeptide). A NOVX-encoding nucleic acid can be cloned into such an expression vector such that the \O fusion moiety is linked in-frame to the NOVX protein.
NOVX AGONISTS AND ANTAGONISTS SThe invention also pertains to variants of the NOVX proteins that function as either NOVX agonists mimetics) or as NOVX antagonists. Variants of the NOVX protein can be generated by mutagenesis discrete point mutation or truncation of the NOVX 00 0 protein). An agonist of the NOVX protein can retain substantially the same, or a subset of, Sthe biological activities of the naturally occurring form of the NOVX protein. An antagonist of the NOVX protein can inhibit one or more of the activities of the naturally occurring form of the NOVX protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade, which includes the NOVX protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. In one embodiment, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the NOVX proteins.
Variants of the NOVX proteins that function as either NOVX agonists mimetics) or as NOVX antagonists can be identified by screening combinatorial libraries of mutants truncation mutants) of the NOVX proteins for NOVX protein agonist or antagonist activity. In one embodiment, a variegated library of NOVX variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of NOVX variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential NOVX sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins for phage display) containing the set of NOVX sequences therein. There are a variety of methods, which can be used to produce libraries of potential NOVX variants from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential NOVX sequences. Methods for synthesizing degenerate 00 O oligonucleotides are well known within the art. See, Narang, 1983. Tetrahedron 39: 3; C1 Itakura, et al., 1984. Annu. Rev. Biochem. 53: 323; Itakura, et al., 1984. Science 198: 1056; Ike, et al., 1983. Nucl. Acids Res. 11: 477.
\O POLYPEPTIDE LIBRARIES In addition, libraries of fragments of the NOVX protein coding sequences can be used to generate a variegated population of NOVX fragments for screening and subsequent selection of variants of A NOVX protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of A NOVX coding sequence with a nuclease under conditions wherein nicking occurs only about once per O0 molecule, denaturing the double stranded DNA, renaturing the DNA to form double-stranded SDNA that can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with SI nuclease, and ligating the resulting fragment library into an expression vector. By this method, expression libraries can be derived which encodes N-terminal and internal fragments of various sizes of the NOVX proteins.
Various techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of NOVX proteins. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify NOVX variants. See, Arkin and Yourvan, 1992. Proc. Natl. Acad. Sci. USA 89: 7811-7815; Delgrave, et al., 1993. Protein Engineering 6:327-331.
NOVX Antibodies The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, molecules that contain an antigen-binding site that specifically binds (immunoreacts with) an antigen. Such 33 00 O antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, c l Fab' and F(ab')2 fragments, and an Fab expression library. In general, antibody molecules t obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes O have subclasses as well, such as IgGI, IgG 2 and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.
An isolated protein of the invention intended to serve as an antigen, or a portion or fragment thereof, can be used as an immunogen to generate antibodies that 00 Smonoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NOs: 2n, wherein n is an integer between 1 and 45, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least amino acid residues, or at least 30 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.
In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of NOVX that is located on the surface of the protein, a hydrophilic region. A hydrophobicity analysis of the human NOVX protein sequence will indicate which regions of a NOVX polypeptide are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each incorporated herein by reference in their entirety. Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.
00 8 A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.
Various procedures known within the art may be used for the production of I polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: _A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.
00 0Polyclonal Antibodies 1 For the production of polyclonal antibodies, various suitable host animals rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels aluminum hydroxide), surface active substances lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents.
Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D.
00 O Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 C (April 17, 2000), pp. 25-28).
Monoclonal Antibodies IN The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus N contain an antigen binding site capable of immunoreacting with a particular epitope of the 00 Santigen characterized by a unique binding affinity for it.
CK1 Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.
The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell [Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp.
59-103]. Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.
Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma 00 lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, r, San Diego, California and the American Type Culture Collection, Manassas, Virginia.
Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies [Kozbor, J. Immunol., 133:3001 (1984); SBrodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York, (1987) pp. 51-63].
The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by Cl immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or 00 0enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). It is an objective, especially important in therapeutic applications of monoclonal antibodies, to identify antibodies having a high degree of specificity and a high binding affinity for the target antigen.
After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods (Goding, 1986). Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.
The monoclonal antibodies secreted by the subclones can be isolated or purified from the culture medium or ascites fluid by conventional immunoglobulin purification procedures such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.
The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4,816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells, Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA 00 O also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences Patent No.
4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a Snon-immunoglobulin polypeptide. Such a non-immunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.
C Humanized Antibodies 00 O The antibodies directed against the protein antigens of the invention can further Cl comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab') 2 or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeyen et al., Science, 239:1534-1536 (1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).
Human Antibodies 00 O Fully human antibodies essentially relate to antibody molecules in which the entire N sequence of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein.
Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell Shybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: SMONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA C 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et 00 Sal., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp.
77-96).
In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, J. Mol. Biol., 227:381 (1991); Marks et al., J. Mol. Biol., 222:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire.
This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison Nature 368, 812-13 (1994)); Fishwild et al,( Nature Biotechnology 14. 845-51 (1996)); Neuberger (Nature Biotechnolog 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).
Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication W094/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full 00 complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the Xenomouse T as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after -immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the Simmunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for 0 example, single chain Fv molecules.
00 An example of a method of producing a nonhuman host, exemplified as a mouse, Cl lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S. Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.
A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain.
In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.
Fab Fragments and Single Chain Antibodies According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see U.S. Patent 00 SNo. 4,946,778). In addition, methods can be adapted for the construction of Fab expression libraries (see Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal Fab fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the I idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: an F(ab)2 fragment produced by pepsin digestion of an antibody molecule; an Fab fragment generated by reducing the disulfide bridges of an F(ab')2 fragment; (iii) an Fab fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) Fv fragments.
00 SBispecific Antibodies Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.
Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture often different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., EMBO 10:3655-3659 (1991).
Antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CHI) containing the site necessary for light-chain binding present in at least one of the fusions. DNAs encoding the immunoglobulin heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate expression vectors, and are co-transfected into a suitable host organism. For further details of generating bispecific antibodies see, for example, Suresh et al., Methods in Enzvmologv, 121:210 (1986).
41 00 SAccording to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small Samino acid side chains from the interface of the first antibody molecule are replaced with larger side chains tyrosine or tryptophan). Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody Smolecule by replacing large amino acid side chains with smaller ones alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other C unwanted end-products such as homodimers.
00 0Bispecific antibodies can be prepared as full length antibodies or antibody fragments 1 F(ab') 2 bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')2 fragments.
These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.
Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al., J. Exp. Med. 175:217-225 (1992) describe the production of a fully humanized bispecific antibody F(ab') 2 molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.
Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., J. Immunol. 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody homodimers were reduced 00 O at the hinge region to form monomers and then re-oxidized to form the antibody c heterodimers. This method can also be utilized for the production of antibody homodimers.
The "diabody" technology described by Hollinger et al., Proc. Natl. Acad. Sci. USA 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody I fragments. The fragments comprise a heavy-chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker which is too short to allow pairing between the _two domains on the same chain. Accordingly, the VH and VL domains of one fragment are forced to pair with the complementary VL and VH domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody C fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et Sal., J. Immunol. 152:5368 (1994).
NC Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991).
Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CDI6) so as to focus cellular defense mechanisms to the cell expressing the particular antigen.
Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA.
Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).
Heteroconjugate Antibodies Heteroconjugate antibodies are also within the scope of the present invention.
Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents.
For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include 00 iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S.
tC Patent No. 4,676,980.
Effector Function Engineering IN It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and C antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 00 0 1191-1195 (1992) and Shopes, J. Immunol. 148: 2918-2922 (1992). Homodimeric r' antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolffet al. Cancer Research, 53: 2560-2565 (1993).
Alternatively, an antibody can be engineered that has dual Fe regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).
Immunoconjugates The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope a radioconjugate).
Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin, crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies.
Examples include 22Bi, 1I, 131In, 90 Y, and '"Re.
Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane bifunctional derivatives of imidoesters (such as dimethyl 00 O adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as ,1 glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as S1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See W094/11026.
NC In another embodiment, the antibody can be conjugated to a "receptor" (such 00 Sstreptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is NC administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" avidin) that is in tum conjugated to a cytotoxic agent.
Immunoliposomes The antibodies disclosed herein can also be formulated as immunoliposomes.
Liposomes containing the antibody are prepared by methods known in the art, such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al., Proc.
Natl Acad. Sci. USA, 77: 4030 (1980); and U.S. Pat. Nos. 4,485,045 and 4,544,545.
Liposomes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556.
Particularly useful liposomes can be generated by the reverse-phase evaporation method with a lipid composition comprising phosphatidylcholine, cholesterol, and PEG-derivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through filters of defined pore size to yield liposomes with the desired diameter. Fab' fragments of the antibody of the present invention can be conjugated to the liposomes as described in Martin et al J. Biol. Chem., 257: 286-288 (1982) via a disulfide-interchange reaction. A chemotherapeutic agent (such as Doxorubicin) is optionally contained within the liposome.
See Gabizon et al., J. National Cancer Inst. 81(19): 1484 (1989).
Diagnostic Applications of Antibodies Directed Against the Proteins of the Invention Antibodies directed against a protein of the invention may be used in methods known within the art relating to the localization and/or quantitation of the protein for use in measuring levels of the protein within appropriate physiological samples, for use in 00 O diagnostic methods, for use in imaging the protein, and the like). In a given embodiment, C antibodies against the proteins, or derivatives, fragments, analogs or homologs thereof, that contain the antigen binding domain, are utilized as pharmacologically-active compounds (see below).
IO) An antibody specific for a protein of the invention can be used to isolate the protein by standard techniques, such as immunoaffinity chromatography or immunoprecipitation.
Such an antibody can facilitate the purification of the natural protein antigen from cells and of recombinantly produced antigen expressed in host cells. Moreover, such an antibody can be used to detect the antigenic protein in a cellular lysate or cell supematant) in order to C evaluate the abundance and pattern of expression of the antigenic protein. Antibodies 00 0directed against the protein can be used diagnostically to monitor protein levels in tissue as CI part of a clinical testing procedure, to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, p-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 1251, 1311, 35S or 3H.
Antibody Therapeutics Antibodies of the invention, including polyclonal, monoclonal, humanized and fully human antibodies, may used as therapeutic agents. Such agents will generally be employed to treat or prevent a disease or pathology in a subject. An antibody preparation, preferably one having high specificity and high affinity for its target antigen, is administered to the subject and will generally have an effect due to its binding with the target. Such an effect may be one of two kinds, depending on the specific nature of the interaction between the given antibody molecule and the target antigen in question. In the first instance, administration of the antibody may abrogate or inhibit the binding of the target with an endogenous ligand to which it naturally binds. In this case, the antibody binds to the target 00 O and masks a binding site of the naturally occurring ligand, wherein the ligand serves as an ri effector molecule. Thus the receptor mediates a signal transduction pathway for which ligand is responsible.
Alternatively, the effect may be one in which the antibody elicits a physiological O result by virtue of binding to an effector binding site on the target molecule. In this case the target, a receptor having an endogenous ligand which may be absent or defective in the _disease or pathology, binds the antibody as a surrogate effector ligand, initiating a receptor-based signal transduction event by the receptor.
A therapeutically effective amount of an antibody of the invention relates generally to i the amount needed to achieve a therapeutic objective. As noted above, this may be a binding 00 interaction between the antibody and its target antigen that, in certain cases, interferes with the functioning of the target, and in other cases, promotes a physiological response. The amount required to be administered will furthermore depend on the binding affinity of the antibody for its specific antigen, and will also depend on the rate at which an administered antibody is depleted from the free volume other subject to which it is administered. Common ranges for therapeutically effective dosing of an antibody or antibody fragment of the invention may be, by way of nonlimiting example, from about 0.1 mg/kg body weight to about 50 mg/kg body weight. Common dosing frequencies may range, for example, from twice daily to once a week.
Pharmaceutical Compositions of Antibodies Antibodies specifically binding a protein of the invention, as well as other molecules identified by the screening assays disclosed herein, can be administered for the treatment of various disorders in the form of pharmaceutical compositions. Principles and considerations involved in preparing such compositions, as well as guidance in the choice of components are provided, for example, in Remington: The Science And Practice Of Pharmacy 19th ed.
(Alfonso R. Gennaro, et al., editors) Mack Pub. Co., Easton, Pa. 1995; Drug Absorption Enhancement Concepts, Possibilities, Limitations, And Trends, Harwood Academic Publishers, Langhomrne, Pa., 1994; and Peptide And Protein Drug Delivery (Advances In Parenteral Sciences, Vol. 1991, M. Dekker, New York.
If the antigenic protein is intracellular and whole antibodies are used as inhibitors, internalizing antibodies are preferred. However, liposomes can also be used to deliver the antibody, or an antibody fragment, into cells. Where antibody fragments are used, the smallest inhibitory fragment that specifically binds to the binding domain of the target protein 00 O is preferred. For example, based upon the variable-region sequences of an antibody, peptide Cl molecules can be designed that retain the ability to bind the target protein sequence. Such peptides can be synthesized chemically and/or produced by recombinant DNA technology.
See, Marasco et al., Proc. Natl. Acad. Sci. USA, 90: 7889-7893 (1993). The NO formulation herein can also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. Alternatively, or in addition, the composition can comprise an agent that enhances its function, such as, for example, a cytotoxic agent, cytokine, chemotherapeutic agent, or growth-inhibitory agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended.
00 SThe active ingredients can also be entrapped in microcapsules prepared, for example, Sby coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacrylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, albumin microspheres, microemulsions, nano-particles, and nanocapsules) or in macroemulsions.
The formulations to be used for in vivo administration must be sterile. This is readily accomplished by filtration through sterile filtration membranes.
Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides Pat. No. 3,773,919), copolymers of L-glutamic acid and y ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.
ELISA Assay An agent for detecting an analyte protein is an antibody capable of binding to an analyte protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, 00 Sor more preferably, monoclonal. An intact antibody, or a fragment thereof Fab or F(ab)2) l can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or IO antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids Cr present within a subject. Included within the usage of the term "biological sample", 00 therefore, is blood and a fraction or component of blood including blood serum, blood plasma, or lymph. That is, the detection method of the invention can be used to detect an analyte mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
For example, in vitro techniques for detection of an analyte mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of an analyte protein include enzyme linked immunosorbent assays (ELISAs), Westem blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of an analyte genomic DNA include Southern hybridizations. Procedures for conducting immunoassays are described, for example in "ELISA: Theory and Practice: Methods in Molecular Biology", Vol. 42, J. R. Crowther Human Press, Totowa, NJ, 1995; "Immunoassay", E. Diamandis and T. Christopoulus, Academic Press, Inc., San Diego, CA, 1996; and "Practice and Thory of Enzyme Immunoassays", P. Tijssen, Elsevier Science Publishers, Amsterdam, 1985. Furthermore, in vivo techniques for detection of an analyte protein include introducing into a subject a labeled anti-an analyte protein antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
NOVX Recombinant Expression Vectors and Host Cells Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding A NOVX protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA 00 O segments can be ligated into the viral genome. Certain vectors are capable of autonomous C, replication in a host cell into which they are introduced bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors non-episomal mammalian vectors) are integrated into the genome of a host cell upon \introduction into the host cell, and thereby are replicated along with the host genome.
Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended 00 Sto include such other forms of expression vectors, such as viral vectors replication Sdefective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.
The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, that is operatively-linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
The term "regulatory sequence" is intended to includes promoters, enhancers and other expression control elements polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein NOVX proteins, mutant forms of NOVX proteins, fusion proteins, etc.).
00 O The recombinant expression vectors of the invention can be designed for expression of NOVX proteins in prokaryotic or eukaryotic cells. For example, NOVX proteins can be expressed in bacterial cells such as Escherichia coli, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Suitable host cells are discussed further in O Goeddel, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and 0T7 polymerase.
SExpression of proteins in prokaryotes is most often carried out in Escherichia coli
O
C"1 with vectors containing constitutive or inducible promoters directing the expression of either 00 Sfusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: to increase expression of recombinant protein; (ii) to increase the solubility of the recombinant protein; and (iii) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988. Gene 67: 31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, that fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amrann et al., (1988) Gene 69:301-315) and pET 1 ld (Studier et al., GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 60-89).
One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. See, Gottesman, GENE EXPRESSION TECHNOLOGY: METHODS IN ENZYMOLOGY 185, Academic Press, San Diego, Calif. (1990) 119-128. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (see, e.g., 00 O Wada, et al., 1992. Nucl. Acids Res. 20: 2111-2118). Such alteration of nucleic acid (C7 sequences of the invention can be carried out by standard DNA synthesis techniques.
In another embodiment, the NOVX expression vector is a yeast expression vector.
Examples of vectors for expression in yeast Saccharomyces cerivisae include pYepSecl IN (Baldari, et al., 1987. EMBO J. 6: 229-234), pMFa (Kurjan and Herskowitz, 1982. Cell 933-943), pJRY88 (Schultz et al., 1987. Gene 54: 113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and picZ (InVitrogen Corp, San Diego, Calif.).
Alternatively, NOVX can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells C, SF9 cells) include the pAc series (Smith, et al., 1983. Mol. Cell. Biol. 3: 2156-2165) and the 00 pVL series (Lucklow and Summers, 1989. Virology 170: 31-39).
In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, 1987. Nature 329: 840) and pMT2PC (Kaufman, et al., 1987. EMBO J. 6: 187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see, Chapters 16 and 17 of Sambrook, et al., MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989.
In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert, et al., 1987. Genes Dev. 1: 268-277), lymphoid-specific promoters (Calame and Eaton, 1988. Adv. Immunol. 43: 235-275), in particular promoters of T cell receptors (Winoto and Baltimore, 1989. EMBOJ.
8: 729-733) and immunoglobulins (Banerji, et al., 1983. Cell 33: 729-740; Queen and Baltimore, 1983. Cell 33: 741-748), neuron-specific promoters the neurofilament promoter; Byre and Ruddle, 1989. Proc. Natl. Acad. Sci. USA 86: 5473-5477), pancreas-specific promoters (Edlund, et al., 1985. Science 230: 912-916), and mammary gland-specific promoters milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also 00 O encompassed, the murine hox promoters (Kessel and Gruss, 1990. Science 249: c, 374-379) and the a-fetoprotein promoter (Campes and Tilghman, 1989. Genes Dev. 3: 537-546).
The invention further provides a recombinant expression vector comprising a DNA Smolecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to NOVX mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen that direct the continuous expression of the antisense C RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or 00 Sregulatory sequences can be chosen that direct constitutive, tissue specific or cell type CK, specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see, Weintraub, et al., "Antisense RNA as a molecular tool for genetic analysis," Reviews-Trends in Genetics, Vol. 1(1) 1986.
Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.
A host cell can be any prokaryotic or eukaryotic cell. For example, NOVX protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.
Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in 00 O Sambrook, et al. (MOLECULAR CLONING: A LABORATORY MANUAL. 2nd ed., Cold Spring C Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989), and other laboratory manuals.
For stable transfection of mammalian cells, it is known that, depending upon the Sexpression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that 00 Sencoding NOVX or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection cells that have incorporated the selectable marker gene will survive, while the other cells die).
A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce express) NOVX protein. Accordingly, the invention further provides methods for producing NOVX protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding NOVX protein has been introduced) in a suitable medium such that NOVX protein is produced. In another embodiment, the method further comprises isolating NOVX protein from the medium or the host cell.
Transgenic NOVX Animals The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which NOVX protein-coding sequences have been introduced.
Such host cells can then be used to create non-human transgenic animals in which exogenous NOVX sequences have been introduced into their genome or homologous recombinant animals in which endogenous NOVX sequences have been altered. Such animals are useful for studying the function and/or activity of NOVX protein and for identifying and/or evaluating modulators of NOVX protein activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell 00 O from which a transgenic animal develops and that remains in the genome of the mature NC animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous NO NOVX gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, an embryonic cell of the animal, prior to development of the animal.
\A transgenic animal of the invention can be created by introducing NOVX-cncoding nucleic acid into the male pronuclei of a fertilized oocyte by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. The 0 human NOVX cDNA sequences SEQ ID NOS:2n-l, wherein n is an integer between 1 and can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human NOVX gene, such as a mouse NOVX gene, can be isolated based on hybridization to the human NOVX cDNA (described further supra) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the NOVX transgene to direct expression of NOVX protein to particular cells. Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866; 4,870,009; and 4,873,191; and Hogan, 1986. In: MANIPULATING THE MOUSE EMBRYO, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the NOVX transgene in its genome and/or expression of NOVX mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene-encoding NOVX protein can further be bred to other transgenic animals carrying other transgenes.
To create a homologous recombinant animal, a vector is prepared which contains at least a portion of A NOVX gene into which a deletion, addition or substitution has been introduced to thereby alter, functionally disrupt, the NOVX gene. The NOVX gene can be a human gene the cDNA of SEQ ID NOS:2n-l, wherein n is an integer between 1 and 45), but more preferably, is a non-human homologue of a human NOVX gene. For example, a mouse homologue of human NOVX gene of SEQ ID NOS:2n-1, wherein n is an 00 O integer between 1 and 45, can be used to construct a homologous recombination vector suitable for altering an endogenous NOVX gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous NOVX gene is functionally disrupted no longer encodes a functional protein; also referred to as I a "knock out" vector).
Alternatively, the vector can be designed such that, upon homologous recombination, Sthe endogenous NOVX gene is mutated or otherwise altered but still encodes functional Sprotein the upstream regulatory region can be altered to thereby alter the expression of Sthe endogenous NOVX protein). In the homologous recombination vector, the altered Cl portion of the NOVX gene is flanked at its and 3'-termini by additional nucleic acid of the 00 0NOVX gene to allow for homologous recombination to occur between the exogenous NOVX gene carried by the vector and an endogenous NOVX gene in an embryonic stem cell. The additional flanking NOVX nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the and 3'-termini) are included in the vector. See, Thomas, et al., 1987. Cell 51: 503 for a description of homologous recombination vectors. The vector is ten introduced into an embryonic stem cell line by electroporation) and cells in which the introduced NOVX gene has homologously-recombined with the endogenous NOVX gene are selected.
See, Li, et al., 1992. Cell 69: 915.
The selected cells are then injected into a blastocyst of an animal a mouse) to form aggregation chimeras. See, Bradley, 1987. In: TERATOCARCINOMAS AND EMBRYONIC STEM CELLS: A PRACTICAL APPROACH, Robertson, ed. IRL, Oxford, pp.
113-152. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously-recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, 1991. Curr. Opin. Biotechnol. 2: 823-829; PCT International Publication Nos.: WO 90/11354; WO 91/01140; WO 92/0968; and WO 93/04169.
In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage PI. For a description of the cre/loxP recombinase system, See, Lakso, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 00 O 6232-6236. Another example of a recombinase system is the FLP recombinase system of NC Saccharomyces cerevisiae. See, O'Gorman, et al., 1991. Science 251:1351-1355. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required.
^O Such animals can be provided through the construction of"double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, et al., 1997. Nature 385: 810-813. In brief, a cell a somatic cell) from the transgenic animal can be isolated and induced to exit the 00 Sgrowth cycle and enter Go phase. The quiescent cell can then be fused, through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyte and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell the somatic cell) is isolated.
Pharmaceutical Compositions The NOVX nucleic acid molecules, NOVX proteins, and anti-NOVX antibodies (also referred to herein as "active compounds") of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, finger's solutions, dextrose solution, and human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.
00 O A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, intravenous, intradermal, subcutaneous, oral inhalation), transdermal topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, IN intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid (EDTA); buffers such as acetates, citrates or phosphates,
O
and agents for the adjustment of tonicity such as sodium chloride or dextrose. The pH can be 00 O adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral C preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.
Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL (BASF, Parsippany, or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringeability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylcne glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions can be prepared by incorporating the active compound A NOVX protein or anti-NOVX antibody) in the required amount in an appropriate 00 O solvent with one or a combination of ingredients enumerated above, as required, followed by i filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the I preparation of sterile injectable solutions, methods of preparation are vacuum drying and freeze-drying that yields a powder of the active ingredient plus any additional desired Singredient from a previously sterile-filtered solution thereof.
Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form 00 Sof tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier C, for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
The compounds can also be prepared in the form of suppositories with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
00 O In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in 00 0U.S. Patent No. 4,522,811.
C It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see, U.S. Patent No. 5,328,470) or by stereotactic injection (see, Chen, et al., 1994. Proc. Natl. Acad. Sci. USA 91: 3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, retroviral vectors, the pharmaceutical preparation can include one or more cells that produce the gene delivery system.
The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
00 Cl Screening and Detection Methods The isolated nucleic acid molecules of the invention can be used to express NOVX protein via a recombinant expression vector in a host cell in gene therapy applications), Sto detect NOVX mRNA in a biological sample) or a genetic lesion in A NOVX gene, and to modulate NOVX activity, as described further, below. In addition, the NOVX proteins can be used to screen drugs or compounds that modulate the NOVX protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of NOVX protein or production of NOVX protein forms that have decreased or aberrant activity compared to NOVX wild-type protein diabetes (regulates insulin release); 00 obesity (binds and transport lipids); metabolic disturbances associated with obesity, the Ci metabolic syndrome X as well as anorexia and wasting disorders associated with chronic diseases and various cancers, and infectious disease(possesses anti-microbial activity) and the various dyslipidemias. In addition, the anti-NOVX antibodies of the invention can be used to detect and isolate NOVX proteins and modulate NOVX activity. In yet a further aspect, the invention can be used in methods to influence appetite, absorption of nutrients and the disposition of metabolic substrates in both a positive and negative fashion.
The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, supra.
Screening Assays The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, candidate or test compounds or agents peptides, peptidomimetics, small molecules or other drugs) that bind to NOVX proteins or have a stimulatory or inhibitory effect on, NOVX protein expression or NOVX protein activity.
The invention also includes compounds identified in the screening assays described herein.
In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of A NOVX protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, 00 0 while the other four approaches are applicable to peptide, non-peptide oligomer or small C molecule libraries of compounds. See, Lam, 1997. Anticancer Drug Design 12: 145.
A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small \O molecules can be, nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention.
Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt, et al., 1993. Proc. Natl. Acad. Sci. U.S.A. 90: 6909; Erb, et 1994.
00 SProc. Natl. Acad. Sci. U.S.A. 91: 11422; Zuckermann, et al., 1994. J. Med. Chem. 37: 2678; SCho, et al., 1993. Science 261: 1303; Carrell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2059; Carell, et al., 1994. Angew. Chem. Int. Ed. Engl. 33: 2061; and Gallop, et al., 1994. J.
Med. Chem. 37: 1233.
Libraries of compounds may be presented in solution Houghten, 1992.
Biotechniques 13: 412-421), or on beads (Lam, 1991. Nature 354: 82-84), on chips (Fodor, 1993. Nature 364: 555-556), bacteria (Ladner, U.S. Patent No. 5,223,409), spores (Ladner, U.S. Patent 5,233,409), plasmids (Cull, et al., 1992. Proc. Natl. Acad. Sci. USA 89: 1865-1869) or on phage (Scott and Smith, 1990. Science 249: 386-390; Devlin, 1990. Science 249: 404-406; Cwirla, et al., 1990. Proc. Natl. Acad. Sci. U.S.A. 87: 6378-6382; Felici, 1991.
J. Mol. Biol. 222: 301-310; Ladner, U.S. Patent No. 5,233,409.).
In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of NOVX protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to A NOVX protein determined. The cell, for example, can of mammalian origin or a yeast cell.
Determining the ability of the test compound to bind to the NOVX protein can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the NOVX protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with 125I, 3S, 14C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting.
Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the 62 00 O assay comprises contacting a cell which expresses a membrane-bound form of NOVX NC protein, or a biologically-active portion thereof, on the cell surface with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with A NOVX \O protein, wherein determining the ability of the test compound to interact with A NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX protein or a biologically-active portion thereof as compared to the known compound.
In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of NOVX protein, or a biologically-active portion C thereof, on the cell surface with a test compound and determining the ability of the test 00 0 compound to modulate stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the NOVX protein to bind to or interact with A NOVX target molecule. As used herein, a "target molecule" is a molecule with which A NOVX protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses A NOVX interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A NOVX target molecule can be a non-NOVX molecule or A NOVX protein or polypeptide of the invention. In one embodiment, A NOVX target molecule is a component of a signal transduction pathway that facilitates transduction of an extracellular signal a signal generated by binding of a compound to a membrane-bound NOVX molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with NOVX.
Determining the ability of the NOVX protein to bind to or interact with A NOVX target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the NOVX protein to bind to or interact with A NOVX target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target intracellular Ca2+, diacylglycerol, IP 3 etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising A NOVX-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g., 00 O luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, CK1 or cell proliferation.
In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting A NOVX protein or biologically-active portion thereof with a test compound and Sdetermining the ability of the test compound to bind to the NOVX protein or biologically-active portion thereof. Binding of the test compound to the NOVX protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with A 00 NOVX protein, wherein determining the ability of the test compound to interact with A NOVX protein comprises determining the ability of the test compound to preferentially bind to NOVX or biologically-active portion thereof as compared to the known compound.
In still another embodiment, an assay is a cell-free assay comprising contacting NOVX protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate stimulate or inhibit) the activity of the NOVX protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of NOVX can be accomplished, for example, by determining the ability of the NOVX protein to bind to A NOVX target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of NOVX protein can be accomplished by determining the ability of the NOVX protein further modulate A NOVX target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described, supra.
In yet another embodiment, the cell-free assay comprises contacting the NOVX protein or biologically-active portion thereof with a known compound which binds NOVX protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with A NOVX protein, wherein determining the ability of the test compound to interact with A NOVX protein comprises determining the ability of the NOVX protein to preferentially bind to or modulate the activity of A NOVX target molecule.
The cell-free assays of the invention are amenable to use of both the soluble form or the membrane-bound form of NOVX protein. In the case of cell-free assays comprising the membrane-bound form of NOVX protein, it may be desirable to utilize a solubilizing agent 00 Ssuch that the membrane-bound form of NOVX protein is maintained in solution. Examples 1 of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton" X-100, Triton® X- 14, Thesit®, IN Isotridecypoly(ethylene glycol ether),, N-dodecyl--N,N-dimethyl-3-ammonio-l-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy- -propane sulfonate (CHAPSO).
In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either NOVX protein or its target molecule to facilitate separation of CN1 complexed from uncomplexed forms of one or both of the proteins, as well as to 00 accommodate automation'of the assay. Binding of a test compound to NOVX protein, or interaction of NOVX protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants.
Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-NOVX fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or NOVX protein, and the mixture is incubated under conditions conducive to complex formation at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, supra. Alternatively, the complexes can be dissociated from the matrix, and the level of NOVX protein binding or activity determined using standard techniques.
Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the NOVX protein or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin. Biotinylated NOVX protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with NOVX protein or target molecules, but which do not interfere with binding of the NOVX protein to its target 00 O molecule, can be derivatized to the wells of the plate, and unbound target or NOVX protein C 1 trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the NOVX protein or target O molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the NOVX protein or target molecule.
In another embodiment, modulators of NOVX protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of NOVX mRNA or protein in the cell is determined. The level of expression of NOVX mRNA or C protein in the presence of the candidate compound is compared to the level of expression of 00 SNOVX mRNA or protein in the absence of the candidate compound. The candidate C. compound can then be identified as a modulator of NOVX mRNA or protein expression based upon this comparison. For example, when expression of NOVX mRNA or protein is greater statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator ofNOVX mRNA or protein expression. Alternatively, when expression of NOVX mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of NOVX mRNA or protein expression.
The level of NOVX mRNA or protein expression in the cells can be determined by methods described herein for detecting NOVX mRNA or protein.
In yet another aspect of the invention, the NOVX proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay (see, U.S. Patent No. 5,283,317; Zervos, et al., 1993. Cell 72: 223-232; Madura, et al., 1993. J. Biol. Chem. 268: 12046-12054; Bartel, et al., 1993. Biotechniques 14: 920-924; Iwabuchi, et al., 1993.
Oncogene 8: 1693-1696; and Brent WO 94/10300), to identify other proteins that bind to or interact with NOVX ("NOVX-binding proteins" or "NOVX-bp") and modulate NOVX activity. Such NOVX-binding proteins are also likely to be involved in the propagation of signals by the NOVX proteins as, for example, upstream or downstream elements of the NOVX pathway.
The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for NOVX is fused to a gene encoding the DNA binding domain of a known transcription factor GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an 00 O unidentified protein ("prey" or "sample") is fused to a gene that codes tor the activation C domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, in vivo, forming A NOVX-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows IDtranscription of a reporter gene LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein which interacts with NOVX.
The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.
00 Detection Assays Portions or fragments of the cDNA sequences identified herein (and the corresponding complete gene sequences) can be used in numerous ways as polynucleotide reagents. By way of example, and not of limitation, these sequences can be used to: map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. Some of these applications are described in the subsections, below.
Chromosome Mapping Once the sequence (or a portion of the sequence) ofa gene has been isolated, this sequence can be used to map the location of the gene on a chromosome. This process is called chromosome mapping. Accordingly, portions or fragments of the NOVX sequences, SEQ ID NOS:2n-1, wherein n is an integer between 1 and 45, or fragments or derivatives thereof, can be used to map the location of the NOVX genes, respectively, on a chromosome.
The mapping of the NOVX sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease.
Briefly, NOVX genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the NOVX sequences. Computer analysis of the NOVX, sequences can be used to rapidly select primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes.
00 0 Only those hybrids containing the human gene corresponding to the NOVX sequences will yield an amplified fragment.
Somatic cell hybrids are prepared by fusing somatic cells from different mammals human and mouse cells). As hybrids of human and mouse cells grow and divide, they O gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but in which human cells can, the one human chromosome that contains the gene encoding the needed enzyme will be retained. By using various media, panels of hybrid cell lines can be established. Each cell line in a panel contains either a single human chromosome or a small ri number of human chromosomes, and a full set of mouse chromosomes, allowing easy 00 mapping of individual genes to specific human chromosomes. See, D'Eustachio, et al., C 1983. Science 220: 919-924. Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycler. Using the NOVX sequences to design oligonucleotide primers, sub-localization can be achieved with panels of fragments from specific chromosomes.
Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical like colcemid that disrupts the mitotic spindle. The chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually.
The FISH technique can be used with a DNA sequence as short as 500 or 600 bases.
However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases, will suffice to get good results at a reasonable amount of time. For a review of this technique, see, Verma, et al., HUMAN CHROMOSOMES: A MANUAL OF BASIC TECHNIQUES (Pergamon Press, New York 1988).
Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more 00 likely to be conserved within gene families, thus increasing the chance of cross hybridizations C, during chromosomal mapping.
Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found, in McKusick, MENDELIAN INHERITANCE IN MAN, available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, Egeland, et al., S1987. Nature, 325: 783-787.
O Moreover, differences in the DNA sequences between individuals affected and 00 unaffected with a disease associated with the NOVX gene, can be determined. If a mutation O is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.
Tissue Typing The NOVX sequences of the invention can also be used to identify individuals from minute biological samples. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification. The sequences of the invention are useful as additional DNA markers for RFLP ("restriction fragment length polymorphisms," described in U.S. Patent No.
5,272,057).
Furthermore, the sequences of the invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the NOVX sequences described herein can be used to prepare two PCR primers from the and 3'-termini of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences. The sequences of the invention can be used 00 O to obtain such identification sequences from individuals and from tissue. The NOVX sequences of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual NO humans occurs with a frequency of about once per each 500 bases. Much of the allelic variation is due to single nucleotide polymorphisms (SNPs), which include restriction fragment length polymorphisms (RFLPs).
Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because C greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are 00 Snecessary to differentiate individuals. The noncoding sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers that each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NOS:2n-l, wherein n is an integer between 1 and 45, are used, a more appropriate number of primers for positive individual identification would be 500-2,000.
Predictive Medicine The invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, pharmacogenomics, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the invention relates to diagnostic assays for determining NOVX protein and/or nucleic acid expression as well as NOVX activity, in the context of a biological sample blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant NOVX expression or activity. The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers. The invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. For example, mutations in A NOVX gene can be assayed in a biological sample. Such assays can be used for prognostic or predictive purpose to thereby 00 0 prophylactically treat an individual prior to the onset of a disorder characterized by or associated with NOVX protein, nucleic acid expression, or biological activity.
Another aspect of the invention provides methods for determining NOVX protein, nucleic acid expression or activity in an individual to thereby select appropriate therapeutic or prophylactic agents for that individual (referred to herein as "pharmacogenomics").
Pharmacogenomics allows for the selection of agents drugs) for therapeutic or prophylactic treatment of an individual based on the genotype of the individual the genotype of the individual examined to determine the ability of the individual to respond to a particular agent.) C Yet another aspect of the invention pertains to monitoring the influence of agents 0 drugs, compounds) on the expression or activity of NOVX in clinical trials.
SThese and other agents are described in further detail in the following sections.
DIAGNOSTIC ASSAYS An exemplary method for detecting the presence or absence of NOVX in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting NOVX protein or nucleic acid mRNA, genomic DNA) that encodes NOVX protein such that the presence of NOVX is detected in the biological sample. An agent for detecting NOVX mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to NOVX mRNA or genomic DNA. The nucleic acid probe can be, for example, a full-length NOVX nucleic acid, such as the nucleic acid of SEQ ID NOS:2n-1, wherein n is an integer between 1 and or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to NOVX mRNA or genomic DNA. Other suitable probes for use in the diagnostic assays of the invention are described herein.
An agent for detecting NOVX protein is an antibody capable of binding to NOVX protein, preferably an antibody with a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof Fab or F(ab') 2 can be used. The term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled. Examples of indirect labeling include detection of a primary antibody using a fluorescently-labeled secondary 71 00 antibody and end-labeling of a DNA probe with biotin such that it can be detected with 1 fluorescently-labeled streptavidin. The term "biological sample" is intended to include tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect NOVX mRNA, protein, or genomic DNA in a biological sample in vitro as well as in vivo.
For example, in vitro techniques for detection of NOVX mRNA include Northern hybridizations and in situ hybridizations. In vitro techniques for detection of NOVX protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations, and immunofluorescence. In vitro techniques for detection of NOVX C genomic DNA include Southern hybridizations. Furthermore, in vivo techniques for 00 0detection of NOVX protein include introducing into a subject a labeled anti-NOVX antibody.
C, For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
In one embodiment, the biological sample contains protein molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject.
In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting NOVX protein, mRNA, or genomic DNA, such that the presence of NOVX protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of NOVX protein, mRNA or genomic DNA in the control sample with the presence of NOVX protein, mRNA or genomic DNA in the test sample.
The invention also encompasses kits for detecting the presence of NOVX in a biological sample. For example, the kit can comprise: a labeled compound or agent capable of detecting NOVX protein or mRNA in a biological sample; means for determining the amount of NOVX in the sample; and means for comparing the amount of NOVX in the sample with a standard. The compound or agent can be packaged in a suitable container.
The kit can further comprise instructions for using the kit to detect NOVX protein or nucleic acid.
PROGNOSTIC ASSAYS The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant NOVX 00 expression or activity. For example, the assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with NOVX protein, nucleic acid expression or activity. Alternatively, the prognostic assays can be utilized to identify a subject having or at O risk for developing a disease or disorder. Thus, the invention provides a method for identifying a disease or disorder associated with aberrant NOVX expression or activity in which a test sample is obtained from a subject and NOVX protein or nucleic acid mRNA, genomic DNA) is detected, wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with Saberrant NOVX expression or activity. As used herein, a "test sample" refers to a biological 00 sample obtained from a subject of interest. For example, a test sample can be a biological Sfluid serum), cell sample, or tissue.
Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant NOVX expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a disorder.
Thus, the invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant NOVX expression or activity in which a test sample is obtained and NOVX protein or nucleic acid is detected wherein the presence of NOVX protein or nucleic acid is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant NOVX expression or activity).
The methods of the invention can also be used to detect genetic lesions in A NOVX gene, thereby determining if a subject with the lesioned gene is at risk for a disorder characterized by aberrant cell proliferation and/or differentiation. In various embodiments, the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic lesion characterized by at least one of an alteration affecting the integrity of a gene encoding A NOVX-protein, or the misexpression of the NOVX gene. For example, such genetic lesions can be detected by ascertaining the existence of at least one of: a deletion of one or more nucleotides from A NOVX gene; (ii) an addition of one or more nucleotides to A NOVX gene; (iii) a substitution of one or more nucleotides of A NOVX gene, (iv) a chromosomal rearrangement of A NOVX gene; an alteration in the level of a messenger RNA transcript of A NOVX gene, (vi) aberrant modification of A NOVX gene, 73 00 O such as of the methylation pattern of the genomic DNA, (vii) the presence of a non-wild-type K1 splicing pattern of a messenger RNA transcript of A NOVX gene, (viii) a non-wild-type level of A NOVX protein, (ix) allelic loss of A NOVX gene, and inappropriate post-translational modification of A NOVX protein. As described herein, there are a large O number of assay techniques known in the art which can be used for detecting lesions in A NOVX gene. A preferred biological sample is a peripheral blood leukocyte sample isolated by conventional means from a subject. However, any biological sample containing nucleated 0 cells may be used, including, for example, buccal mucosal cells.
SIn certain embodiments, detection of the lesion involves the use of a probe/primer in a C"1 polymerase chain reaction (PCR) (see, U.S. Patent Nos. 4,683,195 and 4,683,202), such 00 0as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran, et al., 1988. Science 241: 1077-1080; and Nakazawa, et al., 1994. Proc. Natl.
Acad. Sci. USA 91: 360-364), the latter of which can be particularly useful for detecting point mutations in the NOVX-gene (see, Abravaya, et al., 1995. Nucl. Acids Res. 23: 675-682).
This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers that specifically hybridize to A NOVX gene under conditions such that hybridization and amplification of the NOVX gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
Alternative amplification methods include: self sustained sequence replication (see, Guatelli, et al., 1990. Proc. Natl. Acad. Sci. USA 87: 1874-1878), transcriptional amplification system (see, Kwoh, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 1173-1177); QP Replicase (see, Lizardi, et al, 1988. BioTechnology 6: 1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.
In an alternative embodiment, mutations in A NOVX gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates 00 O mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, e.g., C1 U.S. Patent No. 5,493,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
In other embodiments, genetic mutations in NOVX can be identified by hybridizing a \O sample and control nucleic acids, DNA or RNA, to high-density arrays containing hundreds or thousands of oligonucleotides probes. See, Cronin, et al., 1996. Human Mutation 7: 244-255; Kozal, et al., 1996. Nat. Med. 2: 753-759. For example, genetic \mutations in NOVX can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, et al., supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify 00 Sbase changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the NOVX gene and detect mutations by comparing the sequence of the sample NOVX with the corresponding wild-type (control) sequence.
Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert, 1977. Proc. Natl. Acad. Sci. USA 74: 560 or Sanger, 1977. Proc. Natl. Acad. Sci.
USA 74: 5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (see, Naeve, et al., 1995. Biotechniques 19: 448), including sequencing by mass spectrometry (see, PCT International Publication No. WO 94/16101; Cohen, et al., 1996. Adv. Chromatography 36: 127-162; and Griffin, et al., 1993. Appl. Biochem. Biotechnol. 38: 147-159).
Other methods for detecting mutations in the NOVX gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes. See, Myers, et al., 1985. Science 230: 1242. In general, the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type NOVX sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to basepair mismatches between the control and sample strands. For 00 O instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated (C with SI nuclease to enzymatically digesting the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the sO mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, Cotton, et al., 1988. Proc.
Natl. Acad. Sci. USA 85: 4397; Saleeba, et al., 1992. Methods Enzymol. 217: 286-295. In an embodiment, the control DNA or RNA can be labeled for detection.
In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA 00 Smismatch repair" enzymes) in defined systems for detecting and mapping point mutations in SNOVX cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches. See, Hsu, et al., 1994. Carcinogenesis 15: 1657-1662. According to an exemplary embodiment, a probe based on A NOVX sequence, a wild-type NOVX sequence, is hybridized to a cDNA or other DNA product from a test cell(s). The duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, U.S. Patent No. 5,459,039.
In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in NOVX genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids. See, Orita, et al., 1989. Proc. Natl. Acad. Sci. USA: 86: 2766; Cotton, 1993. Mutat. Res. 285: 125-144; Hayashi, 1992. Genet. Anal. Tech. Appl. 9: 73-79.
Single-stranded DNA fragments of sample and control NOVX nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In one embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility. See, Keen, et al., 1991. Trends Genet. 7: In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient 76 00 0 gel electrophoresis (DGGE). See, Myers, et al., 1985. Nature 313: 495. When DGGE is C, used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a 0 denaturing gradient to identify differences in the mobility of control and sample DNA. See, Rosenbaum and Reissner, 1987. Biophys. Chem. 265: 12753.
SExamples of other techniques for detecting point mutations include, but are not Slimited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions that permit 00 0hybridization only if a perfect match is found. See, Saiki, et al., 1986. Nature 324: 163; C Saiki, et al., 1989. Proc. Natl. Acad. Sci. USA 86: 6230. Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target
DNA.
Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization; see, Gibbs, et al., 1989. Nucl. Acids Res. 17: 2437-2448) or at the extreme 3'-terminus of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (see, Prossner, 1993. Tibtech. 11: 238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection. See, e.g., Gasparini, et al., 1992. Mol. Cell Probes 6: 1. It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification. See, Barany, 1991. Proc. Natl. Acad. Sci. USA 88: 189. In such cases, ligation will occur only if there is a perfect match at the 3'-terminus of the 5' sequence, making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving A NOVX gene.
00 0 Furthermore, any cell type or tissue, preferably peripheral blood leukocytes, in which C NOVX is expressed may be utilized in the prognostic assays described herein. However, any biological sample containing nucleated cells may be used, including, for example, buccal mucosal cells.
PHARMACOGENOMICS
Agents, or modulators that have a stimulatory or inhibitory effect on NOVX activity NOVX gene expression), as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (The disorders include metabolic disorders, diabetes, obesity, infectious disease, anorexia, 00 Scancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, SParkinson's Disorder, immune disorders, and hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.) In conjunction with such treatment, the pharmacogenomics the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug) of the individual may be considered. Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, the pharmacogenomics of the individual permits the selection of effective agents drugs) for prophylactic or therapeutic treatments based on a consideration of the individual's genotype. Such pharmacogenomics can further be used to determine appropriate dosages and therapeutic regimens. Accordingly, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s) for therapeutic or prophylactic treatment of the individual.
Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons.
See Eichelbaum, 1996. Clin. Exp. Pharmacol. Physiol., 23: 983-985; Linder, 1997. Clin.
Chem., 43: 254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare defects or as polymorphisms. For example, glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common inherited enzymopathy in which the main 00 0 clinical complication is hemolysis after ingestion of oxidant drugs (anti-malarials, CK1 sulfonamides, analgesics, nitrofurans) and consumption of fava beans.
As an illustrative embodiment, the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action. The discovery of genetic IO polymorphisms of drug metabolizing enzymes N-acetyltransferase 2 (NAT 2) and cytochrome Pregnancy Zone Protein Precursor enzymes CYP2D6 and CYP2C19) has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug. These polymorphisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer The prevalence of PM is different 00 0 among different populations. For example, the gene coding for CYP2D6 is highly O polymorphic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite morphine. At the other extreme are the so called ultra-rapid metabolizers who do not respond to standard doses. Recently, the molecular basis of ultra-rapid metabolism has been identified to be due to CYP2D6 gene amplification.
Thus, the activity of NOVX protein, expression of NOVX nucleic acid, or mutation content of NOVX genes in an individual can be determined to thereby select appropriate agent(s).for therapeutic or prophylactic treatment of the individual. In addition, pharmacogenetic studies can be used to apply genotyping of polymorphic alleles encoding drug-metabolizing enzymes to the identification of an individual's drug responsiveness phenotype. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with A NOVX modulator, such as a modulator identified by one of the exemplary screening assays described herein.
MONITORING OF EFFECTS DURING CLINICAL TRIALS Monitoring the influence of agents drugs, compounds) on the expression or activity of NOVX the ability to modulate aberrant cell proliferation and/or differentiation) can be applied not only in basic drug screening, but also in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to 00 O increase NOVX gene expression, protein levels, or upregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting decreased NOVX gene expression, protein levels, or downregulated NOVX activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease NOVX gene expression, protein levels, or IO downregulate NOVX activity, can be monitored in clinical trails of subjects exhibiting increased NOVX gene expression, protein levels, or upregulated NOVX activity. In such clinical trials, the expression or activity of NOVX and, preferably, other genes that have been implicated in, for example, a cellular proliferation or immune disorder can be used as a "read out" or markers of the immune responsiveness of a particular cell.
C1 By way of example, and not of limitation, genes, including NOVX, that are 0modulated in cells by treatment with an agent compound, drug or small molecule) that p modulates NOVX activity identified in a screening assay as described herein) can be identified. Thus, to study the effect of agents on cellular proliferation disorders, for example, in a clinical trial, cells can be isolated and RNA prepared and analyzed for the levels of expression of NOVX and other genes implicated in the disorder. The levels of gene expression a gene expression pattern) can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of NOVX or other genes. In this manner, the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
In one embodiment, the invention provides a method for monitoring the effectiveness of treatment of a subject with an agent an agonist, antagonist, protein, peptide, peptidomimetic, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of A NOVX protein, mRNA, or genomic DNA in the preadministration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the post-administration samples; comparing the level of expression or activity of the NOVX protein, mRNA, or genomic DNA in the pre-administration sample with the NOVX protein, mRNA, or genomic DNA in the post administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly. For example, increased administration of the agent may be desirable to increase the expression or activity of NOVX to higher levels 00 O than detected, to increase the effectiveness of the agent. Alternatively, decreased C administration of the agent may be desirable to decrease expression or activity of NOVX to lower levels than detected, to decrease the effectiveness of the agent.
I Methods of Treatment The invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant NOVX expression or activity. The disorders include cardiomyopathy, atherosclerosis, hypertension, congenital heart defects, aortic stenosis, atrial septal defect (ASD), NC< atrioventricular canal defect, ductus arteriosus, pulmonary stenosis, subaortic stenosis, 00 ventricular septal defect (VSD), valve diseases, tuberous sclerosis, scleroderma, obesity, transplantation, adrenoleukodystrophy, congenital adrenal hyperplasia, prostate cancer, neoplasm; adenocarcinoma, lymphoma, uterus cancer, fertility, hemophilia, hypercoagulation, idiopathic thrombocytopenic purpura, immunodeficiencies, graft versus host disease, AIDS, bronchial asthma, Crohn's disease; multiple sclerosis, treatment of Albright Hereditary Ostoeodystrophy, and other diseases, disorders and conditions of the like.
These methods of treatment will be discussed more fully, below.
DISEASE AND DISORDERS Diseases and disorders that are characterized by increased (relative to a subject not suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that antagonize reduce or inhibit) activity. Therapeutics that antagonize activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be utilized include, but are not limited to: an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; (it) antibodies to an aforementioned peptide; (iii) nucleic acids encoding an aforementioned peptide; (iv) administration of antisense nucleic acid and nucleic acids that are "dysfunctional" due to a heterologous insertion within the coding sequences of coding sequences to an aforementioned peptide) that are utilized to "knockout" endogenous function of an aforementioned peptide by homologous recombination (see, Capecchi, 1989. Science 244: 1288-1292); or modulators inhibitors, agonists and antagonists, including additional peptide mimetic of the invention or antibodies specific to a peptide of the invention) that alter the interaction between an aforementioned peptide and its binding partner.
00 O Diseases and disorders that are characterized by decreased (relative to a subject not C' suffering from the disease or disorder) levels or biological activity may be treated with Therapeutics that increase are agonists to) activity. Therapeutics that upregulate activity may be administered in a therapeutic or prophylactic manner. Therapeutics that may be IN utilized include, but are not limited to, an aforementioned peptide, or analogs, derivatives, fragments or homologs thereof; or an agonist that increases bioavailability.
Increased or decreased levels can be readily detected by quantifying peptide and/or SRNA, by obtaining a patient tissue sample from biopsy tissue) and assaying it in vitro for RNA or peptide levels, structure and/or activity of the expressed peptides (or mRNAs of an aforementioned peptide). Methods that are well-known within the art include, but are not 00 Slimited to, immunoassays by Western blot analysis, immunoprecipitation followed by C, sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis, immunocytochemistry, etc.) and/or hybridization assays to detect expression of mRNAs Northern assays, dot blots, in situ hybridization, and the like).
PROPHYLACTIC METHODS In one aspect, the invention provides a method for preventing, in a subject, a disease or condition associated with an aberrant NOVX expression or activity, by administering to the subject an agent that modulates NOVX expression or at least one NOVX activity.
Subjects at risk for a disease that is caused or contributed to by aberrant NOVX expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the NOVX aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending upon the type of NOVX aberrancy, for example, A NOVX agonist or NOVX antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. The prophylactic methods of the invention are further discussed in the following subsections.
Therapeutic Methods Another aspect of the invention pertains to methods of modulating NOVX expression or activity for therapeutic purposes. The modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of NOVX protein activity associated with the cell. An agent that modulates NOVX protein activity can be an 00 agent as described herein, such as a nucleic acid or a protein, a naturally-occurring cognate ,1 ligand of A NOVX protein, a peptide, A NOVX peptidomimetic, or other small molecule. In one embodiment, the agent stimulates one or more NOVX protein activity. Examples of such stimulatory agents include active NOVX protein and a nucleic acid molecule encoding IDNOVX that has been introduced into the cell. In another embodiment, the agent inhibits one or more NOVX protein activity. Examples of such inhibitory agents include antisense _NOVX nucleic acid molecules and anti-NOVX antibodies. These modulatory methods can be performed in vitro by culturing the cell with the agent) or, alternatively, in vivo by administering the agent to a subject). As such, the invention provides methods of treating C1 an individual afflicted with a disease or disorder characterized by aberrant expression or 00 activity of A NOVX protein or nucleic acid molecule. In one embodiment, the method C involves administering an agent an agent identified by a screening assay described herein), or combination of agents that modulates up-regulates or down-regulates) NOVX expression or activity. In another embodiment, the method involves administering A NOVX protein or nucleic acid molecule as therapy to compensate for reduced or aberrant NOVX expression or activity.
Stimulation of NOVX activity is desirable in situations in which NOVX is abnormally downregulated and/or in which increased NOVX activity is likely to have a beneficial effect.
One example of such a situation is where a subject has a disorder characterized by aberrant cell proliferation and/or differentiation cancer or immune associated disorders).
Another example of such a situation is where the subject has a gestational disease preclampsia).
Determination of the Biological Effect of the Therapeutic In various embodiments of the invention, suitable in vitro or in vivo assays are performed to determine the effect of a specific Therapeutic and whether its administration is indicated for treatment of the affected tissue.
In various specific embodiments, in vitro assays may be performed with representative cells of the type(s) involved in the patient's disorder, to determine if a given Therapeutic exerts the desired effect upon the cell type(s). Compounds for use in therapy may be tested in suitable animal model systems including, but not limited to rats, mice, chicken, cows, monkeys, rabbits, and the like, prior to testing in human subjects. Similarly, for in vivo testing, any of the animal model system known in the art may be used prior to administration to human subjects.
00
O
O
C Prophylactic and Therapeutic Uses of the Compositions of the Invention The NOVX nucleic acids and proteins of the invention are useful in potential prophylactic and therapeutic applications implicated in a variety of disorders including, but Snot limited to: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias, metabolic disturbances associated with obesity, the metabolic syndrome X and wasting disorders associated with chronic diseases and various cancers.
C( As an example, a cDNA encoding the NOVX protein of the invention may be useful 00 Sin gene therapy, and the protein may be useful when administered to a subject in need 0 thereof. By way of non-limiting example, the compositions of the invention will have efficacy for treatment of patients suffering from: metabolic disorders, diabetes, obesity, infectious disease, anorexia, cancer-associated cachexia, cancer, neurodegenerative disorders, Alzheimer's Disease, Parkinson's Disorder, immune disorders, hematopoietic disorders, and the various dyslipidemias.
Both the novel nucleic acid encoding the NOVX protein, and the NOVX protein of the invention, or fragments thereof, may also be useful in diagnostic applications, wherein the presence or amount of the nucleic acid or the protein are to be assessed. A further use could be as an anti-bacterial molecule some peptides have been found to possess anti-bacterial properties). These materials are further useful in the generation of antibodies, which immunospecifically-bind to the novel substances of the invention for use in therapeutic or diagnostic methods.
The invention will be further described in the following examples, which do not limit the scope of the invention described in the claims.
EXAMPLES
EXAMPLE 1.
The NOV1 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1A.
Table 1A. NOV1 Sequence Analysis SEQ ID NO:1 558 bp NOV ATGCCTCGCCTGTTTTTTTTCCACCTGCTAGAATTCTGTTTACTACTGAACCAATTTT CG56908-02 DNA CCAGAGCAGTCGCGGCCAAATGGAAGGACGATGTTATTAAATTATGCGGCCGCGAATT Sequence AGTTCGCGCGCAGATTGCCATTTGGCATGAGCACCTGGAGCAAAAGGTCTCTGAGC 00
CAGGAAGATGCTCCTCAGACACCTAGACCAGTGGCAGAAATTGTGCCATCCTTCATCA
ACAAAGATACAGAAACCATAAATATGATGTCAGAATTTGTTGCTAATTTGCCACAGGA
GCTGAAGTTAACCCTGTCTGAGATGCAGCCAGCATTACCACAGCTACAACAACATGTA
CCTGTATTAAAAGATTCCAGTCTTCTCTTTGAAGAATTTAAGAAACTTATTCGCAATA
GACAAAGTGAAGCCGCAGACAGCAGTCCTTCAGAATTAAAATACTTAGGCTTGGATAC
TCATTCTCGAAAAAAGAGACAACTCTACAGTGCATTGGCTAATAAATGTTGCCATGTT
GGTTGTACCAAAAGATCTCTTGCTAGATTTTGCTGA
ORF Start: ATG at I I ORF Stop: TGA at 556 ID NO:2 185 aa IMW at 21128.4kD NOVI, MPRLFFFHLLEFCLLLNQFSRAVAAKWKDDVI KLCGRELVRAQIAICGMSTWSKRSLS CG56908-02 Protein QEDAPQTPRPVAEIVPS FINKDTETINMM.SEFVANLPQELKLTLSEMQPALPQLQQHV Sequence PVLKDSSLLFEEFKKLIRNRQSEAADSSPSELKYLGLDTHSRKKRQLYSAIANKCCHV
GCTKRSLARFC
Further analysis of the NOVI protein yielded the following properties shown in Table 113.
Table IlB. Protein Sequence Properties NOVI PSoxi 0.4712 probability located in mitochondrial matrix space; 0.3000 probability located in analysis: nucleus; 0. 1737 probability located in mitochondrial inner membrane; 0. 173 7 probability located in mitochondrial intermembrane space SignalP Cleavage site between residues 25 and 26 analysis: A search of the NOVi1 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table IC.
Table 1C. Geneseq Results for NOVI NOVI Identities/ Geneseq Protein/Organism/Length fPatent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region A.AP94621 Amino acid sequence of human L..185 178/185 1 e-99 preprorelaxin H2 Homo sapiens, 185 aa. L.185 180/185 (97%) 15-FEB-1989]____ AAP40108 Sequence of human preprorelaxin H2 1.185 177/185 6e-99 H2, 185 aa. [EPI 12149-A, 27-JUN-1984] L..185 179/185 AAP40155 Sequence of human preprorelaxin Homo 1..185 159/185 3e-89 sapiens, 185 aa. [EP101309-A, L..185 171/1 85 (91%) 22-FEB-1984] AAP40154 Sequence of human preprorelaxin Homo 1L.185 159/185 3e-89 sapiens, 185 aa. [EP101309-A, L..185 171/185 (91%) 22-FEB-1984] AAP94,622 Amino acid sequence of human 11-185 1157/1 85 2-8 preprorelaxin HI Homo sapiens, 185 aa. L.185 169/185(9% [EP303033-A, 15-FEB-1989] In a BLAST search of public sequence databases, the NOVI protein was found to have homology to the proteins shown in the BLASTP data in Table ID.
Table ID. Public BLASTP Results for NOVI Protein NOVI Identities/ E Accession ProteiOrganism/]Length Residues/ Similarities for the Epc NubrMatch MthdPrin Value Number ~~Residues MacePotn P04090 Prorelaxin H2 precursor Homo L.185 178/185 4c-99 (Human), 185 aa. L.185 180/1 85 (97%) P04808 Prorelaxin H I precursor Homo 1..185 159/185 8e-89 (Human), 185 aa. L.185 171/185 (91%) 1455 Prorclaxin H2 precursor Pan 20..185 160/166 le-87 troglodytes (Chimpanzee), 166 aa 1..166 162/166 (97%) P19884 Prorelaxin precursor Macaca mulatta 1L.185 154/185 2e-85 (Rhesus macaque), 185 an. 1..185 165/185 (88%) P51454 Prorelaxin H I precursor Pan 20..185 137/166 3e-74 troglodytes (Chimpanzee), 166 aa 1..166 148/166 (88%) PFam analysis predicts that the NOVI protein contains the domains shown in the Table IlE.
Table 1E. Domain Analysis of NOVI Identities/ Pfamn Domain NOVI Match Region Similarities Expect Value for the Matched Region DUF38: domain 1 of 1 6..33 11/40 2.2 20/40 Insulin: domain I of 1 32..185 59/1 60 4.2e-49 128/1 60 EXAMPLE 2.
The NOV2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 2A.
Table 2A. NOW2 Sequence Analysis 1SEQ IDNO:3 11055 bp NOV2a, IGCCCGCGACTCGGAGCACCCCACCCCTCCCCTGCCGGGCCAGGCCGGGCGGCGTTGTT
GGCGGOGCCCCGGTGGAGGCCCGGCCCGGGCGGCGCCCGCCATOAACCGGCTGTCGC
00 00 CG59783-01 DNA Sequence
TGAGTGAGCTCTGCTGCCTCTTCTGCTGCCCTCCCTGCCCCGGCCGCATCGCTGCCAA
GCTCGCCTTCCTGCCGCCGGAGGCCACCTACTCCCTGGTGCCTGAGCCCGAGCTGGGG
CGCTGGAAGCTGCACCTGACGGAGCGTGCCGACTTCCAGTACAGCCAGCGCGAGCTGG
ACACCATCGAGGTCTTCCCCACCAAGAGCGCCCGCGGCAACCGTGTCTCCTGCATGTA
TGTTCGCTGCGTGCCTGTGCCAGGTACACGGTCCTCTTCTCGCACGGCAATGCCGTG
GACCTGGGCCAGATGAGCAGCTTCTACATTGGCCTGGGCTCCCGCCTCCACTGCAACA
TCTTCACCTACGACTCCTCCGGCTACGGTGCCAGCTCGGGCAGGCCTTCCGAGAGGAA
CCTCTATGCCGACATCGACGCCACCTGGCAGGCCCTGCGCACCAGGTACGGCATCAGC
CCGGACAGCATCATCCTGTACGGGCAGAGCATCGGCACGGTGCCCACCATGGACCTGG
CCTCGCGCTACGAGTGTGCCGCGGTGGTGCTGCACTCGCCGCTCACCTCGGGCATGCG
CGTCGCCTTCCGCGACACCAAGAAGACCTACTGCTTCGACGCCTTCCCTAACATCGAG
AAGGTGTCCAAGATCACGTCTCCCGTGCTCATCATCCACGGCAGGGAGGACGAGGTGA
TCGACTTCTCGCACGGGCTGGCGCTCTACGAGCGCTGCCCCAAGGCGGTGGAGCCGCT
GTGGGTGGAGGGCGCCGGGCACAACGACATCGAGCTCTACAGCCAGTACCTGGAGCGC
CTGCGTCGCTTCATC1TCCCAGGAGCTGCCCAGCCAGCGCGCCTAGCGGCGGCCCCAAC
CAGCCGGACCTCAGCAATAAGGCGGCCCCCGGACCTCACCCCGCGCCGGCCCCCACCC
AGGGGCTGCAT
ORF Start: ATG at 101 JORF Stop: TAG at 971 SEQ ID NO4 1290 aa, MW at 32472.6kD NOV2a, MNGLSLSELCCLFCCPPCPGRIAAKLAFLPPEATYSLVPEPELGRWKLHLTERADFQY CG59783-01 Protein SQRELD)TI EVFPTKSARGNRVSCMYVRCVPGARYTVLFSHGNAVDLGQMSSFYI
GLGS
SequenceRLHCNIFTYDSSGYGASSGRPSERNLYADIDATWQALRTRYGISPDSIILYGOSIGTV q PTMDLASRYECAAVVLHSPLTSGMRVAFRDTKKTYCFDAFPNIEKVSKITSPVLI IHG REDEVIDFSHGLALYERCPKAVEPLWVEGAGHNDI ELYSQYLERLRRFI SQELPSQRA SEQ ID NO:5 1976 bp NOV2b, CCATGAACCCGCTGTCGCTGAGTGAGCTCTGCTGCCTCTTCTGCTGCCCGCCCTGCCC CG59783-02 DNA CGGCCGCATCGCTGCCAAGCTCGCCTTCCTGCCGCCGGAGGCCACCTACTCCCrGGTG Sequence CCTGAGCCCGAACCGGGGCCTGGTGGGGCCGGGGCCGCCCCCTTGGGGACCCTGAGAG
CCTCCTCGGGCGCACCCGGGCGCTGGAAGCTGCACCTGACGGAGCGTGCCGACTTCCA
GTACAGCCAGCGCGAGCTGGACACCATCGAGGTCTTCCCCACCAAGAGCGCCCGCGGC
AACCGCGTCTCCTGCATGTATGTTCGCTGCGTGCCTGGTGCCAGGTACACGGTCCTCT
TCTCGCACGGCAATGCCGTGGACCTGGGCCAGATGAGCAGCTrTCTACATTGGCCTGGG
CTCCCGCCTCCACTGCAACATCTTCTCCTACGACTACTCCGGCTACGGTGCCAGCTCG
GGCAGGCCTTCCGAGAGGAACCTCTATGCCGACATCGACGCCGCCTGGCAGGCCCTGC
GCACCAGGTACGGCATCAGCCCGGACAGCATCATCCTGTACGGGCAGAGCATCGGCAC
GGTGCCCACCGTGGACCTGGCCTCGCGCTACGAGTGTGCCGCGGTGGTGCTGCACTCG
CCGCTCACCTCGGGCATGCGCGTCGCCTTCCCCGACACCAAGAAGACCTACTGCTTCG
ACGCCTTCCCTAACATCGAGAAGGTGTCCAAGATCACGTCTCCCGTGCTCATCATCCA
CGGCACGGAGGACGAGGTGATCGACTTCTCGCACGGGCTGGCGCTCCACGAGCGCTGC
CCCAAGGCGGTGGAGCCGCTGTGGGTGGAGGGCGCCGGGCACAACGACATCGAGCTCT
ACAGCCAGTACCTGGAGCGCCTGCGTCGCTTCATCTCCCAGGAGCTGCCCAGCCAGCG
CGCCTAGCGGCGGCCCCAACCGGCCGGACCTCAGCAATAAGGCGGCCC
ORF Start: ATG at 3 IORF Stop: TAG at 933 SEQ1D NO:6 1310aa M~at 33963.2kD NOV2b, MNGLSLSELCCLFCCPPCPGRIAAKLAFLPPEATYSLVPEPEPGPGGAGAAPLGTLRA CG59783-02 Protein SSGAPGRWKLHLTERADFOYSORELDTIEVFPTKSARGNRVSCMYVRCVPGARYTVLF Sequence SHGNAVDLGQMSSFYIGLGSRLHCNI FSYDYSGYGASSGRPSERNLYADIDAAWQALR
TRYGISPDSIILYGQSIGTVPTVDLASRYECAAVVLHSPLTSGMRVAFPDTKKTYCFD
AFPNIEKVSKITSPVLI IHGTEDEVIDFSHGLALHERCPKAVEPLWVEGAGHNDIELY
_____________SQYLERLRRFISQELPSQRA
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 2B.
Table 213. Comparison of NOV2a against NOV2b.
00
O
O
Further analysis of the NOV2a protein yielded the following properties shown in Table 2C.
Table 2C. Protein Sequence Properties NOV2a PSort 0.3700 probability located in outside; 0.1674 probability located in microbody analysis: (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen) SignalP Cleavage site between residues 21 and 22 analysis: A search of the NOV2a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 2D.
Table 2D. Geneseq Results for NOV2a NOV2a Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAM93226 Human polypeptide, SEQ IDNO:2641 1..290 283/310 e-164 Homo sapiens, 310 aa. [EP1130094-A2, 1..310 285/310 (91%) 05-SEP-2001] ABG27979 Novel human diagnostic protein #27970 1..290 273/310 e-154 Homo sapiens, 403 aa. 96..403 275/310 (88%) [WO200175067-A2,1 -OCT-2001 ABG27979 Novel human diagnostic protein #27970 1..290 273/310 e-154 Homo sapiens, 403 aa. 96..403 275/310 (88%) [W0200175067-A2, 11-OCT-2001] ABG18429 Novel human diagnostic protein #18420 1..290 215/349 5e-99 Homo sapiens, 344 aa. 3..344 226/349 (64%) [W0200175067-A2, 1-OCT-2001] ABG18429 Novel human diagnostic protein #18420 1..290 215/349 5e-99 Homo sapiens, 344 aa. 3..344 226/349 (64%) [W0200175067-A2, 11-OCT-2001] In a BLAST search of public sequence databases, the NOV2a protein was found to have homology to the proteins shown in the BLASTP data in Table 2E.
Table 2E. Public BLASTP Results for NOV2a 00
INO
Protein NOV2a Identities! Accession Protein/Organis engthResidues/ Similarities for the pect Number Matched Portion Residues Q96GS6 UNKNOWN (PROTEIN FOR 1..290 283/310 e-164 MGC:14860) Homo sapiens 1..310 285/310 (91%) (Human), 310 aa.
Q99JW1 SIMILAR TO CGI-67 PROTEIN L.290 267/310 e-156 Mus musculus (Mouse), 310 aa. 1.310 278/310 (89%) AAH18511 HYPOTHETICAL 34.3 KDA 1..287 227/312 e-134 PROTEIN Mus musculus (Mouse), 1..312 261/312 (82%) 313 aa.
Q9Y377 CGI-67 PROTEIN Homo sapiens 1..285 216/285 e-133 (Human), 293 aa. 1..285 256/285 (89%) Q9BWLO SIMILAR TO CGI-67 PROTEIN 1..215 208/235 e-118 Homo sapiens (Human), 236 aa. 1..235 210/235 (88%) PFam analysis predicts that the NOV2a protein contains the domains shown in the Table 2F.
Table 2F. Domain Analysis of NOV2a Identities/ Pfam Domain NOV2a Match Region Similarities Expect Value for the Matched Region abhydrolase_2: domain 1 of 1 79..285 42/255 0.11 139/255 I EXAMPLE 3.
The NOV3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 3A.
Table 3A. NOV3 Sequence Analysis SEQ ID NO:7 468 bp NOV3, TGCTTCCTGTGCCCTGCGCCATGTGGAGTCTGCCGCCGAGCAGGGCTCTGTCCTGTGC CG59873-01 DNA GCCACTGCTGCTTCTCTTCAGCTTCCAGTTCCTGGTTACCTATGCTTGGCGTTTCCAA Sequence GAGGAAGAGGAGTGGAATGACCAAAAACAAATTGCTGTTTATCTCCCTCCCACCCTGG
AGTTTGCCGTGTACACATTCAACAAGCAGAGCAAGGACTGGTATGCCTACAAGCTGGT
GCCTGTCCTGGCTTCCTGAAGGAGCAGCGTTATGATAAGATGACATTCTCCATGAAT
CTGCAACTGGGCAGAACCATGTGTGGGAAATTTGAAGATGACATTGACAACTGCCCTT
TTCAAGAGAGCCCAGAGCTGAACAATACCTGCACCTGCTTCTTCACCATTGGAATAGA
GCCCTGGAGGACACGGTTTGACCTCTGGAACAAGACGTGCTCAGGCGGGCATTCCTGA
GTGG
ORF Start: ATG at 21 ORF Stop: TGA at 462 SEQ ID NO:8 147 aa MW at 17315.6kD NOV3, MWSLPPSRALSCAPLLLLFSFQFLVTYAWRFQEEEEWNDQKQIAVYLPPTLEFAVYTF CG59873-01 Protein NKQSKDWYAYKLVPVLASWKEQGYDKMTFSMNLQLGRTMCGKFEDDIDNCPFQESPEL Sequence NNTCTCFFTIGIEPWRTRFDLWNKTCSGGHS 00 00 Further analysis of the NOV3 protein yielded the following properties shown in Table 3B.
Table 3B. Protein Sequence Properties NOV3 PSort 0.7475 probability located in outside; 0.3200 probability located in microbody analysis: (peroxisome); 0. 1900 probability located in lysosome (lumen); 0.o00probability located in endoplasmnic reticulumn (membrane) SignalP Cleavage site between residues 29 and analysis: II A search of the NOV3 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table Table 3C. Geneseq Results for NOV3____ NOV3 Idniis Geneseq ProteinlOrganismf/Length I1'atent Residues/ imilatitiesfrteEpc Identifier Datel Match Mace Rgo Value Residues MthdRgo AAG67508 Amino acid sequence of a human secreted 1..147 147/147 (100%) 8e-89 polypeptide Homo sapiens, 148 an. 148 147/147 (100%) [W02001 66690-A2,1I3-SEP-2001) AAG67507 Amino acid sequence of a human secreted 1L.1 18 118/118 (100%) 4e-68 polypeptide Homo sapiens, 159 aa. 2..1 19 118/118 (100%) _________[W0200166690-A2, 13-SEP-2001) AAY53771 A human cystatin-related protein, 1..145 89/145 5e-46 designated testatin Homo sapiens, 147 L..145 102/145 (69%) an. [W09958565-A1, 18-NOV-1999]____ AAG67506 Amino acid sequence of a human secreted L..145 88/145 7e-45 polypeptide Homo sapiens, 148 an. 2..146 101/145 (68%) [W0200166690-A2,1I3-SEP-2001) AA857 Human PR03543 Homo sapiens, 147 an. L.145 88/145 7e-45 [W0200116318-A2,08-MAR-2001] L.145 101/145 In a BLAST search of public sequence databases, the NOV3 protein was found to have homology to the proteins shown in the BLASTP data in Table 3D.
Table 3D. Public BLASTP Results for NOW3 PoenNOV3 Identities/ Epc Accession Protein/Organism/Length Residues/ Similarities for the Valuec Number Matd Matched Portion Vau 00 Q9H4G1 Cystatin 9-like precursor H-omo L..145 88/145 2e-44 (Human), 147 aa. L.145 101/145 CAC05423 BA218C 14.3 PROTEIN Homo 8..147 81/145 3e-37 (Human), 152 aa. 8..152 100/145 (68%) Q9ZOH6 Cystatin 9 precursor (Testatin) Mus 143 63/1 36 2e-28 musculus (Mouse), 137 aa. 8..137 87/136 (63%) Q9D264 9230104L,09R1K PROTEIN Mus 9..145 50/137 2e-13 musculus (Mouse), 133 aa. 2..131 70/137 Q9DAN8 1700006F03R1K PROTEIN Mus 50.142 134/93 15e-13 musculus (Mouse), 128 an. 136..125 57/93 PFamn analysis predicts that the NOV3 protein contains the domains shown in the Table 3E.
Table 3E. Domain Analysis of NOV3 Identities/ Pfam Domain NOV3 Match Region Similarities Expect Value for the Matched Region cystatmn: domain I of 1 49..142 28/97 8.4e-07 162/97 EXAMPLE 4.
The NOW4 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 4A.
Table 4A. NOW4 Sequence Analysis SEQ ID NO:9 [5538 bp NOW4, GGCGCGGAGAGCTCCCAACCTGGGCTGGAACCTTGCCCAGCACAGGTGGCTGCTACAC CG89060-01I DNA CCCATGTAAAAAGCGGAAAATAAAATGAAGATTTTCCAGCGCAAGATGCGGTACTGGT Sequence TGCTTCCACCTTTT=TGGCAATTGTTTATTTCTGCACCATTGTCCAAGGTCAAGTGGC
TCCACCCACAAGTTAGATATAATGTAATATCTCATGACAGTATACAGACATGG
AAGGCTCCAAGAGGGAAAT1TTGGTGGTTACAAACTTCTTGTGACTCCAACTTCAGGTG
GAAAAACTAACCAGCTGAATCTGCAGAACACTGCAACTAAAGCAATTATTCAAGGCCT
TATGCCAGACCAGAATTACACAGTTCAAATTATTGCATACAATAAAGATAAAGAAAGC
AAGCCAGCTCAAGGCCAATTCAGAATTAAAGATTTAGAAAAAAGAAAGGATCCAGC
CCAGAGTCAAAGTTGTGGACAGAGGAAATGGGAGTAGACCATCTTCACCAGAAGAAGT
GAAATTTGTCTGTCAAACTCCAGCAATTGCTGACATTGTAATCCTGGTCGATGGTTCA
TGGAGTATTGGAAGATTCAACTTCAGACTGGTTCGGCATTTCTTGGAAACCTGGTTA
CGGCATTCGATGTGGGCTCAGAGAAGACACGAATTGGTCTTGCACAGTATAGTGGTGA
CCCCAGAATAGAATGGCACTTGAATGCATTTAGCACAAAAGATGAAGTGATTGAAGCT
GTCCGAAACCTCCCATATAAAGGAGGAAATACACTAACAGGTCTTGC
GAACTACA
TTTTTGAA;ATAGC1TCAAACCAGAAGCAGGATCAAGGACTGGAGTATCCAAAATTGG
CATTTTAATCACAGATGGAAAATCCCAAGATGACATTATTCCACCATCTAGAAATCTT
CGTGAGTCTGGTGTAGAACTGTTTGCCATAGGGGTGAAAAACGCGGATGTGAATGAGC
TGCAGGAGATCGCCTCTGAACCAGACAGCACTCATGTGTACAATGT'rGCCGAATTCGA
TCTGATGCACACAGTTGTGGAGAGTCTGACCAGGACTCTCTGCTCTAGAGTGAAGAA
CAGGACAGAGAAATTAAAGCCTCAGCCCATGCCATCACTGGGCCGCCTACGGAGTTGA
TTACTTCTGAAGTCACTGCCAGAAGCTTTATGGTTAACTGGACTCATGCCCCAGGAA
TGTGGAAAAATACAGAGTTGTGTATTATCCTACCAGGGGTGGAAAACCAGACGAGGTG
GTGGTAGATGGAACTGTATCTTCCACAGTGTGAAAACTTGATGTCTTTACTGAT_
00
ATCAGATAGCAGTCTTTGCAATCTATGCCCACACTGCTAGTGAAGGCCTACGGGGAAC
TGAA.ACTACACTTGCTTTACCGATGGCTTCTGACCTTCTACTGTACGACGTGACTGAG
C1 AACAGCATGCGAGTCAAATGGGATGCAGTGCCTGGGGCCTCAGGTTACCTGATCCTTT
ATGCTCCTCTAACAGAGGGCCTGGCTGGGGATGAAAAAGAGATGAAAATTGGAGAGAC
CCACACAGATATTGAATTGAGTGGGTTG 1rGCCCAATACAGAATACACAGTCACAGTT
TATGCCATGTTTGGAGAAGAGGCCAGTGATCCTGTTACGGGACAAGAAACAACATTGG
CTTTAAGTCCACCAAGAAACCTGAGAATCTCCAATGTTGGCTCTAACAGTGCTCGATT
AACCTGGGACCCAACTTCAAGACAGATCCATGGTTATCGAATTGTATATAACAATGCA
GATGGGACTGAAATCAATGAGGTTGAAGTCGATCCTATTACTACCTTCCCTCTGAAGG
GCTTGACACCTCTCACAGAGTATACTATTGCTATTTTCTCCACTATGATGAAGGACA
GTCAGAGCCTCTGACTGGAGTTTTTACCACCGAGGAAGTTCCAGCCCAGCAATACTTA
GAAATTGATGAGGTGACGACAGACAGTTTTAGGGTGACCTGGCATCCCCTCTCAGCTG
ATGAAGGGCTACACAAATTGATGTGGATTCCAGTCTATGGGGGGAAGACTGAGGAGGT
C TGTCCTGAAAGAAGAGCAGGACTCACATGTTATTGAAGGCCTGGAGCCCGGTACGGAG
TATGAAGTTTCACTATTGGCCGTACTI'GATGATGGAAGCGAGAGTGAGGTGGTGACTG
CTGTCGGGACCACACTTGACAGTTTTTGGACAGAACCAGCTACAACCATAGTGCCTAC
CACATCTGTGACTTCAGTTTTCCAGACGGGAATCAGAAACC'rAGTTGTAGGTGATGAA C1 ACTACTTCTAGCCTGCGGGTAAAATGGGACATTTCTGACAGCGATGTGCAGCAGTTrA 00 GGGTGACCTACATGACAGCTCAAGGGGACCCTGAGGAAGAAGTCATAGGAACGGTTAT
GGTGCCTOGAAGCCAGAACAACCTCCTTCTGAAGCCTCTGCTTCCTGATACTGAATAC
AAAGTCACAGTGACTCCCATCTACACGGATGGCGAAGGCGTCAGCGTCTCCGCTCCTG
GAAAAACCTTACCATCCTCGGGGCCCCAGAACTTGCGGGTGTCCGAGGAATGGTATAA
CCGGTTGCGCATTACGTGGGACCCCCCATCTTCCCCGGTGAAAGGCTATAGAATTGTC
TACAAACCTGTCAGTGTTCCTGGTCCAACACTGGAAACGTTTGTGGGAGCTGACATIA
ACACCATCCTTATCACAAACCTCCTCAGCGGAATGCACTACAATGTGAAGATATTTGC
CTCCCAGGCCTCAGGCTTCAGCGACGCCCTGACAGGCATGGTGAAAACATTGTTCTTG
GGTGTTACCAATCTCCAAGCCAAACATGTTGAAATGACCAGCTTGTGTGCCCACTGGC
AGGTACATCGCCATGCCACAGCCTATAGGGTTGTTATAGAATCCCTCCAGGATAGGCA
AAAGCAAGAATCCACTGTGAGTGGAGGGACAACCAGGCATTGCTTCTATGGACTTCAG
CCTGATTCTGAATATAAAATCAGTGTTTATACAAAGCTCCAGGAGATTGAAGGACCTA
GTGTGAGCATAATGGAAAAAACACAATCACTTCCTACACGACCACCAACTTTTCCTCC
AACCATTCCACCAGCAAAAGAAGTATGTAAGGCGGCCAAGGCTGACCTGGTATTTATG
GTGGATGGATCCTGGAGCATTGGAGATGAAAATTTCAATAAGATCATCAGCTTTCTAT
ACAGCACTGTTGGAGCCCTGAACAAGATTGGCACAGATGGAACCCAAGTTGCAATCGGT
TCAGTTCACTGATGATCCCAGAACAGAATTTAAACTAAATGCTTACAAAACCAAAGAG
ACTCTTCTTGATGCAATTAAACACATTTCATACAAAGGAGGAAATACAAAAACAGGAA
AAGCAATTAAGTATGTTCGAGATACCTTGTTCACTGCAGAGTCAGGTACAAGAAGGGG
CATCCCAAAGGTTATCGTGTTATAACTGATGGAAGATCACAAGATGATGTGAACAAA
ATCTCCAGGGAGATGCAATTAGATGGCTATAGCATTTT1'GCAATTGGTGTGGCCGATG
CAGATTACTCGGAGTTGGTTAGCATTGGCAGTAAGCCCAGCGCACGCCATGTCTTCTT
TGTGGATGACTTTGACGCCTTTAAGAAAATCGAAGATGAGTTAATTACTTTTGTCTGC
GAAACAGCATCAGCAACCTGTCCAGTGGTACACAAGGATGGCATTGATCTTGCAGGAT
TTAAGATGATGGAAATGTTTGGTTTGGTTGAAAAAGATTTTTCATCAGTGGAAGGGGT
TTCTATGGAGCCTGGTACCTTCAATGTGTTTCCATGTTACCAACTCCATAAAGATGCC
CTGGTTTCCCAGCCAACCAGGTACTGCACCCAGAAGGATTGCCCTCCGACTACACL
TCAGTTTTCTATTCCGGATTCTTCCTGACACTCCACAGGAGCCATTTGCTCTTTGGGA
GA TAAATAAAAATTCTGACCCATTGTTGGGG?1ATTCTAGACAATCTGGGA ACTCTAACATATTTCAACTATGACCAGAGTGGGGATTTTCAAACTGTTACT1TCGAAG
GACCTGAAATTAGGAAAATTTTTTATGGAAGCTTTCACAAGCTACACATTGTTGTCAG
TGAGGCTTTGGTCAAAGTGGTTATTGACTGCAAGCAAGTGGGTGAGAAGGCAATGAAC
GCATCAGCTAATATCACGTCAGATGGTGTAGAAGTGCTAGGGAAAATGGTTCGATCAA
GAGGACCAGGTGGAAACTCTGCACCGTTCCAGTTACAGATGTTTGATATTGTTTGCTC
CACATCATGGGCCAATACAGACAAATGCTGTGAACTTCCAGGCCTGAGAGATGATGAG
TCTTGCCCAGACCTTCCCCATTCCTGCTCCTGTTCTGAAACCAATGAAGTGGCTCTGG
GACCAGCGGGCCCACCAGGTGGTCCAGGACTCCGAGGACCAAAGGGCCAGCAAGGTGA
ACCGGGTCCAAAGGGACCAGATGGCCCTCGGGGTGAAATTGGTCTGCCAGGACCTCAG
GGTCCACCTGGACCTCAAGGACCAAGTGGTCTGTCCATTCAAGGAATGCCCGGAATGC
CAGGAGAAAAAGGAGAGAAAGGAGATACTGGCCTTCCAGGTCCACAGGGTATCCCAGG
AGGCGTTGGTTCACCAGGACGTGATGGCTCACCAGGCCAGAGGGGCCTTCCGGGAAAG
GATGGATCCTCGGGACCTCCAGGACCACCAGGGCCAATAGGCATTCCTGGCACCCCTG
GAGTCCCAGGGATCACAGGAAGCATGGGACCGCAAGGCGCCCTGGGACCACCTGGTGT
00
CCCTGGAGCAAAGGGGGAACGAGGAGAGCGGGGTGACCTGCAGTCTCAAGCCATGGTG
AGATCAGTGGCGCGTCAAGTATGCGAACAGCTCATCCAGAGTCACATGGCCAGGTACA
CTGCCATCCTCAACCAGATTCCCAGCCACTCCTCATCCATCCGGACTGTCCAAGGGCC
TCCTGGGGAGCCTGGGAGGCCAGGCTCACCTGGAGCCCCTGGTGAACAAGGACCCCCA
GGCACACCAGGCTTCCCCGGAAATGCAGGCGTGCCAGGGACCCCAGGAOAACGAGGTC
TAACTGGTATCAAAGGAGAAAAAGGAAATCCAGGCGTTGGALACCCAAGGTCCAAGAGG
CCCCCCTGGACCAGCAGGACCTTCAGGGGAGAGTCGGCCTGGCAGCCCTGGGCCCCCT
GGCTCTCCTGGACCAAGAGGCCCACCAGGTCATCTGGGGGTTCCTGGACCCCAAGGTC
CTTCTGGCCAGCCTGGATATTGTGACCCCTCATCATGTTCTGCCTATGGTGTGAGAGA
TCTGATCCCCTACAATGATTACCAGCACTGAAGTGGAAATCCTCCACTCTGGTTCCAT
TGGCCCCAGACATTTAGCTGTGGATACAGAACTGTCCTGTCAACCACCACCACCACCA
AGCCCCTGCCCCTAACAATGGACACTCT
ORF Start: ATG at 83 IORF Stop: TGA at 5423 ID NO: 10 1780 aa JMWatl191924.OkD NOW4, MKIFQRKMRYWLLPPFLAIVYFCTIVOGQVAPPTRLRYNVISHDSIQISWKAPRGKFG CG89060-0 1 Protein GYKLLVTPTSGGKTNQLNLQNTATKAI IQGLMPDQNYTVQI IAYNKDKESKPAQGQFR Sequence IKDLEKRKDPKPRVKVVDRGNGSRPSSPEEVKFVCQTPAIADIVILVDGSWSIGRFNF
RLVRH-FLENLVTAFDVGSEKTRIGLAQYSGDPRIEWHLNAFSTKDEVIEAVRNLPYKG
GNTLTGLALNYI FENSFKPEAGSRTGVSKIGILITDGKSQDDI IPPSRNLRESGVELF AIGVKNADVNELQEIASEPDSTHVYNVAEFDLMHTVVESLTRTLCSRVEEODRE IKAS
AHAITGPPTELITSEVTARSFVWTAPGNVEKYRVVYYPTRGGKPDEVVVDGTVSS
T\TLKNLMSLTEYQIAVFAI YAHTASEGLRGTETTLALPMASDLLLYDVTENSMRVKWD AVPGASGYLI LYAPLTEGLAGDEKEMKICETHTDIELSGLLPNTEYTVTVYAMFGEEA SDPVTGQETTLALSPPRNLRISNVGSNSARLTWDPTSRQIHGYRIVYNNADGTE
IN'EV
EVDP ITTFPLKGLTPLTEYTIAI FSIYDEGQSEPLTGVFTTEEVPAQQYLEIDEVTTD SFRVTWHPLSADEGLHKLMWI PVYGGKTEEVVLKEEQDSHVI EGLEPGTEYEVSLLAV LDDGSESEVVTAVGT~TDSFWTEPATTIVPTTSVTSVFOTGI RNLWVGOETTSSLRVK
WDISDSDVQQFRVTYMTAQGDPEEEVIGTVMVPGSQNNLLLKPL
1
LPDTEYKVTVTPIY
TDGEGVSVSAPGKTLPSSGPQNLRVSEEWYNRLRITWDPPSS
PVKGYRIVYKPVSVPG
PTLETFVGADINTILITNLLSGMDYNVKI FASQASGFSDALTGMVKTLFLGVTNLQAK HVEMTSLCAHWQVHR}IATAYRVI ESLQDRQKQESTVSGGTTRHCFYGLQPDSEYKIS VYTKLQEIEGPSVSIMEKTQSLPTRPPTFPPTI PPAKEVCKAAKADLVFMVDGSWSIG DENFNKI ISFLYSTVGALNKIGTDGTQVANVQFTDDPRTEFKLNAYKTKETLLDAIKH I SYKGGNTKTGKAIKYVRDTLFTAESGTRRGI PKVI VVITDGRSQDDVNKI SREMQLD GYSI FAIGVADADYSELVSIGSKPSARHVFFVDDFDAFKKIEDELITFVCETASATCP
VVIKDGIDLAGFKMMEMFGLVEKDFSSVEGVSMEPGTFNVFPCYQLHKDALVSQPTRY
LHPEGLPSDYTISFLFRILPDTPQEPFALWEILNKNSDPLVGVILDNGGKTLTYFNYD
QSGDFOTVTFEGPEIRKI FYGSFHKLHIVVSEALVKVVIDCKQVGEKAMNASANITSD GVEVLG1VRSRGPGGNSAPFQLQMFDIVCSTSWANTDKCCELPGLRDDESCPDLPHS
CSCSETNEVALGPAGPPGGPGLRGPKGQQGEPGPKGPDGPRGEIGLPGPQGPPGPQGP
SGLS IQGMPG14PGEKGEKGDTGLPGPQG IPGGVGSPGRDGSPGQRGLPGKDGSSGPPG PPGPIG IPGTPGVPGITGSMGPQGALGPPGVPGAKGERGERGDLQSOAMVRSVARQVC
EQLIQSHMARYTAILNQIPSHSSSIRTVQGPPGEPGRPGSPGAPGEOGPPGTPGFPGN
AGVPGTPGERGLTGI KGEKGNPGVGTQGPRGPPGPAGPSGESRPGSPGPPGSPGPRGP PGHLGVPGPOGPSGQPGYCDPSSCSAYGVRDLI
PYNOYQH
Further analysis of the NOW4 protein yielded the following properties shown in Table 4B.
Table 4B. Protein Sequence Properties NOW4 PSort 0.5804 probability located in outside; 0.4449 probability located i lysosome (lumen); analysis: 0. 1273 probability located in microbody (peroxisome); 0. 1000 probability located in endoplasmic reticulum (membrane) SignalP? Cleavage site between residues 29 and analysis:
I
A search of the NOV4 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 4C.
Table 4C. Geneseq Results for NOW4___ NOW4 Identities/ Gencseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAB27229 Human EXMAD-7 SEQ ID NO:7 1002..1770 768/769 0.0 Homo sapiens, 795 aa. 1..769 768/769 (99%) _________[W0200068380-A2, 16-NO V-2000) AAU27790 Human full-length polypeptide sequence 328.. 1776 656/1469 0.0 #115 Homo sapiens, 3118 aa. 1627..3055 901/1469 W02001 64834-A2,07-SEP-2001] AAG73916 Human colon cancer antigen protein SEQ 1223..1776 303/554 0.0 ID NO:4680 Homo sapiens, 561 aa. 12..553 378/554 (67%) 22920-A2, 05-APR-2001] AAM39822 Human polypeptide SEQ ID NO 2967 1582..1770 189/189 (100%) e-1 13 Homo sapiens, 250 aa. 36..224 189/1 89 (100%) [W02001533 12-Al, 26-JUL-20011 AAY08304 Human collagen IX alpha-I chain protein 1217..1757 191/576 4e-77 Homo sapiens, 921 an. 44..589 264/576 011 1-Al, 29-APR-1999] In a BLAST search of public sequence databases, the NOW4 protein was found to have homology to the proteins shown in the BLASTP data in Table 4D.
Table 4D. Public BLASTP Results for NOV4 Protein ReidWs Identities/ xpc Accession Protein/Organism/Length Matches Similarities for the Valuec Number Ritc Matched Portion Vau S31212 collagen alpha 1 (XIV) chain precursor, 16..1779 1349/1793 0.0 short form chicken, 1857 an. 15..1802 1542/1793 P32018 Collagen alpha I1(XrV) chain precursor 16..1779 1349/1 793 0.0 (Undulin) Gallus gallus (Chicken), 15.. 1802 1542/1793 1888 aa.
A45974 collagen alpha l(XIV) chain precursor, 149..1779 1252/1664 0.0 short form 2 chicken, 1747 aa. 31.1692 1424/1664 Q05707 UNDULIN 1 (MATRIX 188.. 1024 834/837 0.0 L.837 835/837 00 (Human), 843 aa (fragment).
000261 COLLAGEN TYPE XIV Homo I1026.. 1780 75475 0.0 sapiens (Human), 755 aa (fr-agment). 1.3755 75n5 (99%) PFam analysis predicts that the NOW4 protein contains the domains shown in the Table 4E.
Table 4E. Domain Analysis of NOW4 Identities/ PWarn Domain NOW4 Match Region Similarities Expect Value for the Matched Region fn3: domain I of 8 30..108 26/84(31%) 1.le-15 65/84 vwa: domain I of 2 158..330 86/20 1 6.8e-64 148/201 (74%) fi13: domain 2of 8 353..431 27/84(32%) Se-iS 59/84 fn3: domain 3 of 8 443..523 26/87 8.3e-09 54/87 (62%) fn3: domain 4 of 8 535..615 28/85 4.7e-17 66/85 fn3: domain 5 of 8 624.703 26/84 (3 1.6e-08 57/84 (68%) fn3: domain 6 of 8 735..817 24/87 1.3e-06 60/87 (69%) E6: domain I of 1 866..886 9/21 8.7 16/21 Wn: domain 7 of 8 828..908 24/86(28%) 8.2e-15 8/86 Wn: domain 8 of 8 918..996 24/85 0.00 18 54/85 vwa: domain 2 of 2 1032..1205 83/201 3.7e-71 1551201 TSPN: domain I of 1 1229..1424 62/222 5.2e-70 183/222 Collagen: domain 1 of 4 1460..1518 32/60(53%) 0.00028 46/60 Collagen: domain 2 of 4 1545..1604 33/60 1.5e-10 46/60 Collagen: domain 3 of 4 1646..1704 29/60 0.0001 42/60 Collagen: domain 4 of 4 1705..1762 33/60 0.0019 1 46/60 00 00 00 EXAMPLE The NOV5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table Table 5A. NOV5 Sequence Analysis SEQID NO: 11677 bp
ATGTGGGTCCCGGTTGTCTTCCTCACCCTGTCCGTGACGTGGATTGGTGCTGCGCCCC
CG895 11-01 DNA TCATCCTGTCTCGGATTGTGGGAGGCTGGGAGTGCGAGAAGCATTCCCAACCCTGGCA Sequence
GGTGCTTGTGGCCTCTCGTGGCAGGGCAGTCTGCGGCGGTGTTCTGGTGCACCCCCAG
TGGGTCCTCACAGCTGCCCACTGCATCAGGAAGCCAGGTGATGACTCCAGCCACGACC
TCATGCTGCTCCGCCTGTCAGAGCCTGCCGAGCTCACGGATGCTGTGAAGGTCATGGA
CCTGCCCACCCAGGAGCCAGCACTGGGGACCACCTGCTACGCCTCAGGCTGGGGCAGC
ATTGAACCAGAGGAGTTCTTGACCCCAAAGAAACTTCAGTGTGTGGACCTCCATGTTA
TTTCCAATGACGTGTGTGCGCAAGTTCACCCTCAGAAGGTGACCAAGTTCATGCTGTG
TGCTGGACGCTGGACAGGGGGCAAAAGCACCTGCTGGGGTGATTCTGGGGGCCCACTT
GTCTGTAATGGTGTGCTrCAAGGTATCACGTCATGGGGCAGTGAACCATGTGCCCTGC
CCGAAAGGCCTTCCCTGTACACCAAGGTGGTGCATTACCGGAAGTGGATCAAGGACAC
CATCGTGGCCAACCCCTGAGCACCCCTATCAACCCCCTA
ORF Start: ATG at 1 IORF Stop: TGA at 655 SEQ ID NO:12 218 aa MW at 23823.5kD
MWVPVVFLTLSVTWIGAAPLILSRIVGOWECEKHSQPWQVLVASRGRAVCGGVLVHPQ
CG895 11-01 Protein WVLTAAHCIRKPGDDSSHDLMLLRLSEPAELTDAVKVMDLPTQEPAGTTCYASGWGS Sequence I EPEEFLTPKKLQCVDLHVISNDVCAQVHPOKVTKFMLCAGRWTGGKSTCWGDSGGPL
VCNGVLQGITSWGSEPCALPERPSLYTKVVHYRKWIKDTIVANP
Further analysis of the NOV5 protein yielded the following properties shown in Table Table 5B. Protein Sequence Properties PSort 0.7236 probability located in outside; 0.1000 probability located in endoplasmic analysis: reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in lysosome (lumen) SignalP Cleavage site between residues 18 and 19 analysis: A search of the NOV5 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table Table 5C. Ceneseq Results for Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAB74830 1..218 216/261 e-124 00 sequence for a fusion protein Homo 8..268 2 17/261 (82%) sapiens, 1079 aa. [W0200125272-A2, 1 2-APR-200 AAB74821 Prostate tumour antigen amino acid 1-218 216/261 e-124 sequence for PSA Homo sapiens, 261 aa. L.261 2 17/261 (82%) ________[W0200125272-A2, 12-APR-2001) AAB19819 Prostate specific antigen specific to benign 25-.218 192/237 e-109 prostatic hyperplasia Homo sapiens, 237 L .237 193/237 (8 1%) aa. [W0200067030-Al, 09-NO V-20001 AAB19818 Prostate specific antigen elevated in benign 25-.218 192/237 e-109 prostatic hyperplasia Homo sapiens, 237 1.237 193/237 (8 1%) aa. [W02000667 18-Al, 09-NO V-2000] AAG03734 Human secreted protein, SEQ ID NO:7815 1.174 168/174 le-98 Homo sapiens, 234 an. [EP 103 340 1-A2, 1.174 168/174 (96%) 06-SEP-2000]_____ In a BLAST search of public sequence databases, the NOV5 protein was found to have homology to the proteins shown in the BLASTP data in Table Table 5D. Public BLASTP Results for NOVS Protein NOV5 Identities/ Accesio Prtei/Orgnis/LegthResidues/ Similarities for Expect Accesr rti/raimLnt Match the Matched Value NumerResidues Portion P07288 Prostate specific antigen precursor (EC 1-.218 216/261 e-124 3.4.21.77) (PSA) (Gamma- seminoprotein) 1-.261 217/261 (82%) (Kalliicrein 3) (Semenogelase) (Seminin) antigen) Homo sapiens (Human), 261 aa.
AAA59995 APS PROTEIN PRECURSOR Homo 5-.218 2 12/257 e-120 (Human), 257 aa (fragment). 1-.257 2 13/257 P33619 Prostate specific antigen precursor (EC 1-.21 8 199/261 e-1 13 3.4.21.35) (PSA) (Gamma- seminoprotein) 1-.261 207/261 (79%) (Kallikrein 3) Macaca mulatta (Rhesus macaque), 261 aa.
P2015 1 Glandular kaliikrein 2 precursor (EC 1-.218 172/261 3c-98 3.4.21.35) (Tissue kallikrein) (Prostate) 1-.261 191/261 (72%) (hGK-1) Homo sapiens (Human), 261 aa.
Q07277 PRE-PRO-PROTEIN FOR KALLIKR.EIN 1.217 122/217 9e-67 (EC 3.4.2 1.35) Homo sapiens (Human), 1-.194 142/217 195 aa. I__L _I PFamn analysis predicts that the NOW5 protein contains the domains shown in the Table 00
INO
Table 5E. Domain Analysis of Identitles/ Pfam Domain NOV5 Match Region Similarities Expect Value for the Matched Region trypsin: domain I of 2 25..68 23/51 6.2e-18 38/51 trypsin: domain 2 of 2 75..210 59/156 1.2e-53 116/156 (74%) EXAMPLE 6.
The NOV6 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 6A.
Table 6A. NOV6 Sequence Analysis SEQIDNO:13 515bp NOV6, GCCTGACACCATGCTGCCCGCCTGCTTCCTCGGCCTACTGGCCTTCTCCTCCGCGTGC CG89614-02 DNA TACTTCCACAACTGCCCGAGGGCGGCAAGAGGGCCATGTCCGACCTGGAGCTGAGAC Sequence AGTGCCTCCCCTGCGGCCCCGGGGGCAAAGCCGCTGCTTCGGCCCAGCATrGCTG
CGCGGACGAGCTGGGCTGCTTCGTGGGCACGGCTGAGGCGCTGCGCTGCCAGGAGGAG
AACTACCTGCCGTCGCCCTGCCAGTCCGGCCAGAAGGCGTGCGGGAGCGGGGGCCGCT
GCGCCGCCTTCGGCGTTTGCTGCAACGACGAGAGCTGCGTGACCGAGTCCGAGTGCCG
CGAGGGCTTTCACCGCCGCGCCCGCGCCAGCGACCGGAGCAACGCCACGCAACTGGAC
AGGCCGGCCGGGGCCTTGCTGCTGCGGCTGGTGCAGCTGGCCGGGGCGCCCGAGCCCT
TTGAGCCCGCCCAGCCCGACGCCTACTGAGCCCCGCGCTCGCCCCACCGGC
ORF Start: ATG at 11 ORF Stop: TGA at 491 SEQ ID NO:14 160 aa MW at 16969.OkD NOV6, MLPACFLGLLAFSSACYFQNCPRGGKRAMSDLELRQCLPCGPGGKGRCFGPSICCADE CG89614-02 Protein LGCFVGTAEALRCQE EYLPSPCQSGQKACGSGGRCAAFGVCCNDESCVTESECREGF Sequence HRRARASDRSNATQLDRPAGALLLRLVQLAGAPEPFEPAQPDAY Further analysis of the NOV6 protein yielded the following properties shown in Table 6B.
Table 6B. Protein Sequence Properties NOV6 PSort 0.4753 probability located in outside; 0.1000 probability located in endoplasmic analysis: reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen); 0.1000 probability located in lysosome (lumen) SignalP Cleavage site between residues 16 and 17 analysis: A search of the NOV6 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 6C.
00 Table 6C. Geneseq Results for NOV6 NOV6 Identities/ Geneseq ProteinlOrganism/Length IPatent Datel Residues/ Similarities for Expect Identifier Match the Matched Value Residues Region AAB50995 Human PRO 1710 protein Homo sapiens, 2..1 12 85/111 9e-52 125 aa. [W0200073445-A2, 07-DEC-2000] 6..1 16 95/111 AAB24086 Human PRO1710 pro-oxytocin protein 2..112 85/111 9e-52 sequence SEQ ID NO:73 Homo sapiens, 6..1 16 95/111 125 an. [W0200053755-A2, 14-SEP-2000] AAB24085 Human PROI1710 mature oxytocin protein 16..1 12 76/97 le-46 sequence SEQ ID NO: 73 Homo sapiens, 1L.97 8 5/97 (87%) 106 an. [W0200053755-A2, 14.SEP-2000]____ AAB39235 Gene 4 human secreted protein homologous 54..97 39/44 8e-19 amino acid sequence #115 Callithrix L.44 41/44 (92%) jacchus, 44 an. [W0200056754-Al, AAR08000 Neurophysin 11I and pro-pressophysin 22..49 27/28 2e-09 peptide antigen Homo sapiens, 28 an. L.28 27/28 (96%) 28-NOV-1990] In a BLAST search of public sequence databases, the NOW6 protein was found to have homology to the proteins shown in the BLASTP data in Table 6D.
Table 6D. Public BLASTP Results for NOW6 Protein NOW6 Identities/ Accssin Poten/rgaismLenthResidues/ Similarities for Expect Accesor rti/raimLnt Match the Matched Value NumerResidues Portion P01185 Vasopressin-neurophysin 2-copeptin 1.160 158/160 4e-94 precursor [Contains: Mg- vasopressin; 5..164 158/160 (98%) Neurophysin 2 (Neurophysin-H); Copeptin] Homo sapiens (Human), 164 an.
014935 VASOPRESSIN Homo sapiens (Human), 1.160 156/160 3e-92 164 an. 5..164 156/160 (97%) P01183 Vasopressin-neurophysin 2-copeptin 2..160 144/161 8e-84 precursor [Contains: Mrg- vasopressin; 166 148/161 (91%) Neurophysin 2 (Neurophysin-lI-IlI); Copeptin] Sus scrofa (Pig), 166 P01180 Vasopressin-neurophysin 2-copeptin 160 143/161 2e-83 precursor [Contains: Mrg- vasopressin; 166 147/161 Neurophysin 2 (Neurophysin-lI); Copeptin] Bos taurus (Bovine), 166 aa.
P35455 Vasopressin-neurophysin 2-copeptin 160 130/1 59 (8 6e-76 precursor [Contains: Mrg- vasopressin; 10..168 138/1 59 (86%) 00 00 Mus niusculus (Mouse), 168 aa.III PFam analysis predicts that the NOW6 protein contains the domains shown in the Table 6E.
Table 6E. Domain Analysis of NOV6 Identities/ Pfam Domain NOV6 Match Region Similarities Expect Value for the Matched Region hormone4: domain I of 1 16..24 7/9 0.34 1 9/9 (100%) domain 1 of 1 35..1 12 57/79(72%) 3.4e-46 75/79 EXAMPLE 7.
The NOW7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 7A.
Table 7A. NOV7 Sequence Analysis ID NO: 15 T1134 bp NOW7, TGGCCAGGCCCAGCTGTGGCCGGACAGGGACTGGAAGAGAGGACGCGGTCGAGTAGGT CG9003 1-01 DNA GTGCACCAGCCCTGGCAACGAGAGCGTCTACCCCGAACTC1TGCTGGCCTTGAGGTTTT Sequence AAAACATGAATCCTTCACTCCTCCTGGCTGCCTTTTTCCTGGGAATTGCCTCAGCTGC
TCTAACATTTGACCACAGTTTAGACGCACAATGGACCAAGTGGAAGGCGATGCACAAC
AGATTATACGGCATGAATGAAGAAGGATGGAGGAGAGCAGTGTGGGAGAAGAACATGA
AGATGATTGAACTGcACAATCAGGAATACAGGGAAGGGAAACACAGCTTCACAATGGC
CATGAACGCCTTTGGAGACATGACCAGTGAAGAATTCAGGCAGGTGATGAGTTTT
CAATACCAGAAGCACAGGAAGGGGAAACAGTTCCAGGAACGCCTGCTTCTTGAGATCC
CCACATCTGTGGACTGGAGAGAGAAAGGCTACATGACTCCTGTGAAGGATCAGGGTCA
GTGTGGCTCT'IGTTGGGCTTTTAGTGCAACTGGTGCTCTGGAAGGGCAGATGTTCTGG
AAAACAGGCAAACTTATCTCACTGAATGAGCAGAATCTGGTAGACTGCTCTGGGCCTC
AAGGCAATGAGGGCTGCAATcGTGACTTCATCCATAATCCCTTCCGGTATGTTCAGGA
GAACGGAGGCCTGGACTCTGAGGCATCCTATCCATATGAAGGAAAGGTTAAAACCTGT
AGGTACAATCCCAAGTATTCTGCTGCTAATGACACTGGTTTTGTGGACATCCCTTCAC
GGGAGAAGGACCTGGCGAAGGCAGTGGCAACTGTGGGGCCCATCTCTGTTGCTGTTGG
TGCAAGCCATGTCTTCTTCCAGTTCTATAAAAAAGGAATTTATTTTGAGCCACGCTGT
GACCCTGAAGGCCTGGATCATGCTATGCTGGTGGTTGGCTACAGCTATGAAGGAGCAA
ACTCAGATAACAATAAATATTGGCTGGTGAAGAACAGCTGGGGTAAAAACTGGCGCAT
GGATGGCTACATAAAGATGGCCAAAGACCGGAGGAACAACTGTGGAATTGCCACAGCA
GCCAGCTACCCCACTGTGTGAGCTGATGGATG
ORF Start: ATG at 122 1IORF Stop: TGA at 1121 ID NO: 16 1333 aa JMW at 37753.3kD NOW7, MNPSLLLAAFFLGIASAALTFDHSLDAQWTKWKAMHRLYMNEEGWRRAVWEKNNIO4 CG9003 1 -01 Protein IELHNQEYREGKHS FTMAMNAFGDMTSEEFRQVMNGFQYQKHRKGKQFQERLLLE
IPT
Sequence SVDWREKGYMTPVKDQGOCGSCWAFSATGALEGQMFWKTGKLISLNEQNLVDCSGPQG KDL.AKAVATVGPI SVAVGASHVFFQFYKKGIYFEPRCDPEGLDHAliLVVGYSYEGANS
DNNKYWLVKNSWGKNWGMDGYIKAKRRNNCGIATAASYPTV
Further analysis of the NOW7 protein yielded the following properties shown in Table 7B.
Table 7B. Protein Sequence Properties NOV7 PSort 0.8200 probability located in outside; 0. 1846 probability located in microbody analysis: (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0. 1000 _________probability located in endoplasmic reticulum (lumen) SignalP Cleavage site between residues 18 and 19 analysis: A search of the NOVW protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 7C.
Table 7C. Geneseq Results for NOW7 NOV7 Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Datel Match the Matched Value Residues Region AAW47031 Human procathepsin L Homo sapiens, 1..333 271/333 (8 e-167 333 aa. [US5710014-A, 20.JAN-1998] 1..333 294/333 AAM93531 Human polypeptide, SEQ ID NO:3271 1..333 270/333 e- 166 Homo sapiens, 333 aa. [EPI 130094-A2, 1..333 293/333 (87%) 05-SEP-200 1] AAR28829 Human procathepsin L Homo sapiens, 1..333 270/333 (8 e-165 333 aa. [W09219756-A, 12-NOV-1992] 1..333 293/333 (87%) AAP82094 pHu-1 6 sequence encoded human 1..333 265/33 3 e- 164 procathepsin L Homo sapiens, 333 aa. 1.333 293/333 (87%) [USN7154692-N, I1.FEB-1988] AAU12177 Human PR0305 polypeptide sequence 1..333 240/334 e-144 Homo sapiens, 334 aa. 1.334 274/334 (8 1%) [W0200140466-A2, 07-JUJN-2001] In a BLAST search of public sequence databases, the NOW7 protein was found to have homology to the proteins shown in the BLASTP data in Table 7D.
Table 7D. Public BLASTP Results for NOV7 Protein NOV7 Identities/ Accession Protein/Organism/Length Residues/ Similarities for Expect Number Match the Matched Value Residues Portion P07711I Cathepsin L precursor (EC 3.4.22.15) l..333 271/333 e-166 (Major excreted protein) (MEP) Homo 1..333 294/333 (87%) (Human), 333 an. I_ IQ96QJO 1 1.333 1270/333 1 -166 00 sapiens (Human), 333 aa. 1..333 294/333 Q9GKL8 CYSTEINE PROTEASE Cercopithecus; 1..333 263/333 e-162 aethiops (Green monkey) (Grivet), 333 1..333 289/333 aa.
Q9GL24 CATHEPSIN L (EC 3.4.22.15) Canis 1..333 254/334 e-154 familiaris (Dog), 333 aa. 1..333 283/334 Q28944 Cathepsin L precursor (EC 3.4.22.15) 1..333 245/334 e-151 Sus scrofa (Pig), 334 aa. .1..334 .281/334 P~amn analysis predicts that the NOW7 protein contains the domains shown in the Table 7E.
Table 7E. Domain Analysis of NOV7 Identities/ Pfam Domain NOV7 Match Region Similarities Expect Value for the Matched Region______ PeptidaseCl: domain 1 of 1 114..332 125/337 8.7e-120 1197/337 EXAMPLE 8.
The NOV8 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 8A.
Table 8A. NOV8 Sequence Analysis ID NO: 17 F793 bp NOV8, TAAATTCGCGGCCGCGTCGACCTCCTCATGGTCGTGACGACGCGTTCTCGTAAGGALCA 155-01 DNA AGCTTGACGCCGAGCTGCATGCCGGTGAAGGCACCCCCGGGGATGTCATCGTGCTGCG Sequence GTTTTCCGGAGCCATGGCGAAGCGTCCTGCCTCAGTTATCCTTCCGCTGCTACTGTCG
CCATCGGAGCCCTTGCGGACCGCCGCATCACCGACTCGGCAGCTGACAAAGATCCGTG
CAAAGCCCTCATACGCCGTGCGGCTCACCTAACCGAGGGTGACTCCGACCTGTGTTGG
GCTCGCACCACCAGCTGGAGAGCCCTAGCTGCAGCAGCTTTGGATCAACATCCAGCGA
CCGTCAAGTTCCCTCGGGTAGAGTCAGCCGCCGGTAATGCGCCGGCGATGCTGCTGGC
AGCCTGGCTAGGATTGCGTCTCGGCGTCCCGGTCGAGCGGGTGACAACCGACGCGCCC
GGCATCTCCGCGATCGTCATGTCGACCTCAGGTGGTGACATCGAGATACGCCGTCGCA
GCGGCAGATACGCCGTCTACCGGATCCCGGGAGAACCAGCGCGCGGAGTAGCCCTGGA
CCGTCGTGAGGTACAGATGCTCATCGGTGAGGAGCTTCGTCGGCTCGGCCCCGACAAG
GTGTTCACCGCTGTCATGGCTGAAATTCACGATGGGGCGGGCCGAATCTCATTGACAA
ATGATAGGGATGAGTCATGACAAGCCGACGCCCCTCGTG
Start: ATG at 28 lORF Stop: TGA at 772 ID NO: 18 1248 aa JMW at 26579.9kD NOV8, MVVTTRSRKDKLDAEVHAGEGTPGDVIVLRFSGAMAKRPASVI LPLLLSDSPVIAWWP CG901 55-01 Protein FSGPDNLASDPIGALADRRI TDSAADKDPCKALI RRAAHLTEGDSDLCWARTTSWRAL Sequence AAAALDQHPATVKFARVESAAGNAPAMLLAAWLGLRLGVPVERVTDAPGISAIVMST
SGGDIEIRRRSGRYAVYRIPGEPARGVALDRREVQMLIGEELRRLGPOKVFTAVMAEI
HDGAGRISLTNDRDES
Further analysis of the NOVS protein yielded the following properties shown in Table 8B.
Table 811. Protein Sequence Properties NOV8 PSort 0.4500 probability located in cytoplasm; 0.3000 probability located in microbody analysis: (peroxisome); 0.2377 probability located in lysosome (lumen); 0. 1000 probability located in mr-itochondrial matrix space SignaiP Cleavage site between residues 56 and 57 analysis:
I
A search of the NOV8 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 8C.
Table 8C. Geneseq Results for NOV8____ NOV8 Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAU48672 Propionibacterium acnes immunogenic L..248 245/248 e- 138 protein #9568 Propionibacterium acnes, 66..313 247/248 (98%) 313 an. [W0200181581-A2, O1-NOV-20011 AAU48672 Propionibacterium acnes immunogenic L..248 245/248 c-138 protein #9568 Prop ionibacterium acnes, 66..313 247/248 313 an. [W0200181581-A2, 0 1-NOV-20011 AAB41505 Human ORFX ORF1269 polypeptide 5..173 169/169 (100%) 2e-93 sequence SEQ ID NO:2538 Homo 1..169 169/169 (100%) sapiens, 169 aa. [W0200058473-A2, 05-OCT-20001 ABB53105 Human ORFI I protein Homo sapiens, 9..152 144/144 (100%) 2e-79 144 an. [W0200177155-A2, L..144 144/144 (100%) 1 8-OCT-2001]_____ ABB53 189 Human ORF95 protein Homo sapiens, 9..152 142/144 (981%) 8e-78 144 an. [W0200177155-A2, L..144 143/144 (98%) 1 8-OCT-200 11 I___I In a BLAST search of public sequence databases, the NOV8 protein was found to have homology to the proteins shown in the BLASTP data in Table 81D.
Table 8D. Public BLASTP Results for NOV8 Protein NOV8 Identities/ Accssin Poten/rgaismLenthResidues/ Similarities for Expect Accesor rti/raimLnt Match the Matched Value NumerResidues Portion 00
INO
088016 HYPOTHETICAL 33.9 KDA PROTEIN 9..229 104/222 3e-50 Streptomyces coelicolor, 311 aa. 78..299 136/222 Q9XAB8 HYPOTHETICAL 37.7 KDA PROTEIN 5..229 105/226 3e-48 Streptomyces coelicolor, 351 aa. 77..299 134/226 (58%) CAC26326 SEQUENCE 79 FROM PATENT 1..222 89/238 3e-33 W00100804 Corynebacterium 66..301 130/238 (54%) glutamicum (Brevibacterium flavum), 319 aa.
AAK45756 OXPPCYCLE PROTEIN OPCA 1..232 87/238 2e-31 Mycobacterium tuberculosis CDC1551, 63..297 126/238 (52%) 303 aa.
006813 HYPOTHETICAL 32.7 KDA PROTEIN 1..232 86/238 2e-30 Mycobacterium tuberculosis, 303 aa. 63..297 125/238 (52%) PFam analysis predicts that the NOV8 protein contains the domains shown in the Table 8E.
Table 8E. Domain Analysis of NOV8 Identities/ Pfam Domain NOV8 Match Region Similarities Expect Value for the Matched Region No Significant Known Matches Found EXAMPLE 9.
The NOV9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 9A.
Table 9A. NOV9 Sequence Analysis SEQ IDNO:19 438 bp NOV9a, CCCTGTACGGGAAGAGACCTTCATTAACACTTGGGTAACTTACCCTTCACAATCCATC CG90750-01 DNA TAAATCCTTCTCAATTGCTGCCACCATGACTCGTTACTTCTGCTGTGGAAGCTACTTC Sequence CCAGGATACCCTATTTATGGGACCAACTTCCATGGGACCTTCAGAGCCACCCCCTTGA
ACTGTGTTGTGCCTCTGGGCTCTCCCCTCAACTATGCTGTGATGCAATGGCTACAG
CTCCCTGGGCTACAGCTTTGGTGGTAGCAACATCAACAACCTGGGCGGCTGCTATGGT
GGTAGCTTCTATAGGCCATGGGGCTCTGGCTCTGGCTTTGGCTACAGCACCTACTGAT
GGACCAATGGCTCCAGTGACTACAGACTCTCAATTAATTCTCTGCACAGAACAACCT
GAAGAGCAATGACTGTCTTCCACCTTCCCAT
ORF Start: ATG at 84 1ORF Stop: TGA at 345 SEQ ID NO:20 87 aa MW at 9288.2kD NOV9a, MTRYFCCGSYFPGYPIYGTNFHGTFRATPLNCVVPLGSPLNYGCGCNGYSSLGYSFGG CG90750-01 Protein SNINNLGGCYGGSFYRPWGSGSGFGYSTY Sequence SEQIDNO:21 358 bp NOV9b, ACCCTTCACAATCCATCTAAATCCrCTCAATTGCTGCCACCATOACTCGTTACTTCT CG90750-02 DNA GCTGTGGAAGcTACTTCCCAGGATACCcTATCTATGGGACCAACTICCACGGGACCTT Sequence
CAGAGCCACCCCCTTGAACTGTGTTGTCCCTCTGGCCTCTCCCCTAACTATGGCTGT
GGATGCAATGGCTA CAGCCCCCTGGGCTACAGCTTrGGTGGTAGCAACAGCAACAACC 00
TGGGAGGCTGCTATGGTGGTAGCTTCTATAGGCCATGGGGCTCTGGCTCTGGCTTTGG
CTACAGCACCTACTGATGGACCAATGGCTCCAGTGACTACAGGACTCTCAATTAATTC
TCTGCACAGA
ORF Start: ATG at 43 IORF Stop: TGA at 304 ID NO:22 187 aa IMW at 9272.2kD NOV9b, MTRYFCCGSYFPGYPIYGTNFHGTFRATPLNCVVPLGSPLNYGCGCNGYS PLGYS FGG CG90750-02 Protein SNSNNLGGCYGGSFYRPWGSGSGFGYSTY Sequence Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 9B.
Table 9B. Comparison of NOV9a against NOV9b.
Protin equnceNOV9a Residues/ Identities/ Protin equnceMatch Residues Similarities for the Matched Region NOV9b 1l..87 66/8 7(75%) I 87 66/8 7(75%) Further analysis of the NOV9a protein yielded the following properties shown in Table 9C.
Table 9C. Protein Sequence Properties NOV9a Psort 0.6400 probability located in microbody (peroxisome); 0.4500 probability located in analysis: cytoplasm; 0.3060 probability located in lysosome (lumen); 0.1000 probability located in m-itochondrial matrix space SignalP No Known Signal Sequence Predicted analysis: A search of the NOV9a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 91).
Table 9D. Geneseq Results for NOV9a NOV9a Identities/ Geneseq Protein/Oiganismi/ength [Ptn ,Dt]Residues! Similarities for Expect Identifier [Ptn ~DtjMatch the Matched Value Residues Region____ AAB8 1935 Marmoset vitamidn D response element 8..84 29/7(37%/) 0.004 binding protein #2 Saguinus oedipus, 341 269..335 34/77(43%/) an. [W0200121649-A2, 29-MAR-2001 147 Human colon cancer antigen protein SEQ ID 8..84 29/77 0.004 NO:591 I Homo sapiens, 212 aa. 140..206 34/77 (43%) [W0200122920-A2, 05-APR-2001I] AABS7093 Human prostate cancer antigen protein 8..84 29/7(37%) 0.004 sequence SEQ ID NO: 1671 Homo sapiens, 146..212 34/77(43%) 218 aa. [W0200055 174-Al, 21 -SEP-2000] 00 00 AAWS4362 Heterogeneous nuclear ribonucleoproteins 8..84 29/77 0.004 A2/B1I Homo sapiens, 353 an. 281..347 34/77 (43%) ________[W09810291-Al, 12-MAR-1998] AAW50921 Amino acid sequence of aheterogenous 8..84 29/77 0.004 ribonucleotide protein Homo sapiens, 353 281..347 34/77 (43%) aa. [W09814469-A2, 09-APR-1998] I__I I In a BLAST search of public sequence databases, the NOV9a protein was found to have homology to the proteins shown in the BLASTP data in Table 9E.
Table 9E. Public BLASTP Results for NOV9a Protein NOV9a Identities/ Accssin Poten/rgaismLenthResidues/ Similarities for Expect Accesor rtilralm~nt Match the Matched Value NumerResidues Portion Q28580 HGT-C2 HIGH-(GLYCIN'E 1..87 75/87 9e-42 TYROSINE) (HG'I) KERATIN Ovis L..85 78/87 (89%) aries (Sheep), 85 Q9D3I6 5430433J05R11K PROTEIN Mus l..87 69/88 9e-38 musculus (Mouse), 87 aa. 1..87 75/88 Q22 168 T04178.8 PROTEIN Caenorhabditis 7..84 30/78 8e-05 elegans, 165 aa. 18..89 37/78 Q925H7 KERATIN-ASSOCIATED PROTEIN 16.4 40_.87 20/50 0.011 -Mus musculus (Mouse), 84 aa. 35..83 28/SO0(56%) Q9TTV2 VITAMIN D RESPONSE ELEMENT 8..84 29/77 0.011 BINDING PROTEIN Saguinus oedipus, 269..335 34/77 (43%) (Cotton-top tamarin), 341 an.
P~am. analysis predicts that the NOV9a protein contains the domains shown in the Table 9F.
Table 9F. Domain Analysis of NOV9a Identities/ Pfamn Domain NOV9a Match Region Similarities Expect Value for the Matched Region No Significant Known Matches Found EXAMPLE The NOV1 0 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table I OA.
00 Table 10A. NOV10 Sequence Analysis ID NO:23 1385 bp
ACTGGAAAGAAACAATCCAGTGTAAATATGACTTCTAAGCTGGCTGTTGCTCTACTGC
CG9 1235-01 DNA TTTCTTGGCAGTTGCATGCTTTCTCTATCTTCACTGCTTCCATTGTGCCAAGTATTAG Sequence TACAGTACCACAATGCCAGTGCATGAGGACACATTTTATACCTTTGCATCCCAAATTT
ATTAAAGAACTCAGAATTATTCAGAGTGGATTATATTATAAAAATTCAGAAATCATAG
TCAGACTGAAAGATGGGAAA'ITAATTTGTTTGGATCCTGAGGCTACATG3GGTGATGAC
TAACTATTATCAAAGAGATTATGGACAGGTATAATTAATGCCAAAAATTATCATATTC
ACTTTCTTTTTCTCTTTCTTTCTTTTAATTAAGGAT
Start: ATG at 28 1 ORF Stop: TAA at 322 D NO:24 198 aa IMW at 11 337.3kD MTSKLAVALLLSWQLHAFSMFTASIVPSISTVPQCQCMRTMFI PLHPKFIKELRI IQS CG9 1235-01 Protein GLYYKNSEI IVRLKDGKLICLDPEATWVMTNYYQRDYGQV SequenceI Further analysis of the NOVI10 protein yielded the properties shown in Table IlOB.
Table 10B. Protein Sequence Properties PSort 0.3703 probability located in outside; 0.1748 probability located in microbody analysis: (peroxisome); 0. 1000 probability located in endopiasmic reticulum (membrane); 0. 1000 _________probability located in endoplasmic reticulum (lumen) SignalP Cleavage site between residues 20 and 21 analysis: A search of the NOV1 0 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table Table 10C. Geneseq Results for Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAG66022 Human interleukin (IL)-8 polypeptide 1..86 43/86 le-18 Homo sapiens, 99 aa. [W0200183499-A2, l..85 64/86 (74%) AAB90797 Human shear stress-response protein SEQ L..86 43/86 le-18 ID NO:94 Homo sapiens, 99 aa. L .85 64/86 (74%) 125427-Al, 12-APR-2001]_______ AAB07714 Amino acid sequence of porcine L.86 45/86 le-18 interleukin-8 (IL-8) Sus sp, 103 aa. L.85 60/86 (69%) _________[W0200042069-Al, AABI5792 Human chemokine IL-8 SEQ ID NO:23 L..86 43/86 le-18 Homo sapiens, 99 aa. [W0200042071-A2, 1L.85 64/86 (74%) 20-JUL.2000] 00 AAW96711 Ilnterluekin-8 (IL-8) protein.- Homo I..86 43/86 (50%1) le-iS sapiens, 99 aa. [US5871723-A, 1..85 64/86 (74%) 16-FEB-I 999] In a BLAST search of public sequence databases, the NOV10 protein was found to have homology to the proteins shown in the BLASTP data in Table 1 OD.
Table 10D. Public BLASTP Results for Identities/ Protein Residues/ Similarities for Expect Accession Protein/Organism/Length Match the Matched Value Number Residues Portion P36925 lnterleukin-8 precursor (IL.8) Ovis aries L .86 48/86 2e-20 (Sheep), 101 aa. 1..85 67/86 (77%) P19874 Interleukin-8 precursor (11.8) (Neutrophil L..86 46/86(53%) 2e-19 attractant/activation protein-i) (NAP-I) L .85 64/86 (Permeability factor 1) (RPFI) Oryctolagus cuniculus (Rabbit), 101 an.
P79255 Interleukin-8 precursor (IL-8) Bos taurus L.86 46/86(53%) 2e-19 (Bovine), 101 an. I..85 66/86 P26894 Iuterleukin-8 precursor (IL-8) (Alveolar L.86 46/86 5e-19 macrophage chemotactic factor 1) (AMCF-I) 1L.85 63/86 (72%) Sus scrofa (Pig), 103 JN0841 interleukin-8 dog, 95 an. L..86 45/86(52%) 7e-19 65/86 H~am analysis predicts that the NOV1 0 protein contains the domains shown in the Table IlOE.
Table 10E. Domain Analysis of Identities/ Pfam Domain NOV10 Match Region Similarities Expect Value for the Matched Region 118: domain I of 1 26..86 24/62 2.9c-13 1 45/62 EXAMPLE 11.
The NOV11I clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table I I A.
Table 11A. NOV11I Sequence Analysis SEQ 11)NO:25 1766 bp NOVi la, TAGCTCGCCAGAGAGTCTATGTATGGGATTGAACAATCTGTAAACTAAAGGATCCTAA CG9 1657-01 DNA TCATG-AAAATAAGTATGATAAATTATAAGTCACTATTGGCACTGTTGTTTATATTAGC Sequence
CTCCTGGATCATTTTTACAGTTTTCCAGAACTCCATTTCAALAGGTTTGGTCTGCTCTA
00 00
AACTTATCCATCTCCCTCCATTACTGGAACAACTCCACAAAGTCCTTATTCCCTAAAA
CACCACTGATATCATTAAAGCCACTAACAGAGACTGAACTCAGAA'rAAAGGAAATCAT
AGAGAAACTAGATCAGCAGATCCCACCCAGACCTTTCACCCACGTGAACACCACCACC
AGCGCCACACATAGCACAGCCACCATCCTCAACCCTCGAGATACGTACTGCAGGGGAG
ACCAGCTGCACATCCTGCTGGAGGTGAGGGACCACTTGGGACGCAGGAAGCAATATGG,
CGGGGATTTCCTGAGGGCCAGGATGTCTTCCCCAGCGCTGATGGCAGGTGCTTCAGGA
AAGGTGACTGACTTCAACAACGGCACCTACCTGGTCAGCTTCACTCTGTTCTGGGAGG
GCCAGGTCTCTCTGTCTGTGCTGCTCATCCACCCCAGTGAAGGGGTGTCAGCTCTCTG
GAGTGCAAGGAACCAAGGCTATGACAGGGTGATCTTCACTGGCCAGTTTGTCAATGGC
ACTTCCCAAGTCCACTCTGAATGTGGCCTGATCCTAAACACAAATCCAATTGTGCC
AGTACCTGGACAACAGAGACCAAGAAGGCTTCTACTGTGTGAGGCCTCAACACATGCC
CTGTGCTGCACTCACTCACATGTATTCTAAGAACAAGAAAGTTTCTTATCTTAGCAAA
CAAGAAAAGAGCCTCTTTGAAAGGTCAAATGTGGGTGTAGAGATTATGGAAAAATTCA
ATACAATTAGTGTCTCCAAATGCAACAAAGAAACAGTTGCAATGAAAGAGAAATGCAA
GTTTGGAATGACATCCACAATCCCCAGTGGGCATGTCTGGAGAAACACATGGAATCCT
GTCTCCTGTAGTTTGGCTACAGTCAAAATGAAGGAATGCCTGAGAGGAAAACTCATAT
ACCTAATGGGAGATTCCACGATCCGCCAGTGGATGGAATACTTCAAAGCCAGTATCAA
CACAC'rGAAGTCAGTGGATCTGCATGAATCTGGAAAATTGCAACACCAGCTTGCTGTG
GATTTGGATAGGAACATCAACATCCAGTGGCAAAAATATTGTTATCCCTTGATAGGAT
CAATGACCTATTCAGTCAAAGAGATGGAGTACCTCACCCGGGCCATTGACAGAACTGG
AcX3AGAAAAAAATACTGTCATTGTTATTTCCCTGGGCCAGCATTTCAGACCCTTTCCC
ATTGATGTTTTTATCCGAAGGGCCCTCAATGTCCACAAAGCCATTCAGCATCT'CTITC
TGAGAAGCCCAGACACTATGGTTATCATCAAAACAGAAAACATCAGGGAGATGTACAA
TGATGCAGAAAGATTTAGTGACTTTrCATGGTTACATTCAATATCTCATCATAAAGGAC
ATTTTCCAGGATCTCAGTGTGAGTATCATTGATGCCTGGGATATAACAATTGCATATG
GCACAAATAATGTACACCCACCTCAACATGTAGTCGGAAATCAGATTAATATATTATT
AAACTATATTTGTTAALATAACACAAAAGTCTGAAATTCATTCACTTAAGTAAAAAAA-T
TTATTGACTGTCTACTAGCAGGCCAG
ORF Start: ATG at 61 1 OR~F Stop: TAA at 1696 ID NO:26 1545 aa IMW at 62347.3kD NOVI la, MKI SMINYKSLLALLFILASWI IFTVFQNSISKVWSALNLSISLHYWNNSTKSLFPKT CG91657-01 Protein PLISLKPLTETELRIKEIIEKLDQQIPPRPFTVNTTTSATH~STATILNPRDTYCRGD Sequence QLHILLEVRDHLGRRKOYGGDFLRARMSSPALMAGASGKVTDFNNGTYLVSFTLFWEG QVSLSVLLIHPSEGVSALWSARNQGYDRVI FTGQFVNGTSQVHSECGLI LNTNAELCQ YLDNRDQEGFYCVRPQHMPCAALTHMYSKNKKVSYLSKQEKSLFERSNVGVE IMEKFN TISVSKCNKETVANKEKCKFGMTSTI PSGHVWRNTWNPVSCSLATVKMKECLRGKLIY LMGDSTI RQWMEYFKAS INTLKSVDLHESGKLQHQLAVDLDRNINIQWQKYCYPLIGS MTYSVKEMEYLTRAIDRTGGEKNTVIVI SLGQHFRPFPIDVF IRRALNVHKAIQHLLL RSPDTMVI IKTENIREMYNDAERFSDFHGYIQYLIIKDIFQIDLSVSIIDAWDITIAYG
TNNVHPPQHVVGNQINILLNYIC
ID NO:27 1763 bp NOV11 b, TAGCTCGCCAGAGAGTCTATGTATGGGATTGAACAATCrGTAAACrAAAGGATCCTAA CG9 1657-02 DNA TCATGAAAATAAGTATGATAAATTATAAGTCACTATTGGCACTGTTGTTTATATTAGC Sequence CTCCTGGATCATTTTTACAGTTTTCCACAACTCCACAAAGGTTTGGTCTGCTCTAAAC
TTATCCATCTCCCTCCATTACTGGAACAACTCCACAAAGTCCTTATTCCCTAAAACAC
CACTGATATCATTAAAGCCACTAACAGAGACTGAACTCAGAATAAAGGAAATCATAGA
GAAACTAGATCAGCAGATCCCACCCAGACCTTTCACCCACGTGAACACCACCACCAGC
GCCACACATAGCACAGCCACCATCCTCAACCCTCGAGATACGTACTGCAGGGGAGACC
AGCTGCACATCCTGCTGGAGGTGAGGGACCACTTGGGACGCAGGAAGCAATATGGCGG
GGATTTCCTGAGGGCCAGGATGTCTTCCCCAGCGCTGATGGCAGGTGCTTCAGGAAAG
GTGACTGACTTCAACAACGGCACCTACCTGGTCAGCTTCACTCTGTTCTGGGAGGGCC
AGGTCTCTCTGTCTCTGCTGCTCATCCACCCCAGTGAAGGGGTGTCAGCTCTCTGGAG
TGCAAGGAACCAAGGCTATGACAGGGTGATCTTCACTGGCCAGTTTGTCAATGGCACT
TCCCAAGTCCACTCTGAATGTGGCCTGATCCTAALACACAAATGCTGAATTGTGCCAGT
ACCTGGACAACAGAGACCAAGAAGGCTTCTACTGTGTGAGGCCTCAACACATGCCCTG
TGCTGCACTCACTCACATGTATTCTAAGAACAAGAAAGTTTCTTATCTTAGCAAACAA
GAAAAGAGCCTCTTTGAAAGGTCAAATGTGGGTGTAGAGATTATGGAAAAATCAATA
CAATTAGTGTCTCCAAATGCAACAAAGAA.ACAGTTGCAATGAAAGAGAAATGCAAGTT
TGGAATGACATCCACAATCCCCAGTGGCCATCTCTGGAGAAACACATGGAATCCTGTC
00
TCCTGTAGTTTGGCTACAGTCAAAATGAAGGAATGCCTGAGAGGAAAACTCATATACC
TAATGGGAGATTCCACGATCCGCCAGTGGATGGAATACTTCAAAGCCAGTATCAACAC
ACTGAAGTCAGTGGATCTGCATGAATCTGGAAAATTGCAACACCAGCTTGCTGTGGAT
TTGGATAGGAACATCAACATCCAGTGGCAAAAATATTGTTATCCCTTGATAGGATCAA
TGACCTATTCAGTCAAAGAGATGGAGTACCTCACCCGGGCCATTGACAGA.ACTGGAGG
AGAAAAAAATACTGTCATTGTTATTTCCCTGGGCCAGCATTTCAGACCCTTTCCCATT
GATGTTTTTATCCGAAGGGCCCTCAATGTCCACAAAGCCATTCAGCATCTTCTTCTGA
GAAGCCCAGACACTATGGTTATCATCAAAACAGAAAACATCAGGGAGATGTACAATGA
TGCAGAAAGATTTAGTGACTTTCATGGTTACATTCAATATCTCATCATAAAGGACATT
TTCCAGGATCTCAGTGTGAGTATCATTGATGCCTGGGATATAACAATTGCATATGGCA
CAAATAATGTACACCCACCTCAACATGTAGTCGGAAATCAGATTAATATATTATTAAA
CTATATTTGTTAALATAACACAAAAGTCTGAAATTCATTCACTTAGTAAAAAAATTTA
TTGACTGTCTACTAGCAGGCCAG
ORF Start: ATG at 61 ORF Stop: TAA at 1693 SEQ ID NO;28 1544 aa IMW at 62262.2kD NOVI lb, MKISMINYKSLLALLFILASWI IFTVFQNSTKVWSALNLSISLHYWNNSTKSLFPKTP CG91657-02 Protein LISLKPLTETELRI KE I IEKLDQQI PPRPFTHVNTTTSATHSTAT ILNPRDTYCRGDQ SequnceLH ILLEVRDHLGRRKQYGGDFLRARNSSPALMAGASGKVTDFNNGTYLVSFTLFWEGQ q VSLSLLLIHPSEGVSALWSARNQGYDRVIFTGQFVNGTSQVHSECGLILNTNAELCQY
LIJNRDQEGFYCVRPQHMPCAALTHMYSKNKKVSYLSKOEKSLFERSNVGVEIMEKFNT
I SVSKCNKETVANKEKCKFGMTSTI PSGHVWRNTWNPVSCSLATVKMKECLRGKLIYL MGDSTI RQWMEYFKASINTLKSVDLHESGKLOHQLAVDLDRNINIOWQKYCYPLIGSM TYSVKEMEYLTRAIDRTGGEKNTVIVI SLGQHFRPFPIDVFI RRALNVHKAIOHLLLR SPDTMVIIKTENIREMYNDAERFSDFHGYIQYLIIKDIFQDLSVSI
IDAWDITIAYGT
NNVHPPQHVVGNQINILLNYIC
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 11 lB.
Table 11B. Comparison of NOVI Ia against NOV1Ib.
Protin equnceNOV11 a Residues/ Identities/ Protin equnceMatch Residues Similarities for the Matched Region NOVIlb L.545 527/545 (96%) 1L.544 529/545 (96%) Further analysis of the NOV11I a protein yielded the following properties shown in Table 11G Table I IC. Protein Sequence Properties NOV11la PSort 0.8200 probability located in outside; 0.4496 probability located in lysosome (lumen); analysis: 0. 1000 probability located in endoplasmic reticulumn (membrane); 0. 1000 probability located in endoplasmic reticulumn (lumen) SignalP Cleavage site between residues 28 and 29 A search of the NOVI Ila protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table I IlD.
00 00 Table 11D. Geneseq Results for NOV112 NOV11a Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region ABG27904 Novel human diagnostic protein #27895 29-.545 360/520 0.0 Homo sapiens, 590 aa. 72-.590 425/520 (8 1%) [W0200175067-A2, 11 -OCT-20011 ABG27904 Novel human diagnostic protein #27895 29-.545 360/520 0.0 Homo sapiens, 590 aa. 72..590 425/520 (8 1%) _________[W0200175067-A2, 1 I1-OCT-2001 ABG12444 Novel human diagnostic protein 12435 110-.508 296/399 e-160 Homo sapiens, 378 aa. 1..330 308/399 (77%) [W0200175067-A2, 1 I -OCT-20011 AAB74709 Human membrane associated protein 1-278 275/278 e-159 MEMAP- 15 Homo sapiens, 277 aa. 1..277 277/278 (98%) 12662-A2, 22-FEB-2001 AAM92506 Human digestive system antigen SEQ ID 299-.541 235/243 e-137 NO: 185 5 Homo sapiens, 262 aa. 13..255 236/243 (96%) [W02001 55314-Al, 02-AUG-20011 In a BLAST search of public sequence databases, the NOVI I a protein was found to have homology to the proteins shown in the B LASTP data in Table I I E.
Table IIE. Public BLASTP Results for NOV1la Protein NOIIa Identities/ Accesio Prtei/Orgnis/LegthResidues/ Similarities for Expect Accesor rti/raimLnt Match the Matched Value NumerResidues Portion Q05004 Brush border 61.9 kDa protein precursor 12-545 338/537 0.0 ________Oryctolagus cuniculus (Rabbit), 540 aa. 6.-540 4 17/537 (76%) Q9CX72 4432416J03RIK PROTEIN Mus musculus 9..545 298/541 e-170 (Mouse), 558 aa. 21-.558 381/541 Q96DLI CDNA FLJ25224 FIS, CLONE STMOO905 9..297 206/289 (7 e-1 13 Homo sapiens (Human), 365 aa. 21.308 229/289 (78%) CDNA FLJ20127 FIS, CLONE COL06176 286..428 142/143 4e-80 Homo sapiens (Human), 160 an. 1..143 142/143 (99%) Q969Y0 CDNA FLJ30102 FIS, CLONE 76..545 161/484 1le-71 BNGH4IOOO137, WEAKLY SIMILAR TO 81.555 269/484 BRUSH BORDER 61.9 KDA PROTEIN PRECURSOR (UNKNOWN) (PROTEIN FOR MGC: 15606) Homo sapiens (Human), 559 aa.
PFamn analysis predicts that the NOVI Ila protein contains the domains shown in the Table 1 IF.
00 Table 1 F. Domain Analysis of NOVI la 1Identities/ Pfam Domain NOVI la Match Region Similarities Expect Value for the Matched Region Filamin: domain 1 of 1 105-.187 123/104 5.8 148/104 EXAMPLE 12.
The NOV1 2 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 2A.
Table 12A. NOV12 Sequence Analysis ID NO:29 J1973 bp NOVI 2a, GGGATATTGGAGTAGCAAGAGGCTGGGAGCCATCACTTACCGCACTGAGGA CG9 1678-01 DNA GACAAAGGCCAGTATGCACAGCTTTCCTCCACTGCTGCTGCTGCTGTTCTGGGGTGTG Sequence GTGTCTCACAGCTTCCCAGCGACTCTAGAAACACAAGAGCAAGATGTGGACTTAGTCC
AGAAATACCTGGAAAAATACTACAACCTGAAGAATGATGGGAGGCAAGTTGAAAAGCG
GAGAAATAGTGGCCCAGTGGTTGAAAAATTGAAGCAAATGCAGGAATTCTTTGGGCTG
AAAGTGACTGGGAAACCAGATGCTGAAACCCTGAAGGTGATGAAGCAGCCCAGATGTG
GAGTGCCrGATGTGGCTCAGTTTGTCCTCACTGAGGGGAACCCTCGCTGCAC
ACATCTGACCTACAGGATTGAAAATTACACGCCAGATTTGCCAAGAGCAGATGTGGAC
CATGCCATTGAGAAAGCCTTCCAACTCTGGAGTAATGTCACACCTCTGACATTCACCA
AGGTCTCTGAGGGTCAAGCAGACATCATGATATCT=TTGTCAGGGGAGATCATCGGGA
CAACTCTCC TGATGGACCTGGAGGAAATCTTGCTCATGCTTTTCAACCAGGCCCA
GGTATTGGAGGGGATGCTCATTTTGATGAAGATGAAAGGTGGACCAACAATTTCAGAG
AGTACAACTTACATCGTGTTGCGGCTCATGAACTCGGCCATTCTCTTGGACTCTCCCA
TTCTACTGATATCGGGGCTT'rGATGTACCCTAGCTACACCTTCAGTGGTGATGTTCAG
CTAGCTCAGGATGACATTGATGGCATCCAAGCCATATATGGACGTTCCCAAAATCCTG
TCCAGCCCATCGGCCCACAAACCCCAAAAGCGTGTGACAGTAAGCTAACCTTTGATGC
TATAACTACGATTCGGGGAGAAGTGATGTTCTTTAAAGACAGATTCTACATGCGCACA
AATCCCTTCTACCCGGAAGTTGAGCTCAATTTCATTTGTTTTCTGGCCACAACTGC
CAAATGGGCTTGAAGCTGCTTACGAATTTGCCGACAGAGATGAAGTCCGGTTTTTCAA
AGGGAATAAGTACTGGGCTGTTCAGGGACAGAATGTGCTACACGGATACCCCAAGGAC
ATCTACAGCTCCTTTGGCTTCCCTAGAACTGTGAAGCATATCGATGCTGCTCTTTCTG
AGGAAAACACTGGAAAAACCTACTTCTTTGTTGCTAACAAATACTGGAGGTATGATGA
ATATAAACGATCTATGGATCCAGGTTATCCCAAAATGATAGCACATGACTTTCCTGGA
ATTGGCCACAAAGTTGATGCAGTTTTCATGAAAGATGGATTTTTCTATTTCTTTCATG
GAACAAGACAATACAAATTTGATCCTAAAACGAAGAGAATTTTGACTCTCCAGAAAGC
TAATAGCTGGTTCAACTGCAGGAAAAATTGAACATTACTAATTTGAATGGAAAACACA
TGGTGTGAGTCCAAAGAAGGTGTTTCCTGAAGAACTGTCTATTTTCTCAGTCATTTT
TAACCTCTAGAGTCACTGATACACAGAATATAATCTTATTTATACCTCAGTTTGCATA
TTTTTTTACTATTTAGAATGTAGCCCTTTTTGTACTGATATAA
AGTTCCACAAT
GGTGGGTACAAAAAGTCAAGTTTGTGGCTTATGGATTCATATAGGCCAGAGTTGCAAA
GATCTTTTCCAGAGTATGCAACTCTGACGTTGATCCCAGAGAGCAGCTTCAGTGACAA
ACATATCCTTTCAAGACAGAAAGAGACAGGAGACATGACTCTTTGCCCGAGGAAAC
AGCTCAAGAACACATGTGCAGTCACTGGTGTCACCCTGGATAGGCAAGGGATAACTCT
TCTAACACAAAATAAGTGTTTTATGTTTGGAATAAAGTCAAC
GTTTCTACTGTTT
T
ORF Start: ATG at 72 IORIF Stop: TGA at 1479 ID NO:30 1469 aa IMW at 54006.5kD NOVi 2a, MHSFPPLLLLLFWGVVSHSFPATLETEQDVDLVKYLE(YYNLKNDGRQVEI(RRNSG CG9 1678-01 Protein PVVEKLKQMQEFFGLKVTGKPDAETLKV?4KQPRCGVPDVAQFVLTEGNPRWEQTHLTY SequnceRI ENYTPDLPRADVDHAI EKAFQLWSNV1'PLTFTKVSEGQADIMI
SFVRGDHRDNSPF
SequenceDGPGGNLAHAFQPGPGIGGDAHFDEDERWTNNFREYNLHRVAAHELGHSLGLSHSTDI 00 00
IGALMYPSYTFSGDVQLAQDDIDGIQAIYGRSQNPVQPIGPQTPKACDSKLTFDAITTI
RGEVMFFKDRFYMRTNPFYPEVELNFX SVFWPQLPNGLEAAYEFAflRDEVRFFKGNKY WAVQGQNVLHGYPKDIYSSFGFPRTVKH IDAALSEENTGKTY FFVANKYWRYDEYKRS
NIDPGYPKMIAHDFPGIGHKVDAVFMKDGFFYFFHGTRQYKFDPKTKRILTLQKANSWF
NCRKN
SEQ ID NO:31 11362 bp NOV12b, 172557724 DNA Sequence
GGTACCTTCCCAGCGACTCTAGAAACACAAGAGCAAGATGTGGACTTAGTCCAGAAAT
ACCTGGAAAAATACTACAACCTGAAGAATGATGGGAGGCAAGTTGAAAAGCGGAGAAA
TAGTGGCCCAGTGGTTGAAAAATTGAAGCAAATGCAGGAATTCTTTGGGCTGAAAGTG
ACTGGGAAACCAGATGCTGAAACCCTGAAGGTGATGAAGCAGCCCAGATGTGGAGTGC
CTGATGTGGCTCAGTTTGTCCTCACTGAGGGAAACCCTCGCTGGGAGCAAACACATCT
GACCTACAGGATrGAAAATTACACGCCAGAT=TGCCAAGAGCAGATGTGGACCATGCC
ATTGAGAAAGCCTITCCAACTCTGGAGTAATGTCACACCTCTGACATTCACCAAGGTCT
CTGAGGGTCAAGCAGACATCATGATATCTTTTGTCAGGGGAGATCATCGGGACAACTC
TCCTTTTGATGGACCTGGAGGAAATCTTGCTCATGCTTTTCAACCAGGCCCAGGTATT
GGAGGGGATGCTCATTTTGATGAAGATGAAAGGTGGACCAACAATTTCAGAGAGTACA
ACTTACATCGTGTTGCGGCTCATGAACTCGGCCATTCTCTTGGACTCTCCCATTCTAC
TGATATCGGGGCTTTGATGTACCCTAGCTACACCTTCAGTGGTGATGTTCAGCTAGCT
CAGGATGACATTGATGGCATCCAAGCCATATATGGACGTTCCCAAAATCCTGTCCAGC
CCATCGGCCCACAAACCCCAAAAGCGTGTGACAGTAAGCTAACCTTTGATGCTATAAC
TACGATTCGGGGAGAAGTGATGTTCTTTAAAGACAGATTCTACATGCGCACAAATCCC
TTCTACCCGGAAGTTGAGCTCAATTTCATTTCTGTT'ITCTGGCCACAACTGCCAAATG
GGCTTGAAGCTGCTTACGAATTTGCCGACAGAGATGAAGTCCGGTflTCAAAGGGAA
TAAGTACTGGGCTGTTCAGGGACAGAATGTGCTACACGGATACCCCAAGGACATCTAC
AGCTCCTTTGGCTTCCCTAGAACTGTGAAGCATATCGATGCTGCTCTTTCTGAGGAAA
ACACTGGAAAAACCTACTTCTTTGTTGCTAACAAATACTGGAGGTATGATGAATATAA
ACGATCTATGGATCCAGGTTATCCCAAAATGATAGCACATGACTTTCCTGGAATTGGC
CACAAAGTTGATGCAGTTTTCATGAAAGATGGATTTTTCTATTTCTTTCATGGAACAA
GACAATACAAATTTGATCCTAAAACGAAGAGAATTTTGACTCTCCAGAAAGCTAATAG
CTGGTTCAACTGCAGGAAAAATCTCGAG
ORE Start: at 1 IlORF Stop: end of sequence ID NO:32 1454 aa IMW at 52244.3kD NOV 12b, GTFPATLETQEQDVDLVQKYLEKYYNLKNDGRQVEKRRNSGPVVEKLKQMQEFP'GLKV 172557724 Protein TGKPDAETLKVMKOPRCGVPDVAOFVLTEGNPRWEQTHLTYRI
ENYTPDLPRADVDIIA
Sequence I EKAFQLWSNVTPLTFTKVSEGQAlIMI
SFVRGDHRDNSPFDGPGGNLAHAFQPGPGI
GGDAHFDEDERWTNNFREYNJLHRVAAHELGHSLGLSHSTDIGALMYPSYTFSGDVQLA
QDDIDGIQAIYGRSQNPVQPIGPOTPKACDSKLTFDAITTIRGEVMFFKDRFYMRTNP
FYPEVELNFI SVFWPQLPNGLEAAYEFADRDEVRFFKGNKYWAVQGQNVLHGYPKDIY SSFGFPRTVKIDAAtSEETGTYFVANKYWRYIDEYKRSMDPGYPKcMIAHiDFPGIG HKVDAVFMKDGFFYFFHGTRQYKFDPKTKRI LTLQKANSWFNCRKNLE ID NO:33 1362 bp NOVi 2c, GGTACCTTCCCAGCGACTCTAGAAACACAAGAGCAAGATGTGGACTTAGTCCAGAAAT 172557764 DNA ACCTGGAAAAATACTACAACCTGAAGAATGATGGGAGGCAAGTTGAAAAGCGGAGAAA SequenceTAGTGGCCCAGTGGTTGAAAAATTGAAGCAAATGCAGGAATTCTTTGGGCTGAAAGTG SequnceACTrGGGAAACCAGATGCTGAAACCCTGAAGGTGATGAAGCAGCCCAGATGTGGAGTGC
CTGATGTGGCTCAGTTTGTCCTCACTGAGGGGAACCCTCGCTGGGAGCAAACACATCT
GACCTACAGGATTGAAAATTACACGCCAGATTTGCCAAGAGCAGATGTGGACCATGCC
ATTGAGAAAGCCTTCCAACTCTGGAGTAATGTCACACCTCTGACATTCACCAAGGTCT
CTGAGGGTCAAGCAGACATCATGATATCTTTTGTCAGGGGAGATCATCGGGACAACTC
TCCTTTTGATGGACCTGGAGGAAATCTTGCTCATGCTTTTCAACCAGG3CCCAGGTATT
GGAGGGGATGCTCATTTTGATGAAGATGAAAGGTGGACCAACAATTTCAGAGAGTACA
ACT'rACATCGTGTTGCGGCTCATGAACTCGGCCATTCTCTTGGACTCTCCCATTCTAC
TGATATCGGGGCTTTGATGTACCCTAGCTACACCTTCAGTGGTGATGTTCAGCTAGCT
CAGGATGACATTGATGGCATCCAAGCCATATATGGACGTTCCCAAAATCCTGTCCAGC
CCATCGGCCCACAAACCCCAAAAGCGTGTGACAGTAAGCTAACCTTTGATGCTATAAC
TACGATTCGGGGAGAAGTGATGTTCTTTAAAGACAGATTCTACATGCGCACAAATCCC
TTCTACCCGGAAGTTGAGCTCAATTTCATTTCTGTTTTCTGGTCACAACTGCCAAATG
GGCTTGAAGCTGCTTACGAATTTGCCGACAGAGATGAAGTCCGGTTTTTCAAAGGGAA
00 00
TAAGTACTGGGCTGTTCAGGGACAGAATGTGCTACACGGATACCCCAAGGACATCTAC
AGCTCCTTTGGCTTCCCTAGAACTGTGAAGCATATCGATCTGCTCTTTCTAGGAAA
ACACrGGAAAAACCTACTTCTTTGTTGCTAACAAATACTGGAGGTATGATGAATATAA
ACGATCTATGGATCCAGGTTATCCCAAAATGATAGCACATGACTTTCCTGGAATTGGC
CACAAAGTTGATGCAGTTTTCATGAAAGATGGATTTTTCTATTCTTTCATGGAACAA
GACAATACAAATTTGATCCTAAAACGAAGAGAATTTTGACTCTCCAGAAAGCTAATAG
CTGGTTCAACTGCAGGAA-AAATCTCGAG
ORF Start: at I IORF Stop: end of sequence ID NON3 1454 aa IMW at 52234.3kD NOV 12c, GTFPATLETQEQDVDLVQKLEKYYNLKNDGRQVEKRRNSGPVVEKLKQMQEFFGLKV 172557764 Protein TGKPDAETLKVMKQPRCGVPDVAQFVLTEGbNPRWEQTHLTYRI
ENYTPDLPRADVDHA
Sequence I EKAFQLWSNVTPLTFTKVSEGQADIMI
SFVRGDH*RDNSPFDGPGGNLAHAFQPGPGI
GGDAHFDEDERWTNNFREYNLHRVAAHELGISLGLSHSTDIGALMYPSYTFSGDVQLA
QDDIDGIQAIYGRSQNPVQPIGPQTPKACDSKLTFDAITTIRGEMFFKDRFYMRTNP
FYPEVELNFISVFWSQLPNGLEAAYEFADRDEVRFFKGNKYWAVOGNVLHGYPKDIY
SSFGFPRTVKHIDAALSEENTGKTYFFAKYWRYDEYKRSMDPGYPMIADFPGIG
HKVDAVFMKDGFFYFFHGTRQYKFDPKTKRILTLQKANSWFNCRULE
ID NO:35 1362 bp NOVi 2d, GGCACCTTCCCAGCGACTCTAGAAACACAAGAGCAAGATGTGGACTTAGTCCAGAAAT 173877223 DNA ACCTGGAAAAATACTACAACCTGAAGAATGATGGGAGGCAAGTTGAAAAGCGGAGAAA Sequence TAGTGGCCCAGTGGTTGAAAAA~rGAAGCAAATGCAGGAATTCTTTGGGCTGAAAGTG
ACTGGGAAACCAGATGCTGAAACCCTGAAGGTGATGAAGCAGCCCAGATGTGGAGTGC
CTGATGTGGCTCAGTTTGTCCTCACTGAGGGGAACCCTCGCTGGAGCACACATCT
GACCTACAGGATTGAAAATTACACGCCAGATTTGCCAAGAGCAGATGTGGACCATGCC
ATTGAGAAAGCCTTCCAACTCTGCAGTAGTGTCACACCTCTGACATTCACCAAGGTCT
CTGAGGGTCAAGCAGACATCATGATATCTTTTGTCAGGGGAGGTCATCGGGACAAC'rC TCC I=TTGATGGACCTGGAGGAAATCTTGCTCATGCTTTTCAACCAGGCCCAGTATT
GGAGGGGATGCTCATTTTGATGAAGATGAAAGGTGGACCAACAATTTCAGAGAGTACA
ACTTACATCGTGTTGCGGCTCATGAACTCGGCCATTCTCTTGGACTCTCCCATTCTAC
TGATATCGGGGCTTTGATGTACCCTAGCTACACCTTCAGTGGTGATGTTCAGCTAGCT
CAGGATGACATTGATGGCATCCAAGCCATATATGGACGTTCCCAAAATCCTGTCCAGC
CCATCGGCCCACAAACCCCAAA.ACGTGTGGCAGTAAGCTAACCTTTGATGCTATAAC
TACGATTCGGGGAGAAGTGATGTTCTTTAA.AGACAGATTCTACATGCGCACAAATCCC
TTCTACCCGGAAGTTGAGCTCAATTTCATTTCTGTTTTCTGGCCACAACTGCCAAATG
GGCTTGAAGCTGCTTACGAATrTGCCGACAGAGATGAAGTCCGGTTTTTCAAAGGGAA
TAAGTACTGGGCTGTTCAGGGACAGAATGTGCTACACGGATACCCCAAGGACATCTAC
AGCTCCTTTGGCTTCCCTAGAACTGTGAAGCATATCGATGCTGCTCTGAGGA
ACACTGGAAAAACCTACTTCTTTGTTGCTAACAAATACTGGAGGTATGATGAATATAA
ACGATCTATGGATCCAGGTTATCCCAATGATAGCACATGACTTTCCTGGAAMTGGC
CACAAAGTTGATGCAGTTTTCATGAAAGATGGATTTTTCTATTI'CTTTCATGGAACAA
GAATCATTACTAAGAAGATTATTCGAGTAA
CTGGTTCAACTGCAGGAAAAATCTCGAG
ORF Start: at 1 ORF Stop: end of sequence D)NO:36 1454 aa IMW at 52l0.2kD NOV12d, GTFPATLETQEQDVDLVQKYLEKYYNLKNDGRQVEKRRNSGPVVEKLKQMQEFFGLKV 173877223 Protein TGKPDAETLKVMKQPRCGVPDVAQFVLTEGNPRWEOTHLTYRI
ENYTPDLPRADVDHA
Sequence I EKAFQLWSSVTPLTFTKVSEGQADIMISFVRGGHRDNSPFDGPGAHFQPGPGI
GGDAHFDEDERWTNNFREYNLHRVAAHELGHSLGLSHSTDIGALMYPSYTFSGDVQLA
QDDI DGIQAIYCIRSQNPVQPIGPTPKACGSKLTFDAITTIRGEVMFFKDRFYMRTNP FYPEVELNP ISVFWPQLPNGLEAAYE FADRDEVRFFKGNKYWAVQGQNVLHGYPKDIY
SSFGFPRTVKHIDAALSEENTGKTYFFVANKYWRYDEYKRSMDPGYPKMIAHDFPGIG
HKVDAVFMKDGFFYFFHGTRQYKFDPKTKRILTLQKANSWFNCRKNLE
SEQ ID NO:37 1362 bp NOVi 2e, GGTACCTTCCCAGCGACTCTAGAAACACAAGAGCAAGATGTGGACTTAGTCCAGAAT 172557827 DNA ACCTGGAAAAATACTACAACCTGAAGAATGATGGGAGGCAAGTTGAAAAGCGGAGAAA Sequence
TAGTGGCCCAGTGGTTGAAAAATTGAAGCAALATGCAGGAATTCTTTGGGCTGAAAGTG
ACTGGGAAACCAGATGCTGAAACCCTGAAGGTGATGA.AGCAGCCCAGATGTGGAGTGC
00 CTGATGTGGCTCAGTTTGTCCTCACTGAGGGGAACCCTCGCTGGGAGCAAACACATC
T
GACCTACAGGATTGAAAATTACACGCCAGATTTGCCAAGAGCAGATGTGGACCATGCC
ATTGAGAAAGCCTTCCAACTCTGGAGTAATGTCACACCTCTGACATTCACCAAGGTCT
CTGAGGGTCAAGCAGACATCATGATATCTTTTGTCAGGGGAGATCATCGGGACAACTC
TCCTTTTGATGGACCTGGAGGAAATCTTGCTCATGCTTTI'CAACCAGGCCCAGGTATT
GGAGGGGATGCTCATTTTGATGAAGATGAAAGGTGGACCAACAATTTCAGAGAGTACA
ACTTACATCGTGTTGCGGCTCATGAACTCGGCCATTCTCTTGGACTCTCCCATTCTAC
TGATATCGGGGCTTTGATGTACCCTAGCTACACCTTCAGTGGTGATGTTCAGCTAGCT
CAGGATGACATTGATGGCATCCAAGCCATATATGGACGTTCCCAAAATCCTGTCCAGC
CCATCGGCCCACAAACCCCAAAAGCGTGTGACAGTAAGCTAACCTTTGATGCTATAAC
TACGATTCGGGGAGAAGTGATGTTCTTTAAAGACAGATTCTACATGCGCACAAATCCC
TTCTACCCGGAAGTTGAGCTCAATTTCATTTCTGTTTCTGGCCACAACTGCCAA.ATG
GGCTTGAAGCTGCTTACGAATTTGCCGACAGAGATGAAGTCCGGTTTTTCAAAGGGAA
TAAGTACTGGGCTGTTCAGGGACAGAATGTGCTACACGGATACCCCAAGGACATCTAC
AGCTCCTTTGGCTTCCCTAGAACTGTGAAGCATATCGATGCTGCTCTTTCTGAGGAAA
ACACTGGAAAAACCTACTTCTTTGTTGCTAACAAATACTGGAGGTATGATGAATATAA
ACGATCTATGGATCCAGGTTATCCCAAAATGATAGCACATGACTTTCCTGGAATTGGC
CACAAAGTTGATGCAGTTTTCATGAAAGATGGATTTTCTATTTCTTTCATGGAACAA
GACAATACAAATT2'GATCCTAAAACGAAGAGAATTTTGACTCTCCAGAAkAGCTAATAG
CTGGTTCAACTGCAGGAAAAATCTCGAG
ORF Start: at I I ORF Stop: end of sequence SEQ ID NO:38 1454 aa IMW at 52244.3kD NOVi 2e, GTFPATLETQEQDDLVQKYLEKYYNLKNDGRQVEKRRNSGPVVEKLKQMQEFFGLKV 172557827 Protein TGKPDAETLKVMKQPRCGVPDVAOFVLTEGNPRWEQTHLTYRI
EN~YTPDLPRADVDHA
Sequence IEKAFQLWSNVTPLTFTKVSEGQADIMISFVRGDHRDNSPFDGPGGNLAI4AFQPGPGI
GGDAHFDEDERWTNNFREYNLHRVAAIELGHSLGLSHSTDIGALMYPSYTFSGDVQLA
QDDIDGIQAIYGRSQNPVQPIGPQTPKACDSKLTFDAITTIRGEVMFFKDRFYMRTNP
FYPEVELNFISVFWPQLPNGLEAAYEFADRDEVRFFKGNKYWAVQGQNVLHGYPKDIY
SS FGFPRTVKHIDAALSEENTGKTYFFVANKYWRYDEYKRSMDPGYPIK1IAHDFPGIG HKVDAVFMKDGFFYFFHGTRQYKFDPKTKRI LTLQKANSWFNCRIGNLE SEQ ID NO:39 1452 bp NOVI 2f, TCACTTACCTTGCACTGAGAAAGAAGACAAAGGCCAGTATGCACAGCTTTCCTCCACT CG9 1678-03 DNA GCTGCTGCTGCTGTTCTGGGGTGTGGTGTCTCACAGCTTCCCAGCGACTCTAGAAACA Sequence CGAGAGCAAGATGTGGACTTAGTCCAGAAATACCTGGAAAAATACTACAACCTGAAGA
ATGATGGGAGGCAAGTTGAAAAGCGGAGAAATAGTGGCCCAGTGGTTGAAAAATTGAA
GCAAATGCAGGAATTCTTTGGGCTGAAAGTGACTGGGAAACCAGATGCTGAAACCCTG
AAGGTGATGAAGCAGCCCAGATGTGGAGTGCCTGATGTGGCTCAGTTTGTCCTCACTG
AGGGAAACCCTCGCTGGGAGCAAACACATCTGACCTACAGGATTGAAAATTACACGCC
AGATTTGCCAAGAGCAGATGTGGACCATGCCATTGAGAAAGCCTTCCAACTCTGGAGT
AATGTCACACCTCTGACATTCACCAAGGTCTCTGAGGGTCAAGCAGACATCATGATAT
CTTTTGTCAGGGGAGATCATCGGGACAACTCTCCTTTTGATGGACCTGGAGGAAATCT
TGCTCATGCTTTTCAACCAGGCCCAGGTATTGGAGGGGATGCTCATTTTGATGAAGAT
GAAAGGTGGACCAACAATTTCAGAGAGTACAACTTACATCGTGTTGCGGCTCATGAAC
TCGGCCATTCTCTTGGACTCTCCCATTCTACTGATATCGGGCT=GATGTACCCTAG
CTACACCTTCAGTGGTGATGTTCGGCTAGCTCAGGATGACATTcIATGGCATCCAAGCC
ATATATGCACGTTCCCAAAATCCTGTCCAGCCCATCGGCCCACAAACCCCAAAAGCGT
GTGACAGTAAGCTAACCTTTGATGCTATAACTACGATTCGGGGAGAAGTGATGTTCTT
TAAAGACAGATTCTACATGCGCACAAATCCCTTCTACCCGGAAGTTGAGCTCAATTTC
ATTTCTGTTTTCGGCCACAACTGCCAAATGGGCTTGAAGCTGCTTACGAATTTGCCG
ACAGAGATGAAGTCCGGT TCAAAGGGAATAAGTACTGGGCTGTTCAGGGACAGAA
TGTGCTACACGGATACCCCAAGGACATCTACAGCTCCTTTGGCTTCCCTAGAACTGTG
AAGCATATCGATGCTGCTC CTGAGGAAAACACTGGAAAAACCTACTTCTTTGTTG
CTAACAAATACTGGAGGTATGATGAATATAAACGATCTATGGATCCAGGTTATCCCAA
AATGATAGCACATGACTTTCCTGGAATT1GGCCACAAAGTTGATGCAGTTTTCATGAAA
GATGGATTTTTCTATTTCTTTCATGGAACAAGACAATACAAATTTGATCCTAAAACGA
AGAGA.ATTTTGACTCTCCAGAAAGCTAATAGCTGGTTCAACTGCAGGAAAAATTGAAC
AT
ORE Start: ATG at 39 OREF Stop: TGA at 1446 00
NO
0 SEQ ID NO:40 469 aa MW at 54062.6kD NOVI2f, MHSFPPLLLLLFWGVVSHSFPATLETREQDVDLVQKYLEKYYNLKNDGRQVEKRRNSG CG91678-03 Protein PVVEKLKQMQEFFGLKVTGKPDAETLKVMKQPRCGVPDVAQFVLTEGNPRWEQTHLTY Sequence RIENYTPDLPRADVDKAIEKAFQLWSNVTPLTFTKVSEGQADIMISFVRGDHRDNSPF
DGPGGNLAHAFQPGPGIGGDAHFDEDERWTNNFREYNLHRVAAHELGHSLGLSHSTDI
GALMYPSYTFSGDVRLAQDDIDGIQAIYGRSQNPVQPIGPQTPKACDSKLTFDAITTI
RGEVMFFKDRFYMRTNPFYPEVELNFISVFWPQLPNGLEAAYEFADRDEVRFFKGNKY
WAVQGQNVLHGYPKDIYSSFGFPRTVKHIDAALSEENTGKTYFFVANKYWRYDEXKRS
MDPGYPKMIAHDFPGIGHKVDAVFMKDGFFYFFHGTRQYKFDPKTKRILTLQKANSWF
NCRKN
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 12B.
Table 12B. Comparison of NOV12a against NOVI2b through NOV12f.
NOV12a Residues/ Identities/ Protein Sequence Match Residues Similarities for the Matched Region NOVI2b 19..469 450/451 (99%) 2..452 451/451 (99%) NOV12c 19..469 449/451 (99%) 2..452 450/451 (99%) NOV12d 19..469 447/451 (99%) 2..452 449/451 (99%) NOV12e 19..469 450/451 (99%) 2..452 451/451 (99%) NOV12f 1..469 467/469 (99%) 1..469 469/469 (99%) Further analysis of the NOV12a protein yielded the following properties shown in Table 12C.
Table 12C. Protein Sequence Properties NOV12a PSort 0.5411 probability located in lysosome (lumen); 0.3700 probability located in outside; analysis: 0.3404 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane) SignalP Cleavage site between residues 20 and 21 analysis: A search of the NOV 12a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 12D.
Table 12D. Geneseq Results for NOV12a Geneseq Protein/Organism/Length [Patent NOV12a Identities/ Expect Identifier Datel Residues/ Value I 00 00 Match the Matched Residues Region AAG75509 Human colon cancer antigen protein SEQ 1l..469 469/469 (100%) 0.0 ID NO:6273 Homo sapiens, 496 aa. 28..496 469/469 (100%) ________[W0200122920-A2, 05-APR-2001] AAB84606 Amino acid sequence of matrix 1..469 469/469 (100%) 0.0 metalloproteinase collagenase 1 Homo 1l..469 469/469 (100%) sapiens, 469 aa. [W0200149309-A2, AAE1 0415 Human matrix metalloprotinase-I 1..469 469/469 (100%) 0.0 (MMP-1) protein Homo sapiens, 469 aa. 1..469 469/469 (100%) 66766-A2,1I3-SEP-200 AAP7061 1 Sequence encoded by human skin 1 469 467/469 0.0 collagenase cDNA Homo sapiens, 469 1L.469 467/469 (99%) aa. [GB2 182665-A, 20-MAY-1987] AAP93628 Sequence of human interstitial 20. .469 448/450 0.0 procollagenase Homo sapiens, 457 aa. 8..457 448/450 (99%) 26-A, 17-MAY-I 989] In a BLAST search of public sequence databases, the NOVI12a protein was found to have homology to the proteins shown in the BLASTP data in Table 12E.
Table 12E. Public BLASTP Results for NOV12a Protein NOV12a Identities/ Accssin Poten/rgaismLenthResidues/ Similarities for Expect Acmero rtilraim~nt Match the Matched Value NumerResidues Portion P03956 Interstitial collagenase precursor (EC l..469 469/469 (100%) 0.0 3.4.24.7) (Matrix metalloproteinase-l) 1..469 469/469 (100%) (MMP-1) (Fibroblast collagenase) Homo sapiens (Human), 469 aa.
Interstitial collagenase precursor (EC 6..469 404/465 0.0 3.4.24.7) (Matrix metalloproteinase-1) 5..469 435/465 (92%) (MMP-1) Equus caballus (Horse), 469 aa.
P 13943 Interstitial collagenase precursor (EC 6..469 403/464 0.0 3.4.24.7) (Matrix metalloproteinase-1) 5..468 428/464 (91%) (MMP-1) Oryctolagus cuniculus (Rabbit), 468 an.
P28053 Interstitial collagenase precursor (EC 6..469 396/465 0.0 3.4.24.7) (Matrix metalloproteinase-1) 5..469 426/465 (9 1%) (MMP-1) (Fibroblast collagenase) Bos taurus (Bovine), 469 P21692 Interstitial collagenase precursor (EC 7..469 396/464 0.0 3.4.24.7) (Matrix metalloproteinase-1) 6..469 429/464 (92%) (MMP-1) Sus scrofa (Pig), 469 an. PHam analysis predicts that the NOV 12a protein contains the domains shown in the Table 12F.
Table 12F. Domain Analysis of NOV12a Identities/ Pfamn Domain NOV12a Match Region Similarities Expect Value for the Matched Region PG-binding)l: domain 1 of 1 27..91 15/73 46/73 PeptidaseMIO: domain 1 of 1 37..204 113/171 5.9e-121 164/171 Astacin: domain 1 of 1 107..264 38/236 0.3 104/236 (44%) hemopexin: domain 1 of 4 284..326 16/50 1.3e-09 3 3/50 hemopexin: domain 2 of 4 328..372 20/50 8.le-13 36/50 hemopexin: domain 3 of 4 377..424 24/50(48%) 3.le-21 44/50 (88%) hemopexin: domain 4 of 4 426..466 13/50 4.7e-07 32/50 EXAMPLE 13.
The NOV1 3 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 3A.
Table 13A. NOV13 Sequence Analysis SEQ ID NO:4 1669 bp NOV13, ATGCTGCTrGCGCTCGAAGCCTGCGCTGCCGCCGCCGCTGCTGATGCTGCTGCTCCTGG CG91698-01 DNA GGCCGCTGGGTCCCCTCTCCCCTGGCGCCCTGCCCCGACCTGCGCAAGCACAGCAGGA Sequence CGTCGTGGACCTGGACTTCTTCACCCAGGAGCCGCTGCACCTGGTGAGCCCCTCGTTC CTGTCCGTCACCATTGACGCCAACCTGGCCACGGACCCGCGGTTCC'rCATCCTCCTGG GTTCTCCAAAGCTTCGTACCTTGGCCAGAGGC1'TGTCTCCTGCGTACC'TGAGGTTTGG
TGGCACCAAGACAGACTTCCTAATTTTCGATCCCAAGAAGGAATCAACCTTTGAAGAG
AGAAGTTACTGGCAATCTCAAGTCAACCAGGATATTTGCAAATATGGATCCATCCC
CTGATGTGGAGGAGAAGTTACGGTTGGAATGGCCCTACCAGGAGCAATTGCTACTCCG
AGAACACTACCAGAAAAGTTCAAGAACAGCACCTACTCAAGAAGCTCTGTAGATGTG
CTATACACTTT'rGCAAACTGCTCAGGACTGGACTTGATCTTTGGCCTAAATGCGTTAT
TAAGAACAGCAGATTTGCAGTGGAACAGTTCTAATGCTCAGTTGCTCCTGGACTACTG
CTCTTCCAAGGGGTATAAcATTTCTTGGGAACTAGGCAATGAACCTAACAGTTTCCTT
AAGAAGGCTGATATTTTCATCAATGGGTCGCAGTTAGGAGAAGATTTTATTCAATTGC
ATAAACTTCTAAGAAAGTCCACCTTCAAAAATGCAAAACTCTATGGTCCTGATGTTGG
TCAGCCTCGAAGAAAGACGGCTAAGATGCTGAAGAGC'ITCCTGAAGGCTGGTGGAGAA
GTGATTGATTCAGTTACATGGCATCACTACTATTTGAATGGACGGACTGCTACCAGGG
AAGATTrTTCTAAACCCTGATGTATTGGACATTTTTATTTCATCTGTGCAAAAAGTTTT CCAGGTrGGTTGAGAGCACCAGGCCTGGCAAGAAGGTCTGGTTAGGAGAAACAAGCTCT
GCATATGGAGGCGGAGCGCCCTTGCTATCCGACACCTTTGCAGCTGGCTTTATGTGGC
TGGATAAATTGGGCCTGTCAGCCCGAATGGGAATAGAAGTGGTGATGAGGCAAGTATT
CTTTGGAGCAGGAAACTACCATTTAGTGGATGAAAACTTCGATCCTTACCTGATTATI
00
IN
0O
TGGCTATCTCTTCTGTTCAAGAAATTGGTGGGCACCAAGGTGTRAATGGCAAGCGTGC
AAGGTTCAAAGAOAAGGAAGCTTCGAGTATACCTTCATTGCACAAACACTGACAATCC
AAGGTATAAAGAAGGAGATTTAACTCTGTATGCCATAAACCTCCATAACGTCACCAAG
TACTTGCGGTTACCCTATCCTTTTTCTAACAAGCAAGTGGATAAATACCTTCTAAGAC
cTTTGGGACcTCATGGATTACTTTCCAAATTGTCCAACTCAATGGTCTAACTCTAAA
GATGGTGGATGATCAAACCTTGCCACCTTTAATGGAAAAACCTCTCCGGCCAGGAAGT
TCACTGGGCTTGCCAGCTTTCTCATATAGTTTTTTTGTGATAAGAAATGCCAAAGTTG
CTGCTTGCATCTAAAATAAAATATACTAGTCCTGACACTGAAAA
ORF Start: ATG at 1 ORF Stop: TGA at 1636 SEQ ID NO:42 545 aa MW at 61417.3kD NOV13, MLLRSKPALPPPLLMLLLLGPLGPLSPGALPRPAQAQQDVVDLDFFTQEPLHLVSPSF CG91698-01 Protein LSVTIDANLATDPRFLI LLGSPKLRTLARGLSPAYLRFGGTKTDFLI FDPKKESTFEE Sequence RSYWQSQVNQDI CKYGS I PPDVEEKLRLEWPYQEQLLLREHYQKKFKNSTYSRSSVDV
LYTFANCSGLDLIFGLNALLRTADLQWNSSNAQLLLDYCSSKGYNISWELGNEPNSFL
KKADI FINGSQLGEDFIQLHKLLRKSTFKNAKLYGPDVGQPRRKTAKMLKS FLKAGGE VIDSVTWHHYYLNGRTATREDFLNPDVLDI FISSVQKVFQVVESTRPGKKVWLGETSS AYGGGAPLLSDTFAAGFMWLDKLGLSAPMGI EVVMRQVFFGAGNYHLVDENFDPLPDY WLSLLFKKaNGTKVLMASVQGSKRRKLRVYLHCTNTNPRYKEGDLTLYAINLHNVTK
YLRLPYPFSNKOVDKYLLRPLGPHGLLSKSVQLNGLTLKMVDDQTLPPLMEKPLRPGS
SLGLPAFSYSFFVIRNAKVAAC I Further analysis of the NOV13 protein yielded the following properties shown in Table 13B.
Table 13B. Protein Sequence Properties NOV13 PSort 0.4669 probability located in lysosome (lumen); 0.3894 probability located in outside; analysis: 0.2239 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane) SignalP Cleavage site between residues 37 and 38 analysis: A search of the NOV13 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 13C.
Table 13C. Geneseq Results for NOV13 NOV13 Identities/ Geneseq Protein/Organism/Length IPatent Residues/ Similarities for Expect Identifier Datel Match the Matched Value Residues Region AAB86206 Human heparanase inhibitor protein L..545 543/545 0.0 Homo sapiens, 543 an. [DE19955803-Al, 1..543 543/545 (99%) 23-MAY-2001_ AAY 17082 Human heparanase enzyme Homo 1..545 543/545 0.0 sapiens, 543 aa. (W09921975-Al, 1..543 543/545 (99%) 06-MAY-1999] AAY30124 A human protein with heparanase activity l..545 543/545 0.0 Homo sapiens, 588 aa. 46..588 543/545 (99%) [W09940207-A 1, 12-AUG- 1999] 1 1 1 00 AAY9 7635 Human heparanase protein sequence 1L.545 542/545 0.0 Homo sapiens, 543 aa. L .543 543/545 (99%) [W02001 00643-A2, 04-JAN-200 AAY52990 Human heparanase protein sequence 1L.545 542/545 0.0 Homo sapiens, 543 aa. [W09957153-A1, L.543 543/545 (99%) -NOV-.1999] In a BLAST search of public sequence databases, the NOV1 3 protein was found to have homology to the proteins shown in the BLASTP data in Table 13D.
Table 13D. Public BLASTP Results for NOV13 Protein Resiues Identities/ E Accession Protein/Organism/Length Rsde/ Similarities for the Epect NubrMatch Mace .oto Value Number ~~Residues MacePotn Q9UL39 HEPARANASE Homo sapiens L.545 545/545 (100%) 0.0 (Human), 545 an. L.545 1545/545 (100%) Q9Y25 1 HEPARANASE Homo sapiens 1L.545 543/545 0.0 543 an. 1L.543 543/545 CAC39726 SEQUENCE 89 FROM PATENT L.545 541/545 0.0 EP 1067182 Homo sapiens (Human), L.543 542/545 (99%) 543 an.
.CAC 10140 SEQUENCE 14 FROM PATENT L.525 523/525 0.0 EP 1032656 Honmo sapiens (Human), L.523 523/525 (99%) 532 an.
Q9MYYO HEPAR-ANASE Bos taurus 1..545 437/546 0.0 545 an. L.545 471/546 PFam analysis predicts that the NOV1 3 protein contains the domains shown in the Table 13E.
Table 13E. Domain Analysis of NOV13 Identities/ Pfam Domain NOV13 Match Region Similarities Expect Value for the Matched Region No Significant Known Matches Found EXAMPLE 14.
The NOV14 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 14A.
00 00 Table 14A. NOV14 Sequence Analysis SEQ ID NO:43 11821 bp 4 NQV14a, CG91708-01 DNA Sequence
ACAAGGAGGCAGGCAAGACAGCAAGGCATAGAGACAACATAGAGCTAAGTAAAGCCAG
TGGAAATGAAGAGTCTTCCAATCCTACTGTTGCTGTGCGTGGCAGTTTGCTCAGCCTA
TCCATTGGATGGAGCTGCAAGGGGTGAGGACACCAGCATGAACCTTGTTCAGAAATAT
CTAGAAAACTACTACGACCTCAAAAAAGATGTGAAACAGTTTGTTAGGAGAAAGGACA
GTGGTCCTGTTGTTAAAAAAATCCGAGAAATGCAGAAGTTCCTTGGATTGGAGGTGAC
GGGGAAGCTGGACTCCGACACTCTGGAGGTGATGCGCAAGCCCAGGTGTGGAGTTCCT
GATGTTGGTCACTTCAGAACCTT'rCCrGGCATCCCGAAGTGGAGGAAAACCCACCTTA
CATACAGGATTGTGAATTATACACCAGATTTGCCAAAAGATGCTGTTGATTCTGCTGT
TGAGAAAGCTCTGAAAGTCTGGGAAGAGGTGACTCCACTCACATTCTCCAGGCTGTAT
GAAGGAGAGGCTGATATAATGATCTCTTTTGCAGTTAGAGAACATGGAGACTTTTACC
CTTTTGATGGACCTGGAAATGTTTTGGCCCATGCCTATGCCCCTGGGCCAGGGATrAA
TGGAGATGCCCACTTGATGATGATGAACAATGGACAAAGGATACAACAGGGACCAAT
TTATTTCTCGTTGCGCTCATGAAATTGGCCACTCCCTGGGTCTCTTTCACTCAGCCA
ACACTGAAGCTTTGATGTACCCACTCTATCACTCACTCACAGACCTGACTCGGTTCCG
CCTGTCTCAAGATGATATAAATGGCATTCAGTCCCTCTATGGACCTCCCCCTGACTCC
CCTGAGACCCCCCTGGTACCCACGGAACCTGTCCCTCCAGAACCTGGGACGCCAGCCA
ACTGTGATCCTGCTTTGTCCTTTATGCT1GTCAGCACTCTGAGGGGAGAAATCCTGAT CTTTrAAAGACAGGCACTTTTGGCGCAAATCCCTCAGGAAGCTTGAACCTGAATTGCAT FrGATCTCTTCATTTGGCCATCTCTCCTTCAGGCTGGATGCCGCATATGAAGTTA
CTAGCAAGGACCTCGTTTTCATTTI'TAAAGGAAATCAATTCTGGGCCATCAGAGGAAA
TGAGGTACGAGCTGGATACCCAAGAGGCATCCACACCCTAGGTTTCCCTCCAACCGTG
AGGAAAATCGATGCAGCCATTTCTGATAAGGcAAAAGAACAAAACATA CTrrGTAG AGGACAAATACTGGAGATTTGATG3AGAAGAGAAATTCCATGGAGCCAGGCTTTCCCAA
GCAAATAGCTGAAGACTTTCCAGGGATTGACTCAAAGATTGATGCTGTTTTTGAAGAA
TTTGGGTTCTT1'TATTTCTTrACGGATCTTCACAGTTGGAGTTTGACCCAAATGCAA AGAAAGTGACACACACT1'TGAAGAGTAACAGCTGGCTTAATTGTTGAAAGAGATATGT
AGAAGGCACAATATGGGCACTTTAAATGAAGCTAATAATTCTTCACCTAAGTCTCTGT
GAATTGAAATGTTCGTTTTCTCCTGCC1'GTGCTGTGACTCGAGTCACACTCAAGGGAA
CTTGAGCGTGATCTGTATCTTCCCCTCATTTTTATTTATTACAGGGCATTCAAAT
GGGCTGCTGCTTAGCTTGCACCTTGTCACATAGAGTGATCTTTCCCAAGAGAAGGGGA
AGCAC'TCGTGTGCAACAGACAAGTGACTGTATCTGTGTAGACTATTTGCTTATTTAAT
AAAGACGATTTGTCAGTITGTTTT
ORF Start: ATG at 64 IORF Stop: TGA at 1495 ID NO:44 1477 aa IMW at 53976.7kD NOVI4a, MKSLPILLLLCVAVCSAYPLDGAARGEDTSMNLVOKYLENYYDLKKDVKOFVRRKDSG CG9 1708-01 Protein PVVKKI REMQKFLGLEVTGKLDSDTLEVMRKPRCGVPDVGHFRTFPGI PKWRKI4LTY SequnceRIVNYTPDLPKDAVDSAVEKALKVWEEV'rPLTFSRLYEGEAD IMI SFAVREHGDFYPF SequenceDGPGNVLAHiAYAPGPGINGDAHFDDDEQWTKDTTGTNLFLVAAHEIGHSLGLFHSANT
EALMYPLYHSLTDLTRFRLSQDDINGIQSLYGPPPDSPETPLVPTEPVPPEPGTPANC
DPALSFDAVSTLRGEILI FKDRHFWRKSLRKLEPELHLISSFWPSLPSGVDAAYEVTS KDLVFI FKGNQFWAIRGNEVRAGYPRGIHTLGFPPTVRKIDAAISDKEKNKTYFFVED
KYWRFDEKRNSMEPGFPKQIAEDFPGIDSKIDAVFEEFGFFYFFTGSSQLEFDPNAKK
VTHTLKSNSWLNC
ID NO:45 1580 bp NOV14b, CAAGACAGCAAGGCATAGAGACAACATAGAGCTAAGTAAAGCCAGTGGAAATGAAGAG CG9 1708-02 DNA TCTTCCAATCCTACTGTTGCTGTGCGTGGCAGTTTGCTCAGCCTATCCATTGGATGGA SequenceGCTGCAAGGGGTGAGGACACCAGCATGAACCTTGTTCAGAAATATCTAGAAAACTACT SequenceACGACCTCGAAAAAGATGTGAAACAGTI1TGTTAGGAGAAAGGACAGTGGTCCTGTTGT
TAAAAAAATCCGAGAAATGCAGAAGTTCCTTGGATTGGAGGTGACGGGGAAGCTGGAC
TCCGACACTCTGGAGGTGATGCGCAAGCCCATGTGTGGAGTTCCTGACGTTGGTCACT
TCAGAACCTTTCCTGGCATCCCGAAGTGGAGGAAAACCCACCTTACATACAGGATTGT
GAATTATrACACCAGATTTGCCAAAAGATGCTGTTGATTCTGCTGTTGAGAAAGCTCTG
AAGTCTGGGAAGAGGTGACTCCACTCACATTCTCCAGGCTGTATGAAGGAGAGACTG
ATATAATGATCTCTTTTGCAGTTAGAGAACATGGAGACTTTTACCCTTTTCATGGACC
TGGAAATGTTTTGGCCCATGCCTATGCCCCTGGGCCAGGGATTAATGGAGATGCCCAC
TTTGATGATGATGAACAATGGACAAAGGATACAACAGGGACCAATTTATTTCTCGTTG
00
CTGCTCATGAAATTGGCCACTCCCTGGGTCTCTTTCACTCAGCCAACACTGA.AGCTTT
GATGTACCCACTCTATCACTCACTCACAGACCTGACTCGGTTCCGCCTGTCTCAAGAT
GATATAAATGGCATTCAGTCCCTCTATGGACCTCCCCCTGACTCCCCTGAGACCCCCC
TGGTACCCACGGAACCTGTCCCTCCAGAACCTGGGACGCCAGCCAACTGTGATCCTGC
TTTGTCCTTTGATGCTGTCAGCACTCTGAGGGGAGAAATCCTCATCTTTAAAGACAGG
CACTTTTGGCGCAAATCCCTCAGGAAGCTTGAACCTGAATTGCATTTGATCTCTTCAT
TTTGGCCATCTCTTCCTCAGGCGTGGATGCCGCATATGAAGTTACTAGCAAGGACCT
CGTTTTCATTTTTAAAGGAAATCAATTCTGGGCCATCAGAGGAAATGAGGTACGAGCT
GGATACCCAAGAGGCATCCACACCCTAGGTTTCCCTCCAACCGTGAGGAAAATCGATG
CAGCCATTTCTGATAAGGAAAAGAACAAAACATAT'rrCTTTGTAGAGGACAAATACTG
GAGATTTGATGAGAAGAGAAATTCCATGGAGCCAGGCTTTCCCAAGCAAATAGCTGAA
GACTTTCCAGGGATTGACTCAAAGATTGATGCTGTTTTTGAAGAATTTGGGTTCTT
ATTTCTTTACTGGATCTTCACAGTTGGAGTTTGACCCAAATGCAAAGAAAGTGACACA
CACTTTGAAGAGTAACAGCTGGCTTAATTGTTGAAAGAGATATGTAGAAGGCACAATA
TGGGCACTTTAAATGAAGCTAATAATTCTTCACCTAAGTCTCTGTGAATTGAAATGTT
CGTTTTCTCCTGCT
ORF Start: ATG at 51 IORF Stop: TGA at 1482 SEQ ID NO:46 1477 aa JMW at 53982.7kD NOV14b, MKSLPI LLLLCVAVCSAYPLDGAARGEDTSMNLVQKYLENYYDLEKDVKQFVRRKDSG CG91 708-02 Protein PVVKKI REMQKFLGLEVTGKLDSDTLEVI4RKPMCGVPDVGHFRTFPGI PKWRKTHLTY Sequence RIVNYTPDLPKDAVDSAVEKALKVWEEVTPLTFSRLYEGETD IMI SFAVREHGDFYPF
DGPGNVLAHAYAPGPGINGDAHFDDDEQWTKDTTGTNLFLVAAHEIGHSLGLFHSANT
EALMYPLYHSLTDLTRFRLSQDDINGIQSLYGPPPDSPETPLVPTEPVPPE PGTPANC DPALSFDAVSTLRGEILI FKDRHFWRKSLRKLEPELHLISSFWPSLPSGVDAAYEVTS KDLVFI FKGNQFWAIRGNEVRAGYPRGIHTLGFPPTVRKIDAAISDKEKNKTYFFVED KYWRFDEKRNSMEPGFPKQIAEDFPG IDSKIDAVFEEFGFFYFFTGSSQLEFDPNAKK
VTHTLKSNSWLNC
SEQ ID NO:47 1519 bp NOV 14c, GGATCCACCTATCTAGAAAACTACTACGACCTCGAAAAAGATGTGAAACAGTTTGTTA 240317953 DNA GGAGAAAGGACAGTGGTCCTGTTGTTAAAAAAATCCGAGAAATGCAGAAGTTCCTTGG Sequence ATTGGAGGTGACGGGGAAGCAGGACTCCGACACTCTGGAGGTGATGCGCAAGCCCAGG
TGTGGAGTTCCTGACGTTGGTCACTTCAGAACCTTTCCTGGCATCCCGAAGTGGAGGA
AAACCCACCTTACATACAGGATTGTGAATTATACACCAGATTTGCCAAAAGATGCTGT
TGATTCTGCTGTTGAGAAAGCTCTGAAAGTCTGGGAAGAGGTGACTCCACTCACATTC
TCCAGGCTGTATGAAGGAGAGGCTGATATAATGATCTCTTTTGCAGTTAGAGAACATG
GAGACTTTTACCCTTTTGATGGACCTGGAAATGTTTTGGCCCATGCCTIATGCCCCTGG
GCCAGGGATTAATGGAGATGCCCACT=TGATGATGATGAACAATGGACACTCGAG
ORE Start: at I IORF Stop: end of sequence ID NO:48 173 aa IMW at19767.l1kD NOV14c, GSTYLENYYDLEKDVKQ1'VRRKDSGPVVKKIREMQKFLGLEVTGKQDSDTLEVMRKPR 240317953 Protein CGVPDVGH FRTFPGI PKWRKTHLTYRIVNYTPDLPKDAVDSAVEKALKVWEEVTPLTF Sequence SRLYEGEADIMI SFAVREHGDFYPFDGPGNVLAI{AYAPGPGINGDARFDDDEQWTLE SEQ ID NO:49 1483 bp NOVI 4d, GGAT CCACCACCCACCTTACATACAGGATTGTGAATTATACACCAGATTTGCCAAAAG 240317980 DNA ATGCTGTTGATTCTGCTGTTGACAA.AGCTCTGAAAGTCTCGGAAGAGGTGACTCCACT Sequence CACATTCTCCAGGCTGTATGAAGGAGAGGCTGATATAATGATCTCTTTTGCAGTTAGA
GAACATGGAGACTTTTACCCTTTTGATGGACCTGGAAATGTTTTGGCCCATGCCTATG
CCCCTGGGCCAGGGATTAATGGAGATGCCCACTTTGATGATGATGAACAATGGACAA.A
GGATACAACAGGGACCAA ATTTCTCGTTGCTGCTCATGAAATTGGCCACTCCCTG
GGTCTCTTTCACTCAGCCAACACTGAAGCTTTGATGTACCCACTCTATCACTCACTCA
CAGACCTGACTCGGTTCCGCCTGTCTCAAGATGATATAAATGGCATTCAGTCCCTCTA
TGGACCTCCCCCTCTCGAG
ORE Start: at 1 ORE Stop: end of sequence ID NO:50 1161 aa JMW at 17838.5kD NOV 14d, GSTTHLTYRIVNYTPDLPKDAVDSAVEKALKVWEEVTPLTFSRLYEGEADIMI SFAVR 240317980 Protein EHGDFYPFDGPGNVLAHAYAPGPGINGDAHFDDDEQWTKDTTGTLFLVAHE
IGHSLI
Sequence I GLFHSANTEALMYPLYHSLTDLTRFRLSQDDINGIQSLYGPPPLE Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1 4B.
Table 14B. Comparison of NOV14a against NOV14b through NOV14d.
Protin equnceNOVI4a Residues/ Identities! Protin equnceMatch Residues Similarities for the Matched Region NOV14b L.477 446/477 (93%) 1.477 447/47 7 (93%) NOVI4c 37..204 166/168 (98%) 4..171 167/168 (98%) NOV14d 112..267 156/156 (100%) 4..159 156/156 (100%) Further analysis of the NOV14a protein yielded the properties shown in Table 14C.
Table 14C. Protein Sequence Properties NOV14a Psort 0.8200 probability located in outside; 0.3106 probability located in microbody analysis: (peroxisome); 0. 1900 probability located in lysosome (lumen); 0.1000 probability located in endoplasmic reticulum (membrane) SignalP Cleavage site between residues 18 and 19 analysis: A search of the NOV 14a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 14D.
Table 14D. Gencscq Results for NOVl4a NOV14a Identities/ Geneseq Protein/Organism/Length [Patent#U, Residues/ Similarities for Expect Identifier Datel Match the Matched Value Residues Region AAE10420 Human matrix metal loprotinase-3 L .477 477/477 (100%) 0.0 (MMP-3) protein Homo sapiens, 477 aa. L.477 477/477 (100%) 66766-A2, 13-SEP.2001] AAY21993 Human matrix metal loprotease-3 L.477 477/477 (100%) 0.0 (MMP-3) Homo sapiens, 477 aa. L.477 477/477 (100%) 1169176-A, 29-JUN-1999] AAB84608 Amino acid sequence of matrix L .477 476/477 0.0 metalloproteinase-3 stromelysin 1 Homo L.477 477/477 (99%) sapiens, 477 aa. [W0200149309-A2, AAY2 1994 1.fL201 .477 472/477 0.
00 (MMP-3) Homo sapiens, 477 aa. 1L.477 472/47 7 (98%) 1169176-A, 29-JUN- 1999] AAP80257 Sequence of human stronielysin Homo L.477 469/477 0.0 sapiens, 477 aa. [W08707907-A, 1 477 472/47 7 (98%) L 30-DEC-i 9871 I I In a BLAST search of public sequence databases, the NOVI 4a protein was found to have homology to the proteins shown in the BLASTP data in Table 14E.
Table 14E. Public BLASTP Results for NOV14a Protein NOVI4a Identities/ Accssin Poten/rgaismLenthResidues/ Similarities for Expect Acmero rti/ralm~nt Match the Matched Value NumerResidues Portion P08254 Stromclysin-l precursor (EC 3.4.24.17) L.477 477/477 (100%) 0.0 (Matrix metalloproteinase-3) (MMP-3) L .477 477/477 (100%) (Transin-l1) (SL- 1) Homo sapiens 477 aa.
P28863 Stromelysin-1 precursor (EC 3.4.24.17) L..477 402/478 0.0 (Matrix metalloproteinase-3) (MMIP-3) L .478 435/478 (Transin-1) (SL-1) Oryctolagus cuniculus 478 Q28397 Stromelysin-1 precursor (EC 3.4.24.17) L.477 388/477 0.0 (Matrix metalloproteinase-3) (MMP-3) 1L.477 429/477 (89%) caballus (Horse), 477 aa.
P09238 Stromelysin-2 precursor (EC 3.4.24.22) 1L.477 373/477 0.0 (Matrix metalloproteinase-10) (MMP-10) L.476 420/477 (Transin-2) (SL-2) Homo sapiens 476 aa. Q922W6 MATRIX METALLOPROTEINASE 3 L.477 368/477 0.0 Mus musculus (Mouse), 479 na. 3..479 415/477 1 1__ P~amn analysis predicts that the NOVI 4a protein contains the domains shown in the Table 14F.
Table 14F. Domain Analysis of NOV14a Identities/ Pfam Domain NOVI4a Match Region Similarities Expect Value for the Matched Region PeptidaseMIO: domain I of 1 37..204 118/171 4.4e-126 166/171 Astacin: domain I of 1 1 12..267 36/226 0.41 102/226 hemnopexin: domain I of 4 296.338 16/50(32%) 5.le-12 37/50 (74%) 00 hemopexin: domain 2 of 4 340..383 16/50 5.6e- 13 39/50 (78%) hemnopexin: domain 3 of 4 388..435 25/50 6.6e-19 41/50 hernopexin: domain 4 of 4 437..477 17/50 1.5e-09 33/50 EXAMPLE The NOV1 5 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 Table 15A. NOV15 Sequence Analysis ISEQ ID NO:51 12722 bp CG91729-01 DNA Sequence
CAACAGTCCCCAGGCATCACCATTCAAGATGCATCCAGGGGTCCTGGCTGCCTTCCTC
TTCTTGAGCTGGACTCATTGTCGGGCCCTGCCCCTTCCCAGTGGTGGTGATGAAGATG
ATTTGTCTGAGGAAGACCTCCAGTTTGCAGAGCGCTACCTGAGATCATACTACCATCC
TACAMATCTCGCGGAATCCTGAAGGAGAATGCAGCAAGCTCCATGACTGAGAGGCTC
CGAGAAATGCAGTCTTTCTTCGGCTTAGAGGTGACTGGCAAACTTGACGATAACACCTr
TAGATGTCATGAAAAAGCCAAGATGCGGGGTTCCTGATGTGGGTGAATACAATGTTTT
CCCTCGAACTCTTAAATGGTCCAAAATGAATTTAACCTACAGAAT'rGTGAATTACACC
CCTGATATGACTCATTCTGAAGTCGAAAAGGCATTCAAAAAAGCCTTCAAAGTTTGGT
CCGATGTAACTCCTCTGAATTITACCAGACTTCACGATGGCATTGCTGACATCATGAT
CTCTTTTGGAATTAAGGAGCATGGCGACTTCTACCCATTTGATGGGccCTCTGGCCTG
CTGGCTCATGCTTTCCTCCTGGGCCAAATTATGGAGGAGATGCCCATTTTGATGATG
ATGAAACC1'GGACAAGTAGTTCCAAAGGCTACAACTTG=TCTTGTTGCTGCGCATGA
GTTCGGCCACTCCTTAGGTCTTGACCACTCCAAGGACCCTGGAGCACTCATGTTTCCT
ATCTACACCTACACCGGCAAAAGCCACTTTATGCTTCCTGATGACGATGTACA-AGGGA
TCCAGTCTCTCTATGGTCCAGGAGATGAAGACCCCAACCCTAAACATCCAAAAACGCC
AGACAAATGTGACCCTTCCTTATCCCTGATGCCATTACCAGTCTCCGAGGAGAAACA
ATGATCTTTAAAGACAGATTCTTCTGGCGCCTGCATCCTCAGCAGGTTGATGCGGAGC
TGTTT=TAACGAAATCATTTTGGCCAGAACTTCCCAACCGTATTGATGCTGCATATGA
GCACCCTTCTCATGACCTCATCTTCATCTTCAGAGGTAGAAAAT GGGCTCTTAAT
GGTTATGACATTCTGGAAGGTTATCCCAAAAAAATATCTGAACTGGGTCTTCCAAAAG
AAGTTAAGAAGATAAGTGCAGCTGTTCACTTTGAGGATACAGGCAAGACTCTCCTGTT
CTCAGGAAACCAGGTCTGGAGATATGATGATACTAACCATATTATGGATAAAGACTAT
CCGAGACTAATAGAAGAAGACTTCCCAGGAATTGGTGATAAAGTAGATGCTGTCTATG
AGAAAAATGGTTATATCTAT=TTTTCAACGGACCCATACAGTTTGAATACAGCATCTG
GAGTAACCGTATTGTTCGCGTCATGCCAGCAAATTCCAT GTCCTGTTAAGTGTCT
TTTTAAAAATTGTTATTTAAATCCTGAAGAGCATTTGGGGTAATACTCCAGAAGTGC
GGGTAGGGGAAGAAGAGCTATCAGGAGAAAGCTTGGTTCTGTGAACAAGCTTCAGTA
AGTTATCTTnGAATATGTAGTATCTATATGACTATGCGTGGCTGGAACCACATTGAAG
AATGTTAGAGTAATGAAATGGAGGATCTCTAAAGAGCATCTGATTCTTGTTGCTGTAC
AAAAGCAATGGTTGATGATACTTCCCACACCACAAATGGGACACATGGTCTGTCAATG
AGAGCATAATTTAAAAATATA ATAAGGAAATTTTACAAGGGCATAAAGTAAATAC
ATGCATATAATGAATAAATCATTCTTACTAAAAAGTATAAAATAGTATGAAAATGGAA
ATTTGGGAGAGCCATACATAAAAGAAATAAACCAAAGGAAAATGTCTGTAATAATAGA
CTGTAACTTCCAAATAAATAATTTTCATTTTGCACTGAGGATATTCAGATGTATGTGC
CCTTCTTCACACAGACACTAACGAAATATCAAAGTCATTAAAGACAGGAGACAAAAGA
GCAGTGGTAAGAATAGTAGATGTGGCC GAATTCTGTTTAATTTTCACTTTTGGCA
ATGACTCAAAGTCTGCTCTCATATAAGACAAATATTCCTTTGCATATTATAAAGGATA
AAGAAGGATGATGTCTTTTTATTAAAATATTTCAGGTT=TCAGAAGTCACACATTAC
AAAGTTAAAATTGTTATCAAAATAGTCTAAGGCCATGGCATCCCTTTTTCATAAATTA
TTTGATTATTTAAGACTAAAAGTTGCATTTTAACCCTATTTTACCTAGCTAATTATTT
ATGTCCGGTTTGTCTTGGATATATAGGCTATTTTCTAAAGACTTGTATAGCATGAA
ATAAAATATATCTTATAAAGTGGAAGTATGTATATTAAAAAAGAGACATCCAALATTTT
I
I
00 00
TTTTTAAAGCAGTCTACTAGATTGTGATCCCTTGAGATATGGAAGGATGCCTTTTTTT
CTCTGCATTTAAAAAAATCCCCCAGCACTTCCCACAGTGCCTATTGATACTTGGGGAG
GGTGCTTGGCACTTATTGAATATATGATCGGCCATCAAGGGAAGAACTATTGTGCTCA
GAGACACTGTTGATAAAAAC'fCAGGCAAAGAAAATGAAATGCATATTTGCAAAGTGTA
TTAGGAAGTGTTTATGTTGTTTATAATAAAAATATATTTTCAACAGAAAAAAAA
ORF Start: ATG at 29 IORF Stop: TAA at 1442 SEQ ID NO:52 1471 aa JMWat 53819.2kD NOVI 5a, MHPGVLAAFLFLSWTHCRALPLPSGGDEDDLSEEDLQFAERYLRSYYHPTWLAGILKE CG9 1729-01 Protein NAASSMTERLREMQSFFGLEVT1GKLDDNTLDVMKKPRCGVPDVGEYNVFPRTLKWSKM Sequence NLTYRIVNYTPDMTHSEVEKAFKKAFKVWSDVTPLNFTRLHDGIADIMISFGI
KEHGD
FYPFDGPSGLLAHAFPPGPNYGGDAIFDDDETWTSSSKGYNLFLVAAHEFGHSLGLDH
SKDPGALMFPIYTYTGKSHFMLPDDDVQGIQSLYGPGDEDPNPKHPKTPDKCDPSLSL
DAITSLRGETMIFKDRFFWRLHPQQVDAELFLTKSFWPELPNRI DAAYEH-PSHDLI FI FRGRKFWALNGYDILEGYPKKI SELGLPKEVKKISAAVHFEDTGKTLLFSGNQVWRYD
DTNHIMDKDYPRLIEEDFPGIGDKVDAVYEKNGYIYFFNGPIQFEYSIWSNRIVRVMP
ANSILWC
SEQ IID NO:53 1426 bp NOV 15b, CCATTCAAGATGCATCCAGGTCCTGGCTrGCCTTCCTCTTCTTGAGCTGGACTCAT CG9 1729-02 DNA GTCGGGCCCTGCCCCTTCCCAGTGGTGGTGATGAAGATGATTTGTCTGAGGAAGACCT Sequence CCAGTTTGCAGAGCGCTACCTGAGATCATACTACCATCCTACAAATCTCGCGGGAATC
CTGAAGGAGAATGCAGCAAGCTCCATGACTGAGAGGCTCCGAGAAATGCAGTCTTTCT
TCGGCTTAGAGGTCACTCGCCAAACTTGACGATAACACCTTAGATGTCATGAAAAAGCC
AAGATGCGGGGTTCCTGATGTGGGTGAATACAATGTTTTCCCTCGAACTCTTAAATGG
TCCAAAATGAATTTAACCTACAGAATTGTGAATTACACCCCTGATATGACTCATTCTG
AAGTCGAAAAGGCATTCAAAAAAGCCTTCAAAGTTTGGTCCGATGTAACTCCTCTGAA
TTTTACCAGACTTCACGATGGCATTGCTGACATCATGATCTCTTTTGGAATTAAGGAG
CATGGCGACTTCTACCCATT'rGATGGGCCCTCTGGCCTGCTGGCTCATGCTTTTCCTC
CTGGGCCAAATTATGGAGGAGATGCCCATTTTGATGATGATGAAACCTGGACAAGTAG
TTCCAAAGGCTACAACTTGTTTCTGTTGCTGCGCATGAGTTCGGCCACTCCTTAGGT
CTTGACCACTCCAAGGACCCTGGAGCACTCATGTTTCCTATCTACACCTACACCGGCA
AAAGCCACTTTATGCTTCCTGATGACGATGTACAAGGO3ATCCAGTCTCTCTATGGTCC
AGGAGATGAAGACCCCAACCCTAAACATCCAAAAACGCCAGACAAATGTGACCCCTCC
TTATCCCTTGATGCCATTACCAGTCTCCGAGGAGAAACAATGATCTTTAAAGACAGAT
TCTTCTGGCGCCTGCATCCTCAGCATTGATGCGGAGCTGTTTTTAACGAAATCA~r
TTGGCCAGAACTTCCCAACCGTATTGATGCTGCATATGAGCACCCTTCTCATGACCTC
ATCTTCATCTTCAGAGGTAGAAAATTTTGGGCTC=TAATGGTTATGACATTCTGGAAG
GTTATCCCAAAAAAATATCTGAACTGGGTCTTCCAAAAGAAGTTAAGAAGATAAGTGC
AGCTGTTCACTTTGAGGATACAGGCAAGACTCTCCTGTTCTCAGGAAACCAGGTCTGG
AGATATGATGATACTAACCATATTATGGATAAAGACTATCCGAGACTAATAGAAGAAG
ACTTCCCAGGAATTCGTGATAAAGTAGATGCTGTCTATGAGAAAAATGGTTATATCTA
TTTTTTCAACGGACCCATACAGTTTGAATACAGCATCTGGAGTAACCGTATTGTTCGC
GTCATGCCAGCAAATTCCAT'ITTGTGGTGTTAAG
ORF Start: ATG at 10 1 ORiF Stop: TAA at 1423 SEQ ID NO:54 1471 aa JMW at 53819.2kD NOVi Sb, MJPGVLAAFLFLSWTHCRALPLPSGGOEDDLSEEDLQFAERYLRSYYHPTNLAGILKE CG91 729-02 Protein NAASSMTERLREMQSFFGLETGKLDDNTLDVMKKPRCGVPDVGEYNVFPRTLKWSKM Sequence NLTYRIVNYTPDMTHSEVEKAFKKAFKVWSDVTPLNFTRLHDGIADIMI
SFGIKEHGD
FYPFDGPSGLLAH-AFPPGPNYGGDAHFDDDETW'TSSSKGYNtFLVAAHE FGHSLGLDH
SKDPGALMFPIYTYTGKSHFMLPDDDVQGIQSLYGPGDEDPNPKHPKTPDKCDPSLSL
DAITSLRGETMIFKDRFFWRLHPQQVDAELFLTKSFWPELPNRIDAAYEHPSHDLI FI FRGRKFWALNGYDILEGYPKKI SELGLPKEVKKI SAAVHFEDTGKTLLFSGNQVWRYD DTNHIMDKDYPRLIEEDFPGIGDKVDAVYEKNGYIYFFNGPIFEYSIWSNRIVRV4P
ANSILWC
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1 00 Table 15B. Comparison of NOV15a against NOV1Sb.
Prti Sqec NOV15a Residues/ Identities/ Protin equnceMatch Residues Similarities for the Matched Region L..471 458/471 (97%) L..471 j458/471 (97%) Further analysis of the NOVI 5a protein yielded the following properties shown in Table Table 15C. Protein Sequence Properties PSort 0.3700 probability located in outside; 0.2550 probability located in microbody analysis: (peroxisome); 0. 1900 probability located in lysosome (lumen); 0. 1000 probability ri located in endoplasmic reticulumn (membrane) 00 SignaiP Cleavage site between residues 20 and 21 A search of the NOVI 5a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 151D.
Table 15D. Geneseq Results for NO VI5a Identities/ Gcneseq Protein/Organism/Length [Patent i, Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AABS4615 Amino acid sequence of matrix L..471 471/471 (100%) 0.0 metalloproteinase-1 3 Homo sapiens, 471 1L.471 471/471 (100%) aa. [W0200149309-A2, 12-JUL-2001] AAE10428 Human matrix metalloprotinase-20P L .471 471/471 0.0 protein Homo sapiens, 471 L..471 471/471 (100%) aa. [W0200166766-A2, 13-SEP-20011 AAE1041 7 Human matrix metalloprotinase- 13 L .471 471/471 (100%) 0.0 (MiMP-13) protein Homo sapiens, 471 1L.471 471/471 (100%) aa. [W0200166766-A2, 13-SEP-2001]1 AAY29419 Human matrix metalloproteinase 13 L..471 470/471 0.0 Homo sapiens, 471 aa. [W09931969-A2, L..471 470/471 (99%) AAB84608 Amino acid sequence of matrix 6..471 236/477 e-139 metalloproteinasc-3 stromelysin I Homo 4..477 3 14/477 sapiens, 477 aa. [W0200149309-A2, I 2-JUL-2001] In a BLAST search of public sequence databases, the NOVI 5a protein was found to have homology to the proteins shown in the BLASTP data in Table 00 Table 15E. Public RLASTP Results for Protein NOVI5a Identities/ Acsin Protein/Organism/Length Residues/ Similarities for Expect Acceso Match the Matched Value NumerResidues Portion P45452 Collagenase 3 precursor (EC L.471 47 1/471 (100%) 0.0 (Matrix metalloproteinase- 13) (MMP-1 3) 1.471 471/471 (100%) Homo sapiens (Human), 471 aa.
018927 Collagenase 3 precursor (EC L .471 430/472 (9 0.0 (Matrix metalloproteinase-13) (MMP-13) L..472 45 1/472 Equus caballus (Horse), 472 aa.
062806 Collagenase 3 precursor (EC L.471 425/47 1 0.0 (Matrix metalloproteinase-1 3) (MMP-1 3) L.471 445/471 (94%) Oryctolagus cuniculus (Rabbit), 471 aa.
077656 Collagenase 3 precursor (EC L.471 423/471 0.0 (Matrix metalioproteinase- 13) (MMP-1 -L.471 444/471 (93%) Bos taurus (Bovine), 471 ax.
Q9T82 MATRIX METALLOPROTEINASE-l 13 8..457 4 19/450 0.
Canis familiaris (Dog), 452 ax (fr-agment). 1 1.449 1432/450 PFamn analysis predicts that the NOVI 5a protein contains the domains shown in the Table Table 15F. Domain Analysis of Identities/ Pfamn Domain NOVi5a Match Region Similarities Expect Value for the Matched Region PeptidaseMlO: domain 1 of 1 42..208 113/171 2.2e-121 164/171 hemopexin: domain I of 4 290..332 17/50 2.8e-10 37/50 hemopexin: domain 2 of 4 334..377 19/50 2.7e- 13 38/50 (76%) hemopexin: domain 3 of 4 382..429 19/50 6.5e-16 hemopexin: domain 4 of 4 431..471 10/50 2.9e-05 28/50 EXAMPLE 16.
The NOV 16 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 6A.
Table 16A. NOV16 Sequence Analysis 11680 bp 00 00 NOVi 6a, CG92489-01 DNA Sequence
AGACGCAGAGACAGACAAACAAACAGATAGGAGAGGCTCTCCAGGAGGCCGGGGGGCC
CACTCCGCCTATCGCTCCCCTCGGCTACGCTGCCACTTCAATGCCCCGCAGGTCGCGA
GCTGCTGTTCTTTCGAAGGCGTCGGAGAACCAGGGGCGTCCCGCGCCACCTCTGACTC
GGAGCAGCGCCGAGCACTGACGCTCCCGCCCTTGGGCAAGGACGCCAGTGCGCCCGCG
CGCGTCCCTCTGCGCGGCAGCCCGTCGCGGGCCCTCAAGGGGAAGCCCAGGCCAGGAT
GGCCCCGGGTCGCGCGGTGGCCGGGCTCCTGTTGCTGGCGGCCGCCGGCCTCGGAGGA
GTGGCGGAGGGGCCAGGGCTAGCCTTCACCGAGGATGTGCTGAGCGTGTTCGGCGCGA
ATCTGAGCCTGTCGGCGGCGCAGCTCCAGCACTTGCTGGAGCAGATGGGAGCCGCCTC
CCGCGTGGGCGTCCCGGAGCCTGGCCAGCTGCACTTCAACCAGTGTTTAACTGCTGAA
GAGATCTTTTCCCTTCATGGCTTTTCAAATGCTACCCAAATAACCAGCTCCAAATTCT
C'rGTCATCTGTCCAGCAGTCTTACAGCAATTGAACTT'rCACCCATGTGAGGATCGGCC
CAAGCACAAAACAAGACCAAGTCATTCAGAAGTTTGGGGATATGGATTCCTGTCAGTG
ACGATTATTAATCTGGCATCTCTCCTCGGATTGATTTTGACTCCACTGATAAAGAAAT
CTTATTTCCCAAAGATTTTGACCTTTTTTGTGGGGCTGGCTATTGGGACTCTTTTTTC
AAATGCAATTTTCCAACTTATTCCAGAGGCATTTGGATTTGATCCCAAAGTCGACAGT
TATGTTGAGAAGGCAGTTGCTGTGTTTGGTGGATTTTACCTACTTTTCTTTTTTGAAA
GAATGCTAAAGATGTTATTAAAGACATATGGTCAGAATGGTCATACCCACTTTGGAAA
TGATAACTTTGGTCCTCAAGAAAAAACTCATCAACCTAAAGCATTACCTGCCATCAAT
GGTGTGACATGCTATGCAAATCCTGCTGTCACAGAAGCTAATGGACATATCCATTTTG
ATAATGTCAGTGTGGTATCTCTACAGGATGGAAAAAAAGAGCCAAGTTCATGTACCTG
TTTGAAGGGGCCCAAACTGTCAGAAATAGGGACGATTGCCTGGATGATAACGCTCTGC
GATGCCCTCCACAATTTCATCGATGGCCTGGCGATTGGGGCTTCCTGCACCTTGTCTC
TCCTTCAGGGACTCAGTACTTCCATAGCAATCCTATGTGAGGAGTTTCCCCACGAGTT
AGGAGACTTTGTGATCCTACTCALATGCAGGGATGAGCACTCGACAAGCCTTGCTATTC
ACTTCCTTCTGCATGTTCCTGCTATGTTGGCTAGCTTTTGGCATTTTGGTGGGCA
ACAATTTCGCTCCAAATATTATATTrGCACTTGCTGGAGGCATGTTCCTCTATATTTC
TCTGGCAGATATGT=TCCAGAGATGAATGATATGCTGAGAGAAAAGGTAACTGGAAGA
AAALACCGATTTCACCTTCTTCATGATTCAGAATGCTGGAATGTTAACTGGATTCACAG
CCATTCTACTCATTACCTTGTATGCAGGAGAAATCGAATTGGAGTAATAGAAAATG
Start: ATG at 289 1lORF Stop: TAA at 1669 ID NO:56 1460 aa IMW at 49630.OkD NOVI 6a, MAPGRAVAGLLLLAAAGLGGVAEGPGLAFSEDVLSVFGANLSLSAAOLQHLLEQMGAA CG92489-01 Protein SRVGVPEPGQLHFNQCLTAEEIFSLHGFSNATQITSSKFSVICPAVLOQLNFHPCEDR Sequence PKHKTRPSHSEVWGYGFLSVTI INLASLLGLILTPLIKKSYFPKILTFFVGLAIGTLF SNAI FOLI PEAFGFDPKDSYVEKAVAVFGGFYLLFFFER4LK1LLKTYGQNJGHTHFG
NDNFGPOEKTHQPKALPAINGVTCYANPAVTEANGHIHFDNVSVVSLQDGKKEPSSCT
CLKGPKLSEIGTIAWMITLCDALHNFIDGLAIGASCTLSLLQGLSTSIAILCEEFPHE
LGDFVILLNAGMSTRQALLFNFLSACSCYVGLAFGILVGNNFAPNI IFALAGGMFLYI SLADMFPEMNDMLREKVTGRKTDFTFFMIQNAGMLTCF-rAILLITLYAGEI ELE ID NO:57 -TI326 bp NOVi 6b, GGATCCGAGGGGCCAGGGCTAGCCTTCAGCGAGGATGTGCTGAGCGTGTTCGGCGCGA 228495688 DNA ATCTGAGCCTGTCGGCGGCGCAGCTCCAGCACTTGCTGGAGCAGATGGGAGCCGCCTC Sequence CCGCGTGGGCGTCCCGGAGCCTGGCCAGCTGCACTTCAACCAGTGTTTAACTGCTGAA
GAGATCTTTTCCCTTCATGGCTTTTCAAATGCTACCCAAATAACCAGCTCCAAATTCT
CTGTCATCTGTCCAGCAGTCTTACAGCAATTGAACTTTCACCCATGTGAGGATCGGCC
CAAGCACAAAACAAGACCAAGTCATTCAGAAGTTTGGGGATATGGATTCCTGTCAGTG
ACGATTATTAATCTGGCATCTCTCCTCGGATTGATTTTGACTCCACTGATAAAGAAAT
CTTATTTCCCAALAGATTTITGACC=~TTTGTGGGGCTGGCTATTGGGACTCTTTTTTC
AAATGCAATTTTCCAACTTATTCCAGAGGCATTTGGATTTGATCCCAAAGTCGACAGT
TATGTTGAGAACGCAGTTGCTGTCTTTGGTGGATTTTACCTACTTTTC =TTTAAA
GAATGCTAAAGATGTTATTAAAGACATATGGTCAGAATGGTCATACCCACTTTGGAAA
TGATAACTTTGGTCCTCAAGAAAAAACTCATCAACCTAAAGCATTACCTGCCATCAAT
GGTGTGACATGCTATGCAAATCCTGCTGTCACAGAAGCTAATGGACATATCCATTTTG
ATAATGTCAGTGTGGTATCTCTACAGGATGGAAAAAAAGAGCCAAGTTCATGTACCTG
TTTGAAGGGGCCCAAACTGTCAGAAATAGGGACGATTGCCTGGATGATAACGCTCTGC
GATGCCCTCCACAATTTCATCGATGGCCTGGCGATTGGGGCTTCCTGCACCTTGTCTC
TCCTTCAGGGACTCAGTACTTCCATAGCAATCC1'ATGTGAGGAGTTTCCCCACGAGTT
AGGAGACTTTGTGATCCTACTCAATGCAGGGATGAGCACTCGACAAGCCTTGCTATTC
AACTTCCTTTCTGCATGTTCCTGCTATGTTGGGCTAGCTTTTGGCATTTTGGTGGGCA
00 00
ACAATTTCGCTCCAAATATTATATTTGCACTTACTGGAGGCATGTTCCTCTATATTTT
TCTGGCAGATA'rGTTTCCAGAGATGAATGATATGCTGAGAGAAAAGGTAACTGGAAGA
AAAACCGATTTCACCTTCTTCATGATTCAGAATGCTGGAATGTTAACTGGATTCACAG
CCATTCTACTCATrACCTTGTATGCAGGAGAAATCGAATTGGAGCTCGAG QRF Start: at 1 ORF Stop: end of sequence ID NO:58 442 aaMWat 48175.2kD NOVi 6b, GSEGPGLAFSEDVLSVFGANLSLSAAQLQHLLEQMGAASRVGVPEPGQLHFNQCLTAE 228495688 Protein El FSLHGFSNATQITSSKFSVICPAVLQQLNFHPCEDRPKHKTRPSHSEVWGYGFLSV SequnceTI INLASLLGLIILTPLIKKSYFPKILTFFVGLAIGTLFSNAIFQLIPEAFGFDPKVDS Sequence LLFFRMKMLKYGQNGHTHFGNDNFGPQEKTHQPKALPAI GVTCYA}JPAVTEANGMIHFDNVSVVSLQDGKKE PSSCTCLKGPKLSEIGTIAWMITLC DALHNFIDGLAIGASCTLSLLQGLSTS IAILCEEFPHELGDFVILLNAGMSTRQALLF NFLSACSCYVGLAFGILVGNNFAPNI IFALTGGMFLYI FLADNIFPEMNDMLREKVTGR KTDFTFFMIQNAGMLTGFTAILLITLYAGE IELELE ID NO:59 1326 bp NOV 16c, GGATCCGAGGGGCCAGGGCTAGCCTTCAGCGAGGATGTGCTGAGCGTGTTCGGCCCGA 228495693 DNA ATCTGAGCCTGTCGGCGGCGCAGCTCCAGCACTTGCTGGAGCAGATGGGAGCCGCCTC Sequence CCGCGTGGGCGTCCCGGAGCCTGGCCAGCTGCACTTCAACCAGTGTTTAACTGCTGAA
GAGATCTTTTCCCTTCATGGCTTTTCAAATGCTACCCAAATAACCAGCTCCAAATTCT
CTGTCATCTGTCCAGCAGTCTTACAGCAATTGAACTTTCACCCATGTGAGGATCGGCC
CAAGCACAAAACAAGACCAAGTCATTCAGAAGTTTGGGGATATGGATTCCTGTCAGTG
ACGATTATTAATCTGGCATCTCTCCTCGGATTGATTTTGACTCCACTGATAAAGAAAT
CTTATTTCCCAAAGATTTTGACCTTITTTrGTGGGGCTGGCTATTGGGACTCTTTTTTC
AAATGCAATTTTCCAACTTATTCCAGAGGCATTTGGATTTGATCCCAAAGTCGACAGT
TATGTTGAGAAGGCAGTTGCTGTGTI'TGGTGGATTTTACCTAC =TTCTTTTTTGAAA
GAATGCTAAAGATGTTATTAAAGACATATGGTCAGAATGGTCATACCCACTTTGGAAA
TGATAACTTTGGTCCTCAAGAAAAAACTCATCAACCTAAAGCATTACCTGCCATCAAT
GGTGTGACATGCTATGCAAATCCTGCTGTCACAGAAGCTAATGGACATATCCATTTTG
ATAATGTCAGTGTGGTATCTrCTACAGGATGGAAAAAAAGAGCCAAGTTCATGTACCCG
=TTGAAGGGGCCCAAACTGTCAGAAATAGGGACGATTGCCTGGATGATAACGCTCTGC
GATGCCCTCCACAATTTCATCGATGGCCTGGCGATTrGGGGCTTCCTGCACCTTGTCTC
TCCTTCAGGGACTCAGTACTTCCATAGCAATCCTATGTGAGGAGTTTCCCCACGAGTT
AGGAGACTTTGTGATCCTACTCAATGCAGGGATGAGCACTCGACAAGCCTTGCTATTC
AACTTCCTTTCTGCATGTTCCTGCTATGTTGGGCTAGC TGGCATTTTGGTGGGCA
ACAATTTCGCTCCAAATATTATATTTGCACTTGCTGGAGGCATGTTCCTCTATATTTC
TCTGGCAGATATGTTTCCAGAGATGAATGATATGCTGAGAGAAAAGGTAACTGGAAGA
AAAACCGATTTCACCTTCTTCATGATTCAGAATGCTGGAATGTTAACTGGATTCACAG
CCATTCTACTCATTACCTTGTATGCAGGAGAAATCGAATTGGAGCTCGAG
Start: at I IORF Stop: end of sequence ID NO:60 1442 aa JMW at 481 38.2kD NOVI 6c, GSEGPGLAFSEDVLSVFGANLSLSAAQLQHLLEQMGAASRVGVPEPGQLHFNQCLTAE 228495693 Protein El FSLHGFSNATOITSSKFSVI CPAVLQQLNFHPCEDRPKHKTRPSHSEVWGYGFLSV SequnceTI INLASLLGLILTPLIKKSYFPKILTFFVGLAIGTLFSNAIFQLIPEAFGFDPKVDS SequenceYVEKAVAVFGGFYLLFFFERMLKMLLKTYGQNGHTHFGNDNFGPQEKTHQPKALPAIN GV'rCYANPAVTEANGHIHFDNVSVVSLQDGKKEPSSCTRLKGPKLSEIGTIAWMI TLC DALHNFIDGLAIGASCTLSLLQGLSTS IAILCEEFPHELGDFVILLNAGMSTRQALLF NFLSACSCYVGLAFGILVGNNFAPNI IFALAGGMFLYISLADMFPEMNDMLREKVTGR KTDFTFFMIQNAGMLTGFTAILLITLYAGE IELELE ID NO:61 11326 bp NOVI 6d, GGATCCGAGGGGCCAGGGCTAGCCTTCAGCGAGGATGTGCTGAGCGTGTTCGGCGCGA 228495882 DNA ATCTGAGCCTGTCGGCGGCGCAGCTCCAGCACTTGCTGGAGCAGATGGGAGCCGCCTC Sequence CCGCGTGGGCGTCCCGGAGCCTGGCCAGCTGCACTTCAACCAGTGTTTAACTGCTGAA
GAGATCTTTCCCTTCATGGCTTTTCAAATGCTACCCAAATAACCAGCTCCAAATTCT
CTGTCATCTGTCCAGCAGTCTTACAGCAATTGAACTTTCACCCATGTGAGGATCGGCC
CA.AGCACAAAACAAGACCAAGTCATTCAGAAGTTTGGGGATATGGATTCCTGTCAGTG
ACGATTATTAATCTGGCATCTCTCCTCGGATTGATTTTGACTCCACTGATAAAGAAAT
CTTATTTCCCAAAGATTTTGACCTTTTTTGTGGGGCTGGCTATTGGGACTCTTTTTTC
00 00
AAATGCAATTTTCCAACTTATTCCAGAGGCATTTGGATTTGATCCCAAAGTCGACAGT
TATGTTGAGAAGGCAGTTGCTGTGTTTGGTGGATTTTACCTACTTTTCTT7TTTGAAA GAATGCTAAAGATGTTATTAA-AGACATATGGTCAGAATGGTCATACCCACT1'TGGAAA
TGATAACTTTGGTCCTCAAGAAAAAACTCATCAACCTAAAGCATTACCTGCCATCAAT
GGTGTGACATGCTATGCAAATCCTGCTGTCACAGAAGCTAATGGACATATCCATTTTG
ATAATGTCAGTGGTATCTCTACAGGATGGAAAAAAAGAGCCAAGTTCATATACCTG
TTTGAAGGGGCCCAAACTGTCAGAAATAGGGACGATTGCCTGGATGATAACGCTCTGC
GATGCCCTCCACAATTTCATCGATGGCCTGGCGATTGGGGCTTCCTGCACCTTGTCTC
TCCTTCAGGGACTCAGTACTTCCATAGCAATCCTATGTGAGGAGTTTCCCCACGAGTT
AGGAGACTTTGTGATCCTACTCAATGCAGGGATGAGCACTCGACAAGCCTTGCTATTC
AACTTCCTTTCTGCATGTTCCTGCTATGTTGGGCTAGCTTTTGGCATTTTGGTGGGCA
ACAATTTCGCTCCAAATATTATATTTGCACTTGCTGGAGGCATGTTCCTCTATATTTC
TCTGGCAGATATGTTTCCAGAGATGAATGATATGCTGAGAGAAAAGGTAACTGGAAGA
AAAACCc3ATrTCGCCTTCTTCATGATTCAGAATGCTGGAATGTTAACTGGATTCACAG
CCATTCTACTCATTACCTTGT.ATGCAGGAGAAATCGAATTGGAGCTCGAG
ORF Start: at 1 JORF Stop: end of sequence ID NO:62 1442 aa IMW at 48115.l1kD NOVi 6d, GSEGPGLAFSEDVLSVFGANLSLSAAQLQHLLEQMGAASRVGVPEPGQLHFNQCLTAE 228495882 Protein EIFSLHGFSNATQITSSKFSVICPAVLQQLNFHPCEDRPKHKTRPSHSEVWGYGFLSV SeueceTI INLASLLGLILTPLI KKSYFPKILTFFVGLAIGTLFS'AI FOLI PEAFGFDPKVDS
GVTCYANPAVTEANGHIHFDNVSWVSLQDGKKEPSSYTCLKGPKLSEIGTIAWMITLC
DALH.NFIDLAIASCTLSLLOGLSTSIAILCEEFPHELGDFVILLHAGMSTROALLF
NFLSACSCYVGLAFGILVGNNFAPNIIFALAGGMFLYISLADMFPEMNDMLREKVTGR
KTDFAFFMIQNAGMLTGFTAILLITLYAGEIELELE
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 16B.
Table 16B. Comparison of NOV16a against NOVI6b through NOV16d.
Protin equnceNOV16a Residues/ Identities/ Protin equnceMatch Residues Similarities for the Matched Region NOV16b 22..460 424/439 (96%) 2. .440 425/439 (96%) NOV16c 22..460 425/439 (96%) 2. .440 426/439 NOVI6d 22..460 424/439 (96%) 2. .440 425/439 (96%) Further analysis of the NOVI 6a protein yielded the following properties shown in Table 16C.
Table 16C. Protein Sequence Properties NOV16a PSort 0.6400 probability located in plasma membrane; 0.4600 probability located in Golgi analysis: body; 0.3700 probability located in endoplasmic reticulum (membrane); 0.1000 _________probability located in endoplasmic reticulum (lumen) SignalP Cleavage site between residues 23 and 24 analysis: A search of the NOVI 6a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1 6D.
Table 16D. Geneseq Results for NOV162 NOV16a Identities/ Geneseq ProteinlOrganisni/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAG8 1272 Human AFP protein sequence SEQ ID L..460 459/460 0.0 NO:62 Homo sapiens, 460 aa. 1L.460 459/460 (99%) W02001 29221I -A2, 26-APR-200 1] AAB95761 Human protein sequence SEQ ID 73..460 387/388 0.0 NO: 18686 Homo sapiens, 393 aa. 6..393 388/388 (99%) 07461 7-A2, 07-FEB-2001 AAB60496 Human cell cycle and proliferation protein 15..459 230/466 e-1 16 CCYPR-44, SEQ ID NO:44 Homo 75..536 3 15/466 (67%) sapiens, 53 7 aa. [W0200107471I-A2, 01 -FEB-200 I AAY05376 Human HCNW inducible gene protein, 15..459 230/466 e-1 16 SEQ ID NO 20 Homo sapiens, 531 aa. 69..530 3 15/466 (67%) [W0991 3075-A2, 18 -MAR- 1999] AAU30977 Novel human secreted protein #1468 15..459 224/466 e-1 Homo sapiens, 540 aa. 78..539 304/466 [W0200179449-A2, 25-OCT-2001)
I
In a BLAST search of public sequence databases, the NOVI 6a. protein was found to have homology to the proteins shown in the BLASTP data in Table 16E.
Table 16E. Public BLASTP Results for NOV16a Protein NOVI6a Identities/ Accssin Poten/rgaisn~enthResidues/ Similarities for Expect Accesor rtilraimLnt Match the Matched Value NumerResidues Portion Q9COK1 BCG INDUCED INTEGRAL L..460 460/460 (100%) 0.0 MEMBRANE PROTEIN BIGMO-103 L .460 460/460 (100%) (UP-REGULATED BY BCG-CWS) Homo sapiens (Human), 460 aa.
CAC38522 SEQUENCE 61 FROM PATENT L..460 459/460 0.0 WOO0129221 Homo sapiens (Human), L.460 459/460 (99%) 460 aa.
Q91W1O RIKEN CDNA 4933419D20OGENE -Mus L.460 411/462 0.0 musculus (Mouse), 462 an. 1L.462 431/462 Q9D5V4 4933419D20R1K PROTEIN Mus L .460 410/462 0.0 musculus (Mouse), 462 aa. L.462 43 1/462 (92%) Q9D426 L..460 410/462 0.0 niusculus (Mouse), 462 aa. 1L..462 143 1/462 1 PFam analysis predicts that the NOVIl6a. protein contains the domains shown in the Table 16F.
Table 16F. Domain Analysis of NOV16a Identities/ Pfamn Domain NOV16a Match Region Similarities Expect Value for the Matched Region______ Zip: domain 1 of 1 299..451 45/180 3.5e-26 1 116/180 EXAMPLE 17.
The NOV1 7 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 7A.
Table 17A. NOV17 Sequence Analysis ID NO:63 1037 bp NOVI 7a, AGCTCGTCGACCT1TTCTCTGAAGAGAAAATTGCTGTTGGGATGAAGCTTTGCAGCCT CG93008-01 DNA GCAGTCCTTGTACCCATTGTTCTCTTCTGTGAGCAGCATGTCTTCGCGTTTCAGAGTG Sequence GCCAAGTTCTAGCTGCTCTTCCTAGAACCTCTAGGCAAGTTCAAGTTCTACAGAATCT AAAAAACAAGTCCATTTrTTTGTAAATGCATCTGATGTCGACAATGTGAA-AGCCCATT
TAAATGTGAGCGGAATTCCATGCAGTGTCTTGCTGGCAGACGTGGAAGATCTTATTCA
ACAGCAGATTTCCAACGACACAGTCAGCCCCCGAGCCTCCGCArCGTACTAGAACAG
TATCACTCACTAAATGAAATCTATTCTTGGATAGAATTTATAACTGAGAGGCATCCTG
ATATGCTTACAAAAATCCACATCGGATCCTCATTTGAGAAGTACCCACTCTATGTTTT
AAAGGTTTCTGGAAAAGAACAAcGCAcGCCAAAAATGCCATATGGATTGACTGTGGACTT
TATCCTGAGTCAGAACCAGAAGTGAAGGCAGTGGCTAGTTTCTTGAGAAGAAATATCA
ACCAGATTAAAGCATACATCAGCATGCATTCATACTCCCAGCATATAGTGTTTCCATA
TTCCTATACACGAAGTAAAAGCAAAGACCATGAGGAACTGTCTCTAGTAGCCAGTGAA
GCAGTTCGTGCTATTGAGAAAATTAGTAAAAATACCAGGTATACACATGGCCATGGCT
CAGAAACCTTATACCTAGCTCCTGGAGGTGGGGACGATTGGATCTATGATTTGGGCAT
CAAATATTCGTTTACAATTGAACTTCGAGATACGGGCACATACGGATTCTTGCTGCCG
GAGCGTTACATCAAACCCACCTGTAGAGAAGCTTTTGCCGCTGTCTCTAAAATAGCTT
GGCATGTCATTAGGAATGTTTAATGCCCCTGATTTTATCATTCTGCTTCTC
Start: ATG at 41 1IORF Stop: TAA at 1007 ID NO:64 1322 aa JMW at 365 54.4kD NOV17a, MKLCSLAVLVPIVLFCEQHVFAFQSGQVLAALPRTSRQVQVLQNLTTTYEIVLWQPVT CG93008-01I Protein ADLIVKKKQVHFFVNASDVDNVKAHLNVSGI PCSVLLADVEDLIOOI SNDTVS PRAS SequenceASYYEQYHSLNEIYSWIEFITERHPDMLTKIHIGSSFEKYPLYVLKVSGKEOAAKNAI q WI DCGLYPESEPEVKAVASFLRRNINQI KAYI SHHSYSQHIVFPYSYTRSKSKDHEEL SLVASEAVRAIEKISKNTRYTHGHGSETLYLAPGGGDDWIYDLGI KYSFTI ELRDTGT YGFLLPERYI KPTCREAFAAVSKIAWHVIRNV ID NO:65 1132 bp NOVI 7b, AGCTCGTCGACCTTTCTCTGAAGAGAAAATTGCTGTTGGGATGAAGCTTTGCAGCCTT CG93008-02 DNA GCAGTCCTTGTACCCATTGTTCTCTTCTGTGAGCAGCATGTCTTCGCGTTTCAGAGTG Sequence GCCAAGTTCTAGCTGCTCTTCCTAGAACCTCTAGGCAAGTirCAAGTTCTACAGAATCT
TACTACAACATATGAGATTGTTCTCTGGCAGCCGGTAACAGCTGACCTTATTGTGAAG
AAAAAACAAGTCCATTTTTTTGTAAATrCCATCTGATGTCGACAATGTGAAAGCCCATT
TAAATGTGAGCGGAATTCCATGCAGTGTCTTGCTGGCAGACGTGGAAGATCTTATTCA
00
ACAGCAGATTTCCAACGACACAGTCAGCCCCCGAGCCTCCGCATCGTACTATGAACAG
TATCACTCACTAAATGAAATCTATTCTTGGATAGAATTTATAACTGAGAGGCATCCTG
ATATGCTTACAAAAATCCACATTGGATCCTCATTTGAGAAGTACCCACTCTATGTTTT
AAAGGGTTTCTTTGAGCAGGTTI'CTGGAAAAGAACAAGCAGCCAAAAATGCCATATGG
ATTGACTGTGGAATCCATGCCAGAGAATGGATCTCTCCTGCTTTCTGCTTGTGGTTCA
TAGGCCATATAACTCAATTCTATGGGATAATAGGGCA.ATATACCAATCTCCTGAGGCT
TGTGGATTCTATGTTATGCCGGTGGTAATGTGGATGGTTATGACACTCATGGAAA
AAGAATCGAATGTGGAGAAAGAACCGTTCTTTCTATGCGAACAATCATTGCATCGGAA
CAGACCTGAATAGGAACTTTGCTTCCAAACACTGGTGTGAGGAAGGTGCATCCAGTTC
CTCATGCTCGGAAACCTACTGTGGACTTTATCCTGAGTCAGAAACCTTATACCTAGCT
CCTGGAGGTGGGGACGATTGGATCTATGATTTGGGCATCAAATATTCGTTTACAATTG
AACTTCGAGATACGGGCACATACGGATTCTTGCTGCCGGAGCGTTACATCAAACCCAC
CTGTAGAGAAGCTTTTGCCGCTGTCTCTAAAATAGCTTGGCATGTCATTAGGAATGTT
TAATGCCCCTGATTTTATCATTCTGCTTCC
ORE Start: ATG at 41 1 ORF Stop: TAA at 1103 ID NO:66 1354 aa TMW at 40556.9kD NOVI7h, MKLCSLAVLVPIVLFCEQHVFAFQSGQVLAALPRTSRQVQVLQNLTTTYEIVLWQPVT CG93008-02 Protein ADLIVKKKQVHFFVNASDVDNVKAMLNVSGI PCSVLLAflVEDLIQQQI SNDTVSPRAS Sequence ASYYEQYHSLNEIYSWIEFITERHPDMLTKIHIGSSFEKYPLYVLKGFFEQVSGKEOA AKNAIWIDCGIHAREWIS PAFCLWFIGHITQFYGI IGQYTNLLRLVDFYVMPVVNVDG
YDYSWKKNRNMWRKNRSFYANNHCIGTDLNRNFASKHWCEEGASSSSCSETYCGLYPES
ETLYLAPGGGDDWIYDLGI KYSFTIELRDTGTYGFLLPERYIKPTCREAFAAVSKIAW
HVIRNV
ID NO:67 1743 bp NOVi 7c, AGAGAAAATTGCTGTTGGGATGAAGCTTTGCAGCCTTGCAGTCCTTGTACCCATTGTT1 CG93008-03 DNA CTCTTCTGTGAGCAGCATGTCTTCGCCTTTCAGAGTGGCCAACTTCTAGCTGCTCTTC SequenceCTAGACCTCTAGGCAAGTTCAAGTTCTACAGAATCTTACTACAACATATGAGATTGT q TCTCTGGCACCCGTAACAGCTGACCTTATTGTGA-AGAAAAAACAAGTCCATTTTTTT
GTAAATGCATCTGATGTCGACAATGTGAAAGCCCATTTAAATGTGAGCGGAATTCCAT
GCAGTGTCTTGCTGGCAGACGTGGAAGATCTTATTCAACAGCAGATTTCCAACGACAC
AGTCAGCCCCCGAGCCTCCGCATCGTACTATGAACAGTATCACTCACTAAATGAAATC
TATTCTTGGATAGAATTTATAACTGAGAGGCATCCTGATATGCTTACAAAAATCCACA
TTGGATCCTCATTI'GAGAAGTACCCACTCTATGTTTTAAAGGGTTTCTTTGAGCAGGT
TTCTGGAAAAGAACAAGCAGCCAAAAATGCCATATGGATTGACTGTGGAATCCATGCC
AGAGAATGGATCTCTCCTGCTTTCTGCTTGTGGTTCATAGGCCATATAACTCAATTCT
ATGGGATAATAGGGCAATATACCAATCTCCTGAGGCTTGTGGATTTCTATGTTATGCC
AGTGGTTAATGTGGATGG 1TATGACTACTCATGGAAAAAGAATCGAATGTGGAGAAAG
AACCGTTCTITTCTATGCGAACAATCATTCCATCGGAACAGACCTGAATAGGAACTTTG
CTTCCAAACACTGGTGTGAGGAAGGTGCATCCAGTTCCTCATGCTCGGAAACCTACTG
TGGACTTTATCCTGAGTCAGAACCAGAAGTGAAGGCAGTGGCTAGTTTCTTGAGAAGA
AATATCAACCAGATTAAAGCATACATCAGCATGCATTCATACTCCCAGCATATAGTGT
TTCCATATTCCTATACACGAAGTAAAAGCAAAGACCATGAGGAACTGTCTCTAGTAGC
CAGTGAAGCAGTTCGTGCTATTGAGAAAATTAGTAAAAATACCAGGTATACACATGGC
CATGGCTCAGAAACCTTATACCTAGCTCCTGGAGGTGGGGACGATTGGATCTATGATT
TGGGCATCAAATATTCGTTTACAATTGAACTTCGAGATACGGGCACATACGGATTCTT
GCTGCCGGAGCGTTACATCAAACCCACCTGTAGAGAAGCTTTTGCCGCTGTCTCTAAA
ATAGCTTGGCATGTCATTAGGAATGTTTAATGCCCCTGAT=TTATCATTCTGCTTCCG
TATTTTAATTTACTGATTCCAGCAAGACCAAATCATTGTATCAGATTATTTTTAAGTT
TTATCCGTAGTTTTGATAAAAGATTTTCCTATTCCTTGGTTCTGTCAGAGAACCTAAT
AAGTGCTACTTTGCCATTAAGGCAGACTAGGGTTCATGTCTTTTTACCCTTTAAAAAA
AAATTGTAAAAGTCTAGTTACCTACTTTTTCTTTGATTTTCGACGTTTGACTAGCCAT
CTCAAGCAACTTTCGACGTITGACTAGCCATCTCAAGCAAGTTTAATCAAAGATCATC
TCACGCTGATCATTGGATCCTACTCAACAAAAGGAAGGGTGGTCAGAAGTACATTAAA
GATTTCTGCTCCAAATTTTCAATAAATTTCTTCTTCTCCTTTflflAAAAAAAAAA
AAA
Start: ATG at 20 lORE Stop: TAA at 1304 TD NO:68 1428 aa IMW at 49032.4kD 00 00 NOVi 7c, MKLCSLAVLVPIVLFCEQHVFAFQSGQVLAALPRTSRQVQVLQNLTTTYEIVLWQPVT CG93008-03 Protein ADLIVKKKQVHFFVNASDVDNVKAHiLNVSG IPCSVLLADVEDLIOQQI SNDTVS PRAS SequnceASYYEQYHSLNE IYSWI EFITERMPDMLTKIHIGSSFEKYPLYVLKGFFEQVSGKEQA SequenceAKNAIWIDCGIHAREWI SPAFCLWFIGHITQFYGI IGQYTNLLRLVDFYVMPVVNVDG
YDYSWKKNRMWRKNRSYANNHCIGTDLNRNFASKHWCEEGASSSSCSETYCGLYPES
EPEVKAVASFLRRNINQI KAYISMHSYSQHIVFPYSYTRSKSKDHEELSLVASEAVRA IEKISKNTRYTHGHGSETLYLAPGGGDDWIYDLGI KYSFTIELRDTGTYGFLLPERYI
KPTCREAFAAVSKIAWHVIRNV
ID NO:69 1344 bp NOVI 7d, GCCCTTTCTGAAGAGAAAATTGCTGTTGGGATGAAGCTTTGCAGCC~rGCAGTCCTTG CG93008-04 DNA TACCCATTGTTCTCTTCTGTGAGCAGCATGTCTTCGCGTTTCAGAGTGGCCAAGTTCT SequenceAGCTGCTCTTCCTAGAACCTCTAGGCAAGTTCAAGTTCTACAGAATCTTACTACAACA q TATGAGATTGTTCTCTGGCAGCCGGTAACAGCTGACCTTATTGTGAAGAAAAAACAAG
TCCATTTTTTTGTAAATGCATCTGATGTCGACAATGTGAAAGCCCATTTAAATGTGAG
CGGAATTCCATGCAGTGTCTTGCTGGCAGACGTGGAAGATCTTATTCAACAGCAGATT
TCCAACGACACAGTCAGCCCCCGAGCCTCCGCATCGTACTATGAACAGTATCACTCAC
TAAATGAAATCTATTCTGGATAGAATTTATAACTGAGAGGCATCCTGATATGCTTAC
AAAAATCCACATTGGATCCTCATTTGAGAAGTACCCACTCTATGTTTTAAAGGGTTTC
TTTGAGCAGGTTTICTGGAAAAGAACAAGCAGCCAAAAATGCCATATGGATTGACTGTG
GAATCCATGCCAGAGAATGGATCTCTCCTGCTTTCTGCTTGTGGTTCATAGGCCATAT
AACTCAATTCTATGGG3ATAATAGGGCAATATACCAATCTCCTGAGGCTTGTGGATTTC TATG'rrATGCCGGTGGTTAATGTGGATGGTTATGACTACTCATGGAAAAAGAATCGAA
TGTGGAGAAAGAACCGTTCTTTCTATGCGAACAATCATTGCATCGGAACAGACCTGAA
TAGGAACTTTGCTTCCAAACACTGGTGTGAGGAAGGTGCATCCAGTTCCTCATGCTCG
GAAACCTACTGTGGACTTTATCCTGAGTCAGAACCAGAAGTGAAGGCAGTGGCTAGTT
TCTGAGAAGAAATATCAACCAGATrAAAGCATACATCAGCATGCATTCATACTCCCA GCATATAGTGrrTCCATATTCCTATACACGAAGTAAAAGCAAAGACCATGAGGAACTG
TCTCTAGTAGCCAGTGAAGCAGTTCGTGCTATTGAGAAAATTAGTAAAAATACCAGGT
ATACACATGGCCATGGCTCAGAAACCTTATACCTAGCTCCTGGAGGTGGGGACGATTG
GATCTATGATTTGGGCATCAAATATTCGTTTACAATTGAACTTCGAGATACGGGCACA
TACGGATTCTTGCTGCCGGAGCGTTACATCAAACCCACCTGTAGAGAAGCTTTTGCCG
CTGTCTCTAAAATAGCTTGGCATGTCATTAGGAATGTTTAATGCCCCTGATTTTATCA
TTCTGCTTCT
Start: ATG at 31 IORF Stop: TAA at 1315 ID NO:70 1428 aa IMW at 49032.4kD NOV17d, MKLCSLAVLVP IVLFCEQHVFAFQSGQVLAALPRTSRQVQVLQNLTTTYE IVLWQPVT CG93008-04 Protein AfLIVKKKQVHFFVNASDVDNVKAHLANVSGI PCSVLLADVEDLIQQQI SNDTVSPRAS Sequence ASYYEQYHSLNE IYSWIEFITERHPDMLTKIHIGSSFEKYPLYVLKGFEQVSGKEQA AKNAIWIDCGIHAREWISPAFCLWFIGH ITQFYGI IGQYTNLLRLVDFYVMPVVNVDG
YDYSWKKNRMRKNRSFYANNHCIGTDLNRNFASKHWCEEGASSSSCSETYCGLYPES
EPEVKAVASFLRRNINQI KAYISMHSYSQHIVFPYSYTRSKSKDHEELSLVASEAVRA I EKI SKNTRYTHGHGSETLYLAPGGGDDWIYDLGI KYSFTI ELRDTGTYGFLLPERYI
KPTCREAFAAVSKIAWHVIRNV
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 17B.
Table 17B. Comparison of NOV17a against NOVI7b through NOV17d.
Protin equnceNOV17a Residues/ Identities/ Protin equnceMatch Residues Similarities for the Matched Region NOV17b 1..322 259/356 (72%) 1..354 274/356 (76%) NOV17c L..181 179/186 (96%) 1.186 1181/186 (97%) NOVI7d 11-181 1179/186 (96%) Further analysis of the NOVI 7a protein yielded the following properties shown in Table 17C.
Table 17C. Protein Sequence Properties NOV17a PSort 0.6424 probability located in outside; 0.1900 probability located in lysosome (lumen); analysis: 0.1882 probability located in microbody (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane) SignalP Cleavage site between residues 23 and 24 Ianalysis: I A search of the NOVI17a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1 7D.
Table 17D. Geneseq Results for NOV17a NOV17a Identities/ Geneseq Protein/OrganismfLength [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AABl 1457 Human brain carboxypeptidase B protein L..181 178/181 e-100 Homo sapiens, 360 aa. L.181 180/181 (99%) [W0200066717-Al, 09-NO V-2000] AAW92270 Human plasma carboxypeptidase B L..181 178/181 e-100 (PCPB) thrl47 Homo sapiens, 423 aa. 1..181 180/181 (99%) 10-DEC.1998] AAW14733 Human plasma carboxypeptidase B L..181 178/18 1 e-100 H6mo sapiens, 423 aa. [US5593674-A, L.181 180/181 (99%) 14-JAN.1997]____ AAR90293 Human plasma carboxypeptidase B L.181 178/181 e-100 Homo sapiens, 423 aa. [US547490 I1-A, 1-.181 180/181 (99%) AAR36273 Human plasma carboxypeptidase B L..181 178/181 e-100 Homo sapiens, 423 aa. [US5206161-A, L.181 180/181 (99%) 27-APR-I1993] I___I In a BLAST search of public sequence databases, the NOVIl7a protein was found to have homology to the proteins shown in the BLASTP data in Table 1 7E.
Table 17E. Public BLASTP Results for NOV17a Protein NOVl7a Identities! xpc Accession Protein/Organisnul~ngth Residues/ Similarities for Expue NumberVau 00 Residues Portion Q961Y4 CARBOXYPEPTIDASE B2 (PLASMA) L..181 179/181 e-100 Homo sapiens (Human), 423 aa. L.181 181/181 (99%) Q9NTI8 BA1391-14.2 (CARBOXYPEPTIDASE B2 L..181 179/181 e-100 (PLASMA)) Homo sapiens (Human), 198 L.181 181/181 (99%) aa (fragment).
Q9P2Y6 CARBOXYPEPTIDASE B-LIKE PROTEIN L.181 178/181 le-99 Homo sapiens (Human), 360 aa. L.181 181/181 (99%) Q15114 PCPB PROTEIN Homo sapiens (Human), L.181 178/181 2e-99 423 aa. L.181 180/181 (99%) Q9J1-ll6 CARBOXYPEPTIDASE R 1..181 147/181 8e-80 (THROMBIN-ACTIVATABLE L..180 164/181 FIBRINOLYSIS INHIBITOR) (I1I 10032P04R1K PROTEIN) Mus musculus (Mouse), 422 aa.
PFam analysis predicts that the NOVI 7a protein contains the domains shown in the Table 17F.
Table 17F. Domain Analysis of NOVI7a Identities/ Pfamn Domain NOV17a Match Region Similarities Expect Value for the Matched Region PropepMl4: domain I of 1 27..106 30/82 9.lc-38 79/82 Zn-carbOpept: domain I of 2 121.179 20/59 9.1e-13 46/59 Zn--carbOpept: domain 2 of 2 182..306 66/1 39 8.2e-42 99/139 EXAMPLE 18.
T1he NOVI18 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 8A.
Table 18A. NOV18 Sequence Analysis ID NO:71 1187 bp NOVi 8a, TCTACTATGGTGGCCAAAGTTTCTCAGGTAGCAGTAAGATGGCTT=TTAGGATTGGTC CG93252-0 1 DNA TAATCAGATCCTCATTTCTTTTCCCTTCCTAGGTTTTGAAACATGAATCCTTCACTCC Sequence TCTGTTTTGCGGTACTCGTGCACcrGTAAT~
AGATCAGTGGAAGGCAAAGCACAAGAGATTATATGGCATGAATGAAGAAGGATGGAGG
AGAGCAGTGTGGCAGAACATGAAGATGATTGAGCAGCACAATCAGGAATACAGGGAAG
GGAAACACAGCTTCACAATGGCCATGAACGCCTTTGGAGAAATGACCAGTGAAGAATT
CAGGCAGGTGATGAATGGCTTTCAAAACCGTAAGCCCAGGAAGGGGAAAGTGTTCCAG
GAACCTCTGTTTATGAGGCCCCCAGATCTGTGGATTGGAGAGAGAAAGGCTACGTGA
CTCCTGTGAAGAATCAGGGTCAGTGTGGTTCTTGTTGGGCTTTTAGTGCTACTGGTGC
TCTTGAAGGACAGATGTTCCGGAAAACTGGGAGGCTTATCTCACTGAGTGAGCAGAAT
CTGGTAGACTGCTCTGGGCCTCAAGGCAATGAAGGCTGCAATGGTGGCCTAATGGATT
00
ATGCTTTCCAGTATGTTCAGGATAATGGAGGCCTGGACTCTGAGGAATCCTATCCATA
TGAGGCAACAGAAAAAGCCTGTAGGTACAATCCCAAGTATTCTGCTACTAATGACACT
GGGTACATGCAAATACTCCCTGTGGAAGAGAAGGCCCTAATGAAGGCTGTGGCAACTG
TGGGGCGCATCTCTGCTGTTGTTTATGGACTTCTTGATTCCTTCTGGTCCTATAAAAA
AGGCATTTATTTTGAGCCAGACTGTAGCAGTGAAGACATGGATCATGGTGTGCTGGTG
GTTGGCTACGGATTTGAAAGCACAGAATCAGATAACAATAAATATTGGCTGGTGAAGA
ACAGCTGGGGTGAAGAATGGGGCATGGGTGGCTACGTAAAGATGGCCAAAGACCGGAG
AAACCATTGTGGAATTGCCTCAGCAGCCAGCTACCCCACTGTGTGAGCTGGTGGACGG
TGATGAGGAAGGACTTGACTGGGGATGGCGCATGCATGGGAGGAATTCATCTTCAGTC
TACCAGCCCCCGCTGTGTCGGATACAC
ORE Start: ATG at 10 1 1 ORE Stop: TGA at 108 8 D NO:72 1329 aa IMW at 37307.8kD NOVI 8a, MNSLAFLLSSTDSDWAKKLGNEWRVQMMEH CG93252-01 Protein QEYREGKHSFTMAMNAFGEMTSEEFRQVMNGFQNRKPRI(GKVFQEPLFYEAPRSVDWR SequnceEKGYV'rPVKNQGQCGSCWAFSATGALEGQMFRKTGRLISLSEQNLVDCSGPQGNEGCN q GGLMDYAFQYVQDNGGLDSEESYPYEATEKACRYNPKYSATNDTGYMQILPVEEKALM KAVATVGRISAVVYGLLDS FWSYKKGIYFEPDCSSEDMDHGVLVVGYGFESTESDNNK
YWLVKNSWGEEWGMGGYVKAKDRRNHCGIASAASYPTV
ID NO:73 1157bp NOV 18b, TCTACTATGGTGGCCAAAGTTTCTCAGGTAGCAGTAAGATGGCTTTTTAGGATTGGTC CG93252-02 DNA TAATCAGATCCTCATTCTTTTCCCTTCCTAGGTTTTGA.AACATGAATCCTTCACTCC Sequence TCCTTGCTGTCTTTTGCCTGAGATTAGCCTCAGCTAGTCTAACACTTGATCACAGTI'
AGATCAGTGGAAGGCAGCACAAGAATTATATGGCATCTAGAAGATCAG
AGAGCAGTGTGGCAGAACATGAAGATGATTGAGCAGCACAATCAGGAATACAGGGAAG
GGAAACACAGCTTCACAATGGCCATGAACGCCTTTGGAGAAATGACCAGTGAAGAATT
CAGGCAGGTGATGAATGGCTTTCAAAACCGTAAGCCCAGGAAGGGGAAAGTGTTCCAG
GAACCTCTGTTTTATGAGGCCCCCAGATCTGTGGATTGGAGAGAGAAAGGCTACGTGA
CTCCTGTGAAGAATCAGGGTCAGTGTGGTTCTTGTTGGGCTTTTAGTGCTACTGGTGC
TCTTGAAGGACAGATGTTCCGGAAAACTGGGAGGCTTATCTCACTGAGTGAGCAGAAT
CTGGTAGACTGCTCTGGGCCTCAAGGCAATGAAGGCTGCAATGGTGGCCTAATGGATT
ATGCTTTCCAGTATGTTCAGGATAATGGAGGCCTGGACTCTGAGGAATCCTATCCATA
TGAGGCAACAGAAAAAGCCTGTAGGTACAATCCCAAGTATTCTGCTACTAATGACACT
GGGTACATGCAAATACTCCCTGTGGAAGAGAAGGCCCTAATGAAGGCTGTGGCAACTG
TGGGGCGCATCTCTGCTGTTGTTTATGGACTTCTTATTCCTTCTGTCCTATAAAA
AGGCATTTATTTTGAGCCAGACTGTAGCAGTGAAGACATGGATCATGGTGTGCTGGTG
GTTGGCTACGGATTTCAAAGCACAGAATCAGATAACAATAAATATTGGCTGGTGAAGA
ACGATTGGAGAGAGAAAGGCTACGTGACTCCTGTGAAGGATCAGGTAAGACAGTGTCA
GATTCAGACCTCCCATCTCCCCAGGAAAGCCAAGAGGTGATCGACCTCTTTGCTTTAG
TGGAGTGTAGAACAACTTGCAGTTCATAGTATTCAGAAAGATACTGTTTCA
ORF Start: ATG at 101 1lORE Stop: TGA at 1082 SEQ ID NO:74 1327 aa IMW at 37444.OkD NOVI 8b, MNPSLLLAVFCLRLASASLTLDHSLDQWKAKHKRLYGMNEEGWRRAVWQNMKIMIEQHN CG93252-02 Protein OEYREGKHSFTMAMNAFGEMTSEEFRQVMNGFQNRKPRKGKVFQEPLFYEAPRSVDWR Sequence EKGYVTPVKNQGQCGSCWAFSATGALEGQMFRKTGRLI
SLSEQNLVDCSGPQGNEGCN
GGLMDYAFQYVQDNGGLDSEESYPYEATEKACRYNPKYSATNDTGYMQILPVEEK<ALM
KAVATVGRI SAVVYGLLDS1FWSYKKGIYFEPDCSSEDMDHGVLVGYGFESTESDNNK
YWLVKNDWREKGYVTPVKDQVRQCQIQTSHLPRKAKR
11031bp NOVI 8c, CCTAGGTTTTGAAACATGAATCCTTCACTCCTCCTTGCTGTCTTTTGCCTGAGATTAG CG93252-03 DNA CCTCAGCTAGTCTAACACTTGATCACAGTTTAGATCAGTGGAAGGCAAAGCACAAGAG Sequence ATTATATGGCATGAATGAAGAAGGATGGAGGAGAGCAGTGTGGCAGAACATGAAGATG
ATTGAGCAGCACAATCAGGAATACAGGGAAGGGAAACACAGCTTCACAATGGCCATGA
ACGCCTTTGGAGAAATGACCAGTGAAGAATTCAGGCAGGTGGTGAATGGCTTTCAAAA
CCAGAAGCACAGGAAGGGGAAAGTGCTCCAGGAACCTCTGCTTCATGACATCCGCAAA
TCTGTGGATTGGAGAGAGAAAGGCTACGTGACTCCTGTGAAGGATCAGGTAAGACAGT
GTGCATCTTCTTATGCTTTTAGTGCAGCTGGGGCTCTGGACCTGGTGGACTGCTCTAG
GCTTCAAGGCAATGTTGGCTGCATTTTTGGAGAACCATTATTTTGCTTCCAGTATGTT
00
GCCGACAATGGAGGCCTGGACTCTGAGGAATCCTTTTCATATGAAGAAAAGGAAAAAG
CCIGTAGGTACAATCCCAAGTATTCTGCTACTAATGACACTGGGTACATGCAAATACT
CCCTGTGGAAGAGAAGGCCCTAATGAAGGCTGTGGCAACTGTGGGGCGCATCTCTGCT
GTTGTTTATGGACTTCTTGATTCCTTCTGGTCCTATAAAAAAAGAAGGGACCTTTCCC
CTCTATAGCGAGGGGTATTGT'rTTCTCACAGACTATGGATTTTAACAACAGGAATGCA AnAnAnnA Ann nAGAATTGGTGTTCAGCATTAGACCTCCCAAACAGAATTTCTGACZ-r
ACAATGGTCCACTCTGGAGACTGGAAAGTCCAAGGTCACAGAGGTGCATCTGGTGAGA
GCCTTCTTGCTAGTGGGGAATCTCAGCAGAGTCCTGAGGTGGCACAGTCCTGTCTGCA
TTAAAAGATTCAGTGGAAAAATGAGAAGCCAATAGAAGCAACATC
ORE Start: ATG at 16 1IORF Stop: TAG at 760 SEQ ID NO:76 1248 aa MW at 28420.l1kD NOVI 8c, MNPSLLLAVFCLRLASASLTLDHSLDQWKAKHKRLYGMNEEGWRRAVWQN4KMI EOHN CG93252-03 Protein QEYREGKHSFTMAMNAFGEMTSEEFRQVVNGFQNQKHRKGKVLQEPLLHDIRKSVDWR Sequence EKGYVTPVKDQVRQCASSYAFSAAGALDLVDCSRLQGNVGCI FGEPLFCFQYVADNGG LDSEES FSYEEKEKACRYNPKYSATNDTGYMQILPVEEKALMKAVATVGRI SAVVYGL
LDSFWSYKKRRDLSPL
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 1 8B.
Table 18B. Comparison of NOV18a against NOV18b and NOV18c.
Protin equnceNOV1 82 Residues/ Identities/ Protin equnceMatch Residues Similarities for the Matched Region NOV18b 1.323 305/323 (94%) 1..319 309/323 NOVI8c L.257 200/258 (77%) 1L.241 1209/258 Further analysis of the NOVI18a protein yielded the following properties shown in Table 18C.
Table 18C. Protein Sequence Properties NOV18a Psort 0.7427 probability located in outside; 0.1430 probability located in mi-crobody analysis: (peroxisome); 0. 1000 probability located in endoplasmic reticulum (membrane); 0. 1000 probability located in endoplasmidc reticulum (lumen) SignalP Cleavage site between residues 18 and 19 analysis: A search of the NOVI1 8a protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 1 8D.
Table 18D. Geneseq Results for NOV18a NOV18a Identities/ Geneseq ProteinlOrganisml/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region 00 AAW47031 Human procathepsin L Homo sapiens, 1..329 292/334 e-176 333 aa. [US$7 10014-A, 20-JAN-1998] 1.333 309/334 AAM93531 Human polypeptide, SEQED NO:3271 1.-329 291/334 e-175 Homo sapiens, 333 aa. [EPI 130094-A2, 1 .333 308/334 (92%) 105-SEP-200 1] AAR28829 Human procathepsin L Homo sapiens, 1..329 293/334 e-175 333 aa. [W092 19756-A, 12-NOV-1992] 1..333 309/334 AAP82094 pHu-16 sequence encoded human 1 .329 286/334 e-173 procathepsin L Homo sapiens, 333 aa. 1..333 308/334 (91%) [USN7154692-N, 1 1-FEB-1988]_____ AAU12 177 Human PR0305 polypeptide sequence 1..329 239/334 e-4 Homo sapiens, 334 aa. 1..334 275/334 (81%) _______[W0200140466-A2, 07-JUN-2001] In a BLAST search of public sequence databases, the NOVI 8a protein was found to have homology to the proteins shown in the BLASTP data in Table I18E.
Table 18E. Public BLASTP Results for NOV18a Protein NOV18a Identities/ Accssin Poten/rgaismLenthResidues/ Similarities for Expect Accesor rti/raimLnt Match the Matched Value NumerResidues Portion P07711I Cathcpsin L precursor (EC 3.4.22.15) 1..329 292/334 e-175 (Major excreted protein) (MEP) Homo 1..333 309/334 (92%) sapiens (Human), 333 aa.
Q96QJO SIMILAR TO CATHEPSIN L Homo I .329 291/334 e-175 sapiens (Human), 333 aa. I1.333 309/334 Q9GKL8 CYSTEINE PROTEASE Cercopithecus 1..329 280/334 e-170 aetbiops (Green monkey) (Gi-ivet), 333 1 333 304/334 aa.
Q9GL24 CATHEPSIN L (EC 3.4.22.15) Canis 1..329 249/335 e-146 familiaris (Dog), 333 an. 1..333 281/335 P25975 Cathepsin L precursor (EC 3.4.22.15) 1..329 242/335 e-144 Bos taurus (Bovine), 334 aa. 11.334 1279/335 (83%) PFam analysis predicts that the NOVI 8a protein contains the domains shown in the Table 1 8F.
Table 18F. Domain Analysis of NOV18a Identities/ Pfam Domain NOVJ8a Match Region Similarities Expect Value for the Matched Region______ Peptidase Cl: domain 1 of 1 109..328 122/338 8.2e- 17 1 192/338 1_ EXAMPLE 19.
The NOV1 9 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 1 9A.
I Table 19A. NOV19 Sequence Analysis SEQ ID NO:77 171bp
I
00 NOV19, CG93285-01 DNA Sequence
GCACTGAGAAGGAAGACAAGGCCAGCATGTCCAGGCTTTTTTTTTTTTTTTTTTT
TGCTGCTGGTGCTGCTCTGGGGTGTGGGGTTGCACAGCTTCCCAGCGACTCCAGAAAC
ACAAGAACAAGATGCAGAGATAGTCCAGAAATACCTAGAAAACTGCTACTACAA G
AAGAGTGAAATCAATCAAATTGGAAGGCAGAGAGACAGTAGCCCAGTGCTTGAGAAGC
TGAAGCAAATGCAGAATTTCTTTGGGCTGAAGGTAACTGGGAAGCCAGATTTGATGAA
GCAGCCCAGATGTGGGGTGCCTGATGTGGCTTCCCTCATCCTCACTCAAGAGAGCCCT
TGTTGGGAGCAAACAAATCTGACCCACAGGGATCAAAACTACATGCCAAATCTGCCTC
AAGAGGATGTGGACCGTGCCACTGGGAAAGCCTTTGAACTCTGGAGTAAGGCCTCGGC
CCTGACC'TTCACCAGGGACT'rTGAGAGTGAAGGGGACATAATATTATCCTTTGTGCTT
GCAGATCTCCATGACAATTCTCCCTTTTATGGACATGATGGTTGTCTTGCTCATGCAT
TCCCACCTGGACCAGGTATCGGAGGAGATGTTCATTTTGATAATGATGAAACAAGGAC
CAAGGATTTCAGAAGTGAGTACTATTGGGTCGTTCAGGAGGATCAACTGCTGAGTGGC
TACCCCAGGGACGTCTACAGCTCCTTTGTCTTCCCTGAAAGGGTGAAGAAAATTGATG
CTGCCATTTATGAGALAGGACACTGGAAAGACACATTTCTTTGTTGCCAATGAGTATTG
GAGGAGGTATGk1'GAAAATATGCAGTCCGTGGATGCAGGTTATCCCAAAATCATTGAT GACCTCCCCGGAATTAGTAAAAAAGGTT1TTTTCTATTTCTTTTGTAGAAGAAGGCAGT ATGAATGTAATCCTAAAATGAAGCAAA 1rTTGACTCTCCTGAAAGCTAACATCTGGTT
CAAGTGCAGAAATAACTGATGGTTGACTATCACCAAACAGAAAATAAAAAGTATTTTT
AATGAGCCCAAAATATGTTCT2CTA ORF Start: ATG at 28 IOR~F Stop: TGA at 1003 SEQ ID NO:78 1325 aa MW at 37891.6kD NOV19, MSRLFFFFFFLLLVLLWGVGLHSFPATPETQEQDAEIVQKYLENCYYNLKSEINQIGR CG93285-01 Protein QRDSS PVLEKLKQMQNFFGLKVTGKPDLMKQPRCGVPDVASL
ILTQESPCWEQTNLTH
Sequence RDQNMPNLPQEDVDRATGKAFELWSKASALTFTrRDFESEGD
IILSFVLADLHDNSPF
YGHDGCLAHAFPPGPGIGGDVHFDNDETRTKDFRSEYYWVVQEDQLLSGYPRDVYSS
P
VFPERVKKIDAAIYEKDTGKTHFVANEYWRRYDENMQSVDAGYPKI IDDLPGI SKKG
FFYFFCRRRQYECNPKMKQILTLLKANIWFKCN
Further analysis of the NOV1 9 protein yielded the following properties shown in Table 19B.
Table 19B. Protein Sequence Properties NOV19 PSort 0.8200 probability located in outside; 0.2294 probability located in microbody probability located in endoplasm-ic reticulum (lumen) SignalP Cleavage site between residues 24 and analysis:I A search of the NOV1 9 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 19C.
00 Table 19C. Geneseq Results for NOV19 NOV19 Identities/ Geneseq ProteinlOrganismlLength [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAG75509 Human colon cancer antigen protein SEQ 1 1..208 129/203 9e-70 ID NO:6273 Homo sapiens, 496 aa. 34..235 155/203 [W0200122920-A2, 05 -APR-2001 AAB84606 Amino acid sequence of matrix 1 l..208 129/203 9e-70 metalloproteinase collagenase I Homo 7..208 155/203 sapiens, 469 aa. [W0200149309-A2, AAE1 0415 Human matrix metailoprotinase-1 1 1..208 129/203 9e-70 (MIMIP-I) protein Homo sapiens, 469 aa. 7..208 155/203 [W02001I66766-A2, 13-SEP-2001) AAP7061 1 Sequence encoded by human skin 1 1..208 128/203 4e-69 collagenase cDNA Homo sapiens, 469 aa. 7..208 154/203 [GB2I 82665-A, 20-MAY-19871 A 93628] Sequence of human interstitial 24..208 119/190 8e-64 procollagenase Homo sapiens, 457 aa. 8..196 144/190 [GB2209526-A, 17-MAY-1989] in a BLAST search of public sequence databases, the NOV1 9 protein was found to have homology to the proteins shown in the BLASTP data in Table 1 9D.
Table 19D. Public BLASTP Results for NOV19 Protein NOV19 Identities/ Accssin Poten/rgaismLenthResidues/ Similarities for Expect Accesor rti/raimLnt Match the Matched Value NumerResidues Portion Interstitial collagenase precursor (EC 11 209 132/205 1 e-69 3.4.24.7) (Matrix metalloproteinase-1) 6..209 157/205 (76%) (MMP-1) Equus caballus (Horse), 469 aa.
P03956 Interstitial collagenase precursor (EC 11 208 129/203 2e-69 3.4.24.7) (Matrix metalloproteinase-1) 7..208 155/203 (MMP- I) (Fibroblast callagenase) Homo sapiens (Human), 469 an.
P 13943 Interstitial collagenase precursor (EC 1 1..220 130/215 6e-68 3.4.24.7) (Matrix metalloproteinase-1) 6..219 157/215 (72%) (MMP- 1) Oryctolagus cuniculus (Rabbit), 468 an.
P2 1692 Interstitial collagenase precursor (EC 7..220 132/220 7e-66 3.4.24.7) (Matrix metal loproteinase-l1) 2..220 156/220 (MMP-1) Sus scrofa (Pig), 469 aa.
P28053 Interstitial collagenase precursor (EC 1 1..208 124/204 3e-64 6..208 147/204 (MMP-1) (Fibroblast coilagenase) Bos taurus (Bovine), 469 aa.
PFamn analysis predicts that the NOV1 9 protein contains the domains shown in the Table 19E.
Table 19E. Domain Analysis of NOV19 Identities/ Pfam Domain NOV19 Match Region Similarities Expect Value for the Matched Region domain I of 1 41..204 90/172 4.2e-67 135W/12(78%) hemopexin: domain 1 of 1 241..288 26/51 (51%1) 2.2e-09 38/51 EXAMPLE The NOV20 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table Table 20A. NOV20 Sequence Analysis ID NO:79 14401 bp
GGTGCCGAGCACTCCGGACTCTACGTGAACAACAACGGGATCATCTCCTTCCTGAAGG
CG93387-01I DNA AGGTTTCTCAGTTCACCCCAGTGGCCTTCCCCATTGCCAAGGACCGCTGCGTGGTGGC SequenceAGCCTTCTGGGCAGATGTGGACAACCGGCGTGCAGGCGACGTGTACTACCGGGAGGCC SequenceACCGACCCAGCCATGCTGCGCCGAGCCACGGAGGACGTCAGGCACTACTTCCCCGAGC
TCCTGGACTTCAATGCCACCTGGGTTTTTGTTGCCACCTGGTACCGAGTGACCTTCTT
TGGAGGCAGTTCCTCATCCCCTGTCAACACATTCCAGACTGTGCTCATCACAGACGGC
AAGCTCTCCTTCACCATCTTCAACTATGAGTCCATCGTGTGGACCACAGGCACACACG
CCAGCAGCGGGGGCAACGCCACTGGCCTCGGGGGCATCGCAGCCCAGGCTGGCTTCAA
CGCAGGCGATGGGCAGCGTTACTTCAGTATCCCCGGCTCGCGCACAGCAGACATGGCC
GAGGTGGAGACCACCACCAACGTGGGTGTGCCCGGGCGCTGGGCGTTCAGAATCGATG
ATGCCCAGGTGCGCGTGGGGGGCTGCGGCCATACAACGTCCGTGTGCCTGGCCCTGCG
CCCCTGCCTCAACGGCGGCAAGTGCATCGACGACTGCGTCACGGGCAACCCCTCCTAC
ACCTGCTCCTGCCTCTCGGGCTTCACGGGGCGGAGGTGCCACCTGGACGTGAACGAAT
GTGCCTCCCAGCCCTGTCAGAATGGTOCGACCTGTACTCACGGCATCAACAGTTTCCG
CTGCCAGTGCCCGGCTGGCTTTGGGGGACCCACCTGTGAGACAGCCCAATCCCCCTGT
GACACCAAAGAGTGTCAACATGGTGGCCAGTGCCAGGTGGAGA.ACGGCTCTGCGGTGT
GTGTGTGCCAGGCCGGATACACCGGAGCAGCCTGCGAGATGGATGTGGACGACTGCAG
CCCTGACCCCTGCCTGAATGGAGGCTCTTGTGTTGACCTAGTGGGGAATTACACCTGC
TTGTGTGCCGAGCCCTTCAAGGGACTTCGCTGTGAGACAGGAGACCATCCAGTGCCAG
ACGCCTGCCTCTCGGCCCCTTGCCACAATGGGGGCACCTGTGTGGATGCGGACCAGGG
CTACGTGTGCGAGTGCCCCGAAGGCTTCATGGGCCTGGACTGCAGGGAGAGAGTCCCC
GATGACTGTGAGTGCCGCAACGGAGGCAGATGCCTGGGCGCCAACACCACCCTCTGCC
AGTGCCCCCTGGGATTCI'TTGGGCTTCTCTGTGAATTTGAAATCACAGCCATGCCCTG
CAACATGAACACACAGTGCCCAGATGGGGGCTACTGCATGGAGCACGGCGGGAGCTAC
CTCTGCGTCTGCCACACCGACCACAATGCCAGCCACTCCCTGCCATCACCCTGCGACT
CGGACCCCTGCTTCAACGGAGGCTCCTGCGATGCCCATGACGACTCCTACACCTGCGA
GTGCCCGCGCGGGTTCCACGGCAAGCACTGCGAGAAAGCCCGGCCACACCTGTGCAGC
TCAGGGCCCTGCCGGAACGGGGGCACGTGCAAGGAGGCGGGCGGCGAGTACCACTGCA
GCTGCCCCTACCGCTTCACTGGGAGGCACTGTGAGATCGGGAAGCCAGACTCGTGTGC
CTCTGGCCCCTGTCACAACGGCGGCACCTGCTTCCACTACATTGGCAAATACAAGTGT
GACTGTCCCCCAGGCTTCTCCGGGCGGCACTGCGAGATAGCCCCCTCCCCCTGCTTCC
00
GGAGCCCGTGTGTGAATGGGGGCACCI'GCGAGGACCGGGACACGGATTTCTTCTGCCA
CTGCCAAGCAGGGTACATGGGACGCCGGTGCCAGGCAGAGGTGGACTGCGGCCCCCCG
GAGGAGGTGAAGCACGCCACACTGCGCTTCAACGCACGCGGCTGGGCGCGTGGCCC
TGTATGCATGTGACCGTGGCTACAGCCTGAGCGCCCCCAGCCGCATCCGGGTCTGCCA
GCCACACGGTGTCTGGAGTGAGCCTCCCCAGTGCCTTGATCGATGAGTGCCGGTCT
CAGCCGTGCCTGCATGGGGGCTCTTGTCAGGACCGCGTTGCTGGGTACCTGTGCCTCT
GCAGCACAGGCTATGAGGGCGCCCACTGTGAGCTGGAGAGGGATGAGTGCGAGCTCA
CCCGTGCAGAAATGGAGGGTCCTGCAGGAACCTCCCAGGGGCCTATGTCTGCCGGTGC
CCTGCAGGCTTCGTTGGAGTCCACTGTGAGACAGAGGTGGACGCCTIGCGACTCCAGCC
CCTGCCAGCATGGAGGCCGGTGTGAGAGCGGCGGCGGGGCCTACTGTGCGTCTGCCC
AGAGAGCTTCTTCGGCTACCACTGCGAGACAGTGAGTGACCCCTGCTTCTCCAGCCCC
__TGTGGGGGCCGTGGTATTGCCTGGCCAGCAACGCTCCCACAGGCACTGCAG
TGGGCTACACGGCGAGGACTGCGCCAAGAGCTCCCCACCGACCCrCAGAT
GGAGAGAGTGGAGAGAGTGGGGTCTCTATCTCCTGGACCCGCCCATGGTCCAGCC
GCCAGGCAGATGCTTGATGGCTACGCGGTCACCTACGTCTCCTCCGACGGCTCCTACC
GCCGCACAGACTTTGTGGACAGGACCCGCTCCTCGCACCAGCTCCAGGCCCTGGCGGC
CGCGGCAAAACCGCTTCGGACAAAGACAAGA
00
GACATCAGCAGCCTGCCGTGCTGCTGGCCCGCACGCGACCCCGCCGTACT~
TCGAGGTCACCAATGTGACGGCTAGCACCATCTCAGTGCAGTGGGCCCTGCACAGGAT
CCGCCATGCCACCGTCAGTGGGGTCCGTGTGTCCATCCGCCACCCTGAGGCCCTCAGG
C1 GACCAGGCCACCGATGTGGACAGGAGTGTGGACAGGTTCACCTTTAGGGCCCTGCTGC
CTGGGAAGAGGTACACCATCCAGCTGACCACCCTCAGTGGGCTCAGGGGAGAGGAGCA
cCCCACAGAGAGCCTGGCCACCGCGCCGACGCACGTGTGGACCCGGCCCCTGCCTCCA
GCAAACCTGACCGCCGCCCGAGTCACTGCCACCTCTGCCCACGTGGTCTGGGATGCCC
CGACTCCAGGCAGCTTGCTGGAGGCTTATGTCATCAATGTGACCACCGCCAGAGCAC
CAAGAGCCGCTATGTCCCCAACGGGAAGCTGGCGTCCTACACGGTGCGCGACCTGCTG
CCGGGACGGCGGTACCAGCCCTCTGTGATAGCAGTGCAGAGCACGGAGCTCGGGCCGC
AGCACAGCGAGCCCGCCCACCTCTACATCATCACCTCCCCCAGGGATGGCGCTGACAG
ACGCTGGCACCAGGGAGGACACCACCCTCGGGTGCTCAAGAACAGACCGCCCCCGGCG
CGCCTGCCGGAGCTGCGCCTGCTCAATGACCACAGCGCCCCCGAGACCCCCACCCAGC
CCCCCAGGTTCTCGGAG I1TGTGGACGGCAGAGGAAGAGTGAGCGCCAGG~rCGGTGG
CTCACCCAGCAAAGCAGCCACCGTGAGATCACAACCCACAGCCTCGGCGCAGCTCGAG
AACATGGACGAAGCCCCCAAGCGGGTCAGCCCGGCCCTCCAGCTCCCTGAACACGGCA
GCAAGGACATCGGAAACGTCCCTGCCAACTGTTCAGAAAACCCCTGTCAGAACGGAGG
CACTTGTGTGCCGGGCCCAGACGCCCACACTTGACTGCGGGCCAGGGTTCAGGC
AGACGCTGCGAGCTCGCCTGTATAAAGGTGTCCCGCCCCTGCACAAGGCTGTTCTCCG
AGACAAAGGCCTTTCCAGTCTGGGAGGGAGGCGTCTGTCACCACGTGTATAAGAGT
CTACCGAGTTCACCAAGACATCTGCTTCAAGAGAGCTGTGAAGCACAGCCTCAAG
AAGACCCCAAACAGGAAACAAAGTAAGAGTCAGACACTGGAGAAATCTTAAGAAAGAA
GGAACAGGCAATGTAGAGAGCTGTCAAATGGTGGACTCCCAAACCGTTCCACCACTG
CCTCAAAAAACATCTTGACCAGCAGAAGGTGGAGCTCTGAGTCAGAGCTCAG
CGAAGGGTAACTAGGTGGAACTGAGAGAACCACGTTCACAACTGCGTAATGCGGAC
TTCCTGCCGCCCTGGAGACCCCTCAACTCTCTGTCCATGTAGGCCCTTAGAGATT
CATAGGAACTTGAGCATCCTTNAGATGTGAATATTGTTGGGGGCAGGATGGGGGAT
AATAGAAGGGAAGGCCACTCCACGAGTATCCCATGAACCTGGCCAGATSI
ORF Start: ATG at 187 lORF Stop: TAA at 4051 SEQID NO:80 11288aa IMW at 389OS.lkD MLRRATEDVRHYFPELLDFNATWVFVATWYRVTFFGGSSSSPVNTFQTVL
ITDGKLSF
CG93387-01 Protein TI FNYESIVWTTGTHAS SGGNATGLGGIAAQAGFNAGDGQRYFS
IPGSRTADMAEVET
Sequence TTNVGVPGRWAFRIDDAOVRVGGCGHTTSVCLALRPCLNGGKCI
DDCVTGNPSYTCSC
LSGFTGRRCHLDVNECASQPCONGGTCTHGINSFRCQCPAGFGGPTCETAQSPCDTKE
CQHGGQCQVENGSAVCVCQAGYTGAACEMVDDCSPDPCLNGGSCVDLVGNYTCLCAE
PFKGLRCETGDHPVPDACLSAPCHNGGTCVDADQGYVCECPEGFMGLDCRERVPDDCE
CRNGGRCLGANTTLCQCPLGFFGLLCEFEITAMPCNMNTQCPDGGYCMEHGGSYLCVC
HTDHNASHSLPSPCDSDPCFNGGSCDADDSYTCECPRGFHGHCEKAPHLCSSGPC
RNGGTCKEAGGEYHCSCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCPP
GFSGRHCEIAPSPCFRS PCVNGGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEVK HATLRFNGTRLGAVALYACDRGYSLSAPSRIRVCQPHGVWSEPPQCLE
IDECRSQPCL
HGGSCQDRVAGYLCLCSTGYEGAHCELERDECRAiPCRNGGSCRNLPGAYVCRCPAGF VGVHCETEVDACDSSPCQHGGRCESGGGAYLCVCPES
FFGYHCETVSDPCFSSPCGGR
00 00 GYCLASNGSHSCTCKVGYTGEDCAKELFPPTALKMERVEESGVS ISWNPPNGPAARQM LDGYAVTYVSSDGSYRRTDFVDRTRSSHOLQALAAGRAYNI SVFSVKR-NSNNKNDI SR PAVLLARTRPRPVEGFEVTNVTASTI SVQWALHRIRHATVSGVRVSIRHPEALRDQAT
DVDRSVDRFTFRALLPGKRYTIQLTTLSGLRGEEHPTESLATAPTHVWTRPLPPANLT
AARVTATSAHVVWqDAPTPGSLLEAYVINVTTSQSTKSRYVPNGKLASYTVRDLLPGRR YQPSVIAVQSTELGPQHSEPAHLYI ITSPRDGADRRWHQGGHHPRVLKNRPPPARLPE
LRLLNDHSAPETPTOPPRFSEFVDGRGRVSARFGGSPSKAATVRSQPTASAQLENMEE
APKRVS PALQLPEHGSKDIGNVPGNCSENPCQNGGTCVPGADAHSCDCGPGFKGRRCE LACI KVSRPCTRLFSETKAFPVWEGGVCHH VYKRVYRVHQDI CFKESCESTSLKKTPN ID NO:81 14413 bp NOV2Ob, GAGCACTCCGGACTrACGTGAACAACAACGGGATCATCTCCTTCCTGAAGGAGGTTT CG93387-02 DNA CTCAGTTCACCCCAGTGGCCTTCCCCATTGCCAAGGACCGCTGCGTGGTGGCAGCCTT Sequence CTGGGCAGATGTGGACAACCGGCGTGCAGGCGACGTGTACTACCGGGAGGCCACCGAC
CCAGCCATGCTGCGCCGAGCCACGGAGGACGTCAGGCACTACTTCCCCGAGCTCCTGG
ACTTCAATGCCACCTGGG TTGTTGCCACCTGGTACCGAGTGACCTTCTTTGGAGG
CAGTTCCTCATCCCCTGTCAACACATTCCAGACTGTGCTCATCACAGACGGCAAGCTC
TCCTTCACCATCTTCAACTATGAGTCCATCGTGTGGACCACAGGCACACACGCCAGCA
GCGGGGGCAACGCCACTGGCCTCGGGGGCATCGCAGCCCAGGCTIGGCTTCAACGCAGG
CGATGGGCAGCGTTACTTCAGTATCCCCGGCTCGCGCACAGCAGACATGGCCGAGGTG
GAGACCACCACCATCGTGGTTGTGCCCGGGCGCTGGGCGTTCATAATCGATGATGCCC
AGGTGCGCGTGGGGGGCTGCGGCCATACAACGTCCGTGTGCCTGGCCCTGCGCCCCTG
CCTCAACGGCGGCAAGTGCATCGACGACTGCGTCACGCAACCCCTCCTACACCTC
TCCTGCCTTCGGGCTTCACGGGGCGGAGGTGCCACCTGGACGTGAACGAATGTGCCT
CCCAGCCCTGTCAGAATGGTGGGACCTGTACTCACGGCATCAACAGTTTCCGCTGCCA
GTGCCCGGCTGGCTTTGGGGGACCCACCTGTGAGACAGCCCAATCCCCCT3TGACACC
AAAGAGTGTCAACATGGTGGCCAGTGCCAGGTGGAGAATGGCTCTGCGGTGTGTGTGT
GCCAGGCCGGATACACCGGAGCAGCCTGCGAGATGGATGTGGACGACTGCAGCCCTGA
CCCCTGCCTGAATGGAGGCTCTTGTGTTGACCTAGTGGGGAATTACACCTGC'rTGTGT
GCCGAGCCCTTCAAGGGACTTCGCTGTGAGACAGGAGACCATCNNCAGTGCCAGACGC
CTGCCTCTCGGCCCCTTGCCACAATGGGGGCACCTGTGTGGATGCGGACCAGGGCTAC
GTGTGCGAGTGCCCCGAAGGCTTCATGGGCCTGGACTGCAGGGAGACAGTCCCCGATG
ACTGTGAGTGCCGCAACGGAGGCAGATGCCTGGGCGCCAACACCACCCTCTGCCCAGT
GCCCCCTGGGATTC =TGGGCTTCTCTGTGAATTTGAAATCACAGCCATCCCCTGCAA
CATGAACACACAGTGCCCAGATGGGGGCTACTGCATGGAGCACGGCGGGAGCTACCTC
TGCGTCTGCCACACCGACCACAATGCCAGCCACTCCCTGCCATCACCCTGCGACTCGG
ACCCCTGCTTCAACGGAGGCTCCTGCGATGCCCATGACGACTCCTACACCTGCGAGTG
CCCGCGCGGGTTCCACGGCAAGCACTGCGAGAAAGCCCGGCCACACCTGTGCAGCTCA
GGGCCCTGCCGGAACGGGGGCACGTGCAAGGAGGCGGGCGGCGAGTACCACTGCAGCT
GCCCCTACCGCTTCACTGGGAGGCACTGTGAGATCGGGAAGCCAGACTCGTGTGCCTC
TGGCCCCTGTCACAACGGCGGCACCTGCTTCCACTACATTGGCAAATACAAGTGTGAC
TGTCCCCCAGGCTTCTCCGGGCGGCACTGCGAGATAGCCCCCTCCCCCTGCTTCCGGA
GCCCGTG'rGTGAATGGGGGCACCTGCGAGGACCGGGACACGGATTTCTTCTGCCACTG
CCAAGCAGGGTACATGGGACCCCGTGCCAGGCAGAGGTGGACTGCGGCCCCCCGGAG
GAGGTCAAGCACGCCACACTGCGCTTCAACGGCACCGCGCTGGGCGCGGTGGCCCTGT
ATGCATGTGACCGTGGCTACAGCCTGAGCGCCCCCAGCCGCATCCGGGTCTGCCAGCCC
ACACGGTGTCTGGAAAATCGATGAGTGCCGGTCTCAGCCGTGCCTGCATGGGGGCTCT
TGTCAGGACCGCGTTGCTGGGTACCTGTGCCTCTGCAGCACAGGCTATGAGGGCGCCC
ACTGTGAGCTGGAGAGGGATGAGTGCCGAGCTCACCCGTGCAGAAATGGAGGGTCCTG
CAGGAACCTCCCAGGGGCCTATGTCTGCCGGTGCCCTGCAGGCTTCGTTGGAGTCCAC
TGTGAGACAGAGGTGGACGCCTGCGACTCCAGCCCCTGCCAGCATGGAGGCCGGTGTG
AGAGCGGCGGCGGGGCCTACCTGTGCGTCTGCCCAGAGAGCTTCTTCGGCTACCACTG
CGAGACAGTGAGTGACCCCTGCTTCTCCAGCCCCTGTGGGGGCCGTGGCTATTGCCTG
GCCAGCAACGGCTCCCACAGCTGCACCTGCAAAGTGGGCTACACGGGCGAGGACTGCG
CCAAAGAGCTCTTCCCACCGACGGCCCICAAGATGGAGAGAGTGGAGGAGAGTGGGGT
CTCTATCTCCTGGAACCCGCCCAATGGTCCAGCCGCCAGGCAGATGCTTGATGGCTAC
GCGGTCACCTACGTCTCCTCCGACGGCTCCTACCGCCGCACAGACTTTGTGGACAGGA
CCCGCTCCTCGCACCAGCTCCAGGCCCTGGCGGCCGGCAGGGCCTACAACATCTCCGT
CTTCTCAGTGAAGCGAAAC.AGTAACAACAAGAATGACATCAGCAGGCCTGCCGTGCTG
CTGGCCCGCACGCGACCCCGCCCTGTGGAAGGCTTCGAGGTCACCAATGTGACGGCTA
00 00
GCACCATCTCAGTGCAGTGGGCCCTGCACAGGATCCGCCATGCCACCGTCAGTGGGGT
CCGTGTGTCCATCCGCCACCCTGAGGCCCTCAGGGACCAGGCCACCGATGTGGACAGG
AGTGTGGACAGGTTCACCTTTAGGGCCCTGCTGCCTGGGAAGAGGTACACCATCCAGC
TGACCACCCICAGTGGGCTCAGGGGAGAGGAGCACCCCACAGAGAGCCI'GGCCACCGC
GCCGACGCACGTGTGGACCCGGCCCCTGCCTCCAGCAAACCTGACCGCCGCCCGAGTC
ACTGCCACCCTGCCCACGTGGTCTGGGATGCCCCGACTCCAGGCAGCTTGCTGGAGG
CTTATGTCATCAATGTGACCACCAGCCAGAGCACCAAGAGCCGCTATGTCCCCAACGG
GAAGCTGGCGTCCTACACGGTGCGCGACCTGCTGCCGGGACGGCGGTACCAGCTCTCT
GTGATAGCAGTGCAGAGCACGGAGCTCGGGCCGCAGCACAGCGAGCCCGCCCACCT
ACATCATCACCTCCCCCAGGGATGGCGCTGACAGACGCTGGCACCAGGGAGACACCA
CCCTCGGGTGCTCAAGAACAGACCGCCCCCGGCGCGCCTGCCGGAGCTGCGCCTGCTC
AATGACCACAGCGCCCCCGAGACCCCCACCCAGCCCCCCAGGTTCTCGGAGCTTGTGG
ACGGCAGAGGAAGAGTGAGCGCCAGGTTCGGTGGCTCACCCAGCAAAGCAGCCACCGT
GAGATCACGTCCTGTCCCCTACATGATGAGCCCACCCCCACCGCCAGCGCAGTCTCCA
GCCAGTGACCCCCACCCCGACTGTGCACAGGCGCGGGCCGTGGCCGCCGGCAGC
ATGCACCTCCATGGCAGGAGG3GGCAGCTCGGACATCCGTGCTCCCTGAGATATAGAAG
CACTCAAAAGGGTGGCCCCAGGACCATCCCGGGTGCAGCAGCTGCGCCGTGTGGTC
ACCGCCTGGTCTCCTAGAACCCACAGCCTCGGCGCAGTCGAGAACATGGAGGAAG
CCCCCAAGCGGGTCAGCCTGGCCCTCCAGCTCCCTGAACACGGCAGAGGACATCGG
AAGTTATGCAGGACCTGAACTGTCTCCTAGTCCGGGGCCTGCCTCGTGAGGATCGAG
GCCAGCACGTCCCTGCAGGGCACCAAGCATCTGCTGACACCTGGCACACGA
AGGAGCAGGGTGGAGCCTTCACGCTGCCGTGCCTGTGTGGACCAGTCCAGGGTGACCA
CGGGGTAGGTGAGGGA).AGCCTGTCTTCACAGACCACTCTCCAGCTGACGTCCCTGGC
AACTGTTCAGAAAACCCCTGTCAGAACGGAGGCATTGTGTGCCGGGCGCAGACGCCC
ACAGCTGTGACTGCGGGCCAGGGTTCAAGGCAACGCTGCGAGCTCGTATAAGA
GTCTACCGAGTTCACCAAGACATCTGCTCAGAGAGCTGTGAGCAAAGCCTCA
AGAAGACCCCAAACAGGTGCCTCTGGGGAGCAGGCCCATGCCGTGTCCTGCATGTAGN
NNNNN
Start: at 1090 ORE Stop: end of sequence DD NO:82 11408 aa_ MW at 150587.4kD)
MLRRATEDVRHYFPELLDFNATWVFVATWYRVTFFGGSSSSPVNTFQTVLITDGKLSF
CG93387-02 Protein TI FNYES IVWTTGTHASSGGNATGLGGIAAQAGFNAGDGQRYFS IPGSRTAflMAEVET Sequence TTIVVVPGRWAFI IDDAQVRVGGCGHTTSVCLALRPCLNGGKCIDDCVTGNPSYTCSC
LSGFTGRRCHLDVNECASQPCQNGGTCTHGINSFRCQCPAGFGGPTCETAQSPCDTKE
CQHGGQCQVENGSAVCVCQAGYTGAACEMDVD)DCSPDPCLNGGSCVDLVGNYTCLCAE
PFKGLRCETGDHXQCQTPASRPLATMGAPVWMRTRATCASAPKASWAWTAGRES
PMTV
SAATEADAWAPTPPSAQCPLGFFGLLCEFE ITANPCNMNTQCPDGGYCMEHGGSYLCV CHTDHNASHSLPSPCDSDPCFNGGSCDAHiDDSYTCECPRGFHGJCHCEKARPHLCSSGP
CRNGGTCKEAGGEYHCSCPYRFTGRHCEIGKPDSCASGPCHNGGTCFHYIGKYKCDCP
PGFSGRHCEIAPSPCFRSPCVNGGTCEDRDTDFFCHCQAGYMGRRCQAEVDCGPPEEV
KHATLRFNGTRLGAVALYACDRGYSLSAPSRIRVCQPHGVWKIDECRSQPCLHGGSCQ
DRVAGYLCLCSTGYEGAHCELERDECRAJ4PCRNGGSCRNLPGAYVCRCPAGFVGVHCE TEVDACDSSPCQHGGRCESGGGAYLCVCPE SFFGYHCETVSDPCFSS PCGGRGYCLAS
NGHCCVYGDAEFPAKERESVIWPNPAQLGA
TYVSSDGSYRRTDFVDRTRSSHQLQALAAGAYNISVFSVKR~SNKNDI
SRPAVLLA
RTRPRPVEGFEVTNVTASTI SVQWALHRIRHATVSGVRVS IRHPEALRDQATDVDRSV DRFTFRALLPGKRYTIQLTLSLRGEEHPTESLATAPTHVWTRPLPPALTAAR1TA
TSAHVVWDAPTPGSLLEAYVINVTTSQSTKSRYVPNGKLASYTVRDLLPGRRYQLSVI
AVQSTELGPQHSEPAHLYI ITSPRDGADRRWHQGGHHPRVLKNRPPPARLPELRLLND HSAPETPTQPPRFSELVDGRGRVSARFGGS PSKAATVRSRPVPYMMSPPPPPAQSPAS DPHPDCAQGAGLVGRRQHAPPWQEGQLGHPCSLRYRSTQKGGPRTI
PGAKQLRRVVTA
WLLLEP~TASAQLENMEEAPKRVSLA QLPEHGSKDIGSYAGPELSPSPGLCLVRI EAS
TSLQGTKHLLSTCSTQAKEQGGAFTLPCLCGPVQGDHGVGEGKPVFTDHSPADVPGNC
SENPCQNGGTCVPGADAHSCDCGPGFKGRRCELGIKESTEFTKTSASKRAVKAQASRR
_____________POTGASGEQAHAVSCM
Sequence comparison of the above protein sequences yields the following sequence relationships shown in Table 00 Table 20B. Comparison of NOV2Oa against NOV2Ob.
Protin equnceMatch Residues Similarities for the Matched Region NOV2Ob L..1146 1066/1 147 (92%) Further analysis of the NOV2Oa protein yielded the following properties shown in Table Table 20C. Protein Sequence Properties NOV2Oa PSort 0.4500 probability located in cytoplasm; 0.3000 probability located in microbody analysis: (peroxisome); 0. 1000 probability located in mitochondrial matrix space; 0. 1000 probability located in lysosome (lumen) SignaiP Cleavage site between residues 41 and 42 analysis:
I
A search of the NOV2Oa protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table Table 20D. Geneseq Results for NOV2Oa NOV2Oa Idnies Geneseq Protein/Organism/Length [Patent Residues/ imilatitesfr h Expect Identifier Datel Match SMates fegonh Value Residues MthdRgo AAB82249 Human insulin-responsive sequence DNA 261..1288 1025/1028 0.0 binding protein-I Homo sapiens, 1028 L..1028 1025/1028 (99%) aa. (W0200132873-Al, 10-MAY-20011 AAB382247 Rat insulin-responsive sequence DNA 271..1273 817/1003 0.0 binding protein-lI Rattus sp, 1008 aa. L.1002 895/1003 (88%) [W0200132873-Al, 10-MAY-20011 AAB42900 Human ORFX ORF2664 polypeptide I 627 592/629 0.0 sequence SEQ ID NO:S 328 Homo 61 689 593/629 (94%) sapiens, 694 aa. [W0200058473-A2, 105-OCT-2000] AAB82251 Rat insulin-responsive sequence DNA 780..1273 388/494 0.0 binding protein-i (truncated) Rattus sp, 1L.493 43 3/494 (87%) 499 aa. [W0200132873-Al, 10-MAY-2001] AAB82250 Human insulin-responsive sequence DNA 811..1 181 365/369 0.0 binding protein-I (variant) Homo 1 .369 366/369 (98%) sapiens, 387 aa. [W0200132873-Al, I 0-MAY-200 1] 00 In a BLAST search of public sequence databases, the NOV20a protein was found to have homology to the proteins shown in the BLASTP data in Table Table 20E. Public BLASTP Results for Protein NO22 Identities/ Accession Protein/Organism/Length Residues/ Similarities for the Expect NubrMatch Mace .oto Value Number ~~Residues MacePoto BAB84888 FLJ00133 PROTEIN Homo sapiens 7..1288 1279/1 282 0.0 (Human), 1282 aa (fragment). L.1282 1279/1 282 BAB84901 FLJO0146 PROTEIN H-omo sapiens 706..1288 5 19/583 0.0 (Human), 522 aa (fragment). 1..522 520/583 P109 Fibropellin I precursor (Epidermual 140.3777 261/679 e-146 growth factor-related protein 1) 2493.95 339/679 (49%) (UEGF- Strongylocentrotus _________purpuratus (Purple sea urchin), 1064 an.
016004 NOTCH HOMOLOG -Lytechinus 151.3781 251/651 e-137 __________variegatus (Sea urchin), 2531 aa. 672.. 1290 330/651 A24420 notch protein fruit fly (Drosophila 152.3777 239/665 e-136 I_ melanogaster), 2703 aa. 1685.. 1334 _1343/665 PFamn analysis predicts that the NOV2Oa protein contains the domains shown in the Table Table 20F. Domain Analysis of NOV202 Identities/ Pfam Domain NOV2Oa Match Region Similarities Expect Value for the Matched Region EGF: domain I of 16 147..183 16/47 3e-05 28/47 EGF: domain 2 of 16 190..221 15/47 6.9e-08 28/47 EGF: domain 3 of 16 228..259 13/47(28%) 1.4e-05 2 1/47 EGF: domain 4 of 16 266..297 17/47(36%) 1.5e-09 26/47 EGF: domain 5 of 16 308..339 18/47(38%) 2.8e-09 25/47 (53%) EGF: domain 6 of 16 343..374 12/47 2.2 19/47 EGF: domain 7ofl16 381..419 11/47(23%) 4.2 23/47 EGF: domain 8 of 16 1420..451 117/47 4.2e-07 25/47 (5 00
INO
laxninmEGF: domain 1 of 1 404..464 15/68 5.8 40/68 (59%) EGF: domain 9 of 16 459..490 16/47 1.4e-05 26/47 EGF: domain 10 of 16 498..529 18/47 4.9e-09 29/47 (62%) EGF: domain 11 of 16 536..567 15/47 4.6e-06 22/47 (47%) sushi: domain I of 1 573..626 16/64 3.8e-05 36/64 (56%) EGF: domain 12 of 16 632..663 14/47 7.6e-07 21/47 EGF: domain 13 of 16 670..701 17/47 3.3e-07 23/47 (49%) EGF: domain 14 of 16 708..739 13/47 1.4e-05 25/47 (53%) EGF: domain 15 of 16 746..777 13/47(28%) 3.5e-05 26/47 fW: domain I of 3 781..862 24/88 3.9e-08 60/88 (68%) fn3: domain 2 of 3 880..963 18/87 2e-09 62/87 (71%) 3: domain 3 of 3 979..1061 27/86 3e-08 58/86 (67%) EGF: domain 16 of 16 1186..1217 17/47(36%) 4.le-08 28/47 EXAMPLE 21.
The NOV21 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 21A.
Table 21A. NOV21 Sequence Analysis SEQ ID NO:83 1713 bp NOV21, AAACCCTGGGCAGTGGTGCCCAGCATCTTTCACAGGACACCGCGTGAGTGCAGATGGA CG93702-01 DNA GATCCACTGAGCACTCTGCTAGGGAGCAATTCATGGGGAGCACCCCTCCAGAGAGGA Sequence TGGCTCGCACAGGCCCTCAGCCCAGCCCCTTGCAGCTGGACCTTGGAAGTGAGGCC
CTGAGACGAGACATGGGCACCTGGCTTCTGGCCTGCACCTGCGTCTGCACCTGTGTCT
GCTCGGGAGTCTCTGTCTCAGGGGATGGACGAGGTGGGCCAAGGGCTGGAACCTCCAC
CTGCCTCACCAACAACATTCTCAGGATTGATTGCCACTGGTCTGCCCCAGAGCTGGGT
CAGGGCTCCAGCCCCGGGCTCCCCTTCACAAGCAACCAGGCTGCGGTGGCACACAGA
AGTGCATCTGGCAGGGCAGTGAGTGCACTGTAGTGTTGCCGCCCMCGCAGCACTCCT
GCCATCTGACAATTTCATCATCACTTTCTACCACTGCATGTCCGGGAGGGATCAGGTC
AGCCTGGTGGACCTGGAGTACCTGCCCTGGAGACACGGTGAACAGCAGCTATCTGACT
TGCAGAGCACGTCAGCTCGCCACTGCATCCTGACCTGGAGCCTCAGTCCTGCCTTGGA
GTCAATGACCACACTTCTCAGCTATGAGCTGGACTCAAGAGGCAGGAAGAGGCCTGG
GAGGTAACAGCCCAGCACAGGGATCACATTGTCGGGGTGACCTGGCTCATACTTGAAG
00 00
CCTTTGAGCTGGACCCTGGCTTTATCCTTGAGGCCAGGCTGCGTGTCCAGACGGCCAT
GCTGGGGGATGACGGGGCACAGGAGGAGCGAGGGAGGAGCGAGGGGAGCCAGCCCGTG
TGCTTCCAGGCTCCCCAGAGACAAGGTCCTCTGATCCCACCCTGGGGTGGCCAGGCA
ACACCTTrrGTTGCTGTGTCCATCTTTCTCCTGCTGACTGGCCCGACCTACCTCCTGTT
CAAGCTGTCGCCCAGGGTGAAGAGAACCTTCTACCAGAATGTGCCCTCTCTAGCGGTG
TTTCACCTTCGGGAATGACTCGCCGTGGC
ACAGGGCTGGTGTGCTGCTGAGCCAGGACTGTGCTGGCACCCGACGAGGAGCCTTGGA
GCCCTGCGTCCAGGAGGCCACTGCACTGTTCACCTGTGGCCCAGCGGGTCCTTGGA
TCTGTGGGCCTGGAGGAGGAGCAGGAAGGOCCTGGAGCAGGAAGGCACTGGGACCTGA
GCTCAGAGCATGTGCTGCCAGCAGGGTGTACGGAGTGGAGGGCACAGCCCCrTGCC.rA
TCTGCCACAGGAGGACTTGGCCCCCACGTCCACCAGGCATGTTACTCCTCCGTCC
TTAGCAAGGCTTGGTCCTAATCCCAGCACTTTGGGATGCCGAGGCGGGTGGCTTCTCC
CACGGATCTTTGCAACCTGCAGATCAGGAGGTCCCCTGGTGAGCTCAGCCATGGCCTT
GGTTAGAAACGGGATTGGGATCCCGCCCGG
CCCCACGTCCACCAGGGCATGTTACTCCCTTCCGTCCTTAGCAAGGCTTGGTCCTGGA
TGCTATCTATGCGTATCTTCTTGGAGGATA
GTCTCCGGAGCCCTTGTCTGGGACTGAACCT
ORF Start: ATG at 91 IORF Stop: TGA at 1630 SEQ ID NO:84 1513 aa JMW at 55570.7kD NOV21, MGSTPPERDGSHRPSAQPLAGWTLESEALRRDMGTWLLACTCVCTCVCSGVSVSGDGR CG93702-01 Protein GGPRAGTSTCLTNNILRIDCHWSAPELGQGSSPGLPFTSNQAAGGTQKCIWQGSECT'i Sequence VLPPKAALLPSDNFI ITFYHCMSGRDQVSLVDLEYLPWRHGEQQLSDIQSTSARHCIL
TWSLSPALESMTTLLSYELDFKRQEEAWEVTAQHRDHIVGVI'WLILEAFELDPGFILE
ARLRVQTAMLGDDGAQEERGRSEGSQPVCFQAPQRQGPLIPPWGWPGNF,AVSI
FLL
EWRAQPLAYLPQEDLAPTSTRACYSLPSLARLGPNPSThGCRGGWLLPRIFATCRSGG _____________PLVSSAALGLKiRAVWSLGGMLAGSLGPHVHQGMLLPSVIJS
KAWSWMS
Further analysis of the NOV21 protein yielded the following properties shown in Table 2 113.
Table 21B. Protein Sequence Properties NOV21 PSort 0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi analysis: body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 _________probability located in microbody (peroxisome) SignalP Cleavage site between residues 49 and analysis: A search of the NOV21 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 21 C.
Table 21C. Geneseq Results for NOV21 NOV21 Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AA605 Human IL-9 receptor protein H-omo 33..51 1 361/501 0.0 1L..499 389/501 1 00 00 I 1-JUN-1998] AAW64057 Human IL-9 receptor protein variant #2 31..51 1 361/501 0.0 Homo sapiens, 500 aa. [W09824904-A2, L .498 389/501 (77%) 11 -JUN- 1998] AAW64056 Human IL-9 receptor protein variant #1 31..51 1 361/50 1 0.0 Homo sapiens, 501 aa. [W09824904-A2, 1.499 389/501 (77%) 11 -JUN- 1998] AAW64058 Human IL-9 receptor protein variant #3 33..305 223/278 e-124 Homo sapiens, 286 aa. [W09824904-A2, L .276 239/278 1 l-JUN-1998] AAW64061 Human IL-9 receptor protein variant 33.188 107/1 56 le-56 fragment #3 Homo sapiens, 150 aa. L..141 119/156 W09824904-A2, I I JUN-1998]_____ In a BLAST search of public sequence databases, the NOV21 protein was found to have homology to the proteins shown in the BLASTP data in Table 2 1 D.
Table 21D. Public BLASTP Results for NOV21 Protein NV1 Identities/ NOV21es Expc Accession Protein/Organism/Length Matiues Similarities, for theVau Number Residues Matched Portion Q01 113 Interleukin-9 receptor precursor 21..511 373/513 0.0 (IL-9R1) Homo sapiens (Human), 10..520 401/5 13 (77%) 522 aa.
Q96TFO TNTERLEUKIN 9 RECEPTOR 21 5 11 372/512 0.0 Homo sapiens (Human), 521 aa. 10..519 400/5 12 AAL55435 INTERLEUKIN 9 RECEPTOR 21..511 372/513 0.0 Homo sapiens (Human), 522 aa. 10..520 400/5 13 (77%) Q01 114 Interleukin-9 receptor precursor 21 423 218/410 e-106 (IL-9R) Mus musculus (Mouse), 468 10..413 261/410 (63%) aa.
Q63216 GFI-2 PROTEIN Rattus norvegicus 21..423 214/411 2e-98 467 an. 110..412 1258/411 PFamn analysis predicts that the NOV21 protein contains the domains shown in the Table 2 1E.
Table 21E. Domain Analysis of NOV21 Identities/ Pfamn Domain NOV21 Match Region Similarities Expect Value for the Matched Region No Significant Known Matches Found EXAMPWLE 22.
The NOV22 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 22A.
Table 22A. NOV22 Sequence Analysis SEQ ID NO:85 12264 bp NOV22, CTGGGTAGGCCGGGACAAAAACACCGTACGTTCTCACTGCAGTCCATGGAAGAGGTAG CG93792-0 1 DNA CCCAGCCCCCAGGCTTCAGGTTGTCCTTAGCTTGAAGGTGGGGCTTCACCGGGGACCC Sequence ATCCCTTTTTGCCCATCTGCTCCCTGCCACCATTAACCTGCCATCTACCATGTCCATG
GCACCCAGGCAGTTCGCGTCATGGGCACCTTCAGGCCTGTGCCAGCTGCTCCCGG
AATGGACTCTCTGGGAAGAATGCACAAGGAGCTGTGGACGCGGCACCAAACCAGGAC
CAGGACTTGCAATAATCCATCAGTTCAGCATGGTGGGCGGCCATGTGGGATGCT
GTGGAAATAATTATGTGCAACATTAGGCCTTGCCCAGTTCATGGAGCATGGAGCGCTT
GGCAGCCTTGGGGAACATGCAGCGAAAGTTGTGGGAAAGGTACTCAGACAAGAGCAAG
ACTTTGTAATAACCCACCACCAGCGTTTGGTGGTCCTACTGTGATGGAGCAGAC
CAGATACAAGTTTGCAATGAAAGAATTGTCCATCATGGCAGTGGGCGATTGGG
CCAGTTGGAGTGCCTGTTCTGTGTCATGTGGAGGAGGTGCCAGACAGAGAACAAGGGG
CTGCTCCGACCCTGTGCCCCAGTATGGAGGAAGGAAATGCGAAGGGAGTGATGTCCAG
AGTGATTTTTGCAACAGTGACCCTTGCCCAACCCATGGTAACTGGAGTCCTTGGAGTG
GCTGGGGAACATGCAGCCGGACGTGTAACGGAGGGCAGATGCGGCGGTACCGCACATG
TGATAACCCTCCTCCCTCCAATGGGGGAAGAGCTTGTGGGGGACCAGACTCCCAGATC
CAGACGGCAACACTGACATGTGTCCTGTGGATGGAAGTTGGGGAAGCTGGCATAGTT
GGAGCCAGTGCTCTGCCTCCTGTGGAGGAGGTGAAAAGACTCGGAAGCGGCTGTGCGA
CCATCCTGTGCCAGTTAAAGGTGGCCGTCCCTGTCCCGGAGACACTACTCAGGTGACC
AGGTGCAATGTACAAGCATGTCCAGGTGGGCCCCAGCGAGCCAGAGGAAGTGTTATTG
GAAATATTAATGATGTTGAATTTGGAATTGCTTTCCTTAATGCCACAATAACTGATAG
CCCTAACTCTGATACTAGAATAATACGTGCCAAAATTACCAATGTACCTCGTAGTCTT
GGTTCAGCAATGAGAAAGATAGTTTCTATTCTAAATCCCATTTATTGGACAACAGCAA
AGGAAATAGGAGAAGCAGTCAATGGCTTTACCCTCACCAATGCAGTCTTCAAGAGA
AACTCAAGTGGAATTTGCAACTGGAGAAATCTTGCAGATGAGTCATATTGCCCGGGGC
TTGGATTCCGATGGTTCTTTGCTGCTAGATATCGTTGTGAGTGGCTATGTCCTACAGC
TTCAGTCACCTGCTGAAGTCACTGTAAAGGATTACACAGAGGACTACATTCAAACAGG
TCCTGGGCAGCTGTACGCCTACTCAACCCGGCTGTTCACCATTGATGGCATCAGCATC
CCATACACATGGAACCACACCGTTTTCTATGATCAGGCACAGGGAGATGCCTTC
TGGTTGAAACACTTCATGCATCCTCTGTGGAATCTGACTATAACCAGATAGAAGAGAC
ACTGGGTTTTAAAATTCATGC1TTCAATATCCAAAGGAGATCGCAGTAATCAGTGCCCC CCCGGGTTTACCT1.AGACTCAGTTGGACCTTTTTGTGCTGATGAGGATGAATGTGCAG
CAGGGAATCCCTGCTCCCATAGCTGCCACAATGCCATGGGGACTTACTATGCTCCTG
CCCTAAAGGCCTCACCATAGCTGCAGATGGAAGAACTTGTCAAGATATTGATGAGTGT
GCTTTGGGTAGGCATACCTGCCACGCTGGTCAGGACTGTGACAATACGATTGATCTT
ATCGCTGTGTGGTCCGTTGTGGAAGTGGCTTTCGAAGAACCTCTGATGGGCTGAGTCG
TCAAGGTATAAAAATCGAGGCCTTTTCTTTATGTTCATACAGTAAGAATTAGACCCA
CCTTTTGACTCCTCAAAAGTTAACTGTCTCAGAAACTCCACGAGGAAGGGACCACATA
AAAGGGAGAGAATGAGGAGATATCCAGCAAGAGGGACTCCTGTCTCTCCGGAGGACTT
AACTTCATTTTATATGTTTTATAAGTTAGCTTCTTCATAAGCTTATTACATAT
AT
ORF Start: ATO at 166 IORF Stop: TGA at 2068 ID NO:86 1634 aa IMW at 68742. 1kD NOV22, MSMAPRQFASWGTFOACAKLLPEWTLWEECTRSCGRGNQTRTRTCNNPSVQHGGRPCE CG93792-01 protein GNAVEI IMCNIRPCPVHGAWSAWQPWGTCSESCGKGTQTRARLCNNPPPAFGGSYCDG Sequence AETO IQVCNERN~CPIHGKWATWASWSACSVSCGGGARQRTRGCSDPVPQYGGRKCEGS
DVQSDFCNSDPCPTHGNWSPWSGWGTCSRTCNGGQMRRYRTCDNPPPSNGGRACGGPD
SQl QRCNTDMCPVDGSWGSWHSWSQCSASCGGCEKTRKRLCDHPVPVKGGRPCPGDTT QVTrRCNVQACPGGPQRARGSVIGNINDVEFGIAFLNATITDSPNSDTRI
IRAKITNVP
RSLGSANRKIVSILNP IYWTTAKE IGEAVNGFTLTNAVFKRETQVFATGE
ILQMSHI
ARGLDSDGSLLLDIWVSGYVLQLQSPAEVTVKDYTEDYIQTG
PGQLYAYSTRLFTIDG
ISI PYTWNHTVFYDQAQGRMPFLVETLHASSVESDYNQIEETLGFKIHASISKGDRSN QCPPGFTLDSVGPFCADEDECAAGtrPCSHSCHNAMGTYYCSCPKGLTIAADGRTCQDI DECALGRHTCHAGQDCDNTIGSYRCVVRCGSGFRRTSDGLSRQGI KMEAFSLCS Further analysis of the NOV22 protein yielded the following properties shown in Table 22B.
Table 22B. Protein Sequence Properties NOV22 PSort 0.4993 probability located in mitochondrial matrix space; 0.3000 probability located in analysis: mnicrobody (peroxisome); 0.2177 probability located in mitochondrial inner membrane; 0.2 177 probability located in mitochondrial intermembrane space SignaiP Cleavage site between residues 19 and analysis:I A search of the NOV22 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 22C.
Table 22C. Geneseq Results for NOV22 NOV22 Identities/ Geneseq ProteinlOrganismlLengtb [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAB47771 Human thrombospondin protein, BTL.0 12 21..625 598/603 0.0 Homo sapiens, 1336 aa. 718..1320 600/603 (99%) ________[W0200174852-A2, 1 1-OCT-2001] AAG67244 Amino acid sequence of murine 23..625 525/603 0.0 thrombospondin 1 -like protein Mus 141 .343 5 69/603 (94%) musculus, 1068 aa. [W0200109321-AI, 08-FEB-200 1] AAU16959 Human novel secreted protein, SEQ ID 200 76. .625 546/550 0.0 Homo sapiens, 877 aa. 3..552 547/550 (99%) [W02001 5544 1-A2, 02-AUG-2001] AAU17031 Human novel secreted protein, SEQ ID 272 76..625 544/550 0.0 Homo sapiens, 800 aa. 12..561 545/550 (98%) [W02001 5544 1-A2, 02-AUG-2001] AAU 18148 Novel human uterine motility-association 76. .625 544/550 0.0 polypeptide #55 Homo sapiens, 800 aa. 12..561 545/550 (98%) _________[W0200155201I-A 1, 02-AUG-2001] In a BLAST search of public sequence databases, the NOV22 protein was found to have homology to the proteins shown in the BLASTP data in Table 22D.
Table 22D. Public BLASTP Results for NOV22 Protein/Organism/Length IIIdentities/ 00 Accession Residues/ Similarities for Value Number Match the Matched Residues Portion Q96RW7 HEMICENTIN Homo sapiens (Human), 23..625 598/603 0.0 5636 aa. 4592..5194 600/603 (99%) Q96SC3 FIBULIN-6 Homo sapiens (Human), 2673 23..625 597/603 0.0 aa (fragment). 1629..2231 600/60 3(99%) Q96K89 CDNA. FL14438 FIS, CLONE 210..625 413/416 0.0 HEMBBIOOO317, WEAKLY SIMILAR L.416 413/416 (99%) TO FIBULIN-1, ISOFORM D PRECURSOR Homo sapiens (Human), 741 aa.
Q60519 Semaphorin 5B precursor (Semaphorin G) 24..303 122/305 7e-62 (Sema G) Mus musculus (Mouse), 1093 612..909 155/305 aa.
Q62217 Semaphorin SA precursor (Semaphorin F) 24..301 117/302 2e-60 (Sema F) Mus musculus (Mouse), 1077 601..896 145/302 (47%) aa.IIII PFam analysis predicts that the NOV22 protein contains the domains shown in the Table 22E.
Table 22E. Domain Analysis of NOV22 Identities/ Pfam Domain NOV22 Match Region Similarities Expect Value for the Matched Region tsp 1: domain I of 5 22..72 23/54 3.6e-12 40/54 (74%) tsp_1: domain 2of 5 79..129 22/54(41%) 6.8e-13 36/54 (67%) tsp I: domain 3 of 5 136..186 23/54(43%) 1.9e-14 37/54 (69%) tspI: domain 4 of 5 191..243 23/54(43%) 9.8e-09 36/54 tsp 1: domain 5 of 5 250..300 23/54(43%) 6.7e-13 39/54 (72%) EGF: domain I of 2 543..577 16/47(34%) 8.4c-06 25/47 granulin: domain I of 1 564..579 7/16 4.2 11/16(69%) T~IL: domain 1 of 1 524..583 18/74 7.1 33/74(4 5%1) EGF: domain 2 of 2 583..622 13/48 23 24/48 (5 00 00 EXAMPLE 23.
The NOV23 clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 23A.
Table 23A. NOV23 Sequence Analysis SEQ ID NO:87 15935 bp NOV23, CG94013-01 DNA Sequence
ATGGGTATGACCAAAAAGATAAGAGATAACAAGAGTCGGCAAGGATGTGGAGAAAAGG
GGACACTTGCACACTGTTGGTGGGATTCCCCTAAAATGACCTGGATGAAAGATGGCCG
GCCCCTTCCACAGACGGATCAAGTGCAAACTCTAGGAGGAGGAGAGGTTCTTCGAATT
TCTACTGCTCAGGTGGAGGATACAGGAAGATATACATGTCTGGCATCCAGTCCTGCAG
GAGATGATGATAAGGAATATCTAGTGAGAGTGCATGTACCTCCTAATATTGCTGGAAC
TGATGAGCCCCGGGATATCACTGTGTTACGGAACAGACAAGTGACATTGGAATGCAAC
TCAGATGCAGTGCCCCCACCTGTAATTACTTGGCTCAGTGGAGACGGTTACAGG
CAACACCTCGAGTGCGAATCCTATCTGGAGGGAGATACrTGCAAATCAACAATGCTGA
CCTAGCTGATACAGCCAATTATACCTGTGTTGCCAGCAACATTGCAGGAAAGACTACA
AGAGAATTTATTCTCACTGTAAATGTTCCTCCAAACATAAAGGGGGGCCCCCAGAGCC
TTGTAATTCTTTTAAATAAGTCAACTGTATTGGAATGCATCGCTGAAGGTGTGCCAAC
TCCAAGGATAACATGGAGAAAGGATGGAGCTGTTCTAGCTGGGAATCATGCAAGATAT
TCCATCTTGGAAAATGGATTCCTTCATATTCAATCAGCACATGTCACTGACACTGGAC
GGTATTTGTGTATGGCCACCAATGCTGCTGAACAGATCGCAGGCGAATAGATTTACA
GGTCCATGGTTCACTAGTAATTATTTCCCCTTCTGTGGATGACACTGCAACCTATGAA
TGTACTGTGACAAACGGTGCTGGAGATGATAAAAGAACTGTGGATCTCACTGTCCAAG
TTCCACCTTCCATAGCTGATGAGCCTACAGATTTCCTAGTAACCAAACATGCCCCAGC
AGTAATTACCTGCACTGCTTCGGGAGTTCCATTTCCCTCAATTCACTGGACCAAAAAT
GGTATAAGACTGCTTCCCAGGGGAGATGGCTATAGAATTCTGTCCTCAGGAGCAATTG
AAATACT'TGCCACCCAATTAAACCATGCTGGAAGATACACTTGTGTCGCTAGGAATGC
GGCTGGCTCTGCACATCGACACGTGACCCTTCATGTTCATGAGCCTCCAGTCATTCAG
CCCCAACCAAGTGAACTACACGTCATTCTGAACAATCCTATTTTATTACCATGTGAAG
CAACAGGGACACCCAGTCCTTTCATTACTTGGCAAAAGAAGGCATCATGTTAACAC
TTCAGGCAGAAACCATGCAGTTCTTCCTAGTGGCGGCTTACAGATCTCCAGAGCTGTC
CGAGAGGATGCTGGCACTTACATGTGTGTGGCCCAGAACCCGGCTGGTACAGCCTTGG
GCAAAATCAAGTTAAATGTCCAAGTTCCTCCAGTCATTAGCCCTCATCTAAAGGAATA
TGTTATTGCTGTGGACAAGCCCATCACGTTATCCTGTGAAGCAGATGGCCTCCCTCCG
CCTGACATTACATGGCATAAAGATGGGCGTGCAATTGTGGAATCTATCCGCCAGCGCG
TCCTCAGCTCTGGCTTCTGCAAATAGCATTTGTCCAGCCTGGTGATGCTGGCCA'.~A
CACGTGCATGGCAGCCAATGTAGCAGGATCAAGCAGCACAAGCACCAAGCTCACCGTC
CATGTACCACCCAGGATCAGAAGTACAGAAGGACACTACACGGTCAATGAGAATTCAC
AAGCCATTCTTCCATGCGTAGCTGATGGAATCCCCACACCAGCAATTAACGGAAAAA
AGACAATGTTCTTTTAGCTAACTTGTTAGGAAAATACACTGCTGAACCATATGGAGAA
CTCATTTTAGAAAATGTTGTGCTGGAGGATTCTGGCTTCTATACCTGTGTTGCTAACA
ATGCTGCAGGTGAAGATACACACACTGTCAGCCTGACTGTGCATGTTCTCCCCACTrr TACTGAACTTCCTGGAGACGTGTCATTAAATAAAGGAGAACAGCTACGAT1'AAGCTGT
AAAGCTACTGGTATTCCATTGCCCAAATTAACATGGACCTTCAATAACAATATTATTC
CAGCCCACTTTGACAGTGTGAATGGACACAGTGAACTTGTTATTGAAAGAGTGTCA
AGAGGATTCAGGTACTTATGTGTGCACCGCAGAGACAGCGTTGGCTTGTGAGGCA
ATTGGATTTGTTTATGTGAAAGAACCTCCAGTCTTCAAAGTGATTATCCCTAC
GGATTGAACCACTTGGTGGGAkATGCAATCCTGAATTGTGAGGTGAAAGGAGACCCCAC
CCCAACCATCCAGTGGAACAGAAAGGGAGTGGATATTGAAATTAGCCACAGAATCCGG
CAACTGGGCAATGGCTCCCTGGCCATCTATGGCACTGTAATGAAGATGCCGGTGACT
ATACTGTGTAGCTACCATGAAGCTGGGGTGGTGGAGCGCAGCATGAGTTGACTCT
GCAAAGTCCTCCTATTATCACTCTTGAGCCAGTGGAAACTGTTATTAATGCTGGTGGC
AAAATCATATTGAATTGTCAGGCAACTGGAGAGCCTCAACCAACCATTACATGGTCCC
GTCAAGGGCACTCTATTTCCTGGGATGACCGGGTTAACGTGTTGTCCA.ACAACTCATT
ATATATTGCTGATGCTCAGAAAGAAGATACCTCTGAATTTGAATGCGTTGCTCGAAAC
TTAATGGGTTCTGTCCTTGTCAGAGTGCCAGTCATAGTCCAGGTTCATGGTGGATTTT
CCCAGTGGTCTGCATGGAGAGCCTGCAGTGTCACCTGTGGAAAAGGCATCCAAAAGAG
GAGTCGTCTGTGCAACCAGCCCCTTCCAGCCAATGGTGGGAAGCCCTGCCAAGGTTCA
00 GATTTGGAAATGCGAAACTGTCAAAATAAGCCTTGTCCAGTGGATGGTCAGC'rGGTCG
CTGAATGGAGTCTTTGGGAAGAATGCATCATTTGTTATGTTTCATTTGGTTCAGTTTC
AATTCTCTTAGACTTGGACCAGGACTTGCAATTATGCATCAGTTCAGCAGGAGTGGTC
GTTTATGTTATAGGTGAATGCTTTGGTTTTAAACATACACGGTTCTGTGACTTGCAAC
TGTC2'TTTGGGGTGTTTGCCCAGTTCATGGAGCATGGAGCGCTTGGCAGCCTTGGGGA
ACATGCAGCGAAAGTTGTGGGAAGGTACTCAGACAAGAGCGACTTTGTATAACC
CACCACCAGCGTTTGTGGGTCCTACTGTGATGGAGCAGAAACACAGATGCAAGTTTG
CAATGAAAGAAATTGTCCAATTCATGGCAAGTGGGCGACTTGGGCCAGTTGGAGTGcC TGTTCTGTGTCATGTGGAGGAGGTGCCAGACAGAGAACAAGGGCTGCTCCcGACCCTG
TGCCGAGAGAGATCAGGATAGCAATATTGA
CAGTGACCCTTGCCCAAGTGAGTGTTGGAAATACCCATGGTAACTGGAGTCC'rTGGAG
TGCTGGGGAACATGCAGCCGGACGTGTACGGAGGGCAGATGCGGCGGTACCGCACA
TGTGATAACCCTCCTCCCTCCAATGGGGGAAGAGCTTGTGGGGGACCAGACTCCCAGA
TCCAGAGGTGCAACACTGACATGTGTCCTGTGGATGGAAGTTGGGGAAGCTGGCATAG
TTGGAGCCAGTGCTCTGCCTCCTGTGGAGGAGGTGAAAAGACTCGGAAGCGGCTGTGC
GACCATCCTGTGCCACTTAAAGGTGGCCGTCCCTGTCCCGGAGACACTACTCAGGTGA
CCAGGTGCAATGTACAAGCATGTCCAGGTqGGCCCCAGCGAGCCAGAGGAAGTGTTAT
TGGAAATATTAATGATGTTGAATTTCGAATTGCTTTCCTTAATGCCACAATAACTGAT
00 AGCCCTAACTCTGATACTAGAATAATACGTGCCAAAATTACCAATGTACCTCGTAGTC 0 TTGGTTCAGCAATGAGAAAGATAGTTTCTATTCTAATCCCAATTACAACGC C) AAAGGAAATAGGAGAAGCAGTCAATGGCTTTACCCTCACCATGCAGTC'TCAAGA GAAACTCAAGTGGAA GCACTGGAGAATCTTGCAGATGAGTCATATGCCCG
GCTTGGATTCCGATGGTTCTTTGCTGCTAGATATCGTTGTGAGTGGCTATGTCCTACA
GCTTCAGTCACCTGCTGAAGTCACTGTAAGGATTACACAGAGGATACATTCAACA
GGTCCTGGGCAGCTGTACCCTACTCAACCCGGCTGTTCACCATTGATGGCATCAGCA
TCCCATACACATGGAACCACACCGTTTTCTATGATCAGGCACAGGGAAGAATGCCTTT
CTTGGTTGAAACACTTCATGCATCCTCTG7GGAATCTGACTATAACCAGATAGAAGAG ACACTGGGTTTTAAAATTCATGC'rTCAATATCCAAAGGAGATCGCAGTAATCAGTGCC CCTCCGGGTTTACCTTAGACTCAGTTGGACCTrr'rTGTGCTGATGAGGATGAATGTGC AGCAGGGAATCCCGTCCCATAGCTGCCACAATGCCAGGGGACTTACTAC'rGC'CC
TGCCCTAAAGGCCTCACCATACCTGCAGATGGAAGAACTTGTCAAGATATTGATGAGT
GTGCTTTGGGTAGGCATACCTGCCACGCGGTCAGGACTGTGACAJATACGAT1GGATC
TTATCGCTGTGTGGTCCGTTGTGGAAGTGGCTTTCGAAGAACCTCTGATGGGCTGAGT
TGTCAAGATATTAATGAATGTCAAGAATCCAGCCCCTGTCACCAGCGCTGTTTCAATG
CCATAGGAAGTTTCCATTGTGGATGTGAACCTGGGTATCAGCTCAAAGGCAGAAAATG
CATGGATGTGAACGAGTGTAGACAATGTATGCAGACCAGATCCACGTAGTAC
ACCCGTGGTGGCTATAAGTGCATTGATCTTGTCCAATGGATGACGGCAGA
ATGGAACCTGTATTGATATTGATGAATGTAAAGATGGGACCCATCAGTGCAGATATAA
CCAGATATGTGAGATACAAGAGGCAGCTATCGTTGTGTATGCCCAAGAGGTATCcG
TCTCAAGGAGTTGGAAGACCCTGCATGGATATTGATGAATGTGAAAATACAGATGCCT
GCCAGCATGAGTGTAAGAATACCTTTGGAAGTTATCAGTGCATCTGCCCACCTGGCTA
TCAACTCACACACAATGGAAAGACATGCCAAGATATCGATGAATGTCTGGAGCAGAAT
GTGCACTGTGGACCCAATCGCATGTGCTTCAACATGAGAGCAAGCTACCAGTGCATCG
ATACACCCTGTCCACCCAACTACCAACGGGATCCTGTTTCAGGGTTCTGCCTCAAGAp, CTGTCCACCCAATGATTTGGAATGTGCCTTGAGCCCATATGCCTTGGAATACAAAC'rC GTCTCCCTCCCATTTGGAATAGCCACCAATCAAGATTTAkATCCGGCTGGTTGCATACA
CACAGGATGGAGTGATGCATCCCAGGACAACTTTCCTCATGGTAGATGAGGAACAGAC
TGTTCCTTTTGCCTTGAGGGATGAAAACCTGAAAGGAGTGGTGTATACAACACGACCA
CTACGAGAAGCAGAGACCTACCGCATGAGGGTCCGAGCCTCATCCTACAGTGCCAATG
GGACCAT'rGAATATCAGACCACATTCATAGTTTATATAGCTGTGTCCGCCTATCCATA
CTAAGGAACTCTCCAAAGCCTATTCCACATATTTAAACCGCATTAATCATGGCATCA
ACCCCC=TCCAGATTACT
ORF Start: ATG at I jORF Stop: TAA at 5860 SEQ ID NQ:88 11953 aa IMW at 213066.l1kD NOV23, MGMTKKI RDNKSRQGCGEKGTLAHCWWDSPKMTWMKDGRPLPQTDQVQTLGGGEVLRI CG940 13-01 Protein STAQVEDTGRYTCLASSPAGDDDKEYLVRVHVPPNIAGTDEPRDITVLRNRQVTLECK Sequence SDAVPPPVITWLRNGERLQATPRVRILSGGRYLQINNADLGDTANYTCVASNIAGKTT REFI LTVNVPPNI KGGFQSLVI LLNKSTVLECIAEGVPTPRITWRKflGAVLAGHAY SILENGFLHIQSAHVTTGRYLCMATNAAGTDRRRIDLQVHGSLVI
ISPSVDDTATYE
_____________CTVTNGAGDDKRTVDLTVQVPPSIADEPTDFLVTKHAPAVITCrASGVPFPS IHWTKN GIRLLPRGDGYRI LSSGAI EILATQLNHAGRYTCVARNAAGSAHRHVTLHVHEP PVIQ PQPSELHVILNNPILLPCEATGTPSPFITWQKEGINVNTSGRNHAVLPSGGLQI SRAV REDAGTYMCVAQNPAGTALGKIKLWVQVPPVI SPHLKEYVIAVDKP ITLSCEADGLPP PDITWHKDGRAIVESIRQRVLS SGSLQIAFVQPGDAGHYTCMAANVAGSSSTSTKLTV HVPPRI RSTEGHYTVNENSQAILPCVADGI PTPAINWKKDNVLLANLLGKYTAE PYGE
LILENVVLEDSGFYTCVANNAAGEDTHTVSLTVHVLPTFTELPGDVSLNKGEQLRLSC
KATG I PLPKLTWTFNNNI I PAHFDSVNGHSELVIERVSKEDSGTYVCTAENSVGFVKA IGFVYVKEPPVFKGDYPSNWIEPLGGNAILNCEVKGDPTPTIQWNRKGVDI ElSHRIR QLGNGSLAIYGTVNEDAGDYTCVATNEAGVVERSMSLTLQSPPI ITLEPVETVINAGG KI ILNCQATGEPQPTITWSRQGHSISWDDRVNVLSNNSLYIADAQKEDTSEFECVARN
LMGSVLVRVPVIVQVHGGFSQWSAWRACSVTCGKGIQKRSRLCNQPLPANGGKPCQGS
DLEMRNCQNKPCPVDGQLVAEWSLWEECI ICYVSFGSVS ILLDLDQDLQLCI SSAGVV
VYVIGECFGFKHTRFCDLQLSFGVFAQFMEHGALGSLGEHAAKWVGKVLRQEQDFVIT
HHQRLVGPTVMEQIG{RCKFAMKE IVQFMASGRLGPVGVPVLCHVEEVPDREQGAAPTL CPSMEEGNAKGVMSRVI FATVTLAOVSVGNTHGNWS PWSGWGTCSRTCNGGQMRRYRT
CDNPPPSNGGRACGGPDSQIQRCNTDMCPVDGSWGSWHSWSOCSASCGGGEKTRKR-LC
DHPVPVKGGRPCPGDTTQVTRCNVQACPGGPQRARGSVIGNINDVEFGIAFLNATITD
SPNSDTRI IRAKITNVPRSLGSAMRKIVS ILNPIYWTTAKE IGEAVNGFTLTNAVFKR ETQVEFATGEILQMSH IARGLDSDGSLLLDIVVSGYVLQLQSPAEVTVKDYTEDYIQT GPGQLYAYSTRLFTIDGISI PYTWNHTVFYDQAQGRNPFLVETLHASSVESDYNQIEE TLGFKIHAS ISKGDRSNQCPSGFTLDSVGPFCADEDECAAGNPCSHSCHNAM'GTYYCS
CPKGLTIAADGRTCQDIDECALGRHTCHAGQDCDNTIGSYRCVVRCGSGFRRTSDGLS
CQDINECQESSPCHQRCFNAIGSFHCGCEPGYQLKGRKCMDVNECRQNVCRPDQHCKN
TRGGYKCIDLCPNGMTKAENGTCIDIDECKDGTHQCRYNQICENTRGSYRCVCPRGYR
SQGVGRPCMDI DECENTDACQHECKNTFGSYQCICPPGYQLTHNGKTCQDI DECLEQN VHCGPNRNCFNMRGSYQCI DTPCPPNYQRDPVSGFCLKNCPPNDLECALSPYALEYKL
VSLPFGIATNQDLIRLVAYTQDGVMHPRTTFLMVDEEQTVPFALRDENLKGVVYTTRP
LREAETYRMRVRASSYSANGTI EYQTTFIVYIAVSAYPY Further analysis of the NOV23 protein yielded the following properties shown in Table 23B.
Table 23B. Protein Sequence Properties NOV23 PSort 0.6000 probability located in plasma membrane; 0.4000 probability located in Golgi analysis: body; 0.3000 probability located in endoplasmic reticulum (membrane); 0.3000 _________probability located in microbody (peroxisome) SignalP No Known Signal Sequence Predicted analysis: A search of the NOV23 protein against the Geneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 23C.
Table 23C. Geneseq Results for NOV23 NOV23 Identities/ Geneseq Protein/Organisml/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AA199Human novel secreted protein, SEQ ID 1 191..1953 763nl63 (100%) 0.0 200 Homo sapiens, 877 aa. 115..877 763nl63 (100%1) 55441-A2, 02-AUG.2001] 00 0AAG67241 Amino acid sequence of human 1191..1953 0 thrombospondin 1 -like protein Homo 1 8.380 r~l sapiens, 780 aa. [W0200109321-Al, 08-FEB-20011 762/763 (99%) 762n763 (99%)
IND
0 AAB95002 Human protein sequence SEQ ID 1213..1953 741/741l(100%) 0.0 NO: 16644 Homo sapiens, 741 aa. 1.341 741/741(100%) 07-FEB.2001] AAG67244 Amino acid sequence of murine 1191..1953 695/763 0.0 thrombospondin 1 -like protein Mus 306.. 1068 729/763 musculus, 1068 aa. [W020010932 1-Al, AAG67243 Amino acid sequence of murine 1210..1953 676/744 0.0 thrombospondin 1 -like protein Mus 1.3744 710/744 (94%) musculus, 744 an. [W0200 109321 -Al, In a BLAST search of public sequence databases, the NOV23 protein was found to have homology to the proteins shown in the BLASTP data in Table 23D.
Table 23D. Public BLASTP Results for NOV23 Protein NOV23 Identities/ Accssin Poten/OgansniLenthResidues/ Similarities for Expect Accero rtilraim~nt Match the Matched Value NumerResidues Portion Q96RW7 HEMICENTIN Homo sapiens (Human), 29..1014 967/1043 0.0 5636 aa. 3558..4599 972/1043 (92%) Q96SC3 FIBULIN-6 Homo sapiens (Human), 2673 29..1014 966/1043 0.0 an (fragment). 595.. 1636 972/1043 Q96K89 CDNA FU14438 FIS, CLONE 1213..1953 741/741 (100%) 0.0 HEMBB10003 17, WEAKLY SIMILAR TO 1.3741 741/741 (100%) FIBULIN-l, ISOFORM D PRECURSOR Homo sapiens (Human), 741 aa.
Q96DN3 CDNA FUJ31995 FIS, CLONE 5..931 295/951 (3 e-130 NT2RP7009236, WEAKLY SIMILAR TO 348.. 1252 460/951 (48%) BASEMENT MEMBRANE-SPECIFIC HEPARAN SULFATE PROTEOGLYCAN CORE PROTEIN PRECURSOR Homo (Human), 1252 aa T20992 hypothetical protein F15G9.4a 10. .982 297/1059 e-6 Caenorhabditis elegans, 5175 aa. 2494..3521 1458/1059 PFam analysis predicts that the NOV23 protein contains the domains shown in the Table 23E.
00 00 Table 23E. Domain Analysis of NOV23 Identities/ Pfam Domain NOV23 Match Region Similarities Expect Value for the Matched Region ig: domain I of 12 28..73 12/47 2e-05 38/47(81%) ig: domain 2 of 12 108..166 19/62 (3 1.2e-08 43/62 ig: domain 3 of 12 199..257 16/62 8.4e-08 37/62 ig: domain 4 of 12 275..293 9/20 0.033 15/20 ig: domain 5 of 12 1326..384 15/62 1.5e-08 43/62 ig: domain 6 of 12 417..475 17/62 1.6e-09 47/62 FmdAAmdA: domain I of 1 1264..494 60/422 145/422 ig: domain 7 of 12 508..565 19/61 1.le-10 43/6 1 ig: domain 8 of 12 598..656 16/62 le-08 39/62 ig: domain 9 of 12 689..745 20/60(33%) 9.5e-12 43/60 ig: domain 10 of 12 779..836 20/61 2.7e-10 42/6 1 MarekA: domain I of 1 846..869 7/25 8 16/25 ig: domain I11 of 12 869..926 17/61 1.6e-09 42/61 tsp 1: domain 1 of 3 948..998 28/54(52%) 1.le-16 37/54 tsp I: domain 2 of 3 1 196..1246 23/54 9.8e-09 36/54 tsp 1: domain 3 of 3 1251.1303 23/54(43%) 6.7e- 13 39/54 EGF: domain I of 7 1546..1580 16/47 8.4e-06 25/47 granulin: domain I of 1 1567..1582 7/16 4.2 ig: domain12 of 12 1604..1610 5/7(71%1) 54 6n7(86%1) 00 EGF: domain 2 of 7 1586..1625 14/48 2 25/48 (52%) EGF: domain 3 of 7 163 1..1663 12/47 0.0045 24/47 (5 1%) EGF: domain 4of 7 1669..1705 14/47 13 24/47 (51%) TILa: domain 1 of 1 1679.. 1734 20/62 7.7 32/62 (52%) Keratm_-B2: domain 1 of 1 1595..1737 34/191 8.7 70/19 1 (37%) EGF: doman5 of 7 1711..1748 14/47 0.0013 28/47 EGF: domain 6 of 7 1754..1788 17/47 1.3e-07 28/47 fni2: domain 1 of 1 1823..1834 7/12(58%) 7.8 8/12 (67%) EGF: domain 7 of 7 1794..1834 13/49 17 26/49 cadherin: domain I of 1 1855..1947 15/107 5.2 54/107 EXAMPLE 24.
The NOV24'clone was analyzed, and the nucleotide and encoded polypeptide sequences are shown in Table 24A.
I Table 24A. NOV24 Sequence Analysis SEQ ID NO:89 116bp NOV24, CG94442-01 DNA Sequence
ATGTGGCTCCCTGCTCTTGTCCTGGCCACTCTCGCTGCTTCCGCGGCTTGGGGTCATC
GGTCCTCGCCACTTTTGGTGAACACCTTGCATGGCAAAGTGTTGGGCAAGTTCGTCAG
CTTAGAAGGATTTGCACAGCCTGTGGCCGTTTTcTTGGGAATCCCTTTTGCCAAGCCG
CCTCTTGGACCCCTGAGGTTTACTCTACCACAGCCTGCA.AGCCATGGAACTTTGTGA
AGAATGCCACCTCGTACCCTCCTATGTGCACCCAAGATCCCAAGGTAGGGCAGTTTCT
CTCAGAACTATTGACCAACCGAAAGGAGAACATTCCTTTCAAGCTTTCTGAAGACTGT
CTTTACCTCAATATTTACACTCCTGCTGACTTGACCAAGAAAAACAGGCTGCTGGTAA
TGGTGTGGATCCACGGAGGGGGGCTGATGGTGGGTGCGGCATCAACCTACGATGGGCT
GGCCCTTGCTGCCCATGAAAACGTGGTGGTGGTGACCATTCAATATCGCCTGGGCATC
TGGGGATTCTTCTCCCTCGCTGACAGTCACTCTAGAGGATCCTGGGGGCCAATGGGGC
TTACGTATTTAATCTCAGAAAGGACGGCATCGTTTAGTGGATCAACAGGAAGCGTTTc
GCCATTCGGCTCCGGCGGGAAACGGGTGTGTACTGTGGTGTGCTTACCACTGGCCAGA
TCTTCATCGATGATCTCACGGATTTCTGAGAGTGATGTGGCCCTCACTCCTGCTCTGG
TGGAGAAGGGTGACGTCAAGCCCCTGGCTGAGCAAATTGCTAACACTGTTGGGTGTGA
AACCACCAACTCAGCTGTCATGGCTCACTGTCTGcGGCAGAAGATGGAAGAGGAGCTC
TTGGAGACGACATTGAAAATGAAATTCTTATCTCTGGACTTACAGGGAGACCTCAAAG
AGAGTCACCACTATTTGGCCACCGTGATTGATGGGGTGGTGCTGCTGAAAACACCTGA
AGAGCTTCAAGCTGAAAGGAAGTTCCACACTGTCCCCTACATCGTCGGAATTAACAAG
CAGGAGTTTGGCTGGATGCTTCCAATGCAGTTGATGAGCTATCTACTCTCCGAAGGGA
AACTGGACCAGAAGACAGCCATGTCACTCTTCTGGAAGTCCTATCCCTTTGTTGTAAT
TCCTAAGGAATTGATTCCAGAAGCCATTGAGAAGTACTTAGGACGAACAGATGACCCT
GTCAAGAAGAAAGACCTGTTCCTGGACTTAATGGGGGACGTACTGTTCGGTGTCCCAT
1_ 1_1__1 1_1 P, 00
INO
CTGTGACTGTGGCCCGGAACCACAGAGATGCTGGAGCACCCACCTACATGTATGAGTT
TCAGTACCGTCCAAGCTTCTCATCAGACATGAAACCCAAGACGGTGATAGGAGACCAC
GGGGATGAGCTCTTCTCCGTCCTTGGGGCCCCATCTTTAAAAGAGGGTGCCTCAGAAG
AGGAGATCAGACTTAGCAAGATGGTGATGAAATCTGGGCCAA'TGCTCGCATGG
GAACCCCAATG3AGAAGGGC'TGCCGCACTGGCCAGAGTACAACCAGGAGGAAGGGTAC
CTGCAGATTGGTGCTAACACCCAGGCAGCCCAGAAGCTGAAGGACAAGGAAGTAGCTT
TCTGGACCAAACTCTTCGCCAAGAAGGCAGTGGAGAAGCCACCCCAGATAGAACTAAG
CCATGGAGCTGACTGCCTTCGCGCTTATCCCTATGTACATCAAGAAAACTQAGGCCAA
AAGGGTTTAGGTACTAATTTAGGTCCC
ORF Start: ATO at 1 ORF Stop: TGA at 1732 SEQ IDNO:90 577 aa MW at 63826.1kD NOV24, MWLPALVLATLAASAAWGHRSSPLLVNTLHGKVLGKFVSLEGFAQPVAVFLGI
PFAKP
CG94442-01 Protein PLC PLRFTLPQPAEPWNFVKNATSYPPMCTQDPKVGQFLSELLTNRKENI
PFKLSEDC
Sequence
LYLNIYTPADLTKKNRLLVMVWIHGGGLMVGAASTYDGLALAAHEVVVTIQYRGI
WGFFSLADSHSRGSWGPMGLTYLI SERTAS FSGSTGSVSPFGSGGKRVCTVVCLPLAR SSSMISRI SESDVALTPALVEKGDVKPLAEQIANTVGCETTNSAVMAHCLRQEEEL
LETTLKKFLSLDLQGDLKESHHYLATVIDGVVLLKTPEELQAERKFHTVPYMVGINK
QEFGWMLPMQLMSYLLSEGKLDQKTAMSLFWKSYPFVVIPKELI
PEAIEKYLGGTDDP
VKKKDLFLDLMGDVLFGVPSVTVARNHRDAGAPTYMYEFQYRPSFSSDMKPKTVIGDH
GDELFSVLGAPSLKEGASEEEI RLSKMVMKFWANFARNGNPNGEGLPHWPEYNQEEGY LQIGANTQAAQKLKDKEVAFWTKLFAKKAVEKPPQI
ELSHGADCLRAYPYVHQEN
Further analysis of the NOV24 protein yielded the following properties shown in Table 24B.
Table 24B. Protein Sequence Properties NOV24 PSort 0.5278 probability located in outside; 0.1022 probability located in microbody analysis: (peroxisome); 0.1000 probability located in endoplasmic reticulum (membrane); 0.1000 probability located in endoplasmic reticulum (lumen) SignalP Cleavage site between residues 19 and analysis: A search of the NOV24 protein against the Gcneseq database, a proprietary database that contains sequences published in patents and patent publication, yielded several homologous proteins shown in Table 24C.
Table 24C. Geneseq Results for NOV24 NOV24 Identities/ Geneseq Protein/Organism/Length [Patent Residues/ Similarities for Expect Identifier Date] Match the Matched Value Residues Region AAB43732 Human cancer associated protein sequence 1..559 467/565 0.0 SEQ ID NO: 1177 Home sapiens, 583 aa. 16..579 496/565 (87%) [W0200055350-A1, 21-SEP-20001 AAB73263 Human triacyiglycerol hydrolase, TGH 1.559 464/564 0.0 Homo sapiens, 566 aa. [W0200116358-A2, 1.562 493/564 (87%) 08-MAR-2001] AAY33145 Rabbit liver carboxylesterase protein 1.559 400/564 0.0 1.561 461/564 00 [W09942593-Al, AAB08202 Amidno acid sequence of a rabbit liver 6..559 394/559 0.0 esterase 3 designated RLE-3 Oryctolagus 7..562 454/559 cuniculus, 566 aa. [US6107549-A, AAY33146 Rabbit liver carboxylesterase protein 1..540 390/545 0.0 fragment Oryctolagus cuniculus, 543 aa. 1..543 446/545 (8 1%) _______[W09942593-Al, 26-AUG-1999] I__I _I In a BLAST search of public sequence databases, the NOV24 protein was found to have homology to the proteins shown in the BLASTP data in Table 24D.
Table 24D. Public BLASTP Results for NOV24 Protein NOV24 Identities/ Accesio Prtei/Orgnis/LegthResidues/ Similarities for Expect Accero rti/raimLnt Match the Matched Value NumerResidues Portion Q96EE8 UNKNOWN (PROTEIN FOR MGC:9220) L..559 470/564 0.0 Homo sapiens (Human), 566 aa. L .562 497/5 64 P23141 Liver carboxylesterase precursor (EC 3. 1. 1.1) L..559 467/564 0.0 (Acyl coenzyme A:cholesterol L .563 496/564 (87%) acyltrasferase) (ACAT) (Monocyte/macrophage serine esterase) (HMSE) (Serine esterase 1) Homo sapiens 567 aa. Q9UK77 EGASYN Homo sapiens (Human), 567 an. 1L.559 466/564 0.0 L.563 495/564 046421 CARBOXYLESTERASE PRECURSOR (EC L.559 455/564 0.0 3. 1.1. 1) Macaca fascicularis (Crab eating L..562 484/564 macaque) (Cynomolgus monkey), 566 aa.
077540 LIVER CARBOXYLESTERASE (EC 1L.559 400/564 0.0 3. 1. 1.1) Oryctolagus cuniculus, (Rabbit), 5 65 1..561 461/564 aa.
PFamn analysis predicts that the NOV24 protein contains the domains shown in the Table 24E.
Table 24E. Domain Analysis of NOV24 Identities/ Pfam Domain NOV24 Match Region Similarities Expect Value for the Matched Region COesterase: domain I of 2 L..184 89/205 2.7e-80 162 G6PDC: domain I of 1 1 87..208 6/22 4.3 15/22 (68%) LI_1~_ C __LU COesterase: domain 2 of2 240..543 112/347 6e-90 257/347 (74%) EXAMPLE 25: Sequencing Methodology and Identification of NOVX Clones 1. GeneCalling T Technology: This is a proprietary method of performing differential gene expression profiling between two or more samples developed at CuraGen and described by Shimkets, et al., "Gene expression analysis by transcript profiling coupled to a gene database query" Nature Biotechnology 17:198-803 (1999). cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then digested with up to as many as 120 pairs of restriction enzymes and pairs of linker-adaptors specific for each pair of restriction enzymes were ligated to the appropriate end. The restriction digestion generates a mixture of unique cDNA gene fragments. Limited PCR amplification is performed with primers homologous to the linker adapter sequence where one primer is biotinylated and the other is fluorescently labeled. The doubly labeled material is isolated and the fluorescently labeled single strand is resolved by capillary gel electrophoresis. A computer algorithm compares the electropherograms from an experimental and control group for each of the restriction digestions. This and additional sequence-derived information is used to predict the identity of each differentially expressed gene fragment using a variety of genetic databases. The identity of the gene fragment is confirmed by additional, gene-specific competitive PCR or by isolation and sequencing of the gene fragment.
2. SeqCalling T Technology: cDNA was derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then sequenced using CuraGen's proprietary SeqCalling technology. Sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a 00 0 consensus sequence for each assembly. Each assembly is included in CuraGen Corporation's C database. Sequences were included as components for assembly when the extent of identity with another component was at least 95% over 50 bp. Each assembly represents a gene or portion thereof and includes information on variants, such as splice forms single nucleotide sO polymorphisms (SNPs), insertions, deletions and other sequence variations.
3. PathCalling m Technology: The NOVX nucleic acid sequences are derived by laboratory screening of cDNA library by the two-hybrid approach. cDNA fragments covering either the full length of the DNA sequence, or part of the sequence, or both, are sequenced. In silico prediction was based on sequences available in CuraGen Corporation's proprietary sequence databases or in the 00 Spublic human sequence databases, and provided either the full length DNA sequence, or some portion thereof.
The laboratory screening was performed using the methods summarized below: cDNA libraries were derived from various human samples representing multiple tissue types, normal and diseased states, physiological states, and developmental states from different donors. Samples were obtained as whole tissue, primary cells or tissue cultured primary cells or cell lines. Cells and cell lines may have been treated with biological or chemical agents that regulate gene expression, for example, growth factors, chemokines or steroids. The cDNA thus derived was then directionally cloned into the appropriate two-hybrid vector (Gal4-activation domain (Gal4-AD) fusion). Such cDNA libraries as well as commercially available cDNA libraries from Clontech (Palo Alto, CA) were then transferred from E.coli into a CuraGen Corporation proprietary yeast strain (disclosed in U.
S. Patents 6,057,101 and 6,083,693, incorporated herein by reference in their entireties).
Gal4-binding domain (Gal4-BD) fusions of a CuraGen Corportion proprietary library of human sequences was used to screen multiple Gal4-AD fusion cDNA libraries resulting in the selection of yeast hybrid diploids in each of which the Gal4-AD fusion contains an individual cDNA. Each sample was amplified using the polymerase chain reaction (PCR) using non-specific primers at the cDNA insert boundaries. Such PCR product was sequenced; sequence traces were evaluated manually and edited for corrections if appropriate. cDNA sequences from all samples were assembled together, sometimes including public human sequences, using bioinformatic programs to produce a consensus sequence for each assembly.
Each assembly is included in CuraGen Corporation's database. Sequences were included as components for assembly when the extent of identity with another component was at least over 50 bp. Each assembly represents a gene or portion thereof and includes information 0 on variants, such as splice forms single nucleotide polymorphisms (SNPs), insertions, Sdeletions and other sequence variations.
Physical clone: the cDNA fragment derived by the screening procedure, covering the entire open reading frame is, as a recombinant DNA, cloned into pACT2 plasmid (Clontech) used to make the cDNA library. The recombinant plasmid is inserted into the host and Sselected by the yeast hybrid diploid generated during the screening procedure by the mating of both CuraGen Corporation proprietary yeast strains N106' and YULH S. Patents 6,057,101 and 6,083,693).
4. RACE: Techniques based on the polymerase chain reaction such as rapid Samplification ofcDNA ends (RACE), were used to isolate or complete the predicted 00 sequence of the cDNA of the invention. Usually multiple clones were sequenced from one or more human samples to derive the sequences for fragments. Various human tissue samples from different donors were used for the RACE reaction. The sequences derived from these procedures were included in the SeqCalling Assembly process described in preceding paragraphs.
Exon Linking: The NOVX target sequences identified in the present invention were subjected to the exon linking process to confirm the sequence. PCR primers were designed by starting at the most upstream sequence available, for the forward primer, and at the most downstream sequence available for the reverse primer. In each case, the sequence was examined, walking inward from the respective termini toward the coding sequence, until a suitable sequence that is either unique or highly selective was encountered, or, in the case of the reverse primer, until the stop codon was reached. Such primers were designed based on in silico predictions for the full length cDNA, part (one or more exons) of the DNA or protein sequence of the target sequence, or by translated homology of the predicted exons to closely related human sequences from other species. These primers were then employed in PCR amplification based on the following pool of human cDNAs: adrenal gland, bone marrow, brain amygdala, brain cerebellum, brain hippocampus, brain substantia nigra, brain thalamus, brain -whole, fetal brain, fetal kidney, fetal liver, fetal lung, heart, kidney, lymphoma Raji, mammary gland, pancreas, pituitary gland, placenta, prostate, salivary gland, skeletal muscle, small intestine, spinal cord, spleen, stomach, testis, thyroid, trachea, uterus. Usually the resulting amplicons were gel purified, cloned and sequenced to high redundancy. The PCR product derived from exon linking was cloned into the pCR2.1 vector from Invitrogen. The resulting bacterial clone has an insert covering the entire open reading =L I 11 U.
C IICI n CCCII L El-I~L~- 00 O frame cloned into the pCR2.1 vector. The resulting sequences from all clones were c1 assembled with themselves, with other fragments in CuraGen Corporation's database and with public ESTs. Fragments and ESTs were included as components for an assembly when the extent of their identity with another component of the assembly was at least 95% over Sbp. In addition, sequence traces were evaluated manually and edited for corrections if appropriate. These procedures provide the sequence reported herein.
6. Physical Clone: Exons were predicted by homology and the intron/exon boundaries were determined using standard genetic rules. Exons were further selected and refined by means of similarity determination using multiple BLAST (for example, tBlastN, BlastX, and C BlastN) searches, and, in some instances, GeneScan and Grail. Expressed sequences from 00 Sboth public and proprietary databases were also added when available to further define and complete the gene sequence. The DNA sequence was then manually corrected for apparent inconsistencies thereby obtaining the sequences encoding the full-length protein.
The PCR product derived by exon linking, covering the entire open reading frame, was cloned into the pCR2.1 vector from Invitrogen to provide clones used for expression and screening purposes.
Example 26: Identification of Single Nucleotide Polymorphisms in NOVX nucleic acid sequences Variant sequences are also included in this application. A variant sequence can include a single nucleotide polymorphism (SNP). A SNP can, in some instances, be referred to as a "cSNP" to denote that the nucleotide sequence containing the SNP originates as a cDNA. A SNP can arise in several ways. For example, a SNP may be due to a substitution of one nucleotide for another at the polymorphic site. Such a substitution can be either a transition or a transversion. A SNP can also arise from a deletion of a nucleotide or an insertion of a nucleotide, relative to a reference allele. In this case, the polymorphic site is a site at which one allele bears a gap with respect to a particular nucleotide in another allele.
SNPs occurring within genes may result in an alteration of the amino acid encoded by the gene at the position of the SNP. Intragenic SNPs may also be silent, when a codon including a SNP encodes the same amino acid as a result of the redundancy of the genetic code. SNPs occurring outside the region of a gene, or in an intron within a gene, do not result in changes in any amino acid sequence of a protein but may result in altered regulation of the expression pattern. Examples include alteration in temporal expression, physiological response 00 0 regulation, cell type expression regulation, intensity of expression, and stability of transcribed message.
SeqCalling assemblies produced by the exon linking process were selected and extended using the following criteria. Genomic clones having regions with 98% identity to Sall or part of the initial or extended sequence were identified by BLASTN searches using the Srelevant sequence to query human genomic databases. The genomic clones that resulted were selected for further analysis because this identity indicates that these clones contain the genomic locus for these SeqCalling assemblies. These sequences were analyzed for putative Scoding regions as well as for similarity to the known DNA and protein sequences. Programs Sused for these analyses include Grail, Genscan, BLAST, HMMER, FASTA, Hybrid and other 00 relevant programs.
SSome additional genomic regions may have also been identified because selected SeqCalling assemblies map to those regions. Such SeqCalling sequences may have overlapped with regions defined by homology or exon prediction. They may also be included because the location of the fragment was in the vicinity of genomic regions identified by similarity or exon prediction that had been included in the original predicted sequence. The sequence so identified was manually assembled and then may have been extended using one or more additional sequences taken from CuraGen Corporation's human SeqCalling database.
SeqCalling fragments suitable for inclusion were identified by the CuraTools TM program SeqExtend or by identifying SeqCalling fragments mapping to the appropriate regions of the genomic clones analyzed.
The regions defined by the procedures described above were then manually integrated and corrected for apparent inconsistencies that may have arisen, for example, from miscalled bases in the original fragments or from discrepancies between predicted exon junctions, EST locations and regions of sequence similarity, to derive the final sequence disclosed herein.
When necessary, the process to identify and analyze SeqCalling assemblies and genomic clones was reiterated to derive the full length sequence (Alderborn et al., Determination of Single Nucleotide Polymorphisms by Real-time Pyrophosphate DNA Sequencing. Genome Research. 10 1249-1265, 2000).
Variants are reported individually but any combination of all or a select subset of variants are also included as contemplated NOVX embodiments of the invention.
NOV1 SNP data: 00
O
j-? ~I 1.
NOV1 has two SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs: and 2, respectively. The nucleotide sequences of the NOV 1 variants differ as shown in Table 26A.
r Table 26A SNP data for NOVI O, c Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13374666 221 C T 74 Pro Leu 13374665 353 T C 118 Val Ala NOV2a SNP data: NOV2a has four SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs:3 and 4, respectively. The nucleotide sequences of the NOV2a variants differ as shown in Table 26B.
Table 26B SNP data for NOV2a Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13374586 228 T C 43 Leu Pro 13374587 470 A T 124 Thr Ser 13374588 480 C A 127 Ser Tyr 13374590 798 G C 233 Arg Thr NOV4 SNP data: NOV4 has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:9 and 10, respectively. The nucleotide sequence of the NOV4 variant differs as shown in Table 26C.
Table 26C SNP data for NOV4 Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377694 1929 C T 616 Thr Ile ~i~PI~ 1 00
O
00 SNP data: has six SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs: 11 and 12, respectively. The nucleotide sequences of the NOV5 variants differ as shown in Table 26D.
Table 26D SNP data for Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377696 88 G A 30 Glu Lys 13377697 117 G A 39 Gin Gin 13377700 265 C A 89 Leu lie 13377701 290 A G 97 Asp Gly 13377702 407 T C 136 Ile Thr 13377703 500 G C 167 Trp Ser NOV6 SNP data: NOV6 has three SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs: 13 and 14, respectively. The nucleotide sequences of the NOV6 variants differ as shown in Table 26E.
Table 26E SNP data for NOV6 Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377705 169 T C 53 Ile Ile 13377706 338 T C 110 Ser Pro 13377707 466 T C 152 Phe Phe NOV8 SNP data: NOV8 has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:17 and 18, respectively. The nucleotide sequence of the NOV8 variant differs as shown in Table 26F.
00 O Table 26F SNP data for NOV8 Variant Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377708 212 C T 62 Pro Leu
O
NOV9a SNP data: NOV9a has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs: 19 and 20, respectively. The Snucleotide sequence of the NOV9a variant differs as shown in Table 26G.
00 Table 26G SNP data for NOV9a t Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13374583 138 A G 19 Thr Ala NOVlla SNP data: NOV1 la has two SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs:25 and 26, respectively. The nucleotide sequences of the NOV1 la variants differ as shown in Table 26H.
Table 26H SNP data for NOVIla t Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377709 1255 T C 399 Tyr His 13377710 1415 C T 452 Ala Val NOV12a SNP data: NOV12a has two SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs:29 and 30, respectively. The nucleotide sequences of the NOV12a variants differ as shown in Table 261.
-r -r L r -X 00
O
O
Table 261 SNP data for NOV12a Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377676 1544 C T 0 13377675 1750 C T 0 NOV13 SNP data: NOV13 has one SNP variant, whose variant positions for its nucleotide and amino acid sequences is numbered according to SEQ ID NOs:41 and 42, respectively. The nucleotide sequence of the NOV13 variant differs as shown in Table 26J.
Table 26J SNP data for NOV13 Nucleotldes Amino Acids Variant Position Initial Modified Position Initial Modified 13377711 1383 C T 461 Asn Asn NOV14a SNP data: NOV 14a has four SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs:43 and 44, respectively. The nucleotide sequences of the NOV14a variants differ as shown in Table 26K.
Table 26K SNP data for NOV14a Nucleotldes Amino Acids Variant Position Initial Modified Position Initial Modified 13377674 299 T A 79 Leu Gin 13377673 335 G T 91 Arg Met 13377672 532 G A 157 Ala Thr 13377671 1149 C T 362 Ala Ala SNP data: L.-LL- I 11__ CI -~Ce ~CLC-- I 00
O
O
00
O
O
NOVI 5a has three SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs:51 and 52, respectively. The nucleotide sequences of the NOV15a variants differ as shown in Table 26L.
Table 26L SNP data for Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377670 206 G A 60 Ala Thr 13377669 886 T C 286 Pro Pro 13377668 1059 A G 344 Asp Gly SNP data: has three SNP variants, whose variant positions for their nucleotide and amino acid sequences are numbered according to SEQ ID NOs:79 and 80, respectively. The nucleotide sequences of the NOV20a variants differ as shown in Table 26M.
Table 26M SNP data for Nucleotides Amino Acids Variant Position Initial Modified Position Initial Modified 13377712 300 T C 38 Ser Ser 13377713 366 C T 60 lie lie 13377714 396 A G 70 Thr Thr Example 27. Quantitative expression analysis of clones in various cells and tissues The quantitative expression of various clones was assessed using microtiter plates containing RNA samples from a variety of normal and pathology-derived cells, cell lines and tissues using real time quantitative PCR (RTQ PCR). RTQ PCR was performed on an Applied Biosystems ABI PRISM® 7700 or an ABI PRISM® 7900 HT Sequence Detection System. Various collections of samples are assembled on the plates, and referred to as Panel 1 (containing normal tissues and cancer cell lines), Panel 2 (containing samples derived from tissues from normal and cancer sources), Panel 3 (containing cancer cell lines), Panel 4 00 0 (containing cells and cell lines from normal tissues and cells related to inflammatory CK, conditions), Panel 5D/5I (containing human tissues and cell lines with an emphasis on metabolic diseases), AI_comprehensive_panel (containing normal tissue and samples from autoimmune diseases), Panel CNSD.01 (containing central nervous system samples from O normal and diseased brains) and CNSneurodegeneration_panel (containing samples from normal and Alzheimer's diseased brains).
RNA integrity from all samples is controlled for quality by visual assessment of agarose gel electropherograms using 28S and 18S ribosomal RNA staining intensity ratio as a guide (2:1 to 2.5:1 28s:18s) and the absence of low molecular weight RNAs that would be indicative of degradation products. Samples are controlled against genomic DNA 00 0 contamination by RTQ PCR reactions run in the absence of reverse transcriptase using probe Sand primer sets designed to amplify across the span of a single exon.
First, the RNA samples were normalized to reference nucleic acids such as constitutively expressed genes (for example, p-actin and GAPDH). Normalized RNA (5 ul) was converted to cDNA and analyzed by RTQ-PCR using One Step RT-PCR Master Mix Reagents (Applied Biosystems; Catalog No. 4309169) and gene-specific primers according to the manufacturer's instructions.
In other cases, non-normalized RNA samples were converted to single strand cDNA (sscDNA) using Superscript II (Invitrogen Corporation; Catalog No. 18064-147) and random hexamers according to the manufacturer's instructions. Reactions containing up to 10 ug of total RNA were performed in a volume of 20 pl and incubated for 60 minutes at 42 0 C. This reaction can be scaled up to 50 ug of total RNA in a final volume of 100 il. sscDNA samples are then normalized to reference nucleic acids as described previously, using IX TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions.
Probes and primers were designed for each assay according to Applied Biosystems Primer Express Software package (version I for Apple Computer's Macintosh Power PC) or a similar algorithm using the target sequence as input. Default settings were used for reaction conditions and the following parameters were set before selecting primers: primer concentration 250 nM, primer melting temperature (Tm) range 58 0 -60 0 C, primer optimal Tm 59 0 C, maximum primer difference 2 0 C, probe does not have 5'G, probe Tm must be 0 C greater than primer Tm, amplicon size 75bp to 100bp. The probes and primers selected (see below) were synthesized by Synthegen (Houston, TX, USA). Probes were double purified by HPLC to remove uncoupled dye and evaluated by mass spectroscopy to verify 00 O coupling of reporter and quencher dyes to the 5' and 3' ends of the probe, respectively. Their 1 final concentrations were: forward and reverse primers, 900nM each, and probe, 200nM.
PCR conditions: When working with RNA samples, normalized RNA from each tissue and each cell line was spotted in each well of either a 96 well or a 384-well PCR plate S(Applied Biosystems). PCR cocktails included either a single gene specific probe and primers set, or two multiplexed probe and primers sets (a set specific for the target clone and another Sgene-specific set multiplexed with the target probe). PCR reactions were set up using TaqMan® One-Step RT-PCR Master Mix (Applied Biosystems, Catalog No. 4313803) following manufacturer'sinstructions. Reverse transcription was performed at 48 0 C for (C1 minutes followed by amplification/PCR cycles as follows: 95 0 C 10 min, then 40 cycles of 00 095 0 C for 15 seconds, 60 0 C for 1 minute. Results were recorded as CT values (cycle at which a 1 given sample crosses a threshold level of fluorescence) using a log scale, with the difference in RNA concentration between a given sample and the sample with the lowest CT value being represented as 2 to the power of delta CT. The percent relative expression is then obtained by taking the reciprocal of this RNA difference and multiplying by 100.
When working with sscDNA samples, normalized sscDNA was used as described previously for RNA samples. PCR reactions containing one or two sets of probe and primers were set up as described previously, using IX TaqMan® Universal Master mix (Applied Biosystems; catalog No. 4324020), following the manufacturer's instructions. PCR amplification was performed as follows: 95°C 10 min, then 40 cycles of 95*C for 15 seconds, for 1 minute. Results were analyzed and processed as described previously.
Panels 1, 1.1, 1.2, and 1.3D The plates for Panels 1, 1.1, 1.2 and 1.3D include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in these panels are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in these panels are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on these panels are comprised of samples derived from all major organ systems from single adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, 00 0 fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose.
O In the results for Panels 1, 1.1, 1.2 and 1.3D, the following abbreviations are used: Sca. carcinoma, established from metastasis, met metastasis, s cell var small cell variant, non-s non-sm non-small, squam squamous, O pl. eff= pl effusion pleural effusion, OO glio glioma, 0 astro astrocytoma, and 0 neuro neuroblastoma.
General_screeningpanel_vl.4 and The plates for Panels 1.4 and 1.5 include 2 control wells (genomic DNA control and chemistry control) and 94 wells containing cDNA from various samples. The samples in Panels 1.4 and 1.5 are broken into 2 classes: samples derived from cultured cell lines and samples derived from primary normal tissues. The cell lines are derived from cancers of the following types: lung cancer, breast cancer, melanoma, colon cancer, prostate cancer, CNS cancer, squamous cell carcinoma, ovarian cancer, liver cancer, renal cancer, gastric cancer and pancreatic cancer. Cell lines used in Panel 1.4 are widely available through the American Type Culture Collection (ATCC), a repository for cultured cell lines, and were cultured using the conditions recommended by the ATCC. The normal tissues found on Panels 1.4 and are comprised of pools of samples derived from all major organ systems from 2 to 5 different adult individuals or fetuses. These samples are derived from the following organs: adult skeletal muscle, fetal skeletal muscle, adult heart, fetal heart, adult kidney, fetal kidney, adult liver, fetal liver, adult lung, fetal lung, various regions of the brain, the spleen, bone marrow, lymph node, pancreas, salivary gland, pituitary gland, adrenal gland, spinal cord, thymus, stomach, small intestine, colon, bladder, trachea, breast, ovary, uterus, placenta, prostate, testis and adipose. Abbreviations are as described for Panels 1, 1.1, 1.2, and 1.3D.
Panels 2D and 2.2 The plates for Panels 2D and 2.2 generally include 2 control wells and 94 test samples composed of RNA or cDNA isolated from human tissue procured by surgeons working in close cooperation with the National Cancer Institute's Cooperative Human Tissue Network (CHTN) or the National Disease Research Initiative (NDRI). The tissues are derived from 175 ii tC_ _LI 00 human malignancies and in cases where indicated many malignant tissues have "matched margins" obtained from noncancerous tissue just adjacent to the tumor. These are termed normal adjacent tissues and are denoted "NAT" in the results below. The tumor tissue and the "matched margins" are evaluated by two independent pathologists (the surgical pathologists O and again by a pathologist at NDRI or CHTN). This analysis provides a gross histopathological assessment of tumor differentiation grade. Moreover, most samples include the original surgical pathology report that provides information regarding the clinical stage of the patient. These matched margins are taken from the tissue surrounding immediately proximal) to the zone of surgery (designated "NAT", for normal adjacent tissue, in Table C- RR). In addition, RNA and cDNA samples were obtained from various human tissues derived 00 0from autopsies performed on elderly people or sudden death victims (accidents, etc.). These Stissues were ascertained to be free of disease and were purchased from various commercial sources such as Clontech (Palo Alto, CA), Research Genetics, and Invitrogen.
Panel 3D The plates of Panel 3D are comprised of 94 cDNA samples and two control samples.
Specifically, 92 of these samples are derived from cultured human cancer cell lines, 2 samples of human primary cerebellar tissue and 2 controls. The human cell lines are generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: Squamous cell carcinoma of the tongue, breast cancer, prostate cancer, melanoma, epidermoid carcinoma, sarcomas, bladder carcinomas, pancreatic cancers, kidney cancers, leukemias/lymphomas, ovarian/uterine/cervical, gastric, colon, lung and CNS cancer cell lines. In addition, there are two independent samples of cerebellum. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. The cell lines in panel 3D and 1.3D are of the most common cell lines used in the scientific literature.
Panels 4D, 4R, and 4.1D Panel 4 includes samples on a 96 well plate (2 control wells, 94 test samples) composed of RNA (Panel 4R) or cDNA (Panels 4D/4.1D) isolated from various human cell lines or tissues related to inflammatory conditions. Total RNA from control normal tissues such as colon and lung (Stratagene, La Jolla, CA) and thymus and kidney (Clontech) was employed. Total RNA from liver tissue from cirrhosis patients and kidney from lupus patients was obtained from BioChain (Biochain Institute, Inc., Hayward, CA). Intestinal tissue for RNA preparation from patients diagnosed as having Crohn's disease and ulcerative colitis was obtained from the National Disease Research Interchange (NDRI) (Philadelphia, PA).
00 0 Astrocytes, lung fibroblasts, dermal fibroblasts, coronary artery smooth muscle cells, C small airway epithelium, bronchial epithelium, microvascular dermal endothelial cells, microvascular lung endothelial cells, human pulmonary aortic endothelial cells, human umbilical vein endothelial cells were all purchased from Clonetics (Walkersville, MD) and \grown in the media supplied for these cell types by Clonetics. These primary cell types were activated with various cytokines or combinations of cytokines for 6 and/or 12-14 hours, as indicated. The following cytokines were used; IL-1 beta at approximately 1-5ng/ml, TNF alpha at approximately 5-1Ong/ml, IFN gamma at approximately 20-50ng/ml, IL-4 at approximately 5-10ng/ml, IL-9 at approximately 5-lOng/ml, IL-13 at approximately 5-lOng/ml. Endothelial cells were sometimes starved for various times by culture in the basal 0 0 media from Clonetics with 0.1% serum.
0Mononuclear cells were prepared from blood of employees at CuraGen Corporation, using Ficoll. LAK cells were prepared from these cells by culture in DMEM 5% FCS (Hyclone), 1OuM non essential amino acids (Gibco/Life Technologies, Rockville, MD), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10" 5 M (Gibco), and 10mM Hepes (Gibco) and Interleukin 2 for 4-6 days. Cells were then either activated with 10-20ng/ml PMA and 1-2pg/ml ionomycin, IL-12 at 5-lOng/ml, IFN gamma at 20-50ng/ml and IL-18 at 5-10ng/ml for 6 hours. In some cases, mononuclear cells were cultured for 4-5 days in DMEM 5% FCS (Hyclone), 100pM non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10M (Gibco), and 10mM Hepes (Gibco) with PHA (phytohemagglutinin) or PWM (pokeweed mitogen) at approximately 5Pg/ml. Samples were taken at 24, 48 and 72 hours for RNA preparation. MLR (mixed lymphocyte reaction) samples were obtained by taking blood from two donors, isolating the mononuclear cells using Ficoll and mixing the isolated mononuclear cells 1:1 at a final concentration of approximately 2x106cells/ml in DMEM 5% FCS (Hyclone), 100pM non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol (5.5xl0-M) (Gibco), and Hepes (Gibco). The MLR was cultured and samples taken at various time points ranging from 1- 7 days for RNA preparation.
Monocytes were isolated from mononuclear cells using CD14 Miltenyi Beads, +ve VS selection columns and a Vario Magnet according to the manufacturer's instructions.
Monocytes were differentiated into dendritic cells by culture in DMEM 5% fetal calf serum (FCS) (Hyclone, Logan, UT), 100pM non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10 5 M (Gibco), and 10mM Hepes (Gibco), GMCSF and 5ng/ml IL-4 for 5-7 days. Macrophages were prepared by culture of monocytes 177 00 O for 5-7 days in DMEM 5% FCS (Hyclone), 100pM non essential amino acids (Gibco), ImM Ctl sodium pyruvate (Gibco), mercaptoethanol 5.5x10- 5 M (Gibco), 10mM Hepes (Gibco) and AB Human Serum or MCSF at approximately 50ng/ml. Monocytes, macrophages and dendritic cells were stimulated for 6 and 12-14 hours with lipopolysaccharide (LPS) at S100ng/ml. Dendritic cells were also stimulated with anti-CD40 monoclonal antibody (Pharmingen) at lO1g/ml for 6 and 12-14 hours.
CD4 lymphocytes, CD8 lymphocytes and NK cells were also isolated from mononuclear cells using CD4, CD8 and CD56 Miltenyi beads, positive VS selection columns and a Vario Magnet according to the manufacturer's instructions. CD45RA and CK1 CD4 lymphocytes were isolated by depleting mononuclear cells of CD8, CD56, CDI4 and 00 CD19 cells using CD8, CD56, CD14 and CD19 Miltenyi beads and positive selection.
beads were then used to isolate the CD45RO CD4 lymphocytes with the remaining cells being CD45RA CD4 lymphocytes. CD45RA CD4, CD45RO CD4 and CD8 lymphocytes were placed in DMEM 5% FCS (Hyclone), 100 M non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10-SM (Gibco), and Hepes (Gibco) and plated at 10 6 cells/ml onto Falcon 6 well tissue culture plates that had been coated overnight with 0.5gg/ml anti-CD28 (Pharmingen) and 3ug/ml anti-CD3 (OKT3, ATCC) in PBS. After 6 and 24 hours, the cells were harvested for RNA preparation. To prepare chronically activated CD8 lymphocytes, we activated the isolated CD8 lymphocytes for 4 days on anti-CD28 and anti-CD3 coated plates and then harvested the cells and expanded them in DMEM 5% FCS (Hyclone), 100 M non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5xl0SM (Gibco), and 10mM Hepes (Gibco) and IL-2. The expanded CD8 cells were then activated again with plate bound anti-CD3 and anti-CD28 for 4 days and expanded as before. RNA was isolated 6 and 24 hours after the second activation and after 4 days of the second expansion culture. The isolated NK cells were cultured in DMEM 5% FCS (Hyclone), 100 M non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10' 5 M (Gibco), and Hepes (Gibco) and IL-2 for 4-6 days before RNA was prepared.
To obtain B cells, tonsils were procured from NDRI. The tonsil was cut up with sterile dissecting scissors and then passed through a sieve. Tonsil cells were then spun down and resupended at 10 6 cells/ml in DMEM 5% FCS (Hyclone), 100 M non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10' 5 M (Gibco), and Hepes (Gibco). To activate the cells, we used PWM at 5gg/ml or 00 0 (Pharmingen) at approximately 10g/ml and IL-4 at 5-lOng/ml. Cells were harvested for RNA preparation at 24,48 and 72 hours.
To prepare the primary and secondary Thl/Th2 and Trl cells, six-well Falcon plates were coated overnight with 0lg/ml anti-CD28 (Pharmingen) and 2j1g/ml OKT3 (ATCC), Sand then washed twice with PBS. Umbilical cord blood CD4 lymphocytes (Poietic Systems, SGerman Town, MD) were cultured at 10 5 -10 6 cells/ml in DMEM 5% FCS (Hyclone), 100pM non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x1l 0M (Gibco), 10mM Hepes (Gibco) and IL-2 (4ng/ml). IL-12 (5ng/ml) and anti-IL4 (1 g/ml) were used to direct to Thl, while IL-4 (5ng/ml) and anti-IFN gamma (1 ag/ml) were Sused to direct to Th2 and IL-10 at 5ng/ml was used to direct to Trl. After 4-5 days, the 00 activated Thl, Th2 and Trl lymphocytes were washed once in DMEM and expanded for 4-7 Sdays in DMEM 5% FCS (Hyclone), 100 1 M non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10 -M (Gibco), 10mM Hepes (Gibco) and IL-2 (Ing/ml). Following this, the activated Thl, Th2 and Trl lymphocytes were re-stimulated for days with anti-CD28/OKT3 and cytokines as described above, but with the addition of (l g/ml) to prevent apoptosis. After 4-5 days, the Thl, Th2 and Trl lymphocytes were washed and then expanded again with IL-2 for 4-7 days. Activated Thl and Th2 lymphocytes were maintained in this way for a maximum of three cycles. RNA was prepared from primary and secondary Thl, Th2 and Trl after 6 and 24 hours following the second and third activations with plate bound anti-CD3 and anti-CD28 mAbs and 4 days into the second and third expansion cultures in Interleukin 2.
The following leukocyte cells lines were obtained from the ATCC: Ramos, EOL-1, KU-812. EOL cells were further differentiated by culture in 0.1mM dbcAMP at 5xl05cells/ml for 8 days, changing the media every 3 days and adjusting the cell concentration to 5xl05cells/ml. For the culture of these cells, we used DMEM or RPMI (as recommended by the ATCC), with the addition of 5% FCS (Hyclone), 100PM non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10 5 M (Gibco), Hepes (Gibco). RNA was either prepared from resting cells or cells activated with PMA at 10ng/ml and ionomycin at l g/ml for 6 and 14 hours. Keratinocyte line CCD106 and an airway epithelial tumor line NCI-H292 were also obtained from the ATCC. Both were cultured in DMEM 5% FCS (Hyclone), 100 M non essential amino acids (Gibco), ImM sodium pyruvate (Gibco), mercaptoethanol 5.5x10- 5 M (Gibco), and 10mM Hepes (Gibco).
CCD 1106 cells were activated for 6 and 14 hours with approximately 5 ng/ml TNF alpha and 00 0 Ing/ml IL-1 beta, while NCI-H292 cells were activated for 6 and 14 hours with the following cytokines: 5ng/ml IL-4, 5ng/ml IL-9, 5ng/ml IL-13 and 25ng/ml IFN gamma.
For these cell lines and blood cells, RNA was prepared by lysing approximately 7 cells/ml using Trizol (Gibco BRL). Briefly, 1/10 volume ofbromochloropropane \(Molecular Research Corporation) was added to the RNA sample, vortexed and after minutes at room temperature, the tubes were spun at 14,000 rpm in a Sorvall SS34 rotor. The aqueous phase was removed and placed in a 15ml Falcon Tube. An equal volume of isopropanol was added and left at -20 0 C overnight. The precipitated RNA was spun down at 9,000 rpm for 15 min in a Sorvall SS34 rotor and washed in 70% ethanol. The pellet was redissolved in 300pl of RNAse-free water and 35pl buffer (Promega) 5pl DTT, 7pl RNAsin 00 and 8pl DNAse were added. The tube was incubated at 37 0 C for 30 minutes to remove 0contaminating genomic DNA, extracted once with phenol chloroform and re-precipitated with 1/10 volume of 3M sodium acetate and 2 volumes of 100% ethanol. The RNA was spun down and placed in RNAse free water. RNA was stored at -80 0
C.
AI_comprehensive panel_vl.0 The plates for AI_comprehensive panel_vl.0 include two control wells and 89 test samples comprised of cDNA isolated from surgical and postmortem human tissues obtained from the Backus Hospital and Clinomics (Frederick, MD). Total RNA was extracted from tissue samples from the Backus Hospital in the Facility at CuraGen. Total RNA from other tissues was obtained from Clinomics.
Joint tissues including synovial fluid, synovium, bone and cartilage were obtained from patients undergoing total knee or hip replacement surgery at the Backus Hospital.
Tissue samples were immediately snap frozen in liquid nitrogen to ensure that isolated RNA was of optimal quality and not degraded. Additional samples of osteoarthritis and rheumatoid arthritis joint tissues were obtained from Clinomics. Normal control tissues were supplied by Clinomics and were obtained during autopsy of trauma victims.
Surgical specimens of psoriatic tissues and adjacent matched tissues were provided as total RNA by Clinomics. Two male and two female patients were selected between the ages of 25 and 47. None of the patients were taking prescription drugs at the time samples were isolated.
Surgical specimens of diseased colon from patients with ulcerative colitis and Crohns disease and adjacent matched tissues were obtained from Clinomics. Bowel tissue from three female and three male Crohn's patients between the ages of 41-69 were used. Two patients were not on prescription medication while the others were taking dexamethasone, 180 00 0 phenobarbital, or tylenol. Ulcerative colitis tissue was from three male and four female 1 patients. Four of the patients were taking lebvid and two were on phenobarbital.
Total RNA from post mortem lung tissue from trauma victims with no disease or with emphysema, asthma or COPD was purchased from Clinomics. Emphysema patients ranged in Sage from 40-70 and all were smokers, this age range was chosen to focus on patients with cigarette-linked emphysema and to avoid those patients with alpha-lanti-trypsin deficiencies.
Asthma patients ranged in age from 36-75, and excluded smokers to prevent those patients 0that could also have COPD. COPD patients ranged in age from 35-80 and included both Ssmokers and non-smokers. Most patients were taking corticosteroids, and bronchodilators.
C In the labels employed to identify tissues in the AI_comprehensive panel_vl.0 panel, 00 0the following abbreviations are used: AI Autoimmunity Syn Synovial Normal No apparent disease Rep22 /Rep20 individual patients RA Rheumatoid arthritis Backus From Backus Hospital OA Osteoarthritis (SS) (BA) (MF) Individual patients Adj Adjacent tissue Match control adjacent tissues -M Male -F Female COPD Chronic obstructive pulmonary disease Panels 5D and 51 The plates for Panel 5D and 51 include two control wells and a variety ofcDNAs isolated from human tissues and cell lines with an emphasis on metabolic diseases. Metabolic tissues were obtained from patients enrolled in the Gestational Diabetes study. Cells were obtained during different stages in the differentiation of adipocytes from human mesenchymal stem cells. Human pancreatic islets were also obtained.
In the Gestational Diabetes study subjects are young (18 40 years), otherwise healthy women with and without gestational diabetes undergoing routine (elective) Caesarean section. After delivery of the infant, when the surgical incisions were being repaired/closed, the obstetrician removed a small sample cc) of the exposed metabolic tissues during the closure of each surgical level. The biopsy material was rinsed in sterile saline, blotted and fast frozen within 5 minutes from the time of removal. The tissue was then flash frozen in liquid nitrogen and stored, individually, in sterile screw-top tubes and kept on dry ice for shipment to or to be picked up by CuraGen. The metabolic tissues of interest include uterine 181 00 0 wall (smooth muscle), visceral adipose, skeletal muscle (rectus) and subcutaneous adipose.
C' Patient descriptions are as follows: Patient 2: Diabetic Hispanic, overweight, not on insulin Patient 7-9: Nondiabetic Caucasian and obese Patient 10: Diabetic Hispanic, overweight, on insulin ^O Patient 11: Nondiabetic African American and overweight SPatient 12: Diabetic Hispanic on insulin Adipocyte differentiation was induced in donor progenitor cells obtained from Osirus (a division of Clonetics/BioWhittaker) in triplicate, except for Donor 3U which had only two replicates. Scientists at Clonetics isolated, grew and differentiated human mesenchymal stem C cells (HuMSCs) for CuraGen based on the published protocol found in Mark F. Pittenger, et 00 Sal., Multilineage Potential of Adult Human Mesenchymal Stem Cells Science Apr 2 1999: 143-147. Clonetics provided Trizol lysates or frozen pellets suitable for mRNA isolation and ds cDNA production. A general description of each donor is as follows: Donor 2 and 3 U: Mesenchymal Stem cells, Undifferentiated Adipose Donor 2 and 3 AM: Adipose, AdiposeMidway Differentiated Donor 2 and 3 AD: Adipose, Adipose Differentiated Human cell lines were generally obtained from ATCC (American Type Culture Collection), NCI or the German tumor cell bank and fall into the following tissue groups: kidney proximal convoluted tubule, uterine smooth muscle cells, small intestine, liver HepG2 cancer cells, heart primary stromal cells, and adrenal cortical adenoma cells. These cells are all cultured under standard recommended conditions and RNA extracted using the standard procedures. All samples were processed at CuraGen to produce single stranded cDNA.
Panel 51 contains all samples previously described with the addition of pancreatic islets from a 58 year old female patient obtained from the Diabetes Research Institute at the University of Miami School of Medicine. Islet tissue was processed to total RNA at an outside source and delivered to CuraGen for addition to panel 51.
In the labels employed to identify tissues in the 5D and 51 panels, the following abbreviations are used: GO Adipose Greater Omentum Adipose SK Skeletal Muscle UT Uterus PL Placenta AD Adipose Differentiated AM Adipose Midway Differentiated U Undifferentiated Stem Cells Panel CNSD.01 00 0 The plates for Panel CNSD.01 include two control wells and 94 test samples (1 comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center. Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80 0 C in liquid nitrogen vapor.
sO All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.
Disease diagnoses are taken from patient records. The panel contains two brains from each of the following diagnoses: Alzheimer's disease, Parkinson's disease, Huntington's disease, Progressive Supemuclear Palsy, Depression, and "Normal controls". Within each of these brains, the following regions are represented: cingulate gyms, temporal pole, globus 00 palladus, substantia nigra, Brodman Area 4 (primary motor strip), Brodman Area 7 (parietal cortex), Brodman Area 9 (prefrontal cortex), and Brodman area 17 (occipital cortex). Not all brain regions are represented in all cases; Huntington's disease is characterized in part by neurodegeneration in the globus palladus, thus this region is impossible to obtain from confirmed Huntington's cases. Likewise Parkinson's disease is characterized by degeneration of the substantia nigra making this region more difficult to obtain. Normal control brains were examined for neuropathology and found to be free of any pathology consistent with neurodegeneration.
In the labels employed to identify tissues in the CNS panel, the following abbreviations are used: PSP Progressive supranuclear palsy Sub Nigra Substantia nigra Glob Palladus= Globus palladus Temp Pole Temporal pole Cing Gyr Cingulate gyrus BA 4 Brodman Area 4 Panel The plates for Panel CNS_Neurodegeneration_V1.0 include two control wells and 47 test samples comprised of cDNA isolated from postmortem human brain tissue obtained from the Harvard Brain Tissue Resource Center (McLean Hospital) and the Human Brain and Spinal Fluid Resource Center (VA Greater Los Angeles Healthcare System). Brains are removed from calvaria of donors between 4 and 24 hours after death, sectioned by neuroanatomists, and frozen at -80 0 C in liquid nitrogen vapor. All brains are sectioned and examined by neuropathologists to confirm diagnoses with clear associated neuropathology.
00 O Disease diagnoses are taken from patient records. The panel contains six brains from Alzheimer's disease (AD) patients, and eight brains from "Normal controls" who showed no evidence of dementia prior to death. The eight normal control brains are divided into two categories: Controls with no dementia and no Alzheimer's like pathology (Controls) and \O controls with no dementia but evidence of severe Alzheimer's like pathology, (specifically senile plaque load rated as level 3 on a scale of 0-3; 0 no evidence of plaques, 3 severe AD senile plaque load). Within each of these brains, the following regions are represented: O hippocampus, temporal cortex (Brodman Area 21), parietal cortex (Brodman area and Soccipital cortex (Brodman area 17). These regions were chosen to encompass all levels of C'i neurodegeneration in AD. The hippocampus is a region of early and severe neuronal loss in 00 0AD; the temporal cortex is known to show neurodegeneration in AD after the hippocampus; 1 the parietal cortex shows moderate neuronal death in the late stages of the disease; the occipital cortex is spared in AD and therefore acts as a "control" region within AD patients.
Not all brain regions are represented in all cases.
In the labels employed to identify tissues in the CNS_Neurodegeneration_V1.0 panel, the following abbreviations are used: AD Alzheimer's disease brain; patient was demented and showed AD-like pathology upon autopsy Control Control brains; patient not demented, showing no neuropathology Control (Path) Control brains; pateint not demented but showing sever AD-like pathology SupTemporal Ctx Superior Temporal Cortex Inf Temporal Ctx Inferior Temporal Cortex A. NOV2a (CGS9783-01): CGI-67 secretory protein Expression of gene CG59783-01 was assessed using the primer-probe set Ag3566, described in Table AA. Results of the RTQ-PCR runs are shown in Tables AB, AC and AD.
Table AA. Probe Name Ag3566 Start SEQ
ID
Primers Sequences Length Position No Forward 5' -gccttccctaacatcgagaa-3 20 737 91 Probe TET-5'-aagatcacgtctcccgtgctcatcat-3'-TAMRA 26 764 92 Reverse 5'-agaagtcgatcacctcgtcc-3' 20 802 93 00 00 Table A.B. CNS-neurodegeneration-vi .0 Rel. Rel. Exp.(%) Tissue Name Ag3566, Run Tissue Name Ag3566, Run 210641093 210641093 AD I Hippo 23.2 Control (Path) 3 Temporal 8.8 AD 2 Hippo 33.0 Control (Path) 4 Temporal 18.2 ___Ctx AD 3 Hippo 7.6 AD 1 Occipital Ctx 14.4 AD 4 Hippo 5.1 AD 2 Occipital Ctx (Missing) 0.0 AD 5 Hippo 100.0 AD 3 Occipital Ctx 6.6 AD 6 Hippo 62.0 AD 4 Occipital Ctx 11.1 Control 2 Hippo 29.7 AD 5 Occipital Ctx 47.6 Control 4 Hippo 15.6 AD 6 Occipital Ctx 17.0 Control (Path) 3 Hippo 7.4 ~Control 1 Occipital Ctx 7.1 AD I Temporal Ctx 11.5 ~Control 2 Occipital Ctx 88.9 AD 2 Temporal Ctx 25.5 Control 3 Occipital Ctx 16.6 AD 3 Temporal Ctx 4.9 Control 4 Occipital Ctx 8.6 AD 4 Temporal Ctx 12.1 Control (Path) I Occipital Ctx 77.9 5 Inf Temporal Ctx 73.2 Control (Path) 2 Occipital Ctx 10.3 AD 5 Sup Temporal Ctx 51.4 lControl (Path) 3 Occipital CtK AD 6 Inf Temporal Ctx 42.9 Control (Path) 4 Occipital Ctx 18.3 AD 6 Sup Temporal Ctx 62.0 Control I Parietal Ctx 14.0 Control 1 Temporal Ctx 7.6 Control 2 Parietal Ctx 43.2 Control 2 Temporal Ctx 39.2 Control 3 Parietal Ctx 30.4 Control 3 Temporal Ctx 13.4 Control (Path) 1 Parietal Ctx 62.9 Control 3 Temporal Ctx 9.7 Control (Path) 2 Parietal Ctx 13.0 Control (Path) 1 Temporal 42.0 Control (Path) 3 Parietal Ctx 6.2 Ctx__ Control (Path) 2 Temporal 28.5 Control (Path) 4 Parietal Ctx 44.4 Ctx Table AC. General screeningpanel-v1.4 Rel. Rel. Exp.(%) Tissue Name Ag3566, Run Tissue Name Ag3566, Run 217311327 217311327 Adipose 2.9 Renal ca. TK-l10 9.7 Melanoma* Hs688(A).T 15.5 Bladder 12.9 Melanomna* Hs688(B).T 13.6 Gastric ca. (liver met.) 8.1 Melanomna* M14 13.6 Gastric ca. KATO 111 17.0 Melanoma* LOXIMVI 9.2 Colon ca. SW-948 10.4 Melanoma* SK-MEL-5 8.1 Colon ca. SW480 26.6 Squamous cell carcinoma 10.3 Colon ca.* (SW48O met) 16.6 00
O
0 SCC-4 SW620 Testis Pool 3.4 Colon ca. HT29 Prostate ca.* (bone met) Prostate ca.* (bone met) 11.7 Colon ca. HCT-116 36.3 PC-3 Prostate Pool 2.8 Colon ca. CaCo-2 10.2 Placenta 11.5 Colon cancer tissue 16.6 Uterus Pool 0.8 Colon ca. SW 1116 11.7 Ovarian ca. OVCAR-3 20.3 Colon ca. Colo-205 4.3 Ovarian ca. SK-OV-3 26.1 Colon ca. SW-48 Ovarian ca. OVCAR-4 7.7 Colon Pool 6.7 Ovarian ca. OVCAR-5 23.5 Small Intestine Pool Ovarian ca. IGROV-1 31.0 Stomach Pool 3.2 Ovarian ca. OVCAR-8 19.9 Bone Marrow Pool 2.1 Ovary 6.1 Fetal Heart 6.6 Breast ca. MCF-7 18.8 Heart Pool 4.1 Breast ca. MDA-MB-231 36.6 Lymph Node Pool Breast ca. BT 549 42.9 Fetal Skeletal Muscle 4.6 Breast ca. T47D 100.0 Skeletal Muscle Pool 7.4 Breast ca. MDA-N 31.4 Spleen Pool 6.8 Breast Pool 5.7 Thymus Pool 8.4 Trachea 8.9 CNS cancer (glio/astro) 26.6 T r a c h e a 2 6 .6 U87-MG Lung CNS cancer (glio/astro) 36.9 U-118-MG Fetal Lung 14.9 CNS cancer (neuro;met) 29.1
SK-N-AS
Lung ca. NCI-N417 9.3 CNS cancer (astro) SF-539 9.3 Lung ca. LX-1 15.9 CNS cancer (astro) SNB-75 37.1 Lung ca. NCI-H146 9.7 CNS cancer (glio) SNB-19 27.4 Lung ca. SHP-77 21.3 CNS cancer (glio) SF-295 25.5 Lung ca. A549 10.2 Brain (Amygdala) Pool 21.5 Lung ca. NCI-H526 8.3 Brain (cerebellum) 22.4 Lung ca. NCI-H23 12.4 Brain (fetal) 12.3 Lung ca. NCI-H460 4.8 Brain (Hippocampus) Pool 17.8 Lung ca. HOP-62 6.5 Cerebral Cortex Pool 16.8 Lung ca. NCI-H522 9.3 Brain (Substantia nigra) Pool 25.9 Liver 1.3 Brain (Thalamus) Pool 23.5 Fetal Liver 7.4 Brain (whole) 15.1 Liver ca. HepG2 8.4 Spinal Cord Pool 20.4 Kidney Pool 12.2 Adrenal Gland 5.9 Fetal Kidney 8.7 Pituitary gland Pool 1.7 Renal ca. 786-0 11.7 Salivary Gland 6.2 00 Renal ca. A498 5.2 Thyroid (female) 8.8 Renal ca. ACI-N I 5.2 Pancreatic ca. CAPAN2 6.7 Renal ca. UO-31 9.7 Pancreas Pool 12.2 Table AD. Panel 4.l1D Rel. IRel. Exp.(%) Tissue Name Ag3566, Run Tissue Name Ag3566, Run 169851074 j 169851074 Secondary Thl act 56.6 HUVEC IL-lbeta 40.3 Secondary Th2 act 80.7 HUVEC IFN gamma 39.5 Secondary Trl act 68.3 HUVEC TNF alpha [FN 39.0 Secondary Th I rest 82.9 HUVEC TNF alpha 1L4 31.6 Secondary Th2 rest 90.1 H-U VEC IL-il1 23.2 Secondary TrI rest 82.9 Ln irvsuaEC69.7 none Primary Th I act 46.3 Lung Microvascular EC 66.0 IL- Ibeta Primary Th2 act 72.7 Micrvsu emlE 46.7 Primary Tnl act 46.3 jMicrosvasular Dermal EC 41.2 jTNFalpha IL- Ibeta Primary Thi rest 774 Bronchial epithelium 19.3 ILlbeta Primary Th.2 rest 63.3 Small airway epithelium I 10.7 Primary TrI rest 73.2 Small airway epithelium 33.2 IL- Ibeta CD4 lymphocyte act 42.6 Coronery artery SMG rest 26.1 CD4 lymphocyte act 70.7 Coronery artery SMC 24.1 TNFalpha IL- Ibeta______ CD8 lymphocyte act 84.1 Astrocytes rest 23.8 Secondary CD8 lymphocyte 48.0 Astrocytes TNFalpha 22.7 rest IL-lbeta Secondary CD8 lymphocyte 48.3 KU-812 (Basophil) rest 37.9 act CD4 lymphocyte none 32.1 KU-812 (Basophil) 48.6 2 ry Thl/Th2/Trl-anti-CD95 79.6 CCD 106 (Keratinocytes) 48.3 CHI 1 none LAK cells rest 37.6 CCD 106 (Keratinocytes) 4.
IL-l beta LAK cells IL-2 51.4 Liver cirrhosis 4.7 1LAK cells IL-2+IL- 12 1 39.2 lNCI-H292 none 25.7 ILAK cells IL-2+[FN gamma 1 45.1 INCI-H292 IL-4 34.4 I _II 00
(O
0 LAK cells IL-2+ IL-18 37.1 NCI-H292 IL-9 36.1 LAK cells PMA/ionomycin 20.6 NCI-H292 IL-13 46.3 NK Cells IL-2 rest 100.0 NCI-H292 IFN gamma 30.4 Two Way MLR 3 day 47.3 HPAEC none 34.4 Two Way MLR 5 day 49.7AEC TNF alpha IL- 44.8 beta Two Way MLR 7 day 46.3 Lung fibroblast none 36.6 PBMC rest 39.2 Lung fibroblast TNF alpha 21.6 IL-1 beta PBMC PWM 42.6 Lung fibroblast IL-4 42.9 PBMC PHA-L 53.6 Lung fibroblast IL-9 44.8 Ramos (B cell) none 24.5 Lung fibroblast IL-13 35.8 Ramos (B cell) ionomycin 21.3 Lung fibroblast IFN gamma 48.0 Dermal fibroblast CCD1070 B lymphocytes PWM 18.9 r 30.8 rest B lymphocytes CD40L and 33.7 Dermal fibroblast CCD1070 94.0 IL-4 TNF alpha 9 EOL- dbc P 45.1 Dermal fibroblast CCD1070 EOL-1 dbcAMP 45.1 35.1 IL-1 beta EOL-I dbcAMP 0 Dermal fibroblast IFN 46.0 31.2 PMA/ionomycin gamma Dendritic cells none 36.9 Dermal fibroblast IL-4 39.2 Dendritic cells LPS 21.9 Dermal Fibroblasts rest 24.3 Dendritic cells anti-CD40 40.3 Neutrophils TNFa+LPS 3.6 Monocytes rest 48.6 Neutrophils rest 9.4 Monocytes LPS 21.3 Colon 19.2 Macrophages rest 47.6 Lung 30.6 Macrophages LPS 31.4 Thymus 23.5 HUVEC none 25.0 Kidney 14.3 HUVEC starved 37.9 CNS_neurodegeneration_vl. Summary: Ag3566 This panel does not show differential expression of the CG9783-01 gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.4 for discussion of utility of this gene in the central nervous system.
General_screening_panel_vl.4 Summary: Ag3566 The CG9783-01 gene is ubiquitously expressed in this panel, with highest expression in a breast cancer cell line (CT=26.1). Significant levels of expression are also seen in a cluster of samples derived from breast cancer cell lines. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of breast 00 O cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of breast cancer.
This molecule is also expressed at moderate levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex.
\Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Among tissues with metabolic function, this gene is expressed at moderate to low Slevels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this 00 gene product may play a role in normal neuroendocrine and metabolic and that disregulated 0expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
In addition, this gene is expressed at much higher levels in fetal lung (CT=28.8) when compared to expression in the adult counterpart (CT=32). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.
Panel 4.1D Summary: Ag3566 The CG9783-01 gene is ubiquitously expressed in this panel, with highest expression in IL-2 treated NK cells (CT=28). In addition, this gene is expressed at high to moderate levels in a wide range of cell types of significance in the immune response in health and disease. These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in and also suggests a role for the gene product in cell survival and proliferation. Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.
00 00 B. NOV3 (CG59873-O1): Cystatin isoform 1 Expression of gene CG59873-01 was assessed using the primer-probe set Ag3624, described in Table BA. Results of the RTQ-PCR runs are shown in Tables BB.
Table BA. Probe Name Ag3624 Primers Sequences Length Start SEQ IID IPosition No Forward 5'1 -ggaaggagcagggttatgataa-3 I 22 250 94 Probe TET-5'-acattctccatgaatctgcaactggg-3'-TAMRA 26 276 IReverse is,-atcttcaaatttcccacacatg-3' 22 308 96 Table BB. Panel 4.l1D Rel. Rel.
Exp.(%) Tissue Name Ag3624, Tissue Name Ag3624, Run Run 169945972 169945972 Secondary Thl act 0.0 HIJVEC IL- Ibeta 0.0 Secondary Th2 act 0.0 HUVEC IFN gamma 0.0 Secondary Tnl act 0.0 HUVEC TNF alpha IFN 0.0 Secondary Thi rest 0.0 HUVEC TNF alpha IL4 0.0 Secondary Th.2 rest 0.0 HUVEC IL-Il1 0.0 Secondary Trl rest 0.0 Lung Microvascular EC none 0.0 Primary Thl act 0.0 Lung Microvascular EC 0.0 ________TNFalpha IL-ibeta Primary Th2 act 0.0 Microvascular Dermal EC 0.0 none Primary Trl act 0.0 Microsvasular Dermal EC 0.0 ________TNFalpha IL-1 beta Primary mhI rest 0.0 Bronchial epithelium 0.0 ________TNFalpha ILibeta Primary Th2 rest. 0.0 Small airway epithelium none 0.0 Primary Trl rest 0.0 Small airway epithelium 0.0 _______TNFalpha IL-ibeta CD4 lymphocyte act 0.0 Coronery artery SMC rest 5.8 CD4 lymphocyte act 0.0 Coronery artery SMC 0.0 IL-ibeta CD8 lymphocyte act 0.0 Astrocytes rest 0.0 Secondary CD8 lymphocyte rest 0.0 Astrocytes ThTFalpba 9.3 IL- Ilbeta Secondary CD8 lymphocyte act 3.0 KU-812 (Basophil) rest 0.0 CD lmpoctenoe1 KU-S812 (Basophil)0.
CD4lymhocte one0. PMA/ionomycin00 00 00 2ry ThlITh2ITrl-anti-CD95 0.0 CCD 1106 (Keratinocytes) 2.9 CHI 1 none LAK cells rest 0.0 CCD 106 (Keratinocytes) 0.0 _______TNFalpha IL- Ibeta LAK cells IL-2 0.0 Liver cirrhosis 0.0 LAK cells IL-2+IL- 12 0.0 NCI-H292 none 12.7 LAK cells LL-2+IFN gamma 0.0 NCI-H292 IL-4 0.0 LAK cells IL-2+ IL- 18 0.0 NCI-H292 IL-9 4.7 LAK cells PMAlionomycin 0.0 NCI-H292 IL- 13 3.2 NK Cells IL-2 rest 0.0 NCI-H292 IFN gamma 0.0 Two Way MLR 3 day 0.0 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha IL-l1 0.0 beta Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 PBMC rest 0.0 Lung fibroblast TNF alpha 3.2 IL-i beta PBMC PWM 0.0 Lung fibroblast TL-4 4.2 PBMC PHA-L 3.3 Lung fibroblast IL-9 Ramos (B cell) none 0.0 Lung fibroblast IL- 13 47.0 Ramos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 14.9 B lymphcytes WM 0.0 Dermal fibroblast CCD 1070 3.
B lymphcytes WM 0.0 rest 3.
B lymphocytes CD40L and IL-4 0.0 Dermal fibroblast CCD 1070 100.0 TNF alpha EOL-1 dbcAMP 0.0 Dermal fibroblast CCDl1070 15.0 IL-I beta_____ EOL-l dbcAMP PMA/ionomycin 0.0 Dermal fibroblast lEN gamma 0.0 Dendritic cells none 0.0 Dermal fibroblast IL-4 0.0 Dendritic cells LPS 0.0 Dermial Fibroblasts rest 28.1 Dendritic cells anti-CD4O 0.0 Neutrophils TNFa+LPS 0.0 Monocytes rest 0.0 Neutrophils rest 0.0 Monocytes LPS 0.0 Colon 0.0 Macrophages rest 0.0 Lung 7.7 Macrophages LPS 0.0 Thymus 2.8 HUVEC none 1 0.0 IKidney 5.8 HUVEC starved 1 0.0 CNS-neurodegeneration -vl.0 Summary: Ag3624 Expression of the CG59873-0l gene is low/undetectable in all samples on this panel General_screeningypanel_vl.4 Summary: Ag3624 Expression of the CG59873-01 gene is low/undetectable in all samples on this panel (CTs>3 Panel 4.1D Summary: Ag3624 Expression of the CG59873-01 gene is restricted to TNF-alpha treated dermal fibroblasts. Thus, expression of this gene could be used as a 00 marker of this cell type. Furthermore, therapeutic modulation of the activity or function of this gene may be useful in the treatment of skin disorders such as psoriasis.
C. NOV4 (CG89060-O1): COLLAGEN ALPHA 1(XIV) CHAIN PRECURSOR (UNDULIN) Expression of gene CG89060-01 was assessed using the primer-probe set Ag3686, described in Table CA. Results of the RTQ-PCR runs are shown in Tables CB, CC and CD.
00 Table CA. Probe Name Ag3686 Primers Sequences Legh Sat SQI ent Position No Forwards 5-tgt tact ttcgaaggacctgaa -31 22 4105 9 jProbe TET-S'-tggaagctttcacaagctacacattg-3-TAM.A 26 4144 98 Rvre51-gaccaaagcctcactgacaa-31 20 4170 99 Table GB. CNS-neurodegeneraion-vi .0 Rel. Rel. Exp.(%) Tissue Name Ag3686, Run Tissue Name Ag3686, Run 211144674 211144674 AD 1 Hippo 3.6 Control (Path) 3 Temporal 9.3 AD2Hip 58 Control (Path) 4 Temporal 7.8 AD 3 Hippo 2.9 'AD 1 Occipital Ctx 3.6 AD 4 HipT19 AD 2 Occipital Ctx 0.0 Hippo 1.9 AD 5 Hippo 15.2 JAD 3 Occipital Ctx AD 6 Hippo 11.3 AD 4 Occipital Ctx 6.2 Control 2 Hippo 3.2 AD 5 Occipital Ctx 12.5 Control 4 Hippo 9.0 AD 6 Occipital Ctx 7.2 Control (Path) 3 Hippo 9.0 Control I Occipital Ctx 5.8 AD 1 Temporal Ctx 9.6 Control 2 Occipital Ctx 11.8 AD 2 Temporal Ctx 9.0 Control 3 Occipital Ctx 6.2 AD 3 Temporal Ctx 1.5 Control 4 Occipital Ctx 2.9 AD 4Temporal Ctx 11.0 Control (Path) 1 Occipital 7.2 Ctx AD 5 Inf Temporal Ctx 9.2 Control (Path) 2 Occipital 4.0 ___Clx AD 5 Sup Temporal Ctx 10.7 Control (kath) 3 Occipital 2.3 AD 6 Inf Temporal Ctx 7.1 Control (Path) 4 Occipital 11.6 Cx 00 00 AD 6 Sup Temporal Ctx 100.0 Control I Parietal Ctx 6.7 Control 1 Temporal Ctx 3.6 Control 2 Parietal'Ctx 11.0 Control 2 Temporal Ctx 4.1 Control 3 Parietal Ctx 3.2 Control 3 Temporal Ctx 6.9 Control (Path) 1 Parietal Ctx Control 3 Temporal Ctx 7.8 Control (Path) 2 Parietal Ctx 10.2 Control (Path) 1 Temporal 17.7 Control (Path) 3 Parietal Ctx Ctx Control (Path) 2 Temporal 7.3 Control (Path) 4 Parietal Ctx 9.9 lCtx I I I Table CC. General screeningpanel-vi .4 Rel. IRel. Exp.(%) Tissue Name Ag3686, Run Tissue Name Ag3686, Run 218941312 218941312 Adipose 10.2 Renal ca. TK-10 Melanoma* Hs688(A).T 1.2 Bladder 1.
Melanoma* Hs688(B).T 1.4 Gastric ca. (liver met.) 0.0 NCI-N87 Melanoma* M14 0.0 Gastric ca. KATO 111 0.0 Melanomna* LOXIMYI 0.0 Colon ca. SW-948 0.0 Melanomna* SK-MEL-5 0.0 Colon ca. SW480 0.0 Squamous cell carcinoma 0.0 Colon ca.* (SW480 met) 0.0 SCC-4 W620 Testis Pool 5.4 Colon ca. HT29 0.0 Prostate ca.* (bone met) 0.0 Colon ca. HCT-1 16 0.0 PC-3 Prostate Pool 9.9 Colon ca. CaCo-2 0.1 Placenta 4.0 Colon cancer tissue 26.6 Uterus Pool j 7.1 Colon ca. SWi 1116 0.0 Ovarian ca. OVCAR-3 J 0.0 Colon ca. Colo-205 0.0 Ovarian ca. SK-OV-3 j 0.2 Colon ca. SW-48 0.0 Ovarian ca. OVCAR-4 0.0 Colon Pool 30.4 Ovarian ca. OVCAR-5 3.4 Small Intestine Pool 11.2 Ovarian ca. IGRO V-i 11.8 Stomach Pool 3.9 Ovarian ca. OVCAR-8 12.6 Bone Marrow Pool 15.0 Ovary 24.8 Fetal Heart 4.3 Breast ca. MCF-7 0.0 Heart Pool 13.8 Breast ca. MDA-MB-23 1 0.0 Lymph Node Pool 33.9 Breast ca. BT 549 0.2 Fetal Skeletal Muscle 6.4 Breast ca. T47D 5.6 Skeletal Muscle Pool Breast ca. MDA-N 0.0 Spleen Pool Breast Pool 33.7 Thymus Pool 15.4 Trachea 12.3 CNS cancer (glio/astro) 0.1 00 Lung 5.6 CNS cancer (glia/astro) 100.0 IS1-MG_____ Fetal Lung 31.2 CNS cancer (neuro;met) 0.0 K-N-AS Lung ca. NCI-N417 0.0 CNS cancer (astro) SF-539 Lung ca. LX- 1 0.0 CNS cancer (astro) SNB-75 54.0 Lung ca. NCI-H 146 0.0 CNS cancer (glio) SNB- 19 11.6 Lung ca. SHP-77 0.4 CNS cancer (glio) SF-295 Lung ca. A549 0.0 Brain (Amygdala) Pool 0.3 Lung ca. NCI-H526 0.7 Brain (cerebellum) 0.1 Lung ca. NCI-H23 4.4 Brain (fetal) 0.4 Lung ca. NCI-H4460 0.0 Brain (Hippocampus) Pool Lung ca. HOP-62 0.7 Cerebral Cortex Pool Lung ca. NCI-H522 65.1 Brain (Substantia nigra) Pool 0.2 Liver 0.4 Brain (Thalamus) Pool 0.6 Fetal Liver 6.8 Brain (whole) Liver ca. HepG2 f 0.0 Spinal Cord Pool 1.9 Kidney Pool 40.6 Adrenal Gland 2.8 Fetal Kidney 4.4 Pituitary gland Pool 0.2 Renal ca. 786-0 3.8 Salivary Gland 3.8 Renal ca. A498 0.1 Thyroid (female) j ,Renal ca. ACHN 1.9 IPancreatic ca. CAPAN2 0.0 IRenal ca. UO-31 1 0.0 IPancreas Pool 11.2 Table CD. Panel 4. 1D Rel. Rel. Exp.(%) Tissue Name Ag3686, Run Tissue Name Ag3686, Run 169988044 Secondary Thl act 0.0 HIJVEC 1L- 1beta 0.0 Secondary Th2 act 0.0 HUVEC [FN gamma 0.1 Secondary TO act 0.0 HUVEC TNF alpha IFN 0.0 Secondary ThI rest 0.0 HU VEC TNF alpha I1L4 0.1 Secondary Th2 rest 0.0 HUVEC IL-I1 0.1 Secondary TrI rest 0.0 Lung Microvascular EC none 0.1 Primary Thl act 0.0 Lung Microvascular EC0.
IL- Ibeta______ Primary Th2 act 0.0 Microvascular Dermal EC none 0.0 Primar Tr I ct 0.0 Microsvasular Dermal EC0.
Primry TI ac 0.0 TNFalpha IL- Ibeta0.
Primary Thl rest 0.0 Bronchial epithelium TNFalpha 0.0 ILlbeta Primary Th2 rest 0.0 ISmall airway epithelium none 0.1 Primary TrO rest 1 0.0 ISmall airway epithelium 0.1 00 TNFalpha IL- Ibeta CD4 lymphocyte 0.0 Coronery artery SMG rest 0.2 act CD4 lymphocyte 0.0 Coronery artery 5MG 0.1 act ______TNTFalpha IL- Ibeta______ CD8 lymphocyte act 0.0 Astrocytes rest 4.7 Secondary CD8 lymphocyte 0.0 Astrocytcs TNFalpha 1.9 rest IL-ibeta Secondary GD8 lymphocyte 0.0 KU-812 (Basophil) rest 1.2 act CD4 lymphocyte none 0.0 KU-812 (Basophil) 2 ry Th1/Th2ITrl-anti-CD95 0.0 CCDI 106 (Keratinocytes) none 0.0 CHI LAK cells rest 0.0 CCD1 106 (Keratinocytes) 0.0 IL- Ibeta LAK cells IL-2 0.0 Liver cirrhosis LAK cells IL-2+IL-12 0.0 NCI-H-292 none 0.0 LAK cells IL-2+IFN gamma 0.0 NCI-H1292 IL-4 0.0 LAK cells 11-2+ IL- 18 0.0 NCI-H292 IL-9 0.0 LAK cells PMAlionomycin 0.0 NCI-11292 IL-13 0.0 NKCells IL-2 rest 0.0 NCI-H1292 IFN gamma 0.0 Two Way MLR 3 day 0.0 HPAEC none 0.0 Two Way MLR 5 day 0.0 1HPAEC TNF alpha IL- I beta 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 5.6 PBMC rest 0.0 Lung fibroblast TNF alpha 1.1 IL-I PBMC PWM 0.0 Lung fibroblast IL-A 7.7 PBMC PHA-L 0.0 Lung fibroblast IL-9 5.6 Ramos (B cell) none 0.0 Lung fibroblast I L-13 9.1 Ramos (B cell) ionomycin 0.1 Lung fibroblast IFN gamma 10.2 B lymphocytes PWM 0.0 Dermal fibroblast CCD1070 0.2 rest B lymphocytes CD40L and 00 Dermnal fibroblast CCD 10700.
IL-4 00 TNF alpha0.
EOL-l dbcAMP 0.0 Dermal fibroblast GCDI1070 0.1 IL-I beta_____ EOL-I dbcAMP 00 Dra irbatENgma 2.
PMAlionomycin 00 Dra irbatINgma 2.
Dendritic cells none 0.0 Dermal fibroblast IL-4 100.0 Dendritic cells LPS 0.0 Dermal Fibroblasts rest 8.8 Dendritic cells anti-CD4O 0.0 Neutrophils TNFa+LPS 0.0 Monocytes rest 0.0 Neutrophils rest Monocytes LPS 0.0- Colon 00
O
IN
0O
(-N
Macrophages rest 0.0 Lung 24.8 Macrophages LPS 0.0 Thymus 2.7 HUVEC none 0.0 Kidney HUVEC starved 0.0 CNS_neurodegeneration_vl.O Summary: Ag3686 This panel does not show differential expression of the CG89060-01 gene in Alzheimer's disease. However, this expression profile confirms the presence of this gene in the brain. Please see Panel 1.4 for discussion of utility of this gene in the central nervous system.
General_screeningpanel_vl.4 Summary: Ag3686 Expression of the CG89060-01 gene is highest in a brain cancer cell line (CT=27). Significant expression is also seen in a lung cancer cell line and a second brain cancer cell line. Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker of lung and brain cancers. Expression of undulin, of which this gene product is a homolog, has been shown to be associated with certain brain cancer cell lines. See, Paulus W. et al. Am JPathol 1993 Jul;143(1):154-63 (PMID: 8317546). Therefore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of these cancers.
Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, fetal liver and adult and fetal skeletal muscle and heart. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
In addition, this gene is expressed at much higher levels in fetal liver tissue when compared to expression in the adult counterpart (CT=35). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.
This gene is also expressed at low but significant levels in the hippocampus, thalamus and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Panel 4.1D Summary: Ag3686 Expression of the CG89060-01 gene is limited to a few samples in this panel, with highest expression in IL-4 treated dermal fibroblasts.
Moderate levels of expression are also seen in IFN-gamma stimulated dermal fibroblasts, the lung, and a cluster of treated and untreated lung fibroblast samples. Thus, expression of this gene could be used to differentiate activated dermal fibroblasts from other samples on this 196 00 panel and as a marker for fibroblasts. Furthermore, therapeutic modulation of the expression or function of this gene product may be useful in treating lung or skin disorders including psoriasis, asthma, emphysema, and allergy.
D. NOV8 (CG90155-O1): Secreted Protein Expression of gene CG90155-01 was assessed using the primer-probe set Ag3792, described in Table DA. Results of the RTQ-PCR runs are shown in Tables DB and DC.
Table DA. Probe Name Ag3792 PriersSeuenesLenth Start SEQ ED Primrs equnce Legth Position No Forward 5'-cacctaaccgagggtgactc-3' 20 316 100 Probe TET-5'-accaccagctggagagccctagct-31-TAMRA 24 355 101 LReverse .51-atgttgatccaaagctgctg-3' 20---380 102 Table DB. General-screening~panel-vl .4 Rel. Rel. Exp.(%) Tissue Name Ag3792, Run Tissue Name Ag3792, Run 218905932 218905932 Adipose 0.0 Renal ca. TK-10 1.2 Melanoma* Hs688(A).T 0.0 Bladder 3.4 Melanoma* Hs688(B).T 0.0 Gastric ca. (liver met.) 0.0 NCI-N87 Melanoma* M14 3.1 Gastric ca. KATO III 38.2 Melanoma* LOXIMVI 0.0 Colon ca. SW-948 5.8 Melanoma* SK-MEL-5 8.4 Colon ca. SW480 17.8 Squamous cell carcinoma 26.2 Colon ca.* (SW480 met) 26.8 SCC-4 SW620 Testis Pool 15.7 Colon ca. HT-29 7.2 Prostate ca.* (bone met) 0.0 Colon ca. HCT-l 16 0.0 Prostate Pool 0.0 Colon ca. CaCo-2 0.0 Placenta 100.0 Colon cancer tissue 0.0 Uterus Pool 1.0 Colon ca. SWI116 11.1 Ovarian ca. OVCAR-3 18.9 Colon ca. Colo-205 36.1 Ovarian ca. SK-OV-3 0.0 Colon ca. SW-48 11.6 Ovarian ca. OVCAR-4 1.2 Colon Pool 0.0 Ovarian ca. OVCAR-5 J 0.0 Small Intestine Pool 24.3 Ovarian ca. IGRO V-i 0.0 Stomach Pool 18.8 Ovarian ca. OVCAR-8 37.4 Bone Marrow Pool 0.0 Ovary j 10.0 IFetal Heart 1 3.9 IBreast ca. MCF-7 j 7.5 IHeart Pool 0.0 -u is~ 00
O
IN
0 Breast ca. MDA-MB-231 0.0 Lymph Node Pool Breast ca. BT 549 21.0 Fetal Skeletal Muscle 0.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 73.2 Breast ca. MDA-N 0.0 Spleen Pool Breast Pool 0.0 Thymus Pool 0.0 Trachea 6.9 CNS cancer (glio/astro) 49 U87-MG Lung 2.2 CNS cancer (glio/astro) 15.9 U-1 18-MG 1 Fetal Lung 6.1 CNS cancer (neuro;met) 0.0
SK-N-AS
Lung ca. NCI-N417 0.0 CNS cancer (astro) SF-539 38.2 Lung ca. LX-1 55.5 CNS cancer (astro) SNB-75 3.7 Lung ca. NCI-H146 3.0 CNS cancer (glio) SNB-19 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.0 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 29.3 Lung ca. NCI-H23 5.9 Brain (fetal) 0.0 Lung ca. NCI-H460 47.6 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 44.4 Cerebral Cortex Pool Lung ca. NCI-H522 17.6 Brain (Substantia nigra) Pool 0.0 Liver 0.0 Brain (Thalamus) Pool 22.1 Fetal Liver 0.0 Brain (whole) 0.0 Liver ca. HepG2 22.4 Spinal Cord Pool 0.0 Kidney Pool 43.5 Adrenal Gland 35.1 Fetal Kidney 25.9 Pituitary gland Pool 18.2 Renal ca. 786-0 13.0 Salivary Gland 3.7 Renal ca. A498 56.6 Thyroid (female) 33.7 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 54.0 Renal ca. UO-31 22.5 Pancreas Pool 2.9 Table DC. Panel 4.1D Rel. Rel. Exp.(%) Tissue Name Ag3792, Run Tissue Name Ag3792, Run 169997316 169997316 Secondary Thl act 24.0 HUVEC IL-lbeta 5.3 Secondary Th2 act 9.9 HUVEC IFN gamma 0.0 HUVEC TNF alpha IFN Secondary Trl act 20.4 TNF alpha IFN 23.8 gamma Secondary Thl rest 22.2 HUVEC TNF alpha IL4 0.0 Secondary Th2 rest 17.7 HUVEC IL-11 74.2 Secondary Trl rest 0.0 Lung Microvascular EC none 0.0 Primary Thl act 17.4 Lung Microvascular EC 25.7 00 IL- Ibeta Primary na. act 207 Microvascular Dermal EC 12.0 Primary TrI act 460 Microsvasular Dermal EC 29.3 IL- Ibeta Primary Thi rest 266 Bronchial epithelium 0.0 T'NFalpha ILI beta Primary Th.2 rest 34.2 Small airway epithelium none 18.2 Primary TrI rest 344 Small airway epithelium 29.3 IL- Ibeta CD4 lymphocyte 70.2 Coronery artery SMC rest 55.5 act CD4 lymphocyte 0.0 Coronery artery SMG 15.3 act TNFalpha IL-lbeta,_____ CD8 lymphocyte act 0.0 Astrocytes rest 21.0 Sondary CD8 lymphocyte 29.3 Astrocytes TNFalpha 40.6 rest IL-ibeta Secondary CD8 lymphocyte 0.0 IKU-8 12 (Basophil) rest 0.0 CD4 lymphocyte none 0.0 KU-812 (Basophil) 16.3 PM lionomnycin 2 ry Thl/Th2/Trl-anti-CD95 16.7 CCD 106 (Keratinocytes) 0.0 CH 11 __none LAK cells rest 0.0 CCD 106 (Keratinocytes) 65.1 IL- Ibeta______ LAK cells 11-2. 0.0 Liver cirrhosis 0.0 LAK cells IL-2+IL-12 67.8 NGI-H1292 none 33 .9 LAK cells IL-2+IFN gamma 19.9 NCI-H1292 IL-4 61.1 LAK cells IL-2+ IL- 18 9.5 NCI-H1292 IL-9 0.0 LAK cells PMAlionomycin 32.3 NCI-H1292 IL- 13 40.1 NK Cells IL-2 rest 26.1 NCI-H1292 IFN gamma 42.9 Two Way MLR 3 day 0.0 HPAEC none 12.4 Two Way MLR 5 day 334 HPAEC TNF alpha +IL- 1 0.0 Two Way MLR 7 day 43.5 Lung fibroblast none 2.9 PBMC rest 0.0 Lung fibroblast TNF alpha 0.0 IL-I beta PBMC PWM 10.5 Lung fibroblast IL-4 11.1 PBMC PHA-L 20.2 Lung fibroblast IL-9 0.0 Ramos (B cell) none 0.0 Lung fibroblast IL-13 36.3 Ramos (B cell) ionomycin 10.8 Lung fibroblast IFN gamma 0.0 B lymphocytes PWM 26.6 Dermal fibroblast CCD1O070 0.0 rest_ B lymphocytes CD40L and 0.0 Dermal fibroblast CCD1070 43.8 I 00
(O
00
O
(N
IL-4 TNF alpha Dermal fibroblast CCD 1070 EOL-1 dbcAMP 5.1 6.1 IL-1 beta EOL-1 dbcAMP PMA/ionom n 34.4 Dermal fibroblast IFN gamma 9.9 PMA/ionomycin Dendritic cells none 40.3 Dermal fibroblast IL-4 0.0 Dendritic cells LPS 0.0 Dermal Fibroblasts rest 18.6 Dendritic cells anti-CD40 16.5 Neutrophils TNFa+LPS 8.3 Monocytes rest 100.0 Neutrophils rest 20.6 Monocytes LPS 0.0 Colon 0.0 Macrophages rest 0.0 Lung 0.0 Macrophages LPS 64.6 Thymus 1.9 HUVEC none 0.0 Kidney 79.6 HUVEC starved 44.4 CNS_neurodegenerationvl.0 Summary: Ag3792 Expression of the CG90155-01 gene is low/undetectable in all samples on this panel General_screeningpanel vl.4 Summary: Ag3792 Highest expression of the CG90155-01 gene is seen in the placenta (CT=33). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel.
Low but significant levels of expression are also seen in cell lines from pancreatic cancer, brain cancer and renal cancer. Thus, expression of this gene could be used to differentiate between these cell lines and other samples on this panel and as a marker for these cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of pancreatic, brain and renal cancers.
Among metabolic tissues, low but significant levels of expression are seen in thyroid, adrenal, and skeletal muscle. Thus, this gene product may be involved in the diagnosis and/or treatment of metabolic disorders, such as obesity and diabetes.
Panel 4.1D Summary: Ag3792 Highest expression of the CG90155-01 gene is seen in resting monocytes (CT=33.8). The expression of this gene in resting cells of these lineages suggests that the protein encoded by this transcript may be involved in normal immunological processes.
E. NOV9a (CG90750-01): HGT KERATIN Expression of gene CG90750-01 was assessed using the primer-probe set Ag3714, described in Table EA. Results of the RTQ-PCR runs are shown in Table EB.
00 Table EA. Probe Name Ag37l4 Primers Sequences Length Start SEQ ID S Position No Forward 51-ctgtacgggaagagaccttcat-3' 22 3 103 Probe TET-S'-ttgggtaacttacccttcacaatcca-3'-TAMRA 26 31 104 [Reverse 15 1-gcagcaattgagaaggatttag-3' 22 1 58 1105 Table EB. General-screeningpanel-vi .4 Rel. Rel. Exp.(%) Tissue Name Ag3714, Run Tissue Name Ag3714, Run 218267284 218267284 Adipose 0.0 Renal ca. TK-l10 0.0 Melanoma* Hs688(A).T 0.0 Bladder 9.7 Melanoma* Hs688(B).T 0.0 Gastric ca. (liver met.) 0.0 Melanoma* M14 41.5 Gastric ca. KATO 111 0.0 Melanoma* LOXIMVI 0.0 Colon ca. SW-948 0.0 Melanomna* SK-MfEL-5 0.0 Colon ca. SW480 9.8 Squamous cell carcinoma 0.0 Colon ca.* (SW480 met) 0.0 SCC-4 SW620______ Testis Pool 66.9 Colon ca. HT29 0.0 Prostate ca.* (bone met) 0.0 Colon ca. HCT- 116 0.0 Prostate Pool 10.7 Colon ca. CaCo-2 0.0 Placenta 0.0 Colon cancer tissue 0.0 Uterus Pool 4.1 Colon ca. SWi 1116 0.0 Ovarian ca. OVCAR-3 0.0 Colon ca. Colo-205 0.0 Ovarian ca. SK-OV-3 0.0 Colon ca. SW-48 0.0 Ovarian ca. OVCAR-4 0.0 Colon Pool 50.3 Ovarian ca. OVCAR-5 0.0 Small Intestine Pool 0.0 Ovarian ca. IGRO V-1 10.5 Stomach Pool 0.0 Ovarian ca. OVCAR-8 0.0 Bone Marrow Pool 62.4 Ovary 0.0 lFetal Heart 10.2 Breast ca. MCF-7 0.0 Heart Pool 13.6 Breast ca. MDA-MB-23 1 9.0 Lymph Node Pool 0.0 Breast ca. BT 549 0.0 Fetal Skeletal Muscle 0.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 9.7 Breast ca. MDA-N 20.0 Spleen Pool 0.0 Breast Pool 7.7 Thymus Pool Trachea 0.0 CNS cancer (glio/astro) 0.0 Lung 0.0 CNS cancer (glio/astro) 0.0 r 00 0 l Lg 89 CNS cancer (neuro;met)0.
Fetal Lung_ 8.9 SK-N-AS 0.0 Lung ca. NCI-N417 0.0 CNS cancer (astro) SF-539 0.0 CNS cancer (astro) Lung ca. LX-1 0.0 NS 0.0 SNB-75 Lung ca. NCI-H146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. SHP-77 7.9 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.0 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 4.6 Lung ca. NCI-H23 0.0 Brain (fetal) 13.9 Lung ca. NCI-H460 0.0 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 21.2 Brain (Substantia nigra) Lung ca. NCI-H522 0.0 (Substantia nigra) 0.0 Pool Liver 0.0 Brain (Thalamus) Pool 12.9 Fetal Liver 19.1 Brain (whole) 0.0 Liver ca. HepG2 0.0 Spinal Cord Pool 12.2 Kidney Pool 18.3 Adrenal Gland 8.1 Fetal Kidney 100.0 Pituitary gland Pool 12.8 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.0 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0 Renal ca. UO-31 0.0 Pancreas Pool 73.2 CNS_neurodegeneration_vl.O Summary: Ag3714 Expression of the CG90750-01 gene is low/undetectable in all samples on this panel General_screeningpanel_vl.4 Summary: Ag3714 Expression of the CG90750-01 gene is restricted to the fetal kidney (CT=34.8). Thus, expression of this gene could be used to differentiate between this sample and other samples and as a marker of fetal kidney tissue.
Panel 4.1D Summary: Ag3714 Expression of the CG90750-01 gene is low/undetectable in all samples on this panel F. NOV10 (CG91235-01): Interleukin 8.
Expression of gene CG91235-01 was assessed using the primer-probe sets Ag3838 and Ag3723, described in Tables FA and FB. Results of the RTQ-PCR runs are shown in Tables FC and FD.
Table FA. Probe Name Ag3838 .Start SEQ ID rimers Sequences Length Position No war -catagagactgaaagatgg- 21 228 106 Forward s -catagtcagactgaaagatgg-3' 21 228 106 00 Probe TE 1tatacccagacta3-AR 24 I 270 I 107 Reverse I5'-acctgtccataatctctttgat-3' 22 299 108 Table FB. Probe Name Ag3723 PrimrsequecesLent Start SEQ ED Prmrs Sqene ent Position No -gctgttgctctactgctttctt-3' 22 43 109 Probe jTET-5I-atgttcactgcttccattgtgccaag-3I-TAMRA 26 85 110 Reverse ~5 1 cactggcattgtggtactgtac-3' 22 j 116 111 Table FC. General-screeningjpanel vi .4 Rel. Rel. Exp.(%) Tissue Name Ag3838, Run Tissue Name Ag3838, Run 213604098 Adipose 2.2 Renal ca. TK-10 7.4 Melanomna* Hs688(A).T 0.0 Bladder 14.8 Melanomna* Hs688(B).T 0.0 Gastric ca. (liver met.) 11.4 Melanoma* M14 0.0 Gastric ca. KATO 111 100.0 Melanoma* LOXIMYI 0.0 Colon ca. SW-948 5.3 Melanoma* SK-MEL-5 4.3 Colon ca. SW480 0.0 Squamous cell carcinoma 0.0 Colon ca.* (SW480 met) 17.0 SCC-4 SW620 Testis Pool 1.1 Colon ca. HT29 3.8 Prostate ca.* (bone met) 11.1 Colon ca. HCT-l 116 2.6 PC-3 Prostate Pool 0.0 Colon ca. CaCo-2 1.1 Placenta 0.0 Colon cancer tissue 7.8 Uterus Pool 0.0 Colon ca. SWi 1116 0.0 Ovarian ca. OVCAR-3 2.5 Colon ca. Colo-205 0.0 Ovarian ca. SK-a V-3 2.1 Colon ca. SW-48 0.0 Ovarian ca. OVCAR-4 0.0 Colon Pool 0.0 Ovarian ca. OVCAR-5 3.1 Small Intestine Pool 0.0 Ovarian ca. IGRO V-i 6.5 Stomach Pool 0.0 Ovarian ca. OVCAR-8 4.0 Bone Marrow Pool 0.0 Ovary 1.0 Fetal Heart 0.0 Breast ca. MCF-7 0.0 Heart Pool 0.0 Breast ca. MDA-MB-23 1 0.0 Lymph Node Pool 0.0 Breast ca. BT 549 3.9 Fetal Skeletal Muscle 2.2 Breast ca. T47D 6.7 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 1.9 Breast Pool 0.0 Thymus Pool Trachea 0.0 CNS cancer (glio/astro) 12.9 00 Lung 0.0 CNS cancer U-1 1-MG5.
Fetal Lung 0.0 CNS cancer (neuro;met) 0.0 Lung ca. NCI-N4 17 0.0 CNS cancer (astro) SF-539 0.0 Lung ca. LX-l 12.4 CNS cancer (asito) SNB-75 0.0 Lung ca. NCI-H146 8.2 CNS cancer (glia) SNB- 19 0.0 Lung ca. SHP-77 16.4 CNS cancer (glia) SF-295 10.3 Lung ca. A549 12.1 Brain (Amygdala) Pool 1.3 Lung ca. NCI-H-526 0.0 Brain (cerebellum) 0.0 Lung ca. NCI-H123 25.7 Brain (fetal) 0.0 Lung ca. NCI-H1460 35.8 Brain (Hippocampus) Pool Lung ca. HOP-62 1.5 Cerebral Cortex Pool 12.1 Lung ca. NCI-H1522 0.0 Brain (Substantia nigra) Pool 4.4 Liver 0.0 jBrain (Thalamus) Pool 3.1 Fetal Liver 5.7 IBrain (whole) 1.7 Liver ca. HepG2 0.0 jSpinal Cord Pool 8.2 Kidney Pool 1.1 Adrenal Gland 0.0 Fetal Kidney 0.0 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.0 Thyroid (female) 0.0 Renal ca. ACHN 1.7 Pancreatic ca. CAPAN2 1.6 IRenal ca. UO-31 7.8 Pancreas Pool j 0.0 Table FD. Panel 4,.1D Rel. Rel. Exp.(%) Tissue Name Ag3838, Run Tissue Name Ag3838, Run 170127333 Secondary Thi act 8.2 HU.VEC IL-lIbeta 0.0 Secondary Th.2 act 0.0 HUVEC IFN gamma 8.4 Secondary TO act 47 HIJVEC TNF alpha [EN 0.0 gamma Secondary Thl rest 0.0 HIUVEC TNF alpha IL4 0.0 Secondary Th2 rest 0.0 HUVEC IL-I 1 0.0 Secondary Trl rest 0.0 Lung Microvascular EC none 0.0 Primary mhI act 0.0 Lung Microvascular EC 0.0 IL-i1beta Primar Th2 at 0.0 Microvascular Dermal EC0.
Primar Th2 at 0.0 none0.
Primary TnI act 0.0 Microsvasular Derrnal EC 5.8 TNFalpha IL-lIbeta______ Primary Thi rest 0.0 Bronchial epithelium 0.0 ILibeta______ iPrimary Th2 rest 0.0 ISmall airway epithelium none 0.0 00 Primary TrI rest 0.0 Small airway epithelium 10.0 ________TNFalpha IL-lbeta______ CD4 lymphocyte act 0.0 Coronery artery SMG rest 9.4 CD4 lymphocyte act 0.0 Coronery artery SMG 0.0 ________TNFalpha IL-i1beta CD8 lymphocyte act 0.0 Astrocytes rest Secondary CD8 lymphocyte rest 0.0 Astrocytes TNFalpha +0.
Secondary CD8 lymphocyte act 0.0 KU-812 (Basophil) rest CD4 lymphocyte none 0.0 KUM8lionoyci) 2 ry Thl/Th2/Trl_anti-CD95 0.0 CCD 1106 (Keratinocytes) 14.6 CHil none LAK cells rest 0.0 CCD1 106 (Keratinocytes) 0.0 IL- Ibeta LAK cells IL-2 0.0 Liver cirrhosis 16.2 LAK cells IL-2+IL-12 0.0 NCI-H292 none 0.0 LAK cells IL-2+IFN gammia 0.0 NCI-H292 IL-4 0.0 LAK cells 11-2+ IL- 18 0.0 NCI-H292 IL-9 LAK cells PMAlionomycin 40.9 NCI-H292 IL- 13 0.0 NK Cells IL-2 rest 0.0 NCI-H292 IFN gamma 10.1 Two Way MILR 3 day 0.0 HPAEC none 0.0 Two Way MLR 5 day 0.0 HPAIEC TNF alpha IL-I1 27.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.0 PBMC rest 0.0 Lung fibroblast TNF alpha 16.2 beta PBMC PWM 0.0 Lung fibroblast IL-4 0.0 PBMC PHA-L 0.0 Lung fibroblast IL-9 0.0 Ramos (B cell) none 0.0 Lung fibroblast IL- 13 0.0 Ramos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 9.4 B lymphocytes PWM 0.0 Dermal fibroblast CCD 1070 7.6 rest B lymphocytes CD40L and IL-4 0.0 Dermal fibroblast CCD 1070 8.4 alpha EOL-lI dbcAMP 0.0 Dermnal fibroblast CC D1070 0.0 IL-l beta_____ PMOL-Ionocin 5.4 Dermal fibroblast IFN gamma 0.0 Dendritic cells none 0.0 Dermal fibroblast IL-4 0.0 Dendritic cells LPS 0.0 Dermal Fibroblasts rest 0.0 Dendritic cells anti-CD4O 10.5 Neutrophils TNFa+LPS 19.6 Monocytes rest 0.0 Neutrophils rest 15.0 .Monocytes LPS 100.0 Colon 8.3 IM 2! 00
NO
O
(-N
Macrophages rest 0.0 Lung 0.0 Macrophages LPS 0.0 Thymus 92.0 HUVEC none 0.0 Kidney 0.0 HUVEC starved CNS_neurodegeneration_vl.O Summary: Ag3838 Expression of the CG91235-01 gene is low/undetectable in all samples on this panel General_screening_panel_vl.4 Summary: Ag3838 Significant expression of the CG91235-01 gene in this panel is restricted to samples derived from gastric and lung cancer cell lines (CTs=32.5-34). Thus, expression of this gene could be used to differentiate between these samples and other samples on this panel and as a marker to detect the presence of gastric and lung cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of gastric and lung cancers. A second experiment with the probe and primer set Ag3723 shows low/undetectable levels of expression Panel 2.2 Summary: Ag3838 Expression of the CG91235-01 gene is low/undetectable in all samples on this panel Panel 4.1D Summary: Ag3838 Significant expression of the CG91235-01 gene in this panel is restricted to LPS stimulated monocytes and the thymus (CTs=34.5). Upon activation with pathogens such as LPS, monocytes contribute to the innate and specific immunity by migrating to the site of tissue injury and releasing inflammatory cytokines. This release contributes to the inflammation process. Therefore, modulation of the expression of the putative IL-8 protein encoded by this transcript may prevent the recruitment of monocytes and the initiation of the inflammatory process, and reduce the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, or rheumatoid arthritis.
G. NOVlla and NOV1lb (CG91657-01 and CG91657-02): BRUSH BORDER PROTEIN PRECURSOR Expression of gene CG91657-01 was assessed using the primer-probe set Ag3735, described in Table GA. Results of the RTQ-PCR runs are shown in Table GB. Please note that CG91657-02 represents a full-length physical clone of the CG91657-01 gene, validating the prediction of the gene sequence.
00 00 Table GA. Probe Name Ag3735 Primrs equnce Legth Start SEQ ED Primrs equnce LegthPosition NO Forward 5 cctctttgaaaggtcaaatgtg-3' 22 882 112 ,Probe TET-51-tcaatacaattagtgtctccaaatgcaa-3'-TAMRA 28 1 926 113 [Reverse Is,-tttcattgcaactgtttctttg-3 22 954 -114 Table GB. General-screeningjpanel vi .4 Rel. Rel. Exp.(%) Tissue Name Ag3735, Run Tissue Name Ag3735, Run 218275229 218275229 Adipose 1.5 Renal ca. TK-l10 0.0 Melanoma* Hs688(A).T 0.0 Bladder j 0.0 Meaom*Hs8(B. 00 Gastric ca. (liver met.) 0.
Melanoa* Hs88(B)T 0.0 NCI-N870.
Melanomna* M14 0.0 IGastric ca. KATO MI 0.0 Melanoma* LOXIM'VI 0.0 Colon ca. SW-948 Melanoma* SK-MEL-5 0.0 Colon ca. SW480 0.0 Squamous cell carcinoma 0.0 Colon ca.* (SW480 met) 0.0 SCC-4 __SW620 Testis Pool 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met) 0.0 Colon ca. HCT-1 16 0.0 PC-3 Prostate Pool 0.8 Colon ca. CaCo-2 0.0 Placenta 0.0 Colon cancer tissue 0.0 Uterus Pool 0.0 Colon ca. S Wl 116 0.0 Ovarian ca. OVCAR-3 0.0 Colon ca. Colo-205 0.0 Ovarian ca. SK-OV-3 0.0 Colon ca. SW-48 0.0 Ovarian ca. OVCAR-4 0.0 Colon Pool 0.0 Ovarian ca. OVCAR-5 0.0 Small Intestine Pool 5.1 Ovarian ca. IGRO V-I 1 0.0 Stomach Pool 0.0 Ovarian ca. OVCAR-8 0.0 [Bone Marrow Pool 0.0 Ovary 0.0 jFetal Heart 0.0 Breast ca. MCF-7 0.0 Heart Pool 0.0 Breast ca. MDA-MB-23 1 0.0 Lymph Node Pool 0.0 Breast ca. BT 549 0.0 Fetal Skeletal Muscle 0.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.0 Trachea 2.6 CNS cancer (glio/astro) 0.0 Lung 00 CNS cancer (glio/astro) 0.0 U- I18-MG 1111 00
O
IN
sO
(N
00 8', Fetal Lung 0.0 CNS cancer (neuro;met) Fetal Lung 0 0.0SK-N-AS
SK-N-AS
Lung ca. NCI-N417 0.0 CNS cancer (astro) SF-539 0.0 Lung ca. LX-1 0.0 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H 146 0.0 CNS cancer (glio) SNB-19 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 0.0 Brain (Amygdala) Pool 0.0 Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.0 Lung ca. NCI-H23 0.0 Brain (fetal) 0.6 Lung ca. NCI-H460 0.0 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.0 Lung ca. NCI-H522 0.0 Brain (Substantia nigra) Pool 0.0 Liver 0.0 Brain (Thalamus) Pool 0.0 Fetal Liver 0.0 Brain (whole) 0.0 Liver ca. HepG2 0.0 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 0.0 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 100.0 Renal ca. A498 0.0 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 0.0 Renal ca. UO-31 0.0 Pancreas Pool 0.0 CNS_neurodegeneration_vl.0 Summary: Ag3735 Expression of the CG91657-01 gene is low/undetectable in all samples on this panel General_screeningpanel_vl.4 Summary: Ag3735 Expression of the CG91657-01 gene is exclusive to the salivary gland (CT=32.5). Thus, expression of this gene could be used to differentiate this sample from other samples on this panel and as a marker to identify this glandular tissue.
Panel 4.1D Summary: Ag3735 Expression of the CG91657-01 gene is low/undetectable in all samples on this panel H. NOVI2a and NOV12f(CG91678-01 and CG91678-03): MMP1 Expression of gene CG91678-01 and full length physical clone CG91678-03 was assessed using the primer-probe set Ag3394, described in Table HA. Results of the RTQ-PCR runs are shown in Tables HB, HC, HD, HE, HF, HG and HH.
Table HA. Probe Name Ag3394 Start SEQ ID Primers Sequences Length Start SEQ Sequences Position No Forward 5'-tggaccaacaatttcagagagt-3' 22 678 115 00 Prb TET-5'-acaacttacatcgtgttgcggctcat-3'-TAMRAI 26 1 700 1 1167 Reese '-agaatgggagagtccaagagaa-31 22 737 117 Table HB. Al-comprehensive panel-vl.0 Rel. Rel. Exp.(%) Tissue Name Ag3394, Run Tissue Name Ag3394, Run 217700461 217700461 110967 COPD-F 0.0 112427 Match Control 0.0 Psoriasis-F______ 110980 COPD-F 0.0 112418 Psoriasis-M 0.
110968 COPD-M 0.0 1112723 Match Control f j IPsoriasis-M 110977 C0PD-M j 0.0 112419 Psoriasis-M 0.4 110989 Emphysema-F 0.0 112424 Match Control 0.0 Psoriasis-M 110992 Emphysema-F 0.1 112420 Psoriasis-M 0.0 110993 Emphysema-F 0.0 112425 Match Control 0.0 110994 Emphysema-F 0.1 104689 (ME) OA Bone-Backus 31.6 110995 Emphysema-F 0.0 104690 (MF) Adj "Normal" 0.9 110996 Emphysema-F 0.0 104691 (MF) OA 3.3 110997 Asthma-M 0.1 104692 (BA) OA 2.2 _________Cartilage-Backus 1 1100 1 Asthma-F 0.0 104694 (BA) OA Bone-Backus 6.4 111002 Asthma-F 0.0 104695 (BA) Adj "Normal" 1.1 Bone-Backus______ 111003 Atopic Asthma-F 0.0 104696 (BA) OA 100.0 111004 Atopic Asthma-F 0.0 104700 (SS) OA Bone-Backus 1.9 111005 Atopic Asthma-F 0.0 104701 (SS) Adj "Normal" 42.0 Bonc-Backus 111006 Atopic Asthma-F 0.0 104702 (SS)OCA 0.8 Synovium-Backus 111417 Allergy-M 0.0 117093 CIA Cartilage Rep7 4.7 112347 Allergy-M 0.0 112672 OA BoneS 7.3 112 349 Normal Lung-F 0.0 112673 OA SynoviumS 112357 Normnal Lung-F 2.0 112674 OA S'novial Fluid 3.4 112354 Normal Lung-M 0.0 117 100 OA Cartilage Repl14 0.0 112374 Crohns-F 0.5 112756OA Bone9 1.3 1123 89 Match Control 0.3 112757 OA Synovium9 0.0 Crohns-F 112375 Crohns-F06 112758 OA Synovial Fluid 1 0.0 00 Cells9 112732 Match Control 0.0 11712 5 RA Cartilage Rep2 0.0 Crohns-F 112725 Crohns-M 0.0 113492 Bone2 RA 1.4 112387 Match Control 0.4 113493 Synovium2 RA 0.3 Crohns-M 112378 Crobns-M 0.0 113494 Syn Fluid Cells RA 1.2 112 390 Match Control 0.0 113499 Cartilage4 RA Crohns-M 112726 Crohns-M 0.1 113500 Bone4 RA 0.6 112731 Match Control 0.0 113501 Synovium4 RA 0.0 112 380 Ulcer Col-F 0.0 113502 Syn Fluid Cells4 RA 0.3 112734 Match Control Ulcer 1.9 113495 Cartilage3 RA 0.0 Col-F 112384 Ulcer Col-F 0.0 113496 Bone3 RA 0.0 112737 Match Control Ulcer 0.0 113497 Synoviumn3 RA 0.0 112386 Ulcer Cal-F 0.0 113498 Syn Fluid Cells3 RA 0.2 112738 Match Control Ulcer 34.9 117106 Normal Cartilage Rep2O 0.0 Col-F 112381 Ulcer Col-M 0.0 113663 Bone3 Normal 0.0 112735 Match Control Ulcer 0. 1164Snvu3Nra00 Col-M0. 1164Sovm3Nra00 112382 Ulcer Col-M 0.0 113665 Syn Fluid Cells3 0.0 112394 Match Control Ulcer 0.0 117107 Normal Carti lage Rep22 0.0 112383 Ulcer Col-M 0.1 113667 Bone4 Normal 0.0 112736 Match Control Ulcer 0.4 113668 Synovium4 Normal 0.0 112423 Psoriasis-F 0.0 113669 Syn Fluid Cells4 0.0 Normal Table HC. General-screening~panel-vi1 .4 Rel. Rel. Rel. Rel.
Exp.(%) Tissue Name Ag3394, Ag3394, Tissue Name Ag3394, Ag3394, Run Run Run Run 208033837 212142252 208033837 212142252 Adipose 0.1 0.1 Renal ca. TK-10 0.0 0.0 Melanoma*0.0. Blde0203 Hs688(A).T0.0. Blde020.
elanoma* 6.3 5.2 Gastric ca. (liver 0.0 0.0 IHs688(B).T I Imet.) NCI-N87 00 Melanoma* M14 0.7 0.5 Gastric ca. KATO 111 0.5 Melanoma* 0.9 0.9 Colon ca. SW-948 0.0 0.0 LOXIMVI Melanoma* 0.1 0.1 Colon ca. SW480 0.0 0.0 Squamous cell 09.6 Colon ca.* (SW480 0.0 0.0 carcinoma SCC-4 09.6 met) SW620 Testis Pool 0.0 0.0 Colon ca. HT29 0.0 0.0 Prostate ca.* (bone 1.4 0.7 Colon ca. HCT-l 116 0.0 0.0 met) PC-3 Prostate Pool 0.0 0.0 Colon ca. CaCo-2 1.0 0.g Placenta 0.3 0.2 Colon cancer tissue 12.2 10.7 Uterus Pool 0.0 0.0 Colon ca. SWi 1116 0.0 0.0 Ovarian ca. 0.0 0.0 Colon ca. Colo-205 0.0 0.0 OVCAR-3 Ovarian ca. 3.0 2.5 Colon ca. SW-48 0.0 0.0 SK-OV-3 Ovarian ca. 0.0 0.0 Colon Pool 0.0 0.0 Ovarian ca. 0.0 0.0 Small Intestine Pool 0.0 0.0 Ovarian ca. 0.7 0.7 Stomach Pool 2.3 1.7 IGROV- Ovarian ca. 0.0 0.0 Bone Marrow Pool 0.0 0.0 OVCAR-8 Ovary 0.0 0.0 Fetal Heart 0.0 0.0 Breast ca. MCF-7 0.0 0.0 Heart Pool 0.0 0.0 Breast -2 1a 0.4 0.6 Lymph Node Pool 0.0 0.0 Breast ca. BT 549 1.2 1.8 Fetal Skeletal Muscle 0.0 0.0 Breast ca. T47D 0.0 0.0 Skeletal Muscle Pool 0.0 0.0 Breast ca. MDA-N 0.1 0.1 Spleen Pool 0.0 0.0 Breast Pool 0.0 0.0 Thymus Pool 0.0 0.0 Trachea 0.1 0.0 CNS cancer1.13 Trachea_0.1_1_0.0 (glio/astro) U87-MG CNS cancer Lung 0.0 0.0 (glio/astro) 24.3 20.3 CNS cancer Fetal Lung 0.0 0.0 (neuro;met) 0.1 0.1 Lung ca. NCI-N417 0.0 0.0 CNS cancer (astro) 0.0 0.0 _SF-539 Lung ca. LX-1 0.0 0.0 o CNS cancer (astro) 0.0 0.0 SNB-75 00 Lung ca. NCI-H 146 0.0 0.0 CNS cancer (glio) 0.4 0.6 Lung ca. SHP-77 0.0 0.0 CNS cancer (glio) 100.0 100.0 Lung ca. A549 0.0 0.0 Brain (Amnygdala)0.00 ______,Pool0.00 Lung ca. NCI-H526 0.0 0.0 Brain (cerebellum) 0.0 0.0 Lung ca. NCI-H123 0.2 0.1 Brain (fetal) 0.0 0.0 Lung ca. NCI-H460 0.1 0.0 Brain (Hippocampus) 0.0 0.0 Pool Lung ca. HOP-62 0.0 0.0 ICerebral Cortex Pool 0.0 0.0 Lung ca. NCI-H522 0.1 0.1 Brain (Substantia 0.0 0.0 Liver 0.0 0.0 Brain (Thalamus) 0.0 0.0 Fetal Liver 0.0 0.0 Brain (whole) 0.0 0.0 Liver ca. HepG2 0.0 0.0 Spinal Cord Pool 0.0 0.0 Kidney Pool 0.0 0.0 Adrenal Gland 0.0 0.0 Fetal Kidney 0.0 0.0 -Pituitary gland Pool 0.0 0.0 Renal ca. 786-0 0.0 0.0 ISalivary Gland 0.0 0.0 Renal ca. A498 0.0 0.0 Thyroid (female) 0.0 0.0 Renal ca. ACHN 0.0 1.9 Pancreatic ca. 0.0 0.0 Renal ca. UO-31 1.1 0.8 Pancreas Pool 0.1 0.0 Table HD. Panel 1.31) Rel. Rel.
Rel. Rel. Exp.(%) Tissue Name Ag3394, Run Ag3394, Tissue Name Ag3394, Ag3394, Run 165524929 Run Run 167595301 165524929 Lideorcna 0.0 0.0 Kidney (fetal) 0.0 0.2 Pancreas 0.0 0.0 Renal ca. 0.1 0.0 786-0 Pancreatic ca. 0.0 0.0 Renal ca. 0.0 0.0 CAPAN 2 A498 Adrenal gland 0.0 0.0 Renal ca. RXF 0.1 0.1 Thyroid 0.1 0.0 Renal ca. 0.0 0.0 Salivary gland 0.1 0.0 Renal ca. 3.8 0.7 1 Pituitary gland 0.1 0.0 Renal ca. 0.0 0.0 TK-10 00 Brain (fetal) 0.0 0.0 Liver 0.0 0.0 Brain (whole) 0.0 0.0 Liver (fetal) 0.1 0.1 Liver ca.
Brain (amygdala) 0.0 0.0 (hepatoblast) 0.0 0.0 Brain 0000 Ln (cerebellum) 0000 Ln (aipcmps 0.0 0.0 Lung (fetal) 1.2 Brain (substantia Lung ca.
nigra) 0.0 0.0 (small cell) 0.0 0.0 ~LX-1 Lung ca.
Brain (thalamus) 0.0 0.0 (small cell) 0.0 0.0 NCI-H69 Lung ca.
Cerebral Cortex 0.0 0.0 (s.cell var.) 0.0 0.0 SHP-77 Lung ca.
Spinal cord 0.0 0.0 (large 0.4 0.0 cell)NCI-H460 glio/stroLung ca.
gUi7-stG 2.1 I 1.1 (non-sm. cell) 0.0 0.0 U87-MG A549 glio/astro Lung ca.
U- I I8-MG 66.0 14.2 (non-s.cell) 0.0 0.0 NCI-H23 astroytomaLung ca.
aSW1783om 40.3 18.6 (non-s.cell) 0.0 0.0 SW1783 ~~~~HOP-62 neuro; metLung ca.
KNer*;me 0.4 0.0 (non-s.dl) 0.3 0.0 SK-N-ASNCI-H4522 astroytomaLung ca.
aSF-539om 0.1 0.0 (squam.) SW 3.1 SF-539 astroytomaLung ca.
1.2 0.6 (squamn.) 0.0 0.0 glioma SNB- 19 0.0 0.0 Mammary 0.1 0.0 glioma U25 1 0.2 0.0 Breast ca.* 0.0 0.0 MCF-7 Breast ca.* gliomna SF-295 100.0 100.0 (pl.ef) 2.4 0.3 MDA-MB-23 1 I___I 00 00 Hat(ea)000.0 Breast ca.* 0.0 0.0 Heart (fetal) 0.0 ~(pl.ef) T47D Hat000.0 Breast ca. 13.1 1.1 Heart 0.0 ~~~BT-549 Skeletal muscle 0.0 0.0 Breast ca. 0.2 0.1 (fetal) Skeletal muscle 0.0 0.0 O0vary 0.0 0.0 Bone marrow 0.1 0.0 O0varian ca. OVCAR-3 0.1- 0.0 Thymus 0.0 0.0 O0varian ca. OVCAR-4 0.0 0.0 Spleen 0.0 0.0 Ovarian ca. OVCAR-5 0.0 0.1 Lymph node 0.1 0.0 Ovarian ca. OVCAR-8 0.1 0.0 Colorectal 0.1 0.0 Ovarian ca. IGROV-1 1.4 0.6 Stomach 2.7 0.4 Ovarian ca.* (ascites) 2.7 Small intestine 0.8 0.1 jUterus 3.6 0.3 Colon ca. SW480 0.4 0.0 Placent 0.3 0.0 Colon ca.* SW620(SW480 0.0 0.2 Prostate 0.0 0.0 met) Coo a.H2 00 00Prostate ca.* (bone 0.8 0.6 Colon ca. HT290.0 Colon ca. 00 00Tsi HCT- 116 0. 0.1ets Colon ca. 1.7 0.8 Melanoma Hs688(A).T 0.5 0.3 CaCo-2 Colon ca. 314 89Melanomna 4 (met) 7.1 2.3 tissue(0D03866) 314 89Hs688(B).T_______ Colon ca. 0.0 0.0 Melanoma UACC-62 0.0 0.0 HCC-2998 Gastric ca.* (liver met) 1.7 0.0 Melanoma M14 0.2 0.0 NCI-N87 Bladder 0.4 0.3 IMelanoma LOX INM 0.5 0.6 Trachea 0.4 0.0 Melanoma* (met) 0.1 0.0 Kidney 0.0 0.0 Adipose 10.2 1 0.2 Table HE. Panel 2D Rel. Rel. Exp.(%) Tissue Name Ag3394, Run Tissue Name Ag3394, Run 165471510 165471510 Normal Colon 2.0 Kidney Margin 8120608 0.0 CC Well to Mod Diff 88.3 Kidney Cancer 8120613 0.7 (0D03 866) CC Margin (0D03866) 1.4 Kidney Margin 8120614 0.0 00 00 CC Gr.2 rectosigmnoid 13.3 Kidney Cancer 9010320 3.2 (0D03 868) CC Margin (0D03 868) 0.0 Kidney Margin 9010321 0.0 CC Mod Diff (0D03920) 2.1 Normal Uterus 0.0 CC Margin (0D03920) 0.1 Uterus Cancer 064011 0.1 CC Gr.2 ascend colon337 NraThoi0.
(0D0392 1)337 NraThoi0.
CC Margin (0D0392 1) 0.9 Thyroid Cancer 0640 10 0.2 CC from Partial Hepatectomy 20.2 Thyroid Cancer A302 152 2.8 (0D04309) Liver Margin (0D04309) 0.2 Thyroid Margin A3021 53 0.1 Colon mets to lung 1.2 Normal Breast 0.0 (0D0445 1-0 Lung Margin (0D0445 1-02) 0.1 Breast Cancer (0D04566) 0.3 Normal Prostate 6546-1 0.2 Breast Cancer 0.0 (0D04590-01) Prostate Cancer (0D044 10) 0.2 Breast Cancer Mets 0.0 Prostate Margin (0D044 10) 0.5 Breast Cancer Metastasis 0.0 Prostate Cancer (0D04720-0l) 0.0 Breast Cancer 064006 3.6 Prostate Margin (0D04720-02) 1.0 Breast Cancer 1024 0.0 Normal Lung 06 10 10 1.0 Breast Cancer 9100266 3.7 Lung Met to Muscle 2.9 Breast Margin 9100265 1.6 (0D04286) Muscle Margin (0D04286) 0.2 Breast Cancer A209073 1.1 Lung Malignant Cancer 31.4 Breast Margin A209073 0.3 (0D03 126) Lung Margin (0D03 126) 1.0 Normal Liver 0.0 Lung Cancer (0D04404) 77.4 Liver Cancer 064003 0.0 Lung Margin (0D04404) 4.0 Liver Cancer 1025 0.0 Lung Cancer (0D04565) 91.4 Liver Cancer 1026 0.3 Lung Margin (0D04565) 0.1 Liver Cancer 6004-T 0.0 Lung Cancer (0D04237-01) 33.9 Liver Tissue 6004-N 0.7 Lung Margin (0D04237-02) 2.7 Liver Cancer 6005-T 0.1 Oular Mel Met to Liver 0.0 Liver Tissue 6005-N 0.0 (0D043 10) Liver Margin (0D043 10) 0.0 Normal Bladder 2.9 Melanoma Mets to Lung 3.3 Bladder Cancer 1023 (0D04321) Lung Margin (0D0432 1) 0.1 jBladder Cancer A302173 2.7 Normal Kidney 0.0 Bladder Cancer 00 Kidney Ca, Nuclear grade 2 1 0.2 (0D04338) Bladder Normal Adjacent (0D047 18-03) kidney Margin (0D04338) 0.2 Normal Ovary 0.0 Kidney Ca Nuclear grade 1/2 1.4 Ovarian Cancer 064008 0.8 Kidney Margin (0D04339) 0.0 Ovarian Cancer (0D04768-07) Kidney Ca, Clear cell type 3.1 Ovary Margin 0.2 (0D04340) ______(0D04768-08) Kidney Margin (0D04340) 0.0 Normal Stomach 1.8 Kidney Ca, Nuclear grade 3 2.3 Gastric Cancer 9060358 5.9 (0D04348) Kidney Margin (0D04348) 0.0 Stomach Margin 9060359 1.8 Kidney Cancer (0D04622-0l) 5.7 Gastric Cancer 9060395 100.0 Kidney Margin (0D04622-03) 0.3 Stomach Margin 9060394 10.2 Kidney Cancer (0D04450-01) 0.1 Gastric Cancer 9060397 13.0 Kidney Margin (0D04450-03) 0.0 Stomach Margin 9060396 1.6 .Kidney Cancer 8120607 0.2 -Gastric Cancer 064005 27.2 Table HF. Panel 3D Rel. Rel. Exp.(%) Tissue Name Ag3394, Run Tissue Name Ag3394, Run 165902490 165902490 Daoy- Medulloblastomna 0.0 Ca Ski- Cervical epidermoid 0.0 carcinoma (metastasis) TE67 1- Medulloblastoma 0.0 ES2 vra la el100.0 carcinoma D283 Med- 00 Ramos- Stimulated with 0.0 Medulloblastoma 00 PMA/ionomycin 6h PFSK-1I- Primitive 0.0 Ramos- Stimulated with 0.0 Neuroectodermal _______PMA/ionomycin XIF-498- CNS 0.0 MEG-Ol- Chronic myelogenous 0.0 leukemia (niegokaryoblast) SNB-78- Glioma 0.0 Raji- Burkitt's lymphoma 0.0 TF268- Glioblastoma 0.0 Daudi- Burkitt's lymphoma 0.0 T98G- Glioblastoma 0.3 U266- B-cell plasmacytoma 0.0 SK-N-SH- Neuroblastoma 0.3 1 CA46- Burkitt's lymphoma 0.0 (metastasis) SF-295- Glioblastoma 31.2 IRL- non-Hodgkin's B-cell 0.0 lymphorna______ Cerebellum 0.0 JM I- pre-B-cell lymphoma 0.0 Cerebellum 0.0 Jurkat- T cell leukemia 0.0 NCI-H292- Mucoepidermoid lung 0.1 TF-l- Erythroleukemnia 0.0 carcinoma 00 DMS-i 14- Small cell lung 0.0 HUT 78- T-cell lymphoma 0.0 cancer DMS-79- Small cell lung 0.0 U937- Histiocytic lymphoma 0.0 cancer NCI-H-146- Small cell lung 0.0 KU-812- Myelogenous 0.0 cancer leukemia NCI-H526- Small cell lung 0.0 769- P- Clear cell renal 0.1 cancer carcinoma NCI-N4 17- Small cell lung 00 Caki-2- Clear cell renal0.
cancer 00 carcinoma0.
NCI-H82- Small cell lung 0.0 SW .839- Clear cell renal 0.0 cancer carcinoma NCI-H-157- Squamous cell 0.0 G401- Wilms' tumor 0.0 lung cancer (metastasis) NCI-HI 155- Large cell 0.0 Hs766T- Pancreatic carcinoma 0.1 lung cancer metastasis) NCI--1129- Lrge ellCAPAN- 1 Pancreatic lng- 1299-cr gecl 0.1 adenocarcinoma (liver 0.0 lung ancermetastasis) NCI-H-727- Lung carcinoid 0.2 SU86.86- Pancreatic carcinoma metastasis) NCI-UMC-l 1 Lung 0.0 BxPC-3- Pancreatic 0.8 carcinoid adenocarcinomna LX-1- Small cell lung 0.0 HPAC- Pancreatic 0.0 cancer adenocarcinoma Colo-205- Colon cancer 0.0 MI aa2 acetc0.0 carcinoma KM 12- Colon cancer 0.0 CFPAC- I- Pancreatic ductal 0.0 adenocarcinoma KM2OL2- Colon cancer 0.0 PANC-1- Pancreatic epithelioid 0.0 NCI--17 16- Colon cancer 0.0 T24- Bladder carcinmna 0.0 ___________(transitional cell) aden oon 0.0 5637- Bladder carcinoma 11.3 aWeno -Ccin 0.0 HT-l 197- Bladder carcinoma 0.1 LS 1 74T- Colon 0.1 JM-UC-3- Bladder carcinma 0.4 adenocarcinoma 01 (transitional cell) SW-948- Colon 00 A0-Radmoacm adenocarcinoma 00 A0-Radmoacm SW-480- Colon0. T18 Fboacm00 adenocarcinoma00 HT18-Fboacm0.
Gastric 0.0 MG-63- Osteosarcoma 0.0 carcinoma 00 KATO III- Gastric 02 SK-LMS-lI- Leiomyosarcoma 10.2 carcinoma 02 (vulva) NCI-SNU- 16- Gastric 2.3 SJRH3O- Rhabdomyosarcoma 0.0 carcinoma (met to bone marrow) NCI-SNU-lI- Gastric 03 A3-Eiemi acnm carcinoma0. A431-Eiemicacn a00 RE- I- Gastric0. M6- elnm04 adenocarcinoma 00 W264 Mlnm RIF-48- Gastric 00 DU 145- Prostate carcinoma0.
adenocarcinoma 00 (brain metastasis)0.
Gastric 00 MDA-MB-468- Breast0.
carcinoma 00 adenocarcinorna0.
NCI-N87- Gastric 00 SCC-4- Squamous cell0.
carcinoma 00 carcinoma of tongue Ovarian 0.0 SCC-9- Squamous cell 0.0 carcinoma carcinoma of tongue RL95-2- Uterine carcinoma 0.0 SCC-i15- Squamous cell 0.0 Icarcinoma of tongue______ HelaS3- Cervical 0.0 CAL 27- Squamous cell 0.0 adenocarcinoma. carcinoma of tongue Table HG. Panel 4.1 D Rel. Rel. Exp.(%) Tissue Name Ag3394, Run Tissue Name Ag3394, Run 169838992 Secondary Th I act 0.0 HUVEC IL- Ibeta 13.2 Secondary Th.2 act 0.0 HIJVEC IFN gamma 14.9 Seconary rI ac 0.0 H1JVEC TNF alpha IFN2.
Secondry Tn ct 0.0 gamma28 Secondary Th I rest 0.0 HUVEC TNF alpha IL4 7.7 Secondary Th2 rest 0.0 HUVEC IL-li1 11.3 Secondary TrO rest 0.0 Lung Microvascular EC none 0.1 Primary ThlI act 0.0 Lung Microvascular EC 0.9 IL-ibeta______ Primar Th.2 ct 0.0 Microvascular Dermal EC0.
none Primary TrI act 0.0 Microsvasular Dermal EC 1L- 1beta Primary Thi. rest 0.0 Bronchial epithelium 1.6 ILIlbeta______ Primary Th.2 rest 0. Small airw'ay epithelium 2.9 none Primary TO rest 0.0 Small airway epithelium 1.9 lTNFalpha IL-lIbeta______ CD4 lymphocyte act 1 13.6 lCoronery artery SMC rest 84.1 00 CD4 lymphocyte act 0.0 Coronery' artery SMC 90.8 ________TNFalpha IL- Ibeta CD8 lymphocyte act 0.0 Astrocytes rest 0.0 Secondary CD8 lymphocyte rest 0.0 Astrocytes TNFalpha +0.
0.
Secondary CD8 lymphocyte act 0.0 KU-812 (Basophil) rest 0.0 CD4 lymphocyte none 0.0 KU-812 (Basophil) 2ry Th1/T2/Trl-anti-CD95 0.0 CCDI 1106 (Keratinocytes) 0.9 CHIl none_____ LAK cells rest 0.2 CCD1 1106 (Keratinocytes) 1.9 IL-Ibeta LAK cells IL-2 0.0 Liver cirrhosis 0.0 LAK cells IL-2+IL- 12 0.0 NCI-H292 none 0.0 LAK cells IL-2+IFN gamma 0.0 NCI-H292 IL-4 0.0 [AK cells IL-2+ IL-I 18 0.0 NCI-H292 IL-9 0.0 LAK cells PMA/ionomycin 17.4 NCI-H292 I 'L-13 0.0 NK Cells IL-2 rest 0.0 NCI-H292 IFN gamma 0.0 Two Way MLR 3day 0.0 HPAEC none 15.1 Two Way MLR 5 day 0.0 HPAEC TN~F alpha IL-i 100.0 Two Way MLR 7 day 0.0 Lung fibroblast none 5.6 PBMC rest 0.0 Lung fibroblast TNF alpha 86.5 beta_ PBMC PWM 0.0 Lung fibroblast IL-4 6.6 PBMC PHA-L 0.2 Lung fibroblast IL-9 19.3 Ramos (B cell) none 0.0 Lung fibroblast IL- 13 4.6 iRamos (B cell) ionomycin 0.0 Lung fibroblast LEN gamma 7.2 B I pocyts PW 0.1 Dermal fibroblast CCD 1070 B ympoyePW0. rest6.
B lymphocytes CD40L and IL-4 0.2 Dermal fibroblast CCD 1070 19.6 TNF alpha EOL-1 dbcAMP 0.0 Dermal fibroblast CCD1070 23.8 IL-I beta EOL-l dbcAMP 04 Dermal fibroblast [EN 1.
PMAlionomycin ______gamma Dendritic cells none 0.1 Dermal fibroblast IL-4 27.7 Dendritic cells LPS 0.1 Dermal Fibroblasts rest 13.9 Dendritic cells anti-CD4O 0.0 Neutrophils TNFa+LPS 0.0 Monocytes rest 0.0 Neutrophils rest 0.0 Monocytes LPS 15.8 Colon 0.0 Macrophages rest 0.0 Lung 0.7 Macrophages [PS 0.3 Thymus 0.0 00 HUVEC none 1 6.7 jKidney 0.0 1-nJVEC starved J 4.9 1 Table HH. Panel 4D Rel. Rel. Exp.(%) Tissue Name Ag3394, Run Tissue Name Ag3394, Run Secondary hl. act 0.0 HUVEC IL- Ibeta 5.7 Secondary Th2 act 0.0 HUVEC IFN gamma 12.9 Secondary TO act 0.0 HTUVEC TNF alpha IFN Secondary Thi rest 0.0 HUVEC TNF alpha IL4 Secondary Th2 rest 0.0 HUVEC IL- 1l 10.6 Secondary TrI rest 0.0 Lung Microvascular EC none 0.0 Primary Th I act 0.0 Lung Microvascular EC 1.2 ________TNFalpha IL- Ibeta Primar Th.2 ct 0.0 Microvascular Dermal EC0.
Primary TrI act 0.0 Microsvasular Dermal EC ________TNFalpha IL-Ibeta Primary Thi rest 0.0 Bronchial epithelium 2.1 ________TNFalpha ILlbeta Primary Th2 rest 0.0 none Primary TnI rest 0.0 Small airway epithelium 6.4 TNFalpha IL- Ibeta______ CD4 lymphocyte act 8.5 Coronery artery SMC rest 100.0 CD4 lymphocyte act 0.0 Coronery artery SMC 72.2 YMTNFalpha IL- Ibeta______ CD8 lymphocyte act 0.0 Astrocytes rest 0.0 Secondary CD8 lymphocyte rest 0.0 Astrocytes TNFalpha 0.3 IL-ibeta______ Secondary CD8 lymphocyte act 0.0 KU-812 (Basophil) rest 0.0 CD4 lmphocte noe 0.0 KU-8 12 (Basophil)0.
CD4 lmphocte noe 0.0 PMAionomycin0.
2ry Thl/Th2/Trl-anti-CD95 0.0 CCDI 106 (Keratinocytes) 1.1 CR1 1 none LAK cells rest 0.2 CCD1 106 (Keratinocytes) 1.1 TNFalpha IL-ibeta LAX cells IL-2 0.0 Liver cirrhosis -0.0 LAK cells IL-2+IL- 12 0.0 Lupus kidney J 0.0 LAK cells IL-2+IFN gamma 0.0 NCI-H292 nonce 0.0 LKcells IL-?2+ IL- 18 f 0.0 NCI-H292 IL-4 j 0.0 LAK cells PMAlionomycin 12.6 NCI-H292 IL-9 J 0.0 INK Cells IL-2 rest 005" ,II-H292IL 3I 0.
YU~_a~_I 00
(O
0 Two Way MLR 3 day 0.0 NCI-H292 IFN gamma 0.0 Two Way MLR 5 day 0.0 HPAEC none 18.3 HPAEC TNF alpha IL-1 Two Way MLR 7 day 0.0 aa 72.7 PBMC rest 0.0 Lung fibroblast none 3.8 PBMC PWM 0.1 Lung fibroblast TNF alpha IL-1 beta PBMC PHA-L 0.3 Lung fibroblast IL-4 Ramos (B cell) none 0.0 Lung fibroblast IL-9 19.1 Ramos (B cell) ionomycin 0.0 Lung fibroblast IL-13 4.2 B lymphocytes PWM 0.1 Lung fibroblast IFN gamma 10.8 Dermal fibroblast CCD1070 B lymphocytes CD40L and IL-4 0.2 rest 11.0 E dcAMP 00 Dermal fibroblast CCD1070 3 EOL-1 dbcAMP 0.0 32.1 TNF alpha EOL-1 dbcAMP 0.3 Dermal fibroblast CCD1070 26.4 PMA/ionomycin IL-1 beta Dermal fibroblast IFN Dendritic cells none 0.0 Deal fibroblast N 17.2 gamma Dendritic cells LPS 0.0 Dermal fibroblast IL-4 23.5 Dendritic cells anti-CD40 0.0 IBD Colitis 2 0.0 Monocytes rest 0.0 IBD Crohn's 0.0 Monocytes LPS 9.1 Colon 0.0 Macrophages rest 0.0 Lung Macrophages LPS 0.4 Thymus 0.0 HUVEC none 11.0 Kidney 0.0 HUVEC starved 9.3 AI_comprehensive panel_vl.0 Summary: Ag3394 The CG91678-01 transcript is expressed in OA tissue but not in control tissue (CTs=28-30). The transcript encodes a molecule homologous to MMP1 which has been shown to be present in OAjoint tissue and may contribute to the pathology of this disease. Although the transcript is not expressed at significant levels in the lung tissue on this panel, it is expressed in lung derived cell types and may be involved in lung remodeling associated with asthma, allergy,and emphysema (see panel 4 for references).
CNS_neurodegeneration_vl.O Summary: Ag3394 Expression of the CG91678-01 gene is low/undetectable in all samples on this panel General_screeningpanel_vl.4 Summary: Ag3394 Two experiments with the same probe and primer set produce results that are in excellent agreement, with highest expression of the CG91678-01 gene in a brain cancer cell line (CTs=20-22). Significant levels of expression are also seen in a cluster of cell lines derived from brain, colon, breast, 00 ovarian and melanoma cancers. Thus, expression of this gene could be used to differentiate K between the brain cancer cell lines and other samples on this panel and as a marker for brain cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of brain, colon, breast, ovarian and melanoma cancers.
SAmong tissues with metabolic function, this gene is expressed at low but significant levels in pancreas, thyroid, adipose and fetal heart, and liver. This pattern of expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
SPanel 1.3D Summary: Ag3394 Two experiments with the same probe and primer 00 0set produce results that are in excellent agreement, with highest expression of the SCG91678-01 gene in a brain cancer cell line (CTs=23.7-25.2). This expression in in concordance with the profile seen in Panel 1.4. Overall, expression is higher in cancer cell lines than in normal tissue samples, with significant levels of expression also seen in ovarian, breast, colon and lung cancer cell lines. Thus, expression of this gene could be used to differentiate between the brain cancer cell lines and other samples on this panel and as a marker for brain cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of brain, ovarian, breast, colon and lung cancers.
Low but significant levels of expression are also seen in adipose. Thus, this gene product may be involved in the diagnosis and/or treatment of obesity.
Panel 2D Summary: Ag3394 Highest expression of the CG91678-01 gene is seen in a gastric cancer (CT=27). In addition, higher levels of expression are seen in gastric, lung, colon and bladder cancers when compared to the expression in the corresponding normal adjacent tissue. Thus, therapeutic targeting with a small molecule drugs, protein therapeutics or human monoclonal antibody is anticipated to limit or block the extent of tumor cell migration, invasion, growth and metastasis, preferably in gastric, bladder, lung and colon tumors.
Panel 3D Summary: Ag3394 The expression of this gene appears to be highest in a sample derived from a ovarian cancer cell line In addition, there appears to be substantial expression in other samples derived from bladder cancer cell lines, gastric cancer cell lines and brain cancer cell lines. Thus, the expression of this gene could be used to distinguish ES-2 cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of ovarian, bladder, gastric or brain cancer.
222 00 Panels 4D and 4.1D Summary: Ag3394 The CG91678-0l transcript is induced in lung fibroblasts and in human pullmonary aortic endothelial cellsHPAEC) after stimulation with IL- Ibeta and TNT alpha (CTs=22). Thus, this gene product may be involved in the destruction of joint tissue, lung tissue, and the remodeling of these tissues. Since this gene encodes a protein homologous to MMP1I, therapeutic targeting with a human monoclonal antibody may inhibit or block inflammation, tissue destruction and recruitment of inflammatory cells into the lung due to asthma/allergy, emphysema or to the joint as a result of arthritis. See, Ohnishi K, etaL Lab Invest 1998 Sep;78(9):1077-87.
1. NOV13 (CG91698-O1): IIPSE: heparanase Expression of gene CG9 1698-01 was assessed using the primer-probe set Ag3069, described in Table IA. Results of the RTQ-PCR runs are shown in Tables 11B, IC, ID, IE, IF and IG.
Table IA. Probe Name Ag3069 Primers Sequences Length Start SEQ ED Position No Forward 5'-tttgggacctcatggattactt-3' 22 1452 118 Probe TET-5'-tccaaatctgtccaactcaatggtct-3-TAMR~A 26 1474 119 lees -aggtttgatcatccaccatctt-3' 22 1507 120 Table IB. General screeningpanel-vi .4 Rel. Re]. Exp.(%) Tissue Name Ag3069, Run Tissue Name Ag3069, Run 208023808 208023808 Adipose 3.1 Renal ca. TK- 10 9.9 Melanoma* Hs688(A).T 0.6 Bladder 5.6 Melanoma* Hs688(B).T 0.2 Gastric ca. (liver met.) 9.7 Melanoma* M14 10.2 Gastric ca. KATO 111 25.0 Melanoma* LOXIMVI 1.0 Colon ca. SW-948 3.8 Melanoma* SK-MEL-5 5.3 Colon ca. SW480 1.2 Squamous cell carcinoma 47 Colon ca.* (SW480 met) 0.0 SCC-4 ______SW620 Testis Pool 1.5 Colon ca. HT29 0.9 Prostate ca.* (bone met) 16.6 Colon ca. HCT- 116 15.6 PC-3 Prostate Pool 0.2 Colon ca. CaCo-2 0.6 Placenta 4.7 Colon cancer tissue 10.0 Uterus Pool 1.4 IColon ca. SW 1116 f 6.6 Ovarian ca. OVCAR-3 6.7 Colon ca. Colo-205 0.6 00 0 Ovarian ca. SK-OV-3 12.5 Colon ca. SW-48 2.2 Ovarian ca. OVCAR-4 2.3 Colon Pool 1.1 Ovarian ca. OVCAR-5 8.1 Small Intestine Pool 2.4 Ovarian ca. IGROV-1 1.6 Stomach Pool 0.7 Ovarian ca. OVCAR-8 5.1 Bone Marrow Pool 1.1 Ovary 2.3 Fetal Heart 0.4 Breast ca. MCF-7 1.3 Heart Pool 0.8 Breast ca. MDA-MB-231 6.6 Lymph Node Pool 2.9 Breast ca. BT 549 100.0 Fetal Skeletal Muscle 0.2 Breast ca. T47D 7.1 Skeletal Muscle Pool 0.3 Breast ca. MDA-N 1.3 Spleen Pool 2.6 Breast Pool 3.3 Thymus Pool 2.3 Trachea 4.1 CNS cancer (glio/astro) 17.7 U87-MG Lung 24 CNS cancer (glio/astro) U-118-MG etal Lung 3.7 CNS cancer (neuro;met) Fetal Lung I 3.7 SK-N-AS 5 3
SK-N-AS
Lung ca. NCI-N417 0.2 CNS cancer (astro) SF-539 Lung ca. LX-l_ 0.7 CNS cancer (astro) SNB-75 3.4 Lung ca. NCI-H146 2.5 CNS cancer (glio) SNB-19 1.6 Lung ca. SHP-77 26.1 CNS cancer (glio) SF-295 2.8 Lung ca. A549 0.9 Brain (Amygdala) Pool Lung ca. NCI-H526 0.1 Brain (cerebellum) 1.4 Lung ca. NCI-H23 2.8 Brain (fetal) Lung ca. NCI-H460 1.0 Brain (Hippocampus) Pool 0.8 Lung ca. HOP-62 0.8 Cerebral Cortex Pool 0.7 Lung ca. NCI-H522 0.4 Brain (Substantia nigra) Pool 0.8 Liver 0.7 Brain (Thalamus) Pool 1.2 Fetal Liver 3.1 Brain (whole) 0.9 Liver ca. HepG2 0.0 Spinal Cord Pool 2.1 Kidney Pool 2.6 Adrenal Gland 2.6 Fetal Kidney 0.8 Pituitary gland Pool 0.8 Renal ca. 786-0 3.7 Salivary Gland 2.2 Renal ca. A498 0.3 Thyroid (female) Renal ca. ACHN 2.2 Pancreatic ca. CAPAN2 19.6 Renal ca. UO-31 0.8 Pancreas Pool 5.4 00 00 Table IC. Panel 1 .3D) Rel. Rel. Rel.
Rel. Ag3O69 Tissue Name Ag3069, Ag3O69, Tissue Name Ag3069, Run 167595279 Run Run Run 167595279 _______165527061 adercio 4.3 5.6 Kidney (fetal) 5.3 Pancreas 0.4 0.0 Renal ca. 3.7 ______1786-01 Pancreatic ca. 12.9 8.4 Renal ca. A498 7.2 4.9 CAPAN Adrenal gland 4.9 0.6 Renal ca. RX(1 0.0 0.4 Thyroid 2.9 0.3 Raca. 3.0 Salivary gland 5.9 1.0 Renal ca. 3.9 Pituitary gland 7.9 1.2 ]Renalca. 8.3 11.7 Brain (fetal) 0.3 0.8 Liver 1.6 0.4 Brain (whole) 12.5 3.3 Liver (fetal) 10.0 4.7 Liver ca.
Brain (amygdala) 4.1 2.7 (hepatoblast) 0.0 0.0 Brain (cerebellum) 3.8 1.6 Lung 3.3 0.7 Brain (hippocampus) 3.7 2.0 Lung (fetal) 1.7 4.9 B .rain (substantia 4.7 2.0 Lung ca. (small 0.5 0.6 nigra) 1cell) LX-1 Brain (thalamus) 3.8 1.1 Lung ca. (small 4.6 cell) NCI-H69 Cerebral Cortex 1.1 1.4 Lung ca. (s.cell 28.5 100.0 SHiP-77 Spinal cord 8.5 6.3 Lung ca. (large 2.5 0.0 ~cell)NCI-H460 Lung ca.
glio/astro U87-MG 13.4 11.4 (non-sm. cell) 0.0 Lung ca.
glio/astro U-I 18-MG 0.0 0.2 (non-s.cell) 6.2 4.6 astrocytoma 69Lung ca.
SW 1783 69 6.0 (non-s.cell) 2.2 1.3 neuro*; met 8.7 1 Lug a 0.4 0.1 ISK-N-AS (non-s.cl) 00 00 ___NCI-H522 Lung ca.
astrocytoma SF-539 4.3 1.9 (squam.) SW 2.8 Lung ca.
astrocytoma SNB-75 5.1 5.3 (squam.) 12.9 13.8 ______NCI-H596 glioma SNB- 19 4.0 5.0 Mammary 2.2 0.5 glioma U25 1 I 34.6 23.8 Besc.*071.2 MGF-7 Breast ca.* glioma SF-295 1.9 3.7 (plef 14.5 ______MDA-MB-231I Hat(ea)0.4 14 Breast ca.* 0.0 0.0 Heart (fetal) 1.4 ~(pl.ef) T47D Heart 3.2 0.3 Breast ca. 100.0 30.8 Skeletal muscle 0.0 0.3 Breast ca. 0.0 (fetal) _MDA-N Skeletal muscle 1.4 0.2 Ovary 4.2 3.4 Bone marrow 8.2 4.1 Ovarian ca. 3.3 5.1 Thymus 0.9 2.1 Ovarian ca. 2.9 2.9 OVCAR-4 Spleen 11.1 4.1 Ovarian ca. 7.5 18.3 __OVCAR-5 Lymph node 21.3 5.6 Ovarian ca. 5.4 2.8 Colorectal 10.9 8.4 Ovarian ca. 0.4 1.0 IGROV-1 Ovarian ca.* Stomach 3.8 1.3 (ascites) 6.4 28.3 ~SK-OV-3 Small intestine 5.1 1.2 Uterus 10.6 4.1 Colon ca. SW480 2.1 1.5 Placenta 41.8 Colon ca.* 0.0 0.6 Prostate 2.9 SW620(SW480 met) Prostate ca.* Colon ca. HT29 0.4 0.3 (bone 6.5 10.5 Colon ca. HCT-I 16 7.9 11.1 Testis 8.8 0.4 Colon ca. CaCo-2 1.9 1.4 Melanoma 080.2 Hs688(A).T 0.
Colon ca. 56 46 Melanoma* 0.00 lissue(0D03866) 5. 46 (met)0.00 00 00 Colon ca. HCC-2998 6.9 9.5 Melanoma 0.4 1.1 _____UACC-62 Gastric ca.* (liver 7.8 3.5 Melanoma 8.1 0.4 met) NCI-N87 Bladder 5.6 5.7 Melanoma0.02 LOX IMVI 0.02 Melanoma* Trachea 7.2 2.1 (met) 0.7 Ki dn ey 13.2 1 1.7 JAdipose 6.5 Table ID. Panel 2.2 Rel.
Exp.( Rel.
Rel. Rel. Exp.(%) Tissue Name Ag3069, Run Ag3069 Tissue Name Ag3069, Run Ag3069, 173800589 Run 173800589 Run 184372 184372174 174 Normal Colon 39.8 57.8 Kidney Margin 100 1005.
Colon cancer 69.3 100.0 Kidney malignant8.25 (0D06064) (0D06204B) 8.25 Colon Margin Kidney normal (D66)29.1 0.0 adjacent tissue 8.2 16.4 (0D0064)(0D06204E) Coo acr4.2 7.6 Kiney Cancer 5.8 3.2 (0D06159) ______(0D04450-01) Colon Margin 45.7 28.5 Kidney Margin 1 12.8 38.7 (0D06159) .(0D04450-03) Colon cancer 8.2 21.0 IKidney Cancer 1 0.0 0.8 (0D06297-04) 8120613 Colon Margin 41.2 0.0 Kidney Margin 0.0 6.1 (0D06297-05) 8120614 CC Gr.2 ascend 18.3 30.1 Kidney Cancer 5.6 28.5 colon (0D03921) 9010320 CC Margin 12.2 32.3 Kidney Margin 2.0 5.4 (0D0392 1) ____9010321 Colon cancerKinyCce metastasis 14.9 25.7 Kidny0Cnce 7.5 10.9 (0D06104)8107 Lung Margin 47.6 96.6 Kidney Margin 0.0 (0D06104) 8120608 Colon mets to lung 3.0 15.7 Normal Uterus 17.6 12.0 I(0D0445 1 -0 1) 1_ 1 00 Lung Margin 27.5 06401 Uterine__ Cancr_3._21.
(0D0445 1-02) 262 6teie4 ane1312.
Normal Prostate 9.2 20.9 Normal Thyroid 0.0 12.3 Prostate Cancer 0.0 4.8 Thbyroid Cancer 28.7 87.7 (0004410) 1064010 Prostate Margin 2.8 3.6 Thyroid Cancer 9.1 38.2 (0004410) A302152 Normal Ovary 16.0 32.8 Thyroid Margin 0.0 8.4 A302 153 Ovarian cancer 24.3 47.6 Normal Breast 17.2 11.0 (0D06283-03) Ovarian Margin 7.0 10.2 Breast Cancer 6.9 30.6 (0D06283-07) I(0004566) Ovarian Cancer 5.4 14.5 Breast Cancer 1024 5.9 064008 Ov arian cancer 37.9 94.0 Breast Cancer 4.1 0.0 (0D06 145) (0004590-01) Ovarian Margin 54.3 82.4 Breast Cancer Mets 9.8 21.0 (0D06 145) (0004590-03) Ovarin cacer Breast Cancer (Ovariancance 4.2 6.3 Metastasis 17.0 21.5 (0D0645-03)(0004655-05) Ovarian Margin 15.8 0.0 Breast Cancer 064006 16.4 23.3 (0D06455-07)I Normal Lung 12.9 22.5 :Breast Cancer 3.6 Invasive poor Breast Margin2.
diff. lung adeno 15.9 35.8 9025.17.2 (0004945-019106 Lung Margin 9. Breast Cancer f 6.8 (0004945-03) A209073I Lung Malignant Breast Margin Cancer 11.6 31.6 A2090734 1.8 6.3 (0003126) Lung Margin 2.1 41.5 Breast cancer 23.3 12.6 (0003126) (0006083) Lung Cancer 6. 40Breast cancer node 11 .8 41.8 (0005014A) 6. 40metastasis (0D06083) Lung Margin 55.1 55.9 Normal Liver 4.5 10.7 (0005014B) Lung cancer 39.8 61.1 Liver Cancer 1026 6.8 7.9 (000608 1) Lung Margin 15.7 7.2 Liver Cancer 1025 7.3 39.5 (0006081) (0004237-01) 4.9 12.6 Liver Cancer 6004-T 15.3 24.8 00 Lung Margin 22.5 28.3 Liver Tissue 6004-N 5.6 5.1 (0D0423 7-02) Ocular Melanoma 0.0 2.9 Liver Cancer 6005-T 22.1 12.5 Metastasis Ocular Melanoma 12.9 48.3 Liver Tissue 6005-N 28.9 24.8 Margin Melanoa 20.7 19.9 Liver Cancer 064003 3.2 6.4 Melanoma 2. 274NraBlde25047.0 Margin (Lung)279 2. Normal Kidney 4.2 12.9 JBladder Cancer 1023 0.0 15.8 Kidney Ca, JBladder Cancer2094.
Nuclear grade 2 25.5 46.0 A3021732094.
(0D04338) Kidney Margin 8.9 48.0 Normal Stomach 23.0 27.0 (0D04338) Kidney Ca Gastric Cancer Nuclear grade 1/2 8.3 26.1 9060397 21.2 72.7 (0D04339) Kidney Margin 11.6 94 Stomach Margin 12.5 13.4 (0D04339) 9060396 Kidney Ca, Clear Gastric Cancer 1.
cell type 16.4 42.6 9009 7239.0 (0D04340)9035 Kidney Margin 19.9 16.0 Stomach Margin 45.1 50.3 (0D04340) 9060394 Kidney Ca, Nuclear grade 3 47.3 74.2 Gastric Cancer 064005 22.7 49.7 I(0D04348) Table IE. Panel 2D Ret. Ret. Exp.(%) Tissue Name Ag3069, Run Tissue Name Ag3069, Run 165301664 165301664 Normal Colon 49.7 Kidney Margin 8120608 2.2 CC Well to Mod Duff 17.7 Kidney Cancer 8120613 0.6 (0D03 866) CC Margin (0D03866) 10.6 Kidney Margin 8120614 1.4 CC Gr.2 rectosigmoid 5.7 Kidney Cancer 9010320 25.7 (0D03 868) CC Margin (0D03868) 0.6 Kidney Margin 9010321 6.7 CC Mod Diff (0D03920) 3.0 Normal Uterus 0.8 CC Margin (0D03920) 9.4 Uterus Cancer 064011 5.8 CC Gr.2 ascend colon 42.6 Normal Thyroid3.
I(0D03921) I_ ICC Margin (0D03921) 1 13.8 IThyroid Cancer 064010 42.6 00 CC from Partial liepatectomy 22.8 Thyroid Cancer A302 152 (0D04309) Mets Liver Margin (0D04309) 10.8 Thyroid Margin A302 153 2.9 Colon mets to lung 3.1 Normal Breast 3.3 (0D04451-01) Lung Margin (0D04451-02) 5.8 Breast Cancer (0D04566) 8.8 Normal Prostate 6546-1 54 Breast Cancer 10.1 (0D04590-0 1) Prostate Cancer (0D044 10) 73 Breast Cancer Mets 12.3 Prostate Margin (0D044 10) 2.3 Breast Cancer Metastasis 7.6 (0D04655-05) Prostate Cancer (OD04720-01) 6.1 Breast Cancer 064006 9.2 Prostate Margin (0D04720-02) 12.3 Breast Cancer 1024 6.9 Normal Lung 06 1010 25.7 Breast Cancer 9100266 4.3 Lung Met to Muscle 49.7 Breast Margin 9100265 (0D04286) Muscle Margin (0D04286) 6.1 Breast Cancer A209073 12.4 Lung Malignant Cancer 25.7 Breast Margin A209073 0.7 Lung Margin (0D03 126) 11.3 Normal Liver Lung Cancer (0D04404) 37.6 Liver Cancer 064003 3.1 Lung Margin (0D04404) 12.7 Liver Cancer 1025 3.8 Lung Cancer (0D04565) 7.1 Liver Cancer 1026 Lung Margin (0D04565) 9.7 Liver Cancer 6004-T 6.3 Lung Cancer (0D04237-01) 19.9 Liver Tissue 6004-N 2.7 Lung Margin (0D04237-02) 14.5 Liver Cancer 6005-T 3.1 Ocular Mel Met to Liver 1.1 Liver Tissue 6005-N 2.4 (ODO43 10) Liver Margin (0D043 10) 10.0 Normal Bladder 21.6 Melanoma Mets to Lung 13.0 Bladder Cancer 1023 (0D0432 Lung Margin (0D04321) 19.9 Bladder Cancer A302173 14.9 NormalKidne 12.9 Bladder Cancer 7.
NormalKidne 12.9 (OD04718-01) 7.
Kidney Ca, Nuclear grade 2 12.1 Bladder Normal Adjacent 10.5 (0D04338) Kidney Margin (0D04338) 14.5 Normal Ovary 5.9 Kidney Ca Nuclear grade 1/2 73 Ovarian Cancer 064008 14.9 (0D04339) Kidney Margin (OD04339) 7.6 Ovarian Cancer 100.0 Kidney Ca, Clear cell type 35.6 Ovary Margin I(0D04340) _______(0D04768-08)I Kidney Margin (0D04340) 25.9 Normal Stomach CK Kdney Ca, Nuclear grade 3 20.4 Gastric Cancer 9060358 3.1 Kidney Margin (0D04348) 15.6 Stomach Margin 9060359 9.8 Kidney Cancer (0D04622-01) 19.5 Gastric Cancer 9060395 25.9 Kidney Margin (0D04622-03) 1.9 Stomach Margin 9060394 11.9 Kidney Cancer (0D04450-01) 0.6 Gastric Cancer 9060397 55.1 Kidney Margin (0D04450-03) -5.5 IStomach Margin 9060396 3.1 Kidney Cancer 8120607 j 3.2 lGastric Cancer 064005 36.6 Table IF. Panel 4. 1D Rel. Re]. Exp.(%) Tissue Name Ag3O69, Run Tissue Name Ag3O69, Run 00 169838255 169838255 Secondary Thi act 2.3 HUVEC IL-ibeta 11.5 riSecondary Th.2 act 11.6 HUVEC IFN gamma 8.4 Secondary TrI act 6.1 HVC TNF apha +IFN 4.6 Secondary Th I rest 2.0 HiUVEC TNF alpha 1L4 Secondary Th.2 rest 4.5 HUVEC IL-i 11 4.9 Secondary Trl rest 2.9 Lung Microvascular EC none 33.2 Primary Th I act 44 Lung Microvascular EC 25.5 IL-lIbeta Primary Th2 act 7.7 McoaulrDmlEC13.4 none Primary Tr I act 10.7 Microsvasular Dermal EC 12.5 IL-lIbeta______ Primary ThlI rest 6.4 Bronchial epithelium TNFalpha ILIlbeta Primary Th2 rest 3.0 Small airway epithelium 0.3 none Primary TrI rest 4.8 Small airway epithelium 4.8 IL- Ibeta______ CD4 lymphocyte act 7.4 Coronery artery SMG rest 2.4 CD4 lymphocyte act 16.5 Coronery artery SMG 2.7 TNFalpha IL- Ibeta CD8 lymphocyte act 8.8 Astrocytes rest 0.0 Secondary CD8 lymphocyte 14.6 Astrocytes TNFalpha 0.0 rest IL-lbeta Secondary CD8 lymphocyte act 5.8 KU-8 12 (Basophil) rest 0.6 CD4 lmphocte noe 2.9 KU-812 (Basophil)2.
CD4 lmphocte noe 2.9 PMA/ionomycin2.
2ry ThlIfTh2/Tr 1 anti-CD95 1.8 CCD 1106 (Keratinocytes) 7.2 CHI 11none LAK cells rest 6.0 JCCD 1106 (Keratinocytes) J 10.4 00 IL- Ibeta______ LAK cells IL-2 8.3 Liver cirrhosis 3.6 LAK cells IL-2+IL- 12 8.3 NCI-H292 none 5.7 LAK cells IL-2+IFN gamma 14.2 NCI-H292 IL-4 LAK cells IL-2+ IL- 18 10.8 NCI-H292 IL-9 7.1 LAK cells PMAlionomycin 5.6 NCI-H292 IL- 13 2.6 NK Cells IL-2 rest 11.4 NCI-H292 IFN gamma Two Way MLR 3 day 9.7 HPAEC none 13.6 Two Way MLR 5 day 8.2 H PAEC TNF alpha IL-l1 29.3 Two Way MLR 7 day 7.2 Lung fibroblast none 0.0 PBMC rest 8.8 Lung fibroblast TNF alpha 0.6 IL-l beta PBMC PWM 11.6 Lung fibroblast IL-4 0.2 PBMC PHA-L 11.3 Lung fibroblast IL-9 0.3 Ramos (B cell) none 11.2 Lung fibroblast IL- 13 _0.0 Ramos (B cell) ionomycin 12.3 Lung fibroblast IFN gamma 0.1 B lmhctsPM21 Dermal fibroblast CCD 1070 1.
lymphoytes PM 2.1 rest1.
B lymphocytes CD40L and 2.0 Dermal fibroblast CCD 1070 8.2 IL-4 alpha______ EOL-l dbcAMP 0.7 Dermal fibroblast CCD1070 0.7 beta EOL-l dbcAM .P 1.1 Dernmal fibroblast IFN 0.4 PMAlionomycin______ gamma Dendritic cells none 1.1 Dermal fibroblast IL-A 0.9 Dendritic cells LPS 0.0 Dermal Fibroblasts rest Dendritic cells anti-CD4O 0.0 Neutrophils TNFa+LPS 16.7 Monocytes rest 100.0 Neutrophils rest 36.9 Monocytes LPS 80.1 Colon 2.8 Miacrophages rest 3.7 Lung 4.1 Macrophages LPS 7.5 Thymus HUVEC none 4.3 lKidney 1.3 -HUVEC starved 4.2 Table IG. Panel 4D Rel. Re]. Exp.(%) Tissue Name Ag3069, Run Tissue Name Ag3069, Run 164525656 Secondary Thi act 4.1 HUVEC IL-ibeta 4.8 Secondary Th2 act 6.9 HUVEC IFN gamma 10.9 Secondary TrO act 5.9 HUVEC 1'NF alpha IFN 10.7 ISecondary Thi rest 1 1.7 IHUVEC TNF alpha L4 5.9 00 Secondary Th2 rest 3.3 IJUVEC IL-i 11 5.8 Secondary TO rest 2.4 Lung Microvascular EC none 32.3 Primary" TI act 37 Lung Microvascular EC 24.0 ________TNFalpha IL-Ibeta______ Primary -Th2 act 7.1 Microvascular Dermal EC 23.3 none Primar TrI at 10.2 Microsvasular Dermal EC 1.
Primar Tn ac 10.2 TNFalpha IL-lIbeta 1.
Primary Thi rest 19.1 Bronchial epithelium 4.8 _______TNFalpha +ILIbeta Primar Th2 rst 6.4 Small airway epithelium2.
Primar Th2 rst 6.4 none2.
Primary Trl rest 7.0 Small airway epithelium 25.2 IL-lIbeta______ CD4 lymphocyte act 7.6 Coronery artery SMC rest 3.2 CD4 lymphocyte act 14.0 Coronery artery SMC 1.9 IL-Ibeta CD8 lymphocyte act 9.1 Astrocytes rest 0.3 Secondary CD8 lymphocyte rest 17.4 Astrocytes TNFalpba 0.3 Ibeta______ Secondary CD8 lymphocyte act 6.6 KU-812 (Basophil) rest 0.3 CD4 lymphocyte none 3.5 KU-812 (Basophil) 7.9 ________PMAlionomycin 2 ry ThlfTh2/Trl-anti-CD95 3.6 CCD 1106 (Keratinocytes) CHIl none LAK cells rest 11.3 CCD 1106 (Keratinocytes)5.
IL- Ibeta LAK cells 11-2 12.8 Liver cirrhosis LAK cells IL-2+IL- 12 11.7 Lupus kidney 1.4 LAK cells IL-2+WFN gamma 20.4 NCI-H292 none 11.6 LAK cells IL-2+ IL- 18 20.4 NCI-H292 IL-4 9.9 LAK cells PMAlionomycin 5.2 NCI-H292 IL-9 13.3 NK Cells IL-2 rest 9.6 NCI-H292 IL- 13 5.3 Two Way MLR 3 day 11.6 NCI-H292 IFN gamma 7.2 Two Way MLR 5 day 3.9 HPAEC none 23.2 Two Way MLR 7 day 8.0 HPAEC TNF alpha IL-i1 28.7 PBMC rest 13.7 Lung fibroblast none PBCPM47.6 Lung fibroblast TNF alpha 1.6 PBMC PHA-L 21.3 Lung fibroblastlIL-4 0.3 Ramos (B cell) none 9.9 Lung fibroblast IL-9 0.1 Ramos (B cell) ionomycin 48.3 Lung fibroblast IL- 13 0.1 -B lymphocytes PWM 23.7 _Lung fibroblast IFN gamma 1.3 00
O
O
0 0
O
Dermal fibroblast CCD1070 B lymphocytes CD40L and IL-4 3.5 rest 5.8 EOL- dcAMP 16 Dermal fibroblast CCD1070 2 EOL-1 dbcAMP 1.6 21.9 TNF alpha EOL-1 dbcAMP 1.3 Dermal fibroblast CCD1070 0.8 PMA/ionomycin IL-1 beta Dermal fibroblast IFN Dendritic cells none 0.3 1.6 gamma Dendritic cells LPS 0.8 Dermal fibroblast IL-4 1.1 Dendritic cells anti-CD40 0.0 IBD Colitis 2 0.3 Monocytes rest 100.0 IBD Crohn's 0.9 Monocytes LPS 44.4 Colon Macrophages rest 3.8 Lung 5.9 Macrophages LPS 8.8 Thymus 3.8 HUVEC none 10.9 Kidney 4.3 HUVEC starved 12.8 General_screening_panel_vl.4 Summary: Ag3069 Highest expression of the CG91698-01 gene is detected in Breast cancer cell line BT 549 (CT=25.9). In addition, high expression of this gene is also seen in cluster of cancer cell lines (Pancreatic, CNS, colon, gastric, lung, breast, ovarian, prostate and melanoma) used in this panel. This gene codes for heparanase protein, an endoglucuronidase capable of specifically degrading heparan sulfate, and its activity is associated with the metastatic potential of tumor cells. Expression of heparanase correlates with the metastatic potential of tumor cells, and treatment with heparanase inhibitors markedly reduces the incidence of metastasis in experimental animals.
See, Zcharia et al. J Mammary Gland Biol Neoplasia 6(3):311-22 (PMID: 11547900); Uno F, et al. (2001) Cancer Res 61(21):7855-60 (PMID: 11691803). Therefore, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, or antibodies, might be beneficial in the treatment of these cancers and its metastasis.
Among tissues with metabolic or endocrine function, this gene is expressed at low to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity diabetes and atherogenesis.
In addition, this gene is expressed at low levels in all regions of the central nervous system examined, including amygdala, hippocampus, substantia nigra, thalamus, cerebellum, cerebral cortex, and spinal cord. Therefore, this gene may play a role in central nervous 00 0 system disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, schizophrenia and depression.
Panel 1.3D Summary: Ag3069 Highest expression of the CG91698-01 gene is detected in a breast cancer cell line BT 549 (CT=30.4) and lung cancer cell line SHP-77 k\ (CT=29). In addition significant expression of this gene is also seen in many of the cancer Scell lines used in this panel. Please see panel 1.4 for the utility of this gene.
Interestingly, this gene is expressed at much higher levels in fetal (CT 33) when compared to adult liver (CT 36-37). This observation suggests that expression of this gene can be used to distinguish fetal from adult liver.
SPanel 2.2 Summary: Ag3069 Highest expression of the CG91698-01 gene is 00 detected in kidney margin (OD04348) (CT=33) and colon cancer(OD06064) (CT=30). Two Sindependent experiments with same primer and probe sets are in excellent agreement with significant expression of this gene in both normal and cancer tissues. Interestingly, expression of this gene is higher in liver margin (OD04310) (CTs=31-35) as compared to the sample derived from ocular Mel metastasis to Liver (OD04310)sample. Thus, expression of this gene can be used to distinguish these two samples. Please see panel 1.4 for utility of this gene.
Panel 2D Summary: Ag3069 Highest expression of the CG91698-01 gene is detected in ovarian cancer (OD04768-07) tissue sample(CT=30). In addition expression of this gene is lower in the control margin tissue (OD04768-08) (CT=34.7). Similar differential expression is also detected in bladder cancer (CT=30) and control (OD04718-01) tissue (CT=33). Therefore, expression of this gene can be used in distinguishing these tissues and also as marker in detection of bladder and ovarian cancer.
In addition, significant expression of this gene is also seen in many of the normal and cancer tissues used in this panel. Please see panel 1.4 for utility of this gene.
Panel 4.1D Summary: Ag3069 Highest expression of the CG91698-01 gene is detected in monocytes (Cts=28). In addition, this gene is expressed at low to moderate levels in a wide range of cell types of significance in the immune response in health and disease.
These cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement 00 O with the expression profile in Generalscreening_panel_vl.4 and also suggests a role for the C gene product in cell survival and proliferation.
Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the IO symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.
Panel 4D Summary: Ag3069 Highest expression of the CG91698-01 gene is detected in monocytes (Cts=28-29), with expression in this panel in excellent agreement with C1 expression in Panel 4.1D. In addition, this gene is expressed at low to moderate levels in a 00 Swide range of cell types of significance in the immune response in health and disease. These C cells include members of the T-cell, B-cell, endothelial cell, macrophage/monocyte, and peripheral blood mononuclear cell family, as well as epithelial and fibroblast cell types from lung and skin, and normal tissues represented by colon, lung, thymus and kidney. This ubiquitous pattern of expression suggests that this gene product may be involved in homeostatic processes for these and other cell types and tissues. This pattern is in agreement with the expression profile in General_screening_panel_vl.4 and also suggests a role for the gene product in cell survival and proliferation.
Therefore, modulation of the gene product with a functional therapeutic may lead to the alteration of functions associated with these cell types and lead to improvement of the symptoms of patients suffering from autoimmune and inflammatory diseases such as asthma, allergies, inflammatory bowel disease, lupus erythematosus, psoriasis, rheumatoid arthritis, and osteoarthritis.
Interestingly, expression of this gene is decreased in colon samples from patients with IBD colitis and Crohn's disease (CTs=35-36) relative to normal colon (CT=32). Therefore, therapeutic modulation of the activity of the protein encoded by this gene may be useful in the treatment of inflammatory bowel disease.
J. NOV14a and NOV14b (CG91708-01 and CG91708-02): MMP3 Expression of gene CG91708-01 and full length physical clone CG91708-02 was assessed using the primer-probe set Ag3395, described in Table JA. Results of the RTQ-PCR runs are shown in Tables JB, JC, JD, JE, JF and JG.
00 00 Table JA. Probe Name Ag3395 Primrs equnce Legth Start SEQ ID PriersSeqencs Lngt Position No Forward 5' -gtaaagccagtggaaatgaaga-31 22 49 121 Probe TET-5'-tcttccaatcctactgttgctgtgcg-3'-TAMRA 26 72 122 Reverse is I-caatggataggctgagcaaac-31 21 103 123 Table LB. Al-comprehensive panel-vi .0 Rel. Rel. Exp.(%) Tissue Name Ag3395, Run Tissue Name Ag3395, Run 217700657 217700657 110967 COPD-F 0.0 112427 Match Control 0.0 Psoriasis-F 110980 COPD-F 0.0 112418 Psoriasis-M 0.0 110968 COPD-M 0.0 112723 Match Control 0.0 110977 COPD-M 0.0 112419 Psoriasis-M 0.0 110989 Emphysema-F 0.0 112424 Match Control 0.0 Psoriasis-M______ 110992 Emphysema-F 0.0 112420 Psoriasis-M 0.0 110993 Emphysema-F 0.0 112425 Match Control 0.0 110994 Emphysema-F 0.0 104689 (M F) OA Bone-Backus 110995 Emphysema-F 0.0 104690 (MIF) Adj "Normal" 2.3 Bone-Backus 110996 Emphysema-F 0.0 104691 (MF) OA 4.9 ________Synovium-Backus______ 110997 Asthma-M 0.0 104692 (BA) OA 27.9 Cartilage-Backus______ 11100 1 Asthma-F 0.0 104694 (BA) OA Bone-Backus 2.6 111002 Asthma-F 0.0 104695 (BA) Adj "Normal" 90.1 Bone-Backus 111003 Atopic Asthma-F 0.0 104696 (BA) OA 100.0 Synovium-Backus 111004 Atopic Asthma-F 0.0 104700 (SS) OA Bone-Backus 0.7 111005 Atopic Asthma-F 0.0 104701 (SS) Adj "Normal" 14.1 111006 Atopic Asthma-F 0.0 104702 (SS) OA 1.6 ________Synovium-Backus______ 111417 Allergy-M 0.0 117093 CA Cartilage Rep7 0.3 112347 Allergy-M 0.0 112672 CA BoneS 0.6 112349 Normal Lung-F 0.0 112673 OA SynoviumS 0.3 112357 Normal Lung-F 0.0 112674 CA Synovial Fluid 0.3 celis5 112354 Normal Lung-M 0.0 117 100 OA Cartilage Rep 14 0.0 00 112374 Crohns-F 0.0 112756 OA Bone9 0.0 112389 Match Control 0.1 112757 OA Synovium9 0.0 Crohns-F______ 112375 Crohns-F 0.0 112758 OA Synovial Fluid0.
112732 Match Control 0.0 117125 RA Cartilage Rep2 0.0 11272 5 Crohns-M 0.1 113492 Bone2 RA 0.0 112387 Match Control 0.2 113493 Synovium2 RA 0.0 112378 Crohns-M 0.0 113494 Syn Fluid Cells RA 0.0 112390 Match Control 0.0 113499 Cartilage4 RA 0.0 Crohns-M 112 726 Crohns-M 0.0 113500 Bone4 RA 0.0 112731 Match Control 0.0 113501 Synovium4 RA 0.0 Crohns-M 112380 Ulcer Col-F 0.0 113502 Syn Fluid Cells4 RA 0.0 112734 Match Control Ulcer 0.3 113495 Cartilage3 RA 0.0 112384 Ulcer Col-F 0.0 113496 Bone3 RA 0.0 112737 Match Control Ulcer 0.0 113497 Synovium3 RA 0.0 Col-F 112386 Ulcer Col-F 0.3 113498 Syn Fluid Cells3 RA 0.1 11273 8 Match Control Ulcer 3.0 117106 Normal Cartilage Rep2O 0.0 Col-F 112381 Ulcer Col-M 0.0 113663 Bone3 Normal 0.0 112735 Match Control Ulcer 0.2 113664 Synovium3 Normal 0.0 Col-M 112382 Ulcer Col-M 0.0 113665 Syn Fluid Cells3 Normal 0.0 112394 Match Control Ulcer 0.1 117107 Normal Cartilage Rep22 0.0 Col-M 112383 Ulcer Col-M 0.0 113667 Bone4 Normnal 0.0 112736 Match Control Ulcer 0.0 113668 Synovium4 Normal 0.0 Col-M 112423 Psoriasis-F 0.0 113669 Syn Fluid Cells4 Normal, 0.0 Table JC. General-screeningjpanel vi .4 Rel.
Rel. Rel. Rel. Exp.(%) Tissue Name Ag3395, Run Ag3395, Run Tissue Name Ag3395, Ag3395, Run 208034252 212141064 Run 212141064 Adipose 0.1 0.1 Renal ca. 0.0 0.0 I_ TK- 10 1 Melanoma* 1 1.2 1.9 Bl3adder 1 0.1 1 0.1 00 00 1* I V V Melanoma* Gastric ca.
Hs688(B).T 0.3 0.5 (liver met.) 0.5 0.8 ___NCI-N87 Mlnm*M 40101 Gastric ca. 0.4 0.8 Melaoma M14 0.10.1 KATO III Melanoma* 3.2 6.6 Colon ca. 0.0 0.0 LOXIMVI Melanoma* 0.0 0.0 Colon ca. 0.0 0.0 Squamnous cell Colon ca.* carcinoma SCC-4 0.0 0.1 (SW480 met) 0.0 0.0 Testis Pool 0.8 1.2 Colon ca. H1729 0.0 0.0 Prostate ca.* 01.1 Colon ca.0.00 (bone met) PC-3 01.1 HCT- 160.00 Prostate Pool 0.1 0.2 Colon ca. 0.1 0.1 CaCo-2 Placenta 0.0 0.0 Colon cancer 30.1 37.1 tissue_____ Uterus Pool 0.0 0.0 Colon ca. 0.0 0.0 116 Ovarian ca. 0.0 0.1 Colon ca. 0.0 0.0 OVCAR-3 Ovarian ca. 0.0 0.3 Colon ca. 0.0 0.0 SK-OV-3 _SW-48 Ovarian ca. 0.0 0.0 Colon Pool 0.0 0.0 OVCAR-4__ Ovarian ca. 0.2 0.4 Small Intestine 0.6 1.2 _Pool Ovarian ca. 0.0 0.1 StomachbPool 2.2 3.7 IGROV- Ovarian ca. 0.0 0.0 Bone Marrow 0.0 0.0 OVCAR-8 Pool Ovary 0.0 0.0 Fetal Heart 0.0 0.0 Breast ca. MCF-7 0.0 0.0 Heart Pool 0.0 0.0 Breast ca. 00.0 Lymph Node 0.00 MDA-MB-231 00.0 Pool0.00 Breast ca. BT 549 0.1 0.2 Fetal Skeletal 0.0 0.0 Muscle Breast ca. T47D 0.1 0.3 Skeletal Muscle 0.1 0.2 ___Pool_ Breast ca. 0.1 0.2 Spleen Pool 0.1 0.1
MDA-NI
Breast Pool 1 0.1 0.3 iThymus Pool 0.0 1 0.1 00 00 CNS cancer Trachea 1.6 1.8 (gliolastro) 100.0 100.0 U87-MG_____ CNS cancer Lung 0.0 0.0 (glio/astro) 52.5 72.7 U-1 18-MG CNS cancer Fetal Lung 0.1 0.1 (neuro;met) 0.0 0.0 Lung ca. 00.0 CNS cancer 0.1 0.2 NCI-N417 00.0 (astro) SF-539 Lung ca LX- 1 .0 0.0 CNS cancer 0.07 Lung ca LX-1 .0 0.0 (astro) SNB-75 0.07 Lung ca. 00.0 CNS cancer 0.02 NCI-HI46 00.0 (glio) SNB-19 0102 Lung ca. SHP-77 0.0 0. CNS cancer 21.2 54.0 SF-295 Brain Lung ca. A549 0.0 0.0 (Amygdala) 0.0 0.0 Pool Lung ca.0.0. Bri0000 NCI-H526 0.0e0.0 brain m Ln c a.H2 0.0 0.4 Brain (fetal) 0.0 0.0 Lung ca.Bri NCI-H1460 0.0 0.2 (Hippocampus) 0.1 0.2 Pool Lugc.HP-2 0000 Cerebral Cortex 0.0 0.0 Lung ca. HOP-62 0.0 0.0 Pool Lung ca.Bri NCI-H522 0.1 0.3 (Substantia 0.0 0.0 nigra) Pool Brain Liver 0.0 0.0 (Thalamus) 0.0 0.0 Pool Fetal Liver 0.0 0.0 Brain (whole) 0.0 0.1 Liver ca. HepG2 0.0 0.0 Spinal Cord 0.0 0.0 Pool__ Kidney Pool 0.0 0.0 Adrenal Gland 0.0 0.1 Fetal Kidney 0.3 0.5 Pituitary gland 0.0 0.0 Pool Renal ca. 786-0 0.0 0.0 Salivary Gland 0.1 0.0 Rea a 48 0000 Thyroid 0.0 0.0 Renal ca. A498 0.0 0.0 Rea a CN 0008 Pancreatic ca. 0.1 0.1 Rena ca.ACH 0.00.8 CAPAN2 00 00 lRenal ca. UO-31 1 0.0 0.0 IPancreas Pool 0.00.
Table JD. Panel 1.313 Rel. Rel. Rel.
jExp.(%) Rel. Exp.() Exp.(%) Tissue Name Ag3395, Ag3395, Tissue Name Ag3395, Run Ag3395, Run Run 165524931 Run 165524931I 167595399 ______167595399 Liercna 0.0 0.0 Kidney (fetal) 0.1 1.4 Pancreas 0.0 0.0 Renal ca. 786-0 0.0 0.0 Pancreatic ca. 0.2 0.0 Renal ca. A498 0.2 0.2 CAPAN 2 Adrenal gland 0.2 0.1 Renal ca. RXIF 0.0 1.4 393 Thyroid 0.0 0.0- Renal ca.0.00 Salivary gland 0.0 0.0 Renal ca.0.00 Pituitary gland 0.0 0.0 Renal Ca.0.01 ___TK-10000.
Brain (fetal) 0.0 0.0 Liver 0.0 0.0 Brain (whole) 0.5 0.1 Liver (fetal) 0.0 0.0 Liver ca.
Brain (amygdala) 0.0 0.0 (hepatoblast) 0.0 0.0 Brain 0000 Ln (cerebellum) 0000 Ln Brain 0.3 0.1 Lung (fetal) 0.0 0.2 (hippocampus) Brain (substantia Lung ca.
nigra) 0.0 0.0 (small cell) 0.0 0.0 LX-1 Lung ca.
Brain (thalamus) 0.0 0.1 (small cell) 0.0 0.0 Lung ca.
Cerebral Cortex 0.0 0.0 (s.cell var.) 0.0 0.2 SHP-77 Lung ca.
Spinal cord 0.0 0.0 (large 0.2 0.0 glio/astro Lung ca.
U87-MG 76.3 100.0 (non-sm. cell) 0.0 0.1 glio/astro 10. 93 Lung ca. 0.
U-I 18-MG 10. 93 (non-s.cell) 0.000 IN0 00 astroytomaLung ca.
aStW17to3 3.3 4.5 (non-s.cell) 0.0 0.0 SW1783 ~~~~HOP-62 met 0.0 0.0 Lung ca.
KNero00*0. (non-s.cd) 0.0 ~~NCI-H522 astrocytomna 00.0 Lung ca.
SF-539 00.0 (squam.) SW 0.0 0.1 ___900 astroctornaLung ca.
0.2 0.4 (squam.) 0.0 0.7 ~NCI-H596 glioma SNB- 19 0.0 0.0 Mammary 2.5 3.3 glioma U251 0.5 0.1 Breast ca.* 0.0 0.0 MCF-7 Breast ca.* glioma SF-295 13.5 42.0 (pI.ef) 0.0 0.0 _____MDA-MB-23 1_ Heart (fetal) 0.0 0.0 Breast ca.* 0.0 0.0 T47D Heart 0.0 0.1 Breast ca. 1.0 0.0 ___BT-549_ Skeletal muscle 0.0 0.1 Breast ca. 0.2 0.4 (fetal) ___MDA-N Skeletal muscle 3.3 1.9 Ovary 0.0 0.0 Bone marrow 0.0 0.7 Ovarnca 0.0 0.0 Thymus 0.0 0.0 Ovarian ca. 0.0 0.0 _____OVCAR-4 Spleen 0.0 0.0 Ovarian ca. 010 Spleen_0.0_0.0 OVCAR-5 0.1__0.8 Lymph node 0.0 0.0 Ovarian ca. 0.0 0.0 Colorectal 0.9 1.2 Ovarian ca. 0.6 0.2 GROV-l Ovarian ca.* Stomach 2.2 1.5 (ascites) 0.0 0.0 SK-OV-3 Small intestine 1.5 1.1 Uterus 8.2 3.1 Colon ca. SW480 0.0 0.0 Placenta 0.0 0.0 Colon ca.* SW620(SW480 0.4 0.0 Prostate 0.0 0.0 met) Colon ca. HT29 0.0 0.0 jProstate, ca.* 0.0 0.0 00 00 (bone Colon ca. 0000 Tsi HCT- 116 0000 Tsi Colon ca. CaCo-2 0. 0.0 Melanoma 2.2 Colon ca. Melanoma* tisueODO3866) 42.0 28.9 (met) 0.0 0.2 t~~ssue~~j Hs688(B).T Colon ca. 00.0 Melanoma0.00 HCC-2998 00.0 UACC-620.00 Gastric ca.* (liver 531.6 Melanoma 1 0.2 0.1 met) NCI-N87 Bladder 0.0 0.2 Melanoma 0. I IMVI0.17 Melanomna*I Trachea 2.0 1.1 (met) 0.0 0.0 SK-MEL-5 ,Kidney -10.0 1 0.7 jAdipose 1 0.3 0.2 Table YE. Panel 2D Rel. Rd. Exp.(%) Tissue Name Ag3395, Run Tissue Name Ag3395, Run 165469036 Normal Colon 4.4 Kidney Margin 8120608 0.0 CC Well to Mod Diff 48.6 Kidney Cancer 8120613 0.0 (0D03866) CC Margin (0D03866) 4.6 Kidney Margin 8120614 0.2 C Gr.2 rectosigmoid 9.0 Kidney Cancer 9010320 0.6 (0D03 868) CC Margin (0D03868) 0.3 Kidney Margin 9010321 1.1 CC Mod Diff (0D03920) 10.9 Normal Uterus CC Margin (0D03920) 1.8 Uterus Cancer 064011 0.9 CC Gr.2 ascend colon 100 Nra hri (0D0392 1) 100 Nra hri CC Margin (0D03921) 3.1 Thyroid Cancer 0640 10 0.0 CC from Partial Hepatectomy 1.4 Thyroid Cancer A302 152 0.9 (0D04309) Liver Margin (0D04309) 0.3 Thyroid Margin A302 153 0.0 Colon mets to lung 0.1 Normal Breast 5.8 (0D04451-01)______ Lung Margin (0D04451-02) 0.0 Breast Cancer (0D04566) 3.8 Normal Prostate 6546-1 1.9 Breast Cancer 2.7 Prostate Cancer (0D044 10) 0.3 Breast Cancer Mets 1 I(0D04590-03) I 00 0 Breast Cancer Metastasis Prostate Margin (OD04410) 0.0 rt Cnr Mtti 0.3 (OD04655-05) Prostate Cancer (OD04720-01) 0.5 Breast Cancer 064006 17.7 Prostate Margin (OD04720-02) 0.9 Breast Cancer 1024 4.1 Normal Lung 061010 0.4 Breast Cancer 9100266 18.2 Lung Met to Muscle g Met to Muscle 0.4 Breast Margin 9100265 30.4 (ODO4286) Muscle Margin (ODO4286) 9.3 Breast Cancer A209073 16.8 Lung Malignant Cancer 2.6 Breast Margin A209073 19.3 (OD03126) Lung Margin (OD03126) 0.3 Normal Liver 0.1 Lung Cancer (OD04404) 25.9 Liver Cancer 064003 0.1 Lung Margin (OD04404) 0.2 Liver Cancer 1025 0.0 Lung Cancer (OD04565) 21.9 Liver Cancer 1026 0.0 Lung Margin (OD04565) 0.4 Liver Cancer 6004-T 0.0 Lung Cancer (OD04237-01) 1.4 Liver Tissue 6004-N 1.6 Lung Margin (OD04237-02) 0.3 Liver Cancer 6005-T 0.0 Ocular Mel Met to Liver Ocr Ml M t L 0.1 Liver Tissue 6005-N 0.0 (ODO4310) Liver Margin (OD04310) 0.1 Normal Bladder Melanoma Mets to Lung 0.2 Bladder Cancer 1023 0.6 (OD04321) Lung Margin (OD04321) 0.3 Bladder Cancer A302173 4.3 Bladder Cancer Normal Kidney 1.7 Bladder Cancer13.4 (OD04718-01) Kidney Ca, Nuclear grade 2 0.1 Bladder Normal Adjacent 35.4 (OD04338) (OD04718-03) Kidney Margin (0D04338) 1.0 Normal Ovary 0.0 dney Ca Nuclear grade 1/2 0.1 Ovarian Cancer 064008 1.3 (OD04339) Ovarian Cancer Kidney Margin (0D04339) 1.4 (Ovarian Can 0.0 _(D04768-07) Kidney Ca, Clear cell type 0.0 Ovary Margin 1.7 (OD04340) (OD04768-08) Kidney Margin (OD04340) 0.5. Normal Stomach 1.3 dney Ca, Nuclear grade 3 0.0 Gastric Cancer 9060358 6.9 (OD04348) Kidney Margin (OD04348) 1.2 Stomach Margin 9060359 1.4 Kidney Cancer (OD04622-01) 0.1 Gastric Cancer 9060395 10.2 Kidney Margin (0D04622-03) 0.3 Stomach Margin 9060394 1.3 Kidney Cancer (OD04450-01) 0.3 Gastric Cancer 9060397 25.0 Kidney Margin (OD04450-03) 0.2 Stomach Margin 9060396 Kidney Cancer 8120607 0.5 Gastric Cancer 064005 60.7 Table JF. Panel 3D 00 Rel. Rel. Rel. Rel.
Exp.(%) Tissue Name Ag3395, Ag3395, Tissue Name Ag3395, Ag3395, Run Run Run Run 167542915 165924467 167542915 Daoy-Ca Ski- Cervical Mdloby- om 0.0 0.0 epidermoid carcinoma 0.3 0.2 Medulloblastoma (metastasis)______ TE67 I1- 00.0 ES-2- Ovarian clear3.40 Medulloblastoma 00.0 cell carcinoma3.40 D283 Med- Ramos- Stimulated Medulloblastoma 0.0 0.0 with PMA/ionomycin 0.0 0.0 PFSK-1I- Primitive Ramos- Stimulated Neuroectodermal 0.0 0.0 with PMAlionomycin 0.0 0.0 14h MEG-0 1 Chronic XF-498- CNS 0.1 0.1 myelogenous leukemia 0.0 0.0 SNB-78- Glioma 0.3 0.2 Raji- Burkitt's 0.0 0.0 ______lymphoma SF-268- 00.1 Daudi- Burkitt's0.00 Glioblastoma 00.1 lymphoma0.00 T9Glibatm 0.8 1.3 U266- B-cell0.00 SK-N-lsH-m plasmacytoma0.00 Neuroblastoma 12.9 16.7 Clymphuoimta 0.0 0.0 (metastasis) Iyphm SF-295- 100 0.0 RL- non-Hodgkin's0.00 Glioblastoma 100 0.0 B-cell lymphoma0.00 Cerebellum 0.0 0.0 JM1-pre-B-cell 0.0 0.0 lymphoma._____ Cerebellum 0.0 0.0 Jurkat- T cell leukemia 0.0 0.0 NCI-H292- Mucoepidermoid 0.0 0.0 TF-lI Erythroleukemia 0.0 0.0 lung carcinoma______ DMS-l 14- Small 0.2 0.3 IHUT 78- T-cell 0.0 0.0 cell lung cancer lymphoma DMS-79- Small 0.0 0.0 U937- Histiocytic 0.0 0.0 cell lung cancer NCI-H 146- Small 0.0 0.0 KU-S 12- Myelogenous 0.0 0.2 cell lung cancer leukemia NCI-H526- Small 00.0 769-P- Clear cell renal 0.00 cell lung cancer 00.0 carcinoma0.00 NCJ-N417- Small 0.0 0.0 Caki-2- Clear cell renal 0.00.
,cell lung cancer carcinoma 00
IN
0
\O
NCI-H82- Small 0 SW 839- Clear cell 0 cell lung cancer renal carcinoma NCI-H157- Squamouscell 0.0 0.0 G401- Wilms' tumor 0.0 0.0 lung cancer (metastasis) NCI-H 1155- Hs766T- Pancreatic Large cell lung 0.0 0.0 carcinoma (LN 0.0 0.0 cancer metastasis) NCI-H 1299- CAPAN-1- Pancreatic Large cell lung 0.0 0.0 adenocarcinoma (liver 0.0 0.0 cancer metastasis) SU86.86- Pancreatic NCI-H727- Lung 0.0 0.0 carcinoma (liver 0.0 0.1 carcinoid metastasis) NCI-UMC-11- 0.1 0.0 BxPC-3- Pancreatic 0.2 0.1 Lung carcinoid adenocarcinoma LX-1- Small cell 0.0 0.0 HPAC- Pancreatic 0.0 0.0 lung cancer adenocarcinoma Colo-205- Colon 0.0 0.0 MIA PaCa-2- 0.0 0.0 cancer Pancreatic carcinoma KM12- Colon 0.0 0.0 CFPAC-1- Pancreatic 0.0 0.1 cancer ductal adenocarcinoma PANC-1- Pancreatic KM20L2-Colon 0.0 0.0 epithelioid ductal 0.0 0.0 cancer arcinoma NCI-H716- Colon 0.0 T24- Bladder carcinma 0.0 0.0 0.0 0.0 cancer (transitional cell) SW-48- Colon 5637- Bladder 0.0 0.0 adenocarcinoma carcinoma SW1116- Colon 0 HT-l 197- Bladder 0.0 0.1 adenocarcinoma carcinoma LS 174T- Colon UM-UC-3- Bladder olon 0.0 0.0 carcinma (transitional 0.2 0.2 adenocarcinoma cell) SW-948- Colon0 A204- 2 adenocarcinoma Rhabdomyosarcoma SW-480- Colon 0 0 HT-1080- 0.0 0.1 adenocarcinoma Fibrosarcoma 0.0 0.0 MG-63- Osteosarcoma 0.3 Gastric carcinoma SK-LMS-1- KATO III- Gastric
SLMS
0.0 0.0 Leiomyosarcoma 23.7 38.4 carc m ioma (vulva) NCI-SNU-16- 0.1 0.2 SJRH30.0 0.0 Gastric carcinoma Rhabdomyosarcoma 00 to bone marrow) NCI-SNUL-lI- 00.0 A431. Epidermoid 0.0 0.0 Gastric carcinoma 00.0 carcinoma RE-i- Gastric0.0. 26--Mlnm 0000 adenocarcinoma 0.0. WM64-Mlnm 0000 RF-48- Gastric DU 145- Prostate adncrioa 0.0 0.0 carcinoma (brain 0.0 0.0 adencarcnomametastasis) Gastric 0.0 0.0 MDA-MB-468- Breast 0.0 0.0 carcinoma adenocarcinoma______ NCI-N87- Gastric 00.0 SCC-4- Squamous cell 0.00 carcinoma 00.0 carcinoma of tongue 0.00 SCC-9- Squamous cell 0.
Ovarian 0.0 0.0 carcinoma of tongue 0.0 0.
carcinoma RL95-2- Ute'trine SCC-IS5- Squamous 0.0 0.0 cell carcinoma of 0.0 0.0 carcinoma tongue______ HelaS3- Cervical CAL 27- Squamous adncrioa 0.0 0.0 cell carcinoma of 0.0 4.3 adenocarcinoma ~tongue Table JG. Panel 4D Rel. Rel. Exp.(%) Tissue Name Ag3395, Run Tissue Name Ag3395, Run 165222711 165222711 Secondary Thi act 0.0 HUVEC IL-Ibeta 0.0 Secondary Mb act 0.0 HUVEC IFN gamma 0.0 Secondary Trl act 0.0 HfUVEC TNF alpha IiFN 0.0 gamma Secondary ThlI rest 0.0 HUVEC TNF alpha 1L4 0.0 Secondary Th2 rest 0.0 HUVEC IL-lI 1 0.0 Secondary TrI rest 0.0 Lung Microvascular EC none 0.0 Primary Thi act 0.0 Lung Microvascular EC 0.0 IL-lIbeta Primar Th2 at 0.0 Microvascular Dermal EC0.
none Primary Tnl act 0.0 Microsvasular Dermal EC 0.0 IL-Ibeta______ Primary Thi rest 0.0 Bronchial epithelium ILI beta Primary Th2 rest 0.0 Small airw'ay epithelium 0.8 none Primary TrI rest 0.0 Small airway epithelium 7.7 IL-ibeta CD4 lymphocyte act 1 23.3 lCoronery artery SMC rest 1 0.6 j 00 00 CD4 lymphocyte act 0.0 Coronery artery SMG 0.8 IL- Ibeta______ CD8 lymphocyte act 0.0 Astirocytes rest 0.0 Secondary CD8 lymphocyte 0.0 Astrocytes TNFalpha 0.3 rest Secondary CD8 lymphocyte 0.0 KU-8 12 (Basophil) rest 0.0 CD4 lmphocte noe 0.0 KU-812 (Basophil)0.
CD4lyphoyt noe .0 PMA/ionomycin 2ry Thl/Tb2/Trl-anti-CD95 0.0 CCD1 106 (Keratinocytes) 0.0 CH1 1 none_____ LAK cells rest 0.0 CCDI 106 (Keratinocytes) 0.1 IL-Ibeta_______ LAK cells IL-2 0.0 Liver cirrhosis 0.0 LAK cells IL-2+IL-12 0.0 Lupus kidney 0.0 LAK cells IL-2+IIFN gamma 0.0 NCI-H292 none 0.0 LAK cells IL-2+ IL- 18 0.0 NCI-H292 IL-4 0.0 LAK cells PMAlionomycin 0.0 NCI-H292 IL-9 0.0 NK Cells IL-2 rest 0.0 NCI-H292 IL-13 0.0 Two Way MLR 3 day 0.0 NCI-H292 IFN gamma 0.0 Two Way MLR 5 day 0.0 HPAEC none 0.0 Two Way MLR 7 day 0.0 HPAEC TNF alpha IL-I1 0.0 PBMC rest 0.0 Lung fibroblast none 0.3 PBMC VWM 0.0 Lung fibroblast TNF alpha 56.6 IL-l beta PBMC PHA-L 0.0 Lung fibroblast IL-4 0.2 Ramos (B cell) none 0.0 Lung fibroblast IL-9 1.7 Ramnos (B cell) ionomycin 0.0 Lung fibroblast IL- 13 lymphocytes PWM 0.0 Lung fibroblast IFN gamma B lymphocytes CD40L and 0.0 Dermal fibroblast CCD 1070 16.5 IL-4 Irest EOL-lI dbcAMP 0.0 Dermal fibroblast CCD 1070 57.0 TNF alpha______ EOL-l dbcAMP 00 Dermal fibroblast CCD 1070 100.0 PMAlionomycin 00 IL-l beta Dendritic cells none 0.0 Dermnal fibroblast IFN 1.7 Dendritic cells LPS 0.0 Dermal fibroblast IL-4 2.9 Dendritic cells anti-CD4O 0.0 IBD Colitis 2 0.1 Monocytes rest 0.0 IBD Crohn's 0.0 Monocytes LPS 0.0 Colon 0.1 IMacrophages rest 0.0 Lung 0.0 IMacrophages LPS 0.0 Thymus 0.1 00
(N
HUVEC none 0.0 Kidney I 0.0 HUVEC starved 0.0 AI comprehensive panel_vl.O Summary: Ag3395 The CG91708-01 transcript is expressed in OA tissue but not in control tissue. The transcript encodes a protein homologous to MMP3 which has been shown to be present in OA joint tissue and may contribute to the pathology of this disease. See, Bluteau et al. Biochim Biophys Acta 2001 May 3;1526(2):147-58.
General_screeningpanel_vl.4 Summary: Ag3395 Two experiments with the same probe and primer produce results that are in excellent agreement. The expression of this gene appears to be highest in a sample derived a brain cancer cell line (U87-MG) (CTs=22-24). In addition, there appears to be substantial expression in brain cancer cell lines, colon cancer cell lines and melanoma cell lines. Thus, the expression of this gene could be used to distinguish U87-MG cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of brain or colon cancer or melanoma.
Among tissues with metabolic function, this gene is expressed at low levels in pancreas, adipose, and fetal skeletal muscle. This expression suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
This gene is also expressed at low but significant levels in the hippocampus, a structure critical for learning and memory. The hippocampus-preferential expression of this gene suggests that it may play a role in learning and memory processes. Agents that modulate the activity and function of CG56633-01 may have utility in treating CNS disorders involving memory deficits, including Alzheimer's disease and aging.
Panel 1.3D Summary: Ag3395 The expression of this gene appears to be highest in samples derived from brain cancer cell lines (U87-MG, U-l 18-MG). In addition, there appears to be substantial expression in brain cancer cell lines, colon cancer cell lines and gastric cancer cell lines. Thus, the expression of this gene could be used to distinguish U87-MG and U-118-MG cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of brain, colon or gastric cancer.
Panel 2D Summary: Ag3395 The expression of this gene appears to be highest in a sample derived from a colon cancer (CT=26.8). In addition, there appears to be substantial 00 0 expression in gastric cancer, bladder cancer, breast cancer, lung cancer and colon cancer.
Thus, the expression of this gene could be used to distinguish colon cancer cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of ND gastric, bladder, breast, lung or colon cancer.
Panel 3D Summary: Ag3395 Two experiments with two different probes and primers produce results that are in excellent agreement. The expression of this gene appears to be highest in a sample derived from a brain cancer cell line (SF-295) (CTs=24-26). Thus, the expression of this gene could be used to distinguish SF-295 cells from other samples in C the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule 00 drugs, protein therapeutics or antibodies could be of benefit in the treatment of brain cancer.
C Panel 4D Summary: Ag3395 The CG91708-01 transcript is induced in lung and dermal fibroblasts after treatment with IL-lbeta and/or TNF alpha (CTs=21.5-22.5). The protein encoded for by this transcript may facilitate tissue destruction, remodeling and participate in cell:cell interactions that prevent the resolution of the inflammatory response.
Therapeutic targeting of the putative MMP-3 encoded for by this transcript with a human monoclonal antibody may reduce or eliminate inflammation in the skin resulting from psoriasis and allergy, promote wound healing and prevent delayed type hypersensitivity type reactions. In the lung, these therapeutic drugs may reduce or inhibit inflammation and tissue remodeling due to asthma/allergy and emphysema. See, Pilcher et al. Ann N YAcad Sci 1999 Jun 30;878:12-24; Dahlen et al. Thorax 1999 Jul;54(7):590-6 (PMID: 10377203).
K. NOVISa and NOV1Sb (CG91729-01 and CG91729-02): MMP13 Expression of gene CG91729-01 and full length physical clone CG91729-02 was assessed using the primer-probe set Ag3396, described in Table KA. Results of the RTQ-PCR runs are shown in Tables KB, KC, KD, KE, KF and KG.
Table KA. Probe Name Ag3396 SP s S s L tart SEQ ID imers Sequences Len Position NO Forward 5'-ttccctcgaactcttaaatggt-3' 22 347 124 Probe TET-5'-cctacagaattgtgaattacacccctga-3'-TAMRA 28 384 125 Reverse 5' -aatgccttttcgacttcagaat-3' 22 420 126 00 00 Table K. Al-comprehensive panel_vi .0 Rel. Rel. Rel. Rel. Exp.(%) Tissue Name Ag3396, Run Ag3396, Run Tissue Name Ag3396, Run Ag3396, Run 211147206 212317715 ________211147206 212317715 110967112427 Match COPD-F 0.0 0.0 Control 0.0 0.0 Psoriasis-F______ 110980 00.0 1124180.00 COPD-F 00.0 Psoriasis-M0.00 110968112723 Match COPD-M 0.0 0.0 Control 0.0 0.0 Psoriasis-M______ 110977 00.0 1124190.00 COPD-M Psoriasis-M 110989 112424 Match Emphysema-F 0.0 0.0 Control 0.0 0.0 Psoriasis-M 110992 00.0 1124200.00 Emphysema-F 00.0 Psoriasis-M0.00 110993 112425 Match Emphysema-F 0.0 0.0 Control 0.0 0.0 ________Psoriasis-M 110994 00.0 104689 (ME) OA 7224.
Emphysema-F Bone-Backus 110995 104690 (ME) Adj Epyea 0.0 0.0 "Normal" 2.0 1.6 Emphyema-FBone-Backus 110996 00.0 104691 (MF) OA 0.00 Emphysema-F 00.0 Synovium-Backus 0.00 110997 00.0 104692 (BA) OA 0.01 Asthma-M 00.0 Cartilage-Backus 0.01 111001 0.0 0.0 104694 (BA) OA 100.0 100.0 Asthma-F Bone-Backus 111002 104695 (BA) Adj Asthma-F 0.0 0.0 "Normal" 15.1 13.4 Bone-Backus 111003 Atopic 0.0 0.0 104696 (BA) OA 0.4 0.2 Asthma-F Synoviumn-Backus 111004 Atopic 0.0 0.0 104700 (SS) OA 1.6 2.3 Asthmna-F Bone-Backus 111005Atopic104701 (SS) Adj 111005A topi 0.0 0.0 "Normal" 9.1 6.3 Asthma-FBone-Backus 111006 Atopic 0.0 0.0 104702 (SS) OA 0.0 0.0 ,Asthma-F _____Synovium-Backus______ 111417 0.0 0.0 11170930OA 0.0 0.0 00 Allergy-M ____Cartilage Rep7 112347y- 0.0 0.0 112672 OA 0.0 0.0 B one 5 112349 Normal 0.0 0.0 1126730OA 0.0 0.0 Lung-F _______Synovium5 112357 Normal 112674 OA Lung-F 0.0 0.0 Synovial Fluid 0.0 0.0 1123 54 Normal 0.0 0.0 1171000OA 0.0 0.0 Lung-M Cartilage Rep 14 112374 13.1 1127560CA0.01 Crohns-F .311 Bone90.01 1 123 89 Match 00.0 1127570OA0.00 Control 00.0 Synovium90.00 Crohns-F__ 112375 1127580OA Crohns-F 1.4 1.0 Synovial Fluid 0.0 0.0 112732 Match 00.0 117125 RA0.00 Control 00.0 Cartilage Rep2 0.00 Crohns-F 112725 0. 113492 Bone20.01 Crohns-M 0.00.
112387 Match 139 Control 0.0 0.0 113493 R 00 Crohns-M Snvu2JA 112378 0.0 0.0 113494 Syn Fluid 0.0 0.0 Crohns-M RA 112390 Match 139 Control 0.1 0.1 113ia499 00 Crobns-MCatlg4R0.00 112726- 0.0 0.0 113 500 Bone4 0.0 0.0
RA
112731 Match 130 Control 0.0 0.0 113501 R 00 Crohns-M Snvu4R 112 380 Ulcer 0.0 0.0 113 502 Syn Fluid 0.0 0.0 Col-F _____Cells4 RA 112734 Match 139 Control Ulcer 0.0 0.0 1134953 A .00.
Col-F Criae 112384 Ulcer 0.0 0.0 113496 Bone3 0.0 0.0 Col-F A_ 112737 Match 139 Control Ulcer 0.0 0.0 113497 R 00 Cal-F Iyoim IA 0. I 00 112386 Ulcer 01.1 113498 Syn Fluid 0.00 Co1-F 01.1 Cells3 RA0.00 112738 Match 117106 Normal Control Ulcer 0.0 0.0 Cartilage Rep20 0.0 Col-F 112381 Ulcer 00.0 113663 Bone3 0.00 COW- Normal0.00 112735 Match 113664 Control Ulcer 1.0 0.6 Synovium3 0.0 0.0 COW- Normal_____ 1123 82 Ulcer 0.0 0.0 113665 Syn Fluid 0.0 0.0 COW- Cells3 Normal______ 112394 Match 117107 Normal 0.00 Control Ulcer 0.0 0.0 Cartilage Rep220.00 COW- 112383 Ulcer 0.0 0.0 Normalone 0.0 0.0 COW Nrma 112736 Match 113668 Control Ulcer 0.0 0.0 Synovium4 0.0 0.0 COW- _Normal_ 112423 00.0 113669 Syn Fluid 0.00.
,Psoriasis-F 0. 00 Cells4 Normal Table KC. Panel 1.3D Rel. Rel.
Rel. Rel. Exp.(%) Tissue Name Ag3396, Ag3396, Tissue Name Ag3396, Run Ag3396, Run Run Run 165524932 167595424 167595424 Liver 0.0 0.0 Kidney (fetal) 0.0 0.1 Pancreas 0.0 0.0 Renal ca. 5.6 5.9 1786-0 Pancreatic ca. 0.7 0.3 Renal ca. 0.2 0.2 CAPAN 2 __A498_ Adrenal gland 0.0 0.0 Renal ca. RX.F 30.4 36.3 Thyroid 0.0 0.0 Renal ca. 0.0 0.0 Salivary gland 0.0 0.0 Renal ca. 0.0 0.0 1 Pituitary gland 1.5 0.3 Renal ca. 0.0 0.0 TK-10__ Brain (fetal) 0.0 0.0 Liver 0.0 0.0 Brain (whole) 0.0 0.0 ILiver (fetal) 0.0 0.0 00 00 Liver ca.
Brain (amygdala) 0.0 0.0 (hepatoblast) 0.0 0.0 ___HepG2 Brain (cerebellum) 0.0 0.0 Lung 0.0 0.0 Brain 0.0 0.0 Lung (fetal) 0.0 0.3 (hippocampus) Brain (substantia Lung ca.
nigra) 0.0 0.0 (small cell) 0.0 0.0 LX-l I_ Lung ca.
Brain (thalamus) 0.0 0.0 (small cell) 0.0 0.0 ~NCI-H69 Lung ca.
Cerebral Cortex 0.0 0.0 (scell var.) 0.0 0.1 Lung ca.
Spinal cord 0.0 0.0 (large 0.0 0.0 cell)NCI-H460 Lung ca.
glia/astro U87-MG 0.0 0.0 (non-sm. cell) 0.0 0.0 IA549 glio/stroLung ca.
gUio/a8tMG 0.0 0.0 (non-s.cell) 0.0 0.0 U-l 18-MG ~~NCI-H23 astroytomaLung ca.
astr1783m 0.6 0.7 (non-s.cell) 0.0 0.9 SW1783HOP-62 neuro; metLung ca.
KNeur*;me 0.0 0.0 (non-s.cl) 0.0 0.0 SK-N-AS ~~~NCI-H522 Lung ca.
astrocytomna SF-539 0.8 0.3 (squam.) SW 100.0 100.0 astroytomaLung ca.
45.7 43.5 (squamn.) 0.0 0.0 ~~~~NCI-H596 gliomna SNB-19 0.0 0.0 Mammary 0.9 0.7 glioma U251 0.4 0.0 Breast ca.*0.26 MCF-7 0.26 Breast ca.* glioma SF-295 20.0 47.6 (pI.et) 0.0 0.1 _____MDA-MB-23 1 Heart (fetal) 0.0 0.0 Breast ca.*0.03 T47D0.03 HearBreast ca.
Hat00 0.0 Be0.0 0.1 I0. IBT-549 I 00 Skeletal muscle 00.0 Breast ca.0.00 (fetal) 00 .0 MDA-N0.00 Skeletal muscle 0.0 0.0 Ovary 0.0 0.0 Bone marrow 0.9 0.7 Ovarian ca. 0.0 0.0 ___OVCAR-3 Thymus 0.0 0.0 Ovarian ca. 0.00 ____OVGAR-40.00 Spleen 0.0 0.0 Ovarian ca. 0.0 0.0 _____OVCAR-5 Lymph node 0.0 0.0 Ovarian ca. 0.0 0.0 OVCAR-8 Colorectal 0.0 0.0 Ovarian ca.0.00 IGRO V-I .1.
Ovarian ca.* Stomach 0.0 0.0 (ascites) 0.6 1.4 _SK-OV-3 Small intestine 0.0 0.0 Uterus 0.0 0.0 Colon ca. SW480 0.0 0.0 Placenta 0.0 0.0 Colon ca.* SW620(SW480 0.0 0.1 Prostate 0.0 0.1 met) Prostate ca.* Colon ca. HT29 0.0 0.0 (bone 10.4 18.6 met) PC-3 Colon ca. HCT-l 16 0.0 0.0 Testis 0.0 0.0 Colon ca. CaCo-2 0.0 0.2 Mse8amT 0.0 0.0 Colo ca.Melanoma* Ciseolon Ca. 7.3 4.3 (met) 0.0 0.0 txssue(0D03866) Colon ca. 14 03Melanoma0.00 HCC-2998 14 03UACC-620000 Gastric ca.* (liver 6.3 2.5 Melanoma 0.0 0.0 met) NCI-N87 M14__ Bladder 0.3 0.0Melanoma0.00 Bladder 0.3 0.0LOX IMVI0.00 1. Melanoma* Trachea 3.0 10 (met) 0.0 0.0 !Kidney 0.0 0.0 jAdipose 0.0 0.0 Table KD. Panel 2D Rel. Rel. Exp.(%) Tissue Name Ag3396, Run Tissue Name Ag3396, Run 165468498 165468498 .Normal Colon 0.3 Kidney Margin 8120608 0.0 00 00 CC Well to Mod Duff 25.9 Kidney Cancer 8120613 0.0 (0D03 866) CC Margin (0D03866) 0.1 Kidney Margin 8120614 0.0 CC Gr.2 rectosigmoid 1.1 Kidney Cancer 9010320 0.0 (0D03868) CC Margin (0D03868) 0.0 Kidney Margin 9010321 0.0 CC Mod Diff (0D03920) 0.0 Normal Uterus 0.0 CC Margin (0D03920) 0.0 Uterus Cancer 064011 0.1 CC Gr.2 ascend colon 1.3 Normal Thyroid 0.0 (0D0392 1) CC Margin (ODO3 92l1) 0.1 Thyroid Cancer 0640 10 CC from Partial Hepatectomy 0.2 Thyroid Cancer A302 152 12.8 (0D04309) Liver Margin (0504309) 0.0 Thyroid Margin A3021 53 0.0 Colon mets to lung 0.0 Normal Breast 0.6 (0D0445 1 -0 1) Lung Margin (0D04451-02) 0.0 Breast Cancer (0D04566) 3.1 Normal Prostate 6546-1 0.9 Breast Cancer 1.9 Prostate Cancer (0D04410) 0.0 Breast Cancer Mets 0.0 Prostate Margin (0D044 10) 0.3 Breast Cancer Metastasis 0.2 Prostate Cancer (0D04720-01) 2.3 Breast Cancer 064006 26.2 Prostate Margin (0D04720-02) 1.0 Breast Cancer 1024 0.7 Normal Lung 0610 10 0.0 Breast Cancer 9100266 Lung Met to Muscle (0D04286) 1.3 Breast Margin 9100265 6.7 Muscle Margin (0D04286) 0.0 Breast Cancer A209073 7.7 Lung Malignant Cancer4. BratM giA29752 (0D03126)4. BratMriA29752 Lung Margin (0D03 126) 0.5 Normal Liver 0.0 Lung Cancer (0D04404) 6.9 Liver Cancer 064003 0.2 Lung Margin (0D04404) 3.9 Liver Cancer 1025 0.0 Lung Cancer (0D04565) 100.0 Liver Cancer 1026 0.0 Lung Margin (0D04565) 0.3 Liver Cancer 6004-T 0.0 Lung Cancer (0D04237-0l) 1.7 Liver Tissue 6004-N 0.0 Lung Margin (0D04237-02)- 0.5 Liver Cancer 6005-T 0.0 Ocular Mel Met to Liver 0.0 Liver Tissue 6005-N 0.0 (0D043 10) Liver Margin (0D043 10) 0.0 Normal Bladder Melanoma Mets to Lung 0.0 Bladder Cancer 1023 1.2 (0D04321) Lung Margin (0D04321) 1 0.2 JBladder Cancer A302 173 40.3 00 Normal Kidney 0.0 Bladder Cancer 1) Kidney Ca, Nuclear grade 2 06 Bladder Normal Adjacent0.
(OD()4338) 06 (0D04718-03)0.
Kidney Margin (0D04338) 0.0 Normal Ovary 0.0 Kidney Ca Nuclear grade 1/2 0.0 Ovarian Cancer 064008 3.1 (0D04339) Kidney Margin (0D04339) 0.0 Ovarian Cancer 0.0 Kidney Ca, Clear cell type 0.0 Ovary Margin 0.0 (0D04340) _______(0D04768-08) Kidney Margin (0D04340) 0.0 Normal Stomach 0.0 Kidney Ca, Nuclear grade 3 0.6 Gastric Cancer 9060358 0.0 (0D04348) Kidney Margin (0D04348) 0.0 Stomach Margin 9060359 0.0 Kidney Cancer (0D04622-01) 0.3 Gastric Cancer 9060395 0.0 Kidney Margin (0D04622-03) 0.0 Stomach Margin 9060394 0.0 Ki dney Cancer (0D04450-0l1) 0.0 Gastric Cancer 9060397 2.6 Kidney Margin (0D04450-03) 0.0 Stomach Margin 9060396 0.0 Kidney Cancer 8120607 7.0 Gastric Cancer 064005 0.2 Table KE. Panel 3D Rel. Rel. Rel. Rel.
Exp.(%) Tissue Name Ag3396, Ag3396, Tissue Name Ag3396, Ag3396, Run Run Run Run 165924635 167542917 165924635 167542917 Ca Ski- Cervical Daoy- 01.1 epidermoid 2.0 2.2 Medulloblastoma 01.1 carcinoma TE67 1 00.0 ES-2- Ovarian clear 0. 1 Medulloblastoma 00.0 cell carcinoma0.01 D283 Med.. Ramos- Stimulated Medulloblastoma 0.0 0.0 with 0.0 0.0 Ramos- Stimulated PFSK.1- Primitive 0.3 0.3 with0.00 Neuroectodermal PMAlionomycin00 MEG-OlI Chronic XF-498- CNS 0.0 0.0 myelogenous 0.0 0.0 leukemia (megokaryoblast) SNB-78- Glioma 0.0 0.0 Raji- Burkitt's 0.0 0.0 I_ lymphoma 00 SF-268- 02.1 Daudi- Burkitt's0.00 Glioblastoma 02.1 lymphoma0.00 T98G- 1. U266- B-cell0.01 Glioblastoma 9. 92 plasmacytoma0.01 SK-N-SH- A6 ukt' Neuroblastoma 0.0 0.1 CA46m Buroma 0.0 0.0 (metastasis) Iyphm SF-295- -100 0.0 RL- non-Hodgkin's 0.00 Glioblastoma 10. 100 B-cell lymphoma0.00 Cerebellum 0.0 0.0 JMI pre-B-cell 0.0 0.0 Cerebellum 0.0 0.0 fJurkat- T cell 0.0 0.0 NCI-H292- Fl Mucoepidermoid 0.4 0.7 TF-r 0.0 0.0 lung carcinoma (rthroleukemia DMS-l 14- Small 0.0 0.0 HUT 78- T-cell 0.0 0.0 cell lung cancer DMS-79- Small 0.0 0.4 U937- Histiocytic 0.0 0.0 cell lung cancer lymphoma_____ NCI-H146- Small KU-812cell lung cancer 0.0 0.0 Myelogenous 0.0 0.0 leukemia NCI-H526- Small 0.0 0.0 769-P- Clear cell 0.0 0.0 cell lung cancer carcinoma NCI-N4 17- Small 0. Caki-2- Clear cell cell lung cancer 00.0 renal carcinoma 0.0 0.0 NCI-H82- Small 0.0 0.0 SW 839- Clear cell 0.0 0.0 cell lung cancer renal carcinoma NCI-H 157- Squamous cell 0.0 0.1 G401 Wilms' 0.0 0.0 lung cancer tumor (metastasis) NCI-Hl 155- Large 00 Hs766T- Pancreatic celln acr 00 0.0 carcinoma (LN 0.0 0.1 cell lung cancer CAPAN-1- NCI-H1299- Large 0.5 1.2 Pancreatic 0.0 0.6 cell lung cancer adenocarcinomna metastasis) SU86.86- NCC1H727- Lung 24.5 40.3 Pancreatic 0.3 0.1 carcinoid carcinoma (liver NCI-UMC- II- 04.7 BxPC-3- Pancreatic 0.7 Lung carcinoid 0. 07 adenocarcinoma 00 LX-l- Small cell 00.0 HPAC- Pancreatic 0.01 lung cancer 00.0 adenocarcinoma0.01 Coon MIA PaCa-2- 0.0 0.0 Pancreatic 0.0 0.0 cancer carcinoma______ KM 12.. Colon CFPAC-1- 0.0 0.0 Pancreatic ductal 1.8 cancer ladenocarcinoma______ PANG-i- KM2OL2- Colon 0.0 0.0 Pancreatic 0.0 0.0 cancer epithelioid ductal Icarcinoma NCI-H16- olonT24- Bladder NC-7 6 Cln 0.0 0.2 carcinma 0.3 0.2 cancer (transitional SW-48- Colon 15637- Bladder1 adenocarcinoma 0.0 0.0 carcinoma 0.3 0.4 SWI1116- Colon ~HT-l 197- Bladder I adenocarcinoma 0.0 0 .0 carcinoma 1.2 1.8 LS 174T- Colon UM-UC-3- Bladder adenocarcinoma 0.0 0.0 carcinma 0.0 0.0 _________(transitional cell) SW-948- Colon 0.0. A240000 adenocarcinoma 0. 00 a204- oarom SW-480- Colon 0.0 0.0 HT-1080- 0.1 0.2 adenocarcinoma Fibrosarcoma 00.0 MG-63-0.00 Gastric carcinoma 0. 0 0Osteosarcoma0.00 KATO III- Gastric SK-LMS-lcarcinoma 0.0 0.0 Leiomyosarcoma 0.3 0.8 SJRH3O- NCI-SNU-16- 00.0 Rhabdomyosarcoma 0.0 0.0 Gastric carcinoma 00.0 (met to bone marrow) NCI-SNU-1- 00.0 A431I- Epidermoid 1.0 4.3 Gastric carcinoma 00.0 carcinoma RF-l- Gastric 00.0 WM266-4- 0.0 0.0 adenocarcinomna 00.0 Melanoma RIF-48- Gastric DU 145- Prostate adncrioa 0.0 0.0 carcinoma (brain 0.0 0.0 adenocarcinoma metastasis) MKN4- GatricMDA-MB-468carcnom asti 0.2 0.2 Breast 0.0 0.0 carcnomaadenocarcinoma NCI-N87- Gastric 0.0 0.1 SCC-4- Squamous 0.00.
,carcinoma cell carcinoma of00 00 ___tongue OVCAR-5-SCC-9- Squamous Ovaicarcinom 0.0 0.0 cell carcinoma of 0.0 0.0 Ovarian carcinoma RL95-2- Uterine 5CC-iS5- Squamous carcinoma 0.0 0.0 cell carcinoma of 0.2 2.3 ___tongue HelaS3- Cervical CAL 27- Squamous aeoacnra 0.0 0.0 cell carcinoma of 6.0 11.6 adenocarcinoma ~tongue Table KF. Panel 4.I1D Rel. Rel. Exp.(%) Tissue Name Ag3396, Run Tissue Name Ag3396, Run 169838993 169838993 Secondary ThlI act 0.0 HUVEC IL- Ibeta 0.0 Secondary T12 act 0.0 HUVEC IFN gamma 0.0 Secondary Trl act 0.0 HUVEC TNF alpha EF 0.0 Secondary Thi rest 0.0 HUVEC TNF alpha 1L4 0.0 Secondary Th2 rest 0.0 HUVEC IL-I 1 0.0 Secondary TrI rest 0.0 Lung Microvascular EC none 0.0 Primary Thi act 0.0 Lung Microvascular EC 0.3 IL-i1beta______ Primar Th2 at 0.0 Microvascular Dermal EC0.
none Primary TnI act 0.0 Microsvasular Dermnal EC 0.0 IL- Ibeta Primary Th I rest 0.0 Bronchial epithelium 100.0 T'NFalpha ILlbeta______ Primary Th2 rest 0.0 Small airw'ay epithielium 0.3 none Primary TnI rest 0.0 Small airway epithelium 29.5 IL- Ibeta CD4 lymphocyte act 0.2 Coronery artery SMG rest 0.0 CD4 lymphocyte act 0.0 Coronery artery SMG 0.0 IL-Ibeta CD8 lymphocyte act 0.0 Astrocytes rest 0.2 Secondary CD8 lymphocyte 0.0 Astrocytes TNFalpha rest IL-Ibeta Secondary CD8 lymphocyte act 0.0 KU-8 12 (Basophil) rest 0.0 CD4 lmphocte noe 0.0 KU-812 (Basophil)0.
lympocytnon_0. PMA/ionomycin 2 ry Thl/Th2FI'rl-anti-CD95 0.0 CCDI 106 (Keratinocytes) 1.3 CHI 1 none LAK cells rest 0.0 CCD1 106 (Keratinocytes) 17.7 00 IL- I beta LAK cells IL-2 0.0 Liver cirrhosis 0.0 LAK cells IL-2+IL-12 0.0 NCI-H292 none 1.8 LAK cells IL-2+IFN gamma 0.0 NCI-H292 IL-4 1.4 LAK cells UL-2+ IL- 18 0.0 NCI-11292 IL-9 1.9 LAK cells PMAlionomycin 0.0 NCI-H292 IL- 13 0.9 NI( Cells IL-2 rest 0.0 NCI-H292 IFN gamma 0.6 Two Way MLR 3 day 0.0 HPAEG none 0.0 Two Way MLR 5 day 0.0 HPAEC TNF alpha IL-i1 0.0 Two Way MLR 7 day 0.0 Lung fibroblast none 0.1 PBMC rest 0.0 Lung fibroblast TNF alpha PBMC PWM 0.0 Lung fibroblast IL-4 0.1 PBMC PHA-L 0.0 Lung fibroblast IL-9 J 0.6 Ramos (B cell) none 0.0 ILung fibroblast IL- 13 j 0.
Ramos (B cell) ionomycin 0.0 Lung fibroblast IFN gamma 0.0 B lymphocytes PWM 0.0 Dermal fibroblast CCD1070 0.1 rest B lymphocytes CD40L and 0.0 Dermal fibroblast CCD 1070 0.0 IL-4 TNF alpha______ EOL-l dbcAMP 0.0 Dermal fibroblast CCD 1070 0.1 IL-I beta EOL-1 dbcAM .P 0.1 Dermal fibroblast lEN 0.0 PMAlionomycin gamma______ Dendritic cells none 0.0 Dermal fibroblast IL-4 0.0 Dendritic cells LPS 0.0 Dermal Fibroblasts rest 0.0 Dendritic cells anti-CD4O 0.0 Neutrophils TNFa+LPS -0.0 Monocytes rest 0.0 Neutrophils rest 0.0 Monocytes LPS 0.0 Colon 0 .0 Miacrophages rest 0.0 Lung Macrophages LPS 0.0 Thymus 0.0 HUVEC none 0.0 Kidney 0.0 .HUVEC starved 0.0 Table KG. Panel 4D Rel. Rel. Exp.(%) Tissue Name Ag3396, Run Tissue Name Ag3396, Run 165222712 165222712 Secondary Thi act 0.0 HUVEC IL-lbeta 0.0 Secondary Tb2 act 0.0 IHUVEC IFN gamma 0.0 Secondary TrI act 0.0 HUVEC TNF alpha IFN o 00 Secondary Thi. rest 0.0 HUVEC TNF alpha IL4 0.0 Secondary Th2 rest 0.0 HUVEC IL-Il1 0.0 Secondary Trl rest 0.0 Lung Microvascular EC none 0.0 Primary Th I act 0.0 Lung Microvascular EC 0.2 IL- Ibeta Primary Th2 act 0.0 Microvascular Dermal EC 0.0 none Primar TrI at 0.0 Microsvasular Dermal EC0.
Primar Tn at 0.0 TNFalpha IL- Ibeta0.
Primary Th I rest 0.0 Bronchial epithelium 100.0 ILlbeta Primary Th2 rest 0.0 Small airway epithelium 0.0 none Primary TI rest 0.0 Small airway epithelium 96.6 IL-ibeta CD4 lymphocyte act 0.4 Coronery artery SMC rest 0.0 CD4 lymphocyte act 0.4 Coronery artery SMG 0.0 IL-ibeta______ CD8 lymphocyte act 0.0 Astrocytes rest 0.6 Secondary CD8 lymphocyte 0.0 Astrocytes 'INFalpha 10.4 rest IL-Ibeta Secondary CD8 lymphocyte 0.0 KU-812 (Basophil) rest 0.0 act CD4 lmphocte noe 0.0 KU-8 12 (Basophil)0.
_____lymphocytenone _0.0 PMAlionomycin0.
2 ry Thl/Th2/Trl-anti-CD95 0.0 CCD1 106 (Keratinocytes) 2.4 CH 11 none LAK cells rest 0.0 CCDl 106 (Keratinacytes) 7.1 IL-ibeta LAX cells IL-2 0.0 Liver cirrhosis 0.0 LAK cells IL-2+IL-12 0.1 Lupus kidney 0.0 LAK cells IL-2+LFN gamma 0.0 NCI-H292 none 3.6 LAK cells IL-2+ IL-I18 0.0 NCI-H292 IL-4 1.4 LAK cells PMAlionomycin 0.0 NCI-H292 IL-9 1.9 NK Cells IL-2 rest 0.0 NCI-H292 1L- 13 Two Way MLR 3 day 0.0 NCI-H292 IFN gamma Two Way MLR 5 day 0.0 HPAEC none 0.0 Two Way MLR 7 day 0.0 HPAEC TNF alpha IL-i1 0.1 PBMC rest 0.0 Lung fibroblast none 0.0 PBMC PWM 0.0 Lung fibroblast TNF alpha 4.8 IL-l beta PBMC PHA-L 0.0 ILung fibroblast IL-A 0.1 Ramos (B3 cell) none_ 0.0 L1ung fibroblast IL-9 0.6 00
(O
00
(N
00 Ramos (B cell) ionomycin 0.0 Lung fibroblast IL-13 0.1 B lymphocytes PWM 0.0 Lung fibroblast IFN gamma 0.0 B lymphocytes CD40L and 0.0 Dermal fibroblast CCD1070 0.1 IL-4 rest E I dcAMP 00 Dermal fibroblast CCD1070 EOL-1 dbcAMP 0.0 0.3 TNF alpha EOL-1 dbcAMP Dermal fibroblast CCD 1070 0.0 0.4 PMA/ionomycin IL-1 beta Dermal fibroblast IFN Dendritic cells none 0.0 0.0 gamma Dendritic cells LPS 0.0 Dermal fibroblast IL-4 0.0 Dendritic cells anti-CD40 0.0 IBD Colitis 2 0.0 Monocytes rest 0.0 IBD Crohn's 0.0 Monocytes LPS 0.0 Colon 0.0 Macrophages rest 0.0 Lung 0.7 Macrophages LPS 0.0 Thymus 0.0 HUVEC none 0.0 Kidney 0.0 HUVEC starved 0.0 AI_comprehensive panel_vl.0 Summary: Ag3396 The CG91729-01 transcript is expressed in OA tissue but not in control tissue in two experiments with the same probe and primer set (CTs=24-26). The transcript encodes a putative MMP13 which has been shown to be present in OA joint tissue and may contribute to the pathology of this disease. See, Bluteau et al. Biochim Biophys Acta 2001 May 3;1526(2):147-58.
Panel 1.3D Summary: Ag3396 The expression of this gene appears to be highest in a sample derived from a lung cancer cell line (SW-900) in two experiments with the same probe and primer set (CTs=27-29). In addition, there appears to be substantial expression in prostate cancer cell lines, renal cancer cell lines and brain cancer cell lines. Thus, the expression of this gene could be used to distinguish SW-900 cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of lung, prostate, renal or brain cancer.
Panel 2D Summary: Ag3396 The expression of this gene appears to be highest in a sample derived from a lung cancer (CT=27.7). In addition, there appears to be substantial expression in bladder cancer, breast cancer, thyroid cancer and lung cancer. Thus, the expression of this gene could be used to distinguish lung cancer cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of bladder, breast, thyroid or lung cancer.
00 0 Panel 3D Summary: Ag3396 Two experiments with the same probe and primer set show the expression of this gene highest in a sample derived from a brain cancer cell line (SF-295) (CTs=26.5-27.5). In addition, there appears to be substantial expression in brain cancer cell lines and lung cancer cell lines. Thus, the expression of this gene could be used to \O distinguish SF-295 cells from other samples in the panel. Moreover, therapeutic modulation of this gene, through the use of small molecule drugs, protein therapeutics or antibodies could be of benefit in the treatment of brain or lung cancer.
Panels 4D and 4.1D Summary: Ag3396 The CG91729-01 transcript is induced in TNFalpha and IL-lbeta treated fibroblasts, keratinocytes, and epithelium (CTs=29-31.5).
C The transcript encodes a putative MMP-13, collagenase 3, which is involved in OA and in 00 Swound repair in general. See, Wu N, et al. Matrix Biol 2002 Mar;21(2):149-61). Human monoclonal antibodies against this protein could be used to treat OA and other conditions such as psoriasis and emphysema in which aberrant wound healing contribute to the pathology.
L. NOV16a (CG92489-01): BCG induced integral membrane protein Expression of gene CG92489-01 was assessed using the primer-probe set Ag2558, described in Table LA. Results of the RTQ-PCR runs are shown in Tables LB, LC, LD and
LE.
Table LA. Probe Name Ag2558 Start SEQ ID Primers Sequences Length Start SEQ ID Position NO Forward 5 -atgattcagaatgctggaatgt-3' 22 1588 127 Probe TET-5'-aactggattcacagccattctactca-3'-TAMRA 26 1611 128 Reverse s'-attcgatttctcctgcatacaa-3' 22 1642 129 Table LB. AI_comprehensive panel_vl.0 Rel. Rel. Rel. Rel.
Exp.(%) Tissue Name Ag2558, Ag2558, Tissue Name Ag2558, Ag2558, Run Run Run Run 228059678 229393909 228059678 229393909 110967 112427 Match 1.2 0.9 6.7 3.0 COPD-F Control Psoriasis-F 0 110980 COPF 2.6 2.3 112418 Psoriasis-M 1.3 0.9
COPD-F
110968 112723 Match 1.6 0.9 0.9 0.7 COPD-M Control Psoriasis-M 110977 4.6 3.7 112419 Psoriasis-M 2.7 00 00 COPD-M 110989 7158 112424 Match1.13 Emphysema-F 7158 Control Psoriasis-M 1.13 110992 3.8 4.4 112420 Psoriasis-M 8.5 6.7 Emphysema-F 110993 08.9 112425 Match5.23 Emphysema-F 08.9 Control Psoriasis-M 5.23 110994 0.7 0.5 104689 (WF) OA 17.8 14.9 Emphysema-F 110995 104690 (MF) Adj Emphysema-F 9.7 8.2 "Normal" 10.3 9.3 B~one-Backus 110996 30.0 104691 (ME) OA6.53 Emphysema-F 30.0 Synovium-Backus 6.53 110997 26.7 104692 (BA) OA 4835.
Asthma-M 26.7 Cartilage-Backus 4835.
111001 3.6 I 2.4 104694 (BA) OA 12.9 12.2 Asthmna-F 111002 104695 (BA) Adj Asthmna-F 3.8 4.4 "Normal" 14.3 12.3 Bone-Backus 111003 Atopic 6.6 4.7 104696 (BA) OA 9.7 8.9 Asthma-F _____Synovium-Backus 111004 Atopic 11.5 1 8.8 104700 (SS) OA 1 9.3 9.2 Asthma-F Bone-Backus 111005 Atopic 7652 104701 (SS) Adj Asthma-F 7652 "Normal" 10.5 11.8 Bone-Backus 111006 Atopic 1.8 1.1 104702 (SS) OA 12.8 10.6 Asthmna-F ______Synovium-Backus 111417 5.1 2.0 1170930OA 2.8 2.7 Allergy-M ______Cartilage Rep7 A11e347- 0.0 0.1 112672 OA Bone5 2.7 2.1 112 349 Normal 0.0 0.1 1126730OA 1.2 1.3 Lung-F ___Synovium5 112357Normal1126740OA Ll2u N orma 9.5 9.1 Synovial Fluid 1.5 1.6 Lung-F ~~~~~cells5 112354 Normal 1171000OA 0.7 0.4 Lung-M 3.9 2.6 Cartilage Repl14 1123741.1. 1176O oe5.48 Crohns-F1.1. l276Ao9 5648 112389 Match 1127570OA0.02 Control 1.6 1.3 Synovium90.02 Crohns-F__ 00 0 112375 112758 OA C s-F 1.4 1.5 Synovial Fluid 0.8 1.4 Crohns-FCells9 Cells9 112732 Match Control 5.1 4.5 0.4 0.4 Crohns-F Cartilage Rep2 Crohns-F 112725 1 12 725 2.1 2.4 113492 Bone2 RA 65.5 70.7 Crohns-M 112387 Match 112387 Match 0 113493 Synovium2 1 Control 0.5 0.4 A18.9 19.2 Crohns-M 112378 113494 Syn Fluid 36.1 44.1 Crohns-M Cells RA 112390 Match 113499 Cartilage4 75 Control 6.4 2.9 78.5 82.4 Crohns-M 112726 112 6 6.3 7.6 113500 Bone4 RA 100.0 100.0 Crohns-M 112731 Match 112731 Match 113501 Synovium4 70.7 72.2 Control 7.9 6.5 A 70.7 72.2 Crohns-M 112380 Ulcer 4 113502 Syn Fluid 46.3 Col-F Cells4 RA 112734 Match 112734 Match 113495 Cartilage3 Control Ulcer 13.8 9.5 11 5 39.2 45.1 Col-F 112384 Ulcer 112384 cer 5.8 5.2 113496 Bone3 RA 30.4 55.1 Col-F 112737 Match 11 7 S vi Control Ulcer 5.5 4.0 330.1 31.0 Col-F 112386 Ulcer 0.9 0.2 113498 Syn Fluid 79.0 72.7 Col-F Cells3 RA 112738 Match 117106 Normal Control Ulcer 9.5 7.5 artil0.1 0.1 -F _Cartilage Rep20 Col-F 112381 Ulcer 0. 113663 Bone3 0.0 0.4 0.3 0.0 Col-M Normal 112735 Match 112735 Match 113664 Synovium3 Control Ulcer 3.5 2.3 N al Sn0.0 0.0 Col-M__ 00 112382 Ulcer 2317 113 665 Syn Fluid0.02 COW- Cells3 Normal0.02 112394 Match 117107 Normal0.06 Control Ulcer 0.3 0.2 Cartilage Rep220.06 COW- 1123 83 Ulcer 7.5 6.1 113667 Bone4 0.8 0.8 COW- 112736 Match 113668 Synovium4 Control Ulcer 1.1 1.1 Normal 1.3 1.6 COW- 112423 3.8 1 2.0 ~113669 Syn Fluid 2.0 1.8 Psoriasis-F j_____Cells4 Normal Table LC. Panel 1.31) Rel. Rel. Exp.(%) Tissue Name Ag2558, Run Tissue Name Ag2558, Run 161905853 161905853 Liver adenocarcinoma 5.3 Kidney (fetal) 10.2 Pancreas 3.9 Renal ca. 786-0 11.0 Pancreatic ca. CAPAN 2 7.1 Renal ca. A498 3.2 Adrenal gland 0.9 Renal ca. RXF 393 3.7 Thyroid 3.5 Renal ca. ACHN 3.6 Salivary gland 18.7 Renal ca. UO-31 Pituitary gland 3.2 Renal ca. TK-10 1.3 Brain (fetal) 1.0 Liver Brain (whole) 2.0 Liver (fetal) 7.2 Brain (amygdala) 1.5 Liver ca. (hepatoblast) 0.1 Brain (cerebellum) 2.7 Lung 53.6 Brain (hippocampus) 2.6 Lung (fetal) 12.2 Brain (substantia nigra) 1.4 Lung ca. (small cell) LX- 1 Brain (thalamus) 1 2.0 Lung ca, (small cell) 0.9 Cerebral Cortex 4.5 Lung ca. (s.cell var.) 7.7 Spinal cord 10.4 Lung ca. (large 100.0 cell)NCI-H460 glio/astro U87-MG 13.6 Lung ca. (non-sm. cell) A549 glio/astra U- I 18-MG 3.5 Lung ca. (non-s.cell) 2.9 NCI-H23 astrocytomna SW1783 10.1 Lung ca. (non-s.cell) 8.4 HOP-62 Ineuro*; met SK-N-AS 4.3 jLung ca. (non-s.d) 1 0.1 00 astrocytoma SF-539 7.0 Lung ca. (squam.) SW 900 2.8 astrocytoma SNB-75 2.9 Lung ca. (squam.) 0.2 glioma SNB-19 2.5 Mammary gland 4.8 glioma U25 1 2.9 Breast ca.* (pl.ef) MCF-7 7.9 glionia SF-295 1.2 Breast ca.* (pl.et) -231 Heart (fetal) 0.8 Breast ca.* (pl.ef) T47D 4.1 Heart 3.6 Breast ca. BT-549 14.8 Skeletal muscle (fetal) 1.4 Breast ca. MDA-N 7.9 Skeletal muscle 0.8 Ovary 3.2 Bone marrow 4.3 Ovarian ca. OVCAR-3 Thymus 17.0 Ovarian ca. OVCAR-4 1.4 Spleen 3.2 Ovarian ca. OVCAR-5 Lymph node 2.1 Ovarian ca. OVCAR-8 2.2 Colorectal 11.4 Ovarian ca. IGRO V-i 0.9 Stomach 1.4 Ovarian ca.* (ascites) 14.7 SK-OV-3 Small intestine 2.3 Uterus 1.2 Colon ca. SW480 3.4 Placenta 36.3 Colon ca.* SW620(SW480 1.4 Prostate 1.9 met) Colon ca. HT29 5.6 Prostate ca.* (bone 1.8 Colon ca. HCT-1 16 6.6 Testis Colon ca. CaCo-2 2.3 Melanoma Hs688(A).T 0.2 Colon ca. tissue(0D03866) 14.8 Melanoma* (met) Colon ca. HCC-2998 3.0 Melanoma UACC-62 0.2 Gstric ca.* (liver met) 6.3 Melanoma M14 NCI-N87 Bladder 23.7 Melanoma LOX IMYI 0.4 Trachea 13.7 Melanoma* (met) 2.8 ,Kidney 13.6 Adipose 15.6 Rel. ReL. Exp.(%) Tissue Name Ag2558, Run Tissue Name Ag2558, Run 161905854 161905854 Normal Colon 23.3 Kidney Margin 8120608 0.4 CC Well to Mod Diff 4.4 Kidney Cancer 8120613 0.4 (0D03866) 00 CC Margin (0D03866) 4.7 Kidney Margin 8120614 0.9 CC Gr.2 rectosigmoid 2.7 Kidney Cancer 9010320 1.7 (0D03 868) CC Margin (0D03868) 0.3 Kidney Margin 9010321 1.1 CC Mod Diff (0D03920) 15.7 Normal Uterus CC Margin (0D03920) 4.8 Uterus Cancer 064011 4.3 CC Gr.2 ascend colon 18.0 Normal Thyroid 3.1 CC Margin (0D03921) 4.5 Thyroid Cancer 0640 10 3.8 CC from Partial Hepatectomy 3.8 Thyroid Cancer A3021 52 (0D04309) Mets Liver Margin (0DO4309) 8.7 Thyroid Margin A302 153 3.6 C-olon mets to lung 8.7 Normal Breast 2.3 (0D0445 1-0 1) Lung Margin (0D04451-02) 34.6 Breast Cancer (0D04566) 1.6 Normal Prostate 6546-1 1.4 Breast Cancer Prostate Cancer (0D044 10) 2.0 Breast Cancer Mets Prostate Margin (0D04410) 3.1 Breast Cancer Metastasis 1.8 Prostate Cancer 1.5 Breast Cancer 064006 (0D04720-0 Prostate Margin 4.5 Breast Cancer 1024 5.7 (0D04720-02) Normal Lung 0610 10 70.2 Breast Cancer 9100266 1.4 Lung Met to Muscle 8.2 Breast Margin 9100265 1.1 (0D04286) Muscle Margin (0D04286) 1.7 Breast Cancer A209073 5.4 Lung Malignant Cancer 15.5 Breast Margin A209073 3.2 (0D03 126) Lung Margin (0D03 126) 100.0 Normal Liver--- 4.2 Lung Cancer (0D04404) 17.7 Liver Cancer 064003 Lung Margin (0D04404) 34.2 Liver Cancer 1025 1.8 Lung Cancer (0D04565) 0.8 Liver Cancer 1026 0.8 Lung Margin (0D04565) 27.2 Liver Cancer 6004-T 2.4 Lung Cancer (0D04237-01) 9.3 Liver Tissue 6004-N 1.2 Lung Margin (0D04237.02) 41.5 Liver Cancer 6005-T 0.6 Ocular Mel Met to Liver 0.1 Liver Tissue 6005-N (0D043 10) Liver Margin (0D043 10) 4.0 Normal Bladder 13.4 Melanoma Mets to Lung 4.0 Bladder Cancer 1023 1.1 ILung Margin (0D043 21) 80.7 Bladder Cancer A302 173 2.4 00 Normal Kidney 8.7 Bladder Cancer 9.3 Kidney Ca, Nuclear grade 2 159 Bladder Normal Adjacent4.
(0D04338) 159 (0D04718-03)______ Kidney Margin (0D04338) 5.5 Normal Ovary Kidney Ca Nuclear grade 1/2 25.3 Ovarian Cancer 064008 5.6 Kidney Margin (0D04339) 7.6 Ovarian Cancer 5.1 Kidney Ca, Clear cell type 7.1 Ovary Margin3.
(0D04340) Kidney Margin (0D04340) 3.5 Normal Stomach 0.9 Kidney Ca, Nuclear grade 3 0.5 Gastric Cancer 9060358 0.4 Kidney Margin (0D04348) 2.2 Stomach Margin 9060359 0.9 Kidney Cancer (0D04622-0l) 2.2 Gastric Cancer 9060395 1.1 Kidney Margin (0D04622-03) 0.6 Stomach Margin 9060394 Kidney Cancer (0D04450-01) 3.2 Gastric Cancer 9060397 5.7 Kidney Margin (0D04450-03) 3.5 Stomach Margin 9060396 0.7 Kidney Cancer 8120607 0.2 IGastric Cancer 064005 3.2 Table LE. Panel 4D Re[. Rel. Exp.(%) Tissue Name Ag2558, Run Tissue Name Ag2558, Run 161905855 J161905855 Secondary Thl act 11.6 IHLVEC IL-lbeta 0.2 Secondary Th2 act 14.4 HUVEC IIFN gamma 0.4 Secondary TnI act 16.6 UVCTFapa+IN0.3 Secondary Thi rest 1.2 HUVEC TNF alpha IL4 2.2 Secondary Th2 rest 2.3 HUVEC IL-I 1 0.2 Secondary Tnl rest 2.3 Lung Microvascular EC none 0.2 Primary ThlI act 9.2 Lung Microvascular EC 0.4 IL- Ibeta______ Primary Th2 act 12.8 McoaulrD mlEC0.4 none Primary TrO act 15.9 Microsvasular Dermal EC 0.3 IL- Ibeta Primary ThlI rest 12.1 Bronchial epithelium I 3.2 ILlbeta Primar Th2 rst 6.9 Small airway epithelium0.
Primar Th2 rst 6.9 none09 Primary Trl rest 9.5 Small airway epithelium 7.9 IL-I beta CD4 lymphocyte act 1 3.1 JCoronery artery SMC rest 1.3 00 CD4 lymphocyte act 8.2 Coronery artery SMC IL- Ibeta CD8 lymphocyte act 8.2 Astrocytes rest Secondary CD8 lymphocyte 96 Astrocytes TNFalpba +1.
rest 96 IL-ibeta1.
Secondary CD8 lymphocyte act 10.8 KU-S812 (Basophil) rest 33.9 CD4 lymphocyte none 0.7 KU-812 (Basophil) 68.3 PMAlionomycin______ 2ry ThIrhMTrl-anti-CD95 2.6 CCDI 106 (Keratinocytes) 2.4 CHiII_____ none LAK cells rest 9.2 CCD1 106 (Keratinocytes) 0.8 IL- Ibeta LAK cells IL-2 6.7 Liver cirrhosis 0.3 LAK cells IL-2+IL- 12 9.2 Lupus kidney 0.1 LAK cells IL-2+IFN gamma 12.8 NCI-H292 none 17.1 LAK cells IL-2+ IL- 18 15.4 NCI-H292 IL-A 36.9 LAK cells PMAlionomycin 8.7 NCI-H1292 IL-9 21.3 NK Cells IL-2 rest 5.3 NCI-H1292 IL-13 15.5 Two Way MR 3 day 16.2 NCI-H1292 IFN gamma 11.5 Two Way MLR 5 day. 10.5 HPAEC none Two Way MLR 7 day 2.8 HPAEC TNF alpha IL-i1 0.6 ____beta PBMC rest 0.8 Lung fibroblast none 0.1 PBMC PWM 39.8 Lung fibroblast TNF alpha 4.1 beta PBMC PHA-L 19.6 Lung fibroblast IL-A 0.6 Ramos (B cell) none 8.3 Lung fibroblast IL-9 0.3 Ramos (B cell) ionomycin 54.7 Lung fibroblast IL- 13 0.2 B lymphocytes PWM 35.4 Lung fibroblast IFN gamma 0.3 B lymphocytes CD40L and 12.1 Dermal fibroblast CCDl1070 0.2 IL-4 rest EOL-1 dbcAMP 7.2 Dermal fibroblast CCDI1070 12.2 alpha______ EOL-l dbcAM .P 9.2 Dermal fibroblast CCDl1070 0.7 PMAlionomycin beta Dendritic cells none 4.2 DrafiobstIN0.7 Dendritic cells LPS 21.0 Dermal fibroblast IL-4 Dendritic cells anti-CD4O 2.6 IBD Colitis 2 0.1 Monocytes rest 0.3 IBD Crohn's 0.0 Monocytes LPS 100.0 Colon 1.4 Macrophages rest 13.3 Lung 20.4 Macrophages LPS 38.2 Thymus 4.6 00
NO
HUVEC none 0.9 Kidney 3.2 HUVEC starved AI_comprehensive panelvl.O Summary: Ag2558 Two experiments with the same probe and primer produce results that are in excellent agreement. The transcript is induced in rheumatoid (CTs=27-29) and osteoarthritic (CTs=26-28) joint tissue as compared to normal control joint. The transcript is expressed at lower levels in several other tissues. This gene encodes a protein with a putative ZIP Zinc Transporter domain. Therapeutic modulation of the expression or function of this protein may be useful in the treatment of arthritis. See, Lioumi et al., Genomics 1999 Dec 1;62(2):272-80 (PMID: 10610721).
Panel 1.3D Summary: Ag2558 Highest expression of the CG92489-01 gene is seen in a lung cancer cell line (CT=27.4). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker for lung cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of lung cancer.
Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
This gene is also expressed at low levels in the CNS, including the hippocampus, thalamus, substantia nigra, amygdala, cerebellum and cerebral cortex. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Panel 2D Summary: Ag2558 Highest expression of the CG92489-01 gene is seen in normal lung tissue adjacent to a tumor (CT=25.6). In addition, expression of this gene appears to be higher in normal lung tissue than in matched tumor tissue in four out of five matched tissue pairs. Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker for lung cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of lung cancer.
Panel 4D Summary: Ag2558: The transcript is expressed in activated macrophages, monocyte, and T cells as well as TNFalpha treated dermal fibroblasts, with highest 00 expression in LPS treated monocytes (CT=25). It is expressed in normal lung (possibly as a result of the presence of normal macrophages which express the transcript). The transcript encodes a putative Zinc transporter that may be important in leukocyte and fibroblast activation. Humanized antibodies that antagonize the function of this molecule may be important in the treatment of OA and RA (see All panel), M. NOV18a and NOV18b and NOV18c (CG93252-01 and CG93252-02 and CG93252-03): Cathepsin L precursor Expression of gene CG93252-01 and variants CG93252-02 and CG93252-03 was assessed using the primer-probe sets AglO081 and Agl 304b, described in Tables MA and MB.
Please note that the probe and primer set Ag13O4b is specific to CG93252-03 only.
Table MA. Probe Name Agl1O81 Primers Sequences Lenh Start SEQ ID
NO
Forward 5,-tcactcctccttgctgtcttt-3' 21 25 130 ,Probe TET 5'-tgcctgagattagcctcagctagtct-3-TARA 26 46 131 lReverse is,- tgccttccactgatctaaactg- 3' 22 84 132 Table MB. Probe Name AglI304b PriersSeuenesLenth Start SEQIED -ctctaggcttcaaggcaatgtt-3' 22 459 133 Probe TET-5'-tttggagaaccattattttgcttcca-3'-TAMRA 26 490 134 lReverse 15--ctccattgtcggcaacatac-3' 120 516 135 General-screenlng.panel-vi .4 Summary: Agi 081 Expression of the CG93252-0 1 gene is low/undetectable in all samples on this panel Panel 4D Summary: AglO8l/Agl3O4b Expression of the CG93252-01 gene is low/undetectable in all samples on this panel (CTs>3 N. NOV19 (CG93285-01): matrix metalloprotease Expression of gene CG93285-01 was assessed using the primer-probe set Ag3849 described in Table NA. Results of the RTQ-PCR runs are shown in Table NB.
Table NA. Probe Name Ag3 849 Primers Sequences Length Start SEQ ID
NO
Forward -ctgggaaagcctttgaactct-3' 21 428 136 Probe TET-5'-agtaaggcctcggccctgacctt-3)-TAMRA 23 451 137 ,Reverse, I -atgtccccttcactctcaaagt-3' 22 482 138 00 Table NB. General-screeningpanel-vi .4 Rel. Rel. Exp.(%) Tissue Name Ag3849, Run Tissue Name Ag3849, Run 218998428 218998428 Adipose 0.0 Renal ca. TK-l0 0.0 Melanomna* Hs688(A).T 0.0 Bladder 0.0 Melanomna* Hs688(B).T 0.0 Gastric ca. (liver met.) 100.0 Melanoma* M14 0.0 Gastric ca. KATO 111 0.0 Melanoma* LOXIMYI 0.0 Colon ca. SW-948 0.0 Melanoma* SK-MEL-5 0.0 Colon ca. SW480 Squamous cell carcinoma 5.2 Colon ca.* (SW480 met) 0.7 SCC-4 __SW620 Testis Pool 0.0 Colon ca. HT29 0.0 Prostate ca.* (bone met) 0.0 Colon ca. HCT-l 116 0.0 PC-3 Prostate Pool 0.0 Colon ca. CaCo-2 0.0 Placenta 0.0 Colon cancer tissue 0.0- Uterus Pool f 0.0 Colon ca. SWi 1116 0.0 Ovarian ca. OVCAR-3 0.0 Colon ca. Colo-205 -~0.0 Ovarian ca. SK-OV-3 0.0 Colon ca. SW-48 0.0 Ovarian ca. OVCAR-4 0.8 Colon Pool 0.0 Ovarian ca. OVCAR-5 0.0 Small Intestine Pool 0.0 Ovanian ca. IGROV-l 0.0 Stomach Pool 0.0 Ovarian ca. OVCAR-8 0.0 Bone Marrow Pool 0.0 Ovary 0.0 Fetal Heart 0.0 Breast ca. MCF-7 0.0 Heart Pool 0.0 Breast ca. NMA-MB-23 1 0.0 Lymph Node Pool 0.0 Breast ca. BT 549 0.0 Fetal Skeletal Muscle 0.0 Breast ca. T47D 0.0 Skeletal Muscle Pool 0.0 Breast ca. MDA-N 0.0 Spleen Pool 0.0 Breast Pool 0.0 Thymus Pool 0.0 Trachea 0.0 CNS cancer (glio/astro) 0.0 U87-MG Lung 0.0 CNS cancer (glio/astro) 0.0 U- I Fetal Lung 0.0 CNS cancer (neuro;met) 0.0
SK-N-AS
Lung ca. NCI-N417 0.0 CNS cancer (astro) SF-539 0.0 Lung ca. LX-l 2.7 CNS cancer (astro) SNB-75 0.0 Lung ca. NCI-H146 0.0 CNS cancer (glio) SN3- 19 0.0 Lung ca. SHP-77 0.0 CNS cancer (glio) SF-295 0.0 Lung ca. A549 1 0.0 jBrain (Amygdala) Pool 0.0 00
IN
C
Lung ca. NCI-H526 0.0 Brain (cerebellum) 0.0 Lung ca. NCI-H23 0.0 Brain (fetal) 0.0 Lung ca. NCI-H460 2.7 Brain (Hippocampus) Pool 0.0 Lung ca. HOP-62 0.0 Cerebral Cortex Pool 0.0 Lung ca. NCI-H522 2.0 Brain (Substantia nigra) Pool 0.0 Liver 0.0 Brain (Thalamus) Pool 0.0 Fetal Liver 0.0 Brain (whole) 0.0 Liver ca. HepG2 0.0 Spinal Cord Pool 0.0 Kidney Pool 0.0 Adrenal Gland 0.0 Fetal Kidney 0.0 Pituitary gland Pool 0.0 Renal ca. 786-0 0.0 Salivary Gland 0.0 Renal ca. A498 0.0 Thyroid (female) 0.0 Renal ca. ACHN 0.0 Pancreatic ca. CAPAN2 2.7 Renal ca. UO-31 0.0 Pancreas Pool 0.0 AI_comprehensive panel_vl.0 Summary: Ag3849 Expression of the CG93285-01 gene is low/undetectable in all samples on this panel CNS_neurodegenerationvl.0 Summary: Ag3849 Expression of the CG93285-01 gene is low/undetectable in all samples on this panel General_screening.panel_vl.4 Summary: Ag3849 Expression of the CG93285-01 gene is restricted to a sample derived from a gastric cancer cell line (CT=32.4). Thus, expression of this gene could be used to differentiate between this sample and other samples on this panel and as a marker to detect the presence of gastric cancer. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of gastric cancer.
O. NOV20a and NOV20b (CG93387-01 and CG93387-02): Fibropellin I precursor Expression of gene CG93387-01 and variant CG93387-02 was assessed using the primer-probe sets Agl 143, Agl921, Ag3082, Ag752, Ag923, Ag345 and Ag558, described in Tables OA, OB, OC, OD, OE, OF and OG. Results of the RTQ-PCR runs are shown in Tables OH, OI, OJ, OK, OL and OM.
Table OA. Probe Name Agl 143 Start SEQ ID Primers Sequences Length Position NO Forward 5s-gagatatagtggacgactg-3' 20 964 139 Probe ET-5' -cctgaatggaggctcttgtgttgacc-3' -TAMRA 26 999 140 Reverse -acaagcaggtgtaattcccc-3' 20 1029 141 Table OB. Probe Name Agl921 00
IN
C)
I Start SEQ ID Primers Sequences Length St NO Position NO Forward 5' -acacattccagactgtgctcat-31 22 317 142 Probe TET-5-acggcaagctctccttcaccatctt3'TAMRA 25 344 143 Reverse 5 -tccacacgatggactcatagtt-3' 22 370 144 Table OC. Probe Name Ag3O82 Start SEQ ID ers Sequences Length Position NO Forward 5'-cagacgcagaggtagctcc-3' 19 1385 145 Probe TET-5'-catctgggcactgtgtgttcatgttg-3'-TAMRA 26 1335 146 Reverse 5'-atttgaaatcacagccatgc-3' 20 1311 147 Table OD. Probe Name Ag752 P Start SEQ ID Sequences Lengh Position NO Forward S'-ggaggacgtcaggcactact-3' 20 204 148 Probe TET-5'-ctggacttcaatgccacctgggtttt-3'-TAMRA 26 235 149 Reverse 5'-gaactgcctccaaagaaggt-31 20 283 150 Table OE. Probe Name Ag923 Start SEQ ID ISequeces Position NO Forward 5-tcctgtctcacagcgaagtc-3' 20 1067 151 Probe ITET5'-cacacaagcaggtgtaattccccact-3'-TARA 26 1026 152 Reverse 5'-aatggaggctcttgtgtt~gac-3 21 1003 153 Table OF. Probe Name Ag345 Primers! Sequences Length Start Position SEQ ID NO -cagcctgcgagatggatgt-3 19 956 154 Pb TET 5acgactgcagccctgacccctg-3'TA 22 977 155 Reverse 5' -tcccactaggtcaacacaaga-3 22 1012 156 Table 0G. Probe Name Ag558 PrimersJ Sequences Length Start Position SEQ ID NO 1-gccacctggacgtgaacg-31 18 734 157 Probe jTET-5tgtgcctcccagccctgtaga3TAMRA 22 754 158 Reverse 51 aaactgttgatgccgtgagtaca-31 23 787 159 Table OH. Panel 1 Rel. Rel. Exp.(%) Tissue Name Ag34S, Run Tissue Name Ag345, Run 87584724 87584724 Endothelial cells 6.8 Renal ca. 786-0 0.0 Endothelial cells (treated) 2.1 Renal ca. A498 0.0 00
O
IN
O
Pancreas 13.9 Renal ca. RXF 393 0.0 Pancreatic ca. CAPAN 2 0.2 Renal ca. ACHN 0.8 Adrenal gland 23.7 Renal ca. UO-31 0.6 Thyroid 26.1 Renal ca. TK-10 0.0 Salivary gland 4.4 Liver 15.2 Pituitary gland 12.0 Liver (fetal) Brain (fetal) 2.3 Liver ca. (hepatoblast) HepG2 0.2 Brain (whole) 25.7 Lung 23.0 Brain (amygdala) 8.9 Lung (fetal) 24.5 Brain (cerebellum) 100.0 Lung ca. (small cell) LX-1 4.1 Brain (hippocampus) 11.3 Lung ca. (small cell) NCI-H69 0.8 Brain (substantia nigra) 6.1 Lung ca. (s.cell var.) SHP-77 11.6 Brain (thalamus) 6.7 Lung ca. (large cell)NCI-H460 4.8 Brain (hypothalamus) 11.0 Lung ca. (non-sm. cell) A549 2.2 Spinal cord 11.9 Lung ca. (non-s.cell) NCI-H23 3.1 glio/astro U87-MG 4.0 Lung ca. (non-s.cell) HOP-62 3.7 glio/astro U-118-MG 31.9 Lung ca. (non-s.cl) NCI-H522 1.3 astrocytoma SW1783 5.6 Lung ca. (squam.) SW 900 11.3 neuro*; met SK-N-AS 3.2 Lung ca. (squam.) NCI-H596 0.7 astrocytoma SF-539 7.7 Mammary gland 46.7 astrocytoma SNB-75 12.8 Breast ca.* (pl.ef) MCF-7 1.8 glioma SNB-19 13.4 Breast ca.* (pl.ef) 1.4 MDA-MB-231 glioma U251 2.9 Breast ca.* (pl. ef) T47D 5.4 glioma SF-295 51.1 Breast ca. BT-549 18.9 Heart 9.3 Breast ca. MDA-N 2.9 Skeletal muscle 8.4 Ovary 49.3 Bone marrow 3.1 Ovarian ca. OVCAR-3 0.3 Thymus 34.4 Ovarian ca. OVCAR-4 0.6 Spleen 15.8 Ovarian ca. OVCAR-5 23.7 Lymph node 14.7 Ovarian ca. OVCAR-8 1.4 Colon (ascending) 13.5 Ovarian ca. IGROV-I 0.3 Stomach 20.0 Ovarian ca. (ascites) SK-OV-3 9.9 Small intestine 11.6 Uterus 13.2 Colon ca. SW480 0.2 Placenta 3.1 Colon ca.* SW620 (SW480 0.4 Prostate 23.5 met) Colon ca. HT29 0.0 Prostate ca.* (bone met) PC-3 1.3 Colon ca. HCT-116 3.4 Testis 98.6 Colon ca. CaCo-2 0.1 Melanoma Hs688(A).T 6.4 Colon ca. HCT-15 1.1 Melanoma* (met) Hs688(B).T 0.0 Colon ca. HCC-2998 0.7 Melanoma UACC-62 2.8 00 00 Gastric ca. (liver met) 3.1 Melanoma M 14 18.2 NCI-N87 Bladder 23.8 Melanoma LOX IMVI 0.3 Trachea 12.6 Melanoma* (met) SK-MEL-5 0.2 lKidney 10.4 IMelanomna SK-MEL-28 lKidney (fetal) 17.7 Table 01. Panel 1.1 Rel. Rel. Exp.(%) Tissue Name Ag558, Run Tissue Name AgSS8, Run 109666712 109666712 Adrenal gland 19.1 Renal ca. UO-31 0.0 Bladder 34.4 Renal ca. R.XF 393 0.0 Brain (amygdala) 3.8 Liver 17.3 Brain (cerebellum) 51.1 Liver (fetal) 0.3 Brain (hippocampus) 17.0 Liver ca. (hepatoblast) 0.0 Brain (substantia nigra) 24.5 Lung 8.8 Brain (thalamus) 5.4 Lung (fetal) 29.5 Cerebral Cortex 21.0 Lung ca. (non-s.cell) 20.9 Brain (fetal) 54 Lung ca. (large 2.6 Brain (whole) 19.8 Lung ca. (non-s.cell) glio/astro U-i 18-MG 42.6 Lung ca. (non-s.cl) 0.0 NCI-H522 astrocytoma SF-539 14.3 Lung ca. (non-sm. cell) 0.3 astrocytoma SNB-75 8.9 Lung ca. (s.cell var.) 4.1 astrocytoma SW 1783 3.6 Lung ca. (small cell) LX- 1 9.4 gliomna U25 1 1.3 Lung ca. (small cell) gliomna SF-295 100.0 Lung ca. (squam.) SW 900 6.2 gliomna SNB-19 15.4 Lung ca. (squam.) gliofastro U87-MG 5.1 Lymph node 16.3 neuro*; met SK-N-AS 7.4 Spleen 0.0 Mammary gland 21.3 Thymus 4.2 Breast ca. BT-549 4.8 Ovary 53.2 Breast ca. MDA-N 3.0 Ovarian ca. IGRO V-i 0.0 Breast ca.* (pl.ef) T47D 1 4.0 O0varian ca. OVCAR-3 0.0 00 Breast ca.* (PIAef MCF-7 0.9 Ovarian ca. OVCAR-4 0.4 Breast ca.* (pl.ef) 0.3 Ovarian ca. OVCAR-5 57.8 MDA-MB-23 1 Small intestine 15.5 Ovarian ca. OVCAR-8 0.0 Colorectal 1.9 Ovarian ca,* (ascites) 23.3 Colon ca. HT29 0.0 Pancreas 44.1 Colon ca. CaCo-2 0.0 Pancreatic ca. CAPAN 2 0.0 Colon ca. HCT- 15 0.1 Pituitary gland 18.3 Colon ca. HCT- 116 2.5 Placenta 1.1 Colon ca. HCC-2998 0.2 Prostate 20.7 Colon ca. SW480 0.1 Prostate ca.* (bone met) 0.0 Colon ca.* SW620 (SW480 0.4 Salivary gland 11.0 Stomach 15.8 Trachea 9.7 Gastric ca. (liver met) 1.3 Spinal cord 16.0 NCI-N87_____ Heart 36.6 Testis 22.7 Skeletal muscle (Fetal) 12.2 Thyroid 62.4 Skeletal muscle 57.8 Uterus 18.3 Endothelial cells 3.1 Melanoma M 14 17.2 Heart (Fetal) 2.0 Melanoma LOX IMVI 0.0 Kidney 27.0 Melanoma UACC-62 Edney (fetal) 14.1 Melanoma SK-MEL-28 12.5 Renal ca. 786-0 0.0 Melanoma* (met) 0.0 SK-MEL-5 Renal ca. A498 0.0 Melanoma Hs688(A).T 2.2 Renal ca. ACHN 0.0 Melanoma* (met) 0.1 Renal ca. TK- 10 0.0 Table OJ. Panel 1.2 Rel. Rel. Exp.(%) Tissue Name Ag752, Run Tissue Name Ag752, Run 119778329 119778329 Endothelial cells 29.5 Renal ca. 786-0 0.0 Heart (Fetal) 3.2 Renal ca. A498 0.0 Pancreas 50.0 Renal ca. RXF 393 0.0 Pancreatic ca. CAPAN 2 0.0 Renal ca. ACHN 0.9 Adrenal Gland 51.8 Renal ca. UO-31 0.2 Thyroid 100.0 Renal ca. TK-l10 0.0 Salivary gland 19.9 Liver 32.1 Pituitary gland 30.1 Liver (fetal) 2.2 00 00 Brain (fetal) 8.4 Liver ca. (hepatoblast) 0.0 Brain (whole) 31.6 Lung 20.7 Brain (amygdala) 14.4 Lung (fetal) 37.6 Brain (cerebellum) 27.9 Lung ca. (small cell) LX-1 5.4 Brain (hippocampus) 24.1 Lung ca. (small cell) 1.2 Brain (thalamus) 75 Lung ca. (s.cell var.) 2.6 SHP-77 Cerebral Cortex 32.5 Lung ca. (large 6.1 Spinal cord 12.8 Lung ca. (non-sm. cell) 3.2 glia/astro U87-MG 6.0 Lung ca. (non-s.cell) 4.8 glio/astro U- I 18-MG 38.2 Lung ca. (non-s.cell) 10.7 astrocytoma SW 17 83 59 Lung ca. (non-s.dl) 3.1 neuro met SK-N-AS 10.0 Lung ca. (squam.) SW 900 astrocytomna SF-539 13.5 Lung ca. (squam.) 1.8 NCI-H596_______ astrocytoma SNB-75 2.7 Mammary gland 50.0 glioma SNB- 19 14.7 Breast ca.* (pI.ef) MCF-7 glioma U25 1 2.9 Breast ca.* (pl.ef) 1.7 1 glioma SF-295 56.6 Breast ca.* (pl. ef) T47D Heart 31.2 Breast ca. BT-549 11.2 Skeletal Muscle 75.3 Breast ca. MDA-N Bone marrow 1.8 Ovary 54.7 Thymus 1.0 Ovarian ca. OVCAR-3 0.2 Spleen 18.6 Ovarian ca. OVCAR-4 1.1 Lymph node 16.3 Ovarian ca. OVCAR-5 38.2 Colorectal Tissue 5.4 Ovarian ca. OVCAR-8 0.8 Stomach 19.1 Ovarian ca. IGRO V-I 0.4 Small intestine 21.9 Ovarian ca. (ascites) 24.8 Colon ca. SW480 0.3 Uterus 24.3 Colon ca.* SW620 (SW480 0.4 Placenta Colon ca. HT29 0.0 Prostate 39.0 Colon ca. HCT-1 16 3.1 Prostate ca.* (bone met) 1.6 IColon ca. CaCo-2 31.9 00 Colon ca. Tissue (0D03 866) 1.9 Melanoma Hs688(A).T 6.3 Colon ca. HCC-2998 1.9 Melanoma* (met) 3.4 Gastric ca.* (liver met) 5.4 Melanoma UACC-62 12.0 NCI-N87 Bladder 81.2 MelanomaMl14 12.7 Trachea 10.9 Melanoma LOX IMVI 0.0 Kidney 14.9 Melanoma* (met) 0.4 IKidney (fetal) 26.6 Table OK. Panel 1.313 Rd. Rel. Exp.(%) Tissue Name Ag3O82, Run Tissue Name Ag3082, Run Liver adenocarcinoma I 65 312 Kidney (fetal) 3.5417 Renal ca. 786-0 0.2 Pancreatic ca. CA.PAN 2 0.2 Renal ca. A498 12.4 Adrenal gland 12.3 Renal ca. RXIF 393 0.0 Thyroid 19.5 Renal ca. ACHN 0.0 Salivary gland 2.3 Renal ca. UO-31 0.2 Pituitary gland 10.2 Renal ca. TK-l10 0.1 Brain (fetal) 2.1 Liver 2.4 Brain (whole) 10.8 Liver (fetal) 1.6 Brain (amygdala) 12.3 Liver ca. (hepatoblast) 0.0 HepG2 Brain (cerebellum) 21.0 Lung Brain (hippocampus) 21.8 Lung (fetal) 6.4 Brain (substantia nigra) 3.9 Lung ca. (small cell) LX-1 2.9 Brain (thalamus) 8.7 Lung ca. (small cell) 0.3 NCI-H69 Cerebral Cortex 8.7 Lung ca. (s.cell var.) SHP-77 Spinal cord 12.8 Lung ca. (large 4.4 glio/astro U87-MG 3.0 Lung ca. (non-sm. cell) 1.3 glio/astro U- I 18-MG 100.0 Lung ca. (non-s.cell) 2.9 NCI-H23 astrocytoma SW 1783 6.9 Lung ca. (non-s.cell) 2.7 HOP-62 neuro met SK-N-AS 3.1 Lung ca. (non-s.dl) 0.0 CI-H522 astrocytoma SF-539 12.6 ILung ca. (squam.) SW 900 00 astrocytomna SNB-75 25.9 Lung ca. (squam.) 0.8 NCI-H596_______ glioma SNB-19 8.9 Mammary gland 12.5 glioma U25 1 4.9 Breast ca.* (pl.ef) MCF-7 0.3 gloaS-9 37 Breast ca.* (pl.ef) 1.7 glioma SF-295 33.7 MDA-MB-23 1 Heart (fetal) 1.6 Breast ca.* (pl.ef) T47D Heart 5.8 Breast ca. BT-549 15.1 Skeletal muscle (fetal) 5.8 Breast ca. MDA-N Skeletal muscle 14.3 Ovary 13.4 Bone marrow 1.0 Ovarian ca. OVCAR-3 1.1 Thymus 5.1 Ovarian ca. OVCAR-4 0.0 Spleen 22.5 Ovarian ca. OVCAR-5 12.2 Lymph node 28.5 Ovarian ca. OVCAR-8 Colorectal 3.6 Ovarian ca. IGROV-1 0.0 Stomach I 11.8 Ovarian ca.* (ascites) 7.2 Small intestine 14.5 Uterus 32.8 Colon ca. SW480 0.8 Placenta 1.1 Colon ca.* SW620(SW480 0.3 Prostate 12.4 met) Colon ca. HT29 0.0 Prostate ca.* (bone 0.0 Colon ca. HCT- 116 _1.1 Testis 8.1 Colon ca. CaCo-2 0.0 Melanoma Hs688(A).T 2.6 Colon ca. tissue(0D03866) 3.1 Melanoma* (met)0.
Colon ca. HCC-2998 0.4 Melanoma UACC-62 4.8 Gastric ca.* (liver met) 3.5 Melanoma M 14 17.8 Bladder 8.8 Melanoma LOX IMVI 0.2 Trachea 7.5 Melanoma* (met) 0.2 SK-MEL-S Kidney 3.5 IAdipose 17.2 Table OL. Panel 2.2 Rel. Rel. Exp.(%) Tissue Name Ag3O82, Run Tissue Name Ag3O82, Run 174284798 174284798 Normal Colon 20.3 Kidney Margin (0D04348) 54.0 Colon cancer (0D06064) 8.5 Kidney malignant cancer 0.6 Coln Mrgi (O0604) .4 Kidney normal adjacent 8.
Colo Magin 0D0064)6.4 tissue (0D06204E) 8.
00 Colon cancer (0ID06 159) 1.4 Kidney Cancer I) Colon Margin (0D06159) 9.6 Kidney Margin 16.4 Colon cancer (0D06297-04) 1.1 Kidney Cancer 8120613 0.0 Colon Margin (0D06297-05) 5.7 Kidney Margin 8120614 11.0 CC Gr.2 ascend colon5. KinyC ce903215 (0D03921)5. KinyCne903215 CC Margin (0D03921) 2.9 Kidney Margin 9010321 7.1 Colon cancer metastasis 1.3 Kidney Cancer 8120607 6.3 (01306104) Lung Margin (0D06104) 0.8 Kidney Margin 8120608 5.9 Colon mnets to lung 17.3 Normal Uterus 52.1 (0D04451-01) Lung Margin (0D0445 1-02) 17.2 Uterine Cancer 064011 37.6 Normal Prostate 20.3 Normal Thyroid 10.2 Prostate Cancer (OD044 10) 13.1 Thyroid Cancer 0640 10 Prostate Margin (OD04410) 10.1 Thyroid Cancer A302152 21.0 Normal Ovary 52.5 Thyroid Margin A302 153 29.5 Ovarian cancer 8.6 Normal Breast 52.1 Ovarian Margin 13.1 Breast Cancer (0D04566) 2.7 Ovarian Cancer 064008 23.2 Breast Cancer 1024 43.5 Ovarian cancer (0D06 145) 6.4 Breast Cancer Ovarian Margin (0D06145) 52.5 Breast Cancer Mets; 35.4 Ovarian cancer 13.6 Breast Cancer Metastasis 44.1 (0D06455-03) Ovarian Margin 33.2 Breast Cancer 064006 17.9 (01306455-07) Normal Lung 19.6 Breast Cancer 9100266 16.6 Invasive poor diff. lung 7.7 Breast Margin 9100265 26.1 adeno (0D04945-01 Lung Margin (0D04945-03) 48.3 Breast Cancer A209073 9.8 Lung Malignant Cancer 11.0 Breast Margin A2090734 28.3 (0D03 126) Lung Margin (0D03 126) 6.5 Breast cancer (0D06083) 63.7 Lung Cancer (0D05014A) 11.8 Breast cancer node 100.0 metastasis (0D06083) Lung Margin (0D05014B) 49.0 Normal Liver 39.8 Lung cancer (0D06081) 17.6 Liver Cancer 1026 17.2 ILung Margin (0D0608 1) 37.9 Liver Cancer 1025 40.3 00 Lung Cancer (0D0423 7-0Ol) 1.2 Liver Cancer 6004-T 33.7 Lung Margin (0D04237-02) 23.7 Liver Tissue 6004-N 2.2 Ocular Melanoma Metastasis 44.1 Liver Cancer 6005-T 42.3 Ocular Melanoma Margin 14.9 Liver Tissue 6005-N 44.8 Melanoma Metastasis 0.0 Liver Cancer 064003 4.2 Melanoma Margin (Lung) 16.3 Normal Bladder 17.6 Normal Kidney 9.8 Bladder Cancer 1023 8.4 Kidney Ca, Nuclear grade 2 26.6 Bladder Cancer A302 173 3.2 (OD 04338) Kidney Margin (0D04338) 1.6 Normal Stomach 25.2 Kidney Ca Nuclear grade 1/2 20.2 Gastric Cancer 9060397 0.7 Kidney Margin (0D04339) 10.2 Stomach Margin 9060396 4.7 Kidney Ca, Clear cell type 20.9 Gastric Cancer 9060395 8.1 (0D04340) Kidney Margin (OD04340) 13.3 Stomach Margin 9060394 12.2 Kidney Ca, Nuclear grade 3 4.4 Gastric Cancer 064005 7.2 Table OM. Panel 4D Rel. Rel. Rel. Rel. Rel. Rel.
Tise Tise Exp.(%) Tisse Agl 13 g921 Ag3082, Tisse Ag1 143, Ag1921, Ag3081, Run Run Run Run Run Run ______139943479 164629443 164681898 139943479 164629443 164681898 Secondary 1.3 0.0 1.4 1-RVEC 0.9 1.6 3.3 Thi act Se2 cnar 6.3 0.5 5.8 IiFN 23.0 13.6 13.6
HFUVEC
SecodaryTNF Se cnar 5.5 0.7 3.8 alpha 2.1 3.5
HUVEC
Secondary 6.3 1.9 12.8 TNF6.2 4.2 3.2 Thl rest alpha Secondary 17.0 2.0 19.2 1-UVEC 12.1 8.7 8.1 Th2 rest Lung Secondary 12.9 0.8 18.8 Microvasc 27.7 24.3 21.5 TnI rest ular EC i I I I~none II 00 00 Lung Microvasc Primary 0.9 0.0 0.8 ular EC 8.7 14.5 16.6 Th I act TNFalpha Microvasc Piay 07 00 23 ular 19.5 19.3 20.3 Th2 act Dra EC none Microsvas ular PrimaryDermal PrImacy 1.5 0.1 2.3 EC 10.1 11.3 10.3 Tn actTNFalpha I L- I beta Bronchial Primaryepitheliu Phreat 21.0 5.8 50.7 m 0.3 0.4 Thi restTNFalpha +4 ILIbeta__ Small Primary 3. 7.0. aiwy 20492.6 Th2 rest 32. 7. 00 e2.04.
m none Small airway Primaryepitheliu Primrys 2.3 0.3 6.3 m 0.7 0.2 2.1 Tn restTNFalpha Coronery CD4 2.5 1.4 2.3 artery 0.7 3.6 2.9 lymphocyt SMG rest e act Coronery artery C42.7 1.1 1.8 SNC6.7 1.4 3.7 lymphocyt TNFalpha e act ibeta CD8 srct lymphocyt 2.1 0.6 2.9 srocste 3.7 3.0 3.7 e Secondary 2.9 0.5 4.2 Astrocyte 3.7 3.4 ICD8 I I I 00 00 lymphocyt: TNFalpha e rest Secondary KU-812 lyrphcy 5.4 0.0 3.1 (Basophil) 0.0 0.0 0.0 lympocytrest e act CD .4 KU-812 lyniphocyt 11.7 3.7 10.8 (Basophil) 0.0 0.1 0.1 PMA/iono e none 2ry CCD 1106 Thl/Th2I Krtn TrI _anti- 27.5 1.3 27.0 (Kterain 0.0 0.0 0.1 cyte CHI non CCD 1106 (Keratino, LAK cells 451.1 4. cytes) 0.0 0.0 0.2 rest TNFalpha IL- ibeta LAK cells 6.8 3.7 11.3 Liver 354.5 5.9 IL-2 cirrhosis_____ LAK cells Lupus IL-2+IL-1 1.8 0.3 2.8 kidney 15.0 6.1 10.2 LAK cells NI12 IL-2+IFN 3.2 1.1 6.4 2none2 0.4 1.6 gamma LAK cells CH2 IL-2-i 1.7 0.5 7.6 2 I29 0.6 1.3 3.4 IL-18 2I- LAK cells PMA/iono 1.6 0.1 1.1 NCI-H29 1.0 2.2 2 11-9 mycin NKCls 2.2 0.8 3.2 NIH2 3.5 0.4 0.8 IL-2 rest 2 IL-13 Two Way NCI-H429 MLR 3 5.6 2.3 6.0 2 IFN 2.3 1.0 1.3 day Two Way
PE
MLR 5 1.1 0.4 1.4 noneC 58.6 32.5 32.1 day nn Two Way
HPAEC
MLR 7 0.9 0.5 1.4 alpa 18.6 16.8 22.4 da I IL-1 beta 00 00 PBMC Lung resC 7.1 1.7 4.6 fibroblast 78.5 79.6 90.1 none Lung PBMC fibroblast PBMC 0.9 1.0 3.8 TNF 20.0 18.0 24.0 PWM alpha IL-i beta PBMC Lung PHA-L 3.0 0.4 2.6 fibroblast 48.3 100.0 100.0 Ramos (BLung Ram) one 0.0 0.0 0.0 fibroblast 35.4 56.6 49.7 cell) none ~~IL-9 Ramos (B Lung cell) 0.0 0.0 0.2 fibroblast 100.0 64.2 77.4 ionomycin B Lung lymphocyt 5.3 2.0 22.8 fibroblast 56.6 96.6 82.4 es PWM
IFN
gamma B Dermal lymphocyt 18.0 3.6 57.8 fibroblast 579.3 17.2 es CD40L CCD 1070 and IL-4 Dermal EOL-1 fibroblast dbcAMPT 0.0 0.1 0.2 CCD1070 11.3 6.0 25.5 ThJF EOL-l Dermal dbcANT 0.i00P. fibroblast 2034.I.
PMA/iono 00.0.0 CCD 1070 I2. mycin Dermal Dendritic 334.2 5.1 fibroblast 30.8 9.2 18.7 cells none IFN gamma Dendritic Dermal cells LPS 0.8 1.5 1.3 fibroblast 35.1 17.8 26.4 Dendritic lEBD cells 4.3 4.6 5.4 Colitis 2 4.1 2.8 anti-CD4O Monocyte 2.4 8.6 6.3 IBD 1.7 1.4 2.2 s rest Crohn's Monocyte 0.0 0.2 1.0 Colon 6.2 7.4 is LPS I 00
O
O
IN
O0
O-
Macropha 1.8 2.9 1.7 Lung 13.9 19.1 20.3 ges rest Macropha 0.7 0.5 0.5 Thymus 25.2 16.4 14.7 ges LPS HU C 6.2 12.1 10.4 Kidney 13.8 8.6 31.0 none HUVEC 4.4 11.9 12.9 starved_ Panel 1 Summary: Ag345 Highest expression of the CG93887-01 gene is seen in the cerebellum (CT=24). High levels of expression are also seen in all regions of the CNS examined, including pituitary, amygdala, hypothalamus, thalamus, substantia nigra, and hippocampus. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Among tissues with metabolic function, this gene is expressed at high levels in pituitary, adrenal gland, pancreas, thyroid, skeletal muscle, heart, and adult and fetal liver.
This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
High levels of expression are also seen in cell lines derived from ovarian, breast, lung, brain and melanoma cancers. Therefore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of these cancers.
In addition, this gene is expressed at much higher levels in liver tissue (CT=27) when compared to expression in the fetal counterpart (CTs=31). Thus, expression of this gene may be used to differentiate between the fetal and adult source of this tissue.
Panel 1.1 Summary: Ag558 Highest expression of the CG93387-01 gene is seen in a brain cancer cell line (CT=23.8). High levels of expression are also seen in cell lines derived from melanoma, ovarian, and lung cancers. Thus, expression of this gene could be used to differentiate between the brain cancer cell line sample and other samples on this panel and as a marker for brain cancers. Furthermore, therapeutic modulation of the expression or function of this gene may be effective in the treatment of ovarian, lung, brain, and melanoma cancers.
Among tissues with metabolic function, this gene is expressed at high to moderate levels in pituitary, adrenal gland, pancreas, thyroid, and adult and fetal liver, heart, and skeletal muscle. This widespread expression among these tissues suggests that this gene 00 O product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
In addition, this gene is expressed at much higher levels in heart and liver tissue (CTs=25-26) when compared to expression in the fetal counterpart (CTs=29-32). Thus, expression of this gene may be used to differentiate between the fetal and adult source of _these tissues.
High levels of expression are also seen in all regions of the CNS examined, including pituitary, amygdala, thalamus, substantia nigra, cerebral cortex, and hippocampus. Therefore, C therapeutic modulation of the expression or function of this gene may be useful in the 00 Streatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Panel 1.2 Summary: Ag752 Highest expression of the CG93387-01 gene is seen in the thyroid (CT=25). High levels of expression are also seen among other metabolic tissues, including pancreas, adrenal, pituitary, skeletal muscle and adult and fetal heart and liver. This widespread expression among these tissues suggests that this gene product may play a role in normal neuroendocrine and metabolic and that disregulated expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
In addition, this gene is expressed at much higher levels in heart and liver tissue (CTs=26.8) when compared to expression in the fetal counterpart (CTs=30-31). Thus, expression of this gene may be used to differentiate between the fetal and adult source of these tissues.
High levels of expression are also seen in all regions of the CNS examined, including pituitary, amygdala, thalamus, cerebral cortex, and hippocampus. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Overall, expression of this gene appears to be more highly associated with normal tissues than cancer cell lines. High levels of expression are seen, however, in brain and ovarian cancer cell lines. Thus, this gene product may be involved in cancer of these tissues.
Panel 1.3D Summary: Ag3082 Highest expression of the CG93387-01 gene is seen in a brain cancer cell line (CT=27.3). Significant levels of expression are also seen in a cluster of samples derived from ovarian, breast, melanoma and brain cancer cell lines. Thus, expression of this gene could be used to differentiate between the brain cancer samples and 289 00 O other samples on this panel and as a marker to detect the presence of these cancers. This gene encodes a protien that is homologous to an epidermal growth factor related protein (fibropellin like). Fibropellins are a family of extracellular sea urchin matrix proteins that have been implicated in cell adhestion. Therefore, therapeutic modulation of the expression I0 or function of this gene may be effective in the treatment of ovarian, breast, melanoma and brain cancers.
Among tissues with metabolic function, this gene is expressed at moderate to low levels in pituitary, adipose, adrenal gland, pancreas, thyroid, and adult and fetal skeletal muscle, heart, and liver. This widespread expression among these tissues suggests that this NC1 gene product may play a role in normal neuroendocrine and metabolic and that disregulated 00 expression of this gene may contribute to neuroendocrine disorders or metabolic diseases, such as obesity and diabetes.
Moderate to low levels of expression are also seen in all regions of the CNS examined, including pituitary, amygdala, thalamus, substantia nigra, cerebral cortex, and hippocampus. Therefore, therapeutic modulation of the expression or function of this gene may be useful in the treatment of neurologic disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, multiple sclerosis, stroke and epilepsy.
Panel 2.2 Summary: Ag3082 Highest expression of the CG93387-01 gene is seen in a breast cancer metastasis (CT=28.3). Significant levels of expression are also seen in a cluster of breast cancer samples. Conversely, expressoin appears to be higher in normal ovary and lung tissue when compared to expression in the normal adjacent tissue. Thus, therapeutic modulation of the expression or function of this gene may be effective in the treatment of breast, ovarian and lung cancers.
Panel 4D Summary: Ag 143/Agl921/Ag3082 Three experiments with three different probe and primer sets produce results that are in very good agreement, with highest experession of the CG93387-01 gene in treated lung fibroblasts (CTs=27-29). Moderate levels of expression are also seen in treated dermal fibroblasts, and lung and dermal microvasculature, and HUVECs. Thus, expression of this gene could be used as a marker of fibroblasts or vasculature. The putative protein encoded by the transcript may also play an important role in the normal homeostasis of these tissues. Therefore, therapeutics designed with this gene product could be important for maintaining or restoring normal function to these organs during inflammation associated with asthma, psoriasis, and emphysema.
P. NOV21 (CG93702-O1): Interleukin Receptor Expression of gene CG93702-01 was assessed using the primer-probe sets Ag3878, Ag4529 and Ag4733, described in Tables PA, PB and PC. Results of the RTQ-PCR runs are shown in Table PD.
Table PA. Probe Name Ag3878 Prmes eqenesLegt Start SQID) Seqencs ~en~h~Position NO Forward 5'1-ccagagacaaggtcctctgat-3' 21 j 885 160 Probe TET-51-ccaggcaacacctttgttgctgtg-31-TAMRA~ 24 922 161 Reverse 5' -agtcagcaggagaaagatgga-3' 91 46 162 Table PB. Probe Name Ag4529 Primers Sequences Length PSiato NO E Forward 5 1-agatggagatccactgagcaCt-3' 22 52 163 Probe TET-51-gctggaccttggagagtgaggcc-3V-TAMRA 23 152 164 ,Reverse.55'-cctgagaatgttgttggtgagg-3 j 22 294 165 Table PC. Probe Name Ag4733 Primers Sequences Length Start SEQ EID Position NO Forward 51-tactcccttccgtccttagc-3' 20 1378 166 Probe TET-5'-aggcttggtcctaatcccagcacttt-3'-TAMRA 26 1399 167 Reverse 151-ctgatctgcaggttgcaaag-3' 20 1458 168 Table PD. Panel 4.I1D Rel. Rel. Exp.(%) Tissue Name Ag3878, Run Tissue Name Ag3878, Run 170129734 170129734 Secondary Thi act 3.6 H-UVEC IL- Ibeta 0.0 Secondary Th2 act 100.0 HUJVEC LFN gamma 0.0 Secondary TrI act 71.2 HUVEG TNF alpha lEN0.
Secondary Th I rest 5.2 HIUVEC TNF alpha 1L4 0.0 Secondary Th2 rest 45.1 HUVEC IL-li1 0.0 Secondary TnI rest 36.1 Lung Microvascular EC none 0.0 Primary Thi1 act 0.0 Lung Microvascular EC 0.0 IL-lbeta Primary Th2 act 22.8 Microvascular Dermal EC 0.0 none Primary Trl act 4.9 Microsvasular Dermal EC 0.0 IL- Ibeta 00 Primary Th I rest 10.4 Bronchial epithelium 0.0 ILI beta Primary Th2 rest 17.7 Small airway epithelium none 0.2 Primary Tr rest 31.2 Small airway epithelium 0.4 IL-lIbeta CD4 lymphocyte act 1.2 Coronery artery SMC rest 0.0 CD4 lymphocyte act 3.5 Coronery artery SMC 0.0 IL- Ibeta CD8 lymphocyte act 2.2 Astrocytes rest 0.0 Secondary CD8 lymphocyte 1.6 Astrocytes TNFalpha 0.0 rest IL-lbeta Secondary CD8 lymphocyte act 29.5 KU-812 (Basophil) rest CD4 lymphocyte none 0.2 KU-8 12 (Basophil) 8.6 ________PMAlionomycin______ 2ry Thl/Th2ITrl-anti-CD95 64.2 CCD 1106 (Keratinocytes) 0.4 CHI I _____none LAK cells rest 2.2 CCDI 106 (Keratinocytes) 0.3 IL- Ibeta______ LAK cells IiL-2 8.3 Liver cirrhosis 0.0 LAK cells IL-2+IL- 12 3.2 NCI-H292 none 0.0 LAK cells IL-2+IiFN gamma 2.7 NCI-H292 IL-4 0.0 LAK cells IL-2+ IL- 18 4.9 NCI-H292 IL-9 0.0 LAK cells PMA/ionomycin 6.0 NCI-H292 IL- 13 0.0 NK Cells IL-2 rest 8.1 NCI-H292 IFN gamma 0.3 Two Way MLR 3 day 0.6 HPAEC none 0.0 Two Way MLR. 5 day 0.4 HPAEC TNF alpha IL-l1 0.0 Two Way MLR 7 day 1.9 Lung fibroblast none 0.0 PBMC rest 0.4 Lung fibroblast TNF alpha 0.0 IL-i beta PBMC PWM 1.1 Lung fibroblast IL-4 0.0 PBMC PHA-L 2.9 Lung fibroblast IL-9 0.0 Ramos (B cell) none 0.0 Lung fibroblast IL-13 0.0 Ramos (B cell) ionomycin 0.0 Lung fibroblast ITN gamma 0.0 B lymphocytes PWM 1.5 Dermal fibroblast CCD 1070 0.0 B lymphocytes CD40L and 2.6 Dermal fibroblast CCD 1070 62.4 IL-4 TNF alpha_____ EOL-1 dbcAMP 0.2 Dermal fibroblast CCD 1070 0.0 beta_____ EOL- I dbcAMP0. Demlfbols Fga a 00 PMA/ionomycin 0. IemlfbolatE am Dendritic cells none 0.3 IDermal fibroblast IL-4 0.1 IDendritic cells LPS 0.0 IDermal Fibroblasts rest 0.0 00
O
O
0 t? Os Dendritic cells anti-CD40 0.0 Neutrophils TNFa+LPS 0.3 Monocytes rest 0.0 Neutrophils rest 0.0 Monocytes LPS 0.0 Colon 0.1 Macrophages rest 0.0 Lung 0.4 Macrophages LPS 0.0 Thymus HUVEC none 0.0 Kidney 0.0 HUVEC starved 0.0 CNS_neurodegeneration_vl.O Summary: Ag3878/Ag4529/Ag4733 Expression of the CG93702-01 gene is low/undetectable (CTs 35) across all of the samples on this panel.
General_screening_panel_vl.4 Summary: Ag3878 Results from one experiment with the CG93702-01 gene are not included. The amp plot indicates that there were experimental difficulties with this run.
Panel 4.1D Summary: Ag3878 Highest expression of the CG93702-01 gene is detected in activated secondary Th2 (CT=27.6). In addition high expression of this gene is also seen in resting and activated primary and secondary Thl, Th2, Trl cells, CD45RA CD4 lymphocyte, secondary CD8 lymphocyte, resting and lymphokine activated killer (LAK) cells. Since these cells play an important role in lung pathology, inflammatory bowel disease and autoimmune disorders, including rheumatoid arthritis, antibody or small molecule therapies designed with the protein encoded by this gene may block or inhibit inflammation and tissue resulting from asthma, allergies, hypersensitivity reactions, inflammatory bowel disease, viral infections and autoimmune diseases.
Interestingly, expression of this gene is also stimulated in TNF alpha treated dermal fibroblast CCD1070 cells (CT=28) as compared to the resting cells (CT=40). Thus expression of this gene can be used to distinguish between these two samples. In addition, expression in TNF alpha treated dermal fibroblasts suggests that this gene product may be involved in skin disorders, including psoriasis.
Expression of this gene is also detected in basophils (KU-812 cells) (CTs=31).
Therefore, antibody or small molecule therapies designed with the protein encoded for by this gene could block or inhibit inflammation or tissue damage due to basophil activation in response to asthma, allergies, hypersensitivity reactions, psoriasis, and viral infections.
Ag4529/Ag4733 Expression of this gene is low/undetectable (CTs 35) across all of the samples on this panel.
Q. NOV23 and NOV22 (CG94013-O1 and CG93792-O1): Ig, TSP and EGF domain-containing protein Expression of gene CG94013-01 and variant CG93792-01 was assessed using the primer-probe sets Agl 315b, Agl3l6b, Ag1924, Ag3l08, Ag900, Ag3899, Ag3960, Ag4338 and Ag343, described in Tables QA, QB, QC, QD, QE, QF, QG, QH and QI. Results of the RTQ-PCR runs are shown in Tables QJ, QK, QL, QM, QN, QO and QP. Please note that the probe and primer sets Ag3 108 and Ag3899 are specific to CG94013-01.
Table QA. Probe Name AglI315b Primers Sequences Length Start SEQ ED SPosition NO Forward 5' -catcagaggttcttcgaaagc-3' 21 4844 j169 Probe TET-5' -cacaacggaccacacagcgataagat-3' -TAMRAf 26 4812 170 IReverse 15 1-aggactgtgacaatacgattgg-31 22 1 4790 1 171 Table OB. Probe Name AglI316b Primers Sequences Lngh Start ISEQ ED en~ Position NO Forward 5'-aatgccatggggacttactact-3' 22 4672 172 Probe TET-5'-cctaaaggcctcaccatagctgcaga-31-TAMRA 26 4702 173 Reverse 5'-cccaaagcacactcatcaatat-31 22 4745 174 able Q. Probe Name Ag 1924 Primers Sequences Length Start SEQ ID Position NO Forward 5 1-ctatgggagcagggattcc-3' 19 4646 175 Probe TET-5'-ctgcacattcatcctcatcagcacaa-3-TAMRA 26 4617 176 lReverse 15,-ccgggtttaccttagactcagt-3' 122 4586 177 Table 0D. Probe Name Ag3 108 Primrs equnce Legth Start SEQ ED Primrs equnce LegthPosition NO Forward 5 attccattgcccaaattaaca-3' 21 2101 178 Probe TET-5'-ccttcaataacaatattattccagccca-3'-TAMRA 28 2126 179 Reverse 5 1-actgtgtccattcacactgtca-31 22 2157 180 Table OE. Probe Name Ag900 Primrs equnce Legth Start ISEQil) Primrs equnce Legth Position INO Forward S'-aatgccatggacttactact-3' 22 4672 j181 Probe TET-5'-cctaaaggcctcaccatagctgcaga-3'-TAMRA 26 4702 j182 Reverse 51-cccaaagcacactcatcaatat-31 22 4745 j183 Table OF. Probe Name Ag3 899 jPrimersl Sequences ILengthl Start IS E QID 00 00 IPosition JNO Forward 51 -ccattgcccaaattaacatg-3' J20 2104 184 Probe TET-5' -ccttcaataacaatattattccagccca-3' -TAMRA 28 2126 j185 Reverse 51 -actgtgtccattcacactgtca-3' 22 2157 186 Table 0G. Probe Name Ag3960 Primers Sequences ILength Start ISEQ IlD osition NO -aaacacttcatgcatcctctgt-3' j22 4475 187 Probe TET-5 -cactgggttttaaaattcatgcttca-3 -TAMRA 26 4526 188 Reverse [51 -ttaCtgCgatctcctttggata-3' J22 4553 189 Table OH. Probe Name Ag4338 Primrs equnce Legth Start ISEQ ID Primrs equnce Legth Position jNO Forward 51 -tcatgcatcctctgtggaat-3' 20 4482 j190 Probe TET-5'-cactgggttttaaaattcatgcttca-3'-TAMRA 26 4526 191 IReverse 15 ctgattactgcgatctcctttg-3' 22-- 4557 192 Table Q1. Probe Name Ag343 Primers Sequences Length Start Position SEQ ID NO Forwards'1 -attgcacctggtcacctgagt-3' 21 3877 193 Probe TET-5'-tggccgtccctgtcccgga-3'-TAMRAI 19 I 3852 194 Reverse 5--gctgtgcgaccatcctgtg-3- 19 3822 195 Table OJ. CNS-neurodegeneration-vi .0 Rel. Rel. Rel. Rel. Re[. Rel.
Tissue Tissue Ex.% I x.% Nae Ag3899, Ag396O, Ag4338, Nae Ag3899, jAg396O, Ag4338, Nae Run Run Run Nae Run Run Run ________212247977 212347483 224349481 12122479771212347483 224349481 Control AD 1 Hippo 0.0 5.6 0.0 (Path) 3 0.0 9.3 0.0 Temporal ___Ctx Control AD 2 Hippo 0.0 6.2 0.0 (Path) 4 32.3 33.9 35.6 Temporal Ctx AD I AD 3 Hippo 0.0 8.1 0.0 Occipital 0.0 30.4 25.0 Ctx_ AD 2 AD4Hpo 000000 Occipital 0.0 0.0 0.0 AD 4Hipp 0. 0.00.0 Ctx 00 AD 3 AD 5 hippo 13.3 53.6 49.3 Occipital 0.0 6.3 0.0 Ctx AD 4 AD 6Hippo 24.1 39.8 0.0 Occipital 0.0 14.1 0.0 Ctx Control 2AD Ciponto 0.0 9.4 0.0 Occipital 6.2 0.0 0.0 Control 4AD 6 Ciponto 9.9 8.3 0.0 Occipital 0.0 9.5 51.8 Hippox Control Control 1 (Path) 3 0.0 0.0 0.0 Occipital 17.4 25.9 55.9 Hippo _Ctx_ AD I Control 2 Temporal 0.0 15.8 18.6 Occipital 0.0 11.2 0.0 Ctx _Ctx AD 2 Control 3 Temporal 0.0 10.1 0.0 Occipital 0.0 11.1 0.0 Ctx _Ctx_ AD 3 Control 4 Temporal 0.0 5.4 0.0 Occipital 0.0 3.1 0.0 Ctx _Ctx_ AD 4 Control Temporal 0.0 11.2 0.0 (Path) 1 100 Ctx Occipital 100 4, 0.
Ctx_ AD 5 Inf Control Temporal 15.3 11.8 0.0 (Path) 2 0.0 9.0 0.0 Ctx Occipital Ctx__ AD 5 Control SupTemporal 0.0 10.2 0.0 (Path) 3 0.0 15.8 53.6 Ctx Occipital Ctx__ AD 6 Inf Control Temporal 28.9 90.1 37.9 (Path) 4 00 2..
C Occipital 00 2. AD 6 Sup Control 1 Temporal 21.3 41.5 65.5 Parietal 0.0 21.6 0.0 Ctx _Ctx__ Control I Control 2 Temporal 0.0 0.0 36.6 Parietal 0.0 8.5 0.0 Ctx _Ctx I I_ ,Conto 12 0.0 1 0.0 29.9 lControl 3 1 0.0 1 3.7 1 0.0- 00 00 Temporal Parietal Ctx ___Ctx Control 3 Control Temporal 0.0 6.1 0.0 (Path) 1 10.6 39.2 66.0 Ctx Parietal Control 4 Control Temporal 0.0 17.4 0.0 (Path) 2 0.0 57.0 21.2 CtK Parietal Control Control (Path) 1 52.1 38.2 0.0 (Path) 3 0.0 15.1 29.7 Temporal Parietal Ctx _Clx Control Control (Path) 2 0.0 35.8 24.0 (Path) 4 0.0 100.0 71.7 Temporal Parietal Ctx ___Ctx Table 0K. General-screeningjpanel-vl .4 Rel. Rel. Rell. Rel. Rel. Rel.
Tissue Exp.(%) Name Ag3899, Ag3960, Ag4338, Tissue Name Ag3899, Ag3960, Ag4338, Run Run Run Run Run Run ________219166475 217310662 222550860 _______219166475 217310662 222550860 Adipose 1.0 1.9 2.6 Renal ca. 0.0 0.0 0.0 ~TK-10 Mel8amT 33.9 72.7 79.0 Bladder 0.6 1.2 1.1 Melanoma* Gastric ca.
Hs688(B).T 8.4 22.4 28.9 (liver met.) 0.0 0.0 0.1 NCI-N87 Melanoma* 12.9 24.0 25.3 Gastric ca. 0.0 0.1 0.1 M14 III Melanomna* 0.1 0.2 0.4 Colon ca. 0.0 0.0 0.0 LOXIMVI ____SW-948 Melanoma* 58.6 58.2 774 Colon ca. 0.0 0.1 0.2 Squamnous Colon ca.* cell0.0. 0. S40mt 0.0.00 carcinoma 0. SW620 mt Testis Pool 0.6 0.9 0.9 lColon ca. 0.0 0.0 0.0 HT29 Prostate ca.* Colon ca.
(bone met) 0.2 0.6 0.8 HCT- 116 0.0 0.1 0.1 PC-3 Prostate 0.4 1.4 2.1 Colon ca. 0.0 0.0 0.1 Pool0 Plcna0.1 0.3 0.5 1Colon cancer 1 1.2 2.1 3.
00 I tissue Uterus Pool 0.1 0.2 0.6 Colon ca. 0.0 0.0 0.0 Ovarian ca. 0.4 1.2 1.2 Colon ca. 0.0 0.0 0.0 OVCAR-3 Colo-205____ Ovarian ca. 0. 0.8 0.5 Colon ca. 0.0 0.0 0.0 SK.QV-3 .SW-48 Ovarian ca. 0.1 0.1 0.2 Colon Pool 0.2 1.5 1.8 OVCAR-4___ Ovarian ca. 0.2 0.4 0.6 Small Intestine 0.2 1.2 .Pool Ovarian ca. 0.1 0.1 0.0 Stomach Pool 0.1 0.9 0.8 lGROV-1 Ovarian ca. 0.1 0.2 0.1 Bone Marrow 0.2 0.4 0.6 OVCAR-8 .Pool Ovary 3.6 4.3 5.6 Fetal Heart 1.0 1.3 1.9 Breast ca. 0.5 2.0 2.7 Heart Pool 0.3 0.8 0.7 MCF-7 Breast ca. LmhNd M'DA-MB-2 0.1 0.2 0.1 PlmhNd 0.4 1.8 2.2 31 Po Breast ca. 2.6 10.0 7.1 Fetal Skeletal 0.1 0.5 0.7 BT5-49 Muscle Breast ca. 0.2 0.4 0.7 ISkeletal 0.2 0.8 0.6 T47D Muscle Pool MDea-Nca 2.2 15.1 20.3 Spleen Pool 1.1 2.3 2.8 Breast Pool 1 0.1 1.1 1.9 Thymus Pool 0.6 1.0 1.3 CNS cancer Trachea 1.0 2.8 2.9 (glio/astro) 0.8 1.9 2.4 ____U87-MG CNS cancer Lung 0.0 0.5 0.7 (glio/astro) 3.0 10.0 10.5 18-MG___ CNS cancer Fetal Lung 5.6 21.9 23.7 (neuro;met) 0.0 0.0 0.0 Lugc. 0.0 0.1 0.1 CN acr 18.8 37.1 37.1 NCI-N417 SF-539 Lung ca. 0.0 0.0 0.0 CN cancer 100.0 100.0 100.0 LX..1 Lung ca. CNS cancer 0.0 0.1 0.0 NCI-HI46 0001.1 (glio) SNB-19 Lun c. .0 .0 0. CNS cancer 0.8 2.4 3.1 LugHa. 0.-007. (glio) SF-295 Lung ca.Brain Lun4Ca 0.0 0.0 0.0 (Amygdala) 0.0 0.0 0.0 A549 Lung ca 0.0 0.0 0.0 Brain CI-11526 (cerebellum) 0.00.00 00 Lung ca. 0.3 0.2 0.3 Brain (fetal) 0.0 0.2 0.3 NCI-H23Brn Lnca.46 0.1 2.3 1.3 (Hippocampus) 0.0 0.1 0.3 CI-H460 Pool Lung ca. 0.6 1.7 2.6 Cerebral0.01 01 HOP-62 _____Cortex Pool 0.0101 Lung ca.Brain LnCa.52 0.0 0.1 0.0 (Substantia 0.0 0.1 0.1 CI-H522~nira Pool Brain Liver 0.0 0.1 0.2 (Thalamnus) 0.0 0.2 0.2 Pool Fetal Liver 1.3 1.7 2.4 Brain (whole) 0.0 0.2 0.2 Liver ca. 00.0.0 Spinal Cord 0.03 02 HepG2 0000.0 Pool0.03 02 Kidney Pool 0.2 0.7 0.6 Adrenal Gland 0.1 0.4 0.4 Ftl1.4 2.4 3.6 Pituitary gland 0.1 0.2 Kidney _____Pool Renal ca. 0.2 0.8 0.4 Salivary Gland 0.2 0.6 0.7 786-0 Renal ca. 0.0 0.2 0.2 Thyroid 0.1 0.2 0.7 A498 (femnale) Renal ca. 0.0 0.0 0.0 Pancreatic ca. 0.0 0.0 0.0 CHN __CAPAN2 Rena-ca 4.6 4.8 1.3 Pancreas Pool 0.4 1.4 1.4 Table 0L. Panel 1 Rel. Rel. Exp.(%) Tissue Name Ag343, Run Tissue Name Ag343, Run 87586142 87586142 Endothelial cells 0.0 Renal ca. 786-0 0.9 Endothelial cells (treated) 0.0 Renal ca. A498 0.0 Pancreas 0.3 Renal ca. RXF 393 0.0 Pancreatic ca. CAPAN 2 0.0 Renal ca. ACHN 0.0 Adrenal gland 1.3 Renal ca. UO-3 1 4.3 Thyroid 4.2 Renal ca. TK- 10 0.0 Salivary gland 6.1 Liver 14.6 Pituitary gland 2.6 Liver (fetal) 3.7 Brain (fetal) 0.0 Liver ca. (hepatoblast) HepG2 0.0 Brain (whole) 0.0 Lung 12.4 Brain (amygdala) 0.0 Lung (fetal) 29.1 Brain (cerebellum) 0.2 Lung ca. (small cell) LX-l1 0.0 -Brain (hippocamnpus) 0.0 Lung ca. (small cell) NCI-H69 0.0 IBrain (substantia nigra) 0.0 Lung ca. (s.cell var.) SHP-77 0.0 IBrain (thalamus) 0.0 Lung ca. (large cell)NCI-H4601 15.7 00 Brain (hypothalamus) 6.5 Lung ca. (non-sm. cell) A549 0.0 Spinal cord 2.9 Lung ca. (non-scell) NCI-H23 0.0 glio/astro U87-MG 6.3 Lung ca. (non-scell) HOP-62 7.2 glio/astro U- I 18-MG 10.6 Lung ca. (non-sdc) NCI-H522 0.0 astrocytoma SW1 783 1.6 Lung ca. (squam.) SW 900 9.2 neuro*; met SK-N-AS 0.0 Lung ca. (squam.) NCI-H596 0.0 astrocytoma SF-539 54.7 Mammary gland 72.2 astrocytoma SNB-75 29.7 Breast ca.* (pl.et) MCF-7 13.7 glioma SNB-19 0.0 Breast ca.* (pi.ef) 0.0 MDA-MB-231 glioma U25 1 0.6 Breast ca.* (pl. ef) T47D 0.0 glioma SF-295 1.8 Breast ca. BT-549 2.6 Heart 18.4 Breast ca. MDA-N 100.0 Skeletal muscle Ovary 24.0 Bone marrow 0.0 Ovarian ca. OVCAR-3 0.0 Thymus 7.1 Ovarian ca. OVCAR-4 0.0 Spleen 20.3 Ovarian ca. OVCAR-5 0.6 Lymph node 8.8 Ovarian ca. OVCAR-8 0.0 Colon (ascending) 7.9 Ovarian ca. IGRO V-I1 0.0 Stomach 20.3 Ovarian ca. (ascites) SK-OV-3 0.0 Small intestine 13.7 Uterus 10.3 Colon ca. SW480 0.0 Placenta 10.7 Colon ca.* SW620 (SW480 0.0 Prostate 7.4 met) Colon ca. HT29 0.0 Prostate ca.* (bone met) PC-3 Colon ca. HCT-1 16 0.0 Testis 45.7 Colon ca. CaCo-2 0.0 Melanoma Hs688(A).T 45.7 Colon ca. HCT- 15 0.0 Melanoma* (met) Hs688(B).T 62.9 Colon ca. HCC-2998 0.0 Melanoma UACC-62 97.3 Gastric ca. (liver met) 0.0 Melanoma M 14 90.1 Bladder 5.0 Melanoma LOX IMVI Trachea 10.6 Melanoma* (met) SK-MEL-5 95.9 Kidney 7.2 IMelanoma SK-MEL-28 72.7 Kidney (fetal) 29.9 Table OM. Panel 1 .3D) Rel. Rel. Exp.(%) Tissue Name Ag3108, Run Tissue Name Ag3108, Run 167985250 167985250 Liver adenocarcinoma 0.2 Kidney (fetal) 4.2 IPancreas 0.1 lRenal ca. 786-0 IPancreatic ca. CAPAN 2 0.0 lRenal ca. A498 7.7 00 Adrenal gland 0.0 Renal ca. RXF 393 Thyroid 0.3 Renal ca. ACHN 0.0 Salivary gland 0.0 Renal ca. UO-3 1 7.9 Pituitary gland 0.3 Renal ca. TK- 10 0.0 Brain (fetal) 0.1 Liver 0.2 Brain (whole) 0.3 Liver (fetal) 0.7 Brain (amygdala) 0.0 Liver ca. (hepatoblast) HepG2 0.0 Brain (cerebellum) 0.0 Lung 0.4 Brain (hippocampus) 0.0 Lung (fetal) 5.7 Brain (substantia nigra) 0.2 Lung ca. (small cell) LX-1 0.0 Brain (thalamus) J 0.0 ILung ca. (small cell) NCI-H691 0.1 Cerebral Cortex 0.0 Lung ca. (s.cell var.) SHP-77 0.1 Spinal cord 0.5 Lung ca. (large 1 0.6 glio/astro U87-MG 1.2 Lung ca. (non-sm. cell) A549 0.0 glio/astro U-li 8-MG 3.1 Lung ca. (non-s.cell) NCI-H23 0.4 astrocytoma SW 1783 1.4 Lung ca. (non-s.cell) HOP-62 1.9 neuro*; met SK-N-AS 0.0 Lung ca. (non-s.cl) NCI-H522 0.1 astrocytoma SF-539 25.2 Lung ca. (squam.) SW 900 1.7 astrocytoma SNB-75 30.8 Lung ca. (squam.) NCI-H596 0.3 glioma SNB-19 0.0 Mammary gland 1.2 glioma U251 2.4 Breast ca.* (pl.ef) MCF-7 glioma SF-295 1 1.1 Breast ca.* (pl.ef) 0.0 Heart (fetal) 0.8 Breast ca.* (pl.ef) T47D 0.1 Heart 1.2 Breast ca. BT-549 0.2 Skeletal muscle (fetal) 0.1 Breast ca. MZDA-N 28.7 Skeletal muscle 0.7 Ovary Bone marrow 0.0 Ovarian ca. OVCAR-3 0.8 Thymus 0.1 Ovarian ca. OVCAR-4 0.1 Spleen 0.6 Ovarian ca. OVCAR-5 0.8 Lymph node 0.2 Ovarian ca. OVCAR-8 0.0 Colorectal 0.0 Ovarian ca. IGROV-l 0.2 Stomach 0.2 Ovarian ca.* (ascites) Small intestine 0.4 Uterus 0.4 Colon ca. SW480 0.0 Placenta 0.2 Colon ca.* SW620(SW480 0.0 Prostate 0.2 Colon ca. HT29 0.0 Prostate ca.* (bone met)PC-3 0.7 Colon ca. HCT-l 16 0.0 Testis 0.3 Colon ca. CaCo-2 0.0 Melanoma Hs688(A).T 12.4 00 Colon ca. tissue(0D03866) 4.2 Melanoma* (met) Hs688(B).T 2.2 Colon ca. HCC-2998 0.0 Melanoma UACC-62 100.0 Gastric ca.* (liver met) 0.0 Melanoma M 14 14.6 NCI-N87 Bladder 0.3 Melanoma LOX IMVI 0.2 Trachea 0.4 Melanoma* (met) SK-MEL-5 20.3 Kidney 0.4 Adipose 3.3 Table ON. Panel 2.1 Rel. Rel. Exp.(%) Tissue Name Ag3108, Run Tissue Name Ag3108, Run 170686074 Normal Colon 0.7 Kidney Cancer 9010320 0.9 Colon cancer (0D06064) 1.3 Kidney margin 9010321 Colon cancer margin (0D06064) 0.0 Kidney Cancer 8120607 0.6 Colon cancer (0D06159) 0.5 Kidney margin 8120608 0.7 Colon cancer margin (0D06 159) 1.8 Normal Uterus 1.7 Colon cancer (0D06298-08) 1.6 Uterus Cancer 1.2 Colon cancer margin 0.3 Normal Thyroid 0.1 (0D06298-0 18) Colon Cancer Gr.2 ascend colon 1.6 Thyroid Cancer 0.9 (0D0392 Colon Cancer margin (0D03921) 4.6 Thyroid Cancer A302152 1.2 Colon cancer metastasis 2.1 Thyroid margin A3021 53 0.9 (01306 Lung margin (0D06 104) 2.8 Normal Breast 12.4 Colon mets to lung (0D04451 -0 1) 4.5 Breast Cancer 0.9 Lung margin (0D04451-02) 10.7 Breast Cancer 4.3 Normal Prostate 0.8 Breast Cancer0.
Prstt Cner(O04 0 07 Breast Cancer Mets 6.6 Prostte Cacer (D0441) 0.7 (0D04590-03) Prostate margin (0D044 10) 13.6 Breast Cancer Metastasis 2.1 Normal Lung 34.2 Breast Cancer 3.3 invasive poor diff. lung adeno 1 9.2 Breast Cancer 9100266 4.6 (0D04945-0 1) Lung margin (0D04945-03) 6.2 Breast margin 9100265 Lung Malignant Cancer 11.1 Breast Cancer A209073 (0D03 Lung margin (0D03 126) 34.9 Breast margin A2090734 9.9 Lung Cancer (0D05014A) 25.2 Normal Liver 4.2 Lung margin (0D05014B) 5.6 Liver Cancer 1026 1.8 Lung Cancer (0D04237-01) 1.5 Liver Cancer 1025 6.1 ILung margin (0D04237-02) 63.3 Liver Cancer 6004-T 00 Ocular Mel Met to Liver 24.3 Liver Tissue 6004-N 0.8 (0D043 Liver margin (0D043 10) 7.6 Liver Cancer 60054T 14.2 Melanoma Mets to Lung 100.0 Liver Tissue 6005-N 14.8 Lung margin (0D0432 1) 20.2 Liver Cancer 1.4 Normal Kidney 3.6 Normal Bladder 1.7 Kidney Ca, Nuclear grade 2 6.9 Bladder Cancer 1.8 Kidney margin (0D04338) 2.1 Bladder Cancer 2.4 Kidney Ca Nuclear grade 1/2 1.1 Normal Ovary 7.7 Kidney margin (0D04339) 0.2 Ovarian Cancer 13.6 Kidney Ca, Clear cell type 8.8 Ovarian cancer (0D06 145) 0.6 (0D04340)______ Kidney margin (0D04340) 45 Ovarian cancer margin2.
Kidney Ca, Nuclear grade 3 1.3 Normal Stomach 4.1 (0D04348)______ Kidney margin (0D04348) 1.8 Gastric Cancer 9060397 1.2 Kidney Cancer (0D04450-01) 0.6 Stomach margin 9060396 Kidney margin (0D04450-03) 4.6 Gastric Cancer 9060395 7.4 Kidney Cancer 8120613 0.3 Stomach margin 9060394 2.6 Kidney margin 8120614 0.5 Gastric Cancer 064005 4.3 Table 00. Panel 4.I1D Rel. Rel. Rel. Rel. Rel. Re].
Tissue Tissue Exp.(%) Name Ag3899, Ag3960, Ag4338, Name Ag3899, Ag3960, Ag4338, Run Run Run Run Run Run _______170120166 170739794 184798156 _____170120166 170739794 184798156 Secondary 0.0 0.0 0.0 I-RVEC 4.1 3.9 7.4 TI act IL-lIbeta_____ SecodaryHUVEC Se2 cnar 0.0 0.0 0.0 lEN 15.8 22.8 22.4
H-UVEC
Secondary 0.0 0.0 0.0 TNF alpha 1.0 8.0 8.8 Trl act IFN SecodaryHUVEC Secondary 0.0 0.0 0.0 TNF alpha 2.9 4.7 Secondary 0.0 0.0 0.6 HVC 4.2 10.2 10.4 Th2 rest I SecondaryLung Secondary 0.0 0.0 0.0 lMicrovasc 1.5 8.1 8.4 1r res ar EC 00 00 00 2ry CCD1 106 Thl/Th2/T 0.0 0.0 1.1 (Keratinoc 0.0 1.6 ri-anti-C ytes) none CHI I CCDI 106 LAK cells (Keratinoc rest 0.0 0.0 0.0 ytes) 0.0 1.1 TNFalpha IL-Ibeta LAK cells 0.0 0.0 0.0 Liver 7.6 18.6 14.2 IL.2 cirrhosis________ LAK cells NIH9 IL-2+IL-1 0.0 0.4 0.0 C-22 0.0 0.0 0.0 2 none LAK cells NCI-H292 IL-2+IFN 0.0 0.0 0.0 IL-4 0.0 0.0 0.0 LAK cells NIH9 IL-2+ 0.0 0.0 0.0 NI-9 0.0 0.0 0.0 IL-18 I- LAK cells C129 PMA/iono 0.0 0.0 0.0 IL1329 0.0 0.5 mycin IL3 NK Cells NCI-H292 L-ret 0.0 0.0 0.0 IFN 0.0 0.0 0.0 Two Way
HPAEC
MLR 3 0.0 0.0 0.0 17.9 21.8 13.2 day none Two Way
HPAEC
MLR 5 0.0 0.0 0.0 TNF alpha 11.3 14.6 13.4 IL-1 day beta Two Way Lung MLR 7 0.0 0.0 0.0 fibroblast 3.4 3.3 5.8 day Lung fibroblast PBMC rest 0.0 0.0 0.0 TNF alpha 2.7 2.0 5.3
IL-I
____beta PBMC Lung PBMC 0.0 0.0 1.9 fibroblast 4.4 1.8 7.1 PWM ~ILA PBMC Lung PHA-L 0.0 0.0 0.0 fibroblast 2.2 3.6 5.2 L-9 00mo 000. Lung cell) none 0. I fibroblast 3.9 6.4 6.4 I IL-13 00 R~amos (B Lung cell) 0.0 0.0 0.0 fibroblast 7.2 6.5 7.8 ionomycin
IEN
gamma B Dermal lymphocyt 0.0 0.0 0.7 fibroblas 5.5 11.4 9.3 es rest B Dermal lymphocyt 0.0 0.0 0.9 fibroblast 1.9 8.4 es CD40L CCD1070 adL IL-4 alpha Dernmal EOL-1 fibroblast 1.6768 dbcAMP 000. CCD1070 I beta EOL-1 Dermal dbcAMP 0.0 0.0 0.0 fibroblast 29.5 41.8 17.7 PMA/iono IEN gamma DenditicDermal cendsrntnc 0.0 0.0 0.0 fibroblast 75.8 69.3 51.8 cells none Dendritic Dermal cells LPS 0.0 0.0 0.0 Fibroblast 21.5 36.9 29.5 s rest Dendritic Neutrophil cells 0.0 0.0 0.0 s0.0 2.2 0.0 anti-CD4O TNFa+LP S Monocytes 0.0 0.0 0.0 Neutrophil 0.0 6.6 0.4 rest s rest Monocytes 0.0 0.0 0.0 Colon 2.0 5.6 2.3 Macropha .0.0 0.0 0.0 Lung 100.0 100.0 100.0 ges rest_____ Macropha 0.0 0.0 0.0 Thymus 0.5 4.4 ges LPS HUVEC 3.2 7.8 10.5 Kidney 3.4 8.4 8.8 HIVC 8.1 15.4 14.6 Table OP. Panel 4D, Rel. Rel. Exp.(%) Tissue Name Ag3108, Run Tissue Name Ag3108, Run 164529436 164529436 Secondary Thi1 act 0.0 HUVEC IL-ibeta 3.1 Secondary Th2 act 0.0 HUVEC IFN gamma 7.9 Secondary TrlI act 0.0 HUVEC TN alpha IF 00 Secondary Thi rest 0.0 HUVEC TNF alpha 1L4 7.1 Secondary Th2 rest 0.2 HUVEG IL-i11 4.6 Secondary TrI rest 0.3 Lung Microvascular EC none 2.3 Primary mhI act 0.0 Lung Microvascular EC 0.3 IL-ibeta Primar Th2 at 0.0 Microvascular Dermal EC1.
Primar Th2 at 0.0 none1.
Primary TO act 0.0 Microsvasular Dermal EC 0.6 IL- Ibeta Primary mil rest 0.0 Bronchial epithelium 3.2 ILI Primary Th2 rest 0.3 Small airway epithelium none 0.2 Primary TO rest 0.0 Small airway epithelium 0.3 IL- Ibeta______ CD4 lymphocyte act 1.5 Coronery artery SMC rest 11.7 CD4 lymphocyte act 0.0 Coronery artery SMC 3.6 IL- Ibeta CD8 lymphocyte act 0.0 Astrocytes rest 0.2 Secondary CD8 lymphocyte 0.0 Astrocytes TNFalpha 3.7 rest IL- Ibeta Secondary CD8 lymphocyte act 0.0 KU-812 (Basophil) rest 0.6 CD4 lmphocte noe 0.0 KU-812 (Basophil) 2.
___lymhocteone0. PMAlionomycin 25.7___ 2 ry ThlITh2/Trl-anti-CD95 0.0 CCDI 106 (Keratinocytes) 0.6 CHIlI none LAK cells rest 0.1 CCD 106 (Keratinocytes) 0.4 TNFalpha IL-lbeta LAK cells IL-2 0.3 Liver cirrhosis 12.2 LAK cells IL-2+IL-12 0.0 Lupus kidney 0.2 LAK cells IL-2+IFN gamma 0.0 NCI-H292 none 0.3 LAX cells IL-2+ IL- 18 0.0 NCI-H1292 IL-4 0.0 LAK cells PMA/ionomycin 0.0 NCI-H-292 IL-9 0.0 NK Cells IL-2 rest 0.0 NCI-H292 IL- 13 0.0 Two Way MLR 3 day 0.2 NCI-H292 LFN gamma 0.0 Two Way MLR 5 day 0.0 HPAEG none 11.2 Two Way MLR 7 day 0.0 HPAEC TNF alpha IL-i 6.3 beta PBMC rest 0.0 Lung fibroblast none 1.1 PBMC PWM 0.9 Lung fibroblast TNF alpha beta PBMC PHA-L 0.0 Lung fibroblast IL-4 4.2 Ramos (B cell) none 0.0 Lung fibroblast IL-9 IRamos (B cell) ionomycin 0.0 Lung fibroblast IL-13 IB lymphocytes PWM 0.5 Lung fibroblast IFN gamma 6.9 00
(O
O
O0 o
(N
00 0- B lymphocytes CD40L and 0.0 Dermal fibroblast CCD1070 IL-4 rest EOLdbcAMP 0.0 Dermal fibroblast CCD1070 EOL-1 dbcAMP 0.0 10.9 TNF alpha EOL-1 dbcAMP 0.0 Dermal fibroblast CCD1070 3.6 PMA/ionomycin IL-1 beta Dendritic cells none 0.0 Dermal fibroblast IFN gamma 22.8 Dendritic cells LPS 0.0 Dermal fibroblast IL-4 34.2 Dendritic cells anti-CD40 0.0 IBD Colitis 2 0.2 Monocytes rest 0.0 IBD Crohn's 3.2 Monocytes LPS 0.0 Colon 13.0 Macrophages rest 0.0 Lung 100.0 Macrophages LPS 0.0 Thymus 16.2 HUVEC none 6.0 Kidney 3.7 HUVEC starved 19.3 CNS_neurodegeneration_vl.0 Summary: Ag3899/Ag3960/Ag4338 Expression of the CG94013-01 gene is low/undetectable (CTs 34) across all of the samples on this panel.
General_screeningpanel_vl.4 Summary: Ag3899/Ag3960/Ag4338 Results of three experiments with two different primer and probe sets are in excellent agreement, with highest expression of the CG94013-01 gene in CNS cancer (astro) SNB-75 cell line (CTs=23-26). In addition, high expression of this gene is seen in CNS cancer cell lines, colon cancer tissue, renal cancer cell line UO-31, breast cancer and melanoma cell lines. Therefore, expression of this gene can be used to distinguish these samples from other samples in the panel and also as marker for detection of these cancers. In addition, therapeutic modulation of the activity of this gene or its protein product, through the use of small molecule drugs, protein therapeutics or antibodies, might be beneficial in the treatment of these cancers.
Among tissues with metabolic or endocrine function, this gene is expressed at low to moderate levels in pancreas, adipose, adrenal gland, thyroid, pituitary gland, skeletal muscle, heart, liver and the gastrointestinal tract. Therefore, therapeutic modulation of the activity of this gene may prove useful in the treatment of endocrine/metabolically related diseases, such as obesity and diabetes.
Interestingly, this gene is expressed at much higher levels in fetal liver (CTs=31-32) and lung (CTs=28) when compared to corresponding adult tissue(CTs=33-35). This observation suggests that expression of this gene can be used to distinguish these fetal tissues from corresponding adult tissues.
Panel 1 Summary: Ag343 Highest expression of the CG94013-01 gene is detected in breast cancer MDA-N cell line (CTs=26). In addition high expression of this gene is also 00 O observed in melanoma, astrocytoma, and lung cance cell lines. Please see panel 1.4 for the Sutility of this gene.
Panel 1.3D Summary: Ag3108 Highest expression of the CG94013-01 gene is detected in melanoma (met) Hs688(B).T cell line (CT=27). In addition, expression of this 0 gene is also seen in melanoma, breast cancer, lung cancer, astrocytoma cell lines and colon cancer well to moderately differentiated (OD03866) tissue. Please see panel 1.4 for the utility of this gene.
Panel 2.1 Summary: Ag3108 Highest expression of the CG94013-01 gene is detected in melanoma metastasis sample (CT=29). In addition, expression of this gene is NC1 higher in metastasis breast cancer (OD04590-03) (CT=33) as compared to breast cancer 00 S(OD04590-01) (CT=36.7). Thus, expression of this gene can be used to distinguish these two samples from each other and also as marker for cancer metastasis. Please see panel 1.4 for further utility of this gene.
Panel 4.1D Summary: Ag3899/Ag3960/Ag4338 Results of three experiments with two different primer and probe sets are in excellent agreement, with highest expression of the CG94013-01 gene in lung (CT=30-31). In addition, significant expression of this gene is seen in HUVEC cells, lung fibroblast and dermal fibroblasts. Therefore, antibody or small molecule therapies designed with the protein encoded for by this gene could be important in the treatment of inflammatory lung disorders such as chronic obstructive pulmonary disease, asthma, allergy and emphysema and skin disorders including psoriasis.
In addition, low expression of this gene is also seen in kidney. Therefore, antibody or small molecule therapies designed with the protein encoded for by this gene could modulate kidney function and be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, including lupus and glomerulonephritis.
Panel 4D Summary: Ag3108 Highest expression of the CG94013-01 gene in lung (CT=28.6). In addition, significant expression of this gene is seen in HPAEC cells, HUVEC cells, lung fibroblast,TNFalpha ILlbeta treated bronchial epithelium and dermal fibroblasts. Therefore, antibody or small molecule therapies designed with the protein encoded for by this gene could be important in the treatment of inflammatory lung disorders such as chronic obstructive pulmonary disease, asthma, allergy and emphysema and skin disorders including psoriasis.
In addition, low expression of this gene is also seen in kidney and colon. Therefore, antibody or small molecule therapies designed with the protein encoded for by this gene be important in the treatment of inflammatory or autoimmune diseases that affect the kidney, 00 O including lupus and glomerulonephritis, as well as, inflammatory bowel diseases such as Crohns.
Interestingly, expression of this gene is stimulated in PMA/ionomycin treated basophils (CT=30) as compared to resting basophils (CT=36). Basophils release histamines Sand other biological modifiers in reponse to allergens and play an important role in the pathology of asthma and hypersensitivity reactions. Therefore, therapeutics designed against the putative protein encoded by this gene may reduce or inhibit inflammation by blocking Sbasophil function in these diseases. In addition, these cells are a reasonable model for the Sinflammatory cells that take part in various inflammatory lung and bowel diseases, such as C,1 asthma, Crohn's disease, and ulcerative colitis. Therefore, therapeutics that modulate the 00 0function of this gene product may reduce or eliminate the symptoms of patients suffering I from asthma, Crohn's disease, and ulcerative colitis.
Agl924 Results from one experiment with the CG94013-01 gene are not included.
The amp plot indicates that there were experimental difficulties with this run.
R. NOV24 (CG94442-01): CARBOXYLESTERASE PRECURSOR Expression of gene CG94442-01 was assessed using the primer-probe set Ag3908, described in Table RA.
Table RA. Probe Name Ag3908 Start SEQ ID Primers Sequences Length Start SEQ ID Le h Position NO Forward 5'-gctgaaggacaaggaagtagct-3' 22 1602 196 Probe TET-5'-tctggaccaaactcttcgccaagaag-3'-TAMRA 26 1625 197 Reverse 5'-tcagctccatg9cttagttcta-3' 22 1673 198 CNS_neurodegeneration_vl.0 Summary: Ag3908 Expression of the CG94442-01 gene is low/undetectable in all samples on this panel General_screeningpanel_vl.4 Summary: Ag3908 Expression of the CG94442-01 gene is low/undetectable in all samples on this panel Panel 4.1D Summary: Ag3908 Expression of the CG94442-01 gene is low/undetectable in all samples on this panel 00 OTHER EMBODIMENTS Although particular embodiments have been disclosed herein in detail, this has been done by way of example for purposes of illustration only, and is not intended to be limiting IDwith respect to the scope of the appended claims, which follow. In particular, it is contemplated by the inventors that various substitutions, alterations, and modifications may be made to the invention without departing from the spirit and scope of the invention as defined by the claims. The choice of nucleic acid starting material, clone of interest, or library type is believed to be a matter of routine for a person of ordinary skill in the art with knowledge of the embodiments described herein. Other aspects, advantages, and 00 0modifications considered to be within the scope of the following claims. The claims presented are representative of the inventions disclosed herein. Other, unclaimed inventions are also contemplated. Applicants reserve the right to pursue such inventions in later claims.
The term "comprise" and variants of the term such as "comprises" or "comprising" are used herein to denote the inclusion of a stated integer or stated integers but not to exclude any other integer or any other integers, unless in the context or usage an exclusive interpretation of the term is required.
Any reference to publications cited in this specification is not an admission that the disclosures constitute common general knowledge in Australia.

Claims (25)

1. An isolated polypeptide comprising an amino acid sequence selected from the IN group consisting of: a) a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and wherein any amino acid in the mature form is changed to a different amino 00 Sacid, provided that no more than 15% of the amino acid residues in the i sequence of the mature form are so changed; c) the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, wherein any amino acid specified in the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; and e) a fragment of any of a) through d).
2. The polypeptide of claim 1 that is a naturally occurring allelic variant of the sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and
3. The polypeptide of claim 2, wherein the allelic variant comprises an amino acid sequence that is the translation of a nucleic acid sequence differing by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n, wherein n is an integer between 1 and
4. The polypeptide of claim 1 that is a variant polypeptide described therein, wherein any amino acid specified in the chosen sequence is changed to provide a conservative substitution. 00 O 5. A pharmaceutical composition comprising the polypeptide of claim 1 and a pharmaceutically acceptable carrier.
6. A kit comprising in one or more containers, the pharmaceutical composition of claim I
7. The use of a therapeutic in the manufacture of a medicament for treating a syndrome Sassociated with a human disease, the disease selected from a pathology associated with the Spolypeptide of claim 1, wherein the therapeutic is the polypeptide of claim 1. 00
8. A method for determining the presence or amount of the polypeptide of claim 1 in a sample, the method comprising: providing the sample; introducing the sample to an antibody that binds immunospecifically to the polypeptide; and determining the presence or amount of antibody bound to the polypeptide, thereby determining the presence or amount of polypeptide in the sample.
9. A method for determining the presence of or predisposition to a disease associated with altered levels of the polypeptide of claim 1 in a first mammalian subject, the method comprising: a) neasuring the level of expression of the polypeptide in a sample from the first mammalian subject; and b) comparing the amount of the polypeptide in the sample of step to the amount of the polypeptide present in a control sample from a second mammalian subject known not to have, or not to be predisposed to, the disease, wherein an alteration in the expression level of the polypeptide in the first subject as compared to the control sample indicates the presence of or predisposition to the disease. A method of identifying an agent that binds to the polypeptide of claim 1, the method comprising: introducing the polypeptide to the agent; and determining whether the agent binds to the polypeptide. 00 O O C, 11. The method of claim 10 wherein the agent is a cellular receptor or a downstream effector. ND 12. A method for identifying a potential therapeutic agent for use in treatment of a O pathology, wherein the pathology is related to aberrant expression or aberrant physiological interactions of the polypeptide of claim 1, the method comprising: providing a cell expressing the polypeptide of claim 1 and having a property or function ascribable to the polypeptide; contacting the cell with a composition comprising a candidate substance; 00 Sand determining whether the substance alters the property or function ascribable to the polypeptide; whereby, if an alteration observed in the presence of the substance is not observed when the cell is contacted with a composition devoid of the substance, the substance is identified as a potential therapeutic agent.
13. A method for screening for a modulator of activity or of latency or predisposition to a pathology associated with the polypeptide of claim 1, the method comprising: a) administering a test compound to a test animal at increased risk for a pathology associated with the polypeptide of claim 1, wherein the test animal recombinantly expresses the polypeptide of claim 1; b) measuring the activity of the polypeptide in the test animal after administering the compound of step and c) comparing the activity of the protein in the test animal with the activity of the polypeptide in a control animal not administered the polypeptide, wherein a change in the activity of the polypeptide in the test animal relative to the control animal indicates the test compound is a modulator of latency of, or predisposition to, a pathology associated with the polypeptide of claim 1.
14. The method of claim 13, wherein the test animal is a recombinant test animal that expresses a test protein transgene or expresses the transgene under the control of a promoter at an increased level relative to a wild-type test animal, and wherein the promoter is not the native gene promoter of the transgene. 00 O O
15. A method for modulating the activity of the polypeptide of claim 1, the method comprising introducing a cell sample expressing the polypeptide of the claim with a compound that binds to the polypeptide in an amount sufficient to modulate the activity of I the polypeptide.
16. A method of treating or preventing a pathology associated with the polypeptide of Sclaim 1, the method comprising administering the polypeptide of claim 1 to a subject in Swhich such treatment or prevention is desired in an amount sufficient to treat or prevent the (CK pathology in the subject. 00
17. The method of claim 16, wherein the subject is a human.
18. A method of treating a pathological state in a mammal, the method comprising administering to the mammal a polypeptide in an amount that is sufficient to alleviate the pathological state, wherein the polypeptide is a polypeptide having an amino acid sequence at least 95% identical to a polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, or a biologically active fragment thereof.
19. An isolated nucleic acid molecule comprising a nucleic acid sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of: a) a mature form of the amino acid sequence given SEQ ID NO:2n, wherein n is an integer between 1 and b) a variant of a mature form of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and wherein any amino acid in the mature form of the chosen sequence is changed to a different amino acid, provided that no more than 15% of the amino acid residues in the sequence of the mature form are so changed; c) the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and d) a variant of the amino acid sequence selected from the group consisting of SEQ ID NO:2n, wherein n is an integer between 1 and 45, in which any amino acid specified in the chosen sequence is changed to a different amino 00 O acid, provided that no more than 15% of the amino acid residues in the sequence are so changed; e) a nucleic acid fragment encoding at least a portion of a polypeptide comprising the amino acid sequence selected from the group consisting of IN SEQ ID NO:2n, wherein n is an integer between 1 and 45, or any variant of the polypeptide wherein any amino acid of the chosen sequence is changed to a different amino acid, provided that no more than 10% of the amino acid residues in the sequence are so changed; and f) the complement of any of the nucleic acid molecules. 00 The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises the nucleotide sequence of a naturally occurring allelic nucleic acid variant.
21. The nucleic acid molecule of claim 19 that encodes a variant polypeptide, wherein the variant polypeptide has the polypeptide sequence of a naturally occurring polypeptide variant.
22. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule differs by a single nucleotide from a nucleic acid sequence selected from the group consisting of SEQ ID NOS: 2n-1, wherein n is an integer between 1 and
23. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises a nucleotide sequence selected from the group consisting of a) the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and b) a nucleotide sequence wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45, is changed from that selected from the group consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed; c) a nucleic acid fragment of the sequence selected from the group consisting of SEQ ID NO:2n-l, wherein n is an integer between 1 and 45; and d) a nucleic acid fragment wherein one or more nucleotides in the nucleotide sequence selected from the group consisting of SEQ ID NO:2n-1, wherein n is an integer between 1 and 45, is changed from that selected from the group 00 O consisting of the chosen sequence to a different nucleotide provided that no more than 15% of the nucleotides are so changed.
24. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule hybridizes under stringent conditions to the nucleotide sequence selected from the group consisting of IDSEQ ID NO:2n-1, wherein n is an integer between 1 and 45, or a complement of the nucleotide sequence. The nucleic acid molecule of claim 19, wherein the nucleic acid molecule comprises a nucleotide sequence in which any nucleotide specified in the coding sequence of the chosen nucleotide sequence is changed from that selected from the group consisting of the chosen 00 0sequence to a different nucleotide provided that no more than 15% of the nucleotides in the chosen coding sequence are so changed, an isolated second polynucleotide that is a complement of the first polynucleotide, or a fragment of any of them.
26. A vector comprising the nucleic acid molecule of claim 19.
27. The vector of claim 26, further comprising a promoter operably linked to the nucleic acid molecule.
28. A cell comprising the vector of claim 27.
29. A method for determining the presence or amount of the nucleic acid molecule of claim 19 in a sample, the method comprising: providing the sample; introducing the sample to a probe that binds to the nucleic acid molecule; and determining the presence or amount of the probe bound to the nucleic acid molecule, thereby determining the presence or amount of the nucleic acid molecule in the sample. The method of claim 29 wherein presence or amount of the nucleic acid molecule is used as a marker for cell or tissue type.
31. The method of claim 30 wherein thecell or tissue type is cancerous. 00
32. A method for determining the presence of or predisposition to a disease associated with altered levels of the nucleic acid molecule of claim 19 in a first mammalian subject, the method comprising: I\ a) measuring the amount of the nucleic acid in a sample from the first mammalian subject; and b) comparing the amount of the nucleic acid in the sample of step to the amount of the nucleic acid present in a control sample from a second _mammalian subject known not to have or not be predisposed to, the disease; Swherein an alteration in the level of the nucleic acid in the first subject as compared to 00 the control sample indicates the presence of or predisposition to the disease. 0-,
AU2008201991A 2001-04-03 2008-05-06 Therapeutic Polypeptides, Nucleic Acids Encoding Same and Methods of Use Abandoned AU2008201991A1 (en)

Applications Claiming Priority (45)

Application Number Priority Date Filing Date Title
US28113601P 2001-04-03 2001-04-03
US60/281,136 2001-04-03
US28190601P 2001-04-05 2001-04-05
US28186301P 2001-04-05 2001-04-05
US60/281,906 2001-04-05
US60/281,863 2001-04-05
US28293401P 2001-04-10 2001-04-10
US60/282,934 2001-04-10
US28371001P 2001-04-13 2001-04-13
US28367801P 2001-04-13 2001-04-13
US28365701P 2001-04-13 2001-04-13
US28368701P 2001-04-13 2001-04-13
US60/283,657 2001-04-13
US60/283,678 2001-04-13
US60/283,710 2001-04-13
US60/283,687 2001-04-13
US28423401P 2001-04-17 2001-04-17
US60/284,234 2001-04-17
US28532501P 2001-04-19 2001-04-19
US60/285,325 2001-04-19
US28560901P 2001-04-20 2001-04-20
US60/285,609 2001-04-20
US28589001P 2001-04-23 2001-04-23
US28574801P 2001-04-23 2001-04-23
US60/285,748 2001-04-23
US60/285,890 2001-04-23
US28606801P 2001-04-24 2001-04-24
US60/286,068 2001-04-24
US28721301P 2001-04-27 2001-04-27
US60/287,213 2001-04-27
US28850901P 2001-05-03 2001-05-03
US60/288,509 2001-05-03
US29449501P 2001-05-30 2001-05-30
US60/294,495 2001-05-30
US29480101P 2001-05-31 2001-05-31
US60/294,801 2001-05-31
US30921601P 2001-07-31 2001-07-31
US60/309,216 2001-07-31
US32477501P 2001-09-25 2001-09-25
US60/324,775 2001-09-25
US33390001P 2001-11-28 2001-11-28
US60/333,900 2001-11-28
US10/115,479 2002-04-02
US10/115,479 US20040006205A1 (en) 2001-04-03 2002-04-02 Therapeutic polypeptides, nucleic acids encoding same, and methods of use
AU2002257115A AU2002257115A1 (en) 2001-04-03 2002-04-03 Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002257115A Division AU2002257115A1 (en) 2001-04-03 2002-04-03 Therapeutic polypeptides, nucleic acids encoding same, and methods of use

Publications (1)

Publication Number Publication Date
AU2008201991A1 true AU2008201991A1 (en) 2008-05-29

Family

ID=39491460

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2008201991A Abandoned AU2008201991A1 (en) 2001-04-03 2008-05-06 Therapeutic Polypeptides, Nucleic Acids Encoding Same and Methods of Use

Country Status (1)

Country Link
AU (1) AU2008201991A1 (en)

Similar Documents

Publication Publication Date Title
US20060063200A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20050287564A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20030185815A1 (en) Novel antibodies that bind to antigenic polypeptides, nucleic acids encoding the antigens, and methods of use
US20040002120A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040014058A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
CA2448073A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040038230A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040006205A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20030236188A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
EP1463747A2 (en) Novel antibodies that bind to antigenic polypeptides,nucleic acids encodings the antigens, and methodes of use
US20040043928A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
WO2003083039A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
US20040014053A1 (en) Novel proteins and nucleic acids encoding same
US20060211031A1 (en) Novel proteins and nucleic acids encoding same
US20040018594A1 (en) Novel antibodies that bind to antigenic polypeptides, nucleic acids encoding the antigens, and methods of use
US20030212257A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
US20040029790A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
US20030203363A1 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
WO2003064589A2 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
EP1390057A2 (en) Novel antibodies that bind to antigenic polypeptides, nucleic acids encoding the antigens, and method of use
WO2002072770A2 (en) Novel human proteins, polynucleotides encoding them and methods of using the same
AU2003232034A1 (en) Therapeutic polypeptides, nucleic acids encoding same, and methods of use
AU2008201991A1 (en) Therapeutic Polypeptides, Nucleic Acids Encoding Same and Methods of Use
EP1661998A2 (en) Antigenic polypeptides, antibodies binding thereto, nucleic acids encoding the antigens, and methods of use
US20060210559A1 (en) Novel antibodies that bind to antigenic polypeptides, nucleic acids encoding the antigens, and methods of use

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application