AU2008201344A1 - Method for producing analgesia comprising administration of an opioid receptor agonist in rotation with an opioid receptor like-1 receptor agonist - Google Patents

Method for producing analgesia comprising administration of an opioid receptor agonist in rotation with an opioid receptor like-1 receptor agonist Download PDF

Info

Publication number
AU2008201344A1
AU2008201344A1 AU2008201344A AU2008201344A AU2008201344A1 AU 2008201344 A1 AU2008201344 A1 AU 2008201344A1 AU 2008201344 A AU2008201344 A AU 2008201344A AU 2008201344 A AU2008201344 A AU 2008201344A AU 2008201344 A1 AU2008201344 A1 AU 2008201344A1
Authority
AU
Australia
Prior art keywords
agonist
receptor
mammal
opioid receptor
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2008201344A
Inventor
Gregory A Demopulos
Pamela Pierce Palmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Omeros Corp
Original Assignee
University of California
Omeros Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002252201A external-priority patent/AU2002252201A1/en
Application filed by University of California, Omeros Medical Systems Inc filed Critical University of California
Publication of AU2008201344A1 publication Critical patent/AU2008201344A1/en
Abandoned legal-status Critical Current

Links

Description

P/00/01 Regulation 3.2
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Method for producing analgesia comprising administration of an opiold receptor agonist in rotation with an opioid receptor like-1 receptor agonist The following statement is a full description of this invention, including the best method of performing it known to us: 00 O METHOD FOR PRODUCING ANALGESIA COMPRISING ADMINISTRATION OF AN OPIOID RECEPTOR AGONIST IN ROTATION WITH AN OPIOID SRECEPTOR LIKE-1 RECEPTOR AGONIST SFIELD OF THE INVENTION The present invention relates to methods and apparatus for the administration of intrathecal analgesics to achieve pain relief while delaying the onset of drug tolerance.
BACKGROUND OF THE INVENTION 00 0 In mammals, the receptors that respond selectively to noxious stimuli are known C. 10 as nociceptors. Two distinct sets of peripheral sensory neurons are primarily responsible for the sensation of pain. The first, AS-nociceptive neurons, contain myelinated axons and are aroused primarily by noxious heat and mechanical stimuli. The second set of nociceptive neurons, which possess unmyelinated axons and are known as C fibers, are activated by high intensity, mechanical, chemical and thermal stimulation. Each of these sets of neurons has their cell bodies in the dorsal root ganglia. Their processes are Spseudounipolar, with one axon that terminates in the periphery and one that terminates on neurons in the dorsal horn of the spinal cord.
Analgesia is the loss of sensitivity to pain without loss of consciousness. In recent years, the convergence of various lines of research demonstrates that analgesia can be produced by exogenous opioids, such as morphine, or endogenous opioids. This research has resulted in a model that explains the mechanism whereby pain is inhibited. See, for example, Kelly, "Central Representations Of Pain and Analgesia", Principals of Neural Science, Kandel and Schwartz, Eds. (1985).
The first means known to man for .inducing analgesia was through the use of plant-derived opioid narcotics such as morphine. Postsynaptic opioid receptors have been characterized and include the following three basic subtypes: mu delta and kappa Endogenous opioids that bind these opioid receptors and thereby produce analgesia include the met- and leu-enkephalins, as well as P-endorphin. Most of the clinically used opiates, such as morphine, activate the L-opioid receptor subtype.
Stimulation of C-fiber primary afferent neurons associated with pain results in the release of the potent neuropeptides substance P, calcitonin gene related peptide (CGRP) and somatostatin, as well as the "fast" neurotransmitter glutamate. The activated -lA- 00 c1 enkephalinergic inhibitory neurons in turn exert presynaptic inhibitory control over the Srelease of these neurotransmitters, thus blocking the sensation of pain.
Opioid compounds (opiates) such as morphine, while effective in producing C analgesia for many types of pain, are not always effective since the development of tolerance occurs in most patients. The development of tolerance to the effects of opioids is one of the major problems in chronic pain management today. Regardless of the route _3 of opioid delivery, patients complain of decreasing pain relief with time. Although recent studies suggest that constant delivery of opioids infusion or transdermal patch) 0 produces less tolerance than intermittent dosing short-acting opioids, such as Vicodin) (Jhamandas, KH et al., "Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine," JNeurosci 16:2758-2766 (1996); lbuki T et al., "Effect of transient naloxone antagonism on tolerance development in rats receiving continuous spinal morphine infusion," Pain 70:125-132 (1997)), tolerance is still a significant issue. Recent studies with patients receiving chronic intrathecal opioids demonstrate that in some patients an increase in dose of up to 2-3 fold over a period of .months is necessary to maintain adequate analgesic levels (Winkelmuller M et al., "Longterm effects of continuous intrathecal opioid treatment in chronic pain of nonmalignant etiology," J Neurosurg 85:458-467 (1996); Paice JA et al., "Clinical realities and economic considerations: efficacy of intrathecal pain therapy," J Pain Symp Manage 14:S14-26 (1997); Sallerin-Caute B et al., "Does intrathecal morphine in the treatment of cancer pain induce the development of tolerance?," Neurosurgery 42:44-49 (1998)). A recent study of the intra-operative use of remifentanil indicates that rapid (within hours) tolerance to this up-opioid agonist can occur (Guignard B. et al., "Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement," Anesthesiology 93:409-417 (2000)). Basic research on human cell lines indicates that a reduction in u-opioid receptor molecular signaling pathways occurs as early as 24 hours in culture with a p.-opioid agonist (Elliot J. et al., "Tolerance to u--opioid agonists in human neuroblastoma SH-SY5Y cells as determined by changes in guanosine-5'-0-(3triphosphate binding," Br. J. Pharmacol. 121:1422-1428 (1997)). However, most researchers would agree that tolerance develops more rapidly in rats than in humans.
For example, many patients have been successfully treated with stable-dose morphine for more than six days (which is the time-course for the development of morphine tolerance in rats) without becoming completely tolerant to the analgesic effects of morphine.
00
O
O
While escalating opioid use is not only a medicolegal issue for many physicians, Sescalating intrathecal opioids can result in side effects, such as myoclonus (Glavina MJ et al., "Myoclonic spasms following intrathecal morphine," Anaesthesia 43:389-390 (1988); De Conno F et al., "Hyperalgesia and myoclonus with intrathecal infusion of high-dose morphine," Pain 47:337-339 (1991)). This side effect does not usually occur if the dose of intrathecal opioids is limited to a morphine equivalent of 60-70 mg/day. Although Smost patients start at intrathecal doses of less than 5 mg/day, even a 2-fold increase per C year results in toxic doses within four years. At high doses, these compounds 00 0additionally produce side effects, such as respiratory depression, which can be life- C 10 threatening. Opioid drugs also frequently produce physical dependence in patients.
Dependence appears to be related to the dose of opioid taken and the period of time over which the subject takes it. For this reason, alternate therapies for the management of chronic pain are widely sought. In addition, compounds which serve as either a replacement for, or as an adjunct to, opioid treatment in order to decrease the dosage of analgesic compound required, have utility in the treatment of pain, particularly pain of the Schronic, intractable type.
Non-opioid drugs, such as the non-steroidal anti-inflammatory drugs (NSAIDs) provide an alternative therapy for the treatment of pain. The mode of action of NSAIDs is believed to be through inhibition of cyclooxygenase, the enzyme responsible for biosynthesis of the prostaglandins. As analgesics, the NSAIDs lack many of the side effects on the CNS that are associated with the opioids and they do not result in the development of dependence. They are only effective, however, on low to moderate intensity pain, and are not generally useful for intense pain. In addition, they have undesirable side effects, including the propensity to induce gastric or intestinal ulceration as well as disturbances of platelet function.
Despite the wide range of afialgesic substances available, still lacking are drugs and drug administration regimes that are effective in reducing severe pain without requiring dose escalation due to the development of tolerance.
SUMMARY OF THE INVENTION It has now been discovered that a new treatment regimen, termed "rotational analgesia," helps delay the development of tolerance to intrathecal opioids. In one aspect of the present invention, a method of producing analgesia in a mammal is provided comprising alternating intrathecal administration to the mammal of a pharmaceutically 00
O
effective dose of at least one opioid receptor agonist, followed by intrathecal Sadministration to the mammal of a pharmaceutically effective dose of at least one opioid receptor-like receptor 1 (ORL-1) agonist. The periods of alternating administration of C1 each agent may then be repeated as many times or cycles as desired. Each period of administration of the opioid receptor agonist or the ORL-1 agonist is designed to be insufficient in duration to induce significant tolerance in the mammal to either drug, thereby delaying the development of tolerance. In one embodiment of the invention the C opioid receptor agonist is selected from jt-opioid receptor agonists, 8-opioid receptor 00 0 agonists, K-receptor agonists and mixtures thereof.
C 10 In other aspects, an implantable, non-invasive, rate-adjustable dual reservoir pump is provided for rotational intrathecal delivery of the opioid receptor agonist and ORL-1 agonist drugs of the present invention.
BRIEF DESCRIPTION OF THE DRAWINGS The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated by reference to the following detailed description, when ,taken in conjunction with the accompanying drawings, wherein: FIGURE 1 is a schematic illustration in block diagram form of an implantable, rate-adjustable, dual reservoir pump system in accordance with the present invention; and FIGURE 2 is a graphical representation of the hindpaw withdrawal latencies (HWL) of rats to thermal (FIGURES 2A and 2B) and mechanical (FIGURES 2C and 2D) stimulation using intrathecal morphine (8 pg) alone (shown as in FIGURES 2A-2D), intrathecal nociceptin (10 nmol) alone (shown as K in FIGURES 2A-2D), or rotating morphine for 2 days, nociceptin for 2 days and then repeating the cycle (shown as o in FIGURES 2A-2D), as described in Example 1.
FIGURE 3 is a graphical representation of HWL of rats to thermal (FIGURES 3A and 3B) and mechanical (FIGURES 3C and 3D) stimulation after twice daily administration of a combination of half-doses of morphine (4 Gig) and nociceptin nmol), as described in Example 2.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT In the practice of rotational analgesia, the administration of an intrathecal opioid drug is rotated with administration of another drug that has potent analgesic effects, but that exhibits minimal cross-tolerance with the opioid drug. To exhibit minimal crosstolerance, for example, the opioid drug must not significantly bind to the rotational drug's -4- 00
O
O
C receptor. Similarly, the rotational drug must not significantly bind to the opioid drug's receptor. Also of importance is that the overall effect on the pain pathways in the spinal cord are sufficiently similar that the patient does not go through withdrawal from the C1 opioid during the rotation to the alternate drug. These two key factors limit the type of drug that can successfully be rotated with opioids in the practice of the invention.
Consider receptor activation and second messenger system initiation as the early stage of _the drug's effect and neuronal inhibition and decreased cyclic AMP levels as the late stages in the effect of the drug. Although not wishing to be bound by any particular 00 Stheory, it is presently believed to be important that the rotated drugs have dissimilar early 1 10 stages and highly similar late stages to avoid cross-tolerance, yet also avoid drug withdrawal. A presently preferred example of a drug that can be rotated successfully with an opioid drug in the practice of the invention is an ORL-1 agonist.
In one aspect the present invention relates to methods and apparatus for delaying the onset of tolerance in the administration of opioid and opioid-like receptor-1 (ORL-1) agonist drugs by rotating the administration of at least one opioid receptor agonist, such -as a -opioid receptor agonist, a 6-opioid receptor agonist, a i-opioid receptor agonist or mixtures thereof, with the administration of at least one ORL-1 agonist. Suitable opioid receptor agonists for administration in rotation with the at least one ORL-1 agonist include those opioid agonists that exhibit a minimal degree of cross-tolerance with the administered ORL-1 agonist, and that exhibit overall effects on the pain pathways in the spinal cord that are sufficiently similar to the effects exhibited by the administered ORL- 1 agonist such that the patient does not go through withdrawal from the opioid agonist during the rotation to the ORL-1 agonist. As further described and illustrated by the Examples set forth herein below, p-opioid receptor agonists and ORL-1 agonists can be beneficially administered in rotation in accordance with the present invention to extend duration to tolerance. It is also theorized that 8-opioid receptor agonists and/or K-opioid receptor agonists may also be suitably rotated with ORL-1 agonists in accordance with the present invention, provided these opioid agonists are demonstrated to exhibit minimal cross-tolerance with ORL-1 agonists and similar effects on pain pathways.
In a first preferred embodiment of the invention, at least one u-opioid receptor agonist is administered in rotation with at least one ORL-1 receptor agonist. The ut-opioid agonists, such as morphine, are rotated with an ORL-1 receptor agonist, such as nociceptin, since the t-opioid receptor agonists do not bind to the ORL-1 receptor and 00
O
O
nociceptin does not bind to p-opioid receptors, therefore cross-tolerance is not likely S(Hao JX et al., "Lack of cross-tolerance between the antinociceptive effect of intrathecal orphanin FQ and morphine in the rat," Neurosci Lett 223:49-52 (1997)). Both drugs decrease cyclic AMP levels and both are potent analgesics when applied intrathecally.
Therefore, these two drug classes when administered intrathecally in accordance with the rotational intrathecal delivery regime of the present invention afford longer pain relief than when using either drug alone by delaying the onset of tolerance.
rC In other embodiments of the invention, at least one 8-opioid receptor agonist is 00 Sadministered in rotation with at least one ORL-1 receptor agonist. The intrathecal C 10 administration of orphanin FQ (nociceptin) had been observed to increase the duration of the antinociceptive response evoked by intrathecal administration of the 5-opioid receptor agonist deltorphin (Jhamandas, KH et al, "Antinociceptive and morphine modulatory actions of spinal orphanin FQ," Can. J Physiol. Pharmacol. 76:314-324 (1998)). While the potential for exhibiting minimal cross-tolerance and similar effect on pain pathways needs to be determined in accordance with the present invention, it is theorized that 6opioid receptor agonists may be useful for rotation with ORL-1 agonists.
In still other embodiments of the invention, at least one K-opioid receptor agonist is administered in rotation with at least one ORL-1 receptor agonist. Again, the potential for minimal cross-tolerance and similar effect on pain pathways needs to be evaluated in determining the suitability for rotation of K-opioid receptor agonists with ORL-1 agonists in accordance with the methods of the present invention.
Thus, in accordance with one aspect, the present invention provides a method of treating a mammal in need of analgesia comprising intrathecally administering to the mammal a pharmaceutically effective dose of either at least one opioid receptor agonist or at least one ORL-1 agonist for a first period of time, and intrathecally administering to the mammal a pharmaceutically effective dose of the other at least one opioid receptor agonist or at least one ORL-1 agonist for a second period of time the analgesic agent not administered during the first period of time). In one embodiment, the second period of time serially follows the first period of time. In other embodiments, the end of the first period of time may overlap the beginning of the second period of time, and vice versa.
The cycle of alternating intrathecal administration is preferably repeated for a plurality of treatment periods, for as long as desired in a particular application. If desired, the dosage level of drug being administered may be tapered down at the end of its administration 00 C period, while simultaneously tapering up the dosage level of the drug being rotated into C the cycle, thereby providing a cross-over period during which both the opioid receptor agonist and the ORL-1 agonist are being administered to the mammal.
C1 Suitable dosage levels for the opioid receptor agonists and the ORL-1 agonists of the invention will be determined by the prescribing physician depending on the needs of the patient, and include the dosage levels conventionally used for these analgesic agents, Sas is well known to those skilled in the art. For example, the p-opioid receptor agonists may be administered at daily dosage levels of about 0.5 to about 25 mg/day, and more 00 0 preferably at dosage levels of about 3 to about 20 mg/day. The ORL-1 agonists may be 10 administered at daily dosage levels of about 1 to about 1,000 Ag/day, more preferably about 5 to about 500 jig/day, and most preferably about 20 to about 100 pg/day. The daily dosage of the opioid receptor agonists or the ORL-1 agonists may be administered substantially continuously or intermittently.
Preferably, the first and second periods of administration for the opioid receptor agonists and the ORL-1 agonists are insufficient in duration to achieve significant 'tolerance in the patient to the analgesic effects of the administered drugs. As used herein, the term "tolerance" means a noticeable or measurable effect in the patient to become less responsive to the opioid receptor agonists or the ORL-1 agonists of the invention. Thus, a tolerance condition is characterized by the necessity to increase successive drug doses in order to produce identical analgesic effects, and by the apparent loss of potency of the drug observed during the course of successive administrations.
For example, the j-opioid receptor agonist is preferably administered for a period of time insufficient to develop tolerance to the up-opioid receptor agonist, such as for a period of from 1 to 30 days, more preferably from 1 to 20 days, and most preferably from 1 to 10 days, followed by administration of the ORL-1 agonist for a period of time insufficient to develop tolerance to the ORL-1 agonist, such as for a period of from 1 to days, more preferably from 1 to 20 days, and most preferably from 1 to 10 days. The cycle of rotational intrathecal delivery of the j.-opioid receptor agonist followed by delivery of the ORL-1 agonist may then be repeated for similar periods of time, for as many cycles as desired, and is preferably repeated for at least a plurality of cycles. It is theorized that these same cycles may be suitable for rotation of 6-opioid receptor agonists or K-opioid receptor agonists with ORL-1 agonists.
00
O
O
C1 One common g-opioid receptor agonist for use in the practice of the invention is t morphine, although other u-opioid receptor agonists may be used in the practice of the invention. Suitable ji-opioid receptor agonists for use in the practice of the invention ci include, for example, hydromorphone, fentanyl, sufentanil, methadone, meperidine and Try-D-Ala-Gly-[N-MePhe]-NH(CH 2 )-OH ("DAMGO").
Potentially suitable 8-opioid receptor agonists may include, by way of example, deltorphin and [D-Pen 2 D-Pen 5 ]enkephalin ("DPDPE"). One exemplary i-opioid receptor agonist that may be suitable for use in the present invention is (trans)- 00 S3,4dichloro-N-methyl-N[2-(1-pyrrolidynl)cyclohexyl]-benzene acetamide 10 50,488H").
Suitable ORL-1 agonists for use in the practice of the invention include, for example, nociceptin (orphanin FQ) and other agents that bind to the ORL-1 receptor with high affinity, but that do not bind to the u-opioid receptor with affinity sufficient to result in cross-tolerance. Depending on their binding properties, the following agents may potentially possess the required properties: Phepsi ([Phelpsi(CH 2 -NH)Gly2]nociceptin-(1-13)-NH 2 (Chioce, J. Biomed. Sci. 7(3):232-240 (1S,3aS)8-(2,3,3a,4,5,6-hexahydro- H-phenalen-1-yl)-l-phenyl-1,3,8-triazaspiro[4,5]decan-4-one ("RO 64-6198") (Jenck F. et al., PNAS 97(9):4938-4943 (2000); and the 1-phenyl-l,3,8-triaza-spiro[4.5]decan-4-ones (Rover J. Med. Chem.
43(7):1329-1338 (2000)). Suitable ORL-1 agonists may be either peptidergic, e.g., nociceptin, or non-peptidergic, RO 64-6198.
Pharmaceutical compositions suitable for intrathecal injection may be sterilized solutions containing an effective amount of the compounds used according to the invention dissolved in a physiologically acceptable isotonic saline solution (for example, containing about 0.9% by wt sodium chloride). Usually these solutions are adopted in a known manner to the physiological characteristics of the site of administration.
The analgesic agents of the invention may be administered intrathecally by any means known in the art. For example, intrathecal administration of the centrally acting analgesic agents of the invention may be accomplished via an externalized spinal catheter, a spinal catheter connected to an external infusion pump, a spinal catheter connected to a fully implanted infusion pump and other related systems known in the art to be therapeutically effective for the treatment of chronic pain. Direct intrathecal delivery of the analgesic agents is preferred to reduce systemic side effects caused by 00 relatively high dosage systemic delivery. In this way, the active drugs are delivered in a concentrated manner and at low doses to their specific site of action on receptors in the neuraxis, minimizing systemic side effects as outlined above.
Implantable drug infusion devices may be used to provide patients with a constant or programmable long-term dosage or infusion of the analgesic agents of the invention.
Such devices may be categorized as either active or passive.
Active drug or programmable infusion devices typically feature a pump or a N0 metering system to deliver the drug into the patients system. An example of such an active drug infusion device currently available is the SynchroMedTM programmable N1 10 pump (Medtronic Incorporated, Minneapolis, Minnesota). Such pumps typically include a drug reservoir, a peristaltic pump to pump out, the drug from the reservoir, and a catheter port to transport the pumped out drug from the reservoir via the pump to a patient's anatomy. Such devices also typically include a battery to power the pump as well as an electronic module to control the flow rate of the pump. The SynchroMedTm pump further includes an antenna to permit the remote programming of the pump.
Passive drug infusion devices, in contrast, do not feature a pump, but rather rely upon a pressurized drug reservoir to deliver the drug. Thus such devices tend to be both smaller as well as cheaper as compared to active devices. An example of such a device includes the Medtronic IsoMed'rM device (Medtronic Incorporated, Minneapolis, Minnesota). This device delivers the drug into the patient through the force provided by a pressurized reservoir. In particular, this reservoir is pressurized with a drug to between to 40 psi (1.3 to 2.5 bar) and is used to deliver the drug into the patient's system.
Typically the flow path of the drug from the reservoir to the patient includes a flow restrictor, which permits a constant flow rate. The flow rate, however, is only constant if the pressure difference between reservoir and patient does not change. Factors that could impact this pressure difference include temperature, pressure-volume dependence of reservoir and altitude, among others. The selected pressure for the reservoir is thus typically quite high, so that absolute pressure changes only cause small and acceptable errors in flow rate. Suitable infusion pumps for use in the practice of the invention include the infusion pump disclosed in U.S. Patent No. 5,820,589 of Medtronic, Inc., that is implantable and noninvasively programmable by means of radio frequency telemetry or other means of noninvasive telemetry. The disclosure of this patent is hereby incorporated herein by this reference.
00 In a presently particularly preferred embodiment, the analgesic agents of the invention may be administered by an implantable medical pump having at least two fluid reservoirs, one for the or ic-opioid receptor agonists of the invention and the other Cl for the ORL-l agonists of the invention, together with means for releasing the agonists from their respective reservoirs in an alternating manner in accordance with the rotational administration regime of the invention. In accordance with this aspect of the invention, the pump may comprise, for example: a first fluid reservoir for containing a first drug to be rotationally 00 administered, e.g. the pi-, or ic-opioid receptor agonists of the invention; a regulator assembly adjustable to a plurality of flow rate settings for regulating the flow of fluid from the first fluid reservoir; a second fluid reservoir for containing a second drug to be rotationally administered, the OR.L- 1 agonists of the invention; a regulator assembly adjustable to a plurality of flow rate settings for regulating the flow of fluid from the second fluid reservoir; and electromechanical control means for changing the passive regulator assemblies from a first flow rate setting to a second flow rate setting when the electromechanical control means receives an induced voltage in response to control signals, wherein the flow rate setting regulating the flow from the first fluid reservoir is set to zero when there is positive flow from the second fluid reservoir, and the flow rate setting regulating the flow from the second fluid reservoir is set to zero when there is positive flow from the first fluid reservoir, and wherein the electromechanical control means changes the flow rate settings from the first and second fluid reservoirs to zero in an alternating manner.
In accordance with this aspect of the invention, a drug infusion pump suitable for use in connection with the invention may comprise a first fluid reservoir, a second fluid reservoir and septumns which serve, for example, as access ports to the reservoirs during the fiing of the reservoirs with the first drug or K- opioid receptor agonists) and the second drug ORL-l agonists) of the invention, respectively, to be delivered to a specific desired location within a patient's body. If desired, the pump may further comprise a telemetry antenna or receiver preferably comprising a coil of wire within which a voltage may be induced when the receiver is in the presence of a transmitted 00 signal. Such a signal is created, for example, by an assembly including a programmer Soperatively coupled to a radio frequency head disposed proximate to a pump implanted Swithin the body of a patient near the skin.
The pump may further comprise a system that regulates the flow of fluid from the first reservoir and the second reservoir. Preferably, the flow regulating system comprises a valve network assembly adjustable to a plurality of flow rate settings, and includes a Splurality of bi-stable valves that control the flow of fluid to a plurality of flow restrictors.
C1 The valves may be similar to, but not restricted to those described by Wagner, et al. See.
00 Wagner, B. et al., "Bistable Microvalve with Pneumatically Coupled Membranes," IEEE N 10 0-7803-2985-6/96, pp. 384-88, which is incorporated herein by reference. The restrictors may be similar to, but not limited to capillary tube technology'used in the commercially available Infusaid and Anschutz fixed rate pumps. Alternatively, micro-machined etching technology can also be used to manufacture the restrictor.
In addition, the pump preferably comprises control circuitry for changing the state of one or more of the valves of the system in response to a received telemetry signal. The control circuitry preferably includes elements required to communicate with the transmitter, transform the signal from the transmitter to energy required to change valve states according to the telemetry received via the transmitter, and verify valve states and overall pump performance.
FIG. 1 shows a schematic illustration of an implantable rate-adjustable pump system in accordance with the present invention. As shown therein, the pump preferably comprises a first fluid reservoir 12 for containing a solution of one of the analgesic agents of the invention, such as a solution of a p-opioid receptor agonist, and a second fluid reservoir 14 for containing a solution of the rotated analgesic agent of the invention, such as a solution of an ORL-1 agonist. Sensors 16, 18 are provided for sensing fluid levels in the reservoirs 12, 14, respectively, and providing fluid level information along paths 20, 22 to integrated circuit controller 24. Fluid flow restrictors 26, 28 are provided for regulating the flow of analgesic agents from the first and second fluid reservoirs 12, 14 to a patient, at flow rates determined by controller 24 and sensors 27, 29. If desired, the pump system may be provided with an implantable RF receiver adapted to receive signals from external RF transmitter 32 as set by a programmer 34, to regulate the flow patterns of analgesic agents from reservoirs 12, 14 in an alternating -11- 00
O
O
manner in accordance with the rotational intrathecal analgesic administration methods of the present invention.
EXAMPLE 1 N 1N VIVO RAT HINDPAW WITHDRAWAL LATENCY (HWL) STUDY Experiments were performed on male Sprague-Dawley rats having a weight of 200-250 g. The rats were housed in cages with free access to food and water. Room temperature was maintained at 24 2 0 C and a 12 hr light/dark cycle was maintained. All experiments were conducted according to the guidelines of the Committee on Animal 00 SResearch at the University of California at San Francisco. Every effort was made to S minimize animal suffering.
INTRATHECAL INJECTIONS.
A polyethylene catheter (Intramedic PE 10) was permanently implanted intrathecally with the inner tip at L3 to L5 in each animal. Rats displaying movement disorders following placement of the catheter were not used in the study. Injection volume was 10 gL of drug solution followed by 10 11L of 0.9% saline to flush the catheter. Intrathecal injections were performed every 12 hrs (morning and night).
In the morphine only group, 8 jig morphine HC1 was injected every 12 hrs until complete tolerance developed and in the nociceptin only group, 10 nmol nociceptin was injected every 12 hrs until complete tolerance developed. These doses were chosen from previous studies that determined an equianalgesic dosing for these two drugs. In the rotational analgesia group (shown as Morphine Nociceptin in Tables 1 and 2, below), 8 jg morphine was injected every 12 hrs for the first two days, followed by 10 nmol nociceptin every 12 hrs for the next two days. The same pattern was repeated until complete tolerance developed.
Solutions for intrathecal injection were prepared with sterilized saline Nociceptin was obtained from Tocris, Balwin, MO, morphine HCI was obtained from Shenyang First Pharmaceutical Factory, Shenyang, China.
NOCICEPTIVE TESTING The rats were trained with the testing conditions for five days prior to the experiments to decrease the stress response caused by handling and measurements and to obtain baseline responses. The hindpaw withdrawal latency (HWL) was measured for both thermal and mechanical stimulation. Thermal stimulation was achieved using the hot-plate test. The entire ventral surface of the rat's left or right hindpaw was placed on -12- 00 00
O
O
O
the hotplate, which was maintained at a temperature of 52 0 C (51.8-52.2 0 The Randall Selitto Test (UGO Basile, Type 7200, Italy) was used to assess HWL to mechanical stimulation. A wedge shaped probe with a loading rate of 30 g/second was applied to the dorsal surface of the manually handled hindpaw and the mechanical stimulation required to initiate the struggle response was assessed. The HWL is expressed in seconds, i.e., latency to withdrawal from the start of stimulation. The HWLs were measured 15 min after the second intrathecal injection on a daily basis.
Data from the hindpaw withdrawal latency tests are presented in the following Tables 1 and 2 as average standard error of the mean (SEM). The HWL to thermal (Figures 2A and 2B) and mechanical (Figures 2C and 2D) stimulation is expressed as percentage of the basal level for each rat. Each rat was tested with both types of stimulation.
TABLE 1 CHANGES OF HWL TO MECHANICAL STIMULATION 10 MINUTES AFTER INTRATHECAL INJECTION Left Right Days 1 2 3 4 6 7 8 9 11 12 13 14 Morphine Nociceptin 44.77+7.65 37.91±2.88 41.56+2.66 37.81+2.06 38.47+3.07 33.95±3.51 33.90+2.06 30.97+1.77 28.36+1.38 20.0912.32 12.34+2.26 3.71:t;1.81 -1.12:t.0.99 -0.61:tl.86 Morphine 53.99+2.96 47.69-2.54 33.85+1.60 31.3742.02 15.30±1.39 3.26+1.86 Nociceptin 69.9014.11 31.2815.03 10.5910.93 -0.62+1.45 Morphine Nociceptin 43.33±7.19 41.08±3.81 40.1911.33 38.33+1.53 39.36±2.84 34.57+1.99 34.6312.06 32.17-2.08 28.2841.32 18.67±1.00 10.86+3.00 3.61±2.48 -2.1911.15 -0.841.61 Morphine 56.04-3.38 46.7412.52 33.44+t1.03 28.84+2.73 16.54±1.26 2.72+1.94 Nociceptin 61.2613.85 30.79-6.58 10.08+-1.05 -0.76+2.32 00
O
TABLE 2 CHANGES OF HWL TO THERMAL STIMULATION 'N 10 MINUTES AFTER INTRATHECAL INJECTION Left Right Morphine Morphine Days Nociceptin Morphine Nociceptin Nociceptin Morphine Nociceptin 00 1 91.6117.98 66.26±2.20 93.49±3.77 85.14±8.32 66.6611.51 90.42+2.65 C, 2 81.17-1.86 61.25±3.05 39.91-3.66 80.68±4.62 63.1110.64 43.02±2.12 3 86.94±3.42 51.66±1.73 9.46±2.31 85.40±3.69 48.7412.40 12.0111.48 4 77.48±3.10 43.63-1.38 -2.18±2.07 79.1512.74 42.45411.70 -3.6711.61 77.25±3.05 23.85±1.03 79.79±4.65 25.0712.07 6 57.12±3.64 -1.30±2.36 56.40±2.84 0.51±1.61 7 49.64±1.37 54.0111.89 8 41.54±3.60 42.73±3.58 9 33.0711.35 31.53±2.06 20.0811.77 17.17±1.85 11 16.78±-2.93 17.75±2.57 12 6.28±2.19 6.81±2.77 13 -1.25-0.93 -1.02±0.84 RESUlTS Morphine alone on day 1 produces an HWL increase of approximately 67% using thermal stimulation (Figures 2A and 2B) and 55% using mechanical stimulation (Figures 2C and 2D). Both right and left hindpaws had similar HWLs. Both mechanical and thermal HWLs gradually decrease with each successive day, such that by day 6, total tolerance to intrathecal morphine exists. Nociceptin alone on day 1 produces an HWL increase of approximately 90% using thermal stimulation (Figures 2A and 2B) and 60-70% using mechanical stimulation (Figures 2C and 2D). Both mechanical and thermal HWLs rapidly decrease with successive days, such that by day 4, complete tolerance to intrathecal nociceptin exists.
As shown in Figures 2A-2D, rotating morphine with nociceptin produces a dramatically different result. Whereas a similar decrease in HWL compared to the -14- 00 c morphine alone group between days 1 and 2 is measured, day 3 using nociceptin instead t of morphine returns the HWL back to day 1 levels. Although tolerance is indeed observed for both medications with time, the time to complete tolerance is lengthened to C1 13 days. Similar time courses are observed for both hindpaws and for both types of stimulation.
This example, as well as other reported studies in the literature, demonstrates that _rats become completely tolerant to intrathecal morphine by day 6. By alternating Sequipotent doses of morphine and nociceptin intrathecally every two days days 1 00 Sand 2 morphine, days 3 and 4 nociceptin, days 5 and 6 morphine, etc.), this example C, 10 demonstrates that complete tolerance develops in 13 days, a greater than 100% increase in the length of time to complete tolerance compared with morphine alone and a greater than 200% increase compared to nociceptin alone. Interestingly, nociceptin tolerance is extremely rapid. In the nociceptin alone group, by day 2, 50% tolerance had already developed. This dramatic decrease in HWL is not seen on the second day of dosing nociceptin in the rotational analgesia group, day 3 to day Although not wishing to be bound by any particular theory, this decrease in nociceptin tolerance after treatment with morphine may be due to the upregulation of nociceptin receptors (ORL-1 receptors) in the dorsal horn of the spinal cord following intrathecal morphine treatment (Gouarderes C et al., "Nociceptin receptors in the rat spinal cord during morphine tolerance," Brain Res 838:85-94 (1999)). Because of the rapid development of tolerance, ORL-1 agonists may not be clinically useful as single agents intrathecally; however, by rotating a j-opioid receptor agonist in accordance with the present invention, the development of ORL-1 agonist tolerance can be significantly lengthened. Although popioid receptor agonists, such as morphine, are currently used as single agents intrathecally, the issues of tolerance and dose escalation are problematic clinically as mentioned earlier.
EXAMPLE 2 COMBINATION THERAPY Hindpaw withdrawal latency (HWL) tests using the materials and methods of Example 1 for both thermal and mechanical stimulation were conducted on a group of eight rats that were treated by intrathecal injections of half-doses of morphine (4 ig) and nociceptin (5 nmol) every 12 hours. The results are shown in the following Table 3 and in FIGURES 3A-3D.
00
O
O
TABLE 3 S% CHANGES OF HWL Thermal Stimulation Mechanical Stimulation Day Left Right Left Right 1 43.31+11.50 45.53+10.33 35.17+7.78 51.31+20.07 S2 41.28±9.90 43.02±14.04 33.12±11.45 25.68+17.32
O
OO 3 38.53-10.09 50.78±14.80 35.90-10.13 39.65116.61 0 4 30.32+4.71 25.96±6.96 11.68+6.88 17.95+8.54 21.6312.40 12.59-6.18 3.52±5.26 12.55±8.98 6 6.4018.23 9.78+6.65 11.19-11.37 10.36-3.75 7 7.14±6.54 7.52+15.23 6.16±7.97 3.6616.27 Interestingly, by combining half-doses of intrathecal (IT) morphine and IT nociceptin, less total analgesia is obtained than with full doses of each drug administered individually. An average HWL increase of 40% is seen using thermal stimulation and an average 40% HWL increase is also seen with mechanical stimulation using the combination of IT drugs. Combining the two drugs does not appear to prolong tolerance development. Therefore, rotational administration is advantageous when compared to combinational administration.
Example 3 Human Study A test panel of five adult male humans suffering from high levels of chronic pain is treated by intrathecally administering 3 mg/day of morphine for a period of 7 days. On days 8 through 14, administration of the morphine is stopped and instead the panel is treated by intrathecal administration of 30 pg/day of nociceptin. On days 15 through 196, the treatment regimen of days 1 through 14 is repeated, rotating between intrathecal administration of morphine and nociceptin. Throughout the 196-day treatment regimen, a substantial reduction is obtained in the levels of experienced pain without significant tolerance development to either the morphine or nociceptin drugs.
-16- 00
O
C In summary, rapid tolerance occurs to intrathecal morphine and very rapid C tolerance occurs to intrathecal nociceptin. By rotating the intrathecal dosing of these agents in accordance with the present invention, the length of time to tolerance CN development is dramatically increased compared to each drug alone.
While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.
00
(N
00

Claims (22)

1. A method of producing analgesia in a mammal comprising alternating intrathecal administration to the mammal of a pharmaceutically effective dose of at least one opioid receptor agonist for a first period of time, and intrathecal administration to the cmammal of a pharmaceutically effective dose of at least one opioid receptor-like receptor 0 1 agonist for a second period of time, wherein the first and second time periods are 00 selected to delay the development of tolerance in the mammal to the at least one opioid 0receptor agonist and the at least one opioid receptor-like receptor 1 agonist.
2. The method of Claim 1 wherein the second period of time serially follows the first period of time.
3. The method of Claim 1 wherein the administrations of the first and second periods of time are repeated for a plurality of treatment periods.
4. The method of Claim 1 wherein the first period of time is a period of from 1 to 30 days. The method of Claim 1 wherein the second period of time is a period of from 1 to 30 days.
6. The method of Claim 1, wherein the at least one opioid receptor agonist comprises a ui-opioid receptor agonist.
7. The method of Claim 6 wherein the p-opioid receptor agonist is selected from the group consisting of morphine, fentanyl, sufentanil and Try-D-Ala-Gly-[N- MePhe]-NH(CH 2 )-OH.
8. The method of Claim 7 wherein the p-opioid receptor agonist is morphine.
9. The method of Claim 8 wherein the opioid receptor-like receptor 1 agonist is nociceptin. 00 O The method of Claim 8 wherein the opioid receptor-like receptor 1 agonist Sis RO 64-6198.
11. The method of Claim 1 wherein the opioid receptor-like receptor 1 agonist is nociceptin.
12. The method of Claim 1 wherein the opioid receptor-like receptor 1 agonist is RO 64-6198. 0 0
13. A method of producing analgesia in a mammal comprising alternating Sintrathecal administration to the mammal of a pharmaceutically effective dose of a first analgesic drug for a first period of time, and intrathecal administration to the mammal of a pharmaceutically effective dose of a second analgesic drug for a second period of time, wherein the first analgesic drug and the second analgesic drug exhibit minimal cross- tolerance, effects of the first and second analgesic drugs on pain pathways in the spinal cord of the mammal are sufficiently similar such that the mammal does not go through withdrawal from one of the analgesic drugs during administration of the other of the analgesic drugs, and the first and second time periods are selected to delay the development of tolerance in the mammal to the first and second analgesic drugs.
14. A method of producing analgesia in a mammal comprising alternating intrathecal administration to the mammal of a pharmaceutically effective dose of at least one opioid receptor agonist for a first period of time insufficient to result in tolerance in the mammal to the at least one opioid receptor agonist, and intrathecal administration to the mammal of a pharmaceutically effective dose of at least one opioid receptor-like receptor 1 agonist for a second period of time insufficient to result in tolerance in the mammal to the at least one opioid receptor-like receptor 1 agonist A method of producing analgesia in a mammal comprising alternating intrathecal administration to the mammal of a pharmaceutically effective dose of a first analgesic drug for a first period of time insufficient to result in tolerance in the mammal to the first analgesic drug, and intrathecal administration to the mammal of a pharmaceutically effective dose of a second analgesic drug for a second period of time insufficient to result in tolerance in the mammal to the second analgesic drug, wherein the -19- 00 CI first analgesic drug and the second analgesic drug exhibit minimal cross-tolerance and C effects of the first and second analgesic drugs on pain pathways in the spinal cord of the mammal are sufficiently similar such that the mammal does not go through withdrawal CI from one of the analgesic drugs during administration of the other of the analgesic drug.
16. An implantable infusion pump, comprising: a first fluid reservoir for containing an opioid receptor agonist; a first regulator assembly adjustable to a plurality of flow rate settings for 0 regulating the flow of fluid from the first fluid reservoir; 1(b) a second fluid reservoir for containing an opioid receptor-like receptor 1 agonist; a second regulator assembly adjustable to a plurality of flow rate settings for regulating the flow of fluid from the second fluid reservoir; and electromechanical control means for changing the first and second regulator assemblies from a first flow rate setting to a second flow rate setting in response to control signals, wherein the flow rate setting regulating the flow from the first fluid reservoir is set to zero when there is positive flow from the second fluid reservoir, and the flow rate setting regulating the flow from the second fluid reservoir is set to zero when there is positive flow from the first fluid reservoir, and wherein the electromechanical control means changes the flow rate settings from the first and second fluid reservoirs to zero in an alternating manner.
17. An implantable infusion pump, comprising: a first fluid reservoir for containing a first analgesic drug; a first regulator assembly adjustable to a plurality of flow rate settings for regulating the flow of fluid from the first fluid reservoir; a second fluid reservoir for containing a second analgesic drug; a second regulator assembly adjustable to a plurality of flow rate settings for regulating the flow of fluid from the second fluid reservoir; and electromechanical control means for changing the first and second regulator assemblies from a first flow rate setting to a second flow rate setting in response to control signals, wherein the flow rate setting regulating the flow from the first fluid 00 C reservoir is set to zero when there is positive flow from the second fluid reservoir, and the c t flow rate setting regulating the flow from the second fluid reservoir is set to zero when there is positive flow from the first fluid reservoir, and wherein the electromechanical C1 control means changes the flow rate settings from the first and second fluid reservoirs to zero in an alternating manner.
18. An implantable infusion pump, comprising: C, a first fluid reservoir for containing a first analgesic drug; 00 S(b) a second fluid reservoir for containing a second analgesic drug; C, at least one fluid outlet; at least one regulator assembly fluidly connected to the first and second fluid reservoirs and the at least one fluid outlet, and adjustable between a first configuration to permit flow of the first analgesic drug from the first fluid reservoir to the outlet while blocking flow of the second analgesic drug from the second fluid reservoir to the outlet, and a second configuration to permit flow of the second analgesic drug from the second fluid reservoir to the outlet while blocking flow of the first analgesic drug from the first fluid reservoir to the outlet; and a controller operable to control the at least one regulator assembly for selective adjustment of the regulator assembly between the first and second configurations.
19. The pump of Claim 18 wherein the at least one regulator assembly comprises first and second regulators. The pump of Claim 18 wherein the controller is operable to configure the at least one regulator assembly to alternately remain in the first configuration for a first period of time and the second configuration for a second period of time.
21. The pump of Claim 18 wherein the controller is operable such that the first and second period of times are determinable to delay the development of tolerance to the first and second analgesic drugs when the pump is implanted in a patient in need thereof for intrathecal administration of the first and second analgesic drugs. 00 O O
22. The pump of Claim 18 wherein the controller is operable to automatically t adjust the at least one regulator assembly between the first and second configurations. 00 CI O1 00
23. A method of producn analgesia in a mammal comprising alt=rAting intfftecal administration to the manmal of a pharmaceuti"aly effective dose of at least one p.-opioid receptor agonist fox aL first period of time, and inirathecal administration to *the mammai of a phamanceutialy effective dose of at least onie opioid receptor-like receptor I agonist for a second period of time, wherein the first and second time periods are selected to delay the development of tolerance in the Mammal to the at least one 00 j;-opioi receptor agonist and the at least one opioid receptor-like receptor 1 agonist.
24. A method of producing anagesia in a mammal comprisinS alternating inlbdual administration to the mmnmna of a pharmueutically effectve dose of at least one P-opioid receptor agonist, selected from the group consisting of -motphine, hydromorPhOlle fentanyl Mofentanil, mnethadoue, znePeridinc and DAMGO. for aL f=rs period of time, and intratheal adminisrton to the mammal of a pharmaccutioaily effictive dose of at least ome opioid receptor-Mwk receptor 1 agonist for a second period of tim; wherein the first and second time periods are selected to delay the development of tolerance in the mammal to the at least one ti-opiold receptor agonaist and 'the a t least one opioid receptor-like receptor i agonist A method of producing analgesia in a mammal com prising aeniating *intrathecal adinistratijon to the mammal of a pharmaceutically -effetive dose of at least one ji-opioid receptor agonist, selected from the group conisting of morphine, hydromorphone, fentanyl, sufrnUtafL, methadone, meperidine and DAMGO, for a first period of time, and intrathecal administration to the mammal of a phanaceultically effective dose of at least one ojpioid receptor-like receptor. 1 agonist selected from the. gr oup consisting of nociceptixi, Phepsi; RO 64-6198, and I -phenyl-1,3,. triam- spiro[4.51decan-4-ones, for a second period of time, wh=*ein the at least one oploid receptor-lRe receptor 1 agonist and the first and se nd time periods are selected to d&lay, the development of tolerance in .the mammal to the at least one ji-opioid recptor agonist and the at least one opioid receptor-like receptor 1 agonist.
26. A raethod of producing analgesia in a m mAnua comprising altmating intrathecal adminisrton to the mammaml of a pharinaeutical effective dose of at least one ;i-opioid recepor agonist, 6-opiold Ieceptor agonist, or X-opioid receptor agonist for a first period of tim;, and infrathiecal administration to the mammal of a pharmaceutically 00 effective dose of at least one opioid receptor-lie receptor 1 agonist for a second period of time, wherein the first and second time periods are selected to- delay the developmnt of tolerance in the mammal to the at least one opioid receptor agonist and the at least- one opioid receptor-like receptor I agonist A method of producing analgesia in a marnmaj comprising alternating intrathccaI administration to the mammal of a pharmiaceutically effective dose of ot least 00 one .L-opioid receptor agonist, selected from the group consisting of morphine, bydronmorphoxle, fentanyl, sufentanil, methadone, meperidine and DAMQO, one 6-opioid receptor agonist, selected from the group consistin of deltorphin and DPDPFE, or the ic- opicid receptor agonist U-50,4881i, for a first period of time, -and intrathecal admirtistration to the mnammal of a phar~maceutically effective dose of at least one opioid receptor-like receptor I agonist for a second period of time, wherein tbe first and second time periods are selected to delay the.development of tolerance in the mnarmal to the at least one opicid receptor agonist and the at least one opicid receptor-likm receptor I agonist.
28. A method of producing analgesia in a mammal comprising alternating intathecal administration to the mammal of a pharmaceutically effective dose of at le=s one A.-opioid receptor agonist, selected fromn the group consisting of morphine, hydromorphone, fentanyl, sffentanil methiadone, meperidirie and DAMGO, one &-opioid receptor agortist, sceeted from the group consisting of deltorphia and DPDPB, -or a ic- opiold receptor agonis U-50,4881i, for a first period of time, and intrathecal administiojn to the mammsal of a pharmaceutically effective doseof at least one opioid receptor-like receptor I agonist; selected from the group consisting of nociceptin, Phepsi; RO 64-6198, and l-phenyl-1,3,8-triata-spiro[4-5]deca4-ones, for a second period of time, -wherein the at least one opiold receptor-like receptor I agonis and the firs and second time periods are selected to delay the development of tolerance in the mammal. to the atleast one opioid receptor agonist and the at least one opioid receptor-ie receptor I agonist. -24-
AU2008201344A 2001-07-02 2008-03-20 Method for producing analgesia comprising administration of an opioid receptor agonist in rotation with an opioid receptor like-1 receptor agonist Abandoned AU2008201344A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US30279601P 2001-07-02 2001-07-02
US60/302,796 2001-07-02
AU2002252201A AU2002252201A1 (en) 2001-07-02 2002-02-28 Method for inducing analgesia comprising administration alternatively of an opioid receptor agonist and an opioid receptor like receptor 1 agonist for and an implantable infusion pump

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002252201A Division AU2002252201A1 (en) 2001-07-02 2002-02-28 Method for inducing analgesia comprising administration alternatively of an opioid receptor agonist and an opioid receptor like receptor 1 agonist for and an implantable infusion pump

Publications (1)

Publication Number Publication Date
AU2008201344A1 true AU2008201344A1 (en) 2008-04-17

Family

ID=39338450

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2008201344A Abandoned AU2008201344A1 (en) 2001-07-02 2008-03-20 Method for producing analgesia comprising administration of an opioid receptor agonist in rotation with an opioid receptor like-1 receptor agonist

Country Status (1)

Country Link
AU (1) AU2008201344A1 (en)

Similar Documents

Publication Publication Date Title
JP2009102396A (en) Method for inducing analgesia comprising alternative administration of opioid receptor agonist and opioid receptor like receptor 1 agonist and implantable infusion pump
de Wit et al. Drug reinstatement of heroin-reinforced responding in the rat
Morgan et al. Effects of agmatine on the escalation of intravenous cocaine and fentanyl self-administration in rats
US10517839B2 (en) Mast cell inhibition in diseases of the retina and vitreous
Carr et al. Chronic food restriction and weight loss produce opioid facilitation of perifornical hypothalamic self-stimulation
US20020037313A1 (en) Sustained-release nalmefene preparations and method
Saini et al. Antifibrillatory action of the narcotic agonist fentanyl
Badner et al. Bupivacaine 0.125% improves continuous postoperative epidural fentanyl analgesia after abdominal or thoracic surgery
Bornebusch et al. Glucagon-like peptide-1 receptor agonist treatment does not reduce abuse-related effects of opioid drugs
Sinatra et al. Patient-controlled analgesia with sufentanil: a comparison of two different methods of administration
Lemmer Relevance for chronopharmacology in practical medicine
CA2811345C (en) Compound composition for inhalation used for treating asthma
US7052486B2 (en) Method and system for treating depressive and anxiety disorders
Loomis et al. Determination of cross tolerance in rat spinal cord using intrathecal infusion via sequential mini-osmotic pumps
US20030040479A1 (en) Rotational intrathecal analgesia method and device
Wajima et al. IV compared with brachial plexus infusion of butorphanol for postoperative analgesia
Chen et al. Substance P‐induced respiratory excitation is blunted by δ‐receptor specific opioids in the rat medulla oblongata
Gao et al. Central thromboxane receptors: mRNA expression and mediation of pressor responses
AU2008201344A1 (en) Method for producing analgesia comprising administration of an opioid receptor agonist in rotation with an opioid receptor like-1 receptor agonist
Wright et al. Drinking to intracerebroventricularly infused angiotensin II, III, and IV in the SHR
AU2002252201A1 (en) Method for inducing analgesia comprising administration alternatively of an opioid receptor agonist and an opioid receptor like receptor 1 agonist for and an implantable infusion pump
Jones Injections of phentolamine into the anterior hypothalamus-preoptic area of rats blocks both pressor and drinking responses produced by central administration of angiotensin II
Khankari et al. A review on pulsatile drug delivery system
Howard Preoperative and postoperative pain control.
Dar Functional interaction and cross-tolerance between ethanol and Δ9-THC: Possible modulation by mouse cerebellar adenosinergic A1/GABAergic-A receptors

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application