AU2008201044A1 - Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers - Google Patents

Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers Download PDF

Info

Publication number
AU2008201044A1
AU2008201044A1 AU2008201044A AU2008201044A AU2008201044A1 AU 2008201044 A1 AU2008201044 A1 AU 2008201044A1 AU 2008201044 A AU2008201044 A AU 2008201044A AU 2008201044 A AU2008201044 A AU 2008201044A AU 2008201044 A1 AU2008201044 A1 AU 2008201044A1
Authority
AU
Australia
Prior art keywords
protein
cancer
expression
cell
pool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2008201044A
Other versions
AU2008201044B2 (en
Inventor
Pia M. Challita-Eid
Mary Faris
Wangmao Ge
Rene S. Hubert
Aya Jakobovits
Karen Morrison
Robert Kendall Morrison
Arthur B. Raitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agensys Inc
Original Assignee
Agensys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002318112A external-priority patent/AU2002318112B2/en
Application filed by Agensys Inc filed Critical Agensys Inc
Priority to AU2008201044A priority Critical patent/AU2008201044B2/en
Publication of AU2008201044A1 publication Critical patent/AU2008201044A1/en
Application granted granted Critical
Publication of AU2008201044B2 publication Critical patent/AU2008201044B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

00
O
AUSTRALIA
FB RICE CO Patent and Trade Mark Attorneys Patents Act 1990 AGENSYS, INC.
COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers The following statement is a full description of this invention including the best method of performing it known to us:- 00 NUCLEIC ACIDS AND CORRESPONDING PROTEINS USEFUL IN THE DETECTION AND TREATMENT OF VARIOUS CANCERS This is a divisional of AU 2002318112, the entire contents of which are incorporated herein by reference.
FIELD OF THE INVENTION The invention described herein relates to genes and their respective encoded proteins, such as those set forth, e. in Figure 2, expressed in certain cancers, and to 0 diagnostic and therapeutic methods and compositions useful in the management of Scancers that express a gene of Figure 2.
BACKGROUND OF THE INVENTION Cancer is the second leading cause of human death next to coronary disease.
Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million people annually, with over 1.2 million new cases diagnosed per year.
While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death.
Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence.
Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease-second only to lung cancer. Despite the magnitude of these figures, there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities.
00 0 Unfortunately, these treatments are ineffective for many and are often associated with Ni undesirable consequences.
cOn the diagnostic front, the lack of a prostate tumor marker that can accurately Sdetect early-stage, localized tumors remains a significant limitation in the diagnosis and t' management of this disease. Although the serum 00 prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects.
00 S Progress in identifying additional specific markers for prostate cancer has been improved by the generation Ci prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Sestate Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune Sficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to drogen independence (Klein et al., 1997, Nat. Med. 3:402). More recently identified prostate cancer markers S:lude PCTA-1 (Su et al., 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen into et al., Clin Cancer Res 1996 Sep 2 1445-51), STEAP (Hubert, et al., Proc Natl Acad Sci US A. 1999 c 7; 96(25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter et al., 1998, Proc. Natl. Acad. Sci. USA While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to C ignose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets 00 r prostate and related cancers in order to further improve diagnosis and therapy.
Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas ach a diameter of 2 to 3 cm, malignant potential exists. In the adult, the two principal malignant renal tumors are aal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell enocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of is disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per ar in the United States.
Surgery has been the primary therapy for renal cell adenocarcinoma for many decades. Until recently, :tastatic disease has been refractory to any systemic therapy. With recent developments in systemic therapies, rticularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate tients with a possibility of durable responses. Nevertheless, there is a remaining need for effective therapies for ese patients.
Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men fth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is creasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, cluding 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and 8 per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly.
Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients.
An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 per year). Research suggests that 2 these declines have been due to increased screening and polyp removal, preventing progression of polyps to C00 invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal cancer) in 0 2000, accounting for about 11% of all U.S. cancer deaths.
c At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to 1 most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon 0 cancer and is infrequently required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer.
There were an estimated 164,100 new cases of lung and bronchial cancer in 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow.
^C In 1996, the incidence rate in women was 42.3 per 100,000.
00 Lung and bronchial cancer caused an estimated 156,900 deaths in 2000, accounting for 28% of all cancer 0 deaths. During 1992-1996, mortality from lung cancer declined significantly among men per year) while rates for women were still significantly increasing per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women.
Decreasing lung cancer incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concern, although the declines in adult tobacco use have slowed, tobacco use in youth is increasing again.
Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers.
An estimated 182,800 new invasive cases of breast cancer were expected to occur among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990s to about 110.6 cases per 100,000.
In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent data, mortality rates declined significantly during 1992-1996 with the largest decreases in younger women, both white and black.
These decreases were probably the result of earlier detection and improved treatment.
Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy.
Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast 00 sue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the ance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may Svelop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments.
C lere is, therefore, a need for efficacious breast cancer treatments.
There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 't of all cancers among women and ranks second among gynecologic cancers. During 1992-1996, ovarian cancer :idence rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system.
Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually S:ludes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus ysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women C" io wish to have children. In advanced disease, an attempt is made to remove all intra-abdominal disease to 00 hance the cffcct of chemotherapy. There continues to be an important need for effective treatment options for 0 arian cancer.
There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past Syears, rates of pancreatic cancer have declined in men. Rates among women have remained approximately nstant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the lited States. Over the past 20 years, there has been a slight but significant decrease in mortality rates among men bout per year) while rates have increased slightly among women.
Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment tions can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most lere is a significant need for additional therapeutic and diagnostic options for pancreatic cancer.
SUMMARY OF THE INVENTION The present invention relates to genes and respective encoded proteins set forth in Figure 2, that have now en found to be over-expressed in the cancer(s) listed in Table I. Northern blot expression analysis of the genes of gure 2 in normal tissues shows a restricted expression pattern in adult tissues. The nucleotide (Figure 2) and aino acid (Figure 2, and Figure 3) sequences of Figure 2 are provided. The tissue-related expression profile of the genes set forth in Figure 2 in normal adult tissues, combined with the over-expression observed in the tumors listed in Table I, shows that the genes of Figure 2 are aberrantly over-expressed in certain cancers, and thus serves as a useful diagnostic, prophylactic, prognostic, and/or therapeutic target for cancers of the tissue(s) such as those listed in Table I.
The invention provides polynucleotides corresponding or complementary to all or part of the genes of Figure 2, corresponding/related mRNAs, coding and/or complementary sequences, preferably in isolated form, including polynucleotides encoding Figure 2-related proteins and fragments of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 contiguous amino acids of a Figure 2-related protein; at least 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100 or more than 100 contiguous amino acids of a Figure 2-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules such as, polynucleotides or oligonucleotides complementary or having at least a 90% homology to the genes set forth in Figure 2 or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides that hybridize to the genes set forth in Figure 2, mRNAs, or to polynucleotides that encode proteins of Figure 2 or figure 3 or analogs or 4 variants thereof; or to polynucleotides that encode proteins of fragments of a peptide of Figure 2 or Figure 3 such as 00 set forth in Tables V to XVIII, Table XX, Tables XXIII to XXVI, or analogs or variants thereof; or to Spolynucleotides that encode fragments/subsequences of a peptide of Figure 2 or Figure 3 such as any 4, 5, 6, 7, 8, 9, c 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 45,50, 55, 60, 65, 70, 75,80, 85, 90, 95, 100, 105, 110, 115, 120,125,130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195,200, 205,210, 215,220, 225, 230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395,400, S 405,410, 415, 420, 425, 430, 435, 440, 445,450, 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 505, 510, 515, 520, 525, 530, 535, 540, 545, 550, 555, 560, 565, 570, 575, 580, 585, 590, 595, 600, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695, 700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, 760, 765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825, 830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890, 895, 900, 905, 910, 915, 920, 925, 930, 935, 940, 945, 950, 955, 960, 965, 970, 975, 980, 985, 990, 995, 1000, 1025, 1050, 1075, 1100, 1125, 1150, 1175, 1200, etc., or more contiguous amino acids of 00 a peptide of Figure 2 or 3, or an analog or variant thereof.
Also provided are means for isolating cDNAs and the genes encoding proteins set forth in Figure 2.
SRecombinant DNA molecules containing genes of Figure 2 polynucleotides, cells transformed or transduced with such molecules, and host-vector systems for the expression of the genes set forth in Figure 2 products are also provided. The invention further provides antibodies that bind to the proteins set forth in Figure 2 and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker or therapeutic agent. In certain embodiments there is a proviso that the entire nucleic acid sequence of the genes of Figure 2 is not encoded and/or the entire amino acid sequence of the proteins of Figure 2 is not prepared. In certain embodiments, the entire nucleic acid sequence of the genes of Figure 2 is encoded and/or the entire amino acid sequence of the proteins of Figure 2 is prepared, either of which are in respective human unit dose forms.
The invention further provides methods for detecting the presence and status of Figure 2 polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express the genes set forth in Figure 2. A typical embodiment of this invention provides methods for monitoring the Figure 2 gene products in a tissue or hematology sample having or suspected of having some form of growth dysregulation such as cancer.
The invention further provides various immunogenic or therapeutic compositions and strategies for treating cancers that express a gene set forth in Figure 2 such as cancers of tissues listed in Table I, including therapies aimed at inhibiting the transcription, translation, processing or function of the genes of Figure 2 as well as cancer vaccines. In one aspect, the invention provides compositions, and methods comprising them, for treating a cancer that expresses a gene set forth in Figure 2 in a human subject wherein the composition comprises a carrier suitable for human use and a human unit dose of one or more than one agent that inhibits the production or function of a gene or proteins of Figure 2. Preferably, the carrier is a uniquely for use in humans. In another aspect of the invention, the agent is a moiety that is immunoreactive with a protein of Figure 2. Non-liniiting examples of such moieties include, but are not limited to, antibodies (such as single chain, monoclonal, polyclonal, humanized, chimeric, or human antibodies), functional equivalents thereof (whether naturally occurring or synthetic), and combinations thereof. The antibodies can be conjugated to a diagnostic or therapeutic moiety. In another aspect, the agent is a small molecule as defined herein.
In another aspect, the agent comprises one or more than one peptide which comprises a cytotoxic T lymphocyte (CTL) epitope that binds an HLA class I molecule in a human to elicit a CTL response to a protein of Figure 2 and/or one or more than one peptide which comprises a helper T lymphocyte (HTL) epitope which binds -i HLA class II molecule in a human to elicit an HTL response. The peptides of the invention may be on the same Sr on one or more separate polypeptide molecules. In a further aspect of the invention, the agent comprises one or lore than one nucleic acid molecule that expresses one or more than one of the CTL or HTL response stimulating i eptides as described above. In yet another aspect of the invention, the one or more than one nucleic acid molecule lay express a moiety that is immunologically reactive with a protein of Figure 2 as described above. The one or tore than one nucleic acid molecule may also be, or encodes, a molecule that inhibits production of a protein set Srrth in Figure 2. Non-limiting examples of such molecules include, but are not limited to, those complementary to nucleotide sequence essential for production of a protein of Figure 2 antisense sequences or molecules that S)rm a triple helix with a nucleotide double helix essential for production of a protein set forth in Figure 2) or a bozyme effective to lyse mRNA (sense or antisense) encoded by a gene of Figure 2.
S Please note, to determine the starting position of any peptide set forth in Tables V-XVIII and Tables XXIII IXXVI (collectively HLA Peptide Tables) respective to its parental protein in Figure 2 or Figure 3, reference is 0 lade to its respective protein.
0 One embodiment of the invention comprises an HLA peptide, that occurs at least twice in Tables V-XVIII ad XXIII to XXVI collectively, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the ivention comprises an HLA peptide that occurs at least twice in Tables V-XVII, or an oligonucleotide that acodes the HLA peptide. Another embodiment of the invention comprises an HLA peptide that occurs at least vice in Tables XXII to XXVI, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the ivention comprises an HLA peptide that occurs at least once in Tables V-XVII and is embedded within at least ne peptide in Tables XXIII o XXVI, or an oligonucleotide that encodes the HLA peptide.
Another embodiment of the invention is antibody epitopes which comprise a peptide region, or an ligonucleotide encoding the peptide region, that has one two, three, four, or five of the following characteristics: i) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number icrement'up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of Figure ii) a peptide region of at least 5 amino-acids of a particular peptide of Figure 3, in any whole number icrement up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of Figure 6; iii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible Residues profile of Figure 7; iv) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility profile of Figure 8; or v) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of Figure 9.
BRIEF DESCRIPTION OF THE FIGURES 0 Figure 1. The SSH sequences of the invention.
O Figure 2. Genes and respective encoded proteins of the invention.
Figure 3. Amino acid sequences of the invention.
Figure 4. Nucleic acid sequence and protein alignments.
SFigure 5. Hydrophilicity amino acid profile of the proteins set forth in Figure 2 determined by computer l algorithm sequence analysis using the method of Hopp and Woods (Hopp Woods 1981. Proc. NatL Acad. Sci. U.S.A. 78:3824-3828) accessed on the Protscale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.
Figure 6. Hydropathicity amino acid profile of the proteins set forth in Figure 2 determined by computer Salgorithm sequence analysis using the method of Kyte and Doolittle (Kyte Doolittle 1982. J. Mol. Biol.
157:105-132) accessed on the ProtScale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy 00 molecular biology server.
Figure 7. Percent accessible residues amino acid profile of the proteins set forth in Figure 2 determined by C1 computer algorithm sequence analysis using the method of Janin (Janin 1979 Nature 277:491-492) accessed on the ProtScale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.
Figure 8. Average flexibility amino acid profile of the proteins set forth in Figure 2 determined by computer algorithm sequence analysis using the method of Bhaskaran and Ponnuswamy (Bhaskaran and Ponnuswamy 1988. Int. J. Pept. Protein Res. 32:242-255) accessed on the ProtScale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.
Figure 9. Beta-turn amino acid profile of the proteins set forth in Figure 2 determined by computer algorithm sequence analysis using the method ofDeleage and Roux (Deleage, Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server.
Figure 10. Secondary structure predictions for the proteins set forth in Figure The secondary structures of the proteins set forth in Figure 2 were predicted using the HNN Hierarchical Neural Network method (Guermeur, 1997, at World Wide Web URL pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa n.html), accessed from the ExPasy molecular biology server (at World Wide Web URL www.expasy.ch/tools/). This method predicts the presence and location of alpha helices, extended strands, and random coils from the primary protein sequence.
The percent of the protein in a given secondary structure is also listed for each variant.
Transmembrane predictions for the proteins set forth in Figure 2. Schematic representations of the probability of existence of transmembrane regions and orientation of the proteins of Figure 2 based on the TMpred algorithm of Hofmann and Stoffel which utilizes TMBASE Hofmann, W. Stoffel. TMBASE A database of membrane spanning protein segments Biol. Chem. Hoppe-Seyler 374:166, 1993). Schematic representation of the probability of the existence of transmembrane regions and the extracellular and intracellular orientation of the proteins of Figure 2 based on the TMHMM algorithm of Sonnhammer, von Heijne, and Krogh (Erik LL.
Sonnhammer, Gunnar von Heijne, and Anders Krogh: A hidden Markov model for predicting transmembrane helices in protein sequences. In Proc. of Sixth Int. Conf. on Intelligent Systems for Molecular Biology, p 175-182 Ed J. Glasgow, T. Littlejohn, F. Major, R. Lathrop, D. Sankoff, and C. Sensen Menlo Park, CA: AAAI Press, 1998).
The TMpred and TMHMM algorithms are accessed from the ExPasy molecular biology server (at World Wide Web URL .expasy.ch/tools/).
Figure 11. The nucleotide sequences of transcript variants of the invention.
00 Figure 12. This Figure shows amino acid sequences of proteins translated from the corresponding Sanscript variants set forth in Figure 11.
C Figure 13. This Figure displays the alignment of the nucleotide sequences of respective transcript ariants.
Figure 14. This Figure displays the alignment of the protein sequences from the respective transcript ariants. The sub-numbering nomenclature of Figure 11 through Figure 14 is set forth in the following legend: 0 igure 11-14 ub-part Target 074P3B3 083P4B8 109P1D4 151P1C7A 51P4EII 154P2A8 56P1D4 56P5C12 59P2B5 161P2B7a 179P3G7 184P3C10B 184P3G10 185P2C9 185P3C2 186P1H9 187P3F2 192P2G7 Figure 15. Expression of 74P3B3 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), two prostate metastasis to lymph node (LN) harvested from two different patients, prostate cancer pool, bladder cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 74P3B3, was performed at 26 and 30 cycles of amplification. Results show strong expression of 74P3B3 in the two prostate OO metastasis to LN specimens and in prostate cancer pool. Expression was also detected in bladder cancer pool, O cancer metastasis pool, and vital pool 2 but not in the vital pool 1.
K Figure 16. Expression of 74P3B3 In normal tissues. Two multiple tissue northern blots (A and B; Clontech) both with 2 pg of mRNA/lane, and a LAPC xenograft blot with 10 pg of total RNA/lane were probed G with the 74P3B3 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of approximately 7 kB 74P3B3 transcript in prostate but not in the other normal tissues tested.
Expression was also detected in LAPC-4AD and LAPC-4AI but not in LAPC-9AD and LAPC-9AI.
Figure 17. Expression of 74P3B3 in prostate cancer patient specimens. RNA was extracted from normal prostate pool of 3 prostate cancer patient tumors and their normal adjacent tissues Northern Sblot with 10 pg of total RNA/lane was probed with 74P3B3 SSH sequence. Size standards in kilobases (kb) are indicated on the side. The results show strong expression of 74P3B3 in normal prostate and in patient prostate cancer specimens.
00 Figure 18. Expression of 74P3B3 In patient cancer specimens. Expression of 74P3B3 was assayed in a panel of human cancers and their respective matched normal tissues on RNA dot blots. Upregulated
C
N expression of 74P3B3 in tumors compared to normal tissues was observed in prostate, kidney, breast and colon tumors. The expression detected in normal adjacent tissues (isolated from diseased tissues) but not in normal tissues (isolated from healthy donors) may indicate that these tissues are not fully normal and that 74P3B3 may be expressed in early stage tumors.
Figure 19. Expression of 83P4B8 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool.
Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 83P4B8, was performed at 30 cycles of amplification. Results show strong expression of 83P4B8 in all cancer pools tested. Very low expression was detected in the vital pools.
Figure 20. Expression of 83P4B8 in normal tissues. Two multiple tissue northern blots (A and B; Clontech) both with 2 pg of mRNA/lane, and a LAPC xenograft blot with 10 pg of total RNA/lane were probed with the 83P4B8 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of two approximately 4.4kb 83P4B8 transcripts in testis and to lower level in thymus but not in the other normal tissues tested. Expression was also detected in all 4 LAPC prostate cancer xenografts.
Figure 21. Expression of 83P4B8 in patient cancer specimens and normal tissues. RNA was extracted from a pool of three prostate cancers bladder cancers kidney cancers colon cancers lung cancers ovary cancers cancer metastasis (Met), pancreas cancers (PaC), as well as from normal prostate normal bladder normal kidney normal colon normal lung normal breast (NBr) normal ovary (NO) and normal pancreas (NPa). Northern blot with 10 ug of total RNA/lane was probed with 83P4B8 sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of 83P4B8 in the bladder cancers and ovary cancers. Expression of 83P4B8 was also detected in prostate cancers, kidney cancers, colon cancers, lung cancers, cancer metastasis and pancreas cancer but not in the normal tissues tested.
Figure 22. Expression of 83P4B8 in prostate cancer patient specimens. RNA was extracted from normal prostate prostate cancer patient tumors and their normal adjacent tissues Northern blot with pg of total RNA/lane was probed with 83P4B8 SSH sequence. Size standards in kilobases (kb) are indicated on 00 Le side. The results show strong expression of 83P4B8 in the patient prostate cancer specimens.
Figure 23. Expression of 83P4B8 in colon cancer patient specimens. RNA was extracted from colon Ci ucer cell lines normal colon colon cancer patient tumors and their normal adjacent tissues (Nat).
orthern blots with 10 pg of total RNA were probed with the 83P4B8 SSH fragment. Size standards in kilobases Se indicated on the side. Results show strong expression of 83P4B8 in the colon tumor tissues and in all three lon cancer cell lines tested, but not in the normal tissues.
Figure 24. Expression of 109P1D4 by RT-PCR. First strand cDNA was prepared from vital pool 1 iver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, :dney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis ol, and pancreas cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi- Slantitative PCR, using primers to 109P1D4, was performed at 30 cycles of amplification. Results show strong C (pression of 109P1D4 in all cancer pools tested. Very low expression was detected in the vital pools 00 Figure 25. Expression of 109P1D4 in normal tissues. Two multiple tissue northern blots (Clontech), )th with 2 pg ofmRNA/lane, were probed with the 109P1D4 SSH fragment Size standards in kilobases (kb) are Idicated on the side. Results show expression of approximately 10 kb 109P1D4 transcript in ovary. Weak cpression was also detected in placenta and brain, but not in the other normal tissues tested.
Figure 26. Expression of 109P1D4 in human cancer cell lines. RNA was extracted from a number of Iman prostate and bone cancer cell lines. Northern blots with 10 pg of total RNA/lane were probed with the 39P 1D4 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of )9P1D4 in LAPC-9AD, LAPC-9AI, LNCaP prostate cancer cell lines, and in the bone cancer cell lines, SK-ES-1 id RD-ES.
Figure 27. Expression of 109P1D4 in patient cancer specimens. Expression of 109P1D4 was assayed L a panel of human cancers and their respective matched normal tissues on RNA dot blots. Upregulated cpression of 109P1D4 in tumors compared to normal tissues was observed in uterus, lung and stomach. The cpression detected in normal adjacent tissues (isolated from diseased tissues) but not in normal tissues (isolated om healthy donors) may indicate that these tissues are not fully normal and that 109P1D4 may be expressed in rly stage tumors.
Figure 28. Expression of 151P1C7A by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 151P I C7A, was performed at 26 and cycles of amplification. Results show strong expression of 151P1C7A in bladder, lung, and metastasis cancer pools tested. Expression was also detected in xenograft, prostate, kidney and colon cancer pools but not in the vital pools.
Figure 29. Expression of 151P1C7A in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg of mRNA/lane, were probed with the 151P1C7A SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 2 kb 151P1C7A transcript in placenta but not in the other normal tissues tested.
Figure 30. Expression of 151P1C7A in bladder cancer patient specimens. RNA was extracted from bladder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors (T) and their normal adjacent tissue isolated from bladder cancer patients. Northern blots with 10 pg ot total KNA were probed with the 151P1C7A SSH sequence. Size standards in kilobases are indicated on the side. Results show expression of 15 IP1C7A in patient bladder cancer tissues, and in all bladder cancer cell lines tested, but not in normal bladder.
Figure 31. Expression of 151P1C7A in prostate cancer patient specimens. RNA was extracted from normal prostate prostate cancer patient tumors and their normal adjacent tissues Northern blot with pg of total RNA/lane was probed with 151P1C7A SSH sequence. Size standards in kilobases (kb) are indicated Son the side. Results show expression of 151PIC7A in the patient prostate cancer specimens.
Figure 32. Expression of 151P4E11 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPCz 4AD, LAPC-4A, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 151P4E11, was performed at 26 00 and 30 cycles of amplification. Results show strong expression of 151P4E11 in all cancer pools tested. Expression was detected in vital pool 2 but not in vital pool 1.
Cr Figure 33. Expression of 151P4E11 in normal tissues. Two multiple tissue northern blots (A and B; Clontech) both with 2 gg of mRNA/lane, and a LAPC xenograft blot with 10 jig of total RNA/lane were probed with the 151P4E11 SSH fragment Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 1.2 kb 151P4E11 transcript in prostate, testis, colon and small intestine. Expression was also detected in all the LAPC prostate cancer xenografts LAPC-4AD, LAPC-4AL and LAPC-9AI, but not in LAPC-9AD.
Figure 34. Expression of 154P2A8 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 154P2A8, was performed at 26 and 30 cycles of amplification. Results show strong expression of 154P2A8 in bladder cancer pool and lung cancer pool. Expression was also detected in prostate cancer pool, kidney cancer pool, colon cancer pool, and cancer metastasis pool but not in vital pool 1 and vital pool 2.
Figure 35. Expression of 156P1D4 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool.
Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 156P1D4, was performed at 26 and 30 cycles of amplification. Results show strong expression of 156P1D4 in kidney cancer pool and vital pool 1. Expression was also detected in xenograft pool, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool and vital pool 2.
Figure 36. Expression of 156P1D4 in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 /g of mRNA/lane, were probed with the 156P1D4 SSH fragment Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 2 kb 156P1D4 transcript in kidney and prostate but not in the other normal tissues tested.
Figure 37. Expression of 156P1D4 in kidney cancer patient specimens. RNA was extracted from 0 normal kidney kidney cancer patient tumors and their normal adjacent tissues Northern blots with S g of total RNA were probed with the 156P1D4 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 156P1D4 in all kidney tumor tissues tested. The expression of 156P1D4 Sdetected in tumor tissues is stronger than in normal tissues.
S Figure 38. Expression of 156P5C12 by RT-PCR. First strand cDNA was prepared from vital pool 1 t (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool.
"f Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to S156P5C12, was performed at 26 and 30 cycles of amplification. Results show strong expression of 156P5C12 in 0 kidney cancer pool and vital pool 1. Expression was also detected in xenograft pool, prostate cancer pool, bladder 00 cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool and vital pool 2.
S Figure 39. Expression of 1S6P5C12 In normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg ofmRNA/lane, were probed with the 156P5C12 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 1.4 kb 156P5C12 transcript in kidney but not in the other normal tissues teted.
Figure 40. Expression of 156P5C12 in kidney cancer patient specimens. RNA was extracted from kidney cancer cell lines (CL; 769-P, A498, SW839), normal kidney kidney cancer patient tumors and their normal adjacent tissues (NAT). Northern blots with 10 pg of total RNA were probed with the 156P5C12 SSH fragment. Size standards in kilobases are indicated on the side. Results show expression of 156P5C12 in normal tissues, and in some but not all kidney tumor tissues. Expression was absent in the kidney cancer cell lines tested.
Figure 41. Expression of 159P2B5 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), and bladder cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 159P2B5, was performed at 26 and 30 cycles of amplification. Results show expression of 159P2B5 in bladder cancer pool tested but not in the vital pools.
Figure 42. Expression of 159P2B5 in normal tissues. Two multiple tissue northern blots (Clontech), I both with 2 pg of mRNA/lane, were probed with the 159P2B5 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show very weak expression of an approximately 4.5 kbl59P2B5 transcript in spleen, kidney and small intestine.
Figure 43. Expression of 159P2B5 in.bladder cancer patient specimens. RNA was extracted from bladder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder and bladder cancer patient tumors isolated from bladder cancer patients. Northern blots with 10 Ag of total RNA were probed with the 159P2B5 SSH sequence. Size standards in kilobases are indicated on the side. Results show expression of 159P2B5 in patient bladder cancer tissues, and in the SCaBER bladder cancer cell line, but not in normal bladder, nor in the other cancer cell lines tested.
Figure 44. Expression of 161P2B7A by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate metastasis to lymph node (LN), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool and pancreas cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 161P2B7A, was performed at 26 and cycles of amplification. Results show strong expression of 161P2B7A in lung cancer pool and pancreas cancer O pool. Expression was also detected in prostate metastasis to LN, prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool. Very low expression was observed in vital pool 2 but not in vital pool 1.
SFigure 45. Expression of 161P2B7A in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg ofmRNA/lane, were probed with the 161P2B7A SSH fragment. Size standards in kilobases (kb) are 0 indicated on the side. Results show very low expression of 161P2B7A in testis but not in the other normal tissues tested.
Figure 46. Expression of 161P2B7A in Multiple Normal Tissues. An mRNA dot blot containing 76 different samples from human tissues was analyzed using a 161P2B7A SSH probe. Expression was not detected in any of the 76 normal tissues tested. The positive genomic DNA control showed very strong signal confirming the validity of the experiment.
00 Figure 47. Expression of 161P2B7A in kidney cancer patient specimens. RNA was extracted from O normal kidney kidney cancer patient tumors and their normal adjacent tissues isolated from kidney C" cancer patients. Northern blots with 10 pg of total RNA were probed with the 161P2B7A SSH fragment Size standards in kilobases are indicated on the side. Results show expression of two 161P2B7A transcripts, approximately 1.2 and 7 kb, in kidney cancer specimens but not in normal kidney.
Figure 48. Expression of 161P2B7A in lung cancer patient specimens. RNA was extracted from lung cancer cell lines normal lung, lung tumors and their normal adjacent tissues (NAT) isolated from lung cancer patients. Northern blot with 10 pg of total RNA/lane was probed with the 161P2B7A fragment. Size standards in kilobases (kb) are indicated on the side. The results show expression of 161P2B7A in the lung tumors, but not in normal lung tissues. Expression was also detected in the lung cancer cell lines CALU-1, A427 and NCI- 146 but not in the small cell lung cancer cell line NCI-H82.
Figure 49. Expression of 161P2B7A in pancreas and ovary cancer patient specimens. RNA was extracted from normal pancreas (NPa), pancreas cancer normal ovary and ovary cancer patient specimen Northern blot with 10 pg of total RNA/lane was probed with the 161P2B7A fragment. Size standards in kilobases (kb) are indicated on the side. The results show expression of 161P2B7A in the pancreas and ovary cancer patient specimens, but not in the normal tissues.
Figure 50. Expression of 179P3G7 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), bladder cancer pool, kidney cancer pool, lung cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool and pancreas cancer pool.
Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 179P3G7, was performed at 26 and 30 cycles of amplification. Results show strong expression of 179P3G7 in kidney cancer pool and breast cancer pool. Expression was also detected in bladder cancer pool, lung cancer pool, cancer metastasis pool, pancreas cancer pool and prostate metastasis to LN, and vital pool 1, but not in vital pool 2.
SFigure 51. Expression of 179P3G7 in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg of mRNA/lane, were probed with the 179P3G7 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of 179P3G7 strongly in skeletal muscle, and weakly in kidney, liver and heart but not in the other normal tissues tested.
Figure 52. Expression of 179P3G7 in kidney cancer patient specimens. RNA was extracted from C00 ormal kidney kidney cancer patient tumors and their normal adjacent tissues isolated from kidney O ancer patients. Northern blots with 10 yg of total RNA were probed with the 179P3G7 SSH fragment. Size CN Itandards in kilobases are indicated on the side. Results show expression of 179P3G7 in kidney cancer specimens.
ixpression of 179P3G7 is stronger in kidney tumors compared to normal kidney tissues.
S Figure 53. Expression of 184P3C10B by RT-PCR. First strand cDNA was prepared from vital pool 1 liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 0 AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, :olon cancer pool, lung cancer pool, ovary cancer pool, and cancer metastasis pool. Normalization was performed )y PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 184P3C10B, was performed it 26 and 30 cycles of amplification. Results show expression of 184P3C10B in xenograft pool, prostate cancer Sool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, and cancer C1 netastasis pool. Expression was also detected in vital pool 2 but at a much lower level in vital pool 1.
SFigure 54. Expression of 184P3C10B in normal tissues. Two multiple tissue northern blots (Clontech), ,oth with 2 pg ofmRNA/lane, were probed with the 184P3C10B SSH fragment. Size standards in kilobases (kb) ire indicated on the side. Results show expression of approximately 2.4 and 5 kb 184P3C10B transcripts in flacenta and to lower level in colon and small intestine, but not in the other normal tissues tested.
Figure 55. Expression of 184P3C10B in bladder cancer patient specimens. RNA was extracted from )ladder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors (T) nd their normal adjacent tissue isolated from bladder cancer patients. Northern blots with 10 pg of total RNA vere probed with the 184P3C10B SSH sequence. Size standards in kilobases are indicated on the side. Results ,how expression of 184P3C10B in patient bladder cancer tissues, and in the bladder cancer cell line SCaBER, but lot in normal bladder nor in the other bladder cancer cell lines tested.
Figure 56. Expression of 184P3G10 by RT-PCR. First strand cDNA was prepared from vital pool 1 liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- LAD, LAPC-4AI, LAPC-9AD and LAPC-9AI), bladder cancer pool, kidney cancer pool, colon cancer pool, and ung cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative 'CR, using primers to 184P3G10, was performed at 26 and 30 cycles of amplification. Results show strong xpression of 184P3G10 in bladder cancer pool, kidney cancer pool, and colon cancer pool. Expression was also detected in xenograft pool, lung cancer pool, vital pool 2 but not in vital pool 1.
Figure 57. Expression of 184P3G10 in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 /g of mRNA/lane, were probed with the 184P3G10 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of two approximately 4.4kb 184P3G10 transcripts in colon and small intestine, but not in the other normal tissues tested.
Figure 58. Expression of 184P3G10 in patient cancer specimens and normal tissues. RNA was extracted from a pool of three bladder cancers, colon cancers, lung cancers, breast cancers, ovary cancers, cancer metastasis, as well as from normal prostate normal bladder and normal kidney Northern blot with 10 pg of total RNA/lane was probed with 184P3G10 sequence. Size standards in kilobases (kb) are indicated on the side. Results show strong expression of 184P3G10 in the bladder cancers, colon cancers and ovary cancers.
Expression of 184P3G10 was also detected in lung cancers, breast cancers, and cancer metastasis but not in the normal tissues tested.
Figure 59. Expression of 184P3G10 in bladder cancer patient specimens. RNA was extracted from 00 bladder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors and O their normal adjacent tissue (Nat) isolated from bladder cancer patients. Northern blots with 10 pg of total RNA Swere probed with the 184P3G10 SSH sequence. Size standards in kilobases are indicated on the side. Results show i expression of 184P3G10 in patient bladder cancer tissues, but not in normal bladder nor in the bladder cancer cell lines tested.
Figure 60. Expression of 185P2C9 by RT-PCR. First strand cDNA was prepared from vital pool 1 0 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate metastasis to lymph node (LN), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool and pancreas cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 185P2C9, was performed at 30 cycles of amplification. Results show strong expression of 185P2C9 in bladder cancer pool, colon cancer pool, lung Scancer pool, ovary cancer pool and pancreas cancer pool. Expression was also detected in prostate metastasis to C0 LN, prostate cancer pool, kidney cancer pool, breast cancer pool, cancer metastasis pool, vital pool 2 but not in vital pool 1 C Figure 61. Expression of 185P2C9 in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg of mRNA/lane, were probed with the 185P2C9 SSH fragment Size standards in kilobases (kb) are indicated on the side. Results show expression of and approximately 8.5 kb 185P2C9 transcript in testis and brain, but not in the other normal tissues tested.
Figure 62. Expression of 185P2C9 in bladder cancer patient specimens. RNA was extracted from bladder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors (T) and their normal adjacent tissue isolated from bladder cancer patients. Northern blots with 10 pg of total RNA were probed with the 185P2C9 SSH sequence. Size standards in kilobases are indicated on the side. Results show expression of 185P2C9 in bladder cancer patient tissues, and in the bladder cancer cell lines tested. Expression of 185P2C9 is significantly stronger in bladder tumor tissues compared to normal tissues.
Figure 63. Expression of 185P2C9 In kidney cancer patient specimens. RNA was extracted from kidney cancer cell lines (CL; 769-P, A498, Caki-l), normal kidney kidney cancer patient tumors and their normal adjacent tissues (NAT) isolated from kidney cancer patients. Northern blots with 10 pg of total RNA were probed with the 185P2C9 SSH fragment. Size standards in kilobases are indicated on the side. Results show expression of 185P2C9 in kidney cancer specimens and kidney cancer cell lines, but not in normal kidney.
Figure 64. Expression of 186P1H9 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, cancer metastasis pool, and pancreas cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 186P1H9, was performed at 26 and 30 cycles of amplification. Results show strong expression of 186P1H9 in kidney cancer pool, colon cancer pool, ovary cancer pool, cancer metastasis pool, and pancreas cancer pool. Expression was also detected in bladder cancer pool, lung cancer pool, vital pool 2 but not in vital pool 1.
Figure 65. Expression of 186P1H9 in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 pg of mRNA/lane, were probed with the 186P1H9 SSH fragment Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 2.6 kb 186P1H9 transcript in testis, spleen, pancreas and brain. Lower expression is also detected in heart, skeletal muscle, prostate, colon and small intestine.
Figure 66. Expression of 186P1H9 in patient cancer specimens and normal tissues. RNA was 00 rtracted from a pool of three kidney cancers ovary cancers cancer metastasis (Met), pancreas cancers S?aC), as well as from normal prostate normal bladder and normal kidney normal colon (NC), C' ormal lung normal breast (NBr), normal ovary and normal pancreas (NPa). Northern blot with 10 pg Sf total RNA/lane was probed with 186P1H9 sequence. Size standards in kilobases (kb) are indicated on the side.
esults show strong expression of 186P1H9 in the bladder cancers, ovary cancers, cancer metastasis and pancreas tn ancers, but not in normal tissues. Expression of 186P 1H9 is significantly stronger in patient cancer tissues ompared to normal tissues.
Figure 67. Expression of 186P1H9 in kidney cancer patient specimens. RNA was extracted from idney cancer cell lines (CL; 769-P, A498, Cald-1), normal kidney kidney cancer patient tumors and their Sormal adjacent tissues (NAT) isolated from kidney cancer patients. Northern blots with 10 1rg of total RNA were Srobed with the 186P1H9 SSH fragment Size standards in kilobases are indicated on the side. Results show strong C1 xpression of 186P1H9 in kidney cancer patient specimens, but not in normal kidney, nor in the kidney cancer cell 00 ines.
SFigure 68. Expression of 186P1H9 in ovarian and testicular cancer patient specimens. RNA was xtracted from normal ovary ovary cancer patient specimens (P1, P2, P3), normal testis (NTe), and testis ancer patient specimens (P4, PS, P6). Northern blot with 10 pg of total RNA/lane was probed with the 186P1H9 ;SH fragment. Size standards in kilobases (kb) are indicated on the side. The results show strong expression of 86P1H9 in the ovary cancer patient specimens, but not in the normal ovary. Expression was also detected in lormal and in testis cancer specimens.
Figure 69. Expression of 187P3F2 by RT-PCR. First strand cDNA was prepared from vital pool 1 liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), kidney cancer pool, and pancreas cancer pool.
Qormalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers o 187P3F2, was performed at 26 and 30 cycles of amplification. Results show strong expression of 187P3F2 in ddney cancer pool, pancreas cancer pool and vital pool 1, but not in vital pool 2.
Figure 70. Expression of 187P3F2 in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 jig of mRNA/lane, were probed with the 187P3F2 SSH fragment. Size standards in kilobases (kb) are ndicated on the side. Results show expression of an 4.5 kb 187P3F2 transcript in kidney and brain, but not in the 3ther tissues tested.
Figure 71. Expression of 187P3F2 in patient cancer specimens and normal tissues. RNA was extracted from a pool of three kidney cancers pancreas cancers (PaC), as well as from normal prostate normal bladder and normal kidney normal colon normal lung normal breast (NBr), normal ovary and normal pancreas (NPa). Northern blot with 10 pg of total RNA/lane'was probed with 187P3F2 sequence. Size standards in kilobases (kb) are indicated on the side. Results show strong expression of 187P3F2 in kidney cancers, pancreas cancers, and normal kidney, but not in the other normal tissues.
Figure 72. Expression of 187P3F2 In pancreas cancer patient specimens. RNA was extracted from pancreas cancer cell lines normal pancreas and pancreas tumor tissues isolated from pancreatic cancer patients. Noithern blot with 10 pg of total RNA/lane was probed with the 187P3F2 SSH fragment. Size standards in kilobases (kb) are indicated on the side. The results show strong expression of 187P3F2 in the pancreas cancer specimens, but not in normal pancreas nor in the cancer cell lines tested.
Figure 73. Expression of 192P2G7 by RT-PCR. First strand cDNA was prepared from vital pool 1 00 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, 0 kidney cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool, and prostate metastasis to lymph node Normalization was performed by PCR using primers to actin and C GAPDH. Semi-quantitative PCR, using primers to 186P1H9, was performed at 26 and 30 cycles of amplification.
Results show strong expression of 186P1H9 in pancreas cancer pool and prostate metastasis to LN. Expression was Vf) also detected in prostate cancer pool, bladder cancer pool, kidney cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, vital pool 2 but not in vital pool 1.
Figure 74. Expression of 185P3C2 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), and bladder cancer pool. Normalization was 0 performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 185P3C2, was performed at 26 and 30 cycles of amplification. Results show strong expression of 185P3C2 in bladder cancer pool.
Low level expression was detected in vital pool 2, but not in vital pool 1.
00 DETAILED DESCRIPTION OF THE INVENTION Outline of Sections Definitions Polynucleotides of the Invention II.A.) Uses Polynucleotides of the Invention II.A.1.) Monitoring of Genetic Abnormalities Antisense Embodiments II.A.3.) Primers and Primer Pairs II.A.4.) Isolation of Nucleic Acid Molecules that Encode Proteins of the Invention Recombinant Nucleic Acid Molecules and Host-Vector Systems III.) Proteins of the Invention III.A.) Motif-bearing Protein Embodiments Expression of Figure 2-related Proteins III.C.) Modifications of Figure 2-related Proteins III.D.) Uses of Figure 2-related Proteins IV.) Antibodies of the Invention Cellular Immune Responses of the Invention VI.) Transgenic Animals of the Invention VII.) Methods for the Detection of a Gene or Protein of the Invention VIII.) Methods for Monitoring the Status of Genes and Proteins of the Invention IX.) Identification of Molecules That Interact With the Proteins of Figure 2 Therapeutic Methods and Compositions Anti-Cancer Vaccines A Protein of Figure 2 as a Target for Antibody-Based Therapy A Protein of Figure 2 as a Target for Cellular Immune Responses X.C.1. Minigene Vaccines X.C.2. Combinations of CTL Peptides with Helper Peptides X.C3. Combinations of CTL Peptides with T Cell Priming Agents 17 X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or H'L 00 Peptides
O
Adoptive Immunotherapy SX.E.) Administration of Vaccines for Therapeutic or Prophylactic Purposes c XI.) Diagnostic and Prognostic Embodiments of the Invention S XII.) Inhibition of the Function of a Protein of the Invention if) XII.A.) Inhibition of a Protein of Figure 2 with Intracellular Antibodies XII.B.) Inhibition of a Protein of Figure 2 with Recombinant Proteins XII.C.) Inhibition of Transcription or Translation in Accordance with the Invention XII.D.) General Considerations for Therapeutic Strategies XII.) KITS Definitions: 00 Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein e intended to have the meanings commonly understood by those of skill in the art to which this invention pertains.
Ssome cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, id the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference ver what is generally understood in the art. Many of the techniques and procedures described or referenced herein *e well understood and commonly employed using conventional methodology by those skilled in the art, such as, ir example, the widely utilized molecular cloning methodologies described in Sambrook et al., Molecular Cloning: Laboratory Manual 2nd. edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As 3propriate, procedures involving the use of commercially available kits and reagents are generally carried out in cordance with manufacturer defined protocols and/or parameters unless otherwise noted.
The terms "advanced prostate cancer", "locally advanced prostate cancer", "advanced disease" and .ocally advanced disease" mean prostate cancers that have extended through the prostate capsule, and are meant to Lclude stage C disease under the American Urological Association (AUA) system, stage Cl C2 disease under the Thitmore-Jewett system, and stage T3 T4 and N+ disease under the TNM (tumor, node, metastasis) system. In sneral, surgery is not recommended for patients with locally advanced disease, and these patients have ibstantially less favorable outcomes compared to patients having clinically localized (organ-confined) prostate cancer. Locally advanced disease is clinically identified by palpable evidence of induration beyond the lateral border of the prostate, or asymmetry or induration above the prostate base. Locally advanced prostate cancer is presently diagnosed pathologically following radical prostatectomy if the tumor invades or penetrates the prostatic capsule, extends into the surgical margin, or invades the seminal vesicles.
"Altering the native glycosylation pattem" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence of the genes set forth in Figure 2 (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence of a protein set forth in Figure 2. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present.
The term "analog" refers to a molecule which is structurally similar or shares similar or corresponding attributes with another molecule a protein of Figure For example an analog of a protein of Figure 2 can be specifically bound by an antibody or T cell that specifically binds to the respective protein of Figure 2.
18
I
The term "antibody" is used in the broadest sense. Therefore an "antibody" can be naturally occurring or manmade such as monoclonal antibodies produced by conventional hybridoma technology. Antibodies of the invention 00 S comprise monoclonal and polyclonal antibodies as well as fragments containing the antigen-binding domain and/or one or more complementarity determining regions of these antibodies that specifically bind a protein of Figure 2.
An "antibody fragment" is defined as at least a portion of the variable region of the immunoglobulin i molecule that binds to its target, the antigen-binding region. In one embodiment it specifically covers single antibodies and clones thereof (including agonist, antagonist and neutralizing antibodies) and antibody compositions with polyepitopic specificity.
The term "codon optimized sequences" refers to nucleotide sequences that have been optimized for a particular host species by replacing any codons having a usage frequency of less than about 20%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splicing signals, elimination of transposon-like repeats and/or optimization of GC content in addition to codon optimization are referred to herein as an "expression 00 enhanced sequences." The term "cytotoxic agent" refers to a substance that inhibits or prevents the expression activity of cells, function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not limited to maytansinoids, yttrium, bismuth, ricin, ricin A-chain, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, dihydroxy anthracin dione, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, sapaonaria officinalis inhibitor, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes such as At 2
I
1 1 1 12
Y
90 Re' 8 Re' 88 Sm' 53 Bi 21 2
P
32 and radioactive isotopes of Lu. Antibodies may also be conjugated to an anti-cancer pro-drug activating enzyme capable of converting the pro-drug to its active form.
The term "homolog" refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions.
"Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, Stites, et al., IMMUNOLOGY, 8T ED., Lange Publishing, Los Altos, CA (1994).
The terms "hybridize", "hybridizing", "hybridizes" and the like, used in the context ofpolynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in formamide/6XSSC/0.1% SDS/100 pg/ml ssDNA, in which temperatures for hybridization are above 37 degrees C and temperatures for washing in 0.1XSSC/0.1% SDS are above 55 degrees C.
The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment. For example, a polynucleotide is said to be "isolated" when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the genes of Figure 2 or that encode polypeptides other than proteins of Figure 2 product or fragments thereof A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated polynucleotide. A protein is said to be "isolated," for example, when physical, mechanical or chemical methods are employed to remove a protein of Figure 2 from cellular constituents that are normally associated with the protein. A skilled artisan can readily employ standard purification methods to 00 btain an isolated Figure 2 protein. Alternatively, an isolated protein can be prepared by chemical means.
S The term "manmmal" refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, C >ws, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the t vention, the mammal is a human.
The terms "metastatic prostate cancer" and "metastatic disease" mean prostate cancers that have spread to tn gional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage xNxM+ under the TNM system. As is the case with locally advanced prostate cancer, surgery is generally not dicated for patients with metastatic disease, and hormonal (androgen ablation) therapy is a preferred treatment T odality. Patients with metastatic prostate cancer eventually develop an androgen-refractory state within 12 to 18 Sonths of treatment initiation. Approximately half of these androgen-refractory patients die within 6 months after :veloping that status. The most common site for prostate cancer metastasis is bone. Prostate cancer bone C1l etastases are often osteoblastic rather than osteolytic resulting in net bone formation). Bone metastases are 00 und most frequently in the spine, followed by the femur, pelvis, rib cage, skull and humerus. Other common sites Sr metastasis include lymph nodes, lung, liver and brain. Metastatic prostate cancer is typically diagnosed by open laparoscopic pelvic lymphadenectomy, whole body radionuclide scans, skeletal radiography, and/or bone lesion opsy.
The term "monoclonal antibody" refers to an antibody obtained from a population of substantially >mogeneous antibodies, the antibodies comprising the population are identical except for possible naturally :curring mutations that are present in minor amounts.
A "motif", as in biological motif of a Figure 2-related protein, refers to any pattern of amino acids forming irt of the primary sequence of a protein, that is associated with a particular function protein-protein teraction, protein-DNA interaction, etc) or modification that is phosphorylated, glycosylated or amidated), or calization secretory sequence, nuclear localization sequence, etc.) or a sequence that is correlated with being imunogenic, either humorally or cellularly. A motif can be either contiguous or capable of being aligned to rtain positions that are generally correlated with a certain function or property. In the context of HLA motifs, lotif' refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 aino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class I HLA motif, which is -ognized by a particular HLA molecule. Peptide motifs for HLA binding are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.
A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.
"Pharmaceutically acceptable" refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals.
The term "polynucleotide" means a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term if often used interchangeably with "oligonucleotide". A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymine as shown for example in Figure 2, can also be uracil this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil instead of thymine The term "polypeptide" means a polymer of at least about 4, 5, 6, 7, or 8 amino acids. Throughout the 00 specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often S used interchangeably with "peptide" or "protein".
CK1 An HLA "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, S usually two, primary anchor residues within a peptide of defined length generally defines a "motif" for an tl immunogenic peptide. These residues are understood to fit in close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove. In one embodiment, for example, the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the invention. In another embodiment, for example, the primary anchor residues ofa peptide that will bind an HLA class II molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is S generally of at least 9 amino acids in length. The primary anchor positions for each motif and supermotif are set 00 forth in Table IV. For example, analog peptides can be created by altering the presence or absence of particular S residues in the primary and/or secondary anchor positions shown in Table IV. Such analogs are used to modulate S the binding affinity and/or population coverage of a peptide comprising a particular HLA motif or supermotif.
A "recombinant" DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vitro.
Non-limiting examples of small molecules include compounds that bind or interact with the proteins of Figure ligands including hormones, neuropeptides, chemokines, odorants, phospholipids, and functional equivalents thereof that bind and preferably inhibit function of a Figure 2 protein. Such non-limiting small molecules preferably have a molecular weight of less than about 10 kDa, more preferably below about 9, about 8, about 7, about 6, about 5 or about 4 kDa. In certain embodiments, small molecules physically associate with, or bind, a Figure 2 protein; and are not found in naturally occurring metabolic pathways; and/or are more soluble in aqueous than non-aqueous solutions "Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured nucleic acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
"Stringent conditions" or "high stringency conditions", as defined herein, are identified by, but not limited to, those that: employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; employ during hybridization a denaturing agent, such as formamide, for example, 50% formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, mM sodium citrate at 42 OC; or employ 50% formamide, 5 x SSC (0.75 M NaC1, 0.075 M sodium citrate), mM sodium phosphate (pH 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 gg/ml), 0.1% SDS, and 10% dextran sulfate at 42 OC, with washes at 420C in 0.2 x SSC (sodium 00 hloride/sodium, citrate) and 50% formamide at 55 followed by a high-stringency wash consisting of 0.1 x SSC
O
Sontaining EDTA at 55 "Moderately stringent conditions" are described by, but not limited to, those in ambrook e al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and lc iclude the use of washing solution and hybridization conditions temperature, ionic strength and %SDS) less Sringent than those described above. An example of moderately stringent conditions is overnight incubation at t) 7*C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCI, 15 mM trisodium citrate), 50 mM sodium Shosphate (pH 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/mL denatured sheared salmon sperm INA, followed by washing the filters in 1 x SSC at about 37-50"C. The skilled artisan will recognize how to adjust ie temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
An HLA "supermotif' is a peptide binding specificity shared by HLA molecules encoded by two or more S[LA alleles.
As used herein "to treat" or "therapeutic" and grammatically related terms, refer to any improvement of 00 Snyiconsequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are le byproducts of an alternative therapeutic modality; full eradication of disease is not required.
A "transgenic animal" a mouse or rat) is an animal having cells that contain a transgene, which ansgene was introduced into the animal or an ancestor of the animal at a prenatal, an embryonic stage. A transgene" is a DNA that is integrated into the genome of a cell from which a transgenic animal develops.
As used herein, an HLA or cellular immune response "vaccine" is a composition that contains or encodes ne or more peptides of the invention. There are numerous embodiments of such vaccines, such as a cocktail of one r more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic cids that encode such individual peptides or polypeptides, a minigene that encodes a polyepitopic peptide.
he "one or more peptides" can include any whole unit integer from 1-150 or more, at least 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,21,22, 23, 24,25,26, 27, 28,29,30,31, 32,33, 34,35, 36,37,38, 39, 1, 42, 43, 44, 45, 46, 47, 48,49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by pidation, addition of targeting or other sequences. HLA class I peptides of the invention can be admixed with, or nked to, HLA class II peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes.
[LA vaccines can also comprise peptide-pulsed antigen presenting cells, dendritic cells.
The term "variant" refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein a protein of Figure 2 protein shown in Figure 2 or Figure 3. An analog is an example of a variant protein.
Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants.
The "genes of Figure 2-related proteins" of the invention include those specifically identified herein, as well as allelic variants, conservative substitution variants, analogs and homologs that can be isolated/generated and characterized without undue experimentation following the methods outlined herein or readily available in the art.
Fusion proteins that combine parts of different genes set forth in Figure 2 proteins of the invention or fragments thereof, as well as fusion proteins of a gene of Figure 2 protein and a heterologous polypeptide are also included. Such genes of Figure 2 proteins are collectively referred to as the genes of Figure 2-related proteins, the proteins of the invention, 6r proteins of Figure 2. The term genes of Figure 2-related protein" refers to a polypeptide fragment or a Figure 2 protein sequence of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 amino acids; or, at least 30, 35, 40,45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100 or more than 100 amino acids. In certain cases the 00 phrase "corresponding to" or "respective" is used instead of the term "-related." O II.) Polynucleotides of the Invention CK One aspect of the invention provides polynucleotides corresponding or complementary to all or part of: a t gene of Figure 2; gene of Figure 2-related mRNA, a coding sequence of a gene of Figure 2, an open reading frame S Of a gene of Figure 2, each of the foregoing preferably in isolated form. Polynucleotides of the invention include polynucleotides encoding Figure 2-related proteins and fragments thereof, DNA, RNA, DNA/RNA hybrid, and 0 related molecules, polynucleotides or oligonucleotides complementary to a Figure 2 gene or mRNA sequence or a part thereof, and polynucleotides or oligonucleotides that hybridize to a Figure 2 gene, mRNA, or to a Figure 2 encoding polynucleotide (collectively, "Figure 2 polynucleotides"). In all instances when referred to in this section, T can also be U in Figure 2.
Embodiments of a Figure 2 polynucleotide include: a Figure 2 polynucleotide having the sequence shown CK in Figure 2, the nucleotide sequence of the genes of Figure 2 as shown in Figure 2 wherein T is U; at least o contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2; or, at least 10 contiguous 0 nucleotides of a polynucleotide having the sequence as shown in Figure 2 where T is U. For example, embodiments of the Figure 2 nucleotides comprise, without limitation: a polynucleotide comprising, consisting essentially of, or consisting of a sequence as shown in Figure 2 (SEQ ID NO: Wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of a sequence as shown in Figure 2 (SEQ ID NOs: from the first nucleotide residue of a reading frame through the last nucleotide residue of that reading frame, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2A.1 (SEQ ID NO: from nucleotide residue number 289 through nucleotide residue number 828, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2A.2 (SEQ ID NO: from nucleotide residue number 756 through nucleotide residue number 1439, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2B (SEQ ID NO: from nucleotide residue number 25 through nucleotide residue number 4008, optionally followed by a stop codon, wherein T can also be U; apolynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2C (SEQ ID.NO: from nucleotide residue number 846 through nucleotide residue number 3908, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2D (SEQ ID NO: from nucleotide residue number 103 through nucleotide residue number 900, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in 00 Figure 2E (SEQ ID NO: from nucleotide residue number 3 through nucleotide residue number 371, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2F (SEQ ID NO: from nucleotide residue number 250 through nucleotide residue number 1323, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2G (SEQ ID NO: from nucleotide residue number 24 through nucleotide residue number 599, optionally followed by a stop codon, wherein T can also be U; (11) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in CK Figure 2H (SEQ ID NO: from nucleotide residue number 178 through nucleotide residue number S858, optionally followed by a stop codon, wherein T can also be U; (12) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 21 (SEQ ID NO: from nucleotide residue number 1517 through nucleotide residue number 2188, optionally followed by a stop codon, wherein T can also be U; (13) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2J (SEQ ID NO: from nucleotide residue number 198 through nucleotide residue number 767, optionally followed by a stop codon, wherein T can also be U; (14) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2K (SEQ ID NO: from nucleotide residue number 72 through nucleotide residue number 1097, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2L (SEQ ID NO: from nucleotide residue number 118 through nucleotide residue number 1233, optionally followed by a stop codon, wherein T can also be U; (16) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2M (SEQ ID NO: from nucleotide residue number 14 through nucleotide residue number 2257, optionally followed by a stop codon, wherein T can also be U; (17) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2N.1 (SEQ ID NO: from nucleotide residue number 140 through nucleotide residue number 4060, optionally followed by a stop codon, wherein T can also be U; (18) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2N.2 (SEQ ID NO: from nucleotide residue number 140 through nucleotide residue number 3565, optionally followed by a stop codon, wherein T can also be U; (19) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in 00 Figure 2N.3 (SEQ ID NO: from nucleotide residue number 140 through nucleotide residue number 4075, optionally followed by a stop codon, wherein T can also be U; a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in G Figure 2(0) (SEQ ID NO: from nucleotide residue number 3 through nucleotide residue number 1655, optionally followed by a stop codon, wherein T can also be U; (21) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2P (SEQ ID NO: from nucleotide residue number 170 through nucleotide residue number 1459, optionally followed by a stop codon, wherein T can also be U; (22) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in CK Figure 2Q (SEQ ID NO: from nucleotide residue number 60 through nucleotide residue number S1559, optionally followed by a stop codon, wherein T can also be U; 1 (23) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2R (SEQ ID NO: from nucleotide residue number 84 through nucleotide residue number 938, optionally followed by a stop codon, wherein T can also be U; (24) a polynucleotide that encodes a Figure 2-related protein that is at least 90% homologous to an entire amino acid sequence shown in Figure 2A-R (SEQ ID NO: a polynucleotide that encodes a Figure 2-related protein that is at least 90% identical to an entire amino acid sequence shown in Figure 2A-R (SEQ ID'NO: (26) a polynucleotide that encodes at least one peptide set forth in Tables V-XVIII, Table XX, or Tables XXIII to XXVI; (27) a polynucleotide that encodes a peptide region of at least five amino acids of a peptide of Figure 3 in any whole number increment up to the entire length of that protein, that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profile of Figure 5 for that protein,; (28) a polynucleotide that encodes a peptide region of at least five amino acids of a peptide of Figure 3 in any whole number increment up to the entire length of the protein, that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figure 6 for that protein; (29) a polynucleotide that encodes a peptide region of at least five amino acids of a peptide of Figure 3 in any whole number increment up to the entire length of the protein, that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7for that protein; a polynucleotide that encodes a peptide region of at least 5 amino acids of a peptide of Figure 3 in any whole number increment up to the entirelength of that protein, that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profile of Figure 8 for that protein; (31) a polynucleotide that encodes a peptide region of at least 5 amino acids of a peptide of Figure 3 in 0 00 any whole number increment up to the entire length of the protein, that includes an amino acid position 0having a value greater than 0.5 in the Beta-turn profile of Figure 9 for that protein; (32) a polynucleotide that encodes a Figure 2-related protein whose sequence is encoded by the ScDNAs contained in the plasmid 74P3B3 that was deposited with American Type Culture Collection lt (ATCC) as Accession No. PTA-1892 on 19 May 2000; (33) a polynucleotide that is fully complementary to a polynucleotide of any one of(1)-(32); (34) a polynucleotide that selectively hybridizes under stringent conditions to a polynucleotide of (1) to (33); 00 (35) a peptide that is encoded by any of and, Kl (36) a polynucleotide of any of(l)-(34)or peptide of (35) together with a pharmaceutical excipient and/or in a human unit dose form.
As used herein, a range is understood to specifically disclose all whole unit positions, integer positions, thereof.
Typical embodiments of the invention disclosed herein include the proteins of Figure 2 polynucleotides that encode specific portions of the Figure 2 mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160,165, 170, 175, 180, 185, 190, 195,200, 205,210,215,220,225,230,235,240, 245, 250, 255, 260, 265, 270, 275,280, 285, 290, 295, 300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395,400, 405,410, 415,420,425, 430, 435,440, 445,450, 455, 460, 465, 470, 475,480,485,490,495, 500, 505, 510, 515, 520, 525,530, 535, 540, 545, 550, 555, 560, 565, 570, 575, 580, 585, 590, 595, 600, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655,660, 665, 670, 675, 680, 685,690, 695,700, 705,710, 715, 720, 725, 730, 735,740, 745, 750, 755, 760,765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825, 830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890, 895,9900, 905, 910,915, 920, 925, 930, 935,940, 945, 950, 955, 960, 965, 970, 975, 980, 985, 990, 995, 1000, 1025, 1050, 1075, 1100, 1125, 1150, 1175, 1200, etc., or more contiguous amino acids of a peptide of the invention.
For example, representative embodiments of the invention disclosed herein include: polynucleotides and their encoded peptides themselves encoding about amino acid 1 to about amino acid 10 of a Figure 2 protein or variants thereof, polynucleotides encoding about amino acid 10 to about amino acid 20 of a Figure 2 protein or variants thereof, polynucleotides encoding about amino acid 20 to about amino acid 30 of a Figure 2 protein or variants thereof, polynucleotides encoding about amino acid 30 to about amino acid 40 of a Figure 2 protein or variants thereof, polynucleotides encoding about amino acid 40 to about amino acid 50 of a Figure 2 protein or variants thereof, polynucleotides encoding about amino acid 50 to about amino acid 60 of a Figure 2 protein or 00 variants thereof, polynucleotides encoding about amino acid 60 to about amino acid 70 of a Figure 2 protein or 0 variants thereof, polynucleotides encoding about amino acid 70 to about amino acid 80 of a Figure 2 protein or variants thereof, polynucleotides encoding about amino acid 80 to about amino acid 90 of a Figure 2 protein or variants thereof, polynucleotides encoding about amino acid 90 to about amino acid 100 of a Figure 2 protein or variants thereof, or encoding regions from about amino acid 100 to amino acids later in the sequence, in increments of about 10 amino acids, ending at the carboxyl terminal amino acid of a protein of the invention, e.g. a protein set forth in Figure 2 or Figure 3. Accordingly polynucleotides encoding portions of the amino acid sequence (in increments of about 10 amino acids), of amino acids 100 through the carboxyl terminal amino acid of a Figure 2 t" protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues.
SPolynucleotides encoding relatively long portions of a Figure 2 protein are also within the scope of the 00 invention. For example, polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 30, or 40 or 50 etc.) of a Figure 2 protein or variants thereof can be generated by a variety of techniques r well known in the art. These polynucleotide fragments can include any portion of gene of the invention as shown, in Figure 2.
Additional illustrative embodiments of the invention disclosed herein include a protein of Figure 2 polynucleotide fragments encoding one or more of the biological motifs contained within a Figure 2 protein sequence or a variant sequence thereof, including one or more of the motif-bearing subsequences of a Figure 2 protein or variant, set forth in Tables V-XVIII, Table XX, and/or Tables XXIII to XXVI. In another embodiment, typical polynucleotide fragments of the invention encode one or more of the regions of a Figure 2 protein or variant thereof that exhibit homology to a known molecule. In another embodiment of the invention, typical polynucleotide fragments encode one or more of the Figure 2 proteins or variants N-glycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase II phosphorylation sites or Nmyristoylation site and amidation sites (see, Table XX).
Uses Polynucleotides of the Invention Monitoring of Genetic Abnormalities The polynucleotides of the preceding paragraphs have a number of different specific uses. The human genes set forth in Figure 2 maps to the chromosomal locations set forth in Example 3. For example, because a Figure 2 gene map to a particular chromosome, polynucleotides that encode different regions of the Figure 2 proteins are used to characterize cytogenetic abnormalities of this chromosomal locale, such as abnormalities that are identified as being associated with various cancers. In certain genes, a variety of chromosomal abnormalities including rearrangements have been identified as frequent cytogenetic abnormalities in a number of different cancers (see e.g. Krajinovic et al., Mutat. Res. 382(3-4): 81-83 (1998); Johansson et al., Blood 86(10): 3905-3914 (1995) and Finger et al., P.N.A.S. 85(23): 9158-9162 (1988)). Thus, polynucleotides encoding specific regions of the Figure 2 proteins provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnormalities in the chromosomal region that encodes the proteins set forth in Figure 2 that may contribute to the malignant phenotype. In this context, these polynucleotides satisfy a need in the art for expanding the sensitivity of chromosomal screening in order to identify more subtle and less common chromosomal abnormalities (see e.g. Evans et Am. J. Obstet. Gynecol 171(4): 1055-1057 (1994)).
Furthermore, as the genes set forth in Figure 2 are shown to be highly expressed in cancers, the Figure 2 OO olynucleotides are used in methods assessing the status of the Figure 2 gene products in normal versus cancerous O ssues. Typically, polynucleotides that encode specific regions of the Figure 2 proteins are used to assess the Sresence of perturbations (such as deletions, insertions, point mutations, or alterations resulting in a loss of an ntigen etc.) in specific regions of the Figure 2 genes, such as regions containing one or more motifs. Exemplary include both RT-PCR assays as well as single-strand conformation polymorphism (SSCP) analysis (see, e.g., Slarrogi et al., J. Cutan. Pathol. 26(8): 369-378 (1999), both of which utilize polynucleotides encoding specific Sgions of a protein to examine these regions within the protein.
Antisense Embodiments Other specifically contemplated nucleic acid related embodiments of the invention disclosed herein are enomic DNA, cDNAs, ribozymes, and antisense molecules, as well as nucleic acid molecules based on an alternative Sackbone, or including alternative bases, whether derived from natural sources or synthesized, and include molecules Cl apable of inhibiting the RNA or protein expression of a gene set forth in Figure 2. For example, antisense molecules 00 an be RNAs or other molecules, including peptide nucleic acids (PNAs) or non-nucleic acid molecules such as 0 hosphorothioate derivatives, that specifically bind DNA or RNA in a base pair-dependent manner. A skilled rtisan can readily obtain these classes of nucleic acid molecules using the Figure 2 polynucleotides and polynucleotide squences disclosed herein.
Antisense technology entails the administration of exogenous oligonucleotides that bind to a target olynucleotide located within the cells. The term "antisense" refers to the fact that such oligonucleotides are omplementary to their intracellular targets, a gene of Figure 2. See for example, Jack Cohen, )ligodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988).
he Figure 2 antisense oligonucleotides of the present invention include derivatives such as S-oligonucleotides 3hosphorothioate derivatives or S-oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth ihibitory action. S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an oligonucleotide (O-oligo) i which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S-oligos of the resent invention can be prepared by treatment of the corresponding O-oligos with 3H-1,2-benzodithiol-3-one-1,1ioxide, which is a sulfur transfer reagent. See, Iyer, R. P. et al., J. Org. Chem. 55:4693-4698 (1990); and lyer, P. et al., J. Am. Chem. Soc. 112:1253-1254 (1990). 'Additionally, the Figure 2 antisense oligonucleotides of the resent invention include morpholino antisense oligonucleotides known in the art (see, Partridge et al., 1996, Antisense Nucleic Acid Drug Development 6: 169-175).
The Figure 2 antisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 100 5' codons or last 100 3' codons of a genomic sequence or the corresponding mRNA of the invention. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to .mRNA of the invention and not to mRNA specifying other regulatory subunits of protein kinase.
In one embodiment, the Figure 2 antisense oligonucleotides of the present invention are 15 to 30-mer fragments of the antisense DNA molecule that have a sequence that hybridizes to mRNA of the invention. Optionally, a Figure 2 antisense oligonucleotide is a 30-mer oligonucleotide that is complementary to a region in the first 10 5' codons or last 10 3' codons of a gene set forth in Figure 2. Alternatively, the antisense molecules are modified to employ ribozymes in the inhibition of expression of a gene set forth in Figure 2, see, L. A. Couture D. T.
Stinchcomb; Trends Genet 12: 510-515 (1996).
I.A3.) Primers and Primer Pairs Further specific embodiments of the nucleotides of the invention include primers and primer pairs, which 00 allow the specific amplification of polynucleotides of the invention or of any specific parts thereof, and probes that Sselectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof. Probes can be C1 labeled with a detectable marker, such as, for example, a radioisotope, fluorescent compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme. Such probes and primers are used to detect the presence of a Figure 2 polynucleotide in a sample and as a means for detecting a cell expressing a Figure 2 protein.
Examples of such probes include polynucleotides comprising all or part of a human gene set forth in Figure 2.
0 Examples of primer pairs capable of specifically amplifying an mRNA of the invention are also disclosed herein. As will be understood by the skilled artisan, a great many different primers and probes can be prepared based on the tj- sequences provided herein and used effectively to amplify and/or detect an mRNA of the invention.
The Figure 2 polynucleotides of the invention are useful for a variety of purposes, including but not limited to their use as probes and primers for the amplification and/or detection of the Figure 2 gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosis of prostate cancer and other cancers; as coding 0O sequences capable of directing the expression of a Figure 2 polypeptide; as tools for modulating or inhibiting the 0 expression of a Figure 2 gene(s) and/or translation of a Figure 2 transcript(s); and as therapeutic agents.
The present invention includes the use of any probe as described herein to identify and isolate a gene set forth in Figure 2 or Figure 2-related nucleic acid sequence of the invention from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence per se, which would comprise all or most of the sequences found in the probe used.
IIA.4.) Isolation of Nucleic Acid Molecules that Encode Proteins of the Invention The cDNA sequences described herein, see, Figure 2, enable the isolation of other polynucleotides encoding gene product(s) of the invention, as well as the isolation ofpolynucleotides encoding homologs of protein of Figure 2, alternatively spliced isoforms, allelic variants, and mutant forms of agene product of a gene of the invention as well as polynucleotides that encode analogs of the Figure 2-related proteins. Various molecular cloning methods that can be employed to isolate full length cDNAs encoding a Figure 2 gene are well known (see, for example, Sambrook, J.
et al, Molecular Cloning: A Laboratory Manual, 2d edition, Cold Spring Harbor Press, New York, 1989; Current Protocols in Molecular Biology. Ausubel et al., Eds., Wiley and Sons, 1995). For example, lambda phage cloning methodologies canbe conveniently employed, using commercially available cloning systems Lambda ZAP Express, Stratagene). Phage clones containing a Figure 2 gene cDNA can be identified by probing with a labeled cDNA of Figure 2 or a fragment thereof For example, in one embodiment, a Figure 2 cDNA or a portion thereof is synthesized and used as a probe to retrieve overlapping and full-length cDNAs corresponding to a gene set forth in Figure 2. A gene set forth in Figure 2 itself can be isolated by screening genomic DNA libraries, bacterial artificial chromosome libraries (BACs), yeast artificial chromosome libraries (YACs), and the like, with a respective gene in Figure 2 DNA probe or primer.
Recombinant Nucleic Acid Molecules and Host-Vector Systems The invention also provides recombinant DNA or RNA molecules containing a polynucleotide, a fragment, analog or homologue thereof in accordance with the invention, including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (see, for example, Sambrook et al., 1989, supra).
The invention further provides a.host-vector system comprising a recombinant DNA molecule containing 00 o ilynucleotide (fragment, analog or homologue thereof) in accordance with the invention within a suitable 0 okaryotic or eukaryotic host cell. Examples of suitable eukaryotic host cells include a yeast cell, a plant cell, or i animal cell, such as a mammalian cell or an insect cell a baculovirus-infectible cell such as an Sf9 or SighFive cell). Examples of suitable mammalian cells include various prostate cancer cell lines such as DU145 and SuPrl, other transfectable or transducible prostate cancer cell lines, primary cells (PrEC), as well as a number of Sammalian cells routinely used for the expression of recombinant proteins COS, CHO, 293, 293T cells).
[ore particularly, a polynucleotide comprising the coding sequence of a protein in Figure 2 or a fragment, analog or )molog thereof can be used to generate Figure 2 proteins or fragments thereof using any number of host-vector Sstems routinely used and widely known in the art.
A wide range of host-vector systems suitable for the expression of Figure 2 proteins or fragments thereof are Sailable, see for example, Sambrook et al., 1989, supra; Current Protocols in Molecular Biology, 1995, supra).
-e eferred vectors for mammalian expression include but are not limited to pcDNA 3.1 myc-His-tag (Invitrogen) and e retroviral vector pSRatkneo (Muller et al., 1991, MCB 11:1785). Using these expression vectors, proteins set rth in Figure 2 can be expressed in several prostate cancer and non-prostate cell lines, including for example 293, )3T, rat-1, NIH 3T3 and TsuPrl. The host-vector systems of the invention are useful for the production of a igure 2 protein or fragment thereof. Such host-vector systems can be employed to study the functional properties Sproteins set forth in Figure 2 and of the proteins of Figure 2 mutations or analogs.
Recombinant human proteins of the invention, set forth in Figure 2, or an analog or homolog or agment thereof can be produced by mammalian cells transfected with a construct containing a Figure 2-related icleotide. For example, 293T cells can be transfected with an expression plasmid encoding a protein of Figure 2 fragment, analog or homolog thereof, a Figure 2-related protein is expressed in the 293T cells, and the ,combinant protein of the invention is isolated using standard purification methods affinity purification using itibodies of the invention, an antibody that specifically binds a protein of the invention such as one set forth SFigure In another embodiment, a Figure 2 coding sequence is subcloned into the retroviral vector SRaMSVtkneo and used to infect various mammalian cell lines, such as NIH 3T3, TsuPrl, 293 and rat-1 in order P establish cell lines that express a protein of the invention. Various other expression systems well known in the rt can also be employed. Expression constructs encoding a leader peptide joined in frame to a Figure 2 coding .quence can be used for the generation of a secreted form of recombinant Figure 2 proteins.
As discussed herein, redundancy in the genetic code permits variation in the gene sequences set forth in Figure.2. In particular, it is known in the art that specific host species often have specific codon preferences, and thus one can adapt the disclosed sequence as preferred for a desired host. For example, preferred analog codon sequences typically have rare codons codons having a usage frequency of less than about 20% in known sequences of the desired host) replaced with higher frequency codons. Codon preferences for a specific species are calculated, for example, by utilizing codon usage tables available on the INTERNET such as at URL www.dna.affrc.go.jp/~nakamura/codon.html.
Additional sequence modifications are known to enhance protein expression in a cellular host These include elimination of sequences encoding spurious polyadenylation signals, exon/intron splice site signals, transposon-like repeats, and/or other such well-characterized sequences that are deleterious to gene expression. The GC content of the sequence is adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence is modified to avoid predicted hairpin.
secondary mRNA structures. Other useful modifications include the addition of a translational initiation consensus 0 sequence at the start of the open reading frame, as described in Kozak, Mol. Cell Biol., 9:5073-5080 (1989). Skilled 0 artisans understand that the general rule that eukaryotic ribosomes initiate translation exclusively at the 5' proximal CK AUG codon is abrogated only under rare conditions (see, Kozak PNAS 92(7): 2662-2666, (1995) and Kozak NAR 15(20): 8125-8148 (1987)).
SI.) Proteins of the Invention SAnother aspect of the present invention provides Figure 2-related proteins, proteins of the invention.
Specific embodiments of Figure 2-related proteins comprise a polypeptide having all or part of the amino acid sequence of a human protein set forth in Figure 2. Alternatively, embodiments of Figure 2 proteins comprise variant, homolog or analog polypeptides that have alterations in their amino acid sequence relative to a protein set forth in Figure 2.
In general, naturally occurring allelic variants of a protein set forth in Figure 2 shares a high degree of C0 structural identity and homology 90% or more homology). Typically, allelic variants of a Figure 2 protein contain 0 conservative amino acid substitutions within the protein sequences set forth in Figure 2 described herein or contain a substitution of an amino acid from a corresponding position in a homologue of a protein set forth in Figure 2. One class of Figure 2 allelic variants are proteins that share a high degree of homology with at least a small region of aparticular Figure 2 amino acid sequence, but further contain a radical departure from the sequence, such as a non-conservative substitution, truncation, insertion or frame shift. In comparisons of protein sequences, the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetics. Moreover, orthology and paralogy can be important concepts describing the relationship of members of a given protein family in one organism to the members of the same family in other organisms.
Amino acid abbreviations are provided in Table II. Conservative amino acid substitutions can frequently be made in a protein without altering either the conformation or the function of the protein. Proteins of the invention can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 conservative substitutions. Such changes include substituting any ofisoleucine valine and leucine for any other of these hydrophobic amino acids; aspartic acid for glutamic acid and vice versa; glutamine for asparagine and vice versa; and serine for threonine and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine and alanine can frequently be interchangeable, as can alanine and valine Methionine which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine and arginine are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in particular environments (see, e.g. Table MI herein; pages 13-15 "Biochemistry" 2 nd ED. Lubert Stryer ed (Stanford University); Henikoffet al., PNAS 1992 Vol 89 10915-10919; Lei et al., J Biol Chem 1995 May 19; 270(20):11882-6).
Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of Figure 2 proteins such as polypeptides having amino acid insertions, deletions and substitutions. Figure 2 variants can be made using methods known in the art such as site-directed mutagenesis, alanine scanning, and PCR mutagenesis. Site-directed mutagenesis (Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)), cassette mutagenesis (Wells et al., Gene, 34:315 (1985)), restriction selection mutagenesis (Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)) or other known techniques can be performed on 00 ie cloned DNA to produce variant DNA in accordance with the invention.
S Scanning amino acid analysis can also be employed to identify one or more amino acids along a C7 ntiguous sequence that is involved in a specific biological activity such as a protein-protein interaction. Among iepreferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, Slycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it tr) liminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the ariant Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently 3und in both buried and exposed positions (Creighton, The Proteins, Freeman Co., Chothia, J.
lol. Biol., 150:1 (1976)). If alanine substitution does not yield adequate amounts of variant, an isosteric amino cid can be used.
As defined herein, Figure 2 variants, analogs or homologs, have the distinguishing attribute of having at 1 sast one epitope that is "cross reactive" with a protein of Figure 2. As used in this sentence, "cross reactive" means 00 aat an antibody or T cell that specifically binds to a Figure 2 variant also specifically binds to a Figure 2 protein Saving an amino acid sequence set forth in Figure 3. A polypeptide ceases to be a variant of a protein shown in 'igure 3, when it no longer contains any epitope capable of being recognized by an antibody or T cell that pecifically binds to the starting of a Figure 2 protein. Those skilled in the art understand that antibodies that ecognize proteins bind to epitopes of varying size, and a grouping of the order of about four or five amino acids, entiguous or not, is regarded as a typical number of amino acids in a minimal epitope. See, Nair et al., J.
mmunol 2000 165(12): 6949-6955; Hebbes et al., Mol Immunol (1989) 26(9):865-73; Schwartz et al., J Immunol 1985) 135(4):2598-608.
Other classes of Figure 2-related protein variants share 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 86%, 17%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more similarity, homology or identity vith an amino acid sequence of Figure 3,or a fragment thereof. Another specific class of Figure 2 protein variants )r analogs comprise one or more of the Figure 2 biological motifs described herein (see, Table V or XVIII, Fable XX, or Tables XXIm to XXVI) or presently known in the art. Thus, encompassed by the present invention ire analogs of the proteins set forth in Figure 2 fragments (nucleic or amino acid) that have altered functional (e.g.
mmunogenic) properties relative to the starting fragment. It is to be appreciated that motifs now or which become )art of the art are to be applied to the nucleic or amino acid sequences of Figure 2 or Figure 3.
As discussed herein, embodiments of the claimed invention include polypeptides containing less than the full amino acid sequence of a protein shown in Figure 2 or Figure 3. For example, representative embodiments of the invention comprise peptides/proteins having any: 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215,220,225, 230, 235, 240, 245, 250, 255, 260,265,270, 275, 280, 285, 290,295,300, 305, 310, 315, 320, 325, 330, 335, 340, 345, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395, 400, 405, 410, 415, 420, 425, 430, 435, 440, 445, 450, 455,460, 465, 470, 475,480, 485, 490,495, 500, 505, 510, 515, 520, 525, 530, 535, 540, 545, 550, 555, 560, 565, 570, 575, 580, 585, 590, 595, 600, 605,610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695, 700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, 760, 765, 770, 775, 780, 785, 790, 795, 800, 805, 810, 815, 820, 825, 830, 835, 840, 845, 850, 855, 860, 865, 870, 875, 880, 885, 890, 895, 900, 905, 910, 915, 920, 925, 930, 935, 940, 945, 950,955, 960, 965, 970, 975, 980, 985,990, 995, 1000, 1025, 1050, 1075, 1100, 1125, 1150, 1175, 1200, etc., or more contiguous amino acids of a protein shown in Figure 2 or Figure 00 3.
O Moreover, representative embodiments of the invention disclosed herein include polypeptides consisting of about amino acid 1 to about amino acid 10 of a Figure 2 protein shown, polypeptides consisting of about amino acid 10 to about amino acid 20 of a Figure 2 protein, polypeptides consisting of about amino acid 20 to about amino acid of a Figure 2 protein, polypeptides consisting of about amino acid 30 to about amino acid 40 of a Figure 2 S protein, polypeptides consisting of about amino acid 40 to about amino acid 50 of a Figure 2 protein, polypeptides S consisting of about amino acid 50 to about amino acid 60 of a Figure 2 protein, polypeptides consisting of about amino acid 60 to about amino acid 70 of a Figure 2 protein, polypeptides consisting of about amino acid 70 to about S amino acid 80 of a Figure 2 protein, polypeptides consisting of about amino acid 80 to about amino acid 90 ofa S Figure 2 protein, polypeptides consisting of about amino acid 90 to about amino acid 100 of a Figure 2 protein, etc.
throughout the entirety of a protein set forth in Figure 2 amino acid sequence. Moreover, polypeptides consisting of about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 130, or 140 or 150 etc.) of a Figure 2 protein 00 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues.
C Figure 2-related proteins are generated using standard peptide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nucleic acid molecules that encode a Figure 2-related protein. In one embodiment, nucleic acid molecules provide a means to generate defined fragments of a Figure 2 protein (or variants, homologs or analogs thereof).
II.A.) Motif-bearing Protein Embodiments Additional illustrative embodiments of the invention disclosed herein include polypeptides of the invention that comprise the amino acid residues of one or more of the biological motifs contained within a protein of Figure 2 polypeptide sequence set forth in Figure 2 or Figure 3. Various motifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly available Internet sites (see, World Wide Web URL addresses: pfam.wustLedul; searchlauncher.bcm.tmc.edu/seq-search/struc-predicthtml; psortLims.utokyo.ac.jp/; www.cbs.dtu.dk/; www.ebiac.uk/interpro/scan.html; www.expasy.ch/tools/scnpsitl.html; Epimatrix and Epimer m Brown University, www.brownedulReseachl/B-HIV Lab/epimatix/epimatrix.html; andBIMAS, bimas.dcrt.nih.gov/.). Accordingly, see, the motif bearing subsequences of all Figure 2 proteins set forth and identified in Tables V to XVIII, Table XX, Table XXI, and Tables XXIII to XXVI. Additionally, Table XIX sets forth several frequently occurring motifs based on pfam searches (see URL address pfam.wustl.edu/). The columns of Table VIII list'(1) motif name abbreviation, percent identity found amongst the different member of the motif family, motif name or description and most common function; location information is included if the motif is relevant for location.
Polypeptides comprising one or more of the motifs set forth in Tables V to XVIII, Table XX, Table XXI, and Tables XXIII to XXVI are useful in elucidating the specific characteristics of a malignant phenotype in view of the observation that the motifs discussed above are associated with growth dysregulation and because the proteins of Figure 2 are overexpressed in certain cancers (See, Table Casein kinase II, cAMP and camp-dependent protein kinase, and Protein Kinase C, for example, are enzymes known to be associated with the development of the malignant phenotype (see e.g. Chen et al., Lab Invest, 78(2): 165-174 (1998); Gaiddon et al., Endocrinology 136(10): 4331-4338 (1995); Hall et al., Nucleic Acids Research 24(6): 1119-1126 (1996); Peterziel et al., Oncogene 18(46): 6322-6329 (1999) and O'Brian, Oncol. Rep. 305-309 (1998)). Moreover, both glycosylation and
I
myristoylation are protein modifications also associated with cancer and cancer progression (see e.g. Dennis et al., 00 iochem. Biophys. Acta 1473(1):21-34 (1999); Raju et al., Exp. Cell Res. 235(1): 145-154 (1997)). Amidation is C other protein modification also associated with cancer and cancer progression (see e.g. Treston et al., J. Natl.
ancer Inst. Monogr. 169-175 (1992)).
S In another embodiment, proteins of the invention comprise one or more of the immunoreactive epitopes entified in accordance with art-accepted methods, such as the peptides set forth in Tables V-XVIII and XXI to t) XVI. CTL epitopes can be determined using specific algorithms to identify peptides within a Figure 2 protein that are Ipable of optimally binding to specified HLA alleles Table IV; Epimatrix M and Epimer T M Brown University, RL www.brown.edu/Research/B-HVLab/epimaix/epimatrix.html; and BIMAS, URL bimas.dcrtnih.gov/.) S[oreover, processes for identifying peptides that have sufficient binding affinity for HLA molecules and which are Srrelated with being immunogenic epitopes, are well known in the art, and are carried out without undue c perimentation. In addition, processes for identifying peptides that are immunogenic epitopes, are well known in Se art, and are carried out without undue experimentation either in vitro or in vivo.
00 Also known in the art are principles for creating analogs of such epitopes in order to modulate Samunogenicity. For example, one begins with an epitope that bears a CTL or HTL motif (see, the HLA Class and HLA Class II motifs/supermotifs of Table IV). The epitope is analoged by substituting out an amino acid at ie of the specified positions, and replacing it with another amino acid specified for that position. For example, ae can substitute out a deleterious residue in favor of any other residue, such as a preferred residue as defined in able IV; substitute a less-preferred residue with a preferred residue as defined in Table IV; or substitute an iginally-occurring preferred residue with another preferred residue as defined in Table IV. Substitutions can cur at primary anchor positions or at other positions in a peptide; see, Table IV.
A variety of references reflect the art regarding the identification and generation of epitopes in a protein of iterest as well as analogs thereof. See, for example, WO 9733602 to Chesnut et al.; Sette, Immunogenetics 1999 201-212; Sette et al., J. Immunol. 2001 166(2): 1389-1397; Sidney et al., Hum. Immunol. 1997 58(1): 12- 3; Kondo et al., Immunogenetics 1997 45(4): 249-258; Sidney et al., J. Immunol. 1996 157(8): 3480-90; and Falk al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 1992); Parker et al., J. Immunol. 152:163-75 (1994)); Kast et al, 1994 152(8): 3904-12; Borras-Cuesta et al., :um. Immunol. 2000 61(3): 266-278; Alexander et al., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et PMID: 7895164, UI: 95202582; O'Sullivan et al., J. Immunol. 1991 147(8): 2663-2669; Alexander et al., Immunity 1994 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92.
Related embodiments of the inventions include polypeptides comprising combinations of the different motifs set forth in Table XIX; and/or, one or more of the predicted CTL epitopes of Tables V to XVIII, and/or, one or more of the predicted HTL epitopes of Tables XXIII to XXVI and/or, one or more of the T cell binding motifs known in the art. Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or the intervening sequences of the polypeptides. In addition, embodiments which include a number of either Nterminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located). Typically the number of Nterminal and/or C-terminal amino acid residues on either side of a motif is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues.
Figure 2-related proteins are embodied in many forms, preferably in isolated form. A purified Figure 2 protein molecule will be substantially free of other proteins or molecules that impair the binding of a protein of Figure 2 to an antibody, T cell or other ligand. The nature and degree of isolation and purification will depend on the intended use. Embodiments of Figure 2-related proteins include purified Figure 2-related proteins and functional, 00 O soluble Figure 2-related proteins. In one embodiment, a functional, soluble Figure 2 protein or fragment thereof Sretains the ability to be bound by an antibody, T cell or other ligand.
The invention also provides Figure 2 proteins comprising biologically active fragments of a Figure 2 amino acid sequence. Such proteins exhibit properties of the starting Figure 2 protein, such as the ability to elicit the generation of antibodies that specifically bind an epitope associated with the starting Figure 2 protein; to be bound by such antibodies; to elicit the activation of HTL or CTL; and/or, to be recognized by HTL or CTL that also specifically bind to the starting protein.
Figure 2-related polypeptides that contain particularly interesting structures can be predicted and/or identified using various analytical techniques well known in the art, including, for example, the methods of Chou-Fasman, Gamier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis, or on the basis of immunogenicity. Fragments that contain such structures are particularly useful in generating subunit-specific antibodies 00 that bind to a protein of Figure 2, or T cells or in identifying cellular factors that bind to a protein set forth in Figure 2.
S For example, hydrophilicity profiles can be generated, and immunogenic peptide fragments identified, using the (CK method ofHopp, T.P. and Woods, 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent Accessible Residues profiles can be generated, and immunogenic peptide fragments identified, using the method ofJanin 1979, Nature 277:491-492. Average Flexibility profiles canbe generated, and immunogenic peptide fragments identified, using the method of Bhaskaran Ponnuswamy 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated, and immunogenic peptide fragments identified, using the method of Deleage, Roux 1987, Protein Engineering 1:289-294.
CTL epitopes can be determined using specific algorithms to identify peptides within a Figure 2 protein that are capable of optimally binding to specified HLA alleles by using the SYFPEITHI site at World Wide Web URL syfpeithi.bmi-heidelberg.com/; the listings in Table Epimatrix
T
M and Epimer", Brown University, URL (www.brown.edu/ResearchfTB-HIV_Lab/epimatrix/epimatrix.html); and BIMAS, URL bimas.dcrt.nih.gov/).
Illustrating this, peptide epitopes from the proteins set forth in Figure 2 that are presented in the context of human MHC class I molecules HLA-A1, A2, A3, All, A24, B7 and B35 were predicted (Tables V-XVIII). Specifically, the complete amino acid sequence of a Figure 2 protein and relevant portions of other presented variants, for HLA Class I predictions 9 flanking residues on either side of a point mutation for 10-mers, and for HLA Class II predictions 14 flanking residues on either side of a point mutation for 15-mers, were entered into the HLA Peptide Motif Search algorithm found in the Bioinformatics and Molecular Analysis Section (BIMAS) web site listed above; for HLA Class II the site SYFPEITHI at URL syfpeithi.bmi-heidelberg.com/ was used for HTL epitopes of Tables XXIII to XXVI.
The HLA peptide motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HLA Class I molecules, in particular HLA-A2 (see, Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J.
Immunol. 152:163-75 (1994)). This algorithm allows location and ranking of 8-mer, 9-mer, and 10-mer peptides from a complete protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules. Many HLA class I binding peptides are 10 or 11-mers. For example, for class I HLA-A2, the epitopes preferably contain a leucine or methionine at position 2 and a valine or leucine at the Cterminus (see, Parker et al., J. Immunol. 149:3580-7 (1992)). Selected results from a complete protein 0 0 sequence set forth in Figure 2 that predicted binding peptides are shown in Tables V-XVII. In Tables V-XVIII, the
O
0 top 50 ranking candidates, 9-mers and 10-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. The binding score corresponds to the Ct estimated half time of dissociation of complexes containing the peptide at 37°C at pH 6.5. Peptides with the highest Sbinding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of f) time and thus represent the best immunogenic targets for T-cell recognition.
Actual binding of peptides to an HLA allele can be evaluated by stabilization of HLA expression on the antigen-processing defective cell line T2 (see, Xue et al., Prostate 30:73-8 (1997) and Peshwa et al., Prostate 36:129-38 (1998)). Immunogenicity of specific peptides can be evaluated in vitro by stimulation of CD8+ cytotoxic 0 T lymphocytes (CTL) in the presence of antigen presenting cells such as dendritic cells.
It is to be appreciated that every epitope predicted by the BIMAS site, Epimer T and Epimatrix T M sites, or C specified by the HLA class I or class II motifs available in the art or which become part of the art such as set forth 00 0 in Table IV (or determined using World Wide Web site URL syfpeithi.bmi-heidelberg.com/, or BIMAS, bimas.dcrtnihgov/) are to be "applied" to a Figure 2 protein in accordance with the invention. As used in this context "applied" means that a Figure 2 protein is evaluated, visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art. Every subsequence of a Figure 2 protein of 8, 9, 10, or 11 amino acid residues that bears an HLA Class I motif, or a subsequence of 9 or more amino acid residues that bear an HLA Class I1 motif are within the scope of the invention.
Expression of Figure 2-related Proteins In an embodiment described in the examples that follow, the proteins set forth in Figure 2 can be conveniently expressed in cells (such as 293T cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding a protein of Figure 2 with a C-terminal 6XHis and MYC tag (pcDNA3.1/mycHIS, Invitrogen or TagS, GenHunter Corporation, Nashville TN). The Tag5 vector provides an IgGK secretion signal that can be used to facilitate the production of a secreted Figure 2 protein in transfected cells.
A secreted HIS-tagged Figure 2 protein in the culture media can be purified, using a nickel column using standard techniques.
II.C.) Modifications of Figure 2-related Proteins Modifications of Figure 2-related proteins such as covalent modifications are included within the scope of S this invention. One type of covalent modification includes reacting targeted amino acid residues of a protein of Figure 2 polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of a Figure 2 protein. Another type of covalent modification to a protein of Figure 2 polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of a protein of the invention. Another type of covalent modification to a protein of Figure 2 comprises linking a Figure S 2 polypeptide to one of a variety of nonproteinaceous polymers, polyethylene glycol (PEG), polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337.
Figure 2-related proteins of the present invention can also be modified to form a chimeric molecule comprising a protein of Figure 2 fused to another, heterologous polypeptide or amino acid sequence. Such a S chimeric molecule can be synthesized chemically or recombinantly. A chimeric molecule can have a protein of the invention fused to another tumor-associated antigen or fragment thereof. Alternatively, a protein in accordance with the invention can comprise a fusion of fragments of a Figure 2 sequence (amino or nucleic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences 00 shown in Figure 2 or Figure 3. Such a chimeric molecule can comprise multiples of the same subsequence of a O protein set forth in Figure 2. A chimeric molecule can comprise a fusion of a Figure 2-related protein with a polyhistidine epitope tag, which provides an epitope to which immobilized nickel can selectively bind, with cytokines or with growth factors. The epitope tag is generally placed at the amino- or carboxyl- terminus of a Figure 2 protein. In an alternative embodiment, the chimeric molecule can comprise a fusion of a Figure 2-related protein with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a 7^t Figure 2 polypeptide in place of at least one variable region within an Ig molecule. In a preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CHI, CH2 and CH3 regions of an IgGI molecule. For the production of immunoglobulin fusions see, U.S. Patent No. 5,428,130 issued June 27, 1995.
00 Im.D.) Uses of Figure 2-related Proteins The proteins of the invention have a number of different specific uses. As the proteins set forth in Figure 2 C1 are highly expressed in one or more cancers, Figure 2-related proteins are used in methods that assess the status of Figure 2 gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype. Typically, polypeptides from specific regions of a Figure 2 protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations etc.) in those regions (such as regions containing one or more motifs).
Exemplary assays utilize antibodies or T cells targeting Figure 2-related proteins comprising the amino acid residues of one or more of the biological motifs contained within a protein of Figure 2 polypeptide sequence in order to evaluate the characteristics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope. Alternatively, Figure 2-related proteins that contain the amino acid residues of one or more of the biological motifs in a Figure 2 protein are used to screen for factors that interact with that region of the respective protein set forth in Figure 2.
Figure 2 protein fragments/subsequences are particularly useful in generating and characterizing domainspecific antibodies antibodies recognizing an extracellular or intracellular epitope of a Figure 2 protein), for identifying agents or cellular factors that bind to a protein in Figure 2 or a particular structural domain thereof, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines.
Proteins encoded by a gene of the invention a Figure 2 gene, or analog, homolog or fragment thereof) have a variety of uses, including but not limited to generating antibodies and in methods for identifying ligands and other agents and cellular constituents that bind to a Figure 2 gene product Antibodies raised against a Figure 2 protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologies in the management of human cancers characterized by expression of a Figure 2 protein, such as those listed in Table I.
Such antibodies can be expressed intracellularly and used in methods of treating patients with such cancers. Figure 2-related nucleic acids or proteins are also used in generating HTL or CTL responses.
Various immunological assays useful for the detection of Figure 2 proteins are used, including but not limited to various types ofradioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), immunocytochemical methods, and the like. Antibodies can be labeled and used as immunological imaging reagents capable of detecting cells that express a protein set forth in Figure 2 in radioscintigraphic imaging methods). Figure 2 proteins are also particularly useful in generating cancer vaccines, as further described herein.
0. IV,) Antibodies of the Invention Another aspect of the invention provides antibodies that bind to Figure 2-related proteins. Preferred antibodies pecifically bind to a Figure 2-related protein and do not bind (or bind weakly) to peptides or proteins that are not Figure -related proteins. For example, antibodies that bind to proteins in Figure 2 can bind to Figure 2-related proteins such as he homologs or analogs thereof.
Antibodies of the invention are particularly useful in cancer (see, the cancers referred to in Table I) liagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the j- reatment, diagnosis, and/or prognosis of other cancers, to the extent the genes and respective encoded proteins set orth in Figure 2 are also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed ntibodies single chain antibodies) are therapeutically useful in treating cancers in which the expression of a C sene and encoded protein of Figure 2 is involved, such as advanced or metastatic prostate cancers.
0 The invention also provides various immunological assays useful for the detection and quantification a protein S>f Figure 2 and mutants thereof. Such assays can comprise one or more Figure 2 antibodies capable of recognizing and )inding a Figure 2-related protein, as appropriate. These assays are performed within various immunological assay ormats well known in the art, including but not limited to various types of radioimmunoassays, enzyme-linked mmiunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like.
Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (inhibitory )r stimulatory) as well as major histocompatibility complex (MHC) binding assays.
In addition, immunological imaging methods capable of detecting a cancer expressing a gene of the invention ire also provided by the invention, including but not limited to radioscintigraphic imaging methods using labeled Figure 2 antibodies. Such assays are clinically useful in the detection, monitoring, and prognosis of a gene of the inventionxpressing cancer.
Antibodies of the invention are also used in methods for purifying a Figure 2-related protein and for isolating proteins of the invention, Figure 2 homologues and related molecules. For example, a method of purifying a Figure 2-related protein comprises incubating a Figure 2 antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a Figure 2-related protein under conditions that permit the antibody to bind to the Figure 2related protein; washing the solid matrix to eliminate impurities; and eluting the Figure 2-related protein from the coupled antibody. Other uses of antibodies in accordance with the invention include generating anti-idiotypic antibodies that mimic a Figure 2 protein.
Various methods for the preparation of antibodies are well known in the art For example, antibodies can be prepared by immunizing a suitable mammalian host using a Figure 2-related protein, peptide, or fragment, in isolated or, immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Harlow, Antibodies, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins in accordance with the invention can also be used, such as a protein of Figure 2 GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of Figure 2 or Figure 3 is produced, then used as an immunogen to generate appropriate antibodies. In another embodiment, a Figure 2-related protein is synthesized and used as an immunogen.
In addition, naked DNA immunization techniques known in the art are used (with or without a purified Figure 2-related protein or agene of Figure 2-expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly et al, 1997, Ann. Rev. Immunol. 15: 617-648).
The amino acid sequence of a Figure 2 protein can be analyzed to select specific regions of the protein for 00 generating antibodies. For example, hydrophobicity and hydrophilicity analyses of Figure 2 amino acid sequences are used to identify hydrophilic regions in the protein. Regions of a Figure 2 protein that show immunogenic structure, as Cl well as other regions and domains, can readily be identified using various other methods known in the art, such as Chouc Fasman, Gamier-Robson;Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis. Hydrophilicity profiles can be generated using the method of Hopp, T.P. and Woods, 1981, Proc. Natl. Acad. Sci. U.S.A.
tn 78:3824-3828. Hydropathicity profiles can be generated using the method ofKyte, J. and Doolittle, 1982, J.
Mol. Biol. 157:105-132. Percent Accessible Residues profiles can be generated using the method ofJanin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated using the method ofBhaskaran R., Ponnuswamy 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated using the method of Deleage, Roux 1987, Protein Engineering 1:289-294. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of antibodies in (N accordance with the invention are further illustrated by way of the Examples provided herein. Methods for preparing a 00 S protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for 0 preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carrier protein. In some circumstances, direct conjugation using, for example, carbodiimide reagents are used; in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, are effective. Administration of protein immunogen is often conducted by injection over a suitable time period and with use of a suitable adjuvant, as is understood in the art.
During the immunization schedule, titers of antibodies can be taken to determine adequacy of antibody formation.
Monoclonal antibodies of the invention can be produced by various means well known in the art. For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology ofKohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known.
Immortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a Figure 2-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from in vitro cultures or from ascites fluid.
The antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifically to the desired regions of a Figure 2 protein can also be produced in the context of chimeric or complementarity-determining region (CDR) grafted antibodies of multiple species origin. Humanized or human antibodies that specifically bind to a proteins of Figure 2 can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the nonhuman antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones et aL, 1986, Nature 321: 522-525; Riechmann et 1988, Nature 332: 323-327; Verhoeyen et al., 1988, Science 239: 1534- 1536). See also, Carter et al., 1993, Proc. Natl. Acad. Sci. USA 89: 4285 and Sims et aL, 1993, J. Immunol. 151: 2296.
Methods for producing fully human monoclonal antibodies include phage display and transgenic methods (for review, see Vaughan et al., 1998, Nature Biotechnology 16: 535-539). Fully human monoclonal antibodies of the invention can be generated using cloning technologies employing large human Ig gene combinatorial libraries phage display) (Griffiths and Hoogenboom, Building an in vitro immune system: human antibodies from phage display libraries. In: Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications in Man, Clark, M. Nottingham Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries.
Id., pp 65-82). Fully human monoclonal antibodies of the invention can also be produced using transgenic mice engineered to contain human immunoglobulin gene loci as described in PCT Patent Application WO98/24893, Kucherlapati and Jakobovits et aL, published December 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 607-614; U.S. patents 6,162,963 issued 19 December 2000; 6,150,584 issued 12 November 2000; and, 6,114598 00 ssued 5 September 2000). This method avoids the in vitro manipulation required with phage display technology and O fficiently produces high affinity authentic human antibodies.
C'1 Reactivity of antibodies of the invention with a Figure 2-related protein can be established by a number of t veil known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, Sigure 2-related proteins, or protein of Figure 2-expressing cells or extracts thereof. An Figure 2 antibody of the nvention, or fragment thereof, can be labeled with a detectable marker or conjugated to a second molecule.
0 Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a >ioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-specific mtibodies specific for two or more epitopes are generated using methods generally known in the art. Homodimeric i mtibodies can also be generated by cross-linking techniques known in the art Wolff et al., Cancer Res. 53: 1 560-2565).
00 Cellular Immune Responses of the Invention The mechanism by which T cells recognize antigens has been delineated. Efficacious peptide epitope raccine compositions of the invention induce a therapeutic or prophylactic immune responses in very broad iegments of the world-wide population. For an understanding of the value and efficacy of compositions-of the nvention that induce cellular immune responses, a brief review of immunology-related technology is provided.
A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T :ells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, Annu. Rev. Immunol. 7:601, 1989; Germain, R. Annu. Rev. Immunol. 11:403, 1993). Through the study of ;ingle amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed eptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have een identified and are set forth in Table IV (see also, Southwood, et al., J. Immunol. 160:3363, 1998; tammensee, et al., Immunogenetics 41:178, 1995; Rarmensee et al., SYFPEITHI, access via World Wide Web at JRL syfpeithi.bmi-heidelberg.com/; Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., :urr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and iammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307- 1312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics 1999 Nov; 50(3-4):201-12, Review).
Furthermore, x-ray crystallographic analyses of HLA-peptide complexes have revealed pockets within the peptide binding cleft/groove of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Ster et al., Structure 2:245, 1994; Jones, E.Y. Curr. Opin. hnmunol. 9:75, 1997; Brown, J. H. et Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367, 1992; Matsumura, M. et Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al.,Science 257:919, 1992; Saper, M. Bjorkman, P. J. and Wiley, D. J. Mol. Biol. 219:277, 1991.) Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s).
Thus, by a process of HLA motif identification, candidates for epitope-based vaccines have been S identified; such candidates can be further evaluated by HLA-peptide binding assays to determine binding affinity 0 and/or the time period of association of the epitope and its corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, and/or immunogenicity.
SVarious strategies can be utilized to evaluate cellular immunogenicity, including: 1) Evaluation of primary T cell cultures from normal individuals (see, Wentworth, P. A. et al., Mol.
0 Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol.
158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen.presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, a lymphokine- or 5 1 Cr-release assay involving peptide sensitized target cells.
CK 2) Immunization of HLA transgenic mice (see, Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Imunol. 159:4753, 1997). For example, 0 in such methods peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, a 5 1Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
3) Demonstration of recall T cell responses from immune individuals who have been either effectively vaccinated and/or from chronically ill patients (see, Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J.
Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997). Accordingly, recall responses are detected by culturing PBL from subjects that have been exposed to the antigen due to disease and thus have generated an immune response "naturally", or from patients who were vaccinated against the antigen. PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays including 51Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.
VI.) Transgenic Animals of the Invention Nucleic acids that encode a Figure 2-related protein can also be used to generate either transgenic animals or "knock out" animals that, in turn, are useful in the development and screening of therapeutically useful reagents.
In accordance with established techniques, cDNA encoding a protein of Figure 2 can be used to clone genomic DNA that encodes a protein of Figure 2. The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode a Figure 2 protein. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 issued 12 April 1988, and 4,870,009 issued 26 September 1989. Typically, particular cells would be targeted for a nucleic acid sequence of Figure 2 transgene incorporation with tissuespecific enhancers.
Transgenic animals that include a copy of a transgene encoding a Figure 2 protein can be used to examine the effect of increased expression of DNA that encodes the Figure 2 protein. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its 00 verexpression. In accordance with this aspect of the invention, an animal is treated with a reagent and a reduced
O
Scidence of a pathological condition, compared to untreated animals that bear the transgene, would indicate a tential therapeutic intervention for the pathological condition.
Alternatively, non-human homologues of Figure 2 proteins can be used to construct a Figure 2 protein Smock out" animal that has a defective or altered gene encoding the Figure 2 protein as a result of homologous t) combination between the endogenous gene encoding the Figure 2 protein and altered genomic DNA encoding the igure 2 protein, introduced into an embryonic cell of the animal. For example, cDNA that encodes a Figure 2 *otein can be used to clone genomic DNA encoding the Figure 2 protein, in accordance with established chniques. A portion of the genomic DNA encoding a Figure 2 protein can be deleted or replaced with another Sme, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several Slobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector (see, Thomas and C0 apecchi, Cell. 51:503 (1987) for a description of homologous recombination vectors). The vector is introduced Sto an embryonic stem cell line by electroporation) and cells in which the introduced DNA has homologously combined with the endogenous DNA are selected (see, Li et al., Cell. 69:915 (1992)). The selected cells are ten injected into a blastocyst of an animal a mouse or rat) to form aggregation chimeras (see, Bradley, in eratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp.
13-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the nbryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in ieir germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal ntain the homologously recombined DNA. Knock out animals can be characterized, for example, for their ability i defend against certain pathological conditions or for their development of pathological conditions due to absence f a protein of Figure 2.
VII.) Methods for the Detection of a Gene or Protein of the Invention Another aspect of the present invention relates to methods for detecting Figure 2 polynucleotides and Figure 2slated proteins, as well as methods for identifying a cell that expresses a gene set forth in Figure 2. The expression rofile of a gene or protein set forth in Figure 2 makes it a diagnostic marker for metastasized disease. Accordingly, Le status of Figure 2 gene products provides information useful for predicting a variety of factors including susceptibility to advanced stage disease, rate of progression, and/or tumor aggressiveness. As discussed in detail herein, the status of Figure 2 gene products in patient samples can be analyzed by a variety protocols that are well known in the art including immunohistochemical analysis, the variety of Northern blotting techniques including in situ hybridization, RT-PCR analysis (for example on laser capture micro-dissected samples), Western blot analysis and tissue array analysis.
More particularly, the invention provides assays for the detection of Figure 2 polynucleotides in a biological sample, such as serum, bone, prostate, and other tissues, urine, semen, cell preparations, and the like. Detectable Figure 2 polynucleotides include, for example, a Figure 2 gene or fragment thereof, a Figure 2 mRNA, alternative splice variants of Figure 2 mRNAs, and recombinant DNA or RNA molecules that contain a Figure 2 polynucleotide. A number of methods for amplifying and/or detecting the presence of Figure 2 polynucleotides are well known in the art and canbe employed in the practice of this aspect of the invention.
In one embodiment, a method for detecting an a Figure 2 mRNA in a biological sample comprises producing cDNA from the sample by reverse transcription using at least one primer; amplifying the cDNA so produced using Figure 2 polynucleotides as sense and antisense primers to amplify Figure 2 cDNAs therein; and detecting the Spresence of the amplified Figure 2 cDNA. Optionally, the sequence of the amplified Figure 2 cDNA can be 0 determined.
Ci In another embodiment, a method of detecting a Figure 2 gene in a biological sample comprises first Sisolating genomic DNA from the sample; amplifying the isolated genomic DNA using Figure 2 polynucleotides as Ssense and antisense primers; and detecting the presence of the amplified Figure 2 gene. Any number of appropriate sense and antisense probe combinations can be designed from a Figure 2 nucleotide sequence and used for this purpose.
The invention also provides assays for detecting the presence of a Figure 2 protein in a tissue or other biological sample such as serum, semen, bone, prostate, urine, cell preparations, and the like. Methods for detecting a Figure 2-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Western blot analysis, molecular binding assays, ELISA, ELIFA and the like. For example, a method of 0 detecting the presence of a Figure 2-related protein in a biological sample comprises first contacting the sample 00 with a Figure 2 antibody, a Figure 2-reactive fragment thereof, or a recombinant protein containing an antigen Sbinding region of a Figure 2 antibody; and then detecting the binding of a Figure 2-related protein in the sample.
C, Methods for identifying a cell that expresses a gene of Figure 2 are also within the scope of the invention. In one embodiment, an assay for identifying a cell that expresses a Figure 2 gene comprises detecting the presence of a Figure 2 mRNA in the cell. Methods for the detection of particular mRNAs in cells are well known and include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled riboprobes to a gene of Figure 2, Northern blot and related techniques) and various nucleic acid amplification assays (such as RT- PCR using complementary primers specific for genes of Figure 2, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like). Alternatively, an assay for identifying a cell that expresses a Figure 2 gene comprises detecting the presence of a Figure 2-related protein in the cell or secreted by the cell. Various methods for the detection of proteins are well known in the art and are employed for the detection of Figure 2-related proteins and cells that express Figure 2-related proteins.
Expression analysis of Figure 2 proteins is also useful as a tool for identifying and evaluating agents that modulate Figure 2 gene expressions. For example, Figure 2 gene expression is significantly upregulated in prostate cancer, and is expressed in cancers of the tissues listed in Table I. Identification of a molecule or biological agent that inhibits Figure 2 gene expression or over-expression in cancer cells is of therapeutic value. For example, such an agent can be identified by using a screen that quantifies a Figure 2 gene expression by RT-PCR, nucleic acid hybridization or antibody binding.
VI.) Methods for Monitoring the Status of Genes and Proteins of the Invention Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, Alers et al., Lab Invest. 77(5): 437-438 (1997) and Isaacs et Cancer Surv. 23: 19-32 (1995)). In this context,' examining a biological sample for evidence of dysregulated cell growth (such as aberrant gene of Figure 2 expression in cancers) allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutic options are more limited and or the prognosis is worse. In such examinations, the status of the genes and proteins in Figure 2 in a biological sample of interest can be compared, for example, to the status of that gene and/or protein of Figure 2 in a corresponding normal sample a sample from that individual or alternatively another individual that is not affected by a pathology). An alteration in the status of a gene and/or protein of Figure 2 in the biological sample (as compared to the normal sample) provides evidence of 00 sregulated cellular growth. In addition to using a biological sample that is not affected by a pathology as a rmal sample, one can also use a predetermined normative value such as a predetermined normal level of mRNA Spression (see, Grever et al., J. Comp. Neurol. 1996 Dec 9; 376(2): 306-14 and U.S. Patent No. 5,837,501) to c mpare the status of a gene or protein in a sample.
The term "status" in this context is used according to its art accepted meaning and refers to the condition or Vt) te of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state a gene and its products. These include, but are not limited to the location of expressed gene products (including the :ation of gene of Figure 2 expressing cells) as well as the level, and biological activity of expressed gene products ich as Figure 2 mRNA, polynucleotides and polypeptides). Typically, an alteration in the status of a gene and/or otein of Figure 2 comprises a change in the location of a protein Figure 2 and/or cells that express a protein of gure 2and/or an increase in Figure 2 mRNA and/or protein expression.
CK The status in a sample of a gene or protein of Figure 2 can be analyzed by a number of means well known in art, including without limitation, immunohistochemical analysis, in situ hybridization, RT-PCR analysis on laser pture micro-dissected samples, Western blot analysis, and tissue array analysis. Typical protocols for evaluating the itus of a Figure 2 gene and gene product are found, for example in Ausubel et al. eds., 1995, Current Protocols In olecular Biology, Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR aalysis). Thus, the status of a gene or protein in Figure 2 in a biological sample is evaluated by various methods ilized by skilled artisans including, but not limited to genomic Southern analysis (to examine, for example :rturbations in a Figure 2 gene), Northern analysis and/or PCR analysis of Figure 2 mRNA (to examine, for .ample alterations in the polynucleotide sequences or expression levels of Figure 2 mRNAs), and, Western and/or ununohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in lypeptide localization within a sample, alterations in expression levels of Figure 2 proteins and/or associations of gure 2 proteins with polypeptide binding partners). Detectable Figure 2 polynucleotides include, for example, a gure 2 gene or fragment thereof, a Figure 2 mRNA, alternative splice variants, Figure 2 mRNAs, and recombinant NA or RNA molecules containing a Figure 2 polynucleotide.
The expression profile of each gene of Figure 2 makes it a diagnostic marker for local and/or metastasized sease, and provides information on the growth or oncogenic potential of a biological sample. In particular, the status agene or protein of Figure 2 provides information useful for predicting susceptibility to particular disease stages, progression, and/or tumor aggressiveness. The invention provides methods and assays for determining the expression or mutational status of a gene of Figure 2 and diagnosing cancers that express a gene of Figure 2, such as cancers of the tissues listed in Table I. For example, because each gene of Figure 2 mRNA is highly expressed in cancers relative to normal tissue, assays that evaluate the levels of Figure 2 mRNA transcripts or proteins in a biological sample are used to diagnose a disease associated with dysregulation of a gene set forth in Figure 2, and can provide prognostic information useful in defining appropriate therapeutic options.
The expression status of the genes and proteins set forth in Figure 2 provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicting susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Moreover, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of these genes and proteins in biological samples such as those from individuals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer.
As described above, the status of the genes and proteins in Figure 2 in a biological sample can be examined 00 by a number of well-known procedures in the art. For example, the status of the genes and proteins in Figure 2 in a 0 biological sample taken from a specific location in the body can be examined by evaluating the sample for the CN1 presence or absence of a Figure 2 protein expressing cells those that express Figure 2 mRNAs or proteins). This S examination can provide evidence of dysregulated cellular growth, for example, when Figure 2 protein-expressing cells are found in a biological sample that does not normally contain such cells (such as a lymph node), because such alterations in the status of the genes and proteins in Figure 2 in a biological sample are often associated with dysregulated cellular growth. Specifically, one indicator of dysregulated cellular growth is the metastases of cancer cells from an organ of origin (such as the prostate) to a different area of the body (such as a lymph node). In this context, evidence of dysregulated cellular growth is important for example because occult lymph node metastases can be detected in a substantial proportion of patients with prostate cancer, and such metastases are associated with known predictors of disease progression (see, Murphy et al., Prostate 42(4): 315-317 (2000);Su et al., Semin.
CS Surg. Oncol. 18(1): 17-28 (2000) and Freeman et al., J Urol 1995 Aug 154(2 Pt 1):474-8).
00 "In one aspect, the invention provides methods for monitoring Figure 2 gene products by determining the 0 status of Figure 2 gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of Figure 2 gene products in a corresponding normal sample. The presence of aberrant Figure 2 gene products in the test sample relative to the normal sample provides an indication of the presence of dysregulated cell growth within the cells of the individual.
In another aspect, the invention provides assays useful in determining the presence of cancer in an individual, comprising detecting a significant increase in Figure 2 mRNA or protein expression in a test cell or tissue sample relative to expression levels in the corresponding normal cell or tissue. The presence of Figure 2 mRNA can, for example, be evaluated in tissue samples including but not limited to those listed in Table I. The presence of significant Figure 2 protein expression or over-expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, where the corresponding normal tissues do not express'Figure 2 mRNA or express it at lower levels.
In a related embodiment, the genes and proteins in Figure 2 status is determined at the protein level rather than at the nucleic acid level. For example, such a method comprises determining the level of a Figure 2 protein expressed by cells in a test tissue sample and comparing the level so determined to the level of a Figure 2 protein expressed in a corresponding normal sample. In one embodiment, the presence of a Figure 2 protein is evaluated, for example, using immunohistochemical methods. Antibodies of the invention or binding partners capable of detecting a Figure 2 protein expression are used in a variety of assay formats well known in the art for this purpose.
In a further embodiment, one can evaluate the status of Figure 2 nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules. These perturbations can include insertions, deletions, substitutions and the like. Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed in a large number of proteins associated with a growth dysregulated phenotype (see, Marrogi et al., 1999, J. Cutan. Pathol. 26(8):369-378). For example, a mutation in the sequence of a Figure 2 gene can indicate the presence or promotion of a tumor. Such assays therefore have diagnostic and predictive value where a mutation in a Figure 2 gene indicates a potential loss of function or increase in tumor growth.
A wide variety of assays for observing perturbations in nucleotide and amino acid sequences are well known in the art For example, the size and structure of nucleic acid or amino acid sequences of Figure 2, or the gene products of one of these genes are observed by the Northern, Southern, Western, PCR and DNA sequencing protocols as discussed herein. In addition, other methods for observing perturbations in nucleotide and amino acid sequences such as single OO and conformation polymorphism analysis are well known in the art (see, U.S. Patent Nos. 5,382,510 issued 7 O ptember 1999, and 5,952,170 issued 17 January 1995).
C Additionally, one can examine the methylation status of a Figure 2 gene in a biological sample. Aberrant t methylation and/or hypermethylation of CpG islands in gene 5' regulatory regions frequently occurs in immortalized Sd transformed cells, and can result in altered expression of various genes. For example, promoter hypermethylation t- 'the pi-class glutathione S-transferise (a protein expressed in normal prostate but not expressed in >90% of ostate carcinomas) appears to permanently silence transcription of this gene and is the most frequently detected tnomic alteration in prostate carcinomas (De Marzo et al., Am. J. Pathol. 155(6): 1985-1992 (1999)). In addition, Sis alteration is present in at least 70% of cases of high-grade prostatic intraepithelial neoplasia (PIN) (Brooks et S Cancer Epidemiol. Biomarkers Prev., 1998, 7:531-536). In another example, expression of the LAGE-I tumor lecific gene (which is not expressed in normal prostate but is expressed in 25-50% of prostate cancers) is induced C r deoxy-azacytidine in lymphoblastoid cells, suggesting that tumoral expression is due to demethylation (Lethe et Int. J. Cancer 76(6): 903-908 (1998)). A variety of assays for examining methylation status of a gene are well Stown in the art For example, one can utilize, in Southern hybridization approaches, methylation-sensitive restriction zymes that cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG islands.
addition, MSP (methylation specific PCR) can rapidly profile the methylation status of all the CpG sites present in a pG island of a given gene. This procedure involves initial modification of DNA by sodium bisulfite (which will mvert all unmethylated cytosines to uracil) followed by amplification using primers specific for methylated versus nnethylated DNA. Protocols involving methylation interference can also be found for example in Current Protocols i Molecular Biology, Unit 12, Frederick M. Ausubel et al. eds., 1995.
Gene amplification is an additional method for assessing the status of a Figure 2 gene. Gene amplification measured in a sample directly, for example, by conventional Southern blotting or Northern blotting to quantitate ie transcription of mRNA (Thomas, 1980, Proc. Natl. Acad. Sci. USA, 77:5201-5205), dot blotting (DNA 3alysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein.
Iternatively, antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, id DNA-RNA hybrid duplexes or DNA-protein duplexes; The antibodies in turn are labeled and the assay carried at where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of atibody bound to the duplex can be detected.
Biopsied tissue or peripheral blood can be conveniently assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect expression of a gene of Figure 2. The presence of RT-PCR amplifiable Figure 2 mRNA provides an indication of the presence of cancer. RT-PCR assays are well known in the art.
RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors. In the prostate cancer field, these include RT-PCR assays for the detection of cells expressing PSA and PSM (Verkaik el aL, 1997, Urol. Res. 25:373-384; Ghossein et aL, 1995, J. Clin.
Oncol. 13:1195-2000; Heston et at., 1995, Clin. Chem. 41:1687-1688).
A further aspect of the invention is an assessment of the susceptibility that an individual has for developing cancer. In one embodiment, a method for predicting susceptibility to cancer comprises detecting Figure 2 mRNA or a protein of the invention in a tissue sample, its presence indicating susceptibility to cancer, wherein the degree of Figure 2 mRNA expression correlates to the degree of susceptibility. In a specific embodiment, the presence of a protein of the invention in, prostate tissue is examined, with the presence of a protein of Figure 2 in the sample providing an indication ofprostate cancer susceptibility (or the emergence or existence of a prostate tumor). Similarly, one can 46 evaluate the integrity a gene in Figure 2 nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of 00 one or more perturbations in genes or gene products of the invention in the sample is an indication of cancer susceptibility (or the emergence or existence of a tumor).
The invention also comprises methods for gauging tumor aggressiveness. In one embodiment, a method for gauging aggressiveness of a tumor comprises determining the level of Figure 2 mRNA or a Figure 2 protein expressed by tumor cells, comparing the level so determined to the level of Figure 2 mRNA or a Figure 2 protein expressed in a corresponding normal tissue taken from the same individual or a normal tissue reference sample, wherein the degree of Figure 2 mRNA or a Figure 2 protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness. In a specific embodiment, aggressiveness of a tumor is evaluated by determining the extent to which a gene of Figure 2 is expressed in the tumor cells, with higher expression levels indicating more aggressive tumors.
Another embodiment is the evaluation of the integrity of Figure 2 nucleotide and/or amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions 00 and the like. The presence of one or more perturbations indicates more aggressive tumors.
Another embodiment of the invention is directed to methods for observing the progression of a malignancy in CK1 an individual over time. In one embodiment, methods for observing the progression of a malignancy in an individual over time comprise determining the level of Figure 2 mRNA or a Figure 2 protein expressed by cells in a sample of the tumor, comparing the level so determined to the level of Figure 2 mRNA or a Figure 2 protein expressed in an equivalent tissue sample taken from the same individual at a different time, wherein the degree of Figure 2 mRNA or a Figure 2 protein expression in the tumor sample over time provides information on the progression of the cancer. In a specific embodiment, the progression of a cancer is evaluated by determining Figure 2 gene or protein expression in the tumor cells over time, where increased expression over time indicates a progression of the cancer. Also, one can evaluate the integrity of Figure 2 nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like, where the Spresence of one or more perturbations indicates a progression of the cancer.
The above diagnostic approaches can be combined with any one of a wide variety of prognostic and diagnostic protocols known in the art. For example, another embodiment of the invention is directed to methods for observing a coincidence between the expression of a Figure 2 gene and/or Figure 2 gene products (or perturbations in a Figure 2 -gene and/or Figure 2 gene products) and a factor that is associated with malignancy, as a means for diagnosing and prognosticating the status of a tissue sample. A wide variety of factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy PSA, PSCA and PSM expression for prostate cancer, etc.) as well as gross cytological observations (see, Bocking et al., 1984, Anal. Quant. Cytol. 6(2):74-88; Epstein, 1995, Hum. Pathol. 26(2):223-9; Thorson et al., 1998, Mod. Pathol. 11(6):543-51; Baisden et al., 1999, Am. J. Surg.
Pathol. 23(8):918-24). Methods for observing a coincidence between the expression of a Figure 2 gene and/or Figure 2 gene products (or. perturbations in a Figure 2 gene and/or Figure 2 gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of specific factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue sample.
In one embodiment, methods for observing a coincidence between the expression of a Figure 2 gene and Figure 2 gene products (or perturbations in a Figure 2 gene and/or Figure 2 gene products) and another factor associated with malignancy entails detecting the overexpression of Figure 2 mRNA and/or protein in a tissue sample; detecting the overexpression ofPSA mRNA or protein in a tissue sample (or PSCA or PSM expression, etc.), and observing a coincidence of Figure 2 mRNA and/or protein and PSA mRNA or protein overexpression (or PSCA or PSM expression). In a specific embodiment, the expression of a gene of Figure 2 and PSA mRNA in prostate tissue is 00 amined, where the coincidence of a Figure 2 gene and PSA mtNA overexpression in the sample indicates the istence of prostate cancer, prostate cancer susceptibility or the emergence or status of a prostate tumor.
Methods for detecting and quantifying the expression of Figure 2 mRNA or protein are described herein, and Ct mdard nucleic acid and protein detection and quantification technologies are well known in the art. Standard methods r the detection and quantification of Figure 2 mRNA include in situ hybridization using labeled Figure 2 gene t) 3oprobes, Northern blot and related techniques using Figure 2 polynucleotide probes, RT-PCR analysis using primers ecific for Figure 2 genes, and other amplification type detection methods, such as, for example, branched DNA, ;SBA, TMA and the like. In a specific embodiment, semi-quantitative RT-PCR is used to detect and quantify Figure mRNA expression. Any number of primers capable of amplifying a Figure 2 gene can be used for this purpose, C cluding but not limited to the various primer sets specifically described herein. In a specific embodiment, polyclonal r monoclonal antibodies specifically reactive with a wild-type Figure 2 protein can be used in an immunohistochemical ;say of biopsied tissue.
00 IX.) Identification of Molecules That Interact With Proteins of Figure 2 The Figure 2 protein and nucleic acid sequences disclosed herein allow.a skilled artisan to identify proteins, nall molecules and other agents that interact with the genes or proteins in Figure 2, as well as pathways activated y genes or proteins in Figure 2 via any one of a variety of art accepted protocols. For example, one can utilize one fthe so-called interaction trap systems (also referred to as the "two-hybrid assay"). In such systems, molecules iteract and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the xpression of the reporter gene is assayed. Other systems identify protein-protein interactions in vivo through :constitution of a eukaryotic transcriptional activator, see, U.S. Patent Nos. 5,955,280 issued 21 September 999, 5,925,523 issued 20 July 1999, 5,846,722 issued 8 December 1998 and 6,004,746 issued 21 December 1999.
Jgorithms are also available in the art for genome-based predictions of protein function (see, Marcotte, et al., lature 402: 4 November 1999, 83-86).
.Alternatively one can screen peptide libraries to identify molecules that interact with a protein sequence of he invention, a protein of Figure 2. In such methods, peptides that bind to Figure 2 proteins are identified by creening libraries that encode a random or controlled collection of amino acids. Peptides encoded by the libraries re expressed as fusion proteins of bacteriophage coat proteins, the bacteriophage particles are then screened against.
a Figure 2 protein(s).
Accordingly, peptides having a wide variety of uses, such as therapeutic, prognostic or diagnostic reagents,.
are thus identified without any prior information on the structure of the expected ligand or receptor molecule.
Typical peptide libraries and screening methods that can be used to identify molecules that interact with Figure 2 protein sequences are disclosed for example in U.S. Patent Nos. 5,723,286 issued 3 March 1998 and 5,733,731 issued 31 March 1998.
Alternatively, cell lines that express a protein of Figure 2 are used to identify protein-protein interactions mediated by the respective proteins of Figure 2. Such interactions can be examined using immunoprecipitation techniques (see, Hamilton et al. Biochem. Biophys. Res. Commun. 1999, 261:646-51). Figure 2 proteins can be immunoprecipitated from the respective proteins of Figure 2-expressing cell line using antibodies of the invention that specifically bind that protein. Alternatively, antibodies against His-tag can be used in a cell line engineered to express fusions of a protein of Figure 2 and a His-tag (vectors mentioned above). The immunoprecipitated complex can be examined for protein association by procedures such as Western blotting, "S- 00 methionine labeling of proteins, protein microsequencing, silver staining and two-dimensional gel electrophoresis.
O Small molecules and ligands that interact with the genes and proteins in Figure 2 can be identified through CK1 related embodiments of such screening assays. For example, small molecules can be identified that interfere with Sprotein function, including molecules that interfere with protein of the invention's ability to mediate phosphorylation and de-phosphorylation, interaction with DNA or RNA molecules as an indication of regulation of cell cycles, second messenger signaling or tumorigenesis. Similarly, small molecules that modulate a proteins of Figure 2-related ion channel, protein pump, or cell communication functions are identified and used to treat patients that have a cancer that expresses a Figure 2 gene (see, Hille, Ionic Channels of Excitable Membranes 2 d Ed., Sinauer Assoc., Sunderland, MA, 1992). Moreover, ligands that regulate the function of a protein of the invention can be identified based on their ability to bind proteins of the invention and activate a reporter construct.
Typical methods are discussed for example in U.S. Patent No. 5,928,868 issued 27 July 1999, and include methods Sfor forming hybrid ligands in which at least one ligand is a small molecule. In an illustrative embodiment, cells 00 engineered to express a fusion protein of a Figure 2 protein and a DNA-binding protein are used to co-express a 0 fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional activator protein. The cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of identifying modulators which activate or inhibit a protein of the invention.
An embodiment of the invention comprises a method of screening for a molecule that interacts with a protein of the invention, an amino acid sequence shown in Figure 2 or Figure 3, comprising the steps of contacting a population of molecules with a Figure 2 amino acid sequence, allowing the population of molecules and the Figure 2.amino acid sequence to interact under conditions that facilitate an interaction, determining the presence of a molecule that interacts with the Figure 2 amino acid sequence, and then separating molecules that do not interact with the Figure 2 amino acid sequence from molecules that do. In a specific embodiment, the method further comprises purifying, characterizing and identifying a molecule that interacts with the Figure 2 amino acid sequence. The identified molecule can be used to modulate a function performed by a protein of the invention. In a preferred embodiment, the protein in Figure 2 amino acid sequence is contacted with a library of peptides.
Therapeutic Methods and Compositions The identification of a Figure 2 as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in certain cancers, opens a number of therapeutic approaches to the treatment of such cancers. As contemplated herein, the genes and proteins in Figure 2 function as a transcription factor involved in activating tumor-promoting genes or repressing genes that block tumorigenesis.
Accordingly, therapeutic approaches that inhibit the activity of a Figure 2 protein are useful for patients suffering from a cancer that expresses a gene of Figure 2. These therapeutic approaches generally fall into two classes. One class comprises various methods for inhibiting the binding or association of a Figure 2 protein with its binding partner or with other proteins. Another class comprises a variety of methods for inhibiting the transcription of a Figure 2 gene or translation of Figure 2 mRNA.
Anti-Cancer Vaccines
I
The invention provides cancer vaccines comprising a Figure 2-related protein or a Figure 2-related nucleic 00 :id. In view of the expression of a Figure 2 protein, cancer vaccines prevent and/or treat genes of Figure 2-expressing ancers with minimal or no effects on non-target tissues. The use of a tumor antigen in a vaccine that generates humoral C7 ad/or cell-mediated immune responses as anti-cancer therapy is well known in the art and has been employed in t restate cancer using human PSMA and rodent PAP immunogens (Hodge et al, 1995, Int J. Cancer 63:231-237; Fong Stal., 1997, J. Immunol. 159:3113-3117).
Such methods can be readily practiced by employing a Figure 2-related protein, or a nucleic acid sequence iat encodes a Figure 2-related protein and recombinant vectors capable of expressing and presenting immunogen fthe invention (which typically comprises a number of antibody or T cell epitopes). Skilled artisans understand i at a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, e.g., S[eryln et al., Ann Med 1999 Feb 31(1):66-78; Maruyama et al., Cancer Immunol Immunother 2000 Jun 49(3):123- 2) Briefly, such methods of generating an immune response humoral and/or cell-mediated) in a mammal, C' omprise the steps of: exposing the mammal's immune system to an immunoreactive epitope an epitope 00 resent in a protein of the invention, shown in Figure 3 or analog or homolog thereof) so that the mammal S ;enerates an immune response that is specific for that epitope generates antibodies that specifically recognize iat epitope). In a preferred method, an immunogen contains a biological motif, see Tables V-XVIII, Tables OfII to XXVI; or a peptide of a size range from a protein in Figure 2 indicated in Figure 5, Figure 6, Figure 7, ;igure 8, and/or Figure 9.
The entire Figure 2 protein, immunogenic regions or epitopes thereof can be combined and delivered by arious means. Such vaccine compositions can include, for example, lipopeptides (e.g.,Vitiello, A. et al., J. Clin.
nvest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) microspheres see, Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et Il., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple ntigen peptide systems (MAPs) (see Tam, J. Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tarn, J.P., Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic lelivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine levelopment, Kaufmann, S. H. ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Vature 320:537, 1986; Kieny, et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis.
124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin Kofler, N.
et al, J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. Vogel, F. and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 14 8 :1 5 8 5 1992; Rock, K. Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L, Hunt, L. and Webster, R. Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufnann, S. H. ed., p. 423, 1996; Cease, K. and Berzofsky, J. Annu. Rev.
Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc.
(Needham, Massachusetts) may also be used.
In patients with a protein of Figure 2-associated cancer, the vaccine compositions of the invention can also be used in conjunction with other treatments used for cancer, surgery, chemotherapy, drug therapies, radiation therapies, etc. including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.
Cellular Vaccines: CTL epitopes can be determined using specific algorithms to identify peptides within a Figure 2 protein that 00 O bind corresponding HLA alleles (see Table IV; Epimer t and Epimatrix
T
Brown University (URL C www.brown.edu/ResearchTB-HIV_Lab/epimatrix/epimatrix.html); and, BIMAS, (URL bimas.dcrt.nih.gov/; SYFPEITHI at URL syfpeithi.bmi-heidelberg.com/). In a preferred embodiment, an of the invention contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables V-XVIII or a peptide of 8, 9, 10 or 11 amino acids specified by an HLA Class I motif/supermotif Table 0 IV Table IV or Table IV and/or a peptide of at least 9 amino acids that comprises an HLA Class II motiffsupermotif Table IV or Table IV As is appreciated in the art, the HLA Class I binding groove j- is essentially closed ended so that peptides of only a particular size range can fit into the groove and be bound, S generally HLA Class I epitopes are 8, 9, 10, or 11 amino acids long. In contrast, the HLA Class II binding groove S is essentially open ended; therefore a peptide of about 9 or more amino acids can be bound by an HLA Class II C molecule, as a convention 15-mer peptides that bind to HLA class II alleles are generally presented (see, e.g., 00 Tables XXIII to XXVI). Due to the binding groove differences between HLA Class I and II, HLA Class I motifs S are length specific, position two of a Class I motif is the second amino acid in an amino to carboxyl direction of C the peptide. The amino acid positions in a Class nI motif are relative only to each other, not the overall peptide, i.e., additional amino acids can be attached to the amino and/or carboxyl termini of a motif-bearing sequence. HLA Class II epitopes are often 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids long, or longer than 25 amino acids.
Antibody-based Vaccines A wide variety of methods for generating an immune response in a mammal are known in the art (for example as the first step in the generation of hybridomas). Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein a Figure 2 protein) so that an immune response is generated. A typical embodiment consists of a method for generating an immune response to a protein in Figure 2 in a host, by contacting the host with a sufficient amount of at least one protein in Figure 2 B cell or cytotoxic T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contacting the host with the B cell or cytotoxic T-cell epitope or analog thereof A specific embodiment consists of a method of generating an immune response against a Figure 2-related protein or a man-made multiepitopic peptide comprising: administering an immunogen of the invention a Figure 2 protein or a peptide fragment thereof, an Figure 2 fusion protein or analog etc.) in a vaccine preparation to a human or another mammal.
Typically, such vaccine preparations further contain a suitable adjuvant (see, U.S. Patent No. 6,146,635) or a universal helper epitope such as a PADRET peptide (Epimmune Inc., San Diego, CA; see, Alexander et al., J.
Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., Immunity 1994 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92). An alternative method comprises generating an immune response in an individual against an immunogen of the invention by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes an immunogen of the invention, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; wherein the DNA molecule is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, U.S. Patent No. 5,962,428). Optionally a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered. In addition, an antiidiotypic antibody can be administered that mimics a protein set forth 00 1 Figure 2, in order to generate a response to the target antigen.
0Nucleic Acid Vaccines: Vaccine compositions of the invention include nucleic acid-mediated modalities. DNA or RNA that Sncode protein(s) of the invention can be administered to a patient. Genetic immunization methods can be Smployed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer Sells expressing Figure 2 proteins. Constructs comprising DNA encoding a Figure 2-related protein/immunogen nd appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells If the muscle or.skin take-up the construct and express the encoded Figure 2 protein/immunogen. Alternatively, a Saccine comprises a Figure 2-related protein. Expression of the Figure 2-related protein immunogen results in the ;eneration of prophylactic or therapeutic humoral and cellular immunity against cells that bear the Figure 2-related Srotein. Various prophylactic and therapeutic genetic immunization techniques known in the art can be used (for Seview, see information and references published at Internet address www.genweb.com). Nucleic acid-based 00 lelivery is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; S i,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720. Examples of DNA-based delivery echnologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid :omplexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, U.S. Patent No. 5,922,687).
For therapeutic or prophylactic immunization purposes, proteins of the invention can be expressed via viral )r bacterial vectors. Various viral gene delivery systems that can be used in the practice of the invention include, but ire not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, md sindbis virus (see, Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang et al. J. Natl. Cancer Inst 87:982-990 1995)). Non-viral delivery systems can also be employed by introducing naked DNA encoding a Figure 2-related rotein into the patient intramuscularly or intradermally) to induce an anti-tumor response.
Vaccinia virus is used, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response. Vaccinia vectors and methods useful in immunization protocols are described in, U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin).
BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.
Thus, gene delivery systems are used to deliver a Figure 2-related nucleic acid molecule. In one embodiment, the full-length human gene of Figure 2 cDNA is employed. In another embodiment, Figure 2 nucleic acid molecules encoding specific cytotoxic T lymphocyte (CTL) and/or antibody epitopes are employed.
Ex Vivo Vaccines Various ex vivo strategies can also be employed to generate an immune response. One approach involves the use of antigen presenting cells (APCs) such as dendritic cells (DC) to present antigen of the invention to a patient's immune system. Dendritic cells express MHC class I and nI molecules, B7 co-stimulator, and IL-12, and are thus highly specialized antigen presenting cells. In prostate cancer, autologous dendritic cells pulsed with peptides of the prostate-specific membrane antigen (PSMA) are being used in a Phase I clinical trial to stimulate prostate cancer patients' immune systems (Tjoa et al., 1996, Prostate 28:65-69; Murphy et al., 1996, Prostate 29:371-380). Thus, dendiitic cells can be used to present peptide immunogens of the invention to T cells in the context of MHC class I 52 or II molecules. In one embodiment, autologous dendritic cells are pulsed with immunogenic peptides capable of 00 binding to MHC class I and/or class II molecules. In another embodiment, dendritic cells are pulsed with the Scomplete Figure 2 protein. Yet another embodiment involves engineering the overexpression of a Figure 2 gene in dendritic cells using various implementing vectors known in the art, such as adenovirus (Arthur et al., 1997, Cancer SGene Ther. 4:17-25), retrovirus (Henderson et al., 1996, Cancer Res. 56:3763-3770), lentivirus, adeno-associated Svirus, DNA transfection (Ribas et al., 1997, Cancer Res. 57:2865-2869), or tumor-derived RNA transfection lr (Ashley et al., 1997, J. Exp. Med. 186:1177-1182). Cells that express proteins of the invention can also be 0 engineered to express immune modulators, such as GM-CSF, and used as immunizing agents.
A Protein of Figure 2 as a Target for Antibody-based Therapy Proteins of the invention, e.g. Figure 2, are attractive targets for antibody-based therapeutic strategies. A number of antibody strategies are known in the art for targeting both extracellular and intracellular molecules (see, complement and ADCC mediated killing as well as the use of intrabodies). Because of the expression profiles C.i\ of the proteins set forth in figure 2, expressed by cancer cells of various lineages at higher levels compared to 00 corresponding normal cells, systemic administration of proteins in Figure 2-immunoreactive compositions are C prepared that exhibit excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and tissues. Antibodies specifically reactive with domains of Figure 2 proteins are useful to systemically treat cancers that express a protein of Figure 2, either as conjugates with a toxin or therapeutic agent, or as naked antibodies capable of inhibiting cell proliferation or function.
Antibodies of the invention can be introduced into a patient such that the antibody binds to a protein of the invention and modulate a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cells and/or inhibits the growth of the tumor cells. Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cytolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of proteins of the invention, inhibition of ligand binding or signal transduction pathways, modulation of tumor cell differentiation, alteration of tumor angiogenesis factor profiles, and/or apoptosis.
Those skilled in the art understand that antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a protein of the invention such as a protein sequence shown in Figure 2 or Figure 3. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, Slevers et al. Blood 93:11 3678-3684 (June 1, 1999)). When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugaing them to antibodies specific for a molecule expressed by that cell a protein of Figure the cytotoxic agent will exert its known biological effect cytotoxicity) on those cells.
A wide variety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the art In the context of cancers, typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/or therapeutic agent linked to a targeting agent an antibody that specifically binds a protein of Figure 2) that binds to a marker a protein of Figure 2) expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing a Figure 2 protein, comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a protein in Figure 2 epitope, and, exposing the cell to the antibody-agent conjugate. Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic 00 id/or therapeutic agent.
0 Cancer immunotherapy using antibodies o the invention can be done in accordance with various 0 >proaches that have been successfully employed in the treatment of other types of cancer, including but not limited colon cancer (Arlen et al., 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki et al., 1997, Blood C ):3179-3186, Tsunenari et al., 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk et al., 1992, Cancer Res.
tl :2771-2776), B-cell lymphoma (Funakoshi et al., 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), Sukemia (Zhong et al., 1996, Leuk. Res. 20:581-589), colorectal cancer (Moun et al., 1994, Cancer Res. 54:6160- 166; Velders et al., 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard et al., 1991, J. Clin. Immunol.
t" 1:117-127). Some therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such O ;the conjugation ofY 91 or I t31 to anti-CD20 antibodies Zevalin
T
IDEC Pharmaceuticals Corp. or BexxarTM; oulter Pharmaceuticals), while others involve co-administration of antibodies and other therapeutic agents, such as C. :erceptinr (trastuzumab) with paclitaxel (Genentech, Inc.). The antibodies can be conjugated to a therapeutic 00 O gent. To treat prostate cancer, for example, antibodies of the invention can be administered in conjunction with idiation, chemotherapy or hormone ablation. Also, antibodies can be conjugated to a toxin such as calicheamicin MylotargTM, Wyeth-Ayerst, Madison, NJ, a recombinant humanized IgG 4 kappa antibody conjugated to 2titumor antibiotic calicheamicin) or a maytansinoid taxane-based Tumor-Activated Prodrug, TAP, platform, nmunoGen, Cambridge, MA, also see US Patent 5,416,064).
Ithough antibody therapy directed to a protein of the invention is useful for all stages of cancer, antibody therapy an be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the Ivention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody lerapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not sceived chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of oncomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent ery well. Fan et al. (Cancer Res. 53:4637-4642, 1993), Prewett et aL (International J. of Onco. 9:217-224, 1996), nd Hancock et al. (Cancer Res. 51:4575-4580, 1991) describe the use of various antibodies together with hemotherapeutic agents. Treatment with the antibody therapy of the invention is indicated for patients who have eceived one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a hemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment.
Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well.
Cancer patients can be evaluated for the presence and level of expression of a gene of Figure 2, preferably using immunohistochemical assessments of tumor tissue, quantitative imaging of a protein of the invention, or other techniques that reliably indicate the presence and degree of a Figure 2 protein expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art.
Monoclonal antibodies of the invention that treat cancers of a tissue of Table I) include those that initiate a potent immune response against the tumor or those that are directly cytotoxic. In this regard, monoclonal antibodies (mAbs) of the invention can elicit tumor cell lysis by either complement-mediated or antibody-dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addition, mAbs of the invention that exert a direct biological effect on tumor growth are useful to treat cancers that express proteins in Figure 2.
Mechanisms by which directly cytotoxic mAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) 0 by which a particular mAbs of the invention exert an anti-tumor effect is evaluated using any number of in vitro Sassays that evaluate cell death such as ADCC, ADMMC, complement-mediated cell lysis, and so forth, as is generally known in the art.
In some patients, the use of murine or other non-human monoclonal antibodies, or human/mouse chimeric mAbs can induce moderate to strong immune responses against the non-human antibody. This can result in clearance of the antibody from circulation and reduced efficacy. In the most severe cases, such an immune response can lead to the extensive formation of immune complexes which, potentially, can cause renal failure.
Accordingly, preferred monoclonal antibodies used in the therapeutic methods of the invention are those that are S either fully human or humanized and that bind specifically to the target of proteins in Figure 2 antigens with high 0 affinity but exhibit low or no antigenicity in the patient.
00 Therapeutic methods of the invention contemplate the administration of single mAbs as well as combinations, or cocktails, of different mAbs. Such mAb cocktails can have certain advantages inasmuch as they C'N contain mAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic mAbs with mAbs that rely on immune effector functionality. Such mAbs in combination can exhibit synergistic therapeutic effects. In addition, mAbs of the invention can be administered concomitantly with other therapeutic modalities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators IL-2, GM-CSF), surgery or radiation. The mAbs of the invention are administered in their "naked" or unconjugated form, or can have a therapeutic agent(s) conjugated to them.
Antibody formulations of the invention are administered via any route capable of delivering the antibodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of an antibody preparation of the invention, via an acceptable route of administration such as intravenous injection typically at a dose in the range of about 0.1, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 mg/kg body weight. In general, doses in the range of 10-1000 mg mAb per week are effective and well tolerated.
Based on clinical experience with the Herceptin T M mAb in the treatment of metastatic breast cancer, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the mAb preparation represents an acceptable dosing regimen. Preferably, the initial loading dose is administered as a 90 minute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated. As appreciated by those of skill in the art, various factors can influence the ideal dose regimen in a particular case. Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of expression of the protein of the invention in the patient, the extent of circulating shed protein of the invention, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient.
Optionally, patients should be evaluated for the levels of a protein of the invention in a given sample (e.g.
the levels of circulating Figure 2 protein antigen and/or proteins of Figure 2-expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the evaluation of other parameters (for example, urine cytology and/or ImmunoCyt levels in bladder cancer therapy, or by analogy, serum 00 SA levels in prostate cancer therapy).
SAnti-idiotypic antibodies of the invention can also be used in anti-cancer therapy as a vaccine for inducing a immune response to cells that express a Figure 2-related protein. In particular, the generation ofanti-idiotypic ntibodies is well known in the art; this methodology can readily be adapted to generate anti-idiotypic anti-protein Sf Figure 2 antibodies that mimic an epitope on a Figure 2-related protein (see, for example, Wagner et al., 1997, l [ybridoma 16: 33-40; Foon et al., 1995, J. Clin. Invest 96:334-342; Herlyn et al., 1996, Cancer Immunol.
mmunother. 43:65-76). Such an anti-idiotypic antibody can be used in cancer vaccine strategies.
A Protein of Figure 2 as a Target for Cellular Immune Responses Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or a ore HLA-binding peptides as described herein are further embodiments of the invention. Furthermore, vaccines i accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be 0 resent in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies Sf the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased Snmunological reaction and, where different peptide epitopes are used to make up the polymer, the additional bility to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism r tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of n antigen or can be prepared, recombinantly or by chemical synthesis.
Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., iyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly ,glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically Dlerable acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also ypically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum ydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL esponses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-Sycerylcysteinlyseryl- serine (P 3 CSS). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated- ;uanine-containing (CpG) oligonucleotides has been found to increase CTL responses 10- to 100-fold. (see, e.g.
)avila and Celis J. Immunol. 165:539-547 (2000)) Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen.
Consequently, the host becomes at least partially immune to later development of cells that express or overexpress an antigen of a protein of Figure 2, or the host derives at least some therapeutic benefit when the antigen was tumorassociated.
In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses directed to the target antigen. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross reactive HTL epitope such as PADRE'" (Epimmune, San Diego, CA) molecule (described in U.S. Patent Number 5,736,142).
A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells as 00 a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell 0 mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are Stransfected, with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo. Vaccine compositions, either DNA- or peptide-based, can also be administered in vive in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo.
Preferably, the following principles are utilized when selecting an array ofepitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in Sorder to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.
S1.) Epitopes are selected which, upon administration, mimic immune responses that have been 00 observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one tumor associated antigen (TAA). For HLA Class II a similar rationale is employed; again 3-4 epitopes are r selected from at least one TAA (see, Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs.
Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an ICso of 500 nM or less, often 200 nM or less; and for Class I an IC5o of 1000 nM or less.
Sufficient supermotifbearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.
.When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope.
Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise B cell, HLA class I and/or HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide.
When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.
If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation.
Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that nonnative epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may 00 'ad to such a zealous response that immune responses to other epitopes are diminished or suppressed.
Where the sequences of multiple variants of the same target protein are present, potential peptide C" 3itopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may C fine that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding eptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen.
SX.C.1. Minigene Vaccines A number of different approaches are available which allow simultaneous delivery of multiple epitopes.
ucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention.
Spitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous Sction. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene nstructs encoding a peptide comprising one or multiple epitopes of the invention.
C'N The use of multi-epitope minigenes is described below and in, Ishioka et al., J. mnmunol. 162:3915-3925, 00 S999; An, L. and Whitton, J. J. Virol. 71:2292, 1997; Thomson, S. A. etal.,J. Immunol. 157:822, 1996; 0 lhitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope NA plasmid encoding supermotif- and/or motif-bearing epitopes derived from a protein of the invention, the ADRE® universal helper T cell epitope (or multiple HTL epitopes from a protein of the invention), and an adoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that re derived from other TAAs.
The immunogenicity ofa multi-epitopic minigene can be confirmed in transgenic mice to evaluate the lagnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded pitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected rith the DNA plasmid. Thus, these experiments can show that the minigene serves: to generate a CTL :sponse; and, that the induced CTLs recognized cells expressing the encoded epitopes.
For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human ells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used Sguide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, that when translated, a continuous polypeptide sequence is created. To optimize expression and/or nmunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g.
poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.
The minigene sequence may be converted to DNA by assembling oligonucteotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides .can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.
Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin S of replication; and an E. coil selectable marker (eg. ampicillin or kanamycin resistance). Numerous promoters can 0 be used for this purpose, the human cytomegalovirus (hCMV) promoter. See, U.S. Patent Nos. 5,580,859 C'i and 5,589,466 for other suitable promoter sequences.
Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In G some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion ofmRNA stabilization 0 sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.
Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the Ci vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct 00 plasmid can be stored as a master cell bank and a working cell bank.
In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of S DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.
In some embodiments, a bi-cistronic expression vector which allows production of both the minigeneencoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines IL-2, IL-12, GM-CSF), cytokine-inducing molecules LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE T m Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry ofHTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules TGF-1) may be beneficial in certain diseases.
Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well-known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.
Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available.
Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, as described by WO 93/24640; Mannino Gould-Fogerite, BioTechniques 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat' Acad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to O-arified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific 0 rgans or cell types.
CK Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of Slinigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is d litable as a target for standard CTL chromium release assays. The transfection method used will be dependent on ie final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro 0 ansfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of ansfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 labeled t" id used as target cells for epitope-specific CTL lines; cytolysis, detected by "Cr release, indicates both production r, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an Slalogous manner using assays to assess HTL activity.
S rIn vive immunogenicity is a second approach for functional testing of minigene DNA formulations.
00 ransgenic mice expressing appropriate human HLA proteins are immunized with the DNA product The dose and 0 ute of administration are formulation dependent IM for DNA in PBS, intraperitoneal for lipid- )mplexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for one week i the presence ofpeptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are Dnducted for cytolysis of peptide-loaded, 5 Cr-labeled target cells using standard techniques. Lysis of target cells iat were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, emonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is confirmed I transgenic mice in an analogous manner.
Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in I.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further Iternative embodiment, DNA can be adhered to particles, such as gold particles.
Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., a expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia.
X.C.2. Combinations of CTL Peptides with Helper Peptides Vaccine compositions comprising CTL peptides of the invention can be modified, analoged, to rovide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity.
For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.
In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in a 00 majority of a genetically diverse population. This can be accomplished by selecting peptides that bind to many, Smost, or all of the HLA class U molecules. Examples of such amino acid bind many HLA Class II molecules C71 include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE; SEQ ID NO: Plasmodiumfalciparum circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO: and Streptococcus 18kD protein at positions 116-131 Iy (GAVDSILGGVATYGAA; SEQ ID NO: Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.
Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, PCT publication WO S95/07707). These synthetic compounds called Pan-DR-binding epitopes PADRET
U
Epimmune, Inc., San Diego, CA) are designed to most preferably bind most HLA-DR (human HLA class I) molecules. For instance, a C pan-DR-binding epitope peptide having the formula: aKXVAAWTLKAAa (SEQ ID NO: where is either 00 cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most S HLA-DR alleles, and to stimulate the response ofT helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all natural amino acids and can be provided in the form of nucleic acids that encode the epitope.
HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.
X.C.3. Combinations of CTL Peptides with T Cell Priming Agents In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes B lymphocytes or T lymphocytes. Lipids have been identified as agents capable of priming CTL in vivo. For example, palmitic acid residues can be attached to the e-and a- amino groups of a lysine residue and then linked, via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic composition comprises palmitic acid attached to e- and a- amino groups of Lys, which is attached via linkage, Ser-Ser, to the amino terminus of the immunogenic peptide.
As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-Sglycerylcysteinlyseryl- serine (P 3 CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (see, Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P3CSS, for example, and the lipopeptide administered to an individual to specifically prime an immune response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P 3
CSS-
conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cellmediated responses.
X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides An embodiment of a vaccine composition in accordance with the invention comprises ex vive administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Pharmacia- 00 fonsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into 0 atients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed )Cs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.
(t The DC can be pulsed ex vive with a cocktail ofpeptides, some of which stimulate CTL responses to a Srotein of Figure 2. Optionally, a helper T cell (HTL) peptide, such as a natural or artificial loosely restricted HLA tV :lass I peptide; can be included to facilitate the CTL response. Thus, a vaccine in accordance with the invention is sed to treat a cancer which expresses or overexpresses a protein of Figure 2.
X.D. Adoptive Immunotherapy Antigenic peptides of the invention, peptides derived from a protein of Figure 2, are used to elicit a STL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients Siat do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or Sucleic acid in accordance with the invention. Ex vive CTL or HTL responses to a particular antigen are induced by Saicubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a S ource of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. After n appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded ato effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction HTL) of their specific target cell a tumor cell). Transfected dendritic cells may also be used as antigen resenting cells.
X.E. Administration of Vaccines for Therapeutic or Prophylactic Purposes Pharmaceutical and vaccine compositions of the invention are typically used to treat and/or prevent a ancer that expresses or overexpresses a Figure 2 protein. In therapeutic applications, peptide and/or nucleic acid ompositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL esponse to the antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount dequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will lepend on, the particular composition administered, the manner of administration, the stage and severity of the lisease being treated, the weight and general state of health of the patient, and the judgment of the prescribing )hysician.
For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already bearing a tumor that expresses a protein of Figure 2. The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences. Patients can be treated with the immunogenic peptides separately or in conjunction with other treatments, such as surgery, as appropriate.
For therapeutic use, administration should generally begin at the first diagnosis of a protein of Figure 2associated cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses a protein of Figure 2, a vaccine comprising CTLs specific for the respective protein of Figure 2 may be more efficacious in killing tumor cells in patient with advanced disease than alternative embodiments.
I
It is generally important to provide an amount of the peptide epitope delivered by a mode of administration 00 sufficient to effectively stimulate a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention.
C' The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 pg and the higher value is about 10,000; 20,000; 30,000; or 50,000 pg.
S Dosage values for a human typically range from about 500 pg to about 50,000 pg per 70 kilogram patient Boosting tn dosages of between about 1.0 pg to about 50,000 pg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. Administration should continue until at least J clinical symptoms or laboratory tests indicate that the neoplasia, has been eliminated or reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.
In certain embodiments, the peptides and compositions of the present invention are employed in serious C0 disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the O minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.
The vaccine compositions of the invention can also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 pg and the higher value is about 10,000; 20,000; 30,000; or 50,000 Fg. Dosage values for a human typically range from about 500 pg to about 50,000 pg per 70 kilogram patient This is followed by boosting dosages of between about 1.0 pg to about 50,000 pg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine can be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.
The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, nasal, intrathecal, or local as a cream or topical ointment) administration. Preferably, the pharmaceutical compositions are administered parentally, intravenously, subcutaneously, intradermally, or intramuscularly.
Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier.
A variety of aqueous carriers may be used, water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration.
The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.
The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
A human umt dose lorm o1 a composition is typically included in a pharmaceutical composition that o "omprises a human unit dose of an acceptable carrier, in one embodiment an aqueous carrier, and is administered in 0 volume/quantity that is known by those of skill in the art to be used for administration of such compositions to umans (see, Remington's Pharmaceutical Sciences, 17" Edition, A. Gennaro, Editor, Mack Publishing Co., aston, Pennsylvania, 1985). For example a peptide dose for initial immunization can be from about 1 to about 0,000 pg, generally 100-5,000 gg, for a 70 kg patient. For example, for nucleic acids an initial immunization may )e performed using an expression vector in the form of naked nucleic acid administered IM (or SC or ID) in the 0 mounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 pg) can also be administered using a gene gun.
'ollowing an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant j- owlpox virus administered at a dose of 5-10' to 5x10 9 pfu.
For antibodies, a treatment generally involves repeated administration of the antibody preparation, via an cceptable route of administration such as intravenous injection typically at a dose in the range of about 0.1 to Sbout 10 mg/kg body weight. In general, doses in the range of 10-500 mg mAb per week are effective and well 00 lerated. Moreover, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly S oses of about 2 mg/kg IV of the anti-Figure 2 protein mAb preparation represents an acceptable dosing regimen.
s appreciated by those of skill in the art, various factors can influence the ideal dose in a particular case. Such actors include, for example, half life of a composition, the binding affinity of an Ab, the immunogenicity of a ubstance, the degree of expression of the protein of the invention in the patient, the extent of circulating shed of irotein of the invention antigen, the desired steady-state concentration level, frequency of treatment, and the afluence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as vell as the health status of a particular patient. Non-limiting preferred human unit doses are, for example, 500pg mg, Img 50mg, 50mg 100mg, lOOmg 200mg, 200mg 300mg, 400mg 500mg, 500mg 600mg, 600mg OOmg, 700mg 800mg, 800mg 900mg, 900mg Ig, or Img 700mg. In certain embodiments, the dose is in a ange of 2-5 mg/kg body weight, with follow on weekly doses of 1-3 mg/kg; 0.5mg, 1, 2, 3, 4, 5, 6, 7, 8, 9, Omg/kg body weight followed, in two, three or four weeks by weekly doses; 0.5 10mg/kg body weight, e.g., ollowed in two, three or four weeks by weekly doses; 225, 250, 275, 300, 325, 350, 375, 400mg m 2 of body area veekly; 1- 6 00 mg m 2 of body area weekly; 225-400mg m 2 of body area weekly; these does can be followed by veekly doses for 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12 or more weeks.
In one embodiment, human unit dose forms of polynucleotides comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art a therapeutic effect depends on a number of factors, including the sequence of the polynucleotide, molecular weight of the polynucleotide and route of administration. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. Generally, for a polynucleotide of about 20 bases, a dosage range may be selected from, for example, an independently selected lower limit such as about 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 30,40, 50, 60, 90, 100, 200, 300, 400 or 500 mg/kg up to an independently selected upper limit, greater than the lower limit, of about 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10,000 mg/kg. For example, a dose may be about any of the following: 0.1 to 100 mg/kg, 0.1 to 50 mg/kg, 0.1 to mg/kg, 0.1 to 10 mg/kg, 1 to 500 mg/kg, 100 to 400 mg/kg, 200 to 300 mg/kg, .1 to 100 mg/kg, 100 to 200 mg/kg, 300 to 400 mg/kg, 400 to 500 mg/kg, 500 to 1000 mg/kg, 500 to 5000 mg/kg, or 500 to 10,000 mg/kg. Generally, r parenteral routes of administration imay require higher doses of polynucleotide compared to more direct application 00 to the nucleotide to diseased tissue, as do polynucleotides of increasing length.
O In one embodiment, human unit dose forms of T-cells comprise a suitable dosage range or effective CK amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art, a therapeutic effect Sdepends on a number of factors. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. A dose may be about 104 cells to about 106 cells, about 106 cells to about 108 cells, about 10' to about O cells, or about 108 to about 5 x 1010 cells. A dose may also about 106 cells/m 2 to about 1010 cells/m 2 or about 106 cells/m' to about 10' cells/m 2 Proteins(s) of the invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the proteins(s) to a particular tissue, such as lymphoid tissue; 2) to target selectively to diseases cells; or, 3) to increase the half-life of the peptide composition. Liposomes include Ci emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the 0 like. In these preparations, the peptide to be delivered is incorporated as part of a liposome,.alone or in conjunction 0 with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, liposome size, acid lability and stability of the liposomes in the blood stream. A.variety of methods are available for preparing liposomes, as described in, Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.
For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according.to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.
For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.
For aerosol administration, immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about 0.01%-20% by weight, preferably about The surfactant must, of course, be nontoxic, and preferably soluble in the propellant Representative of such agents are the esters or partial esters of fatty acids containing.from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute about 0.1%-20% by weight of the composition, preferably about The balance of the composition is ordinarily propellant- A carrier can also be included, as desired, as with, lecithin for intranasal 00 elivery.
O
XI.) Diagnostic and Prognostic Embodiments of the Invention.
t As disclosed herein, polynucleotides, polypeptides, reactive cytotoxic T cells (CTL), reactive helper T slls (HTL) and anti-polypeptide antibodies of the invention are used in well known diagnostic, prognostic and i erapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the ancers listed in Table I (see, both its specific pattern of tissue expression as well as its overexpression in ertain cancers as described for example in Example 4).
Proteins of Figure 2 can be analogized to the prostate associated antigen PSA, the archetypal marker that O as.been used by medical practitioners for years to identify and monitor the presence of prostate cancer (see, e.g., O lerrill et al., J. Urol. 163(2): 503-5120 (2000); Polascik et al., J. Urol. Aug; 162(2):293-306 (1999) and Fortier et S1., J. Nat. Cancer Inst. 91(19): 1635-1640(1999)). A variety of other diagnostic markers are also used in similar O ontexts including p53 and K-ras (see, Tulchinsky et al., Int J Mol Med 1999 Jul 4(1):99-102 and Minimoto et.
L1., Cancer Detect Prey 2000;24(1):1-12). Therefore, this disclosure of Figure 2 polynucleotides and polypeptides is well as Figure 2-related polynucleotide probes and anti- Figure 2 protein antibodies used to identify the presence f these molecules) and their properties allows skilled artisans to utilize these molecules in methods that are nalogous to those used, for example, in a variety of diagnostic assays directed to examining conditions associated rith cancer.
Typical embodiments of diagnostic methods, which utilize the polynucleotides, polypeptides, reactive T ells and antibodies of the invention, are analogous to those methods from well-established diagnostic assays which mploy, PSA polynucleotides, polypeptides, reactive T cells and antibodies. For example, just as PSA olynucleotides are used as probes (for example in Northern analysis, see, Sharief et al., Biochem. Mol. Biol.
at. 33(3):567-74(1994)) and primers (for example in PCR analysis, see, Okegawa et al., J. Urol. 163(4): 1189- 190 (2000)) to observe the presence and/or the level of PSA mRNAs in methods of monitoring PSA verexpression or the metastasis of prostate cancers, the Figure 2 polynucleotides described herein can be utilized in ae same way to detect the respective Figure 2 protein overexpression or the metastasis of prostate and other cancers.
xpressing this gene. Alternatively, just as PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitorPSA protein overexpression (see, Stephan et al., Urology 55(4):560-3 (2000)) or the metastasis of prostate cells (see, e.g., Alanen et al., Pathol. Res. Pract. 192(3):233-7 (1996)), the Figure 2 polypeptides described herein can be utilized to generate antibodies for use in detecting the respective proteins of Figure 2 overexpression or the metastasis of prostate cells and cells of other cancers expressing this gene.
Specifically, because metastases involves the movement of cancer cells from an organ of origin (such as the lung or prostate gland etc.) to a different area of the body (such as a lymph node), assays which examine a biological sample for the presence of cells expressing Figure 2 polynucleotides and/or polypeptides can be used to provide evidence of metastasis. For example, when a biological sample from tissue that does not normally contain gene or protein of Figure 2-expressing cells a lymph node) is found to contain a protein of Figure 2-expressing cells, this finding is indicative of metastasis.
Alternatively polynucleotides and/or polypeptides of the invention can be used to provide evidence of cancer, for example, when cells in a biological sample that do not normally express Figure 2 genes or express Figure 2 genes at a different level are found to express Figure 2 genes or have an increased expression of Figure 2 genes (see, the expression in the cancers of tissues listed in Table I and in patient samples etc. shown in the accompanying Figures). In such assays, artisans may further wish to generate supplementary evidence of metastasis 00 0 by testing the biological sample for the presence of a second tissue restricted marker (in addition to a protein of Figure 2) such as PSA, PSCA etc. (see, Alanen et al., Pathol. Res. Pract. 192(3): 233-237 (1996)).
Just as PSA polynucleotide fragments and polynucleotide variants are employed by skilled artisans for use i in methods of monitoring PSA, a gene of Figure 2 polynucleotide fragments and polynucleotide variants are used in an analogous manner. In particular, typical PSA polynucleotides used in methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence. Illustrating this, primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction.
In the context of such PCR reactions, skilled artisans generally create a variety of different polynucleotide Sfragments that can be used as primers in order to amplify different portions of a polynucleotide of interest or to optimize amplification reactions (see, Caetano-Anolles, G. Biotechniques 25(3): 472-476, 478-480 (1998); Robertson et Methods Mol. Biol. 98:121-154 (1998)). An additional illustration of the use of such fragments is 00 provided in Example 4, where a gene of Figure 2 polynucleotide fragments are used as a probe to show the expression of respective gene of Figure 2 RNAs in cancer cells. In addition, variant polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, Sawai et al., Fetal Diagn. Ther. 1996 Nov-Dec 11(6):407-13 and Current Protocols In Molecular Biology, Volume 2, Unit 2, Frederick M. Ausubel et al. eds., 1995)). Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence a Figure 2 polynucleotide or variant thereof) under conditions of high stringency.
Furthermore, PSA polypeptides which contain an epitope that can be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of monitoring PSA. Polypeptide fragments, polypeptide analogs or variants of a protein of Figure 2 can also be used in an analogous manner. This practice of using polypeptide fragments or polypeptide variants to generate antibodies (such as anti-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubel et al. eds., 1995). In this context, each epitope(s) functions to provide the architecture with which an antibody or T cell is reactive.
Typically, skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portions of a polypeptide of interest (see, U.S. Patent No. 5,840,501 and U.S. Patent No. 5,939,533). For example it may be preferable to utilize a polypeptide comprising one of the biological motifs of a protein of Figure 2 discussed herein or a motif-bearing subsequence which is readily identified by one of skill in the art based on motifs available in the art. Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibody or T cell specific for a target polypeptide sequence a protein of Figure 2).
As shown herein, the Figure 2 polynucleotides and polypeptides (as well as the Figure 2 polynucleotide probes and anti-proteins of Figure 2 antibodies or T cells used to identify the presence of these molecules) exhibit specific properties that make them useful in diagnosing cancers such as those listed in Table I. Diagnostic assays that measure the presence of gene of Figure 2 gene products, in order to evaluate the presence or onset of a disease condition described herein, such as prostate cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfully with PSA. Moreover, these materials satisfy a need in the art for molecules having similar or complementary characteristics to PSA in situations where, for example, a definite diagnosis of metastasis of prostatic origin cannot be made on the basis of a test for PSA alone (see, Alanen et al., Pathol. Res. Pract. 192(3): 233-237 (1996)), and consequently, materials such as Figure 2 polynucleotides and 00 lypeptides (as well as the gene of Figure 2 polynucleotide probes and anti-proteins of Figure 2 antibodies used to 0 entify the presence of these molecules) need to be employed to confirm a metastases of prostatic origin.
Finally, in addition to their use in diagnostic assays, the Figure 2 polynucleotides disclosed herein have a Smber of other utilities such as their use in the identification of oncogenetic associated chromosomal abnormalities the chromosomal region to which a Figure 2 gene maps (see Example 3 below). Moreover, in addition to their Se in diagnostic assays, the Figure 2-related proteins and polynucleotides disclosed herein have other utilities such their use in the forensic analysis of tissues of unknown origin (see, Takahama K Forensic Sci Int 1996 Jun 63-9).
Additionally, Figure 2-related proteins or polynucleotides of the invention can be used to treat a pathologic Sndition characterized by the over-expression of Figure 2 proteins. For example, the amino acid or nucleic acid quences in Figure 2 or Figure 3, or fragments of either, can be used to generate an immune response to a protein 00 Figure 2 antigen. Antibodies or other molecules that react with proteins of the invention Figure 2 can be used to )dulate the function of this molecule, and thereby provide a therapeutic benefit Inhibition of the Function of a Protein in the Invention The invention includes various methods and compositions for inhibiting the binding of proteins in Figure 2 its binding partner or its association with other protein(s) as well as methods for inhibiting the function of oteins in Figure 2.
XI.A.) Inhibition of a Protein of Figure 2 with Intracellular Antibodies In one approach, a recombinant vector that encodes single chain antibodies that specifically bind to a gure 2 protein are introduced into proteins of Figure 2 expressing cells via gene transfer technologies.
:cordingly, the encoded single chain anti-protein of Figure 2 antibodies are expressed intracellularly, and bind to Srespective Figure 2 protein, and thereby inhibits its function. Methods for engineering such intracellular single ain antibodies are well known. Such intracellular antibodies, also known as "intrabodies", are specifically -geted to a particular compartment within the cell, providing control over where the inhibitory activity of the ,atment is focused. This technology has been successfully applied in the art (for review, see Richardson and arasco, 1995, TIBTECH vol. 13). Intrabodies have been shown to virtually eliminate the expression of otherwise aundant cell surface receptors (see, Richardson et al., 1995, Proc. Natl. Acad. Sci. USA 92: 3137-3141; Beerli et al., 1994, J. Biol. Chem. 289: 23931-23936; Deshane et al., 1994, Gene Ther. 1: 332-337).
Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide. Optionally, single chain antibodies are expressed as a single chain variable region fragment joined to the light chain constant region. Well-known intracellular trafficking signals are engineered into recombinant polynucleotide vectors encoding such single chain antibodies in order to precisely target the intrabody to the desired intracellular compartment For example, intrabodies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif. Intrabodies intended to exert activity in the nucleus are engineered to include a nuclear localization signal. Lipid moieties are joined to intrabodies in order to tether the intrabody to the cytosolic side of the plasma membrane. Intrabodies can also be targeted to exert function in the cytosol. For example, cytosolic intrabodies are used to sequester factors within the cytosol, thereby preventing them from being transported to their natural cellular destination.
In one embodiment, intrabodies are used to capture proteins of Figure 2 in the nucleus, thereby preventing 0 the activity of that protein(s) within the nucleus. Nuclear targeting signals are engineered into such Figure 2-related 0 intrabodies in order to achieve the desired targeting. Such Figure 2-related intrabodies are designed to bind specifically to a particular Figure 2 protein domain. In another embodiment, cytosolic intrabodies that specifically Sbind to a Figure 2 protein are used to prevent the protein in Figure 2 from gaining access to the nucleus, thereby Spreventing it from exerting any biological activity within the nucleus preventing proteins of Figure 2 from forming transcription complexes with other factors).
In order to specifically direct the expression of such intrabodies to particular cells, the transcription of the intrabody is placed under the regulatory control of an appropriate tumor-specific promoter and/or enhancer. In order to target intrabody expression specifically to prostate, for example, the PSA promoter and/or Spromoter/enhancer can be utilized (See, for example, U.S. Patent No. 5,919,652 issued 6 July 1999).
XII.B.) Inhibition of a Protein of Figure 2 with Recombinant Proteins SIn another approach, recombinant molecules bind to a Figure 2 protein and thereby inhibit the function of a 00 protein of Figure 2. For example, these recombinant molecules prevent or inhibit Figure 2 proteins from S accessing/binding to its binding partner(s) or associating with other protein(s). Such recombinant molecules can, for CK example, contain the reactive part(s) of an antibody molecule specific for a protein of Figure 2. In a particular embodiment, the Figure 2 protein binding domain of a corresponding binding partner is engineered into a dimeric fusion protein, whereby the fusion protein comprises two protein of Figure 2 ligand binding domains linked to the Fc portion of a human IgG, such as human IgGl. Such IgG portion can contain, for example, the C2 and CH3 domains and the hinge region, but not the Cl domain. Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of proteins of the invention, see, Figure 2, whereby the dimeric fusion protein specifically binds to a Figure 2 protein and blocks the interaction of a Figure 2 protein with one or more binding partners. Such dimeric fusion proteins are further combined into multimeric proteins using known antibody linking technologies.
XII.C.) Inhibition of Transcription or Translation in Accordance with the Invention The present invention also comprises various methods and compositions for inhibiting the transcription of a Figure 2 gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of the genes in Figure 2-related mRNA into protein.
In one approach, a method of inhibiting the transcription of a Figure 2 gene comprises contacting the Figure 2 gene with a respective Figure 2 antisense polynucleotide. In another approach, a method of inhibiting gene of Figure 2-related mRNA translation comprises contacting a gene of Figure 2-related mRNA with an antisense polynucleotide. In another approach, agene of Figure 2 specific ribozyme is used to cleave a gene of Figure 2relatedmessage, thereby inhibiting translation. Such antisense and ribozyme based methods can also be directed to the regulatory regions of a Figure 2 gene, such as a promoter and/or enhancer element for a gene of Figure 2.
Similarly, proteins capable of inhibiting agene of Figure 2 transcription factor are used to inhibit the gene of Figure 2 mRNA transcription. The various polynucleotides and compositions useful in the aforementioned methods have been described above. The use of antisense and ribozyme molecules to inhibit transcription and translation is well known in the art.
Other factors that inhibit the transcription of a Figure 2 gene by interfering with that gene's transcriptional activation are also useful to treat cancers expressing genes of Figure 2. Similarly, factors that interfere with a gene of Figure 2 gene processing are useful to treat cancers that express genes of Figure 2. Cancer treatment methods utilizing such factors are also within the scope of the invention.
69 XII.D.) General Considerations for Therapeutic Strategies 00 Gene transfer and gene therapy technologies can be used to deliver therapeutic polynucleotide molecules to mor cells synthesizing proteins of the invention, see, Figure 2, antisense, ribozyme, polynucleotides Sicoding intrabodies and other gene/protein of Figure 2 inhibitory molecules). A number of gene therapy approaches Se known in the art. Recombinant vectors encoding Figure 2 antisense polynucleotides, ribozymes, factors capable of terfering with transcription of a gene of Figure 2, and so forth, can be delivered to target tumor cells using such gene Serapy approaches.
The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of i" lemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for Sose that do not tolerate the toxicity of the chemotherapeutic agent well.
The anti-tumor activity of a particular composition antisense, ribozyme, intrabody), or a combination of 00 ch compositions, can be evaluated using various in vitro and in vive assay systems. In vitro assays that evaluate O erapeutic activity include cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, C nding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of a protein 'Figure 2 to one or more of its binding partners, etc.
In vivo, the effects of a therapeutic composition of the invention can be evaluated in a suitable animal model.
)r example, xenogenic prostate cancer models can be used, wherein human prostate cancer explants or passaged nograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Klein etal., 1997, ature Medicine 3: 402-408). For example, PCI Patent Application-W098/16628 and U.S. Patent 6,107,540 describe irious xenograft models of human prostate cancer capable of recapitulating the development of primary, tumors, icrometastasis, and the formation of osteoblastic metastases characteristic of late stage disease. Efficacy can be -edicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like.
In vive assays that evaluate the promotion ofapoptosis are useful in evaluating therapeutic compositions.
one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined r the presence ofapoptotic foci and compared to untreated control xenograft-bearing mice. The extent to which ioptotic foci are found in the tumors of the treated mice provides an indication of the therapeutic efficacy of the )mposition.
The therapeutic compositions used in the practice of the foregoing methods can be formulated into pharmaceutical compositions comprising a carrier suitable for the-desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient's immune system. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences 16' Edition, A. Osal., Ed., 1980).
Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effective routes of administration include, but are not limited to, intravenous, parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unpreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. Therapeutic protein preparations can be lyophilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing 00 for example, benzyl alcohol preservative) or in sterile water prior to injection.
O Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with C( the method and the target cancer, and will generally depend on a number of other factors appreciated in the art.
SXm.) Kits For use in the diagnostic and therapeutic applications described herein, kits are also within the scope of the invention. Such kits can comprise a carrier, package or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method. For example, the container(s) can comprise a probe that is or can be detectably labeled. Such probe can be an antibody or polynucleotide specific for a Figure 2-related protein or a Figure 2 gene or message, S respectively. Where the method utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also S have containers containing nucleotide(s) for amplification of the target nucleic acid sequence and/or a container C0 comprising a reporter-means, such as a biotin-binding protein, such as avidin or streptavidin, bound to a reporter 0 molecule, such as an enzymatic, florescent, or radioisotope label. The kit can include all or part of the amino acid sequences in Figure 2 or Figure 3 or analogs thereof, or a nucleic acid molecules that encodes such amino acid sequences.
The kit of the invention will typically comprise the container described above and one or more other containers comprising materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes; carrier, package, container, vial and/or tube labels listing contents and/or instructiops for use, and package inserts with instructions for use.
A label can be present on the container to indicate that the composition is used for a specific therapy or nontherapeutic application, and can also indicate directions for either in vive or in vitro use, such as those described above.
Directions and or other information can also be included on an insert which is included with the kit
EXAMPLES:
Various aspects of the invention are further described and illustrated by way of the several examples that follow, none of which are intended to limit the scope of the invention.
Example 1: SSH-Generated Isolation of a cDNA Fragment of the target of the Invention Gene The suppression subtractive hybridization (SSH) cDNA fragments shown in Figure 1 were derived from many different subtractions utilizing LAPC xenografts in differing states.of androgen dependence and/ or castration as well as using cancer patient derived tissues. The cancer patient tissue SSHs utilized prostate, bladder, and kidney with tumors representing all stages and grades of the diseases. Information for additional sequences disclosed in Figure 2 and Figure 3 were derived from other clones and the use of various sequence databases.
Materials and Methods LAPC Xenografts and Human Tissues: LAPC xenografts were obtained from Dr. Charles Sawyers (UCLA) and generated as described (Klein et al, 1997, Nature Med. 3: 402-408; Craft et al., 1999, Cancer Res. 59: 5030-5036). Androgen dependent and independent LAPC xenografts were grown in male SCID mice and were passaged as small tissue chunks in recipient males.
LAPC xenografts were derived from LAPC tumors. To generate the androgen independent (AI) xenografts, male 00 ice bearing androgen dependent (AD) tumors were castrated and maintained for 2-3 months. After the tumors re- 0 ew, the tumors were harvested and passaged in castrated males or in female SCID mice. Tissues from prostate, adder, kidney, colon, lung, pancreas, ovary and breast cancer patients as well as the corresponding normal tissues ere stored frozen at -70 C prior to RNA isolation.
C NA Isolation: Tumor tissue and cell lines were homogenized in Trizol reagent (Life Technologies, Gibco BRL) using S1/g tissue or 10 ml/ 10 8 cells to isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's 0 ligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D.
50/280 nm) and analyzed by gel electrophoresis.
00 Sligonucleotides: The following HPLC purified oligonucleotides were used.
DPNCDN (cDNA synthesis primer): 5'"TITGATCAAGCTr3o3' (SEQ ID NO: XX) Adaptor 1: S'CTAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAG3' (SEQ ID NO: XX) (SEQ ID NO: XX) Adaptor 2: 5'GTAATACGACTCACTATAGGGCAGCGTGGTCGCGGCCGAG3' (SEQ ID NO:XX) (SEQ ID NO: XX) PCR primer 1: 5'CTAATACGACTCACTATAGGGC3' (SEQ ID NO: XX) Nested primer (NP) 1: 5'TCGAGCGGCCGCCCGGGCAGGA3' (SEQ ID NO: XX) Nested primer (NP)2: 5'AGCGTGGTCGCGGCCGAGGA3' (SEQ ID NO: XX) Suppression Subtractive Hybridization: Suppression Subtractive Hybridization (SSH) was used to identify cDNAs corresponding to genes that are differentially expressed in cancer. The SSH reaction utilized cDNA from the prostate cancer xenografts, LAPC-4 AD, LAPC-4 AI, LAPC-9 AD, and LAPC-9AI as well as from prostate, bladder, and kidney cancer patients.
Specifically, to isolate genes that are involved in the progression of androgen dependent (AD) prostate cancer to androgen independent (AI) cancer, experiments were conducted with the LAPC-9 AD and LAPC-4 AD xenograft in male SCID mice. Mice that harbored these xenografts were castrated when the tumors reached a size of 1 cm in diameter. The tumors regressed in size and temporarily stopped producing the androgen dependent protein PSA.
00 Seven to fourteen days post-castration, PSA levels were detectable again in the blood of the mice. Eventually the tumors develop an AI phenotype and start growing again in the castrated males. Tumors were harvested at different S time points after castration to identify genes that are turned on or off during the transition to androgen C independence.
SThe cDNAs derived from LAPC-4 AD and LAPC-9 AD tumors (post-castration) were used as the source of the "tester" cDNAs, while the cDNAs from LAPC4-AD and LAPC-9 AD tumors (grown in intact male mouse) were used as the source of the "driver" cDNAs respectively. Some SSHs also used any combination of the LAPC-4 AD, LAPC-4 AI, LAPC-9AD, and LAPC9-AI xenografts as "tester" or "driver". In addition, cDNAs derived from Spatient tumors of prostate, bladder and kidney cancer were used as "tester" while cDNAs derived from normal prostate, bladder, and kidney were used as "driver" respectively. Double stranded cDNAs corresponding to tester and driver cDNAs were synthesized from 2 pg ofpoly(A)* RNA isolated from the relevant xenograft tissue, as C described above, using CLONTECH's PCR-Select cDNA Subtraction Kit and 1 ng ofoligonucleotide DPNCDN as Sprimer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PT1117-1, Catalog No. K1804-1). The resulting cDNA was digested with Dpn II for 3 hrs at 37C. Digested cDNA was extracted with phenol/chloroform and ethanol precipitated.
Tester cDNA was generated by diluting 1 pl of Dpn II digested cDNA from the relevant xenograft source (see above) (400 ng) in 5 pl of water. The diluted cDNA (2 il, 160 ng) was then ligated to 2 pi of Adaptor 1 and Adaptor 2 (10 pM), in separate ligation reactions, in a total volume of 10 pl at 16"C overnight, using 400 u ofT4 DNA ligase (CLONTECH). Ligation was terminated with 1 pl of 0.2 M EDTA and heating at 72 0 C for 5 min.
The first hybridization was performed by adding 1.5 pl (600 ng) of driver cDNA to each of two tubes containing 1.5 pl (20 ng) Adaptor 1- and Adaptor 2- ligated tester cDNA. In a final volume of 4 pl, the samples were overlaid with mineral oil, denatured in an MJ Research thermal cycler at 98"C for 1.5 minutes, and then were allowed to hybridize for 8 hrs at 680C. The two hybridizations were then mixed together with an additional 1 pl of fresh denatured driver cDNA and were allowed to hybridize overnight at 680C. The second hybridization was then diluted in 200 pl of 20 mM Hepes, pH 8.3, 50 mM NaCI, 0.2 mM EDTA, heated at 700C for 7 min. and stored at PCR Amplification. Cloning and Sequencing of Gene Fragments Generated from SSH: To amplify gene fragments resulting from SSH reactions, two PCR amplifications were performed. In the primary PCR reaction 1 pl of the diluted final hybridization mix was added to 1 pI of PCR primer 1 (10 pM), 0.5 plI dNTP mix (10 pM), 2.5 pl 10 x reaction buffer (CLONTECH) and 0.5 pl 50 x Advantage cDNA polymerase Mix (CLONTECH) in a final volume of 25 pl. PCR 1 was conducted using the following conditions: 750C for 5 min., 94"C for 25 sec., then 27 cycles of 94°C for 10 sec, 660C for 30 sec, 72C for 1.5 min. Five separate primary PCR reactions were performed for each experiment. The products were pooled and diluted 1:10 with water. For the secondary PCR reaction, 1 pi from the pooled and diluted primary PCR reaction was added to the same reaction mix as used for PCR 1, except that primers NP1 and NP2 (10 pM) were used instead of PCR primer 1. PCR 2 was performed using 10-12 cycles of 94C for 10 sec, 68*C for 30 sec, and 72oC for 1.5 minutes. The PCR products were analyzed using 2% agarose gel electrophoresis.
The PCR products were inserted into pCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed O0 coli were subjected to blue/white and ampicillin selection. White colonies were picked and arrayed into 96 well O lates and were grown in liquid culture overnight To identify inserts, PCR amplification was performed on 1 gl of Sacterial culture using the conditions of PCR1 and NP 1 and NP2 as primers. PCR products were analyzed using 2% t garose gel electrophoresis.
Bacterial clones were stored in 20% glycerol in a 96 well format. Plasmid DNA was prepared, sequenced, Sad subjected to nucleic acid homology searches of the GenBank, dBest, and NCI-CGAP databases.
S- A full-length cDNA clone can be identified by assembling EST fragments homologous to the SSH ragment into a large contiguous sequence with an ORF and amplifying the ORF by PCR using xenograft, prostate, t ladder, kidney, prostate cancer, bladder cancer, or kidney cancer first strand cDNA.
Example 2: Full Length Cloning of a Target of the Invention CK1 Full length cDNA clones were isolated by a variety of methods known in the art. For example, cDNA 00 Shage libraries were constructed from normal and cancer tissues using methods based on those set forth in Current 0 rotocols in Molecular Biology, Ed Ausubel et al., page 5.01. to 5.11.1, through supplement 52, Wiley and Sons; 4olecular Cloning, 2 nd Edition, Sambrook et al. Eds, pp. 8.2 to 8.45, 1989, Cold Spring Harbor Press) and full mngth cDNA clone isolated using probes derived from SSH clones and methods based on (Ausubel et al., supra, pp.
to 6.5.2; Sambrook et al. Eds, supra, 1989, pp. 8.46 to 8.86). In addition, some full length cDNAs were loned using PCR with primers derived from the extreme ends of ORFs identified in ESTs assembled into contigs.
lhe PCRproductis subsequently cloned into pCR2.1.cloning vector (Invitrogen, Carlsbad, CA). Sequences of the loned genes are listed in Figure 2.
Example 3: Chromosomal Mapping Chromosomal localization can implicate genes in disease pathogenesis. Several chromosome mapping pproaches are available including fluorescent in situ hybridization (FISH), human/hamster radiation hybrid (RH) anels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville Al), human-rodent somatic cell lybrid panels such as is available from the Coriell Institute (Camden, New Jersey), and genomic viewers utilizing ILAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Maryland).
Using Figure 2 gene sequences and the NCBI BLAST tool: (see World Wide Web URL www.ncbi.nlm.nih.gov/genome/seq/page.cgi?F=HsBlast.htnl&&ORG=Hs), placed the genes of Figure 2 to the chromosome locations listed in Table XXII.
Accordingly, as the human genes set forth in Figure 2 map to the designated chromosomes, polynucleotides encoding different regions of the of Figure 2 protein can be used to characterize cytogenetic abnormalities on a respective chromosome For example, when chromosomal abnormalities in a chromosome listed in Table XXII have been identified as frequent cytogenetic abnormalities in different cancers (see, Lai et al., 2000, Clin. Cancer Res. 6(8):3172-6; Oya and Schulz, 2000, Br. J. Cancer 83(5):626-31; Svaren et al., Sept. 12, 2000, J. Biol. Chem.); polynucleotides encoding specific regions of the of a Figure 2 protein provide new tools that are used to delineate, with greater precision than previously possible, the specific nature of the cytogenetic abnormalities in this region of the respective chromosome that contribute to the malignant phenotype. In this context, these polynucleotides satisfy a need in the art for expanding the sensitivity of chromosomal screening in
L
order to identify more subtle and less common chromosomal abnormalities (see, Evans et al., 1994, Am. J.
00 Obstet. Gynecol. 171(4):1055-1057).
O
C* Example 4: Expression Analysis of a Gene of the Invention in Normal Tissues and Patient Specimens SExpression analysis by RT-PCR and Northern analysis demonstrated that normal tissue expression of a gene of Figure 2 is restricted predominantly to the tissues set forth in Table I.
Therapeutic applications for a gene of Figure 2 include use as a small molecule therapy and/or a vaccine (T cell or antibody) target Diagnostic applications for a gene of Figure 2 include use as a diagnostic marker for local and/or metastasized disease. The restricted expression of a gene of Figure 2 in normal tissues makes it useful as a S tumor target for diagnosis and therapy. Expression analysis of a gene of Figure 2 provides information useful for predicting susceptibility to advanced stage disease, rate of progression, and/or tumor aggressiveness. Expression status of a gene of Figure 2 in patient samples, tissue arrays and/or cell lines may be analyzed by: (i) 00 immunohistochemical analysis; (ii) in situ hybridization; (iii) RT-PCR analysis on laser capture micro-dissected samples; (iv) Western blot analysis; and Northern analysis.
r RT-PCR analysis and Northern blotting were used to evaluate gene expression in a selection of normal and cancerous urological tissues. The results are summarized in Figures 15-74.
RT-PCR Expression Analysis: First strand cDNAs can be generated from 1 Ctg of mRNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. The manufacturer's protocol was used which included an incubation for 50 min at 420C with reverse transcriptase followed by RNAse H treatment at 37C for 20 min. After completing the reaction, the volume can be increased to 200 pl with water prior to normalization. First strand ScDNAs from 16 different normal human tissues can be obtained from Clontech.
Normalization of the first strand cDNAs from multiple tissues was performed by using the primers 5'atatcgccgcgctcgtcgtcgacaa3' (SEQ ID NO: XX) and 5'agccacacgcagctcattgtagaagg 3' (SEQ ID NO: XX) to amplify p-actin. First strand cDNA (5 p1) were amplified in a total volume of 50 pl containing 0.4 pM primers, 0.2 pM each dNTPs, 1XPCR buffer (Clontech, 10 mM Tris-HCL, 1.5 mM MgCli, 50 mM KC1, pH8.3) and IX Klentaq DNA polymerase (Clontech). Five p1 of the PCR reaction can be removed at 18, 20, and 22 cycles and used for agarose gel electrophoresis. PCR was performed using an MJ Research thermal cycler under the following conditions: Initial denaturation can be at 94"C for 15 sec, followed by a 18, 20, and 22 cycles of 94°C for 15, for 2 min, 72"C for 5 sec. A final extension at 72°C was carried out for 2 min. After agarose gel electrophoresis, the band intensities of the 283 b.p. p-actin bands from multiple tissues were compared by visual inspection.
Dilution factors for the first strand cDNAs were calculated to result in equal p-actin band intensities in all tissues after 22 cycles of PCR. Three rounds of normalization can be required to achieve equal band intensities in all tissues after 22 cycles ofPCR.
To determine expression levels of the gene, 5 il of normalized first strand cDNA are analyzed by PCR using 26, and 30 cycles of amplification. Semi-quantitative expression analysis can be achieved by comparing the PCR products at cycle numbers that give light band intensities. RT-PCR expression analysis is performed on first strand cDNAs generated using pools of tissues from multiple samples. The cDNA normalization was demonstrated in every experiment using beta-actin PCR.
Northern Blot Expression Analysis: 00 Expression ofmRNA in normal and cancerous human tissues was analyzed by northern blotting. Expression i normal tissues was analyzed using two multiple tissue blots (Clontech; Palo Alto, California), comprising a total of 16 ferent normal human tissues, using labeled SSH fragment as a probe. To further analyze expression in prostate Smcer tissues, northern blotting was performed on RNA derived from the LAPC xenografts and/or prostate cancer itient samples. In addition, expression in other cancers was studied using patient samples and/or various cancer cell Ses.
Figure 15 shows expression of 74P3B3 by RT-PCR, First strand cDNA was prepared from vital pool 1 Siver, lung and kidney), vital pool 2 (pancreas, colon ard stomach), two prostate metastasis to lymph node (LN) r vested from two different patients, prostate cancer pool, bladder cancer pool, and cancer metastasis pool.
ormalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 1P3B3, was performed at 26 and 30 cycles of amplification. Results show strong expression of 74P3B3 in the two 00 restate metastasis to LN specimens and in prostate cancer pool. Expression was also detected in bladder cancer 3 ol, cancer metastasis pool, and vital pool 2 but not in the vital pool 1.
S Figure 16 shows expression of 74P3B3 in normal tissues. Two multiple tissue northern blots (A and B; lontech) both with 2 ,g of mRNA/lane, and a LAPC xenograft blot with 10 /g of total RNA/lane were probed ith the 74P3B3 SSH fragment Size standards in kilobases (kb) are indicated on the side. Results show qression of approximately 7 kb 74P3B3 transcript in prostate but not in the other normal tissues tested.
xpression was also detected in LAPC-4AD and LAPC-4AI but not in LAPC-9AD and LAPC-9AI.
Figure 17 shows expression of 74P3B3 in prostate cancer patient specimens. RNA was extracted from ormal prostate pool of 3 prostate cancer patient tumors and their normal adjacent tissues Northern lot with 10 mg of total RNA/lane was probed with 74P3B3 SSH sequence. Size standards in kilobases (kb) are idicated on the side. The results show strong expression of 74P3B3 in normal prostate and in patient prostate ancer specimens.
Figure 18 shows expression of 74P3B3 in patient cancer specimens. Expression of 74P3B3 was assayed I a panel of human cancers and their respective matched normal tissues on RNA dot blots. Upregulated Kpression of 74P3B3 in tumors compared to normal tissues was observed in prostate, kidney, breast and colon Imors. The expression detected in normal adjacent tissues (isolated from diseased tissues) but not in normal tissues (isolated from healthy donors) may indicate that these tissues are not fully normal and that 74P3B3 may be expressed in early stage tumors.
Figure 19 shows expression of 83P4B8 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 83P4B8, was performed at 30 cycles of amplification. Results show strong expression of 83P4B8 in all cancer pools tested. Very low expression was detected in the vital pools.
Figure 20 shows expression of 83P4B8 in normal tissues. Two multiple tissue northern blots (A and B; Clontech) both with 2 /g of mRNA/lane, and a LAPC xenograft blot with 10 /g of total RNA/lane were probed with the 83P4B8'SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of two approximately 4.4kb 83P4B8 transcripts in testis and to lower level in thymus but not in the other normal tissues tested. Expression was also detected in all 4 LAPC prostate cancer xenografts.
Figure 21 shows expression of 83P4B8 in patient cancer specimens and normal tissues. RNA was 0 extracted from a pool of three prostate cancers bladder cancers kidney cancers colon cancers O lung cancers ovary cancers cancer metastasis (Met), pancreas cancers (PaC), as well as from C1 normal prostate normal bladder normal kidney normal colon normal lung normal breast (NBr) normal ovary (NO) and normal pancreas (NPa). Northern blot with 10 mg of total RNA/lane was probed with 83P4B8 sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of 83P4B8 in the bladder cancers and ovary cancers. Expression of 83P4B8 was also detected in prostate cancers, kidney cancers, colon cancers, lung cancers, cancer metastasis and pancreas cancer but not in the normal tissues tested.
Figure 22 shows expression of 83P4B8 in prostate cancer patient specimens. RNA was extracted from Snormal prostate prostate cancer patient tumors and their normal adjacent tissues Northern blot with mg of total RNA/lane was probed with 83P4B8 SSH sequence.. Size standards in kilobases (kb) are indicated on the side. The results show strong expression of 83P4B8 in the patient prostate cancer specimens.
00 Figure 23 shows expression of 83P4B8 in colon cancer patient specimens. RNA was extracted from colon cancer cell lines normal colon colon cancer patient tumors and their normal adjacent tissues (Nat).
Northem blots with 10 ig of total RNA were probed with the 83P4B8 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 83P4B8 in the colon tumor tissues and in all three colon cancer cell lines tested, but not in the normal tissues.
Figure 24 shows expression of 109P1D4 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, and pancreas cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semiquantitative PCR, using primers to 109P1D4, was performed at 30 cycles of amplification. Results show strong expression of 109P1D4 in all cancer pools tested. Very low expression was detected in the vital pools Figure 25 shows expression of 109P1D4 in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 jg of mRNA/lane, were probed with the 109P1D4 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of approximately 10 kb 109P1D4 transcript in ovary. Weak expression was also detected in placenta and brain, but not in the other normal tissues tested.
Figure 26 shows expression of 109P1D4 in human cancer cell lines. RNA was extracted from a number of human prostate and bone cancer cell lines. Northern blots with 10 ig of total RNA/lane were probed with the 109P1D4 SSH fragment Size standards in kilobases (kb) are indicated on the side. Results show expression of 109P1D4 in LAPC-9AD, LAPC-9AI, LNCaP prostate cancer cell lines, and in the bone cancer cell lines, SK-ES-I and RD-ES.
Figure 27 shows expression of 109P1D4 in patient cancer specimens. Expression of 109P1D4 was assayed in a panel of human cancers and their respective matched normal tissues on RNA dot blots.
Upregulated expression of 109P1D4 in tumors compared to normal tissues was observed in uterus, lung and stomach. The expression detected in normal adjacent tissues (isolated from diseased tissues) but not in normal tissues (isolated from healthy donors) may indicate that these tissues are not fully normal and that 109P1D4 may be expressed in early stage tumors.
Figure 28 shows expression of 151P1C7A by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, and cancer metastasis pool. Normalization was performed by PCR using 0 0 mers to actin and GAPDH. Semi-quantitative PCR, using primers to 151P1C7A, was performed at 26 and 0 cles of amplification. Results show strong expression of 15 1PIC7A in bladder, lung, and metastasis cancer pools Sted. Expression was also detected in xenograft, prostate, kidney and colon cancer pools but not in the vital pools.
Figure 29 shows expression of 151P1C7A in normal tissues. Two multiple tissue northern blots Slontech), both with 2 jg ofmRNA/lane, were probed with the 151P1C7A SSH fragment. Size standards in lobases (kb) are indicated on the side. Results show expression of an approximately 2 kb 151 P1C7A transcript in icenta but not in the other normal tissues tested.
Figure 30 shows expression of 151P1C7A in bladder cancer patient specimens. RNA was extracted from a idder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors (T) Sd their normal adjacent tissue isolated from bladder cancer patients. Northern blots with 10 pg of total RNA Sre probed with the 151P1C7A SSH sequence. Size standards in kilobases are indicated on the side. Results 00 ow expression of 151P1C7A in patient bladder cancer tissues, and in all bladder cancer cell lines tested, but not in Srmal bladder.
C Figure 31 shows expression of 151P1C7A in prostate cancer patient specimens. RNA was extracted from irmal prostate prostate cancer patient tumors and their normal adjacent tissues Northern blot with mg of total RNA/lane was probed with 151P1C7A SSH sequence. Size standards in kilobases (kb) are indicated i the side. Results show expression of 151P1C7A in the patient prostate cancer specimens.
Figure 32 shows expression of 151P4E11 by RT-PCR. First strand cDNA was prepared from vital pool 1 iver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- LD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, colon cancer pool, lung incer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool. Normalization was performed by -R using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 151P4E11, was performed at 26 id 30 cycles of amplification. Results show strong expression of 151P4E11 in all cancer pools tested. Expression as detected in vital pool 2 but not in vital pool 1.
Figure 33 shows expression of 151P4E11 in normal tissues. Two multiple tissue northern blots (A and B; lontech) both with 2 Ag of mRNA/lane, and a LAPC xenograft blot with 10 jg of total RNA/lane were probed ith the 151P4E11 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show .cpression of an approximately 1.2 kb 151P4E11 transcript in prostate, testis, colon and small intestine. Expression was also detected in all the LAPC prostate cancer xenografts LAPC-4AD, LAPC-4AI, and LAPC-9AI, but not in LAPC-9AD.
Figure 34 shows expression of 154P2A8 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 154P2A8, was performed at 26 and 30 cycles of amplification. Results show strong expression of 154P2A8 in bladder cancer pool and lung cancer pool. Expression was also detected in prostate cancer pool, kidney cancer pool, colon cancer pool, and cancer metastasis pool but not in vital pool 1 and vital pool 2.
Figure 35 shows expression of 156P1D4 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool.
78 Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 00 156P1D4, was performed at 26 and 30 cycles of amplification. Results show strong expression of 156P1D4 in 0 Q kidney cancer pool and vital pool 1. Expression was also detected in xenograft pool, prostate cancer pool, bladder Scancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool and c vital pool 2.
Figure 36 shows expression of 156P1D4 in normal tissues. Two multiple tissue northern blots (Clontech), tj~ both with 2 pg of mRNA/lane, were probed with the 156P1D4 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 2 kb 156P1D4 transcript in kidney and prostate but not in the other normal tissues tested.
Figure 37 shows expression of 156P 1D4 in kidney cancer patient specimens. RNA was extracted from normal kidney kidney cancer patient tumors and their normal adjacent tissues Northern blots with p g of total RNA were probed with the 156P1D4 SSH fragment. Size standards in kilobases are indicated on the C.N side. Results show strong expression of 156P1D4 in all kidney tumor tissues tested. The expression of 156P1D4 00 detected in tumor tissues is stronger than in normal tissues.
Figure 38 shows expression of 156P5C12 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI,.LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool.
Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 156P5C12, was performed at 26 and 30 cycles of amplification. Results show strong expression of 156P5C12 in kidney cancer pool and vital pool 1. Expression was also detected in xenograft pool, prostate cancer pool, bladder cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool and vital pool 2.
Figure 39 shows expression of 156P5C12 in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg of mRNA/lane, were probed with the 156P5C12 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of an approximately 1.4 kb 156P5C12 transcript in kidney but not in the other normal tissues tested.
Figure 40 shows expression of 156P5C12 in kidney cancer patient specimens. RNA was extracted from kidney cancer cell lines (CL; 769-P, A498, SW839), normal kidney kidney cancer patient tumors and their normal adjacent tissues Northern blots with 10 pg of total RNA were probed with the 156P5C12 SSH fragment. Size standards in kilobases are indicated on the side. Results show expression of 156P5C12 in normal tissues, and in some but not all kidney tumor tissues. Expression was absent in the kidney cancer cell lines tested.
Figure 41 shows expression of 159P2B5 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), and bladder cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 159P2B5, was performed at 26 and 30 cycles of amplification. Results show expression of 159P2B5 in bladder cancer pool tested but not in the vital pools.
Figure 42 shows expression of 159P2B5 in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg of mRNA/lane, were probed with the 159P2B5 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show very weak expression of an approximately 4.5 kbl59P2B5 transcript in spleen, kidney and small intestine.
Figure 43 shows expression of 159P2B5 in bladder cancer patient specimens. RNA was extracted from 00 adder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder and bladder cancer patient tumors S7) isolated from bladder cancer patients. Northern blots with 10 pg of total RNA were probed with the 159P2B5 S H sequence. Size standards in kilobases are indicated on the side. Results show expression of 159P2B5 in C itient bladder cancer tissues, and in the SCaBER bladder cancer cell line, but not in normal bladder, nor in the her cancer cell lines tested.
i/ Figure 44 shows expression of 161P2B7A by RT-PCR. First strand cDNA was prepared from vital pool 1 iver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate metastasis to lymph node (LN), •ostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer ol, breast cancer pool, cancer metastasis pool and pancreas cancer pool. Normalization was performed by PCR S;ing primers to actin and GAPDH. Semi-quantitative PCR, using primers to 161P2B7A, was performed at 26 and cycles of amplification. Results show strong expression of 161P2B7A in lung cancer pool and pancreas cancer C o al. Expression was also detected in prostate metastasis to LN, prostate cancer pool, bladder cancer pool, kidney 00 S mcer pool, colon cancer pool, ovary cancer pool, breast cancer pool, and cancer metastasis pool. Very low O pression was observed in vital pool 2 but not in vital pool 1.
Figure 45 shows expression of 161P2B7A in normal tissues. Two multiple tissue northern blots 'lontech), both with 2 pg of mRNA/lane, were probed with the 161P2B7A SSH fragment. Size standards in ilobases (kb) are indicated on the side. Results show very low expression of 161P2B7A in testis but not in the ther normal tissues tested.
Figure 46 shows expression of 161P2B7A in Multiple Normal Tissues. An mRNA dot blot containing 76 ifferent samples from human tissues was analyzed using a 161P2B7A SSH probe. Expression was not detected in ay of the 76 normal tissues tested. The positive genomic DNA control showed very strong signal confirming the alidity of the experiment.
Figure 47 shows expression of 161P2B7A in kidney cancer patient specimens. RNA was extracted from ormal kidney kidney cancer patient tumors and their normal adjacent-tissues isolated from kidney aneer patients. Northern blots with 10 pg of total RNA were probed with the 161P2B7A SSH fragment. Size :andards in kilobases are indicated on the side. Results show expression of two 161P2B7A transcripts, pproximately 1.2 and 7 kb, in kidney cancer specimens but not in normal kidney.
Figure 48 shows expression of 161P2B7A in lung cancer patient specimens. RNA was extracted from lung cancer cell lines normal lung, lung tumors and their normal adjacent tissues (NAT) isolated from lung cancer patients. Northern blot with 10 mg of total RNA/lane was probed with the 161P2B7A fragment. Size standards in kilobases (kb) are indicated on the side. The results show expression of 161P2B7A in the lung tumors, but not in normal lung tissues. Expression was also detected in the lung cancer cell lines CALU-1, A427 and NCI- 146 but not in the small cell lung cancer cell line NCI-H82.
Figure 49 shows expression of 161P2B7A in pancreas and ovary cancer patient specimens. RNA was extracted from normal pancreas (NPa), pancreas cancer normal ovary and ovary cancer patient specimen Northern blot with 10 mg of total RNA/lane was probed with the 161P2B7A fragment. Size standards in kilobases (kb) are indicated on the side. The results show expression of 161P2B7A in the pancreas and ovary cancer patient specimens, but not in the normal tissues.
Figure 50 shows expression of 179P3G7 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), bladder cancer pool, kidney cancer pool, lung cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer pool and pancreas cancer pool.
Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to C 179P3G7, was performed at 26 and 30 cycles of amplification. Results show strong expression of 179P3G7 in 0 kidney cancer pool and breast cancer pool. Expression was also detected in bladder cancer pool, lung cancer pool, Scancer metastasis pool, pancreas cancer pool and prostate metastasis to LN, and vital pool 1, but not in vital pool 2.
Figure 51 shows expression of 179P3G7 in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 pg of mRNA/lane, were probed with the 179P3G7 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of 179P3G7 strongly in skeletal muscle, and weakly in kidney, liver 0 and heart but not in the other normal tissues tested.
Figure 52 shows expression of 179P3G7 in kidney cancer patient specimens. RNA was extracted from normal kidney kidney cancer patient tumors and their normal adjacent tissues isolated from kidney cancer patients. Northern blots with 10 pg of total RNA were probed with the 179P3G7 SSH fragment Size S standards in kilobases are indicated on the side. Results show expression of 179P3G7 in kidney cancer specimens.
C-i Expression of 179P3G7 is stronger in kidney tumors compared to normal kidney tissues.
C0 Figure 53 shows expression of 184P3C10B by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 184P3C10B, was performed at 26 and 30 cycles of amplification. Results show expression of 184P3C10B in xenograft pool, prostate cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, and cancer metastasis pool. Expression was also detected in vital pool 2 but at a much lower level in vital pool 1.
Figure 54 shows expression of 184P3C10B in normal tissues. Two multiple tissue northern blots (Clontech), both with 2 jig of mRNA/lane, were probed with the 184P3C10B SSH fragment Size standards in kilobases (kb) are indicated on the side. Results show expression of approximately 2.4 and 5 kb 184P3C10B transcripts in placenta and to lower level in colon and small intestine, but not in the other normal tissues tested.
Figure 55 shows expression of 184P3C10B in bladder cancer patient specimens. RNA was extracted from bladder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors (T) and their normal adjacent tissue isolated from bladder cancer patients. Northern blots with 10 Aig of total RNA were probed with the 184P3C10B SSH sequence. Size standards in kilobases are indicated on the side. Results show expression of 184P3C10B in patient bladder cancer tissues, and in the bladder cancer cell line SCaBER, but not in normal bladder nor in the other bladder cancer cell lines tested.
Figure 56 shows expression of 184P3G10 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC prostate cancer xenograft pool (LAPC- 4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI), bladder cancer pool, kidney cancer pool, colon cancer pool, and lung cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 184P3G10, was performed at 26 and 30 cycles of amplification. Results show strong expression of 184P3G10 in bladder cancer pool, kidney cancer pool, and colon cancer pool. Expression was also detected in xenograft pool, lung cancer pool, vital pool 2 but not in vital pool 1.
Figure 57 shows expression of 184P3G10 in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 pg of mRNA/lane, were probed with the 184P3G10 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of two approximately 4.4kb 184P3G10 transcripts in colon and small intestine, but not in the other normal tissues tested.
Figure 58 shows expression of 184P3G10 in patient cancer specimens and normal tissues. RNA was 00 Sracted from a pool of three bladder cancers, colon cancers, lung cancers, breast cancers, ovary cancers, cancer 0 tastasis, as well as from normal prostate normal bladder and normal kidney Northern blot th 10 mg of total RNA/lane was probed with 184P3G10 sequence. Size standards in kilobases (kb) are indicated Sthe side. Results show strong expression of 184P3G10 in the bladder cancers, colon cancers and ovary cancers.
pression of 184P3G10 was also detected in lung cancers, breast cancers, and cancer metastasis but not in the rmal tissues tested.
Figure 59 shows expression of 184P3G10 in bladder cancer patient specimens. RNA was extracted from tdder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors and ir normal adjacent tissue (Nat) isolated from bladder cancer patients. Northern blots with 10 ig of total RNA re probed with the 184P3G10 SSH sequence. Size standards in kilobases are indicated on the side. Results show pression of 184P3G10 in patient bladder cancer tissues, but not in normal bladder nor in the bladder cancer cell 00 estested.
Figure 60 shows expression of 185P2C9 by RT-PCR. First strand cDNA was prepared from vital pool 1 C" ver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate metastasis to lymph node (LN), )state cancer pool, bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer ol, breast cancer pool, cancer metastasis pool and pancreas cancer pool. Normalization was performed by PCR ng primers to actin and GAPDH. Semi-quantitative:PCR, using primers to 185P2C9, was performed at 30 cycles amplification. Results show strong expression of 185P2C9 in bladder cancer pool, colon cancer pool, lung acer pool, ovary cancer pool and pancreas cancer pool. Expression was also detected in prostate metastasis to 1, prostate cancer pool, kidney cancer pool, breast cancer pool, cancer metastasis pool, vital pool 2 but not in vital ol 1.
Figure 61 shows expression of 185P2C9 in normal tissues. Two multiple tissue northern blots (Clontech), th with 2 Ag of mRNA/lane, were probed with the 185P2C9 SSH fragment. Size standards in kilobases (kb) are licated on the side. Results show expression of and approximately 8.5 kb 185P2C9 transcript in testis and brain, t not in the other normal tissues tested.
Figure 62 shows expression of 185P2C9 in bladder cancer patient specimens. RNA was extracted from idder cancer cell lines (CL; UM-UC-3, J82, SCaBER), normal bladder bladder cancer patient tumors (T) d their normal adjacent tissue isolated from bladder cancer patients. Northern blots with 10 gg of total RNA were-probed with the 185P2C9 SSH sequence. Size standards in kilobases are indicated on the side. Results show expression of 185P2C9 in bladder cancer patient tissues, and in the bladder cancer cell lines tested. Expression of 185P2C9 is significantly stronger in bladder tumor tissues compared to normal tissues.
Figure 63 shows expression of 185P2C9 in kidney cancer patient specimens. RNA was extracted from kidney cancer cell lines (CL; 769-P, A498, Caki-l), normal kidney kidney cancer patient tumors and their normal adjacent tissues (NAT) isolated from kidney cancer patients. Northern blots with 10 Ag of total RNA were probed with the 185P2C9 SSH fragment. Size standards in kilobases are indicated on the side. Results show expression of 185P2C9 in kidney cancer specimens and kidney cancer cell lines, but not in normal kidney.
Figure 64 shows expression of 186P1H9 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), bladder cancer pool, kidney cancer pool, colon cancer pool, lung cancer pool, ovary cancer pool, cancer metastasis pool, and pancreas cancer pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 186P1H9, was performed at 26 and 30 cycles of amplification. Results show strong expression of 186P1H9 in kidney cancer pool, colon cancer pool, ovary cancer pool, cancer metastasis pool, and pancreas cancer pool. Expression was also 00 detected in bladder cancer pool, lung cancer pool, and vital pool 2 but not in vital pool 1.
SFigure 65 shows expression of 186P1H9 in normal tissues. Two multiple tissue northern blots (Clontech) C1 both with 2 Ig of mRNAllane, were probed with the 186P1H9 SSH fragment. Size standards in kilobases (kb) are Sindicated on the side. Results show expression of an approximately 2.6 kb 186P1H9 transcript in testis, spleen, pancreas and brain. Lower expression is also detected in heart, skeletal muscle, prostate, colon and small intestine.
t' Figure 66 shows expression of 186P1H9 in patient cancer specimens and normal tissues. RNA was extracted from a pool of three kidney cancers ovary cancers cancer metastasis (Met), pancreas cancers (PaC), as well as from normal prostate normal bladder and normal kidney normal colon (NC), Snormal lung normal breast (NBr), normal ovary and normal pancreas (NPa). Northern blot with 10 mg of total RNA/lane was probed with 186P1H9 sequence. Size standards in kilobases (kb) are indicated on the side.
Results show strong expression of 186P1H9 in the bladder cancers, ovary cancers, cancer metastasis and pancreas K cancers, but not in normal tissues. Expression of 186P1H9 is significantly stronger in patient cancer tissues 00 5 compared to normal tissues.
SFigure 67 shows expression of 186P1H9 in kidney cancer patient specimens. RNA was extracted from kidney cancer cell lines (CL; 769-P, A498, Caki-1), normal kidney kidney cancer patient tumors and their normal adjacent tissues (NAT) isolated from kidney cancer patients. Northern blots with 10 /g of total RNA were probed with the 186P1H9 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 186P1H9 in kidney cancer patient specimens, but not in normal kidney, nor in the kidney cancer cell lines.
Figure 68 shows expression of 186P1H9 in ovarian and testicular cancer patient specimens. RNA was extracted from normal ovary ovary cancer patient specimens (P1, P2, P3), normal testis (NTe), and testis cancer patient specimens (P4, PS, P6). Northern blot with 10 mg of total RNA/lane was probed with the 186P1H9 SSH fragment. Size standards in kilobases (kb) are indicated on the side. The results show strong expression of 186P1H9 in the ovary cancer patient specimens, but not in the normal ovary. Expression was also detected in normal and in testis cancer specimens.
Figure 69 shows expression of 187P3F2 by RT-PCR. First strand cDNA was prepared from vital pool 1 (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), kidney cancer pool, and pancreas cancer pool.
Normalization was-performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 187P3F2, was performed at 26 and 30 cycles of amplification. Results show strong expression of 187P3F2 in kidney cancer pool, pancreas cancer pool and vital pool 1, but not in vital pool 2.
Figure 70 shows expression of 187P3F2 in normal tissues. Two multiple tissue northern blots (Clontech) both with 2 gg of mRNA/lane, were probed with the 187P3F2 SSH fragment. Size standards in kilobases (kb) are indicated on the side. Results show expression of a 4.5 kb 187P3F2 transcript in kidney and brain, but not in the other tissues tested.
Figure 71 shows expression of 187P3F2 in patient cancer specimens and normal tissues. RNA was extracted from a pool of three kidney cancers pancreas cancers (PaC), as well as from normal prostate (NP), normal bladder and normal kidney normal colon normal lung normal breast (NBr), normal ovary and normal pancreas (NPa). Northern blot with 10 mg of total RNA/lane was probed with 187P3F2 sequence. Size standards in kilobases (kb) are indicated on the side. Results show strong expression of 187P3F2 in kidney cancers, pancreas cancers, and normal kidney, but not in the other normal tissues.
Figure 72 shows expression of 187P3F2 in pancreas cancer patient specimens. RNA was extracted from 00 mcreas cancer cell lines normal pancreas and pancreas tumor tissues isolated from pancreatic
O
Smcer patients. Northern blot with 10 mg of total RNA/lane was probed with the 187P3F2 SSH fragment. Size andards in kilobases (kb) are indicated on the side. The results show strong expression of 187P3F2 in the c m ncreas cancer specimens, but not in normal pancreas nor in the cancer cell lines tested.
S Figure 73 shows expression of 192P2G7 by RT-PCR. First strand cDNA was prepared from vital pool 1 tV) iver, lung and kidney), vital pool 2 (pancreas, colon and stomach), prostate cancer pool, bladder cancer pool, dney cancer pool, lung cancer pool, ovary cancer pool, breast cancer pool, cancer metastasis pool, pancreas cancer ,ol, and prostate metastasis to lymph node Normalization was performed by PCR using primers to actin and APDH. Semi-quantitative PCR, using primers to 186P1H9, was performed at 26 and 30 cycles of amplification.
0 esults show strong expression of 186P1H9 in pancreas cancer pool and prostate metastasis to LN. Expression was so detected in prostate cancer pool, bladder cancer pool, kidney cancer pool, lung cancer pool, ovary cancer pool, S reast cancer pool, cancer metastasis pool, vital pool 2 but not in vital pool 1.
00 Figure 74 shows expression of 185P3C2 by RT-PCR. First strand cDNA was prepared from vital pool 1 iver, lung and kidney), vital pool 2 (pancreas, colon and stomach), and bladder cancer pool. Normalization was srformed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 185P3C2, was srformed at 26 and 30 cycles of amplification. Results show strong expression of 185P3C2 in bladder cancer pool.
ow level expression was detected in vital pool 2, but not in vital pool 1.
Example 5: Transcript Variants of Genes of the Invention Transcript variants are variants of matured mRNA from the same gene by alternative transcription or Iternative splicing. Alternative transcripts are transcripts from the same gene but start transcription at different oints. Splice variants are mRNA variants spliced differently from the same transcript In eukaryotes, when a lulti-exon gene is transcribed from genomic DNA, the initial RNA is spliced to produce functional mRNA, which as only exons and is used for translation into an amino acid sequence. Accordingly, a given gene can have zero to lany alternative transcripts and each transcript can have zero to many splice variants. Each transcript variant has a nique exon makeup, and can have different coding and/or non-coding or 3' end) portions, from the original :anscript. Transcript variants can code for similar or different proteins with the same or a similar function or may ncode proteins with different functions, and may be expressed in the same tissue at the same time, or at different tissue, or at different times, proteins encoded by transcript variants can have similar or different cellular or extracellular localizations, be secreted.
Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified full-length cloning experiment, or by use of full-length transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or indirect identity with each other.
Second, ESTs in the same cluster were further grouped into sub-clusters and assembled into a consensus sequence.
The original gene sequence is compared to the consensus sequence(s) or other full-length sequences. Each consensus sequence is a potential splice variant for that gene (see, the URL www.doubletwist.com/products/cl l_agentsOverview.jhtml). Even when a variant is identified that is not a fulllength clone, that portion of the variant is very useful for antigen generation and for further cloning of the fulllength splice variant, using techniques known in the art.
Moreover, computer programs available in the art are used that identify transcript variants based on genomic sequences. Genomic-based transcript variant identification programs include FgenesH Salamov and V. Solovyev, "Ab initio gene finding in Drosophila genomic DNA," Genome Research. 2000 April; 10(4): 516-22); OO Grail (at the World Wide Web URL: compbio.ornl.gov/Grail-bin/EmptyGrailForm) and GenScan (at the World 0 Wide Web URL: genes.mit.edu/GENSCAN.html). For a general discussion of splice variant identification CN protocols see., Southan, A genomic perspective on human proteases, FEBS Lett. 2001 Jun 8; 498(2-3):214- 8; de Souza, et al., Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. Natl Acad Sci U S A. 2000 Nov 7; 97(23):12690-3.
To further confirm the parameters of a transcript variant, a variety of techniques available in the art are used, such as full-length cloning, proteomic validation, PCR-based validation, and 5' RACE validation, etc. (see Proteomic Validation: Brennan, et al., Albumin banks peninsula: a new termination variant characterized Sby electrospray mass spectrometry, Biochem Biophys Acta. 1999 Aug 17;1433(1-2):321-6; Ferranti P, etal., Differential splicing of pre-messenger RNA produces multiple forms of mature caprine alpha(sl)-casein, Eur J Biochem. 1997 Oct 1;249(1):1-7. For PCR-based Validation: Wellmann S, et al., Specific reverse transcription- C(N PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology, Clin Chem. 2001 Apr;47(4):654-60; Jia, et Discovery of new human beta-defensins using a genomics-based 0 approach, Gene. 2001 Jan 24; 263(1-2):211-8. For PCR-based and 5' RACE Validation: Brigle, et al., Organization of the murine reduced folate carrier gene and identification of variant splice forms, Biochem Biophys Acta. 1997 Aug 7; 1353(2): 191-8).
It is known in the art that genomic regions are modulated in cancers. When the genomic region to which a gene maps is modulated in a particular cancer, the alternative transcripts or splice variants of the gene are modulated as well. Disclosed herein is a particular expression profile of the target genes related to cancer.
Alternative transcripts and splice variants of these genes may also be involved in cancers in the same or different tissues, thus serving as tumor-associated markers/antigens.
Using the full-length gene and EST sequences, five transcript variants were identified for 83P4B8 seven for 109P1D4, one for 151P4E11, two for 161P2B7A, one for 179P3G7, four for 184P3G10, two for 185P2C9, four for 185P3C2, and two for 192P2G7, as displayed in Figures 11-14.
Figure 11 through Figure 14 are set forth herein on a gene-by-gene basis. The following list shows the numbering of figures and the corresponding genes. nucleotide sequence of a transcript variant. Figure 11 displays the nucleotide sequences of transcript variants. Figure 12 shows amino acid sequences of proteins translated from the corresponding transcript variants. Figure 13 displays the alignment of nucleotide sequences of transcript variants. Figure 14 displays the alignment of protein sequences from the corresponding transcript variants.
Number of transcript variants for target genes and the numbering of associated figures.
Target Gene Number of Trans. Var. Figure Number 83P4B8 5 Figure llb-14b 109P1D4 7 Figure 11c-14c 151P4E11 1 Figure lle-14e 161P2B7A 2 Figure 11J-14j 179P3G7 1 Figure 11k-14k 184P3G10 4 Figure llm-14m 185P2C9 2 Figure lln-14n 185P3C2 4 Figure 11o-14o 192P2G7 2 Figure llr-14r 00 Example 6: Production of Recombinant Targets of the Invention in Prokaryotic Systems STo express a recombinant gene of Figure 2 in prokaryotic cells, full or partial length gene cDNA sequences Sre cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of c ;enes set forth in Figure 2, or variants or analogs thereof, are expressed in these constructs: regions that encode the ntire, respective, amino acid sequence of a particular target, or any 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, tf3 1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,40,41, 42, 43, 44, 45, 46,47,48,49, 50 or nore contiguous amino acids from a protein of Figure 2, variants, or analogs thereof.
A. In vitro transcription and translation constructs: pCRII: To generate sense and anti-sense RNA probes for RNA in situ investigations, pCRII constructs 0 Invitrogen, Carlsbad CA) are generated encoding either all of or fragments of a cDNA. The pCRII vector has Sp6 nd T7 promoters flanking the insert to drive the transcription of RNA for use as probes in RNA in situ y ibridization experiments. These probes are used to analyze the cell and tissue expression of a gene at the RNA 00 0 evel. Transcribed RNA representing the cDNA amino acid coding region of the gene is used in in vitro translation Systems such as the TnT M Coupled Reticulolysate System (Promega, Corp., Madison, WI) to synthesize a protein if the invention.
B. Bacterial Constructs: pGEX Constructs: To generate recombinant proteins of the.invention in bacteria that are fused to the 3lutathione S-transferase (GST) protein, all of or parts of a cDNA protein coding sequence of the invention are ised to the GST gene by cloning into pGEX-6P-1 or any other GST- fusion vector of the pGEX family (Amersham 'harmacia Biotech, Piscataway, NJ). These constructs allow controlled expression of recombinant target of the nvention protein sequences with GST fused at the amino-terminus and a six histidine epitope (6X His) at the arboxyl-terminus. The GST and 6X His tags permit purification of the recombinant fusion protein from induced acteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-GST and anti-His ntibodies. The 6X His tag is generated by adding 6 histidine codons to the cloning primer at the 3' end, of the )pen reading frame (ORF). A proteolytic cleavage site, such as the PreScissionT M recognition site in pGEX-6P-1, ;an be employed to permit cleavage of the GST tag from target of the invention-related protein. The ampicillin esistance gene and pBR322 origin permits selection and maintenance of the pGEX plasmids in E. coli.
pMAL Constructs: To generate, in bacteria, recombinant target of the invention proteins that are fused to maltose-binding protein (MBP), all of or parts of the target of the invention cDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Beverly, MA). These constructs allow controlled expression of recombinant target of the invention protein sequences with MBP fused at the amino-terminus and a 6X His epitope tag at the carboxyl-terminus. The MBP and 6X His tags permit purification of the recombinant protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies. The 6X His epitope tag is generated by adding 6 histidine codons to the 3' cloning primer. A Factor Xa recognition site permits cleavage of the pMAL tag from a target of the invention. The pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinant protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds.
pET Constructs: To express a target of the invention in bacterial cells, all of or parts of the target of the invention cDNA protein coding sequence are cloned into the pET family of vectors (Novagen, Madison, WI).
These vectors allow tightly controlled expression of recombinant target of the invention protein in bacteria with and 86 without fusion to proteins that enhance solubility, such as NusA and thioredoxin (Trx), and epitope tags, such as 6X 00 His and S-Tag T that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the target of the invention protein are expressed as CN amino-terminal fusions to NusA. In one embodiment, a NusA-fusion protein encompassing certain amino acids of a Figure 2 protein with a C-terminal 6xHis tag are expressed in E. coli, purified by metal chelate affinity G chromatography, and used as an immunogen for generation of antibodies.
C. Yeast Constructs: 0pESC Constructs: To express a target of the invention in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all of or parts of a target of the invention cDNA protein coding sequence are cloned into the pESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, STRP1, LEU2, and URA3 (Stratagene, La Jolla, CA). These vectors allow controlled expression from the same plasmid of up to 2 different genes or cloned sequences containing either Flag T or Myc epitope tags in the same r yeast cell. This system is useful to confirm protein-protein interactions of a target of the invention. In addition, Sexpression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations, that are found when expressed in eukaryotic cells.
pESP Constructs: To express a target of the invention in the yeast species Saccharomycespombe, all of or parts of a target of the invention cDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a target of the invention protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A FlagT epitope tag allows detection of the recombinant protein with anti- Flag m antibody.
Example 7: Production of Recombinant Target of the Invention in Eukarvotic Systems A. Mammalian Constructs: To express a recombinant target of the invention in eukaryotic cells, the full or partial length target of the invention cDNA sequences can be cloned into any one of a variety of expression vectors known in the art. One or more of the following peptide regions of a protein of the invention are expressed in these constructs: any 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50 or more contiguous amino acids from a protein of Figure 2, variants, or analogs thereof. In certain embodiments a region of a specific variant of a target of the invention is expressed that encodes an amino acid at a specific position which differs from the amino acid of any other respective variant found at that position.
In other embodiments, a region of a variant of the invention is expressed that lies partly or entirely within a sequence that is unique to that variant respective to other variants of that target.
The constructs can be transfected into any one of a wide variety of mammalian cells such as 293T cells.
Transfected 293T cell lysates can be probed with the anti-target of the invention polyclonal serum, described herein.
pcDNA4/HisMax Constructs: To express a target of the invention in mammalian cells, a target of the invention ORF, or portions thereof, are cloned into pcDNA4/HisMax Version A (Invitrogen, Carlsbad, CA).
Protein expression is driven from the cytomegalovirus (CMV) promoter and the SP16 translational enhancer. The recombinant protein has XpressTM and six histidine (6X His) epitopes fused to the amino-terminus. The pcDNA4/HisMax vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Zeocin resistance gene allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColEl origin permits selection and 00 naintenance of the plasmid in E. coli.
SpcDNA3.1/MycHis Constructs: To express a target of the invention in mammalian cells, a target of the avention ORF, or portions thereof, with a consensus Kozak translation initiation site are cloned into C cDNA3.1/MycHis Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytomegalovirus SCMV) promoter. The recombinant proteins have the myc epitope and 6X His epitope fused to the carboxyl- Srminus. The pcDNA3.1/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal nd transcription termination sequence to enhance mRNA stability, along with the SV40 origin for episomal eplication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene can Se used, as it allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and SolE1 origin permits selection and maintenance of the plasmid in E. coli.
pcDNA3.1/CT-GFP-TOPO Construct: To express a target of the invention in mammalian cells and to Ilow detection of the recombinant proteins using fluorescence, a target of the invention ORF, or portions thereof, Svith a consensus Kozak translation initiation site are cloned into pcDNA3.1/CT-GFP-TOPO (Invitrogen, CA).
rotein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the Green 'luorescent Protein (GFP) fused to the carboxyl-terminus facilitating non-invasive, in vivo detection and cell liology studies. The pcDNA3.1CT-GFP-TOPO vector also contains the bovine growth hormone (BGH) olyadenylation signal and transcription termination sequence to enhance mRNA stability along with the ,rigin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin esistance gene allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene nd ColE1 origin permits selection and maintenance of the plasmid in E. coli. Additional constructs with an amino- :rminal GFP fusion are made in pcDNA3.1/NT-GFP-TOPO spanning the entire length of a target of the invention irotein.
PAPtag: A target of the invention ORF, or portions thereof, is cloned into pAPtag-5 (GenHunter Corp.
lashville, TN). This construct generates an alkaline phosphatase fusion at the carboxyl-terminus of a target of the avention protein while fusing the IgGK signal sequence to the amino-terminus. Constructs are also generated in vhich alkaline phosphatase with an amino-terminal IgGK signal sequence is fused to the amino-terminus of a target ,f the invention protein. The resulting recombinant target of the invention proteins are optimized for secretion into -ie media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with a target of the invention protein. Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and 6X His epitopes fused at the carboxyl-terminus that facilitates detection and purification. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the recombinant protein and the ampicillin resistance gene permits selection of the plasmid in E. colt.
A target of the invention ORF, or portions thereof, is cloned into pTag-5. This vector is similar to pAPtag but without the alkaline phosphatase fusion. This construct generates a target of the invention protein with an amino-terminal IgGK signal sequence and myc and 6X His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulting recombinant target of the invention protein is optimized for secretion into the media oftransfected mammalian cells, and is used as immunogen or ligand to identify proteins such as ligands or receptors that interact with target of the invention proteins. Protein expression is driven from the CMV promoter. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli.
PsecFc: A target of the invention ORF, or portions thereof, is also cloned into psecFc. The psecFc vector 0 was assembled by cloning the human immunoglobulin Gl (IgG) Fc (hinge, CH2, CH3 regions) into pSecTag2 0 (Invitrogen, California). This construct generates an IgG Fc fusion at the carboxyl-terminus of a target of the invention protein, while fusing the IgGK signal sequence to N-terminus. Target of the invention fusions utilizing the murine IgG1 Fc region are also used. The resulting recombinant target of the invention proteins are optimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins t such as ligands or receptors that interact with a target of the invention protein. Protein expression is driven from the CMV promoter. The hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli.
"t pSRa Constructs: To generate mammalian cell lines that express a target of the invention constitutively, a target of the invention ORF, or portions thereof, are cloned into pSRa constructs. Amphotropic and ecotropic retroviruses are generated by transfection of pSRa constructs into the 293T-10A1 packaging line or co-transfection 00 ofpSRa and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The f retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, a target of the invention, into the host cell-lines. Protein expression is driven from a long terminal repeat (LTR). The Neomycin resistance gene present in the vector allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColEl origin permit selection and maintenance of the plasmid in E. coll. The retroviral vectors can thereafter be used for infection and generation of various cell lines using, for example, PC3, NIH 3T3, TsuPrl, 293 or rat-1 cells.
Additional pSRa constructs are made that fuse an epitope tag such as the FLAG T M tag to the carboxylterminus of a target of the invention sequence to allow detection using anti-Flag antibodies. For example, the
FLAG
T M sequence 5' gat tac aag gat gac gac gat aag 3' (SEQ ID NO: is added to cloning primer at the 3' end of the ORF. Additional pSRa constructs are made to produce both amino-terminal and carboxyl-terminal GFP and myc/6X His fusion proteins of the full-length target of the invention proteins.
Additional Viral Vectors: Additional constructs are made for viral-mediated delivery and expression of a target of the invention. High virus titer leading to high level expression of a target of the invention is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A target of the invention coding sequence or fragments thereof is amplified by PCR and subcloned into the AdEasy shuttle vector (Stratagene).
Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors. Alternatively, target of the invention coding sequences or fragments thereof are cloned into the HSV-1 vector (Imgenex) to generate herpes viral vectors. The viral vectors are.thereafter used for infection of various cell lines such as PC3, NIH 3T3, 293 or rat-1 cells.
Regulated Expression Systems: To control expression of a target of the invention in mammalian cells, coding sequences of a target of the invention, or portions thereof, are cloned into regulated mammalian expression systems such as the T-Rex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone System (Sratagene). These systems allow the study of the temporal and concentration dependent effects of recombinant targets of the invention. These vectors are thereafter used to control expression of a target of the invention in various cell lines such as PC3,'NIH 3T3, 293 or rat-1 cells.
B. Baculovirus Expression Systems To generate recombinant target of the invention proteins in a baculovirus expression system, a target of the invention ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N-terminus. Specifically, pBlueBac-target of the invention nucleic acid sequence is co- 00 msfected with helper plasmid pBac-N-Blue (Invitrogen) into SF9 (Spodopterafrugiperda) insect cells to generate Scombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collected from cell C" pernatant and purified by plaque assay.
S Recombinant target of the invention protein is then generated by infection of HighFive insect cells a vitrogen) with purified baculovirus. Recombinant target of the invention protein can be detected using antitf) rget of the invention or anti-His-tag antibody. Target of the invention protein can be purified and used in various C :ll-based assays or as immunogen to generate polyclonal and monoclonal annDoaies specmic or a target or me vention.
Example 8: Antigenieity Profiles and Secondary Structure S Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9 depict graphically five amino acid profiles of the target S'the invention amino acid sequences, each assessment available by accessing the ProtScale website (URL ww.expasy.ch/cgi-bin/protscale.pl) on the ExPasy molecular biology server.
S These profiles: Figure 5, Hydrophilicity, (Hopp Woods 1981. Proc. Natl. Acad. Sci. U.S.A.
;:3824-3828); Figure 6, Hydropathicity, (Kyte Doolittle 1982. J. Mol. Biol. 157:105-132); Figure 7, :rcentage Accessible Residues (Janin 1979 Nature 277:491-492); Figure 8, Average Flexibility, (Bhaskaran R., id Ponnuswamy 1988. Int. J. Pept. Protein Res. 32:242-255); Figure 9, Beta-turn (Deleage, Roux B. 1987 •otein Engineering 1:289-294); and optionally others available in the art, such as on the ProtScale website, were ;ed to identify antigenic regions of the target of the invention proteins. Each of the above amino acid profiles were merated using the following ProtScale parameters for analysis: 1) A window size of 9; 2) 100% weight of the indow edges compared to the window center, and, 3) amino acid profile values normalized to lie between 0 and Hydrophilicity (Figure Hydropathicity (Figure 6) and Percentage Accessible Residues (Figure 7) -ofiles were used to determine stretches of hydrophilic amino acids values greater than 0.5 on the ydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile).
ich regions are likely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies.
Average Flexibility (Figure 8) and Beta-turn (Figure 9) profiles determine stretches of amino acids values greater than 0.5 on the Beta-turn profile and the Average Flexibility profile) that are not constrained in secondary structures such as beta sheets and alpha helices. Such regions are also more likely to be exposed on the protein and thus accessible for immune recognition, such as by antibodies.
Antigenic sequences of the target of the invention proteins indicated, by the profiles set forth in Figure Figure 6, Figure 7, Figure 8, and/or Figure 9 are used to prepare immunogens, either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-target of the invention antibodies. The immunogen can be any 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50 or more than contiguous amino acids, or the corresponding nucleic acids that encode them, from the target of the invention variant proteins. In particular, peptide immunogens for target of the invention proteins can comprise, a peptide region of at least 5 amino acids of a protein of the invention in any whole number increment up to an entire protein that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profile of Figure 5; a peptide region of at least 5 amino acids of a protein of the invention in any whole number increment up to the entire protein that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figure 6; a peptide region of at least 5 amino acids of a protein of the invention in any whole number increment up to the entire 00 protein that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7; a peptide region of at least 5 amino acids of a protein of the invention in any whole number increment up to the entire protein that includes an amino acid position having a value greater than 0.5 in the c Average Flexibility profile on Figure 8; and, a peptide region of at least 5 amino acids of a protein of the invention Sin any whole number increment up to the entire protein that includes an amino acid position having a value greater tj/ than 0.5 in the Beta-turn profile of Figure 9.
SAll immunogens of the invention, whether peptides or nucleic acids, can be embodied in human unit dose form, or comprised by a composition that includes a pharmaceutical excipient compatible with human physiology.
The secondary structure of a protein of the invention, namely the predicted presence and location of alpha helices, extended strands, and random coils, is predicted from the primary amino acid sequence using the HNN Hierarchical Neural Network method (Guermeur, 1997, World Wide Web URL pbil.ibcp.fr/cgi- C bin/npsa_automat.pl?page=npsa_nn.html), accessed from the ExPasy molecular biology server (World Wide Web 00 URL www.expasy.ch/tools/). The analysis provides the data set forth in iFigure 10 on protein by protein basis.
SAnalysis for the presence of transmembrane domains in a protein of the invention was carried out using a variety of transmembrane prediction algorithms many of which were accessed from the ExPasy molecular biology server (World Wide Web URL www.expasy.ch/tools/). The programs provide the data summarized in Table XXI on a protein by protein basis.
Example 9: Generation of Polvclonal Antibodies of the Invention Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent a protein of the invention) and, if desired, an adjuvant Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. In addition to immunizing with a full length protein of the invention such as that set forth in figure 2, computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis contain characteristics of being antigenic and available for recognition by the immune system of the immunized host (see the Example entitled "Antigenicity Profiles"). Such regions would be predicted to be hydrophilic, flexible, in beta-turn conformations, and/or be exposed on the surface of the protein (see, Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9 for amino acid profiles that indicate such regions of a protein of the invention).
For example, of Figure 2 recombinant bacterial fusion proteins or peptides containing hydrophilic, flexible, beta-turn regions, generally found in regions between transmembrane domains and at the amino and carboxyl termini, are used as antigens to generate polyclonal antibodies in New Zealand White rabbits. Examples of such regions can be extracellular or intracellular. In addition, the amino-terminal region of a variant that is not present in a respective variant can be used as an immunogen. Antibodies to such regions are useful to distinguish one variant protein from another variant of that target It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor.
In one embodiment, a peptide encoding amino acids from a protein of the invention is conjugated to KLH and used to immunize the rabbit. Alternatively the immunizing agent can include all or portions of the of a protein of the invention e.g. in Figure 2, analogs or fusion proteins thereof. For example, a Figure 2 amino acid sequence can be fused using recombinant DNA techniques to any one of a variety of fusion protein partners that are well known in the art, such as glutathione-S-transferase (GST) and HIS tagged fusion proteins. Such fusion proteins are purified C0 m induced bacteria using the appropriate affinity matrix.
In one embodiment, a GST-fusion protein encoding amino acids of a protein of the invention is produced i purified and used as immunogen. Other recombinant bacterial fusion proteins that can be employed include c iltose binding protein, LacZ, thioredoxin, NusA, or an immunoglobulin constant region (see the Example entitled C reduction of Recombinant Targets of the Invention in Prokaryotic Systems" and Current Protocols In Molecular V alogy, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Linsley, Brady, Umes, M., osmaire, Damle, and Ledbetter, L.(1991) J.Exp. Med. 174, 561-566).
In addition to bacterial derived fusion proteins, mammalian expressed protein antigens are also used.
Sese antigens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the 0 ample entitled "Production of Recombinant Targets of the Invention in Eukaryotic Systems"), and retain post- O nslational modifications such as glycosylations found in native protein. In one embodiment, amino acids from a C 3tein of the invention are cloned into the Tag5 mammalian secretion vector. The recombinant protein is purified S metal chelate chromatography from tissue culture superatants of 293T cells stably expressing the recombinant CK ctor. The purified TagS-produced protein of the invention is then used as immunogen.
During the immunization protocol, it is useful to mix or emulsify the antigen in adjuvants that enhance the mune response of the host animal. Examples of adjuvants include, but are not limited to, complete Freund's juvant (CFA) and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).
In a typical protocol, rabbits are initially immunized subcutaneously with up to 200 pg," typically 100-200 of fusion protein or peptide conjugated to KLH mixed in complete Freund's adjuvant (CFA). Rabbits are then iected subcutaneously every two weeks with up to 200 gg, typically 100-200 ig, of the immunogen in incomplete eund's adjuvant (IFA). Test bleeds are taken approximately 7-10 days following each immunization and used to 3nitor the titer of the antiserum by ELISA.
To test reactivity and specificity of immune serum, such as the rabbit serum derived from immunization th Tag5-produced protein of the invention, a full-length Figure 2 cDNA is cloned into pCDNA 3.1 myc-his pression vector (Invitrogen, see the Example entitled "Production of Recombinant Targets of the Invention in ikaryotic Systems"). After transfection of the constructs into 293T cells, cell lysates are probed with the ;pective anti-protein of the invention antibodies and with anti-His antibody (Santa Cruz Biotechnologies, Santa .ruz; CA) to determine specific reactivity of the antibodies to the respective denatured protein of the invention using the Western blot technique. Immunoprecipitation and flow cytometric analyses of 293T and other recombinant of Figure 2-expressing cells determine recognition of native protein by the antibodies. In addition, Westem.blot, immunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express the protein of the invention are carried out to test specificity.
Anti-serum from rabbits immunized with target of the invention fusion proteins, such as GST and MBP fusion proteins, are purified by depletion of antibodies reactive to the fusion partner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevant fusion protein. For example, antiserum derived from a GST-of a Figure 2 fusion protein is first purified by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP-fusion protein also comprising those amino acids covalently coupled to Affigel matrix. The serum is then further purified by protein G affinity chromatography to isolate the IgG fraction. Sera from other His-tagged antigens and peptide immunized rabbits as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein immunogen or free 00 peptide.
O
C1 Example 10: Generation of Monoclonal Antibodies (mAbs) of the Invention In one embodiment, therapeutic mAbs to a protein of the invention comprise those that react with epitopes of the protein that would disrupt or modulate the biological function of a protein of the invention, for example antibodies that disrupt its interaction with ligands and binding partners. Therapeutic mAbs also comprise those that specifically bind epitopes of a protein of the invention exposed on the cell surface and thus are useful in targeting mAb-toxin conjugates. Immunogens for generation of such mAbs include those designed to encode or contain an Sentire protein of the invention, regions of a protein of the invention predicted to be antigenic from computer analysis ofthe amino acid sequence (see, Figure 5, Figure 6, Figure 7, Figure 8, or Figure 9, and the Example entitled "Antigenicity Profiles"), and regions such as extracellular domains. Immunogens include peptides, C recombinant bacterial proteins, and mammalian expressed Tag 5 proteins and human and murine IgG FC fusion 00 Sproteins. In addition, cells expressing high levels of a protein of the invention, such as 293T-protein of the invention or 300.19-protein of the invention murine Pre-B cells, are used to immunize mice.
To generate mAbs to a protein of the invention, mice are first immunized intraperitoneally (IP) with, typically, 10-50 pg of protein immunogen or 107 protein of the invention-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every 2-4 weeks with, typically, 10-50 g.of protein immunogen or 107 cells mixed in incomplete Freund's adjuvant. Alteratively, MPL-TDM adjuvant is used in immunizations. In addition to the above protein and cell-based immunization strategies, a DNA-based immunization protocol is employed in which a mammalian expression vector encoding a protein of the invention sequence is used to immunize mice by direct injection of the plasmid DNA. For example, amino acids from a protein of the invention are cloned into the Tag5 mammalian secretion vector and the recombinant vector is used as immunogen. In another example the same amino acids are cloned into an Fc-fusion secretion vector in which the protein of the invention sequence is fused at the amino-terminus to an IgK leader sequence and at the carboxylterminus to the coding sequence of the human or murine IgG Fc region. This recombinant vector is then used as immunogen. The plasmid immunization protocols are used in combination with purified proteins expressed from the same vector and with cells expressing protein of the invention.
During the immunization protocol, test bleeds are taken 7-10 days following an injection to monitor titer and specificity of the immune response. Once appropriate reactivity and specificity is obtained as determined by ELISA, Western.blotting, immunoprecipitation, fluorescence microscopy, and flow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, Harlow and Lane, 1988).
In one embodiment for generating monoclonal antibodies reactive with a protein of the invention, a TagSprotein of the invention antigen is expressed and purified from stably transfected 293T cells. Balb C mice are initially immunized intraperitoneally with 25 pg of the TagS-protein of the invention mixed in complete Freund's adjuvant. Mice are subsequently immunized every two weeks with 25 pg of the antigen mixed in incomplete Freund's adjuvant for a total of three immunizations. ELISA using the Tag5 antigen determines the titer of serum from immunized mice. Reactivity and specificity of serum to full length protein of the invention is monitored by Western blotting, immunoprecipitation and flow cytometry using 293T cells transfected with an expression vector encoding the protein of the invention cDNA (see the Example entitled "Production of Recombinant Targets of the Invention in Eukaryotic Systems"). Other recombinant protein of the invention-expressing cells or cells 00 logenously expressing a protein of the invention are also used. Mice showing the strongest reactivity are rested I given a final injection ofTag5 antigen in PBS and then sacrificed four days later. The spleens of the sacrificed ce are harvested and fused to SPO/2 myeloma cells using standard procedures (Harlow and Lane, 1988).
C pernatants from HAT selected growth wells are screened by ELISA, Western blot, immunoprecipitation, Sorescent microscopy, and flow cytometry to identify protein of the invention-specific antibody-producing clones.
The binding affinity of a monoclonal antibody is determined using standard technologies. Affinity ,asurements quantify the strength of antibody to epitope binding and are used to help define which monoclonal tibodies reactive with proteins of the invention are suitable for diagnostic or therapeutic use, as appreciated by Se of skill in the art. The BIAcore system (Uppsala, Sweden) is a useful method for determining binding affinity.
Se BIAcore system uses surface plasmon resonance (SPR, Welford K. 1991, Opt. Quant. Elect 23:1; Morton and 0 yszka, 1998, Methods in Enzymology 295: 268) to monitor biomolecular interactions in real time. BIAcore 00 alysis conveniently generates association rate constants, dissociation rate constants, equilibrium dissociation S nstants, and affinity constants.
Example 11; HLA Class I and Class II Binding Assays HLA class I and class II binding assays using purified HLA molecules are performed in accordance with ;closed protocols PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in munology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)).
iefly, purified MHC molecules (5 to 500 nM) are incubated with various unlabeled peptide inhibitors and 1-10 4 'I-radiolabeled probe peptides as described. Following incubation, MHC-peptide complexes are separated )m free peptide by gel filtration and the fraction of peptide bound is determined. Typically, in preliminary periments, each MHC preparation is titered in the presence of fixed amounts of radiolabeled peptides to termine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent tibition and direct binding assays are performed using these HLA concentrations.
Since under these conditions [label]<[HLA] and ICsoK[HLA], the measured IC 5 o values are reasonable proximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 r-4/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the ICso of a positive control for inhibition by the ICso for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled.
These values can subsequently be converted back into ICso nM values by dividing the ICso nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation is accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified
MHC.
Binding assays as outlined above may be used to analyze HLA supermotif and/or HLA motif-bearing peptides.
Example 12: Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes r HLA vaccine compositions of the invention can include multiple epitopes. The multiple epitopes can 00 comprise multiple HLA supennotifs or motifs to achieve bropd population coverage. This example illustrates the Sidentification and confirmation of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine C' composition. Calculation of population coverage is performed using the strategy described below.
Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes SThe searches performed to identify the motif-bearing peptide sequences in the Example entitled "Antigenicity Profiles" (and, Tables V-XVIII, and Tables XXIII to XXVI) employ the protein sequence data 0 from the protein set forth in Figures 2 and 3.
Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs are performed as S follows. All translated Figure 2 protein sequences are analyzed using a text string search software program to identify potential peptide sequences containing appropriate HLA binding motifs; such programs are readily produced in accordance with information in the art in view of known motif/supermotif disclosures. Furthermore, such calculations can be made mentally.
00 Identified A2-, A3-, and DR-supermotif sequences are scored using polynomial algorithms to predict their Q capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms account for the impact (7 of different amino acids at different positions, and are essentially based on the premise that the overall affinity (or AG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type: "AG" all x a x a 3 x an where aj/ is a coefficient which represents the effect of the presence of a given amino acid at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other independent binding of individual side-chains). When residuej occurs at position i in the peptide, it is assumed to contribute a constant amount j to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide.
The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol.
Biol. 267:1258-126, 1997; (see also Sidney et al., Human Immunol. 45:79-93, 1996; and Southwood et al., J.
Immunol. 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carryingj is calculated relative to the remainder of the group, and used as the estimate ofjl. For Class II peptides, if multiple alignmentscare possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithmnscore of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.
Selection of HLA-A2 supertype cross-reactive peptides Protein sequences from Figure 2 proteins are scanned utilizing motif identification software, to identify 8-, 9- 10- and 1 1-mer sequences containing the HLA-A2-supermotifmain anchor specificity. Typically, these sequences are then scored using the protocol described above and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules in vitro (HLA- A*0201 is considered a prototype A2 supertype molecule).
These peptides are then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are typically deemed A2-supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 00 0 nM to three or more HLA-A2 supertype molecules.
Selection of HLA-A3 supermotif-bearing epitopes S The Figure 2 protein sequence(s) scanned above are also examined for the presence of peptides with the c .A-A3-supermotif primary anchors. Peptides corresponding to the HLA A3 supermotif-bearing sequences are S:n synthesized and tested for binding to HLA-A*0301 and HLA-A* 1101 molecules, the molecules encoded by two most prevalent A3-supertype alleles. The peptides that bind at least one of the two alleles with binding inities of 500 nM, often 200 nM, are then tested for binding cross-reactivity to the other common A3- ,ertype alleles A*3101, A*3301, and A*6801) to identify those that can bind at least three of the five HLA- SI-supertype molecules tested.
Selection ofHLA-B7 supermotif bearing epitopes The Figure 2 protein(s) scanned above are also analyzed for the presence of 9- 10-, or 1 1-mer peptides Sth the HLA-B7-supermotif. Corresponding peptides are synthesized and tested for binding to HLA-B*0702, the 00 S)lecule encoded by the most common B7-supertype allele the prototype B7 supertype allele). Peptides l iding B*0702 with ICso of.500 nM are identified using standard methods. These peptides are then tested for iding to other common B7-supertype molecules B*3501, B*5101, B*5301, and B*5401). Peptides capable binding to three or more of the five B7-supertype alleles tested are thereby identified.
Selection of Al and A24 motif-bearing epitopes To further increase population coverage, HLA-A and -A24 epitopes can also be incorporated into vaccine mpositions. An analysis of the Figure 2 proteins is performed to identify HLA-A1- and A24-motif-containing quences.
High affinity and/or cross-reactive binding epitopes that bear other motif and/or supermotifs are identified ing analogous methodology.
Example 13: Confirmation of Immunogenicity Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described herein are lected to confirm in vitro immunogenicity. Confirmation is performed using the following methodology: Target Cell Lines for Cellular Screening: The .221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -C null mutant human B-lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to confirm the ability ofpeptide-specific CTLs to recognize eidogenous antigen.
Primary CTL Induction Cultures: Generation of Dendritic Cells PBMCs are thawed in RPMI with 30 pg/ml DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L-glutamine and penicillin/streptomycin). The monocytes are purified by plating 10 x 10 6 PBMC/well in a 6-well plate. After 2 hours at 37 0 C, the non-adherent cells are removed by gently shaking the plates and aspirating the supematants. The wells are washed a total of three times with 3 ml RPMI to remove most of the nonadherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 U/ml
I
of IL-4 are then added to each well. TNFa is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7.
00 0 Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the detacha-bead® reagent. Typically about 200-250x10 6 PBMC are processed to obtain 24x106 CD8 T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are G thawed in RPMI with 30pg/ml DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/1% AB serum at a concentration of 20xl0cells/ml. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells (140pl beads/20xl06 cells) and incubated for 1 hour at 4'C with continuous mixing. The beads and cells are washed 4x with PBS/AB serum to remove the nonadherent cells and resuspended at 100x10 6 cells/ml (based on the original cell number) in PBS/AB serum containing 100pl/ml detacha-bead® reagent and t g/ml DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm Sfor 5-7 minutes, washed once with PBS with 1% BSA, counted and pulsed with 40pg/ml of peptide at a cell 00 concentration of 1-2x10 6 /ml in the presence of 3g/ml r12- microglobulin for 4 hours at 20°C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again.
CK Setting up induction cultures: 025 ml cytokine-generated DC (at lxl0 s cells/ml) are co-cultured with 0.25ml of CD8+ T-cells (at 2x10 6 cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7.
Recombinant human IL-10 is added the next day at a final concentration of 10 ng/ml and rhuman IL-2 is added 48 hours later at 10 IU/ml.
Restimulation ofthe induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction, the cells are restimulated with peptide-pulsed adherent cells. The PBMCs are thawed and washed twice with RPMI and DNAse. The cells are resuspended at 5x10 6 cells/ml and irradiated at -4200 rads.
The PBMCs are plated at 2x10' in 0.5 ml complete medium per well and incubated for 2 hours at 37 0 C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with 10pg/ml of peptide in the presence of 3 pg/ml 82 microglobulin in 0.25ml RPMI/5%AB per well for 2 hours at 37 0 C. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later recombinant human IL-10 is added at a final concentration of 10 ng/ml and recombinant human IL2 is added the next day and again 2-3 days later at 50IU/ml (Tsai et al., Critical Reviews in Immunology 18(1-2):65-75, 1998). Seven days later, the cultures are assayed for CTL activity in a 5 1 Cr release assay. In some experiments the cultures are assayed for peptide-specific recognition in the in situ IFN7ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side-by-side comparison.
Measurement of CTL lytic activity by 5 'Cr release.
Seven days after the second restimulation, cytotoxicity is determined in a standard (5 hr) S"Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with g/ml peptide overnight at 37*C.
Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labeled with 2i00Ci of S'Cr sodium chromate (Dupont, Wilmington, DE) for 1 hour at 37°C. Labeled target cells are' resuspended at 106 per ml and diluted 1:10 with K562 cells at a concentration of 3.3x10 6 /ml (an NK-sensitive erythroblastoma cell line used to reduce non-specific lysis). Target cells (100 p1) and effectors (100pl) are plated in 00 i well round-bottom plates and incubated for 5 hours at 37"C. At that time, 100 pl of supematant are collected S)m each well and percent lysis is determined according to the formula: :pm of the test sample- cpm of the spontaneous "Cr release sample)/(cpm of the maximal 5 "Cr release samplec m of the spontaneous 5 "Cr release sample)] x 100.
G Maximum and spontaneous release are determined by incubating the labeled targets with 1% Triton X-100 d media alone, respectively. A positive culture is defined as one in which the specific lysis (sample- background) or higher in the case of individual wells and is 15% or more at the two highest E:T ratios when expanded Itures are assayed.
In situ Measurement of Human IFNy Production as an Indicator ofPeptide-specific and Endogenous Recognition Immulon 2 plates are coated with mouse anti-human IFN monoclonal antibody (4 pg/ml 0.1M NaHCO 3 S18.2) overnight at 4°C. The plates are washed with Ca 2 Mg2+-free PBS/0.05% Tween 20 and blocked with 00 FCS for two hours, after which the CTLs (100 pl/well) and targets (100 pl/well) are added to each well, C wving empty wells for the standards and blanks (which received media only). The target cells, either peptide- Ised or endogenous targets, are used at a concentration of 1x10 6 cells/ml. The plates are incubated for 48 hours at "C'with 5% CO2.
Recombinant human IFN-gamma is added to the standard wells starting at 400 pg or 1200pg/100 icroliter/well and the plate incubated for two hours at 370C. The plates are washed and 100 pl ofbiotinylated )use anti-human IFN-gamma monoclonal antibody (2 microgram/ml in PBS/3%FCS/0.05% Tween 20) are added d incubated for 2 hours at room temperature. After washing again, 100 microliter HRP-streptavidin (1:4000) are ded and the plates incubated for one hour at room temperature. The plates are then washed 6x with wash buffer, 0 microliter/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes.
ie reaction is stopped with 50 microliter/well 1M H 3
PO
4 and read at OD450. A culture is considered positive if it asured at least 50 pg of IFN-gamma/well above background and is twice the background level of expression.
CTL Expansion.
Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or tumor targets e expanded over a two week period with anti-CD3. Briefly, 5xl0 4 CD8+ cells are added to a T25 flask'containing me following: 1x10 6 irradiated (4,200 rad) PBMC (autologous or allogeneic) per ml, 2x10 5 irradiated (8,000 rad) EBV- transformed cells per ml, and OKT3 (anti-CD3) at 30ng per ml in RPMI-1640 containing 10% human AB serum, non-essential amino acids, sodium pyruvate, 25pM 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Recombinant human IL2 is added 24 hours later at a final concentration of 200IU/ml and every three days thereafter with fresh media at 50IU/ml. The cells are split if the cell concentration exceeds 1x10 6 /ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the 51 Cr release assay or at lx10l/ml in the in situ IFNy assay using the same targets as before the expansion.
Cultures are expanded in the absence of anti-CD3* as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and 5xl0 4 CD8 cells are.added to a T25 flask containing the following: 1x10 6 autologous PBMC per ml which have been peptide-pulsed with 10 pg/ml peptide for two hours at 37 0 C and irradiated (4,200 rad); 2x10 5 irradiated (8,000 rad) EBV-transformed cells per ml RPMI- 1640 containing 10%(v/v) human AB serum, non-essential AA, sodium pyruvate, 25mM 2-ME, L-glutamine and gentamicin.
Immunogenicitv of A2 supermotif-bearing peptides A2-supermotif cross-reactive binding peptides are tested in the cellular assay for the ability to induce O peptide-specific CTL in normal individuals. In this analysis, a peptide is typically considered to be an epitope if it induces peptide-specific CTLs in at least individuals, and preferably, also recognizes the endogenously expressed peptide.
SImmunogenicity can also be confirmed using PBMCs isolated from patients bearing a tumor that expresses a Figure 2 protein. Briefly, PBMCs are isolated from patients, re-stimulated with peptide-pulsed monocytes and 0 assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.
Evaluation of A*03/A11 immunogenicitv HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotifpeptides.
SEvaluation ofB7 immunogenicitv OO Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified as set forth 0 herein are confirmed in a manner analogous to the confirmation of A2-and A3-supermotif-bearing peptides.
Peptides bearing other supermotifs/motifs, HLA-A1, HLA-A24 etc. are also confirmed using similar methodology Example 14: Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and.preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover,.the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analoging peptides to exhibit modulated binding affinity are set forth in this example.
Analoging at Primary Anchor Residues Peptide engineering strategies are implemented to further increase the cross-reactivity of the epitopes. For example, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus.
To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele A*0201, then, if A*0201 binding capacity is maintained, for A2-supertype cross-reactivity.
Alternatively, a peptide is confirmed as binding one or all supertype members and then analoged to modulate binding affinity to any one (or more) of the supertype members to add population coverage.
The selection of analogs for immunogenicity in a cellular screening analysis is typically further restricted by the capacity of the parent wild type (WT) peptide to bind at least weakly, bind at an ICso of 5000nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross-reactivity by T cells specific for the parent epitope (see, Parkhurst et al., J. Immrunol. 157:2539, 1996; and Pogue et al., Proc. Natl. Acad. Sci. USA 92:8166, 1995).
99 In the cellular screening of these peptide analogs, it is important to confirm that analog-specific CTLs are 00 so able to recognize the wild-type peptide and, when possible, target cells that endogenously express the epitope.
Analoging of HLA-A3 and B7-supermotif-bearing peptides Analogs of HLA-A3 supermotif-bearing epitopes are generated using strategies similar to those employed SI analoging HLA-A2 supermotif-bearing peptides. For example, peptides binding to 3/5 of the A3-supertype Solecules are engineered at primary anchor residues to possess a preferred residue S, M, or A) at position 2.
l. The analog peptides are then tested for the ability to bind A*03 and A*l 1 (prototype A3 supertype alleles).
hose peptides that demonstrate 5 500 nM binding capacity are then confirmed as having A3-supertype cross- :activity.
Similarly to the A2- and A3- motif bearing peptides, peptides binding 3 or more B7-supertype alleles can S: improved, where possible, to achieve increased cross-reactive binding or greater binding affinity or binding half Sfe. B7 supermotif-bearing peptides are, for example, engineered to possess a preferred residue I, L, or F) at Ste C-terminal primary anchor position, as demonstrated by Sidney et al. Immunol. 157:3480-3490, 1996).
Analoging at primary anchor residues of other motif and/or supermotif-bearing epitopes is performed in a Ske manner.
The analog peptides are then be confirmed for immunogenicity, typically in a cellular screening assay.
gain, it is generally important to demonstrate that analog-specific CTLs are also able to recognize the wild-type eptide. and, when possible, targets that endogenously express the epitope.
Analoging at Secondary Anchor Residues Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that ind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are isociated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide with an F :sidue at position 1 is analyzed. The peptide is then analoged to, for example, substitute L for F at position 1. The aaloged peptide is evaluated for increased binding affinity, binding half life and/or increased cross-reactivity.
uch a procedure identifies analoged peptides with enhanced properties.
Engineered analogs with sufficiently improved binding capacity or cross-reactivity can also be tested for nmunogenicity in HLA-B7-transgenic mice, following for example, IFA immunization or lipopeptide nmunization. Analoged peptides are additionally tested for the ability to stimulate a recall response using PBMC •om patients with protein(s) of Figure 2-expressing tumors.
Other analoging strategies Another form of peptide analoging, unrelated to anchor positions, involves the substitution of a cysteine with a-amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substitution of a-amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley Sons, England, 1999).
Thus, by the use of single amino acid substitutions, the binding properties and/or cross-reactivity of peptide ligands for HLA supertype molecules can be modulated.
Example 15: Identification of HLA-DR binding motifs in Proteins of Figure 2 Peptide epitopes 00 bearing an HLA class II supermotif or mitif are identified and confirmed as outlined below using methodology Ssimilar to that described for HLA Class I peptides.
C, Selection ofHLA-DR-supermotif-bearing epitopes, tTo identify HLA class II HTL epitopes derived from a protein of Figure 2, a Figure 2 antigen is analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences are selected V. comprising a DR-supermotif, comprising a 9-mer core, and three-residue N- and C-terminal flanking regions amino acids total).
Protocols for predicting peptide binding to DR molecules have been developed (Southwood et al., J.
SImmunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and Sranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors at position 1 and position 6) within a 9-mer core, but also additionally evaluates sequences for the presence of secondary anchors. Using allele-specific selection tables (see, Southwood et al., ibid.), it has 0 been found that these protocols efficiently select peptide sequences with a high probability of binding a particular SDR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.
SThe protein in Figure 2-derived peptides identified above are tested for their binding capacity for various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least two of these three DR molecules are then tested for binding to DR2w2 3p, DR2w2 P2, DR6wl9, and DR9 molecules in secondary assays. Finally, peptides binding at least-two of the four secondary panel DR molecules, and thus cumulatively at least four of seven different DR molecules, are screened for binding to DR4w15, DRSwl 1, and DR8w2 molecules in tertiary assays. Peptides binding at least seven of the ten DR molecules comprising the primary, secondary, and tertiary screening assays are considered cross-reactive DR binders. Proteins in Figure 2-derived peptides found to bind common HLA-DR alleles are of particular interest.
Selection of DR3 motif pentides Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is a relevant criterion in the selection of HTL epitopes. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.
To efficiently identify peptides that bind DR3, Figure 2 antigens are analyzed for sequences carrying one of the two DR3.specific binding motifs reported by Geluk et al. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and confirmed as having the ability to bind DR3 with an affinity of l M.or better, less than 1 pM. Peptides are found that meet this binding criterion and qualify as HLA class II high affinity binders.
DR3 binding epitopes identified in this manner are included in vaccine compositions with DR supermotifbearing peptide epitopes.
Similarly to the case of HLA class I motif-bearing peptides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding.
L
Example 16 Immunogenicity of HTL epitopes derived from a Protein of Figure 2 00 This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those
O
0 ntified using the methodology set forth herein.
Immunogenicity ofHTL epitopes are confirmed in a manner analogous to the determination of Ct munogenicity of CTL epitopes, by assessing the ability to stimulate HTL responses and/or by using appropriate i asgenic mouse models. Immunogenicity is determined by screening for: in vitro primary induction using S-mnal PBMC or recall responses from patients who have proteins of Figure 2-expressing tumors.
Example 17: Calculation of phenotypic frequencies of HLA-supertypes in various ethnic e kgrounds to determine breadth of population coverage This example illustrates the assessment of the breadth of population coverage of a vaccine composition Snprised of multiple epitopes comprising multiple supermotifs and/or motifs.
In order to analyze population coverage, gene frequencies of HLA alleles are determined. Gene 00 0 quencies for each HLA allele are calculated from antigen or allele frequencies utilizing the binomial distribution S mulae gf=l-(SQRT(l-af)) (see, Sidney et at., Human Immunol. 45:79-93, 1996). To obtain overall notypic frequencies, cumulative gene frequencies are calculated, and the cumulative antigen frequencies derived the use of the inverse formula [af=l-(l-Cgf) 2 Where frequency data is not available at the level of DNA typing, correspondence to the serologically ined antigen frequencies is assumed. To obtaih total.potential supertype population coverage no linkage equilibrium is assumed, and only alleles confirmed to belong to each of the supertypes are included (minimal imates). Estimates of total potential coverage achieved by inter-loci combinations are made by adding to the A verage the proportion of the non-A covered population that could be expected to be covered by the B alleles asidered total=A+B*(l-A)). Confirmed members of the A3-like supertype are A3, Al A31, A*3301, and '6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, '0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertypenfirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801.
)tentially also B*1401, B*3504-06, B*4201, and B*5602).
Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups. Coverage may be extended by including peptides bearing the Al and A24 motifs. On average, Al is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when Al and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is An analogous approach can be used to estimate population coverage achieved with combinations of class II motifbearing epitopes.
Immunogenicity studies in humans Bertoni et J. Clin. Invest. 100:503, 1997; Doolan et al., Immunity 7:97, 1997; and Threlkeld et al., J. Immunol. 159:1648, 1997) have shown that highly cross-reactive binding peptides are almost always recognized as epitopes. The use of highly cross-reactive binding peptides is an important selection criterion in identifying candidate epitopes for inclusion in a vaccine that is immunogenic in a diverse population.
With a sufficient number of epitopes (as disclosed herein and from the art), an average population 00 coverage is predicted to be greater than 95% in each of five major ethnic populations. The game theory Monte 0 Carlo simulation analysis, which is known in the art (see Osborne, M.J. and Rubinstein, A. "A course in game C theory" MIT Press, 1994), can be used to estimate what percentage of the individuals in a population comprised of i the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize the vaccine epitopes described herein. A preferred percentage is 90%. A more preferred percentage is SExample 18: CTL Recognition Of Endogenouslv Processed Antigens After Priming This example confirms that CTL induced by native or analoged peptide epitopes identified and selected as described herein recognize endogenously synthesized, native antigens.
Effector cells isolated from transgenic mice that are immunized with peptide epitopes, for example HLA- S A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are 00 further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on "Cr labeled Jurkat-A2.1/K b target cells in the absence or presence of peptide, and also tested on SCr labeled target cells bearing (CN the endogenously synthesized antigen, i.e. cells that are stably transfected with a gene of Figure 2-related expression vector.
The results demonstrate that CTL lines obtained from animals primed with peptide epitopes recognize endogenously synthesized Figure 2 antigens. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that are being evaluated. In addition to HLA-A*0201/Kb transgenic mice, several other transgenic mouse models including mice with human All, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others transgenic mice for HLA-Al and A24) are being developed. HLA- DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.
Example 19: Activity Of CTL-HTL Coniugated Epltopes In Transgenic Mice This example illustrates the induction of CTLs and HTLs in transgenic mice, by use of a protein of Figure 2-derived CTL and HTL peptide vaccine compositions. The vaccine compositions used herein comprise peptides to be administered to a patient with a protein of Figure 2-expressing tumor. The peptide composition can comprise multiple CTL and/or HTL epitopes. The epitopes are identified using methodology as described herein. This example also illustrates that enhanced immunogenicity can be achieved by inclusion of one or more HTL epitopes in a CTL vaccine composition; such a peptide composition can comprise an HTL epitope conjugated to a CTL epitope. The CTL epitope can be one that binds to multiple HLA family members at an affinity of 500 nM or less, or analogs of that epitope. The peptides may be lipidated, if desired.
Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/K mice, which ate transgenic for the human HLA A2.1 allele and are used to confirm the immunogenicity ofHLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, and are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSO/saline, or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide.
Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA- A2./Kb chimeric gene Vitiello et al., J. Exp. Med. 173:1007, 1991) In vitro CTL activation: One week after priming, spleen cells (30x106 cells/flask) are co-cultured at 37 0
C
0O ith syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10 6 cells/flask) in 10 ml of culture o ledium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.
i Assay for cytotoxic activity: Target cells (1.0 to 1.5x10 6 are incubated at 37 0 C in the presence of 200 pl t f 5 Cr. After 60 minutes, cells are washed three times and resuspended in R10 medium. Peptide is added where Squired at a concentration of 1 g/ml. For the assay, 10 4 5 Cr-labeled target cells are added to different tr oncentrations of effector cells (final volume of 200 pl) in U-bottom 96-well plates. After a six hour incubation eriod at 37 0 C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a licromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific dease 100 x (experimental release spontaneous release)/(maximum release spontaneous release). To facilitate amparison between separate CTL assays run under the same conditions, 51 Cr release data is expressed as lytic nits/106 cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of S0,000 target cells in a six hour 5'Cr release assay. To obtain specific lytic units/10 6 the lytic units/10 6 obtained in 00 Sie absence of peptide is subtracted from the lytic units/10 6 obtained in the presence of peptide. For example, if S 0% 51 Cr release is obtained at the effector target ratio of 50:1 5x10' effector cells for 10,000 targets) k the absence of peptide and 5:1 5x10 4 effector cells for 10,000 targets) in the presence of peptide, the specific tic units would be: [(1/50,000)-(1/500,000)] x 106 18 LU.
The results are analyzed to assess the magnitude of the CTL responses of animals injected with the nmunogenic CTL/HTL conjugate vaccine preparation and are compared to the magnitude of the CTL response :hieved using, for example, CTL epitopes as outlined above in the Example entitled "Confirmation of nmunogenicity". Analyses similar to this may be performed to confirm the immunogenicity of peptide conjugates Dntaining multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures, it is found iat a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such )mpositions.
Example 20: Selection of CTL and HTL Epitopes for Inclusion in a vaccine specific for a protein of igure2 This example illustrates a procedure for selecting peptide epitopes for vaccine compositions of the ivention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides.
The following principles are utilized.when selecting a plurality of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.
Epitopes are selected which, upon administration, mimic immune responses that are correlated with Figure 2 protein clearance. The number of epitopes used depends on observations of patients who spontaneously clear a Figure 2 protein. For example, if it has been observed that patients who spontaneously clear a Figure 2 protein generate an immune response to at least three epitopes from a protein of Figure 2 antigen, then at least three epitopes should be included for HLA class I. A similar rationale is used to determine HLA class II epitopes.
Epitopes are often selected that have a binding affinity of an IC5o of 500 nM or less for an HLA class I molecule, or for class II, an ICso of 1000 nM or less; or HLA Class I peptides with high binding scores from the BIMAS web site, at URL bimas.dcrt.nih.gov/.
In order to achieve broad coverage of the vaccine through out a diverse population, sufficient supermotif 00 bearing peptides, or a sufficient array ofallele-specific motif bearing peptides, are selected to give broad population Scoverage. In one embodiment, epitopes are selected to provide at least 80% population coverage. A Monte Carlo C analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population c coverage.
SWhen creating polyepitopic compositions, or a minigene that encodes same, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest. The principles employed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes. For example, a protein sequence for the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, it has a high concentration of epitopes. Epitopes may be nested or overlapping frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one epitope can be present in a 10 amino acid peptide. Each epitope can be exposed and bound by an HLA molecule C upon administration of such a peptide. A multi-epitopic, peptide can be generated synthetically, recombinantly, or Svia cleavage from the native source. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. This embodiment provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune responseinducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent the creating of any analogs) directs the immune response to multiple peptide sequences that are actually present in Figure 2 proteins, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when.producing nucleic acid vaccine compositions. Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.
A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude to an immune response that controls or clears cells that bear or overexpress a Figure 2 protein.
Example 21: Construction of "Minigene" Multi-Epitope DNA Plasmids This example discusses the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations ofB cell, CTL and/or HTL epitopes or epitope analogs as described herein.
A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-Al and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermotif or motif-bearing peptide epitopes derived from a protein of Figure 2, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from a Figure 2 protein to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.
Such a construct may additionally include sequences that direct the HTL epitopes to the endoplasmic reticulum. For example, the Ii protein may be fused to one or more HTL epitopes as described in the art, wherein 105 the CLIP sequence of the Ii protein is removed and replaced with an HLA class II epitope sequence so that HLA 00 Slass II epitope is directed to the endoplasmic reticulum, where the epitope binds to an HLA class I molecules.
This example illustrates the methods to be used for construction of a minigene-bearing expression plasmid.
ther expression vectors that may be used for minigene compositions are available and known to those of skill in te art.
The minigene DNA plasmid of this example contains a consensus Kozak sequence and a consensus murine Sappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles isclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag 2ded for by the pcDNA 3.1 Myc-His vector.
Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with ucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes 0 s well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is 00 isembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 0 600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95°C for 15 sec, CK mealing temperature (50 below the lowest calculated Tm of each primer pair) for 30 sec, and 72 0 C for 1 min.
For example, a minigene is prepared as follows. For a first PCR reaction, 5 tg of each of two ligonucleotides are annealed and extended: In an example using eight oligonucleotides, four pairs of primers, ligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 pl reactions containing Pfu polymerase buffer (lx= mM KCL, 10 mM (NH4) 2 S0 4 20 mM Tris-chloride, pH 8.75, 2 mM MgSO 4 0.1% Triton X-100, 100 gg/ml SA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two ;actions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended >r 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before anking primers are added to amplify the full length product. The full-length product is gel-purified and cloned ito pCR-blunt (Invitrogen) and individual clones are screened by sequencing.
Example 22: The Plasmid Construct and the Degree to Which It Induces Immunogenicity.
The degree to which a plasmid construct, for example a plasmid constructed in accordance with the revious Example, is able to induce immunogenicity is confirmed in vitro by determining epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, Sijts et al., J. Immunol. 156:683-692, 1996; Demotz et al., Nature 342:682-684, 1989); or the number ofpeptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by diseased or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, Kageyama et al., J. Immunol.
154:567-576, 1995).
Alternatively, immunogenicity is confirmed through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analyzed using cytotoxicity and proliferation assays, respectively, as detailed in Alexander et al., Immunity 1:751-761, 1994.
For example, to confirm the capacity of a DNA minigene construct containing at least one HLA-A2 00 supermotif peptide to induce CTLs in vivo, HLA-A2.1/Kb transgenic mice, for example, are immunized Sintramuscularly with 100 pg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA C immunization, a control group of animals is also immunized with an actual peptide composition that comprises c multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.
SSplenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic Sactivity in a SCr release assay. The results indicate the magnitude of the CTL response directed against the A2restricted epitope, thus indicating the in vivo immunogenicity of the minigene vaccine and polyepitopic vaccine.
It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA- A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif CN epitopes, whereby it is also found that the minigene elicits appropriate immune responses directed toward the 00 Q provided epitopes.
STo confirm the capacity of a class II epitope-encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitopes that cross react with the appropriate mouse MHC molecule, I-Ab-restricted mice, for example, are immunized intramuscularly with 100 pg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, i.e. HTLs, are purified from splenocytes of Simmunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene).
The HTL response is measured using a 'H-thymidine incorporation proliferation assay, (see, Alexander et al.
Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene.
DNA minigenes, constructed as described in the previous Example, can also be confirmed as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, Hanke et al., Vaccine 16:439-445, 1998; Sedegah et al., Proc. Natl. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177-181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999).
For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2.1/Kb transgenic mice are immunized IM with 100 gg of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period (ranging from-3-9 weeks), the mice are boosted IP with 107 pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 pg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptidespecific activity in an alpha, beta and/or gamma IFN ELISA.
It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotifpeptides than with DNA alone. Such an analysis can also be performed using HLA-A 1 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes.
00 le use of prime boost protocols in humans is described below in the Example entitled "Induction of CTL
O
:sponses Using a Prime Boost Protocol C Example 23: Peptide Compositions for Prophylactic Uses Vaccine compositions of the present invention can be used to prevent a gene of Figure 2 expression in t) :rsons who are at risk for tumors that bear this antigen. For example, a polyepitopic peptide epitope composition r a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in the ove Examples, which are also selected to target greater than 80% of the population, is administered to individuals Srisk for a protein of Figure 2-associated tumor.
For example, a peptide-based composition is provided as a single polypeptide that encompasses multiple Sitopes. The vaccine is typically administered in a physiological solution that comprises an adjuvant, such as 00 complete Freunds Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 lg, Smerally 100-5,000 gg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at C. weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that termine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are ministered as required. The composition is found to be both safe and efficacious as a prophylaxis against protein 'Figure 2-associated disease.
Alternatively, a composition typically comprising transfecting agents is used for the administration of a icleic acid-based vaccine in accordance with methodologies known in the art and disclosed herein.
Example 24: Polyepitopic Vaccine Compositions Derived from Native Protein Sequence of Figure 2 A native Figure 2protein sequence is analyzed, preferably using computer algorithms defined for each ass I and/or class II supermotif or motif, to identify "relatively short" regions of the polyprotein that comprise ultiple epitopes. The "relatively short" regions are preferably less in length than an entire native antigen. This latively short sequence that contains multiple distinct or overlapping, "nested" epitopes is selected; it can be used generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the itive protein sequence. The "relatively short" peptide is generally less than 250 amino acids in length, often less uman 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.
The vaccine composition will include, for example, multiple CTL epitopes from a protein antigen of the invention and at least one HTL epitope. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.
The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the 00 possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment O (excluding an analoged embodiment) directs the immune response to multiple peptide sequences that are actually present in native proteins of the invention, thus avoiding the need to evaluate any junctional epitopes. Lastly, the c embodiment provides an economy of scale when producing peptide or nucleic acid vaccine compositions.
SRelated to this embodiment, computer programs are available in the art which can be used to identify in a t) target sequence, the greatest number of epitopes per sequence length.
Example 25: Polvepitopic Vaccine Compositions from Multiple Antigens The protein peptide epitopes of the present invention are used in conjunction with epitopes from other S target tumor-associated antigens (such as from one or more proteins of Figure to create a vaccine composition that is useful for the prevention or treatment of cancer that expresses protein(s) of the invention and such other CK antigens. For example, a vaccine composition can be provided as a single polypeptide that incorporates multiple 00 epitopes from a protein of the invention as well as tumor-associated antigens that are often expressed with the 0 particular target cancer that is also associated with expression of a protein of the invention, or can be administered as a composition comprising a cocktail of one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro.
Example 26: Use of peptides to evaluate an immune response Peptides of the invention may be used to analyze an immune response for the presence of specific antibodies, CTL or HTL directed to a protein of the invention. Such an analysis can be performed in a manner described by Ogg et al., Science 279:2103-2106, 1998. In this Example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.
In this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a cross-sectional analysis of, for example, a protein of Figure 2 HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of disease or following immunization comprising a protein of Figure 2 peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl.
J. Med. 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and P2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, p2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St.
Louis, Missouri), adenosine 5' triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramerphycoerythrin.
For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300g for minutes and resuspended in 50 l of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive non-diseased donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, 00 ereby readily indicating the extent of immune response to the protein of the invention epitopes, and thus the status exposure to proteins of the invention, or exposure to a vaccine that elicits a protective or therapeutic response.
Example 27: Use of Peptide Epitopes to Evaluate Recall Responses The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or Ssall responses, in patients. Such an analysis may be performed on patients who have recovered from a protein of Sinvention-associated disease or who have been vaccinated with a protein of the invention vaccine.
For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed.
Sie vaccine may be any protein of the invention vaccine. PBMC are collected from vaccinated individuals and SLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross- O activity with multiple HLA supertype family members, are then used for analysis of samples derived from 00 lividuals who bear that HLA type.
PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical CN Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO boratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 pg/ml), and Hepes DmM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture rmats. A synthetic peptide comprising an epitope of the invention is added at 10 pg/ml to each well and HBV re 128-140 epitope is added at 1 pg/ml to each well as a source of T cell help during the first week of stimulation.
In the microculture format, 4 x 105 PBMC are stimulated with peptide in 8 replicate cultures in 96-well and bottom plate in 100 il/well of complete RPMI. On days 3 and 10, 100 pl of complete RPMI and 20 U/ml lal concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom ate and restimulated with peptide, rL-2 and 105 irradiated (3,000 rad) autologous feeder cells. The cultures are ;ted for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures display greater than 10% specific 51 Cr release, based on comparison with non-diseased control subjects as eviously described (Rehermann, et al., Nature Med. 2:1104,1108, 1996; Rehermann et al., J. Clin. Invest.
:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:1432-1440, 1996).
Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).
Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLAmatched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 pM, and labeled with 100 pCi of 5 Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS.
Cytolytic activity is determined in a standard 4-h, split well "Cr release assay using U-bottomed 96 well plates'containing 3,000 targets/well. Stimulated PBMC are tested at effector/target ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release-spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments.
The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been 00 stimulated by previous exposure to proteins of the invention or a protein of the invention-related vaccine.
SSimilarly, Class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96well flat bottom plate at a density of 1.5xl0' cells/well and are stimulated with 10 gg/ml synthetic peptide of the c invention, a whole protein of the invention antigens, or PHA. Cells are routinely plated in replicates of 4-6 wells Sfor each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing t 10U/ml IL-2. Two days later, 1 gCi 3 H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3 H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of H-thymidine incorporation in the presence of antigen divided by the 'H-thymidine incorporation in the absence of antigen.
Example 28: Induction Of Specific CTL Response In Humans C1 A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the 00 0 invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo- O controlled trial. Such a trial is designed, for example, as follows: A total of about 27 individuals are enrolled and divided into 3 groups: Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 pg of peptide composition; Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 pg peptide composition; Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 pg of peptide composition.
After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage.
The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.
Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.
Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.
The vaccine is found to be both safe and efficacious.
Example 29: Phase I Trials In Patients Expressing a Gene of the Invention Phase I trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients having a cancer that expresses genes of the invention. The main objectives of the trial are to determine an effective dose and regimen for inducing CTLs in cancer patients that express a gene(s) of the invention, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of these patients, as manifested, by the reduction and/or shrinking of lesions.
Such a study is designed, for example, as follows: The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose 00 calation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a Sigle booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug- Ssociated adverse effects (severity and reversibility) are recorded.
S There are three patient groupings. The first group is injected with 50 micrograms of the peptide I mposition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively.
Sie patients within each group range in age from 21-65 and represent diverse ethnic backgrounds. All of them ve a tumor that expresses a gene of the invention.
Clinical manifestations or antigen-specific T-cell responses are monitored to assess the effects of ministering the peptide compositions. The vaccine composition is found to be both safe and efficacious in the 0 satment of a gene of the invention-associated disease.
00 C Example 30: Induction of CTL Responses Using a Prime Boost Protocol A prime boost protocol similar in its underlying principle to that used to confirm the efficacy of a DNA iccine in transgenic mice, such as described above in the Example entitled "The Plasmid Construct and the Degree Which It Induces Immunogenicity," can also be used for the administration of the vaccine to humans. Such a tccine regimen can include an initial administration of, for example, naked DNA followed by a boost using combinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an 1juyant.
For example, the initial immunization may be performed using an expression vector, such as that nstructed in the Example entitled "Construction of'Minigene' Multi-Epitope DNA Plasmids" in the form of iked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid .1 to 1000 ig) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster )se is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-10' to 5x109 u. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also ;used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation *vaccine efficacy, patient blood samples are obtained before immunization as well as at intervals following Iministration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are olated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.
Analysis of the results indicates that a magnitude of response sufficient to achieve a therapeutic or protective immunity against of Figure 2 is generated.
Example 31: Administration of Vaccine Compositions Using Dendritic Cells (DC Vaccines comprising peptide epitopes of the invention can be administered using APCs, or "professional" APCs such as DC. In this example, peptide-pulsed DC are administered to a patient to stimulate a CTL response in vivo. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo. The induced CTL and HTL then destroy or facilitate destruction, respectively, of the target cells that bear the proteins of the invention from which the epitopes in the vaccine are derived.
For example, a cocktail of epitope-comprising peptides is administered ex vivo to PBMC, or isolated DC 00 therefrom. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Monsanto, St.
SLouis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides, and prior to reinfusion into patients, the DC are washed to remove unbound peptides.
c As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of SDC reinfused into the patient can vary (see, Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate f) 32:272, 1997). Although 2-50 x 106 DC per patient are typically administered, larger number of DC, such as 107 or s can also be provided. Such cell populations typically contain between 50-90% DC.
In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC generated after treatment with an agent such as Progenipoietin T are injected into patients without 0 purification of the DC. The total number ofPBMC that are administered often ranges from 108 to 1010. Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for Sexample, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, ifProgenipoietin m 00 S mobilizes 2% DC in the peripheral blood of a given patient, and that patient is to receive 5 x 106 DC, then the S patient will be injected with a total of 2.5 x 108 peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin T is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art.
Ex vivo activation of CTIHTL responses Alternatively, ex vivo CTL or HTL responses to protein antigens of the invention can be induced by incubating, in tissue culture, the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, tumor cells.
Example 32: An Alternative Method of Identifying Motif-Bearing Peptides Another method of identifying and confirming motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can be transfected with nucleic acids that express the antigens of interest, e.g.
antigens of Figure 2. Peptides produced by endogenous antigen processing of peptides produced as a result of transfection will then bind to HLA molecules within the cell and be transported and displayed on the cell's surface.
Peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, by mass spectral analysis Kubo et aL, J Immunol. 152:3913, 1994). Because the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell..
Alternatively, cell lines that do not express endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then be used as described, they can then be transfected with nucleic acids that encode proteins of the invention, to isolate peptides corresponding to proteins of Figure 2 that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.
As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA 00 dllele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would ilso recognize that means other than transfection, such as loading with a protein antigen, can be used to provide a r' ource of antigen to the cell.
SExample 33: Complementary Polynucleotides SSequences complementary to Figure 2 protein-encoding sequences, or any parts thereof, are used to detect, lecrease, or inhibit expression of naturally occurring proteins of the invention. Although use of oligonucleotides ;omprising from about 15 to 30 base pairs is described, essentially the same procedure is used with.smaller or with arger sequence fragments. Appropriate oligonucleotides are designed using, OLIGO 4.06 software (National Siosciences) and the coding sequences of proteins of the invention. To inhibit transcription, a complementary o iligQnucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding C equence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to a Sigure 2 protein-encoding transcript.
Example 34: Purification of Naturally-occurring or Recombinant Figure 2 Proteins Using Specific Antibodies Naturally occurring or recombinant Figure 2 proteins are substantially purified by immunoaffinity hromatography using antibodies specific for a protein of the invention. An immunoaffinity column is constructed iy covalently coupling, anti-protein of Figure 2 antibodies to an activated chromatographic resin, such as ^NBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and vashed according to the manufacturer's instructions.
Media containing protein(s) of the invention are passed over the immunoaffinity column, and the column washed under conditions that allow the preferential absorbance of proteins of the invention high ionic trength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/Figure 2 rotein binding a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate an), and GCR.P is collected.
Example 35: Identification of Molecules Which Interact with Proteins of the Invention Figure 2 proteins, or biologically active fragments thereof, are labeled with 121 1 Bolton-Hunter reagent.
(See, Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled Figure 2 proteins, washed, and any wells with labeled Figure 2 protein complexes are assayed. Data obtained using different concentrations of Figure 2 proteins are used to calculate values for the number, affinity, and association of Figure 2 proteins with the candidate molecules.
Example 36: In ivo Assay for Tumor Growth Promotion The effect of a Figure 2 protein on tumor cell growth is evaluated in vive by gene overexpression in tumorbearing mice. For example, SCID mice are injected subcutaneously on each flank with 1 x 106 of either PC3, DU145 or 3T3 cells containing tkNeo empty vector or a nucleic acid sequence of the invention. At least two strategies can be used: Constitutive expression under regulation of a promoter such as a constitutive promoter obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B vinis and Simian Virus 40 (SV40), or from heterologous mammalian promoters, the actin promoter 00 or an immunoglobulin promoter, provided such promoters are compatible with the host cell systems, and (2) Regulated expression under control of an inducible vector system, such as ecdysone, tet, etc., provided such C' promoters are compatible with the host cell systems. Tumor volume is then monitored at the appearance of t palpable tumors and followed over time to determine if the cells expressing a gene of the invention grow at a faster rate and whether tumors of a Figure 2 protein-expressing cells demonstrate characteristics of altered aggressiveness ti enhanced metastasis, vascularization, reduced responsiveness to chemotherapeutic drugs).
SAdditionally, mice can be implanted with 1 x 10 of the same cells orthotopically to determine if a protein of the invention has an effect on local growth in the prostate or on the ability of the cells to metastasize, specifically to lungs, lymph nodes, and bone marrow.
The assay is also useful to determine the inhibitory effect of candidate therapeutic compositions, such as for example, Figure 2 protein-related intrabodies, Figure 2 gene-related antisense molecules and ribozymes.
00 0 Example 37: Tumors In Vivo, With Monoclonals specific to a Figure 2 Protein SThe significant expression of a Figure 2 proteins in cancer tissues of Table I and its restrictive expression in normal tissues, together with its expected cell surface expression, makes Figure 2 proteins excellent targets for antibody therapy. Similarly, Figure 2 proteins are a target for T cell-based immunotherapy. Thus, for Figure 2 genes expressed, in prostate cancer, the therapeutic efficacy of anti- Figure 2 protein mAbs in human prostate cancer xenograft mouse models is evaluated by using androgen-independent LAPC-4 and LAPC-9 xenografts (Craft, et al., Cancer Res, 1999. 59(19): p. 5030-6) and the androgen independent recombinant cell line PC3-of Figure 2 (see, Kaighn, et al., Invest Urol, 1979. 17(1): p. 16-23); analogous models are used for other cancers.
Antibody efficacy on tumor growth and metastasis formation is studied, in a mouse orthotopic prostate cancer xenograft models and mouse kidney xenograft models. The antibodies can be unconjugated, as discussed in this Example, or can be conjugated to a therapeutic modality, as appreciated in the art. Anti-Figure 2 protein mAbs inhibit formation of both the androgen-dependent LAPC-9 and androgen-independent PC3-Figure 2 protein tumor xenografts. Anti-Figure 2 protein mAbs also retard the growth of established orthotopic tumors and prolonged survival of tumor-bearing mice. These results indicate the utility of anti-Figure 2 protein mAbs in the treatment of local and advanced stages of prostate cancer. (See, (Saffran, et al., PNAS 10:1073-1078 or World Wide Web URL www.pnas.org/cgi/doi/10. 1073/pnas.051624698).
Administration of the anti-Figure 2 protein mAbs lead to retardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumorbearing mice. These studies indicate that proteins of the invention are attractive targets for immunotherapy and demonstrate the therapeutic potential of anti-Figure 2 protein mAbs for the treatment of local and metastatic cancer.
This example demonstrates that unconjugated Figure 2 protein-related monoclonal antibodies are effective to inhibit the growth of human prostate tumor xenografts and human kidney xenografts grown in SCID mice; accordingly a combination of such efficacious monoclonal antibodies is also effective.
Tumor inhibition using multiple unconjugated mAbs 00 Materials and Methods Figure 2 Protein-related Monoclonal Antibodies: C Monoclonal antibodies are raised against proteins of the invention as described in Example 10. The t ntibodies are characterized by ELISA, Western blot, FACS, and immunoprecipitation for their capacity to bind to a e respective protein of the invention. Epitope mapping data for, the anti-Figure 2 protein mAbs, as etermined by ELISA and Western analysis, indicate that the antibodies recognize epitopes on the respective Figure protein. Immunohistochemical analysis of prostate cancer tissues and cells with these antibodies is performed.
The monoclonal antibodies are purified from ascites or hybridoma tissue culture superatants by Protein-G epharose chromatography, dialyzed against PBS, filter sterilized, and stored at -20 0 C. Protein determinations are Serformed by a Bradford assay (Bio-Rad, Hercules, CA). A therapeutic monoclonal antibody or a cocktail Somprising a mixture of individual monoclonal antibodies is prepared and used for the treatment of mice receiving C abcutaneous or orthotopic injections of LAPC-9 prostate tumor xenografts.
00 Cancer Xenografts and Cell Lines The LAPC-9 xenograft, which expresses a wild-type androgen receptor and produces prostate-specific ntigen (PSA), is passaged in 6- to 8-week-old male ICR-severe combined immunodeficient (SCID) mice (Taconic arms) by s.c. trocar implant (Craft, et al., supra). The prostate carcinoma cell line PC3 (American Type ,ulture Collection) is maintained in RPMI supplemented with L-glutamine and 10% FBS.
Recombinant PC3 and 3T3- cell populations expressing a protein of the invention are generated by :troviral gene transfer as described in Hubert, et al., STEAP: a prostate-specific cell-surface antigen highly Kpressed in human prostate tumors. Proc Nati Acad Sci U S A, 1999. 96(25): p. 14523-8. Anti-protein of the ivention staining is detected by using an FITC-conjugated goat anti-mouse antibody (Southern Biotechnology ssociates) followed by analysis on a Coulter Epics-XL flow cytometer.
Xenograft Mouse Models.
Subcutaneous tumors are generated by injection of I x 10 6 LAPC-9, PC3, recombinant PC3-protein f the invention, 3T3 or recombinant 3T3-protein of the invention cells mixed at a 1:1 dilution with Matrigel Dollaborative Research) in the right flank of male SCID mice. To test antibody efficacy on tumor formation, i.p.
ntibody injections are started on the same day as tumor-cell injections. As a control, mice are injected with either urified mouse IgG (ICN) or PBS; or a purified monoclonal antibody that recognizes an irrelevant antigen not expressed in human cells. In preliminary studies, no difference is found between mouse IgG or PBS on tumor growth. Tumor sizes are determined by vemier caliper measurements, and the tumor volume is calculated as length x width x height. Mice with s.c. tumors greater than 1.5 cm in diameter are sacrificed. PSA levels are determined by using a PSA ELISA kit (Anogen, Mississauga, Ontario). Circulating levels of, anti-Figure 2 protein mAbs are determined by a capture ELISA kit (Bethyl Laboratories, Montgomery, TX). (See, Saffran, et al., PNAS 10:1073-1078 or www.pnas.org/cgi/ doi/10.1073/pnas.051624698) Orthotopic injections are performed under anesthesia by using ketamine/xylazine. For prostate orthotopic studies, an incision is made through the abdominal muscles to expose the bladder and seminal vesicles, which then are delivered through the incision to expose the dorsal prostate. LAPC-9 or PC3 cells (5 x 10 mixed with Matrigel are injected into each dorsal lobe in a 10-dl volume. To monitor tumor growth, mice are bled on a weekly basis for determination of PSA levels. The mice are segregated into groups for the appropriate treatments, with anti-protein of the invention or control mAbs being injected i.p.
A
Anti-Figure 2 Protein mAbs Inhibit Growth of Respective Figure 2 Protein-Expressing Xenograft-Cancer 0 Tumors O The effect of anti-Figure 2 protein mAbs on tumor formation is tested by using LAPC-9 and recombinant SPC3-protein of the invention orthotopic models. As compared with the s.c. tumor model, the orthotopic model, which requires injection of tumor cells directly in the mouse prostate or kidney, respectively, results in a local tumor growth, development of metastasis in distal sites, deterioration of mouse health, and subsequent death (Saffran, et al., PNAS supra; Fu, et al., Int J Cancer, 1992. 52(6): p. 987-90; Kubota, J Cell Biochem, 0 1994. 56(1): p. The features make the orthotopic model more representative of human disease progression and allowed us to follow the therapeutic effect of mAbs on clinically relevant end points.
SAccordingly, tumor cells are injected into the mouse prostate or kidney, and 2 days later, the mice are segregated into two groups and treated with either: a) 200-500gg, of anti-Figure 2 protein Ab, or b) PBS three times per week for two to five weeks.
A major advantage of the orthotopic prostate-cancer model is the ability to study the development of 00 metastases. Formation of metastasis in mice bearing established orthotopic tumors is studied by IHC analysis on lung sections using an antibody against a prostate-specific cell-surface protein STEAP expressed at high levels in C1 LAPC-9 xenografts (Hubert, et al., Proc Natl Acad Sci U S A, 1999. 96(25): p. 14523-8).
Mice bearing established orthotopic LAPC-9 or recombinant PC3-Figure 2 protein tumors are administered 1000g injections of either anti-Figure 2 protein mAbs or PBS over a 4-week period. Mice in both groups are allowed to establish a high tumor burden (PSA levels greater than 300 ng/ml for 1APC-9), to ensure a high frequency of metastasis formation in mouse lungs. Mice then are killed and their prostate and lungs are analyzed for the presence of tumor cells by IHC analysis.
These studies demonstrate a broad anti-tumor efficacy of anti-Figure 2 protein antibodies on initiation and progression of prostate cancer in xenograft mouse models. Anti-Figure 2 protein antibodies inhibit tumor formation of both androgen-dependent and androgen-independent tumors, retard the growth of already established tumors, and prolong the survival of treated mice. Moreover, anti-Figure 2 protein mAbs demonstrate a dramatic inhibitory effect on the spread of local prostate tumor to distal sites, even in the presence of a large tumor burden. Thus, anti- Figure 2 protein mAbs are efficacious on major clinically relevant end points (tumor growth), prolongation of survival, and health.
Example 38; Therapeutic and Diagnostic use of Antibodies specific to a protein of Figure 2 Anti-protein of Figure 2 monoclonal antibodies are safely and effectively used for diagnostic, prophylactic, prognostic and/or therapeutic purposes in humans. Western blot and immunohistochemical analysis of cancer tissues and cancer xenografts with anti-protein of Figure 2 mAb show strong extensive staining in carcinoma but significantly lower or undetectable levels in normal tissues. Detection of a protein of Figure 2 in carcinoma and in metastatic disease demonstrates the usefulness of the mAb as a diagnostic and/or prognostic indicator. Anti-protein of Figure 2 antibodies are therefore used in diagnostic applications such as immunohistochemistry of biopsy specimens to detect cancer from suspect patients.
As determined by flow cytometry, anti-protein of Figure 2 mAbs specifically bind to carcinoma cells.
Thus, anti-protein of Figure 2 antibodies are used in diagnostic whole body imaging applications, such as radioimmunoscintigraphy and radioimmunotherapy, (see, Potamianos et. al. Anticancer Res 20(2A):925- 948 (2000)) for the detection of localized and metastatic cancers that exhibit expression of a protein of Figure 2.
Shedding or release of an extracellular domain of a protein of Figure 2 into the extracellular milieu, such as that seen for alkaline phosphodiesterase BI0 (Meerson, N. Hepatology 27:563-568 (1998)), allows diagnostic 00 tection of a protein of Figure 2 by corresponding anti-protein of Figure 2 antibodies in serum and/or urine 0 mples from suspect patients.
Anti-protein of Figure 2 antibodies that specifically bind protein of Figure 2 are used in therapeutic C plications for the treatment of cancers that express that protein of Figure 2. Anti-protein of Figure 2 antibodies Sused as an unconjugated modality and as a conjugated form in which the antibodies are attached to one of t' rious therapeutic or imaging modalities well known in the art, such as a prodrugs, enzymes or radioisotopes. In eclinical studies, unconjugated and conjugated anti-protein of Figure 2 antibodies are tested for efficacy of tumor evention and growth inhibition in the SCID mouse cancer xenograft models, kidney cancer models AGS-K3 Sd AGS-K6, (see, e.g.,,the Example entitled "Monoclonal Antibody-mediated Inhibition of Prostate Tumors In O Conjugated and unconjugated anti-protein of Figure 2 antibodies are used as a therapeutic modality in man clinical trials either alone or in combination with other treatments as described in the following Examples.
00 S Example 39: Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas through use of Human Antibodies Specific for a Protein of Figure 2 In vive Antibodies are used in accordance with the present invention which recognize an epitope of a Figure 2 tein, and are used in the treatment of certain tumors such as those listed in Table I. Based upon a number of :tors, including Figure 2 protein expression levels, tumors such as those listed in Table I are presently preferred lications. In connection with each of these indications, three clinical approaches are successfully pursued.
Adjunctive therapy: In adjunctive therapy, patients are treated with antibodies of the invention, antibodies that specifically bind a protein of the invention, in combination with a chemotherapeutic or tineoplastic agent and/or radiation therapy. Primary cancer targets, such as those listed in Table I, are treated der standard protocols by the addition anti-Figure 2 protein antibodies to standard first and second line therapy.
otocol designs address effectiveness as assessed by reduction in tumor mass as well as the ability to reduce usual ses of standard chemotherapy. These dosage reductions allow additional and/or prolonged therapy by reducing se-related toxicity of the chemotherapeutic agent Anti-Figure 2 protein antibodies are utilized in several junctive clinical trials in combination with the chemotherapeutic or antineoplastic agents adriamycin (advanced )strate carcinoma), cisplatin (advanced head and neck and lung carcinomas), taxol (breast cancer), and xorubicin (preclinical).
II.) Monotherapy: In connection with the use of the anti-Figure 2 protein antibodies in monotherapy of tumors, the antibodies are administered to patients without a chemotherapeutic or antineoplastic agent. In one embodiment, monotherapy is conducted clinically in end stage cancer patients with extensive metastatic disease.
Patients show some disease stabilization. Trials demonstrate an effect in refractory patients with cancerous tumors.
III.) Imaging Agent: Through binding a radionuclide iodine or yttrium Y) to anti-Figure 2 protein antibodies, the radiolabeled antibodies are utilized as a diagnostic and/or imaging agent. In such a role, the labeled antibodies localize to both solid tumors, as well as, metastatic lesions of cells expressing a protein of the invention. In connection with the use of the anti-Figure 2 protein antibodies as imaging agents, the antibodies are used as an adjunct to surgical treatment of solid tumors, as both a pre-surgical screen as well as a post-operative follow-up to determine what tumor remains and/or returns. In one embodiment, a In)-Figure 2 protein antibody is used as an imaging agent in a Phase I human clinical trial in patients having a carcinoma that expresses a protein of the invention (by analogy see, Divgi et al. J. Nail. Cancer Inst. 83:97-104 (1991)). Patients are followed with standard anterior and posterior gamma camera. The results indicate that primary lesions and metastatic lesions 00 are identified Dose and Route of Administration O As appreciated by those of ordinary skill in the art, dosing considerations can be determined through comparison with the analogous products that are in the clinic. Thus, anti-Figure 2 protein antibodies can be j administered with doses in the range of 5 to 400 mg/m2, with the lower doses used, in connection with safety Sstudies. The affinity of anti-Figure 2 protein antibodies relative to the affinity of a known antibody for its target is one parameter used by those of skill in the art for determining analogous dose regimens. Further, anti-Figure 2 0 protein antibodies that are fully human antibodies, as compared to the chimeric antibody, have slower clearance; accordingly, dosing in patients with such fully human anti- Figure 2 protein antibodies can be lower, perhaps in the range of 50 to 300 mg/m 2 and still remain efficacious. Dosing in mg/in 2 as opposed to the conventional measurement of dose in mg/kg, is a measurement based on surface area and is a convenient dosing measurement that is designed to include patients of all sizes from infants to adults. Three distinct delivery approaches are useful Ci for delivery of anti-Figure 2 protein antibodies. Conventional intravenous delivery is one standard delivery 00 technique for many tumors. However, in connection with tumors in the peritoneal cavity, such as tumors of the C ovaries, biliary duct, other ducts, and the like, intraperitoneal administration may prove favorable for obtaining high dose of antibody at the tumor and to also minimize antibody clearance. In a similar manner, certain solid tumors possess vasculature that is appropriate for regional perfusion. Regional perfusion allows for a high dose of antibody at the site of a tumor and minimizes short term clearance of the antibody.
Clinical Development Plan (CDP) Overview: The CDP follows and develops treatments of anti-Figure 2 protein antibodies in connection with adjunctive therapy, monotherapy, and as an imaging agent. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trials are open label comparing standard chemotherapy with standard therapy plus anti-Figure 2 protein antibodies. As will be appreciated, one criteria that can be utilized in connection with enrollment of patients is Figure 2 protein expression levels in their tumors as determined e.g. from biopsy specimens. As with any protein or antibody infusion-based therapeutic, safety concerns are related primarily to (i) cytokine release syndrome, hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express a protein of the invention. Standard tests and follow-ups are utilized to monitor each of these safety concerns. Anti-Figure 2 protein antibodies are found to be safe upon human administration.
Example 40: Human Clinical Trial Adiunctive Therapy with Human Antibody (Specific to a Protein of Figure 2) and Chemotherapeutic Agent A phase I human clinical trial is initiated to assess the safety of six intravenous doses of a human anti- Figure 2 protein antibody in connection with the treatment of a solid tumor, a cancer of a tissue listed in Table I. In the study, the safety of single doses of anti-Figure 2 protein antibodies when utilized as an adjunctive therapy to an antineoplastic.or chemotherapeutic agent, such as cisplatin, topotecan, doxorubicin, adriamycin, taxol, or the like,is assessed. The trial design includes delivery of six single doses of an anti-Figure 2 protein antibody with dosage of antibody escalating from approximately about 25 mg/m 2 to about 275 mg/m 2 over the course of the treatment in accordance with the following schedule: 00 DayO Day7 Day 14 Day21 Day28 mAbDose 25 75 125 175 225 275 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 Chemotherapy (standard dose) .Patients are closely followed for one-week following each administration of antibody and chemotherapy.
particular, patients are assessed for the safety concerns mentioned above: cytokine release syndrome, i.e., Cl potension, fever, shaking, chills; (ii) the development of an immunogenic response to the material 00 Svelopment of human antibodies by the patient to the human antibody therapeutic, or HAHA response); and, (iii) Sicity to normal cells that express a protein of the invention. Standard tests and follow-up are utilized to monitor ch of these safety concerns. Patients are also assessed for clinical outcome, and particularly reduction in tumor iss as evidenced by MRI or other imaging..
The anti-Figure 2 protein antibodies are demonstrated to be safe and efficacious, Phase II trials confirm the icacy and refine optimum dosing.
Example 41: Human Clinical Trial: Monotherapy with Human Antibody Specific to a Protein of Fure 2 SAnti-Figure 2 protein antibodies are safe in connection with the above-discussed adjunctive trial, a Phase II man clinical trial confirms the efficacy and optimum dosing for monotherapy. Such trial is accomplished, and tails the same safety and outcome analyses, to the above-described adjunctive trial with the exception being that tients do not receive chemotherapy concurrently with the receipt of doses of anti-Figure 2 protein antibodies.
Example 42: Human Clinical Trial: Diagnostic Imaging with Antibody Specific to a Protein of FiNure 2 Once again, as the adjunctive therapy discussed above is safe within the safety criteria discussed above, a human clinical trial is conducted concerning the use of anti-Figure 2 protein antibodies as a diagnostic imaging agent. The protocol is designed in a substantially similar manner to those described in the art, such as in Divgi et al.
J. Natl. Cancer Inst. 83:97-104 (1991). The antibodies are found to be both safe and efficacious when used as a diagnostic modality.
Example 43: Effects on Tumor Growth and Promotion The genes in Figure 2 contribute to the growth of cancer cells. The role of these genes in tumor growth is investigated in a variety of primary and transfected cell lines including prostate, colon, bladder and kidney cell lines as well as NIH 3T3 cells engineered to stably express the gene of interest. Parental cells lacking the gene of interest and cells expressing that gene are evaluated for cell growth using a well-documented proliferation assay (Fraser SP, Grimes JA, Djamgoz MB. Prostate. 2000;44:61, Johnson DE, Ochieng J, Evans SL. Anticancer Drugs. 1996, 7:288).
To determine the role of genes in Figure 2 in the transformation process, the effect of individual genes in 00 colony forming assays is investigated. Parental NIH3T3 cells lacking the gene of interest are compared to NHI-3T3 cells expressing that gene, using a soft agar assay under stringent and more permissive conditions (Song Z. et al.
SCancer Res. 2000;60:6730). It is found that genes set forth in Figure 2 asversely affect transformation.
c To determine the role of the genes of Figure 2 in invasion and metastasis of cancer cells, a well-established Sassay is used, a Transwell Insert System assay (Becton Dickinson) (Cancer Res. 1999; 59:6010). Control i) cells, including prostate, colon, bladder and kidney cell lines lacking the gene of interest are compared to cells expressing that gene. Cells are loaded with the fluorescent dye, calcein, and plated in the top well of the Transwell insert coated with a basement membrane analog. Invasion is determined by fluorescence of cells in the lower chamber relative to the fluorescence of the entire cell population. It is found that genes set forth in Figure 2 Sadversely invasion and/or metastasis.
The genes in Figure 2 also play a role in cell cycle modulation and apoptosis. Parental cells and cells C expressing the gene of interest are compared for differences in cell cycle regulation using a well-established BrdU 00 Sassay (Abdel-Malek ZA. J Cell Physiol. 1988, 136:247). In short, cells are grown under both optimal (full serum) Sand limiting (low serum) conditions are labeled with BrdU and stained with anti-BrdU Ab and propidium iodide.
Cells are analyzed for entry into the G1, S, and G2M phases of the cell cycle. Alternatively, the effect of stress on apoptosis is evaluated in control parental cells and cells expressing the gene of interest, including normal and tumor prostate, colon and lung cells. Engineered and parental cells are treated with various chemotherapeutic agents, such as etoposide, flutamide, etc, and protein synthesis inhibitors, such as cycloheximide. Cells are stained with annexin V-FITC and cell death is measured by FACS analysis. The modulation of cell death by genes of Figure 2 play a critical role in regulating tumor progression and tumor load.
When a genes set for in Figure 2, and/or its respective gene product, plays a role in cell growth, transformation, invasion or apoptosis, it is used as a target for diagnostic, prognostic, preventative and therapeutic purposes.
Throughout this application, various website data content, publications, patent applications and patents are referenced. (Websites are referenced by their Uniform Resource Locator, or URL, addresses on the World Wide Web.) The disclosures of each of these references are hereby incorporated by reference herein in their entireties.
The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are functionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention.
TABLES
00 'ABLE 1: Exemplary Tissues that Express a Gene of Figure 2 When Malignant.
00 ______Prostate Bladder Kidney Colon Lung Pancreas Ovary Breast Other 74P3B3 X X X X 83P4B8 X X X X X X X X 100P1D4 X X X X X X X X Uterus, Stomach, Rectum, _____Cervix 1S1P1C7A X X X X X X X 151P4EI1 X X X X 154P2A8 X X X X X X 156PID4 X X X X X X X L56PSC1Z X X X X X X X 159P2B5 X L61P2B~a X X X X X X X X 179P3G7 X X X X X X [84P3CIOB X X X L84P3GI0 X X X X X X L85P2C9 X X X X X X X X L85P3C2 X 186P1H9 X X X X X X Testis L87P3F2 192P2G7 X X. X X X X -tX TABLEDU: AMINO ACID ABBREVIATIONS SINGLE LETTER THREE LETTER FULL NAME F Phe phenylalanine L Leu leucine S Ser serine Y. Tyr tyrosine C Cys cysteine W Trp tryptophan P Pro proline H His histidine Q Gin gluftmiine R Arg argiie Sle isoleucine M Met methionine T Thr threonine N Asn asparagine K Lys lysine V Val valine A Ala alanine D Asp aspartic acid E Glu glutamic acid G Gly glycine TABLE III: AMINO ACED SUBSTITUTION MATRIX 00 Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix (block substitution a trix). The higher the value, the more likely a substitution is found in related, natural proteins. (See URL CK ww.ikp.unibe.ch/nianual/blosum62.htn-) A C D E FPG Hl IK L M.N P Q R S T V W Y.
kn4 0 -2 -1 -2 0 -2 -1 -1 -1 -1 -2 -1I -I 1 1 0 0 -3 -2 A 9-3 -4 -2-3 -3-1 -3-1-1 -3 -3-3-3 1-1- 1-2-2C 6 2 1-1-3 1-4 -3 1-1 0 -2 0-1 -3-4-3 D -3 -2 0 -3 1 -3 -2 0-1 2 0 0-1 -2 -3-2 E 6 -3-1 0-3 0 0-3-4 -3-3 -2-2 11 3 F 6 -2-4 -2-4 -3 0 -2-2 -2 0 -2-3 -2-3 G 8K 8-3 -1 -3-2 1 -2 0 0 -1 -2 -3-2 2 H 00 4 -3 21-3 -3 -3-3 -2-1 3-3 -1I -2-1 0- 112 0-1 K 4 2 -3 -3 -2 -2 -2 -1 1 -2 -1 L -2 -2 0- 1-1 1 1-1M 6 -2 0 0 1 0 -3-4-2 N 7 -1 -2 -1 -1 -2 -4 -3 P 1 0-1 -2 -2 -1 Q -1 -1 -3 -3 -2 R 4 1 -2 -3 -2 S 0 -2 -2 T 4 -3 1 V 11 2 W 7 Y TABLE IV HLA Class I SupermotifslNotifs SUPERMOTIFS POSMON POSITON POSITON 2 (Primary Anchor) 3 (Primary Anchor) C Terminus (Primary Anchor) Al TIL VMFWY A2 L1VMATQ P/MA TL A3 VSMATLI
RK
A24 YFWWLMT FIYWLM B7 P
VILFMWYA
B27 BilK
FYLWMIVA
B4ED
FWYLT[MVA
B158 ATS FWYLIVAM B62 QLIVMP FWYMIVLA
MOTIFS
Al TSM Y Al DEAS 'Y A2.1 LM VQIA T VLIMA T A3 LNMIATFCGD KYPJIFA All VTMLISAGNCDF KRYH A24 YKIWM MAIW A*3 101 MVIALIS RK A*3301 MYALFIST BK A*6801 AVTMSLI RK B3*0702 P LMFWYAIV B3*3501 P LMFWYI VA B51 P LWVFWYAM B*5301 P IMWYALV B*5401 IP ATIVLMFWYI Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.
TABLE IV HLA CLASS HI SUPERMOTIF 2008201044 05 Mar 2008 TABLE P/ HLA Class H[ Motifs MOTIFS P anchorl1 2 3 4 5 1* anchor 6 7 8 9 DR4 preferred FMYLIVW M T I VSTCPAL!M MH MIH deleterious W R WDE DRI preferred MFLIVWY PAMQ VMATSPL!C M AVM deleterious C CHi FD CWD GDE D DR7 preferred MFLIVWY M W A rVMSACTPL M IV deleterious C G GRD N G DR3 MOTIFS P anchorl1 2 3 1l anchor 4 5 1 *anchor 6 motif a LIVNEY D preferred motif b LM~ffAY DNQEST KRH prferred DR MFLIYWY VMISTACPL! Supermotif Italicized residues indicate less preferred or "tolerated" residues 2008201044 05 Mar 2008 TABLE IV HLIA Class I Supermotifs
POSITON:
4 5 6 7 8 C-termiinus
SUPER-
MOTIFS
Al 10 Anchor 10 Anchor TILI'MS
FWY
A2 10 Ancho 10 Aco LIVmATQ
LIVMAT
A3 preferred 10 Anhr YFW YEW YEW P 10 Anchor VSMATLI
RK
deleterious DE DE P (4/5) A24 1 0 Anhor 0 Anchor YE WIVLMT FIY WLM B7 preferred FWY 10* Anchor FWY FWY l 0 Anchor LIYM P
VTILFMWYA
deleterious DE DE G QN DE B27 10 Anchor 1 0 Anchor RHK
FYLWMIVA
B44 1 0 Anchor 1' Anchor ED
FWYLIMVA
B58 10 AnchorPAco ATS FWYLfVMA B62 10 Ancho 10 Anchor QLWMP FWYMJfVLA4 Italicized residues indicate less preferred or -tolerated" residues 2008201044 05 Mar 2008 TABLE IV HLA Class I Motifs POSITION: 1 2 3 4 5 6 7 8 9 C-terminus or C-terminus AlI preferred GEY iAnch DEA YFW P DEQN YFW 1 0 Anchor 9-mer W STM Y deleterious DE RHKLIP A G A AlI preferred GRHK ASTCL1YM l 0 Anchor GSTC ASTC LIVM DE l 0 Anchor 9-mer DEAS Y deleterious A RHKDEPY DE PQN RHK PG GP
EW
Al preferred YFW l 0 Anchor DEAQN A YFWQN PASTC GDE P l 0 Anchor 1 0-mer STM Y -deleterious GP R1HXGLIVM DE RHK QNA RHKYFW RHK A SAl preferred YEW STCLIVM l 0 Anchor A YFW PG G YFW l 0 Anchar lO-mer DEAS Y deleterious RHK RUKDEPY P G PRHK QN
FW
A2.1 preferred YEW l 0 Anchor YFW STC YFW A P l 0 Anchor 9-mer LMIVQAT VLM T deleterious DEP DERKH RKH DERKH Italicized residues indicate less preferred or "tolerated"' residues 2008201044 05 Mar 2008 TABLE IV HLA Class I Motifs, continued POSITON: 1 2 3 4 5 6 7 8 9 C-Termninus A2.1I preferred AYFW I'Anchor LVIM G G FYWL I'Anchor lO-mer LM!VQA vimv VLIMAT
T
deleterious DEP DE RKHA P RKH DERKH RKH A3 preferred RHK l 0 Anchor YEW PRHKYEW A YFW P l 0 Anchor LMVISA
KYRHFA
TCGD
deleterious DEP DE All preferred A l 0 Anchor YFW YEW A YEW YEW P l 0 Anchor VTLMIS KR YH
AGNCDF
deleterious DEP A G A24 preferred YFWRHK l 0 Anchor STC YEW YFW l 0 Anchor 9-mer YEWM
FLIW
deleterious DEG DE G QNP DERH G AQN
K
A24 preferred I OAnchor P YFWP P I'Anchor 1O-mer YFWM
FLIW
deleterious GDE QN RHK DE A QN DEA A3 101 preferred RHK I 0 Anchor YEW P YEW YEW AP l 0 AnchOT MVTALIS
RK
deleterious DEP DE ADE DE DE DE A3301 preferred l 0 Anchor YFW AYFW I'Anchor MYALFI
RK
ST
deleterious GP DE Italicized residues indicate less preferred or "tolerated" residues 2008201044 05 Mar 2008 TABLE IV HLA Class I Motifs, continued' POSITION 1 2 3 4 5 6 7 8 9 C-Terminus A680 1 preferred YFWSTC l 0 Anchor YFWLIV YEW P l 0 Ancho AVTMSLI M RK deleterious GP DEG RHK A B0702 preferred RIIKFW l 0 Anchor RHK RHK RHK RHK PA l 0 Anchor y PLNvFWYAIV deleterious DEQNP DEP DE DE GDE QN DE B3501 preferred FWYLIV l 0 Anchor FWY FWY l 0 Anchor M P LbmWlYIV
A
deleterious AGP G G B51 preferred LIVMfFW l 0 Anchor EWY STC FWY G FWY l 0 Anchor yP LIVFWYAM deleterious AGPDER DE 0 DEQN GDE
HKSTC
B5301 preferred LIVMIFW l 0 Anchor FWY STC FW"Y LVMffwy EW-Y I*Anchor Y P RMFWYAL
V
deleterious AGPQN G RHTKQN DE B5401 preferred FWY l 0 Anchor FWYL LIVM ALIVM FWYAP l 0 Anchor P IYM ATIVLMF
WY
deleterious GPQNDE GDES RJ{KDE DE QNDGE DE
TC
Italicized residues indicate less preferred or "tolerated" residues. The information in this Table is specific for 9-mers unless otherwise specified.
Tables V to XVMI: (on a target by taraet baisis) Tbl :V-74P3B3-Clfl.B-Frml. 1-A1-9 Posl 123456789 Score SeqID 27 STENLITLF 22.500 37 TVEQYCPWF 18.000 87 ASEPFQSEN 13.500 FPEHGTMDF 11.250 33 TLFPTVEQY 5.000 148 KIEKPYMPR 4.500 140 HVGPSAA.PK 4.000 115 GGEDSEEDF 2.250 8 HSAYLHFIK 1.500 118 DSEEDFEEN 1.350 105 SAEEGGDAA 0.900 GIA.LKQVCK 0.400 92 QSENEAYPP 0.270 TMDFKDWEQ 0.250 67 CKEGKFIPL 0.225 DWEQVGIAL 0.225 143 PSAAPKIEK 0.150 129 KPGDELISF 0.125 126 NTDKPGDEL 0.125 170 LIGIIRSGR 0.100 96 EAYPPAERI 0.100 112 AAEGGEDSE 0.090 137 FEEHVGPSA 0.090 3 QSKSKHSAY 0.075 26 ASTENLITL 0.075 32 ITLFPTVEQ 0.050 KASTENLIT 0.050 9 SAYLiHFIKL 0.050 53 FIDWEQVGI 0.050 12 LHFIKLLLK 0.050 151 KPYMPRCLK 0.050 145 AAPKIEKPY 0.050 77 AWSNWAIVK 0.050 11 YLjHFIKLLL 0.050 18 RLLIGIIRS 0.050 KAASEPFQS 0.050 123 FEENTDKPG 0.045 119 SEEDFEENT 0.045 94 ENEAYPPAE 0.045 136 SFEEHVGPS 0.045 78 WSNWAIVKA 0.030 167 SRLLIGIIR 0.025 LTAWSbTWAI 0.025 6 SIG{SAYhHF 0.025 231 GDELISFEE 0.022 NLITLFPTV 0.020 56 WEQVGIALK 0.020 157 CLKQRRALR 0.020 17 LLLKRAGIK 0020 __w 116 KLLLKRAGI 0.020 Tbl :V-C1.B-Fr.1-A1-9-74P3B3 Pos 123456789 Score SeqID 104 ISAEEGGDA 0.015 64 KQVCKEGKF 0.015 29 ENLITLFPT 0.013 98 YPPAERISA 0.013 109 GGDAABGGE 0.013 144 SAAPKIEKP 0.010 41 YCPWFPEHG 0.010 56 QVGIALKQV 0.010 40 QYCPWFPEH 0.010 169 LLIGIIRSG 0.010 133 ELISFEEHV 0.010 72 FIPLTAWSN 0.010 83 IVKAASEPF 0.010 ~Ill DAAEGGEDS 0.010 95 NEAYPPAER 0.010 71 KFIPLTAWS 0.010 63 LKQVCKEGK 0.010 121 EDFEENTDK 0.010 134 LISFEEHYG 0.010 106 AEEGGDAAB 0.009 165 RSSRLLIGI 0.008 57 EQVGIALKQ 0.007 97 AYPPAERIS 0.005 163 ALRSSRLLI 0.005 153 YMPRCLKQR 0.005 141 VGPSAAPKI 0.005 122 DFEENTDKP 0.005 135 ISFEEHVGP 0.003 5 KSIG{SAYLH 0.003 13 HFIIUJLLKR 0.003 152 PYNPRCLKQ 0.003 90 PFQSENEAY 0.003 108 EGGDAAEGG 0.003 1 MGQSKSKHS 0.003 171 IGIIRSGRL 0.003 89 EPFQSENEA 0.003 36 PTVEQYCPW 0.003 59 VGIALKQVC 0.003 154 MPRCLKQP.R 0.003 120 EEDFEENTD 0.003 48 HGTMDFKDW 0.003 73 IPLTAWSNW 0.003 164 LRSSRLLIG 0.003 116 GEDSEEDFE 0.003 49 GTMDFIDWE 0.003 128 DKPGDELIS 0.003 76 TAWSNWAIV 0.002 81 WAIVKAASE 0.002 100 PABRISABE 0.002 166 SSRLLIGII 0.002 Tbl:VI-74P3B3-Cln.B-Frm. 1-Al-la Poe 1234567890 Score SegID 144 SAAPKIEKPY 5.000 94 ENEAYPPAER 4.500 FPEHGTMDFK 4.500 92 QSENEAYPPA 2.700 455 DWEQVGIALK 1.800 87 ASEPFQSENE 1.350 11.8 DSEEDFEENT 1.350 32 ITLFPTVEQY 1.250 27 STENLITLFP 1.125 11 YhHFIK1LLLK 1.000 120 EEDFEENTDK 0.500 TMDFKDWEQV 0.250 142 GPSAAPKIEK 0.250 16 KLLLKRAGIK 0.200 I140 HVGPSAAPKI 0.200 148 KIEKPYNPRC 0.180 105 SAEEGGDAAE 0.180 26 ASTENLITLF 0.150 126 NTDKPGDELI 0.125 8.9 EPFQSENEAY 0.125 33 TLFPTVEQYC 0.100 169 LLIGIIRSGR 0.100 96 EAYPPAERIS 0.100 76 TAWSNWAIVK, 0.100 59 VGIALKQVCK 0.100 11.2 AABGGEDSEE 0.090 136 SFEEHVGPSA 0.090 67 CKEGKPIPJT 0.090 37 TVEQYCPWFP 0.090 106 AEEGGDAAEG 0.090 166 SSRLLIGIIR 0.075 KSKHSAYLHF 0.075 8 HSAYLHFIKL 0.075 7 IGHSAYLHFIK 0.050 LTAWSNWAIV 0.050 36 PTVEQYCPWF 0.050 KASTENLITL 0.050 137 FEEHVGPSAA 0.045 122 DFEENTDKPG 0.045 131 GDELISFEEH 0.045 44 WFPEHGTHDF 0.025 128 DKPGDELISF 0.025 12 LHFIKLLLKR 0.025 53 FKDWEQVGIA 0.025 114 EGGEDSEEDF 0.025 49 GTMDFKDWEQ 0.025 97 AYPPAERISA 0.025 115 GGEDSEEDFE 0.022 156 RCLKQRRALR 0.020 139 1EHVGPSAAPK 0.0204E ThLVI-74P~R~-CinA~-Wrm i-ni -in Poe 1234567890 Score SeqID 62 ALKQVCKEGK 0.020 31 LITLFPTVEQ 40.020 104 ISAEEGGDAA 0.015 135 ISFEEHVGPS 0.015 78 WSNWAIVKAA 0.01 151 KPYMPRCLKQ 0.013 109 GGDAABGGED 0.013 116 GEDSEEDFEE 0.013 170 LIGIIRSGRL 0.010 150 EKPYMPRCLK 0.010 86 AASEPFQSEN 0.010 9 SAYLHFIKJL 0.010 21 RAGIKASTEN 0.010 41 YCPWFPEHGT 0.010 133 ELISFEEHVG 0.010 82 AIVKAASEPF 0.010 168 RLLIGIIRSG 0.010 103 RISAEEGGDA 0.010 58 QVGIALKQVC 0.010 72 FIPLTAWSNW 0.010 1.23 FEENTDKPGD 0.009 100 PAERISAEEG 0.009 2 GQSKSKHSAY 0.007 130 PGDELISFEE 0.006 152 PYMPRCLKQR 0.005 66 VCKEGKFIPL 0.005 157 CIJKQRRALRS 0.005 163 ALRSSRLLIG 0.005 29 ENILITLFPTV 0.005 17 IJLLKRAGIKA 0.005 40 QYCPWFPEHG 0.005 1i62 RALRSSRLLI 0.005 71 KFIPLTAWSN 0.005 63 LKQVCKEGKF 0.005 153 YNPRCLKQRR 0.005 119 SEEDFEENTD 0.005 3 QSKSKHSAYL 0.003 3i9 EQYCPWFPEH 0.003 147 PKIEKPY4PR 0.003 127 TDKPGDELIS 0.003 171 IGIIRSGRLQ 0.003 84 VKAASEPFQS 0.003 24 IKASTENLIT 0.003 56 WEQVGIALKQ 0.003 1 MGQSKSKHSA 0.003 164 IiRSSRLLIGI 0.003 73 IPLTAWSNW'A 0.003 .125 ENTDKPGDEL 0.003 28 TENLITLFPT 0.003 167 SRLLIGIIRS 0.003 Tb'l:VTT-74P3B3-Cfl.B.Frm.1-A2-9 Poe 123456789 Score SeqID 16 K.JLLKRAGI 135.105 NLITLFPTV 132.149 11 YLHFIKLjLL 98.267 se QVGIALKQV 13.997 133 ELISFBEHV 9.713 76 TAWSNWAIV 5.588 QVCKEGKFI 5.021 68 KEGKFIPLT 4.432 LTAWSNWAI 1.847 9 SAYIJHFIKL 1.804 26 ASTENLITL 1.315 163 AILRSSRLLI 0.793 168 RLLIGIIRS 0.634 79 SNWAIVKAA 0.619 774 PLTAWSNWA 0.601 F93 SENEAYPPA 0.594 51 MDFKDWEQV 0.506 2 GQSKSIKiSA 0.504 42 CPWFPEHGT 0.404 72 FIPLTAWSN 0.354 78 WSNWAIVKA 0.343 7 KHSAYLHFI 0.321 33 TLFPTVEQY 0.311 18 LLKRAGIKA 0.296 14 FIKLLLKRA 0.253 162 RALRSSRLL 0.220 29 ENLITLFPT 0.180 4 SKSKHSAYL 0.163 91 FQSENEAYP 0.157 165 RSSRLLIGI1 0.157 98 YPPAERISA 0.149 KASTENLIT 0.149 141 VGPSAAPKI 0.116 153 YMPRCLKQR 0.114 156 RCLKQRRAL 0.103 54 IDWEQVGIA 0.101
AYLHFIK
1 L 0.096 119 SEEDFEEHT 0.071 169 LLIGIIRSG 0.058 126 NTDKPGDEL 0.056 23 GIKASTENL 0.050 to TMDFKDWEQ 0.032 34 LFPTVEQYC 0.032 49 GTMDFKDWE 0.032 171 IGIIRSGRL 0.031 104 ISAEEGGDA 0.029 137 FEEHVGPSA 0.028 53 FKDWEQVGI 0.027 24 IKASTENLI 0.025 S9 1VGIALKQVC 0.0231 Tbl :VII-74P3B3-Clfl.B.Frm.1-A2-9 POB 123456789 Score SeqID 85 KAASEPFQS 0.021 38 VEQYCPWFP 0.020 96 EAYPPAERI 0.017 129 KPGDELISF 0.016 149 IEKPYMPRC 0. 013 89 EPFQSENEA 0.009 105 SAEEQGDAA 0.009 138 EEHVGPSAA 0.007 134 LISFEEHVG 0.007 146 APKIEKPYM 0.006 31 LITLFPTVE 0.005 73 IPLTAWSNW 0.005 17 LLLKRaGIK- 0.005 41 YCPWFPEHG 0.004 20 KRAGIKAST 0.004 67 CKEGKFIPL 0.004 39 EQYCPWFPE 0.004 170 LIGIIRSGR 0.003 64 KQVC KEGKF 0.003 56 WEQVGIALK 0.003 61 IALKQVCKE 0.003 161 RRALRSSRL 0.003 62 ALKQVCKEG 0.003 135 ISFEEHVGP 0.003 37 TVEQYCPWF 0.002 60 GIALKQVCK 0.002 82 AIVKAASEP 0.002 86 AASEPFQSE 0.002 28 TENLITLFP 0.002 32 ITLFPTVEQ 0.001 151 KPYMPRCLK 0.001 145 AAPKIEKPY 0.001 j7 KFIPLTAWS 0.001 81 WAIVKAASE 0.001 159 KQRRALRSS 0.001 70 GKFIPLTAW 0.001 1 MGQSKSKHS 0.001 7148 KIEKPYMPR 0.001 166 SSRLLIGII 0.001 F157 CLKQRR.ALR 0.001 22 AGIKASTEN 0.000 35 FPTVEQYCP 0.000 150 EKPYMPRCL 0.000 123 FEENTDKPG 0.000 172 GIIRSGRLQ 0.000 132 DELISFEEM 0.000 116 GEDSEEDFE 0.000 113 AEGGEDSEE 0.000*___ 95 NEAYPPAER 10.000 103 RISAEEGGD 10.000 I Tbl: VIII-74P3B3-Cln.B-Frn.1-A2-10 Pos 1234567890 Score SegID 33 TLjFPTVEQYC 101.099 ']17 LLLKR~AGIKA 31.249 S64 KQVCKEGKFI 20.362 s TMDF1GDWEQV 16.737 S9 SAYLHFIKajL 8.298 54 KDWEQVGIAL 3.534 KASTENIJITL 2.388 28 TENLITLFPT 1.933 74 PLTAWSNWAI 1.721 57 EQVGIAILKQV 1.216 LTAWSNWAIV 1.145 S73 IPLTAWSNWA 1.122 132 DELISPEEHV 0.699 170 LIGIIRSGRL 0.649 00 162 RALRSSRLLI 0.536 145 AAPKIEKPYM 0.380 148 KIEKPYMPRC 0.352 (I78 WSNWAIVKAA 0.343 68 KEGKFIPLTA 0.338 29 ENLITLFPTV 0.239 41 YCPWFPEHGT 0.224 6 SIGISAYhHFI 0.183 58 QVGIALKQVC 0.178 11 YLHFIIGJLLK 0.158 168 RLLIGIIRSG 0.127 104 ISAEEGGDAA 0.111 NEAYPPAERI 0.099 88 SEPFQSENEA 0.097 IKLiLLKRAGI 0.091 103 RISAEEGGDA 0.089 72 FIPLTAWSNW 0.080 22 AGIKASTENL 0.068 66 VCKEGKFIPL 0.065 1 MGQSKS1KiSA 0.055 23 GIKASTENLI 0.050 153 YMPRCLKQRR 0.050 42 CPWFPEHGTM 0.035 140 HVGPSAAPKI 0.031 91 FQSENEAYPP 0.028 137 FEEHVGPSAA 0.028 126 NTDKPG;DELI 0.028 3 QSKSI~iSAYL 0.027 169 LLIGIIRSGR 0.025 49 GTMDFKDWEQ 0.024 NLITLFPTVE 0.023 125 ENTDKPGDEL 0.021 129 KPGDELjISFE 0.018 86 AASEPFQSEN 0.016 AYLjHFIKT LL 0.011 16 KLILLKRAGIK 0.010 Th1: VIII-74P3B3-Cln.B-Frm.1-A2-10 PoB 1234567890 Score SegID 18 LLKRAGIKAS 0.010 8 HSAYLHFIKJ 0.009 165 RSSRLLIGII 0.008 2 GOSKSIGHSAY 0.008 32 ITLFPTVEQY 0.007 24 IKASTENLIT 0.007 61 MALKQVCKEG 0.007 67 CKEGKFIPLT 0.006 164 LRSSRLLIGI 0.006 163 ALRSSRIJLIG 0.005 82 AIVKAASEPF 0.005 149 IEKPYMPRCL 0.005 s 38 VEQYCPWFPE 0.005 60 GIALKQVCKE 0.005 26 ASTENThITLF 0.005 79 SNWAIVKAAS 0.004 135 ISFEEHVGPS 0.004 134 LISFEEHVGP 0.003 31 LITLFPTVEQ 0.003 39 EQYCPWFPEH 0.003 37 TVEQYCPWFP 0.003 35 FPTVEQYCPW 0.003 92 QSENEAYPPA 0.003 65 QVCKEGKFIP 0.003 157 CLjKQRRALRS 0.003 133 ELISFEEHVG 0.002 70 GKFIPLTAWS 0.002 118 DSEEDFENT 0.002 77 AWSNWAIVKA 0.002 53 FKDWEQVGIA 0.002 85 KAASEPFQSE 0.001 71 KFIPLTAWSN 0.001 19 LKRAGIKAST 0.001 56 WEQVGIALKQ 0.001 93 SENEAYPPAE 0.001 151 KPYMPRCLKQ 0.001 144 SAAPKIEKPY 0.001 21 RAGIKASTEN 0.001 98 YPPAERISAE 0.001 84 VKAASEPFQS 0.001 44 WFPEHGTMDF 0.001 81 WAIVKAASEP 0.001 136 SFEEHVGPSA 0.001 154 MPRCLKQRRA 0.001 76 TAWSNWAIVK 0.001 97 AYPPA ERISA 0.001 116 GHDSEEDFEE 0.001 161 RRALRSSRLL 0.001 36 PTVQYCPWF 0.001 83 IVKAASEPFQ 0.000 00 Th IX-74F3B3-Cln.B-Frm._1-A3-9 Poo 123456789 Score SeqID 33 TLFPTVEQY 90.000 17 LLLKRAGIK 9.000 GIALKQVCK 6.000 151 KPYMPRCLK 4.500 157 CLKQRRALR 4.000 148 KIEKPYM'PR 3.600 153 YI4PRCLKQR 3.000 140~b HVGPSAAPK 3.000 16 KLIJLKRAGI 2.700 11 YLHFIKLjLL 1.800 163 AIJRSSRLLI 1.200 NLITLFPTV 0.900 170 LIGIIRSGR 0.600 37 TVEQYCPWF 0.600 18 LLKRAGIKA 0.400 12 LHFIKLLLK 0.300 8 ISAYLRFIK 0.300 133 ELISFEEHV 0.270 83 IVKAASEPF 0.200 23 GIKASTENL 0.180 168 RLLIGIIRS 0.180 12 KPGDELISF 0.180 9 SAYLHPIKL 0.180 27 STENLITLF 0.150 77 AWSNWAIVK 0.120 LTAWSNWAI: 0.090 56 WEQVGIALK 0.090 64 KQVCKEGKF 0.081 74 PLTAWSNWA 0.060 TMDFKDWEQ 0.060 126 *NTDKPGDEJ 0.045 121 EDFEENTDK 0.045 FPEHGTMDF 0.040 154 MPRCLKQRR 0.040 143 PSAAPKIEK 0.030 145 AAPKIEKPY 0.030 QVCKEGKFI 0.030 96 EAYPPAERI 0.020 63 LKQVCKEGK 0.020 3 QSKS1K{SAY 0.020 167 SRLLIGIIR 0.018 1:3 HFIIKJLLKR 0.018 NEAYPPAER 0.018 2 GQSKSKHSA 0.018 58 QVGIALKQV 0.015 62 ALKQVCKEG 0.015 14 FIKLLLKRA 0.015 49 GTMDFKDWE 0.013 46 PEHGTMDFK 0.013 26 1ASTENIIITL 0.013 'Phi §X-74P3B3-Cln.B-Frn.1-A3-9 Pos 123456789 Score SegID 169 LLIGIIRSG 0.010 76 TAWSNWAIV 0.010 165 RSSRLLIGI 0.009 5 KSKHSAYLH 0.009 7 KHSAYLHFI 0.008 42 CPWP'PEHGT 0.007 70 GKFIPLTAW 0.007 115 GGEDSEEDF 0.006 31 LITLFPTVE 0.006 72 .FIPLTAWSN 0.006 25 KASTENLIT 0.006 67 CKEGKFIPL 0.005 79 SNWAIVKAA 0.005 54 KDWEQVGIA 0.004 68 KEGKFIPLT 0.004 149 IEKPYMPRC 0.004 39 EQYCPWFPE 0.004 6 SIGISAYLEF 0.004 160 QRRALRSSR 0.004 98 YPPAERISA 0.004 85 KAASEPFQS 0.004 105 SAEEGGDAA 0.003 82 AIVKAASEP 0.003 73 IPLTAWSNW 0.003 89 EPFQSENEA 0.003 40 QYCPWFPEH 0.003 36 PTVEQYCPW 0.002 32 ITLFPTVEQ 0.002 10 AYLHFIKIJL 0.002 134 LISFEEHVG 0.002 146 APKIEKPYM 0.002 78 WSNWAIVKi 0.002 86 AASEPFQSE 0.001 166 SSRLLIGII 0.001 57 EQVGIALKQ 0.001 51 MDFKDWEQV 0.001 162 RALRSSRLL 0.001 127 TDKPGDELI 0.001 156 RCLKQRPAL 0.001 91 FQSE1NBAYP 0.001 66 VCKEGKFIP 0.001 61 IALjKQVCKE 0.001 172 GIIRSGRLQ 0.001 137 FEEHVGPSA 0.001 93 SEN7EAYPPA 0.001 119 SEEDFEENT 0.001 132 DELISFEEH 0.001 135 ISFEEKVGP 0.001 20 KRAGIKAST 10.001 141 1YCPWFPEHG 0.001 Tbl: X-74P3B3-Cln.B-Frm.1-A3-10 Pos 1234567890 Score SeqID 11 YLHFIKaLLLK 60.000 16 KLLLKRAGIK 27.000 62 ALKQVCKEGK 20.000 169 LLIGIIRSGR 13.500 76 TAWSNWAIVX 6.000 153 YMPRCLKQRR 4.000 33 TLFPTVEQYC 2.250 142 GPSAAPKIEK. 1.800 32 ITLFPTVEQY 0.900 1i7 LIJLKRAGIKA 0.600 159 KQRRAISRSSR 0.360 2 GQSKSKHSAY 0.360 B2 AIVKAASEPF 0.300 FPEHGTM'DFK 0.300 1T48 KIEKPYMPRC 0.270 TMDFKDWEQV 0.200 7 KHSAYLHFIK 0.180 23 GIKASTENLI 0.180 74 PLTAWSNWAI 0.180 NLITLFPTVE 0.090 140 HVGPSAAPKI 0.090 39 EQYCPWFPEH 0.051 157 CLKQRRALRS 0.080 9 SAYLHFIKLL 0.068 36 PTVEQYCPWF 0.068 KSKHSAYLHF 0.060 156 RCLKQRRALR 0.060 166 SSRLLIGIIR 0.060 163 ALRSSRLLIG 0.060 12 LHFIKLLLKR 0.060 89S EPFQSENEAY 0.060 66 VCKEGKFIPL 0.054 KASTENLITL 0.054 144 SAAPKIEKPY 0.045 54 KDWBQVGIAL 0.041 6 4 KQVCKEGKFI 0.041 59 VGIALKQVCK 0.030 18 LLKRAGIKAS 0.030 1261 1TDKPGDELI 0.030 26 ASTENLITLF 0.022 72 FIPLTAWSNW 0.020 sa QVGIAIJKQVC 0.020 GIALKQVCKE 0.018 162 RALRSSRLLI 0.018 170 LIGIIRSGRL 0.018 120 EEDFEENTDK 0.018 8 HSAYLHFIKLj 0.018 139 EHVGPSAAPK 0.013 49 G FDWEQ 0.013 175 LTAWSNWAIV 0.010 Tbl: X-74P3B3-Cln.B-Frm.1-A3-10 Pos 1234567890 Score SeglD 133 ELISFEEHVG 0.009 150 EKPYMPRCLK 009 55 DWEQVGIALK 0.009 73 IPLTAWSNWA 0.009 168 RLLIGIIRSG 0.007 44 WFPEHGTMDF 0.006 103 RISAEEGGDA 0.006 65 QVCKEGKFIP 0.006 37 TVEQYCPWFP 0.006 151 KPYMPRCLKQ 0.006 68 KEGKFIPLTA 0.005 94 ENEAYPPAER 0.004 57 EQVGIALKQV 0.003 27 STENLITLPP 0.003 42 CPWFPEHGTM 0.003 31 LITLFPTVEQ 0.003 3 QSKSIK{SAYL 0.003 147 PKIEI@YMPR 0.003 128 DKPGDELISF 0.003 91 FQSENEAYPP 0.003 10 AYLI{FIKLLL 0.003 85 KAASEPFOSE 0.003 6 SIGISAYLHFI 0.003 95 NEAYPPABRI 0.003 78 WSNWAIVKAA 0.002 145 AAPKIEKPYM 0.002 134 LISFEEHVGP 0.002 83 IVKAASEPFQ 0.002 35 FPTVEQYCPW 0.002 131 ODELISFEER 0.002 164 IJRSSRLLIGI 0.002 41 YCPWFPEHGT 0.002 104 ISAEEGGDAA 0.002 135 ISFEEHVGPS 0.001 28 TENLITLFPT 0.001 165 RSSRLLIGII 0.001 92 QSENEAYPPA 0.001 15 IKLLLKRAGI 0.001 22 AGIKASTENL 0.001 129 KCPGDELISFE 0.001 86 AASEPFQSEN 0.001 114 EGGEDSEEDF 0.001 132 DELISFEEHV 0.001 152 PYNPRCLKQR 0.001 67 CKEGKFIPLT 0.001 118 DSEEDFEENT 0.001 146 APKIEKPYMP 0.001 70 GKFIPLTAWS 0.001 79 SNWAIVKAAS 0.001 4 SKSKI{SAYLH 0.001 00 00 Tbl:XI-74P3B3-Cll.B-Frm. 1-A11-9 Poe 123456789 Score S eq I D 140 HVGPSAAPK 2.000 GIALKQVCK 1.200 151 KPYMPRCLK 1.200 17 LLLKRAGIK 0.600 148 KIEKPYMPR 0.480 13 HFIIOLLLKR 0.120 157 CLKQRRALR 0.080 170 LIGIIRSGR 0.080 12 LHFIKJLLK 0.080 8 HSAYLHFIK 0.060 56 WEQVGIALK 0.060 153 YMPRCLKQR 0.040 154 MPRCLKQRR 0.040 77 AWSNWAIVK 0.040 64 KQVCKEGKF 0.027 83 IVKA.ASEPF 0.020 63 LKQVCKEGK 0.020 37 TVEQYCPWF .0.020 LTAWSNWAI 0.020 16 KaLL!RAGI 0.018 2 GQSKSIGISA 0.018 167 SRLLIGIIR 0.012 NEAYPPAER 0.012 129 KPGDELISF 0.012 23 GIKASTENL 0.012 121 EDFEENTDK 0.012 126 NTDKPGDEL 0.010 QVCKEGKFI 0.010 L.8. QVGIALKQV 0.010 '27, STENLITLF 0.010 33 TLFPTVEQY 0.008 11 YIMFIKLLL 0.008 18 LIARAGIKA 0.008 9 SAYIHMK 0.008 163 ALRSSRLLI 0.008 NLITLaFPTV 0.006 46 PEHGTMDFK 0.006 49 GTMDFKDWE 0.006 143 PSAAPKIEK 0.004 QYCPWFPEH 0.004 98 YPPAERISA 0.004 FPEIHGTMflF 0.004 160 QRRAILRSSR 0.004 76 TAWSNWAIV 0.004 168 RLLIGIIRS 0.004.
73 IPLTAWSNW 0.003 AYLHFIKLL 0.003 105 SABEGGDAA 0.002 146 APKIEKPYM 0.002 14 FIKLLLKRA 0.002 ml T-74P~3-C1fl.~-F'rm.1-A11-9 Pos 123456789 Score SeqID 85 KAASEPFQ2S 0.002 133 ELISFEEHV 0.002 36 PTVEQYCPW 0.002 32 ITLFPTVEQ 0.002 5 KSKHSAYIJH 0.001 103 RISAEEGGD 0.001 165 RSSRLLIGI 0.001 70 GKFIPLTAW 0.001 25 KASTENLIT 0.001 54 KDWEQVGIA 0.001 96 EAYPPAERI 0.001 89 EPFQSENEA 0.001 39 EQYCPWFPE 0.001 1451 AAPKIEKPY 0.001 156 RCIJKQRRAL 0.001 162 RALRSSRLL 0.001 71 KFIPLTAWS 0.001 so TMDFKDWEQ 0.001 72 FIPLTAWSN 0.001 115 1GGEDSEEDF 0.001 82 AIVKAASEP 0.001.
91 FQSENEAYP 0.001 7 KHSAYLHFI 0.001 161 RRALiRSSRL 0.001 21 RAGIRASTE 0.001 66 VCKEGKFIP 0.001 93 SENHAYPPA 0.001 137 FEEHVGPSA 0.001 57 EQVGIALKQ 0.001 79 SNWAIVKAA 0.000 6 SKHSAYLHF 0.000 26 ASTENLITL 0.000 31 LITLFPTVE 0.000 74 PLTAWSNWA 0.000 42 CPWFPEHGT 0.000 35 FPTVEQYCP 0.000 67 CKEGKFIPL 0.000 51 MDFKDWEQV 0.000 134 LISFEEHVG 0.000 61 IALKQVCKE 0.000 142 GPSAAPKIE 0.000 171 IGIIRSGRL 0.000 81 WAIVKAASE 0.000 132 bELISFEEH 0.000 34 LFPTVEQYC 0.000 41 YCPWFPEHG 0.000 24 IKASTENLI 0.000 136 SFEEHVGPS 0.000 3 QSKSKHSAY 0.000 86 AASEPFQSE 0.0005 jTbl: XII-74P3B3-Cln.B-Frm.1-A11-10 P06 1234567890 Score SeqID 16 IULLIRAGIK 1.800 142 CPSAAPKIEK 1.200 76 TAWSNWAIVK 0.800 11 YLHFIKLLL( 0.800 62 ALKQVCKEGK 0.400 159 KQRRALRSSR 0.360 FPEHGTM4DFK 0.200 7 KHSAYI 1 HFIK 0.180 156 RCLKQRRALR 0.180 169 LLIGIIRSGR 0.120 15-3 YMPRCLKQRR 0.080 59 VGIALKQVCK 0.030 140 HVGPSAAPKI 0.020 120 EEDFEENTDK 0.018 2 GQSKSKESAY 0.018 162 RALRSSRLLI 0.018 12 LHFIKLLLKR 0.016 32 ITLFPTVEQY 0.015 64 KQVCKEGKFI 0.013 AYLHFIKLLL 0.012 103 RISAEEGGDA 0.012 49 GTMDFXDWEQ 0.012 17 LLLKRAGIKA 0.012 KASTENLITh 0.012 23 GIKASTENLI 0.012 LTAWSNWAIV 0.010 126 NTDKPGDELI 0.010 139 EHVGPSAAPK 0.009 152 PYMPRCLKQR 0.008 97 AYPPAERISA 0.008 166 SSRLLIGIIR 0.008 QVCKEGKFIP 0.006 82 AIVKAASEPP 0.006 150 EKPYMPRCLK 0.006 DWEQVGIALK 0.006 66 VCKEGKFIPL 0.004 TMDFKDWEQV 0.004 72 FIPLTAWSNW 0.004 42 CPWFPERGTM. 0.004 170 LIGIIRSGRL 0.004 37 TVEQYCPWFP 0.004 44 WFPEHGTMDF 0.004 68 KEGKFIPLTA 0.004 39 EQYCPWFPEI 0.004 73 IPLTAWSNWA 0.003 151 KPYMPRCLKQ 0.002 54 KDWEQVGIAL 0.002 94 ENEAYPPAER 0.002 145 AAPKIEKPYN 0.002 9 SAYLH.FIKLL 0.002 Tbl: XII-74P3B3-Clrl.B-Frm.1-A11-10 Poe 1234567890 Score SeqID 83 IVKAASEPFQ 0.002 136 SFEMHGPSA 0.002 58 QVGIALKQVC 0.002 35 FPTVEQYCPW 0.002 27 STENLITLFP 0.002 71 KFIPLTAWSN 0.002 36 PTVEQYCPWF 0.002 13 IFIKLLLKRA 0.002 57 EQVGIALKQV 0.001 60 GIALKQVCKE 0.001 146 KIEKPYMPRC 0.001 147 PKIEKPYMPR 0.001 5 KS!KISAYLHF 0.001 91 FQSENEAYPP 0.001 89 EPFQSENEAY 0.001 144 SAAPKIEKPY 0.001 163 ALRSSRLLIG 0.001 74 PLTAWSNWAI 0.001 157 CLKQRRALRS 0.0 01 33 TLFPTVEQYC 0.001 85 KAASEPFQSE 0.001 131 GDELISFEEH 0.001 30 NLITLFPTVE 0.001 21 RAGIKASTEN 0.001 165 RSSRLLIGII 0.001 129 KPGDELISFE 0.001 88 SEPFQSENEA 0.001 137 FEEHVGPSAA 0.001 95 NEAYPPAERI 0.001 52 DFKDWEQVGI 0.001 116 GEDSEEDFEE 0.001 40 QYCPWFPEHG 0.000 146 APKIEKPYMP 0.000 8 I{SAYIJHFIKLQ 0.000 164 LRSSRLLIGI 0.000 34 LFPTVEQYCP 0.000 134 LISFEEHVGP 0.000 31 LITLFPTVEQ 0.000 4 SKSKHSAYIM 0.000 1s IKI 1 LLKRAGI 0.000 81 WAIVKAASEP 0.000 22 AGIKASTENL 0.000 132 DELISFEEHV 0.000 104 ISAEEGGDAA 0.000 105 SAEEGGDAAE 0.000 160 QRRALRSSRL 0.000 98 YPPAERISAE 0.000 6 S1G{SAYLHFI 0.000 18 LLKRAGIKAS 0.000 41 YCPWFPEHGT 0.000 00 00 Tbl:XIX I -74P33-Cll.B-Fm. 1-A24-9 P09 123456789 Score SeqID AYLHFIKLL 300.000 156 RCLKQRRAL 12.000 162 RALRSSRLL 12.000 .97 AYPPAERIS 9.000 DWEQVGIAL 8.400 64 KQVCKEGKF 6.600 171 IGIIRSGRL 6.000 11 YLHFIKLLL 5.600 9 SAYLHFflM 5.280 129 KPGDELISF 4.800 26 ASTENLITL 4.800 16 NTDKPGDEL 4.400 23 GIKASTENL 4.000 27 STENLITLF 3.600 115 GGEDSEEDF 3.600 16 KLLLKRAGI 3.000 45 FPEHGTNDF 3.000 37 TVEQYCPWF 3.000 165 RSSRLLIGI 2.400 71 KFIPLTAWS 2.160 83 IVXAASEPF 2.000 141 VGPSAAPKI 1.650 34 LFPTVEQYC 1.260 96 EAYPPAERI 1.200 166 SSRLLIGII 1.200 QVCKEGKFI 1.000 LTAWSNWAI 1.000 163 ALRSSRLLI 1.000 136 SFEEHVGPS 0.900 161 RRALRSSRL 0.800 'QYCPWFPEI 0.792 67 CKEGKFIPL 0.720 150 EKPYMPRCL 0.600 146 APKIEKPYM 0.500 4 SKSIKiSAYL 0.400 168 RLLIQIIRS 0.300 118 DSEEDFEEN 0.238 NLITLFPTV 0.216 59 VGIALKQVC 0.216 145 AAPKIEKPY 0.210 7 IG{SAYLHFI 0.200 KA.ASEPFQS .0.200 159 KQRRALRSS 0.200 KASTENLIT 0.200 6 SIO{SAYLHF 0.200 87 ASEPFQSEN 0.198 105 SAEE-GGDAA 0.180 78 WSNWAIVKA 0.165 22 AGIKASTEN 0.165 .98 7FYPPAERISA 0.1.50 Tbl XIII-74P33-Cfln.f-Frm.1-A24-9 Pos 123456789 Score SeqID 1 MGQSKSKGHS 0.150 29 ENLITLFPT 0.150 73 IPLTAWSNW 0.150 133 BLISFEEHV 0.150 72 PIPLTAWSN 0.150 69 EGKFIPLTA 0.140 79 SINWAIVKAA 0.140 80 NWAIVKAAS 0.140 89 EPFQSENEA 0.132 I1I DAAEGGEDS 0.120 24 IKASTENLI 0.120 127 TDKPQDELI 0.120 33 TLFPTVEQY 0.120 14 FIKLaLLKRA 0.120 48 HGTMDFKDW 0.120 104 ISAEEGGDA 0.120 18 LLKRAGIKA 0.110 76 TAWSNWAIV 0.100 5B QVGIALKQV 0.100 42 CPWFPEHGT 0.100 53 F1DWEQVGI 0.100 3 QSKSIO{SAY 0.100 2 GQSKSIK{SA 0.100 122 DFEENTDKP 0.099 13 HFIKLLLKR 0.099 152 PYMPRCLKQ 0.099 44 WFPEHGTMD 0.090 90 PFQSENEAY 0.075 52 DFKDWEQVG 0.072 43 PWFPEHGTM 0.060 148 KIEKPYMPR 0.030 20 KRAGIKAST 0.028 54 KD1WEQVGIA 0.024 57 EQVGIALKQ 0.023 137 FEEHVGPSA 0.021 169 LLIGIIRSG 0.021 103 RISABEGGD 0.020 21 RAGIKASTE 0.020 68 KEGKFIPLT 0.020 151 KPYMPRCLK 0.020 5 KSIHSAYLH 0.020 93 SENEAYPPA 0.018 119 SEEDFEENT 0.01.8 36 PTVEQYCPW 0.018 49 GTMDFKDWE 0.018 _1 86 AASEPFQSE 0.017 32 ITLFPTVEQ 0.017 61 IALKQVCKE 0.017 82 AIVKAASEP 0.017 62 7 ALKQVCKEG 10.015 ITh1:XIV-'74P3B3-Cln.B-Frm.1-A24-10 Pos 1234567890 Score SeqID AYLHFIKLLLJ 420.000 44 WFPEHGTMDF 18.000 97 AYPPAERISA 9.000 KASTENLITL 8.000 52 DFKDWEQVGI 6.000 22 AGIKASTENL 6.000 66 VCKEGKFIPL 5.760 8 -HSAYLHFIKL 5.280 125 ENTDKPGDEL 5.280 KSKHSAYLHF 4.000 3 QSKSKHSAYL 4.000 170 LIGIIRSGRL 4.000 9 SAYLHFIKLL 4.000 162 R.ALRSSRLjLI 3.000 82 AIVKAASEPF 3.000 64 KQVCKEGKFI 3.000 26 ASTENLITLF 2.880 165 RSSRLLIGII 2.400 114 EGGEDSEEDF 2.400 71 KFIPLTAWSN 1.800 54 KDWEQVGIPJJ 1.344 140 HVGPSAAPKI 1.320 136 SPEEHVGPSA 1.260 23 GIKASTENLI 1.200 126 NTDKPGDELI 1.000 13 HPIKLLLKRA 0.900 161 RRALRSSRLL 0.800 145 AAPKIEKPYM 0.750 QYCPWFPEHG 0.600 42 CPWFPEHGTM 0.500 149 IEKPYMPRCL 0.480 160 QRRALRSSRL 0.400 36 PTVEQYCPWF 0.360 63 LKQVCKEGKF 0.330 148 KIEKPYMPRC 0.300 128 DKPGDELISF 0.300 21 RAGIKASTEN 0.220 29 ENLITLFPTV 0.216 78 WSNWAIVKAA 0.210 33 TLFPTVEQYC 0.202 103 RISAEEGGDA 0.200 118 DSEEDFEENT 0.180 73 IPLTAWSNWA 0.180 144 SAAPKIEKPY 0.168 17 LLLKRAGIKk 0.165 41 YCPWFPEHGT 0.150 92 QSENEAYPPA 0.150 57 EQVGIALKQV 0.150 1 MGQSKSKHSA 0.150 IKLLLKRAGI 10.150 Tbl :XIV-74P3B3-Cln.B-Frm.1-A24-10 Poo 1234567890 Score SeqID 32 ITLjFPTVEQY 0.150 72 FIPLTAWSNW 0.150 58 QVGIALKQVC 0.144 79 SNWAIVKAAS 0.140 86 AASEPFQSEN 0.132 96 EAYPPAERIS 0.120 135 ISFEEHVGPS 0.120 164 LRSSRLLIGI 0.120 104 ISAEEGGDAA 0.120 77 AWSNWAIVKA 0.110 2 GQSKSIU{SAY 0.100 6 SIGISAYLHFI 0.100 154 MPRCLKQRRA 0.100 50 TMDFKDWEQV 0.100 157 CIJKQRRALRS 0.100 89 EPFQSENEAY 0.100 18 LLKRAGIKAS 0.100 35 FPTVEQYCPW 0.100 74 PLTAWSNWAI 0.100 95 NEAYPPAERI 0.100 75 LTAWSNWAIV 0.100 69 EGKFIPLTAW 0.100 122 DFEENTDKPG 0.090 152 PYMPRCLKQR 0.090 34 LFPTVEQYCP 0.075 168 RLLIGIIRSG 0.042 155 PRCLKQRRAL 0.040 156 RCLKQRRALR 0.030 16 KILLLKRAGIK 0.030 85 KAA.SEPFQSE 0.029 129 KPGDELISFE 0.029 68 KEGKFIPLTA 0.028 159 KQRRALRSSR 0.024 61 IALKQVCKEG 0.023 151 KPYMPRCLKQ 0.022 153 YMPRCLKORR 0.022 169 LLIGIIRSGR 0.021 27 STENLITLP'P 0.021 88 SEPFQSENEA 0.020 49 GTMDFKDWEQ 0.020 87 ASEPFQSENE 0.018 105 SAEEGGDAAE 0.018 115 GGEflSEEDFE 0.018 94 ENEAYPPAER 0.017 81 WAIVKAASEP 0.017 112 AAEGGED9EE 0.017 117 EDSEEDFEEN 0.016 171 IGIIRSGRLQ 0.015 55 DWEQVGIALK 0.015 141 VGPSAAPKIE 0 .0 00 00 Tbl:XV-74P3B3-Cll.B-Frm. 1-B7-9 Pos 123456789 Score SeqID 146 APKIEKPY4 60.000 163 ALRSSRLLI 18.000 26 ASTENLITL 12.000 162 RALRSSRLL 12.000 9 SAYLHFIKL 12.000 156 RCLKQRRAL 6.000 23 GIKASTEKL 4.000 F-II YLHFIIKJLL 4.000 171 IGIIRSGRL 4.000 166 SSRLLIGII 4.000 42 CPWFPEHGT 3.000 98 YPPAERISA 3.000 QVCKEGKFI 2'.000 89 EPFQSENE 2.000 F154 MPRCLKQRR 2.000 126 NTDKPQDEL 1.800 96 EAYPPAERI 1.800 AYLHFIKLL 1.200 58 QVGIALKQV 1.000 76 TAWSNWA-IV 0.600 16 KLLLKRAGI 0.600 151 KPYMPRCLiK 0.450 4 SKS1QISAYL 0.400 150 EKPYMPRCL 0.400 LTAWSNWAI 0.400 129 KPGDELISF 0.400 73 IPLTAWSNW 0.400 165 RSSRLLIGI 0.400 141 VGPSAAPKI 0.400 161 RR.ALRSSRL 0.400 KASTENLIT 0.300 142 GPSAAPKIE 0.200 NLITLFPTV 0.200 159 KQRRALRSS 0.200 133 ELISFEEHV 0.200 FPTVEQYCP 0.200 145 AAPKIEKPY 0.180 86 AASEPFOSE 0.135 FPEHGTMVDF 0.120 DWEQVGIAL 0.120 67 CKEGKFIPL 0.120 104 ISABEGODA 0.100 2 GQSKS1GHSA 0.100 83 IVKAASEPF .0.100 18 LLKRAGIKA 0.100 69 EGKFIPLTA 0.100 78 WSNWAIVKA 0.100 79 SNWAIVKAA 0.100 14 FI1KLLKRA 0.100 59 VGIALKQVC 0.100 Tbl :XV-74P3B3 -Cln.B-Frm. 1-B7-9 Pos 123456789 Score SegID 29 ENILITLFPT .0.100 105 SAEBGGDAA 0.090 85 KAASEPFQS 0.060 22 AGIKASTEN 0.060 ill DAAEGGEDS 0.060 140 HVGPSAAPK 0.050 127 TDKPGDELI 0.040 7 KHSAYLHFI 0.040 24 IKASTENLI 0.040 144 SAAPKIEKP 0.030 82 AIVKAASEP 0.030 81 WAIVKAASE 0.030 21 RAGIKASTE 0.030. 62 ALKQVCKEG 0.030 61 IALKQVCKE 0.030 49 GTMDFKDWE 0.030 101 AERISABEG 0.030 37 TVEQYCPWF 0.030 112 AAEGGEDSE 0.027 64 KOVCKEGKF 0.020 1 MGQSKSKHS 0.020 99 PPAZRISAE 0.020 51 MDFKDWEQV 0.020 48 HGTMDFKDW 0.020* 19 LKRAGIKAS 0.020 168 RLLIGIIRS 0.020 3 QSKSIG[SAY 0.020 72 FIPLTAWSN 0.020 33 TLFPTVEQY 0.020 87 ASEPFQSEN 0.018 39 EQYCPWFPE 0.015 170 LIGIIRSGR 0.015 16 QRRALRSSR 0.015 32 ITLFPTVEQ 0.015 157 CLKQRRALR 0.015 53 FKDWEQVGI 0.012 17 LLLKRAGIK 0.010 31 LITLFPTVE 0.010 125 ENTDKPGDE 0.010 103 RISAEGD 0.010 93 SENEAYPPA 0.010 41 YCPWFPEHG 0.010 66 VCKEGKFIP 0.010 138 EEHVGPSAA 0.010 34 LFPTVEQYC 0.010 60 GI.ALKQVCK 0.010 8 HSAYLHFIK 0.010 108 EGGDAAEGG 0.010 68 KEGKFIPLT 0.010 43 PWFPEHGTM 0.010 ITbl: XVI -74P3B3-Cln.B-.Frm.1-B7-10 Poe 1234567890 -Score SegID 154 MPRCLKQRRA 20.000 42 CPWFPEEGTM 20.000 22 AGIKASTENL 12.000 KASTENLITL 12.000 9 SAYLRFIKLL 12.000 145 AAPKIEKPYM 9.000 125 ENTDKPGDEL 6.000 8 HSAYLjHFIKI 4.000 66 VCKEGKFIPL 4.000 170 LIGIIRSGRL 4.000 160 QRRALRSSRL 4.000 3 QSKSKHSAYL 4.000 7 3 IEPLTAWSN1WA 2.000 140 HVGPSAAPKI 2.000 1T62 RALRSSRLLI 1.800 AYLHFIKLLL 1.200 146 APKIEKPYMP 0.600 QVGIALKQVC 0.500 23 GIKASTENLI 0.400 149 IEKPYMPRCL 0.400 64 KQVCKEGKFI 0.400 165 RSSRLIGII 0.400 161 RRALRSSPLL 0.400 54 KDWEQVGIAL 0.400 FPTVEQYCPW 0.400 89 EPFQSENEAY 0.400 142 GPSAAPKIEK 0.300 163 AIJRSSRLJIG. 0.300 29 ENLITLFPTV 0.200 129 KPGDELiISFE 0.200 LTAWSNWAIV 0.200 57 EQVGIALKQV 0.200 151 KPYMPRCLKQ 0.200 98 YPPAERISAE 0.200 86 AASEPFQSEN 0.180 159 KQRRALRSSR 0.150 41 YCPWFPEHGT 0.150 1261 NTDKPGDELI 0.120 33 TLFPTVEQYC 0.100 1 MGQSKSKHSA 0.100 19 LKRAGIKAST 0.100 104 ISAEEGGDAA 0.100 78 WS1NWAIVKAA 0.100 166 SSRLLIGIIR 0.100 103 RISAEEGGDA 0.100 17* LLLKRUAGIKA 0.100 82 AIVKAASEPF 0.060 155 PRCLKQRRAL 0.060 96 EAYPPABRIS 0.060 NEAYPPAERI 0.060 Tbl: XVI-74P3B3-Cll.B-Fmt.1-B7-10 Poe 1234567890 Score Seqlln 144 SAAPKIEKPY 0.060 45 FPEHGTMDFK 0.060 21 RAGIKASTEN 0.060 26 ASTEbTLITLF 0.060 15 IKLLLKRAGI 0.060 50 TMDFKDWEQV 0.060 83 IVKAASEPFQ 0.050 65 QVCKEGKFIP 0.050 97 AYPPABRISA 0.045 85 KAASEPFQSE 0.045 74 PLTAWSNWAI 0.040 52 DFKDWEQVGI 0.040 6 SKHSAYLHFI 0.040 F16 4 LRSSR.JZIGI 0.040 77_ AWSNWAIVKA 0.030 61 IALKQVCKEG 0.030 111 DAAEGGEDSE 0.030.___ 62 ALKQVCKEGK 0.030 76 TAWSN'WAIVK 0.030 69 EGKFIPLTAW 0.030 49 GTMDFKDWEQ 0.030 81_ WAIVKAASEP 0.030 101 AERISAEEGG 0.030 148 KIEKPYMPRC 0.030 92 QSENBAYPPA 0.030 118 DSEEDFEENT 0.030 112 AAEGGEDSEE 0.027 157 CLiKQRRAJRS 0.020 3 2 _ITLiFPTVEQY 0.020 5L KSKHSAYLHF 0.020 18 LLKRAGIKAS 0.020 2 GQSKSKHSAY 0.020 79 SNWAIVKAAS 0.020 135 ISFEEHVGPS 0.020 72 FIPLTAWSNW 0.020 132 DELISFEEHV 0.020 99 PPAERISAEE 0.020 114 EGGEDSEEDF 0.020 31 LITLFPTVEQ 0.015 156 RCLKQRRALR 0.015 37 TVEQYCPWFP 0.015 169 LIJIGIIRSGR 0.015 28 TENLITLFPT 0.010 [14 FIKLLLKRAG 0.010 168 RLLIGIIRSG 0.010 171 IGIIRSGRLQ 0.010 24 IKASTENLIT 0.010 108 EGGDAAEGGE 0.010 11 YLaHFIKLIjLK 0. 010 141. VGPSAAPKIE 10.010 I 00 00 Tbl: XVII-74P3B3-Cn.B-Frmf.1-B35-9 PoB 123456789 Score SeqID 146 APKIEKPYN 180.000 129 KPGDELISF 120.000 3 QSKSKHSAY 30.000 26 ASTENLITL 10.000 73 IPLTAWSNW 10.000 166 SSRLLIGII 6.000 FPEHGTMDF 6.000 145 AAPKIEKPY 6.000 162 RAIJRSSRLL 6.000 165 RSSRLLIGI 4.000 83 IVKAASEPF 3.000 23 GIKALSTRIM 3.000 9 SAYLHFI1Ui 3.000 98 YPPAERISA 3.000 33 TLFPTVQY 2.000 64 KQVCKEGKF 2.000 42 CPWFPEHGT 2.000 156 RCLKQRRAL 2.000 89 EPFQSENEA 2.000 104 ISAEEGGDA 1.500 96 EAYPPAERI 1.200 163 ALRSSRLLI 1.200 11 YLHFIKLLL 1.000 171 IQIIRSQRL 1.000 KASTENLIT 0.900 KAASEPFQS 0.900 16 KQLLKRAGI 0.800 48 HGTI4DFKDW 0.750 QVCKEGKFI 0.600 115 GGEDSEEDF 0.600 159 KQRRALRSS 0.600 154 MPRCLKQRR 0.600 76 TAWSNWAIV 0.600 111 DAAEGGEDS 0.600 78 WSNWAIVKA 0.500 118 DSEEDFEEN 0.450 141 VGPSAA.PKI 0.400 151 KPYMPRCLK 0.400 LTAWSNWAI 0.400 126 NTDKPGDEL 0.300 KSIKiSAYLH 0.300 2"7 STENLITLF 0.300 18 LLKRAGIKA 0.300 14 FI1K.LIJ1QA 0.300 37 TVEQYCPWF 0.300 69 EGKFIPLTA 0.300 FPTVEQYCP 0.300 168 RLLIGIIRS 0.200 1.33 ELISFEEHV 0.200 NLITLFPTV 0.200 Tblt XVII-74P3B3-Cln.B-Frm.1-B35-9 Poe 123456789 Score SeqID 58 QVGIALKQV 0.200 142 GPSAAPKIE 0.200 161 RRALRSSRL 0.200 105 SAEEGGDAA 0.180 135 ISFEEHVGP 0.150 87 ASEPFQSEN 0.150 127 TDKPGDELI 0.120 36 PTVEQYCPW 0.100 29 ENLITILFPT 0.100 6 SKHSAYLHF 0.100 79 SNWAIVKAA 0.100 150 EKPYMPRCL 0.100 72 FIPLTAWSN 0.100 1 MGQSKS1HS 0.100 22 AGIKASTEN 0.100 59 VGIALKQVC 0.100 10 AYLHFIKLL 0.100 4 SKSIGHSAYL 0.100 2i GQSKS1QHSA 0.100 7 KHSAYLHFI 0.080 66 VCKEGKFIP 0.060 86 AASEPFOSE 0.060 21 RAGIKASTE 0.060 B HSAYLHFIK 0.050 70 GKFIPLTAW 0.050 54 KDWEQVGIA 0.040 24 IKASTENTLI 0.040 99 PPAERISAE 0.040 61 IALKQVCKE 0.030 19 LKRAGIKAS 0.030 114 EGGEDSEED 0.030 81 WAITVKAASE 0.030 51 MDFKDWEQV 0.030 144 SAAPKIEKP 0.030 103 RISAEEGGD 0.030 62 ALKQVCKEG 0.030 43 PWFPEHGTM 0.030 149 IEKPYMPRC 0.030 90 PFQSENEAY 0.030 157 CILKQRRALjR 0.030 67 CKEGKFIPL 0.030 55 DWERQVGIAL 0.030 92 QSENEAYPP 0.023 108 EGGDAAEGG 0.020 20 KRAGIKAST 0.020 93 SENEAYPPA 0.020 71. KFIPLTAWS 0.020 91 FQSENEAYP 0.020 68 KEGKFIPLT 0.020 125 ENTDKPGDE 0.020 I Tbl:XVIII-74P3B3-Cln.B-Frm.1- B35-10 Poe 1234567890 Score SeqID 89 EPFQSENBAY 60.000 4Z2 CPWFPEHGTM 60.000 KSKHSAYLHF 30.000 3 QSKSKHSAYL 15.000 26 ASTENLITLF 10.000 FPTVEQYCPW 10.000 145 AAPKIBKPYM 9.000 KASTENLIITL 6.000 144 SAAPKIEKPY 6.000 154 MPRCLKQRRA 6.000, 66 VCKEGKFIPLj 6.000 8 HSAYLHFIKL 5.000 165 RSSRLLIGII 4.000 9 SAYLHRFIKLL 3.000 162 'RALRSSRLLI 2.400 114 EGGEDSEEDF 2.000 2 GQSKSKHSAY 2.000 125 ENhTDKPGDEIJ 2.000 32 ITLFPTVEQY 2.000 73 IPLTAWSNWA 2.000 69 EGKFIPLTAW 1.500 64. KQVCKEGKFI 1.200 23 GIKASTENLI 1.200 135 ISFEEHVGPS 1.000 22 AGIKASTENL 1.000 82 AIVKAASEPF 1.000 170 LIGIIRSGRL 1.000 104 ISAEEGGDAA 1.000 129 KPGDELISFE 0.800 146 APKIEKPYM.P 0.600 86 AASEPFQSBN 0.600 21 RAGIKASTEN 0.600 72 FIPLjTAWSNW 0.500 78 WSNWAIVKAA 0.500 151 KPYMPRCLKQ 0.400 140 MVGPSAAPKI 0.400 54 KDWEQVGIAL 0.400 52 DPKDWEQVGI 0.360 149 IEKPYMPRCL 0.300 160 QRRALRSSRL 0.300 103 RISAEEGGDA 0.300 157 CLKQRP.ALRS 0.300 18 LLKRAGIKAS 0.3 00 96 EAYPPAERIS 0.300 118 DSEEDFEENT 0.300 98 YPPAERISAE 0.200 44 WFPEHGTMDF 0.200 ITAWSNWAIV 0.200 29 ENLITLFPTV 0.200 36 PTVEQYCPWF 0.200 Tbl :XVIII-74P3B3-Cln.B-Frm. 1- B35-10 Poe 1234567890 Score SeqID 57 EQVGIALKQV 0.200 161 RRALRSSRLL 0.200 142 GPSAAPKIEK _0.200 128 DKPGDELISF 0.150 92 QSENEAYPPA 0.150 166 SSRLLIGIIR 0.150 126 NTDKPGDBLI 0.120 17 LLLKRAGIKA 0.100 58 QVGIALKQVC 0.100 63 LKQVCKEGKF 0.100 79 SNWAIVIkAAS 0.100 41 YCPWFPEHGT 0.100 1 MGQSKSIGISA 0.100 33 TLFPTVEQYC 0.100 10 AYLHFIKLLL 0.100 50 TMDFKDWEQV 0.090 47 EHGTMbDFXDW 0.075S 11I DAAEGGEDSE 0.060 159 KQRRALRSSR 0.060 45 FPEHGTM.DFK 0.060 85 KAASEPFQSE 0.060 148 KIEKPYMPRC 0.060 127 TDKPGDELIS 0.045 164 LRSSRLLI:GI 0.040 74 PLTAWSNWAI 0.040 6 SKHSAYLMFI _0.040 95 NEAYPPAERI 0.040 99 PPAERISAEE _0.040 15 IKTJLLKRAGI 0.040 14 FIKLLLKRAG_ 0.030 91 FQSENEAYPP _0.030 61 IALKQVCKEG 0.030 83 IVKAASEPFQ 0.030 19 LKRAGIKAST 0.030 76 TAWSNWAIVK 0.030 81 WAIVKAASEP 0.030 163 ALRSSRLLIG 0.030 117 EDSEEDFEEN 0.030 62 ALKQVCKEGK 0.030 108 EGGDAAEGGE 0.020 132 DELISFEEHV 0.020 16 1KJLLKRAGIK 0.020 71 KFIPLTAWSN 0.020 49 GTMDFKDWEQ 0.020 156 RCLKQRRALR 0.020 68 KEGKFIPLTA 0.020 168 RLLIGIIRSG 0.020 105 SAEEGGDAAE 0.018 97 AYPPAERTSA 0.015 1i33 E:LISFEEHVG 0.015 Tbl :V-74P3B3 -c:ln:B-Fl. 3-A1-9 Pos 123456789 Score SeqID 18 IIPEWPPPII( 9.000 29 SLEPWRSES 9.000 152 PCDWEILT( 5.000 215 DFEMMPLN( 4.500 88 DILDAWQFAV 2.500 III VWEPSFKU- 2.250 7 GLEEQSAPH 1.800 34 RSESQICPV 1.350 86 AGDLDAWQF 1.250 163 LSPSQFLQF 0.750 73 ESPLQFIIR 0.750 109 QAVWEPFSF 0.500 162 TLSPSQFLQ 0.500 NVNESPLQF 0.500 176 TDE.AQN~QDR 0.450 213 HQDFEMMPLi 0.375 36 ESQICPVSR 0.300 113 EPFSFKLLK 0.250 208 GTVNNI{QDF 0.250 71 VNESPLQFI 0.225 140 LLQSVA.QNK 0.200 188 AANPAIAIT 0.200 94 FAVVLQPPR 0.200 PQEPQMIHGV 0.135 175 WTDEAQNQD 0.125 195 ITFEQIJLGI 0.125 130 YGPNSPFIR 0.125 2.89 IANPAIAITF 0.125 38 QICPVSRMN 0.100 97 VLQPPRQQG 0.100 57 -GVAPVOHKA 0.100 160 KVTLSPSQF 0.100 149 LLTPCDWEI 0.100 8 LEEQSAPHW 0.090 120 LKDIJKAAVG 0.050 187 RAANPAIAI 0.050 122 DLK.AAVGQY 0.050 56 HGVAPVQHK 0.050 194 AITFEQLLG 0.050 217 EMMPIMaKFA 0.050 164 SPSQFLQFK 0.050 143 SVAQNKJLT 0.050 196 TFEQLaLGIG 0.045 154 DWEILTKVT 0.045 26 KQCSLEPWR 0.030 138 RSLLQSVAQ 0.030 21 WPPPIKQCS 0.025 150( LTPCDWElL 0025 2 18 MMPLNKFAI 0.025 1 613 VTLSPSQFL 0.025 Tbl :V-74P3B3-Cfl:B-Frf.3Al9 Pos 123456789 Score. SeqIED 72 NESPLQFIX 0.025 45 MNELjWPQEP 0.022 47 ELWPQEPQA 0.020 139 SLLQSVAQN 0.020 85 LAGDLDAWO 0.020 126 AVGQYGPNS 0.020
F
1 0 AVWEPFSFK 0.020 54 QAHOVAPVQ 0.020 65 AALPSNVNE 0.020 95 AVVLjQPPRQ 0.020 11 QSAPHWDHP 0.015 76 LQFIIRQAR 0.015 98 LQPPRQQGG 0.015 133 NSPFIRSLL 0.015 128 GQYGPNSPF 0.01 142 QSVAQNKQJL 0.015 179 AQNQDRK(NR 0.015 210 VINHQDFEM 0.013 151 1TPCDWEILT 0.013 74 SPLQFIIRQ 0.013 134 SPFIRSILLQ 0.013 131 GPNSPFIRS 0.013 202 GIGGQWGTV 0.010 168 FLQFKT1WWT 0.010 178 EAQHQDRKN 0.010 129 QYGPNSPFI 0.010 66 ALPSNVNES 0.010 84 RLAGDLDAW 0.010 200 LLGIQGQWG 0.010 199 QLLGIGGQW 0.010 125 AAVGQYGPN 0.010 58 VAPVQHKAA 0.010 193 IAITFEQLL 0.010 64 KAALPSNVN 0.010 27 QCSLaEPWRS 0.010 177 DEAQNQDRK 0.010 156 EILTKVTLS 0.010 96 VVLQPPRQQ 0.010 192 AIAITFEQL 0.010 165 PSQFLQFKT 0.008 181 -NQDRKNRAA 0.007 79 IIRQARLAG 0.005 39 ICPVSRMNE 0.005 104 QGGAHQAVW 0.005 69 SNVNESPLQ 0.005 59 APVQHKAAL 0.005 191 PAIAITFEQ 0.005 219 MPLbTKFAIA 0.005 144 VAQNKLLTP 0.005 13 1APHWDHPEW 0. 005 Tbl:VI-74P3B3-Cln.B-Frm.3-Al-10 P08 1234567890 Score SeqID 175 WTDEAQNQDR 12.500 29 SLEPNRSESQ 9.000 188 AANPAIAITF 5.000 162 TLSPSQFLQF 5.000 34 RSESQICPVS 2.700 7 GLEEQSAPHW 1.800 71 VNESPLQFIX 1.125 18 IPEWPPPIYQ 1.125 88 DLjDAWQFAVV 1.000 176 TDEAQNQDRK 0.900 215 DFEMMPLNKF 0.450 Ill VWEPFSFKLL 0.450 163 LSPSQFLQFK 0.300 72 NESPLOFIIR 0.250 151 TPCDWEILTK 0.250 129 QYGPNSPFIR 0.250 217 EMMPLNKFAI 0.250 196 TFEQLI 3 GIGG 0.225 MNELWPQEPQ 0.225 109 QAVWEPFSFK 0.200 139 SLLQSVAQNK 0.200 213 HQDFE. PIN 0.150 PQEPQARGVA 0.135 161 VTLSPSQFQ 0.125 86 AGDLDAWQFA 0.125 69 SNVNESPLQF 0.125 150 LTPCDWEILT 0.125 97 VLjQPPRQQGG 0.100 106 GAHQAVWEPF 0.100 57 GVAPVQHKAA 0.100 AALPSNVNES 0.100 149 LLTPCDWEIL 0.100 178 EAQNQDRKNR 0.100 LAGDLDAWQF 0.100 154 DWEILTKVTJ 0.090 142 QSVAQNKLjLT 0.075 HQAVIWEPFSF 0.075 73 ESPLQFIIRQ 0.075 133 NSPFIRSLLQ 0.075 214 QDFEMMPLNK 0.050 194 AITFEQLLGI 0.050 36 QICPVSRMNE 0.050 112 WEPFSFXLLK 0.050 193 IAITFEQLLG 0.050 209 TVNNHQDFEM' 0.050 120 LKDLKAAVGQ 0.050 152 PCDWEILTKV 0.050 115 FSEKLLKDLK 0.030 138 RSLLQSVAQN 0.030 207 WGTVNNHQDF 0.025 Tbl :VI-74P3B3-Cln.B-Frm. 3-Al-1O Pod 1234567890 Score SeqID 195 ITFEQLLGIG 0.025 127 VGQYGPNSPF 0.025 21 WPPPIKQCSL 0.025 12 SAPHWDHPEW 0.020 94 FAVVLQPPRQ 0.020 125 AAVGQYGPNS 0.020 84 RLAGDLDAWQ 0.020 58 VAPVQH(AAL 0.020 187 RAANPAIAIT 0.020 17 DRHPEWPPPIK 0.020 54 QAHGVAPVQH 0.020 36 ESQICPVSRM 0.015 181 NQDRKNRAAN 0.015 28 CSLEPWRSES 0.015 11 QSAPHWDHPE 0.015 98 LQPPRQQGGA 0.015 190 NPAIAITFEQ 0.013 130 YGPNSPFIRS 0.013 134 SPFIRSLLQS 0.013 164 SPSQFLQFCI 0.013 219 MPLNKFAIAV 0.013 192 AIAITFEQLLa 0.010 35 SESQICPVSR 0.010 16 WDI{PEWPPPI 0.010 93 QFAVVLQPPR 0.010 124 KAAVGQYGPT 0.010 199 QLLGIGGQWG 0.010 95 AVVLQPPRQQ 0.010 47 ELWPQEPQAH 0.010 39 ICPVSRMNEL 0.010 202 GIGGQWGTVN 0.010 70 NVNESPLQFI 0.010.
75 PLQFIIRQAR 0.010 144 VAQNKLLTPC 0.010 25 IKQCSLEPWR 6.010 160 KVTLSPSQFL 0.010 148 KLLTPCDWEI 0.010 55 AHGVAPVQHK 0.010 218 MMPLNKFAIA 0.010 200 LLGIGGQWGT 0.010 140 LLQSVAQNKL 0.010 96 VVLQPPRQQG 0.010 158 LTKVTLSPSQ 0.005 143 SVAQNKLLTP 0.005 6 KGLEEQSAPH 0.005 110 AVWEPFSFKL 0.005 159 TKVTLSPSQF 0.005 15 HWDIIPEWPPP 0.005 52 EPQAHGVAPV 0.005 60 PVQHKAALPS 0.005 Tbl :VII-74P3B3-Clfl.B-Frm. 3-A2-9 Poo 123456789 Score Se ID 168 FLQFKCTWWT 1414.017 118 KLLIDLKAA 147.972 149 LLTPCDWEI 133.018 218 MMPLNKFAI 74.293 119 ILKDLKA.AV 16.967 88 DLDAWQFAV 12.102 161 VTLSPSQFL 10.264 195 ITFEQLLGI 8. 595 136 FIRSLLQSV 7.690 153 CDWEILTICV 7.561 103 QQGGAHQAV 7.052 220 PLNKFAIAV 5.815 217 EMMPLNKFA 5.476 115 FSFKLLKDL 5.459 141 LQSVAQNKL 3.682 112 WEPFSFKLL 3.630 47 ELjWPQEPQA 3.093 192 AIAITFEQL 2.735 202 GIGQQWGTV 2.114 193 IAITPEQLL 1.917 155 WEILTKVTL 1.911 37 SQICPVSRM 1.159 145 AQNKLLTPC 1.159 87 GDLDAWQFA 0.979 200 LLGIGGQWG 0.697 _2 143 SVAQN1<LLT 0.652 139 SLLQSVAQN 0.634 78 FIIRQARLA 0.628 201 LGIGGQWGT 0.620 148 KLLTPCDWE 0.520 102 RQQGGAHQA 0.504 72 NESPLQFII 0.482 110 AVWEPFSFK 0.464 57 GVAPVQHKA 0.435 53 PQAHGVAPV 0.357 CPVSRNNEL 0.321 210 VNNHQDFEM 0.320 DAWQFAVVL 0.288 a1 RQARILAGDL 0.282 151 TPCDWEILT 0.199 150 LTPCDWEIL 0.172 66 ALPSNVNES 0.171 219 MPLNKFAIA 0.159 187 RAANPAIAI1 0.145S 205 GQWGTVNNH 0. 144 59 APVQHKAAL 0.139 133 NSPFIRSLL 0.139 142 QSVAQNKLL 0.139 180 QNQDRKNP. 0.133 F89 LDAWQFAVV 0.128 Tbl :VII-74P3B3-Cln.B-Frml. 3-A2-9 PoB 123456789 Score SeqID 97 VIJQPPRQQG 0.127 169 LQFKTWWTD 0.121 117 FKLLKDLKA 0.117 58 VAPVQHKAA 0.117 188 AANPAIAIT 0.098 71 VNESPLQFI 0.094 162 ThSPSQFLQ 0.086 84 RLAGDLDAW 0.084 44 R14NELWPQE 0.075 2131 HQDFEMMPL 0.068 34 RSESQICPV 0.067 92 WQFAVVLQP 0.059 216 FEMMPLNKF 0.057 3.66 SQFLQFKTW 0.053 75 PLQFIIRQA 0.050 31 EPWRSESQI 0.042 181 NQDRKNRAA 0.040 199 QLIJGIGGQW 0.036 211 1NNHQDFEMM 0.030 26 KQCSLEPWR 0.029 70 NWNESPLQF 0.027 157 ILTKVTLSP 0.025 140 LLOSVAQNK 0.025 128 GQYGP1NSPF 0.024 5 KKGLEEQSA 0.024 160 KVTLSPSQF 0.023 7 GLEEQSAPH 0. 020 185 KNRAANPAI 0.018 171 FKTWWTDEA 0.016 77 QFIIRQARJ 0.015 61 VQHKAALPS 0.013 98 LQPPRQQGG 0.013 194 AITFEQLLG 0.010 50 PQEPQAHGV 0.010 76 LQFIIRQAR 0.010 49 WPQEPQAHG 0.009 129 QYGPNSPFI 0.008 85 LAGDLDAWQ 0.008 111 VWEPFSFKL 0.007 184 RKCNRAANPA 0.007 197 FEQLLGIGG 0.007 156 EILTKVTLS 0.007 126 AVGQYGPNS 0.007 165 PSQFLQFKT 0.006 109 QAVWEPFSF 0.006 132 PNSPFIRSL 0.005 6 KGLEEQSAP 0.005 51 QEPQAMGVA 0.005 i29 SLEPWRSES 0.005 14 SPSQFLQFK 0.005 I~l: VXII-74P3B3-Cln.B-Frm.3-A2-10 Pos 12-34567890 Score SeqID 110O AVWEPFSFIQJ 1401.947 148 KLLTPCDWEI 1013.286 118 KLLKDIJKAAV 900.698 200 ILGIGGQWGT 95.013 NVNESPLQFI 47.346 140 LLQSVAQNKL 36.316 160 KVTLSPSQFL 35.982 128 GQYGPNSPFI 18.617 76 LQFIIRQARLj 13.624 149 LLTPCDWEIL 12.403 217 EMMPLNKFAI 12 .127 192 AIAITFEQLL 11.162 219 MPLNKFAIAV 10.852 216 FEMMPLNKFA 9.043 49 WPQEPQAflGV 8.563 87 GDLDAWQFAV 8.499 102 RQQGGAHQAV 7.052 218 MMPLNKFAIA 4.752 141 LQSVAQNKLiL 3.682 194 AITFEQLLGI 3.299 209 TVNNHQDFEM 2.521 88 DLDAWQFAVV 1. 625' 1i99 QLLGIGGQWG 1.516 168 FLQFKTWWTD 0.874 167 QFLQFICTWWT 0.790 21 WPPPIKQCSL 0.641 166 SQFLQFKTWW 0.584 39 ICPVSRMNEL 0.545 58 VAPVQHKAAL 0.504 179 AQNQDRKQNRA 0.504 57 GVAPVQHKAA 0.435' 33 WRSESQICPV 0.419 46 NELjWPQEPQA 0 .357 LEPWRSESQI 0.345 157 ILTKVTLSPS 0.291 164 SPSQFLQFKT 0.282 117 FKLKDLKAA 0.270 144 VAQNKQJITPC 0.270 131. GPNSPFIRSL 0.244 67 LPSNVNESPL 0.237 26 KQCSLEPWRS 0.198 LTPCDWEILT 0.176 201 LGIGGQWGTV 0.171 153 CDWEILTKVT 0.144 162 TLSPSQFIJQF 0.142 212 NHQDFEMIIPL 0.140 97 VLQPPRQQGG 0.127 86 AGDLDAWQFA 0.121 8 LQPPRQQGGA 0.111 V136 PIRSLLQSVA 0.098 VIII-74P3B3-Cfl.B-Frm.3-A210 Pos 1234567890 Score SeqID 187 RAANPAIAIT 0.098 84 RLAGDLDAWQ 0.082 89 LDAWQFAVVL 0.079 52 EPQAEGVAPV 0.078 16 WDHPEWPPPI 0.067 92 WQFAVVLQPP 0.059 74 SPLQFIIRQA 0.055 139 SLLQSVAQNK 0.055 85 LAGDLDAWQF 0.054 210 VNIO{QDFEMM 0.051 142 QSVAQNKLLT 0.049 78 FIIRQARLAG 0..047 47 ELWPQEPQAM 0.046 44 RI4NELWPQEP 0.044 96 VVIJQPPRQQG 0.041 19 PEWPPPIKQC 0.041 172 KTWWTDEAQN 0.030 61 VQHKAAIJPSN 0.030 180 QNQDRKNRAA 0.027 6 KGLEEQSAPH 0.026 7 GLEEQSAPHW 0.020 71 VNESPLQFII 0.018 169 LQFKTWWTDE 0.016 155 WEILTKVTLS 0.015 184 RKNRAANPAI 0.014 205 GQWGTVNN'HQ 0.013 152 PCDWEILTKV 0.009 65 AALPSNVNES 0.009 31 EPWRSESQIC 0.008 163 LSPSQFLQFK 0.008 161 VTLSPSQFLQ 0.008 119 LLKDLKAAVG 0.007 28 CSLEPWRSES 0.007 66 ALPSNVNESP 0.007 191 PAIAITFEQL 0.006 36 ESQICPVSRM 0.006 82 QARLAGDLDA 0.005 112 WEPFSFKLLK 0.005 130 YGPNSPFIRS 0.004 202 GIGGQWGTVN 0.004 138 RSLLQSVAQN 0.004 134 SPFIRSLLQS 0.004 185 KINRAANPAIA 0.004 195 ITFEQLLGIG 0.003 103 QQGGAHQAVW 0.003 132 PNSPFIRSLL 0..003 181 NQDRKNRAAN 0.003 143 SVAQNKLLTP 0.003 135 PFIRSLLOSV 0.002 F207 WGTVNNEQDF 0.002 Tbl:IX-74P3B3-CJln.B-Frm.3-A3-9 Pos 123456789 Score SeqID 110 AVIWEPFSFK 67.500 140 LLQSVAQN( 30.000 149 LLTPCDWEI 2.700 128 GQYGPNSPF 2.025 113 EPFSFKLLK 1.800 218 MPLNKFAI 1.800 122 DLKAVGQY 1.080 164 SPSQFLQFK 0.900 7 GLEEQSAPH 0.900 76 LQFIIRQAR 0.900 195 ITFEQLLGI 0.675 118 KLLKDLKAA 0.675 160 KVTLSPSQF 0.600 NVNESPLQF 0.600 88 DLDAWQFAV 0.540 208 GTVNNHQDF 0.450 84 RIJAGDLDAW 0.450 47 ELWPQEPQA 0.450 205 GQWGTVNNH 0.405 26 KQCSLEPWR 0.360 168 FLQFKTWWT 0.300 16 HPEWPPPIK 0.300 199 QLLGIGGQW 0.203 119 LLKDLKAAV 0.200 192 AIAITFEQL 0.180 29 SLEPWRSES 0.180 56 HGVAPVQHK 0.135 148 KLLTPCDWE 0.135 57 GVAPVOHKA 0.135 220 PLNKFAIAV 0.120 66 ALPSNVN'ES 0. 120 139 SLLQSVAQN 0.090 162 TLSPSQFLQ 0.090 109. QAVWEPFSF 0.090 217 EMMPLNK'A 0.068 161 VTLSPSQFL 0.068 152 PCD1WEILTK 0.060 179 AQNQDRM 0.060 94 FAVVLQPPR .0.060 163 LSPSQFLQF 0.060 157 ILTICVTLSP 0.060 2-13 HQDFEMMPL 0.054 .97 VLQPPRQQG 0.045 166 SQFLQFKTW 0.045 37 SQICPVSRM 0.041 73 ESPLQFIIR 0.036 44 RMNELWPQE 0.030 150 LTPCDWEIL 0.030 136 FIRSLLQSV 0.030 202 GIGGQWGTV 0.-027 Thl:IlX-74P3B3 -Cfl.B-Frm. 3.A3-9 P08 123456789 Score SeqID 90 DAWQFAVVL 0.027 92 WQFAVVLQP 0.027 193 IAITFEQLL 0.027 216 PEMMPLNKF 0.020 143 SVAQNKLLT .0.020 2.00 ILGOIGGQWG 0.020 116 SFKLLKDLK 0.020 187 RAANPAIAI 0.018 177 .DEAQNQDRK 0.018 141 LQSVAQNKL 0.018 172 KTWWTDEAQ 0.015 40 CPVSRI4NEL 0.013 130 YGPNSPFIR 0.012 189 ANPAIAITF 0.012 215 DFEMMPLNK 0.012 126 AVGQYGPNS 0.012 115 FSFKLLKDL 0.011 131 GPNSPFIRS 0.011 169 LQFKTWWTD 0.009 103 QOGGAHQAV 0.009 102 RQQGGAHQA 0.009 145 AQN1KJLTPC 0.009 219 MPLNKFAIA 0.009 59 APVQHKAAL 0.009 31 EPWRSESQI 0.009 III VWEPFSFKL 0.008 72 NESPLQFII 0.008 10 EQSAPHWDH 0.008 86 AGDLDAWQF 0.006 151 TPCDWBILT 0.006 36 ESQICPVSR 0.006 156 EILTKVTLS 0.005 106 GAHQAVNEP 0.005 81 RQARLAG3DL 0.005 75 PLQFIIRQA 0.005 133 NSPFIRSLL 0.005 3 KTKKGLEEQ 0.005 176 TDEAQNQDR 0.004 194 AITFEQLLG 0.004 79 IIRQARLAG 0.004 185 KNRAANPAI 0.004 108 HQAVWEPFS 0.004 153 CDWEILTKV 0.003 107 AHQAVWEPF 0.003 95 AVVLQPPRQ 0.003 78 FIIRQARLA 0.003 158 LTKVTLSPS 0.003 74 SPLQFIIRQ 0.003 71 VNESPLQFI 0.003 112 1WBPFSFKLL 0.003 I Tbl: X-74P3B3-Cln.B-Frm.3-A3-10 00 00 1 PoW 1234567890 Score SeqID 139 SLLQSVAQNK 45.000 162 TLSPSQFLQF 18.000 148 KI.LTPCDWEI 8.100 110 AVWEPFSFKL 4.00 109 QAVWEPFSFK 1.350 217 BMNPLNKFAI 1.215 118 KIJLKDLKAAV 0.900 149 LLTPCDWEIL 0.900 7 GLEEQSAPHW 0.900 PLQFIIRQAR 0.600 140 LLQSVAQNKL 0.600 218 MMPLNKF'AIA 0.600 151 TPCDWEILTK 0.600 115 FSFKaLKLK 0.500 47 ELWPQEPQAH 0.450 163 LSPSQFLQFK 0.450 128 GQYGPNSPFI 0.405 112 WEPFSFKLLK 0.360 200 LLGIGGQWGT 0.300 175 WTDEAQNQDR 0.300 21:4 QDFEMMvPLNK 0.300 160 KVTLSPSQFL 0.270 NVNESPLQFI 0.203 -108 HQAVWEPFSF 0.180 88 DLDAWQFAVV 0.180 194 AITFEQLLGI 192 AIAITFEQLL 0.180 72 NESPLQFIIR 0.108 AHGVAPVQHK 0.090 106 GAHQAVWEPF 0.090 188 AANPAIAITF 0.090 166 SQFLQFKTNW 0.090 44 RNNELWPQEP 0.090 76 LQFIIRQARL 0.090 LAGDLDAWQF 0.060 168 FLQFKTWWTD 0.060 157 ILTKVTLSPS 0.060 209 TVNNHQDFEM 0.060 57 GVAPVQHKAA 0.045 199 OLLGIGGQWG 0.045 150 LTPCDWEILT 0.030 66 ALPSNVNESP 0.030 29 SLEPWRSESQ 0.030 84 RIAGDLDAWQ 0.030 97 VLQPPRQQGG 0.030 202 GIGGQWGTVN .0.027 205 GQWGTVNNHQ 0.020 136 FIRSLLQSVA 0.020 176 TDEAQYQDRK 0.020 119 LLKDLKAAVG 0.020 Tbl: X-74P3B3-Cln.B-Frm.3-A3-10 Pos 1234567890 Score SeqID 129 QYGPNSPFIR 0.018 219 MPLNKFAIAV 0.018 121 KDLKAAVGQY 0.016 172 KTWWTDEAQN 0.015 17 DHPEWPPPIK 0.013 69 SNVNESPLQF 0.012 35 SESQICPVSR 0.012 26 KQCSLBPWRS 0.011 39 ICPVSRI4NEL 0.009 103 QQGGAHQAVW 0.009 21 WPPPIKQCSL 0.009, 102 RQQGGAHQAV 0.009 169 LQFKTWWTDE 0.009 122 DLKAAVGQYO3 0.009 141 LQSVAQNKLL 0.009 131 GPNSPFIRSL 0.008 87 GDLDAWQFAV 0.008 92 WQFAVVLQPP 0.007 178 EAQNQDR1QUR 0.006 38 QICPVSRNNE 0.00 6 179 AQNQDRKNTRA 0.006 143 SVAQNKJJLTP 0.006 58 VAPVQHYCAAL 0.006 3 KTKKGLEEQS- 0.006 134 1 SPFIRSLLOS 0.006 67 LPSNVNESPL 0.006 78 FIIRQARILAG 0.006 208 GTVNNH1QDFE 0.005 161 VTLSPSQFLQ 0.005 96 VVLQPPRQQG 0.005 93 QFAVVLQPPR 0.004 25 IKQCSLEPWR 0.004 82 QARLAGDLDA 0.004 71 VNESPLQFII 004 195 ITFEQLLGIG 0.003 127 VGQYGPNSPF 0.003 159 TKVTLSPSQF 0.003 79 IIRQARLAGD 0.003 164 SPSQFLQFKT 0.003 31 EPWRSESQIC 0.003 40 CPVSRNNELW 0.003 54 QAHGVAPVQR 0.003 49 WPQEPQAHGV 0.003 24 PIKQCSLEPW 0.003 144 VAQNKLLTPC 0.003 191 PAIAITFEQL 0.003 65 AALPSNVNES 0.003 156 EILTKVTLSP 0.003 16 NDHPEWPPPI 0.003 1__ 125 AAVGQYGPNS 0.003 Tbl: XI-74P3B3-Cln.B-Frm.3-All-9 Pos 123456789 Score SeqID 110 AVWEPFSPK 4.000 140 LLQSVAQNK 0.400 26 KQCSLEPWR 0.360 113 EPFSFKLLK 0.240 76 LQFIIRQAR 0.240 18 HPEWPPPIK 0.200 164 SPSQFLQFK 0.200 116 SFKLLKDLK 0.200 215 DFEMMPLNK 0.120 94 FAVVLQPPR 0.060 57 GVAPVQHKA 0.060 160 KVTLSPSQF 0.060 179 AQNQDRIKR 0.060 208 GTVNNHQDF 0.045 NVNESPLQF 0.040 152. PCDWEILTK 0.040 195 ITFEQLLGI 0.040 205 GQWGTVNNH 0.036 128 GQYGPNSPF 0.036 56 HGVAPVQHK 0.030 177 DEAQNQDRK 0.018 81 RQARLAGDL 0.018 102 RQQGGAHQA 0.018 161 VTLSPSQFL 0.015 130 YGPNSPFIR 0.012 218 MMPLNKFAI 0.012 84 RIAGDLDAW 0.012 7 4LEESAPH 0.012 202 GIGGQWGTV 0.012 187 RAANPAIAI 0.012 213 HQDFEMMPL 0.012 150 LTPCDWEIL 0.010 37 SQICPVSRM 0.009 118 KLLKDLKAA 0.009 109 QAVWEPFSF 0.009 149 LLTPCDWEI 0.008 166 SQFLQFKTW 0.006 199 QLLGIGGQW 0.006 141 LQSVAQNKL 0.006 172 KTWWTDEAQ 0.006 103 QQGGAHQAV 0.006 119 LLKDLKAAV 0.004 176 TDEAQNQDR 0.004 129 QYGPNSPFI 0.004 136 FIRSLLQSV 0.004 143 SVAQNKLLT 0.004 192 AIAITFEOL 0.004 88 DLDAWQFAV 0.004 EQSAPHWDH 0.004 59 APVQHKAAL 0.003 Tbl: XI-74P3B3-Clf.BFrm.3-All-9 Pos 123456789 Score SeqID 219 MPLNKFAIA 0.003 40 CPVSRMNEL 0.003 95 AVVLQPPRQ 0.003 193 IAITFEOLL 0.003 77 QFIIRQARL 0.003 167 QFLQF1TWW 0.003 3 KTKKGLEEQ 0.003 92 WQFAVVLQP 0.002 169 LQFKTWWTD 0.002 73 ESPLQFIIR 0.002 47 ELWPQEPQA 0.002 13 APHWDHPEW 0.002 41 PVSRMNELW 0.002 99 QPPRQQGGA 0.002 209 TVNNHQDFE 0.002 126 AVGQYGPNS 0.002 148 KLLTPCDWE 0.002 72 NESPLQFII 0.002 124 KAAVGQYGP 0.001 106 GAHQAVWEP 0.001 162 TLSPSQFLQ 0.001 44 RMNELWPQE 0.001 210 VNNHQDFEM 0.001 131 GPNSPFIRS 0.001 185 KNRAANPAI 0.001 61 VQHKAALPS 0.001 31 BPWRSESQI 0.001 36 ESQICPVSR 0.001 122 DLKAAVGQY 0.001 217 EMMPLNKFA 0.001 90 DAWQFAVVL 0.001 216 FEMMPLNKF 0.001 158 LTKVTLSPS 0.001 58 VAPVQHKAA 0.001 175 WTDEAQNQD 0.001 87 GDLDAWQFA 0.001 155 WEILTKVTL 0.001 168 FLQFKTWWT 0.001 134 SPFIRSLLQ 0.001 194 AITFEQLLG 0.001 157 ILTKVTLSP 0.001 220 PLNKFAIAV 0.001 189 ANPAIAITF 0.001 79 IIRQARLAG 0.001 5 KKGLEEQSA 0.001 78 FIIRQARLA 0.001 108 HQAVWEPFS 0.001 83 ARLAGDLDA 0.001 117 FKLLKDLKA 0.001 53 PQAHGVAPV 0.001 Th1- XII-74P3B3-Cln.B-Frm.3-Al1-10 Poe. 1234567890 Score Seq-ID 13.9 SLLQSVAQNK 0.600' 151 TPCDWEILTK 0.400 109 QAVWEPFSFK 0.300 129 QYGPNSPFIR 0.240 175 WTDEAQNQDR 0.200 112 WEPFSFKLLK 0.120 110 AVWBPFSFKL 0.120 214 QDFEMMPLNK 0.080 209 TVl.ThHQDFEM 0.060 160 KVTLSPSQFL 0.060 93 QFAVVLQPPR 0.040 11 5 FSFKJLKDLK 0.040 128 GQYGPNSPFI 0.036 148 KLLTPCDWEI 0.036 57 GVAPVQHKAA 0.030 72 NESPLQFIIR 0.024 AHGVAPVQ13K 0.020 176 TDEAQNQDRK 0.020 NVNESPLQFI 0.020 1i63 LSPSQFLQFK 0.020 102 RQQGGAHQAV 0.018 118 KLIKDLKAAV 0.018 108 HQAVWEPFSF 0.018 SESQICPVSR 0.012 76 LQFIIRQARL 0.012 7' GLEEQSAPHW 0.012 166 SQFLQFKTWW 0.012 PLQFIIRQAR 0.008 162 TLSPSQFLQF 0.008 194 AITFEQLLGI, 0.008 21 EMMPLNK(FAI 0.007 219 MPLNKFAIAV 0.006 106 GAHQAVWEPF 0.006 172 KTWWTDEAQN 0.006 98 LQPPRQQGGA 0.006 178 EAQbNQDRKNR 0.006 17 DHPEWPPPIK 0-.006 103. QQGGP.HQAVW 0.006 179 AQNQDRIKP.A 0.006 208 GTVNNHQDFE 0.005 161 VTLSPSQFLQ 0.005 IKQCSLE PWR 0.004 LAGDLDAWQF 0.004 116 SFKQLIKDLKA 0.004 140 -LLQSVAQNKJ 0.004 188 AANPAIAITF 0.004 136 FIRSLLQSVA 0.004 192 AIAITFEQLL 0.004 143 SVAQNKLIJTP 0.004 82 1QARIJAGDLDA 0.004 Tbl: XII-74P3E3-Cln.B-Frm.3-All-10 Pos 1234567890 Score SeqID 218 MMPLNKFAIA 0.004 149 LLTPCDWEIL 0.004- 205 GQWGTVNNHIQ 0 .004 26 KQCSLEPWRS 0.004 96 VVIIQPPRQQG 0.003 141 IQSVAQNKLL 0.003 40 CPVSRMNELW 0.003 3 KTKKGLEEQS 0.003 87 GDLDAWQFAV 0.003 198 EQLLGIGGQW 0.003 47 ELWPQEPQAH 0.002 126 AVGQYGPNSP 0.002 39 ICPVSRMNEL 0.002 49 WPQEPQAHGV 0.002 58 VAPVQHKAAL 0.002 54 QAHGVAP VOW 0.002 150 LTPCDWEILT 0.002 67 LPSNVNESPL 0.002 195 ITFEQLLGIG 0.002 99 QPPRQQGGAH 0.002 21 WPPPIKQCSL 0.002 12 SAPHWDRPEW 0.002 170 QFKTWWTDEA 0.002 81 RQAP.LAGDLD 0.002 202 GIGGQWGTVN 0.001 78 FIIRQAR&AG 0.001 44 P.NNELWPQEP 0.001 69 SNVNESPILQF 0.001 169 LQFKTWWTDE 0.001 185 1ONRAANPAIA 0.001 92 WQFAVVLQPP 0.001 71 VNESPLQFII 0.001 84 RLAGDLDAWQ 0.001 88 DLDAWQFAVV 0.001 158 LTKVThSPSQ 0.001 6 KGLEEQSAPH 0.001 121 KDLKAAVGQY 0.001 46 NELWPQEPQA 0.001 134 SPFIRSLLQS 0.001.
38 QICPVSRMNE 0.001 168 FLQFKTWWITD 0.001 200 LLGIGGQWGT 0.001 193 IAITFEQLLG 0.001 131 GPNSPFIRSL 0.001 s0 PQEPQAHGVA 0.001 167 QFLQFKTWWT 0.001 181 N~QDRKNRAAN 0.001 213 HQDFEMMPLN 0.001 187 RAANPAIAT 0.-001 F145 AQNKLLTPCD 10.001 Tbl :XII1-74P3B3-Cfl.B-'Frm.3-A24-9 Pos 123456789 Score SeqID 129 QYGPNSPFI 60.000 77 QFIIRQARL 30.000 81 RQARLAGDL 9.600 133 ?NSPFIRSLL 8.400 CPVSRNNEL 7.920 III VWEPFSFKL 7.920 161 VTLSPSQFL 7.200 193 IAITFEQLjL 7.200 150 LTPCDWEIL 6.000 142 QSVAQNKLL 6.000 59 APVQrn(AAL 6.000 141 LQSVAQNKL S.280 115 FSFKLLKDL 4.800 192 AIAITFEQL 4.800 189 ANPAIAITF 4.200 160 KVTLSPSQF 4.000 DAWQFAVVL 4.000 213 HQDFENMPL 4.000 NVNESPLQF 3.600 208 GTVNNHODF 3.600 163 ISPSQFLQF 3.600 109 QAVWEPFS' 3.000 128 GQYGPNSPF 2.000 185 KNXAANTPAI 2.000 .1B7 RAANPAIAI 2.000 86 AGDLDAWQF 2.000 71 VNESPLQFI 1.800 218 MMPLNKFAI 1.500 149 LLTPCDWEI 1.320 195 ITFEQLLGI 1.200 31 EPWRSESQI 1.000 210 VN1NHQDFEM 0.825 37 SQICPVSRM 0.750 167 QPLQFKTWW 0.750 112 WEPFSFKLL 0.720 155 WEILTICVTL 0.600 22 PPPIK(QCSL 0.600 68 PSNVNESPL 0.600 211 NNHQDFEMM' 0.600 132 PNSPFIRSL 0.480 107 AHQAVWEPF 0.420 21.6 FEMNPLNKF 0.396 21. WPPPIKQCS 0.302 34 RSESQICPV 0.300 102 RQQGGAHQA 0.300 118 KILIWLKAA 0.300 64 KAALPSNVN 0.240 180 QNQDRKNRA 0.216 217 RMb2PLNXFA 0.216 .199 QLLGIGGQW 0.210 Tbl :XIII-74P3E3-Cfl.B-Fm.3-A24-9 Pos 1123456789 Score SeqID 84 RLAGDLJDAW 0.200 29 SLEPWRSES 0.198 66 ALPSNVNES 0.198 57 GVAPVQHKA 0.185 17 DHPBWPPPI 0.180 219 14PLNKFAIA 0.180 131 GPNSPFIRS 0.180 154 DWEILTKVT 0.180 20 EWPPPIKQC 0.180 188 AANPAIAIT 0.180 145 AQNq-ajLTPC 0.180 38 QICPVSRMT 0.168 178 EAQNQDPI~1 0.165 78 FIIRQARLA 0.150 156 EILTKVTLS 0.150 99 QPPRQQGGA 0.150 125 AAVGQYGPN 0.150 20 GQWGTVNN 0.150 58 VAPVQH1CAA 0.150 201 LGIGGQWGT 0.150 168 FLQFKTWWT 0.150 139 OLLQSVAQN 0.150 136 FIRSLLQSV 0.144 72 NESPLQFII 0.144 119 LLKDLKAAV 0.144 103 QQGGAHQAV 0.120 166 SQFLQFKTW 0.120 151 TPCDWEIILT 0.120 47 ELWPQEPQA 0.120 13 APHWDHPEW 0.110 108 HQAVWEPFS 0.100 158 LTKVTLSPS 0.100 122 DLKAAVGQY 0.100 143 SVAQNKLLT 0.100 173 T1*WTDEAQN 0.100 126 AVGQYGPNS 0.100 181 NQDRKNRZAA 0.100 203 IGGQWGTVN 0.100 27 QCSLEPWRS 0.100 88 DIJDAWQFAV 0.100 104 QGGAI{QAVW 0.100 61 VQHKAALPS 0.100 202 GIGGQWGTV 0.100 196 TFEQLLGIG 0.090 93 QFAVVILQPP 0.084 215 DFEM14PL1NK 0.075 135 PFIRSLLQS 0.075 116 SF1ULLKDLK 0.060 170 QFKTWWTDE 0.050 1 MFK'rKKGLE 0.050 I Tb1:XTV-74P3-C1n.~-1~rmX~-A24-1O Poe 1234567890 Score SegID 215 DFEMMPLNKF 19.800 1 60 KVTLSPSQFL 9.600 111 VWEPF'SFKLL 8.640 39 ICPVSRMNEL 7.920 140 IjLQSVAQNKL 7.920 21 WPPPIKQCSL 7.200 58 VAPVQHKAAL 6.000 ,154 DWEILTKVTL 6.000 131 GPNSPFIRSL 6.000 110 AVWEPFSFKL 5.280 188 AANPAIAITF 5.040 149 LLTPCDWEIL 4.800 192 AIAITFEQLL 4.800 141 LQSVAQNQL 4.000 67 LPSNVN'ESPL 4.000 r76 LQFIIRQARj 4.000 148 KLLTPCDWEI 3.300 r 69 SNVNESPLQF 3.000 127 VGQYGPNSPF 3.000 162 TLSPSQFLQF 2.880 106 GMQAVWEPF 2.800 14 PFSFKLLIDL 2.400 207 WGTVNNHQDF 2.400 LAGDLiDAWQF 2.400 i'7 NVNESPLQFI 2.160 18 HQAVWEPFSF 2.000 217 EMMPLNKFAI 1.800 71 VNESPLQPII 1.800 194 AITFEQLLGI 1.000 12 8 GQYGPNSPFI 1.000 210 VNN1HQDFEMM 0.900 209 TVNNMQDFEM 0.825 167 QFLQFKTWWT 0.750 77 QFIIRQARLA 0.750 36 ESQICPVSRM 0.750 IRQARLAGDL 0. 720 191 PAIAITFEQL 0.720 212 NHQDFEMMPL 0.720 12 PNSPFIRSLL 0..672 129 QYQPNSPFIR 0.600 170 QFKIWWTDEA 0.550 116 SFKLLKDLjKA 0.550 34 RSESQICPVS 0.420 89 LDAWQFAVVL 0.400 102 RQQGGAHQAV 0.360 118 KLLKDLKAAV 0.360 EWPPPIKQCS 0.302 184 RKRAANPAI 0.300 1138 RSLLQSVAQN 0.300 1159 TKVTLSPSQF 0.300 Th1:XIV-74P3B3-Cln.B-Frn.3-A24-107 Poe 1234567890 Score SeqID 3 KTKKOLEEQS 0.240 65 AAIJPSNVNES 0.238 56 HGVAPVQHCA 0.231 198 EQLLGIGGQW 0.210 37 SQICPVSRNN 0.210 74 SPLQFIIRQA 0.210 187 RAANPAIEAIT 0.200 185 KNRAPINPAIA 0.200 26 KQCSLEPWRS 0.200 172 KTWWTDEAQN 0.200 124 KAAVGQYGPN 0.200 28 CSLEPWRSES 0.198 7 GLEEQSAPHW 0.180 179 AQNQDRKNRA 0.180 180 QNQDRKNRAA 0.180 144 VAQNXLLTPC 0.180 49 WPQEPQAHGV 0.180 218 MMPLNKFAIA 0.180 130 YGPNSPFIRS 0.180 98 IQPPRQQGGA 0.180 12 SAPHWDHPEW 0.165 150 LTPCDWEILT 0.150 40 CPVSRMNELW 0.150 142 QSVAQNIKALT 0.150 52 EPQAHGVAPV 0.150 201 LGIGGQWGTV 0.150 125 AAVGQYGPNS 0.150 219 MPLNKFAIAV 0.150 30 LEPWRSESQI 0.150 164 SPSQFLQFXT 0.132 86 AGDLDAWQFA 0.120 136 FIRSLLQSVA 0.120 88 DLDAWQFAVV 0.120 57 GVAPVQHKAA 0.120 31 EPWRSESQIC 0.120 16 WDHPEWPPPI 0.120 135 PFIRSLLQSV 0.108 213 I{QDFEMMPLN 0.100 181 NQDRKNRAAN 0.100 103 QQGGAHQAVW 0.100 146 QN'KLLTPCDW 0.100 166 SQFLQFKTWW 0.100 186 INRAANPAIAI 0.100 203 IGGQWGTVNN 0.100 157 ILTKVTJSPS 0.100 61 VQHXAALPSN 0.100 200 LLGIGGQWGT 0.100 134 SPFIRSLjLQS 0.100 82 QARLAODLDA 0.100 202 1GIGGQWGTVN 0.100 Thi: XV-74P3B3-Cln.B-Frm.3-B7-9 Pos 123456789 Score SeqID 59 APVQHKAAL 240.000 CPVSRMNEL 80.000 DAWQFAVVL 12.000 192 AIAITFEQL 12.000 193 IAITPEOLL 12.000 22 PPPIKQCSL 8.000 31 EPWRSESQI 8.000 161 VTLSPSQFL 6.000 133 NSPFIRSLL 6.000 185 KNRAANPAI 4.000 150 LTPCDWEIL 4.000 141 LQSVAQNKL 4.000 142 QSVAQNKLL 4.000 115. FSFKLLKDL 4.000 81 RQARLAGDL 4.000 99 QPPRQQGGA 2.000 136 FIRSLLQSV 2.000 219 MPLNXFAIA 2.000 151 TPCDWEILT 2.000 187 RAANPAIAI 1.800 37 SQICPVSRM 1.500 213 HQDFRMMPL 1.200 13 APHWDHPEW 1.200 211 NNHQDFEMM 1.000 210 VNNHQDFEM 1.000 188 AANPAIAIT 0.900 131 GPNSPFIRS 0.600 143 SVAQNKLLT 0.500 57 GVAPVQKA 0.500 218 MMPLNKFAI 0.400 68 PSNVNESPL 0.400 21 WPPPIKQCS 0.400 77 QFIIRQARL 0.400 155 WEILTKVTL 0.400 112 WEPFSFKLL 0.400 195 ITFEQLLGI 0.400 149 LLTPCDWEI 0.400 132 PNSPPIRSL 0.400 145 AQNKLLTPC 0.300 126 AVGQYGPNS 0.300 217 EMMPLNKFA 0.300 49 WPQEPQAHG 0.300 58 VAPVQHKAA 0.300 82 QARLAGDLD 0.300 110 AVWBPFSFK 0.225 100 PPRQQGGAH 0.200 113 EPFSFKLLK 0.200 119 LLKDLKAAV 0.200 74 SPLQFIIRQ 0.200 190 NPAIAITFE 0.200 Tbl: XV-74P3B3-Cln.B-Frm.3-B7-9 Po 123456789 Score SeqID 164 SPSQFLQFK 0.200 134 SPFIRSLLQ 0.200 202 GIGGQWGTV 0.200 103 QQGGAHQAV 0.200 67 LPSNVNESP 0.200 52 EPQAHGVAP 0.200 125 AAVGQYGPN 0.180 71 VNESPLQFI 0.180 79 IIRQARLAG 0.150 95 AVVLQPPRQ 0.150 111 VWEPFSFKL 0.120 160 KVTLSPSQF 0.100 118 KLLKDLKAA 0.100 102 RQQGGAHQA 0.100 201 LGIGGQWGT 0.100 78 FIIRQARLA 0.100 70 NVNESPLQF 0.100 47 ELWPQEPQA 0.100 42 VSRMNELWP 0.100 168 FLQFKTWWT 0.100 180 QNQDRKNRA 0.100 18 HPEWPPPIK 0.090 64 KAALPSNVN 0.090 65 AALPSNVNE 0.090 96 VVLQPPRQQ 0.0-75 189 ANPAIAITF 0.060 178 EAQNQDRKN 0.060 109 QAVWEPFSF 0.060 66 ALPSNVNES 0.060 88 DLDAWQFAV 0.060 34 RSESQICPV 0.060 209 TVNNHQDFE 0.050 179 AQNQDR2NR 0.045 129 QYGPNSPFI 0.040 72 NESPLQFII 0.040 17 DMPEWPPPI 0.040 106 GAHQAVWEP 0.030 144 VAQNKLLTP 0.030 54 OAHGVAPVQ 0.030 83 ARLAGDLDA 0.030 as LAGDLDAWQ 0.030 182 QDRKNRAAN 0.030 94 FAVVLQPPR 0.030 194 AITFOLLO 0.030 12 SAPHWDHPE 0.030 124 KAAVGQYGP 0.030 128 GQYGPNSPF 0.030 181 NQDRKNRAA 0.030 97 VLQPPRQQG 0.023 122 DLKAAVGQY 0.020 00 Tbl: XVI-74P3P3-Cln.B-Frm.3-37-10 POB 1234567890 Score SecgID S131 GPNSPFIRSL 80.000 C~]67 LPSNVNESPL 80.000 S21 WPPPIKQCSL 80.000 Ct110 AVWEPFSFKL 60.000 160 KVTLSPSQFL 30.000 58 VAPVQHKAAL 12.000 192 AIAITFEQLjL 12.000 209 TVNINHQDFEM 5.000 141 LQSVAQNKLL 4.000 52 EPQAHGVAPV 4.000 39 ICPVSRNNEL 4.000 76 ILQFIIRQARL- 4.000 49 WPQEPQAHGV 4.000 149 LLTPCDWEIL 4.000 140 LLOSVAQNKL 4.000 00 219 MPLNKFAIAV 4.000 82 QARLAGOLDA 3.000 NVNESPLQFI 3.000 31 EPWRSESQIC 2.000 164 SPSQFLQFKT 2.000 74 SPLQFIIRQA 2.000 36 ESQICPVSRM 1.500 217 EMMPLNKFAI 1.200 194 AITFEQLjLGI' 1.200 191 PAIAITFEQL 1.200 210 VNNHQDFEMM 1.000 136 FIRSLLQSVA 1.000 185 1K1RAANPAIA 1.000 1i32 PNSPFIRSLL 0.600 13 APHWDHPEWP 0.600 59 APVQMXAALP 0.60.0 57 GVAPVQHKAA 0.500 89 LDAWQFAVVL 0.400 212 NHQDFEMMPL 0.400 148 KLIJTPCDWEI 0.400 CPVSRMNELW 0.400 128 GQYGPNSPFI 0.400 IRQARLAGDL 0.400 134 SPFIRSLjLQS 0.400 144 VAQNKaJLTPC 0.300O 187 RAANPAIAIT 0.300 179 AQNQDRKNRA 0.300 AVVLQPPRQQ 0.225 201 LGIGGQWGTV 0.200 102 RQQGGAHQAV 0.200 118 KLLKDLKAAV 0.200 151 TPCDWEILTK 0.200 190 NPAIAITFEQ 0.200.
99 QPPRQQGGAH 0.200 113 1EPFSFKLLKD 10.200 Tbl: XVI-74P3P3-Cln.B-Frmi.3-B7-10 Pos 1234567890 Score SeqID 100 PPRQQGGA{Q 0.200 65 AALPSNVNES 0.180 188 AANPAIAITF 0.180 125 AAVGQYGPNS 0.180 126 AVGQYGPNSP 0.1SO_0 111 VWEPFSFKLL 0.120 71- VNESPLQFII 0.120 154 DWEILTKVTL 0.120 96 VVLQPPRQQG 0.113 218 MMPLNKFAIA 0.100 56 HGVAPVQHXA 0.100 98 LQPPRQQGGA 0.100 150 LTPCDWEILT 0.100 42 VSRMNELWPQ 0.100 180 QN'QDRKNRAA 0.100 142 QSVAQNKLLT 0.100 200 LLGIGGQWGT 0.100 79 IIRQARLAGD 0.100 18 RPEWPPPIKQ 0.090 86 AGDLDAWQFA 0.090 12 SAPHNDHPEW 0.060 106 GAHQAVWEPF 0.060 124 KAAVGQYGPN 0.060 186 NRAANPAIAI 0.060 85 LAGDLDAWQF 0.060 88 DLDAWQFAVV 0.060 143 SVAQN1K.LTP 0.050 178 EAQNQDRKNR 0.045 109 QAVWEPFSFK 0.045 16 WDHPEWPPPI 0.040 30 LBPWRSESQI 0.040 114 PFSFKLLKDL 0.040 184 R1ONRAANPAI 0.040 127 VGQYGPNSPF 0.030 28 CSLEPWRSES 0.030 54 QAHGVAPVQH 0.030 66 ALPSNVNESP 0.030 189 ANPAIAITFE 0.030 193 IAITFEQILG 0.030 216 FEMM~PLNKFA 0.030 130 YGPNSPFIRS 0.030 145 AQNKLLTPCD 0.030 64 KAALPSNVNE 0.030 94 FAVVLQPPRQ 0.030 90 DAWQFAVVLO 0.030 138 RSLLQSVAQN 0.020 62 QRKAALPSNV 0.020 157 ILTKVTLSPS 0.020 103 QQGGAHQAVW 0.020 198 EQLLGIGGQW 0.020 Tbl :XVII-74P3B3-Cfl.B-FrMf.3B35-9 Poe 12345678.9 Score SegI CPVSRMNEL 20.000 59 APVQHKAAL 20.000 13 APHWDHPEW 15.000 31 EPWRSESQI 8.000 122 DLKP.AVGQY 6.000 115 FSFKLLKDL 5.000 133 NSPFIRSLL~ 5.000 163 LSPSQFLQF 5.000 142 QSVAQNKaiL 5.000 109 QAVWEPFSF 4.500 151 TPCDWEILT 4.000 193 IAITFEQLL 3.000 DAWQFAVVL 3.000 211 NNHiQDFEMM 3.000 187 RA.ANPAIAI 2.400 185 KNRAANPAI 2.400 22 PPPIKQCSL 2.000 81 RQARLAGDL 2.000 NVNESPLQF 2.000 219 MPLNKFAIA 2.000 131 GPNSPFIRS 2.0 00 37 SQICPVSRM 2.000 21 WPPPIKQCS 2.000 160 KVTLSPSQF 2.000 99 QPPRQQGGA 2.000 210 VNNHQDFEM 2.000 150 ITPCDWEIL 1.500 84 RI 4 AGDLDAW 1.500 119 LLKDLKAAV 1.200 161 VTLSPSQFL 1.000 189 ANPAIAITF 1.000 192 AIAITFBQL 1.000 128 GQYGPN1SPF 1.000 208 GTVN1NHQDF 1.000 141 LQSVAQNKJ 1.000 195 ITFEQLLGI 0.800 64 KAALPSNVN 0.600 34 RSESQICPV 0.600 136 FIRSLLQSV 0.600 68 PSNVNESPL 0.500 166 SQFLQFKTW 0.500 199 QLLGIGGQW 0.500 104 QGGAHQAVW 0.500 86 AGDLDAWQF 0.450 213 HQDFEMMPL 0.450 149 LLTPCDWEI 0.400 218 MMPLNICFAI 0.400 49 WPQEPQAHG 0.400 125 AAVGQYGPN 0.300 58 VAPVQHKAA 0.300 Tbl: XVII- 74P3B3-Cfl.EB-Frmf. 3B35-9 Pos 123456789 Score SeI 188 AANPAI.AIT 0.300 118 KLLKDLKAA 0.300 158 LTKVTLSPS 0.300 178 EAQNQDRIN 0.300 180 QINQDRKNRA 0.200 74 SPLQFIIRQ 0.200 113 EPFSFKLLK 0.200 202 GIGGQWGTV 0.200 164 SPSQFLQFK 0.200 134 SPFIRSLLQ 0.200 102 RQQGGAHQA 0.200 675~ LPSNVNESP 0.200 52 EPOAHOVAP 0.200 103 QQGGAHQAV 0.200 190 NPAIAITFE 0.200 27 QCSLHPWRS 0.150 42 VSRNNELWP 0.150 71 VNESPLQFI 0.120 78 FIIRQAP.LA 0.100 38 QICPVSRMN 0.100 155 WEILTKVTL 0.100 139 SLLQSVAQN 0.100 61 VQHKAALPS 0.100 201 LGIGGQWGT 0.100 47 ELWPQEPQA 0.100 28 CSLEPWRSE 0.100 204 GGQWGTVNN 0.100 77 QFIIRQARL 0.100 217 EMMPLNKFA 0.100 66 ALPSNVNES 0.100 145 AQNKLLTPC 0.100 108 HQAVWEPFS 0.100 203 IGGQWGTVN 0.100 168 FLQFKTWWT 0.100 126 AVGQYGPNS 0.100 112 WEPFSFKLL 0.100 57 GVAPVQHKA 0.100 216 FEMMPLNKF 0.100 156 EILTKVTLiS 0.100 107 AHQAVWEPP 0.100 132 PNSPFIRSL 0.100 138 RSLLQSVAQ 0.100 143 SVAQNUJIT 0.100 82 QARILAGDLD 0.090 17 DHPEWPPPI 0.080 18 HPEWPPPIK 0.060 100 PPRQQGGAH 0.060 124 -KAAVCQYGP 0.060 85 LAGDLDAWQ 0.060 6 KGLEEQSAP 0.060 00 00 Th1:XVIII-74P3B3-Cln.B-Frm.3- B35-10 Pos 1234567890 Score SeqID 67 LPSNVNESPL 20.000 131 GPNSPFIRSL 20.000 21 WPPPIKQCSL 20.000 CPVSRI4NELW 10.000 36 ESQICPVSRN 10.000 LAGDLDAWQF 9.000 49 WPQEPQAHGV 8.000 52 EPQAHGVAPV 4.000 219 MPLNKF'AIAV 4.000 58 VAPVQHKAAL 3.000 188 AANPAIAITF 3.000 210 VNNHQDFEMM 3.000 106 OAHQAVWEPF 3.000 31. EPWRSESQIC 3.000 12 SAPHWDHPEW 2.250 4 SPLiQFIIRQA 2.000 209 TVNNHQDFEM 2.000 110 AVWEPFSFUL 2.000 160 KVTLSPSQFL 2.000 164 SPSQFLQFKT 2.000 134 SPFIRSLLQS 2.000 108 HQAVWEPFSF 1.500 149 LLTPCDWEIL 1.500 146 QNKLLTPCDW 1.500 39 ICPVSRMNEL 1.000 127 VGQYGPNSPF 1.000 '19 AIAITFEQLL 1.000 [207 WGTVNNHQDF 1.000 141 LQSVAQNKLjL 1.000 76 LQFIIRQARL 1.000 140 LLQSVAQNKJ 1.000 69 SNVNESPLQF 1.000 138 RSLLQSVAQN 1.000 162 TLSPSQFLiQF 1.000 28 CSLEPWRSES 1.000 82 QARLAGDLiDA 0.900 148 KLULTPCDWEI 0.800 NVNESPLQFI 0.80 0 185 KNRAAdIPAIA 0.600 1.51 TPCDWEILTK 0.600 3 KTKKGIJEEQS 0.600 187 RAANPAIAIT 0.600 124 KAAVGQYGPN 0.600 166 SQFLQFKTNW 0.500 142 QSVAQNKLLT 0.500 198 EQLLGIGGQW 0.500 103 QQGGAHQAVW 0.500 121 KDLKAAVGQY 0.400 118 KLLKDIJKAAV 0.400 102 RQQGGAHQAV 0.400 Tbl :XVIII-74P3B3-Cln.B-Frmf.3- B35-10____ Pos 1234567890 Score SeqID 128 GQYGPMSPFI 0.400 194 AITFEQLLGI 0.400 217 EMMPLNKFAI 0.400 191 PAIAITFEQL 0.300 172 KTWWTflEAQN 0.300 125 AAVGQYOPNS 0.300 26 KQCSLEPW.S 0.300 144 VAQNKLLTPC 0.300 65 AAIJPSNVNES 0.300 136 FIRSLLQSVA 0.300 212 NEQDFENMPL 0.300 34 RSESQICPVS 0.300 7 GLEEQSAPHW 0.300 165 PSQFLQFKTW 0.250 42 VSRNNELWPQ 0.225 59 APVOHXAALP 0.200 13 APHWDHPEWP 0.200 201 LGIGGQWGTV 0.200 190 NPAIAITFEQ 0.200 99 QPPRQQGGAH 0.200 113 EPFSFKLLKD 0.200 18 QNQDR1QNRAA 0.200 24 PIKQCSLEPW 0.150 71 VNESPLQFII 0.120 179 AQNQDRKNRA 0.100 37- SQICPVSRMN 0.100 S7 GVPQHA 0.100 159 TKVTTJSPSQF 0.100 56 HGVAPVQHKA 0.100 130 YGPNSPFIRS 0.100 203 IGGQWaTVNN 0.100 132 PNSPFIRSLL 0.100 so IRQARLAQDL 0.100 61 VQHXAALPSN 0.100 98 LQPPRQQGGA 0.100 202 GIGGQWGTVN 0.100 89 LDAWQFAVVL 0.100 218 MMPLNKFAIA 0.100 150 LTPCDWEILT 0.100 157 ILTKVTLSPS 0.100 200 LLGIGGQWGT 0.100 184 PKNRAANPAI 0.080 83 ARLAGDLDAW' 0.075 64 KAALPSNVNE 0.060 62 QHIKAALPSNV 0.060 100 PPROQGGAHQ 0.060 18 HPEWPPPIKQ 0.060 119 ILKDLKAAVG 0.060 88 DLD AWQFAVV 0.060 163 ISPSQFLQFK 0.050 Table V-83P4B8-A1-9mers Po 123456789 Score SeqID 995 LLEPSSPQF 180.000 598 QADVRLMLY. 125.000 717 ELEDFELDK 90.000 LVESGDLQK 90.000 207 LQEIPPLVY 33.750 1311 ASEHQGQNK 27.000 229 VLEGIIAFF 18.000 800 TSDSLLSMK 15.000 56 CSEEAGTLR 13.500 389 LMDSYGPKK 10.000 584 CLEIHDSLR 9.000 908 CLEGLQKIP 9.000 86 VSEIIGLLM 6.750 715 KSELEDFEL 6.750 946 DADVSVTQR 5.000 638 KPDLLPPLK 5.000 861 GPDGQNPEK 5.000 187 TAEEVEFVV 4.500 266 HVEGTIILH 4.500 109 ANEFISAVR 4.500 126 SLELLPIIL 4.500 382 LVELGFILM 4.500 691 EEEEEEAFY 4.500 1318 NKEPAKKKR 4.500 481 VTEAFDYLS 4.500 1018 SREDALFCK 4.500 94 MLEAIHHFPG 4.500 658 ISLQEPLDY 3.750 1202 GSHLTPLCY 3.750 633 RSSNEFMRY 3.750 660 LQEPLDYL 2.700 972 SQEEDFNSK 2.700 825 HQESLSVLR 2.700 646 KLDACILTQ 2.500 398 VLDGKTIET 2.500 1160 DTLLKDLCK 2.500 1188 GGIP1NMEK 2.500 770 DILSLFMCY 2.500 1171 TTLTALVRY 2.500 275 IVFAIKLDY 2.500 748 GVCEVLIEY 2.500 257 VTVPSGELR 2.500 986 VTVLTSLSK 2.500 57 SEEAlGTLRR 2.250 1204 HLTPLCYSF 2.000 140 KKENLAYGK 1.800 707 ESITNRMIK 1.500 1156 GSCVDTLLK 1.500 17 LQEPLQTLR 1.350 1115 LSERASSQA 1.350 Table V-83P4B8-AI-9mers Pos 123456789 Score SeqID 269 GTIILHIVF 1.250 936 VTDKEGEER 1.250 1170 YTTLTALVR 1.250 579 ANBTFCLEI 1.125 841 YAVNVALQK 1.000 44 GALLRAIFK 1.000 537 VAGFLLLL( 1.000 1031 LLFSLRVSY 1.000 461 DLLSNIVMY 1.000 874 LCDITRVLL 1.000 906 LLCLEGLQK 1.000 515 DCLILVLRK 1.000 253 LLDVVTVPS 1.000 234 IAFFSALDK 1.000 361 STMILEVVK 1.000 670 CIQHCLAWY 1.000 174 VIQHTSMFK 1.000 190 EVEFVVEKA 0.900 705 ILESITNRM 0.900 105 LVELANEFI 0.900 1063 DVEVEKTNH 0.900 1256 AIEQYEKFL 0.900 286 GRELVKHLK 0.900 364 ILHVVKNSV 0.900 749 VCEVLIEYN 0.900 194 VVEKALSMP 0.900 440 ILEQVLNRV 0.900 1095 VLEEVDWLI 0.900 753 LIYNFSIS 0.900 892 VEESGKKEK 0.900 403 TIETSPSLS 0.900 781 LSDIINEKA 0.750 811 SSLLTALFR 0.750 26 EGDLTNLLQ 0.625 772 LSLFMCYKK 0.600 1237 ATAMARVLR 0.500 1252 NLIFAIEQY 0.500 1158 CVDTLLKDL 0.500 641 LLPPLKLDA 0.500 326 VLDLLKTSV 0.500 459 FLDLLSIV 0.500 627 LLSQLKQFY 0.500 228 SVLEGIIAF 0.500 568 HVDVHSHYN 0.500 313 LLSVTRIQR 0.500 439 EILEQVLNR 0.500 933 ALDVTDKEG 0.500 726 SADFSQSTS 0.500 1098 EVDWLITKL 0.500 304 NLSPFSIAL 0.500 Table VI-83P4B8-Al-lmers Pos 1234567890 Score SeqID 481 VTEAFDY 4 SF 112.500 56 CSEBAGTLRR 67.500 403 TIETSPSLSR 45.000 584 CLEIMDSLRR 45.000 800 TSDSLLSMKF 37.500 1059 DIDQDVEVEK 20.000 749 VCEVILIEYNF 18.000 891 SVEESGKKEK 18.000 1098 EVDWLITKLK 10.000 1123 ATLPNQPVEK 10.000 995 LLEPSSPQFV 9.000 1318 NKEPAKKKRK 9.000 1063 DVEVEKTNIF 9.000 322 FQDQVLDLLK 7.500 660 LQEPLDYLLC 6.750 86 VSEIIGLLML 6.750 908 CLEGLQKIFS 4.500 105 LVELANEFXS 4.500 266 HVEGTIILHI 4.500 229 VLEGIIAFFS 4.500 1096 LEEVDWLITK 4.500 1095 VLEEVDWLIT 4.500 753 LIEYNFSISS 4.500 1256 AIEQYEKFLI 4.500 690 EEEEEEEAFY 4.500 282 DYELGRELVK 4.500 126 SLELIJPIILT 4.500 459 FLDLLSNIVM 2.500 274 HIVFAIIKJDY 2.500 657 .KISIJQEPLDY 2.500 874 LCDITRVLLW -2.500 206 NLQEIPPLVY 2.500 1170 YTTLTALVRY 2.500 188 AEEVEFVVEK 1.800 1115 LSEEASSQAT 1.350 257 VTVPSGELRH 1.250 1171 TTLTALVRYY 1.250 1246 ETKPIPNLIF 1.250 378 VTQGLVELGF 1.250 74 QLVESGDLQK 1.000 1.73 YVIQHTSMFK 1.000 233 IIAFFSALDK 1.000 669 CCIQHCLAWY 1.000 1183 VCQSSGGIPK 1.000 905 SLLCLEGLQK 1.000 985 LVTVIJTSLSK 1.000 529 QLDARKSAVA 1.000 568 HVDVHSHYNS 1.000 253 ILLDVVTVPSG 1.000 F1030 FN iLFSLIIVSY 1.000 Table VI-83P4B8-Al0lmers -Poe 1234567890 Score SegID 536 AVAGFLLLLK 1.000 1006 MLSWTSKIC( 1.000 717 ELEDFELDKS 0.900 190 EFVVEKAL 0.900 426 LLETFKIHEM 0.900 705 ILESITNRMI 0.900 440 ILBQVLNRVV 0.900 116 VREGSIJVNGK 0.900 364 IIJEVVKNSVH 0.900 605 LYEGFYDVLR 0.900 720 DFELDKSADF 0.900 810 VSSLLTALFR 0.750 227 KSVLEGIIAF 0.750 781 LSDIL1NEKAG 0.750 825 HQESLSVLRS 0.675 638 KPDLLPPLKL 0.625 1201 SGSRLTPLCY 0.625 26 EGDLTNLLQN 0.625 78 SGDLQKEIVS 0.625 [747 NGVCEVLIEY 0.625 1206 TPLCYSFISY 0.625 360 VSTMILEVVK 0.600 SADFSQSTSI 0.500 1158 CVDThLKDLC 0.500 513 HRDCLILVLR 0.500 914 KIFSAVQQFY 0.500 646 KLDACILTQG 0.500 L LCSGRWDQQY 0.500 3 26 VLDLLKTSWV 0.500 955 TAFOIRQFQR 0.500 F946 DADVSVTQRT 0.500 384 ELGFILMDSY 0.500 566 QVHVDVNSHY 0.500 701 DILDDILESIT 0.500 626 TLLSQLICQFY 0.500 1293 ILDMVLREDG 0.500 640 DLLPPLKLDA 0.500 F312 LLLSVTRIQR 0.500 1079 TAAPTVCLLV 0.500 398 VLDGKTIETS 0.500
F
799 KTSDSLLSNK 0.500 2 80 KIJDYELGREL 0.500 940 EGEEREDADV 0.450
F
689 EEEEEEEAF 0.450 57 SEEAGTLRRR 0.45 Ti 835 SNEFMRYAVN 0.450 F382 LVBLGFILND 0.450 194 VVEKALSMFS 0.450 1065 EVEKTNHFAI 0.450 771 1ILSLFMCYKK 0.400 Table: VII-83P4P4B8-A2-9mere 00 00 Pos 123456789 Score SeqID 604 MLYEGFYDV 2947.447 16 KLQEFLQTL 2679.251 541 LLLLKNFKV 2537.396 1027 SLMNLLSL 1054.405 744 FLVMGVCEV 735.860 1094 KVLEEVDWL 615.175 1140 TLLTPFHEL 570.675 659 SLQEPLDYL 542.901 342 QLLQGSKPL 434.725 752 VLILY-FSI 421.756 1168 KMYTTLTAL 397.436 352 NLVPHRSYV 382.536 206 NLQEIPPLV 285.163 1141 ILTFHELV 220.160 381 GLVEIJGFIL 208.279 666 YLLCCIQHC 194.477 498 RLLKAVQPL 181.794 480 KVTEAFDYL 137.348 911 GLQKIFSAV 132.149 271 IILHIVFAI 120.368 1208 LCYSFISYV 118.727 773 SLFMCYKKL 118.561 473 VLQSCSSKV 118.238 462 LLSNIVMYA 106.837 542 LLLKNFKVL 104.674 1175 ALVRYYLQV 104.328 880 VLLWRYTSI 98.433 311 ALLLSVTRI 88.783 129 LLPIILTAL 83.527 984 LLVTVITSL 83.527 304 NLSPFSIAL 81.177 674 CLAWYKNTV 69.552 561 SLSVSQVHV 69.552 359 YVSTMILEV 64.388 623 VMQTLLSQL 60.325 108 LANEFISAV 58.847 923 YQPKIQQFL 54.798 459 FLDLLSNIV 52.470 326 VLDLLKTSV 47.295 179 SMFKDVPLT 45.801 869 KIFQNLCDI 42.727 1161 TLLKDLCKM 42.278 186 LTAEEVEFV 41.735 667 ILCCIQHCL 36.316 988 VLTSLSKLL 36.316 512 SMRDCLILV 36.000 1095 VLEEVDWLI 34.904 487 YLSFLPLQT 34.279 67 KIYTCCIQL 32.898 424 NILLETFKI 30.785 Table: VII-83P4P4B8-A2-9mer PoB 123456789 Score SeqID 1005 QMLSWTSKI 27.879 529 QLDARKSAV 27.821 982 ALLLVTVLT 27.572 928 QQFLRALDV 26.092 232 GIIAFFSAL 21.208 809 FVSSLLTAL 19.776 444 VLNRVVTRA 19.425 1087 LVLSQAHKV 18.757 1134 IIMQLGTLL 18.476 926 KIQQFLRAL 17.971 318 RIQRFQDQV 17.807 440 ILEQVLRV 17.405 618 QLANSVMQT 17.140 1192 KMMEKQVKL 17.029 536 AVAGFLLL 16.337 559 SQSLSVSQV 16.219 987 TVLTSLSKL 15.907 519 LVLRKAMFA 15.038 1088 VLSQAEKVL 14.890 1235 AVATAMARV 13.997 842 AVNVALQKV 13.997 495 TVQRLLKAV 13.997 524 AMFANQLDA 13.276 746 VMGVCEVLI 12.809 996 LEPSSPQFV 12.645 583 FCLEIMDSL 10.967 980 KEALLLVTV 10.887 1029 MNLLFSLHV 10.852 577 SVANETFCL 10.841 136 ALATKKENL 10.468 1056 HLGDIDQDV 9.696 465 NIVMYAPLV 9.563 738 KNNISAFLV 9.217 1275 LMQHMKLST 9.149 1135 IMQLGTLLT 9.149 597 QQADVRLML 8.880 297 QQGDSNNNL 8.880 270 TIILHIVFA 8.641 1215 YVQNKSKSL 8.598 641 LLPPLKLDA 8.446 193 FVVEKALSM 8.198 501 KAVQPLLKV 7.776 805 LSMKFVSSL 7.666 528 NQLDARKSA 7.641 364 ILEVVKNSV 7.567 510 SMSMRDCLI 7.535 873 NLCDITRVL 7.182 556 SQCSQSLSV 7.052 488 LSFLPLQTV 6.568 5 ILSLAAEKT 6.208 Table VIII-83P4B8-A2-l0mers Pos 1234567890 Score SegID 540 FLLLLKNFKV 6865.895 487 YLSFLPLQTV 735.860 603 LMLYEGFYDV 600.323 1168 KMYTTLTALV 562.598 604 MLYEGFYDVL 545.617 1140 TILTFFHELV 479.172 666 YLLCCIQHCL 363.588 1094 KVLEEVDWLI 363.516 1028 LMNLFSLHV 324.499 804 LLSMKFVSSL 317.403 983 LLLVTVLTSL 309.050 363 MILEVVKNSV 246.631 67 KIYTCCIQLV 246.353 490 FLPLQTVQRL 226.014 1280 KLSTSRDFKI 211.786 104 LLVELANEFI 195.971 1022 ALFCKSLMNL 181.794 1199 KLSGSHLTPL 171.967 272 ILHIVFAIKL 138.001 204 KMNLQEIPPL 124.199 1172 TLTALVRYYL 117.493 528 NQLDARKSAV 106.976 881 LLWRYTSIPT 105.148 541 LLLLKNFKVL 104.674 325 QVDLLKTSV 92.322 873 NICDITRVIL 87.586 659 SLQEPLDYLL 87.586 775 FMCYKKSDI 79.718 498 RLLKAVQPLL 79.041 341 LQLLQGSKFL 74.930 1196 KLVKSGSHL 74.768 871 FQNLCDITRV 74.608 1207 PLCYSFISYV 73.554 1034 SLHVSYKSPV 69.552 1044 ILLRDLSQDI 65.622 420 KLGANILLET 59.989 1086 LLVLSQAEKV 57.937 304 NLSPFSIALL 49.134 618 QLANSVMQTL 49.134 518 ILVLRKAIFA 46.451 107 ELANEFISAV 45.591 995 LLEPSSPQFV 41.620 1101 WLITKLKGQV 41.592 906 LLCLEGLQKI 40.792 381 GIVELGFILM 38.701 472 IVLQSCSSKV 38.280 651 ILTQGDKISL 36.316 780 KISDILNEKA 34.932 397 KVLDGKTIET 34.621 389 LMDSYGPKKV 34.158 Table VIII-83P4B8-A2-l0mer Pos 1234567890 Score Se ID 813 LLTALFRDSI 33.-024 1090 SQAEKVLEEV 32.584 344 LQGSKFLQNI 32.181 1255 FAIEQYEKFL 30.777 632 KQFYEPKPDL 28.049 1274 NLMQHMKLST 27.572 795 KMANKTSDSL 26.460 439 EILEQVLNRV 25.026 1026 KSLMNILFSL 24.090 175 IQHTSMFKDV 22.777 740 NISAPLVNGV 21.996 594 CLSQQADVRL 21.362 120 SIVNGKSLEL 21.'362 198 ALSMFSKMNL 21.362 431 KIHEMIRQEI 20.585 1114 TLSEEASSQA 20.369 744 FLVMGVCEVL 19.742 326 VLDLLKTSVV 19.391 270 TIILHIVFAI 19.136 1258 EQYEKFLIHL 18.627 960 RQFQRSLLNL 18.432 461 DLLSWIVMYA 17.440 1264 LIHISKKSKV 16.258 186 LTAEEVEFVV 16.011 622 SVMQTLLSQL 15.907 412 RMPNQHACKL 15.428 23 TLREGDLTNL 15.310 128 ELLPIILTAL 13.635 179 SMFKDVPLTA 13.276 359 YVSTMILEVV 12.936 20 FLQTLREGDL 12.775 927 IQQFLRALDV 11.988 822 IQSHQESLSV 11.988 12 KTADKJQEFL 11.474 841 YAVNVALQKV 10.220 1 1162 LLKDLCKNYT 9.999 1189 GIPKNMEKV 9.563 641 LLPPIKLDAC 9.518 185 PLTAEEVEFV 9.485 351 QNLVPHRSYV 9.239 549 VLGSLSSSQC 8.446 129 LLPIILTALA 8.446 667 LLCCIQHCLA 8.446 5 ILSLAAEKTA 8.446 93 LMIEAHHFPG 8.050 1139 GTLTFFHEL 7.926 957 FQIRQFQRSL 7.572 1152 ALPSGSCVDT 7.452 1121 SQATLPNQPV 7.052 987 TVITSLSKLL 6.916 Table IX-83P4B8-A3-9mer8 Pos 123456789 Score SegID 780 KLSDILNEK 135.000 771 ILSLFMCYK 90.000 272 ILHIVFAIK 90.000 389 LMDSYGPKK 60.000 630 QLKQFYEPK 60.000 1280 KLSTSRDFK 60.000 906 LLCLEGLQK 40.000 717 ELEDFELDK 36.000 1086 LLVLSQAEK 30.000 846 ALQKVQQLK 30.000 540 FLLLLKNFK 30.000 150 VLSGEECKK 30.000 31 NLLQNQAVI 30.000 1222 SLNYTGEKK 20.000 133 ILTALATKK 20.000 1031 LLFSLHVSY 20.000 1124 TLPNQPVEK 20.000 412 RMPNQHACK 20.000 219 VLSSKGSRK 20.000 604 MIYEGFYDV 13.500 1168 KMYTTLTAL 13.500 381 GLVELGFIL 12.150 16 KLQEFLQTL 12.150 752 VLIEYNFSI 12.150 349 FLQNLVPHR 12.000 328 DLLKTSVVK 9.000 1204 HLTPLCYSF 9.000 4 KILSIAAEK 9.000 1252 NLIFAIEQY 9.000 149 GVLSGEECK 9.000 388 IL?.DSYGPI 9.000 914 KIFSAVQQF 9.000 1140 TLLTFFHEL 8.100 748 GVCEVLIEY 8.100 313 LLSVTRIQR 8.000 229 VLEGIIAFF 6.750 1272 KVNL4QHMI( 6.000 275 IVFAIKLDY 6.000 918 AVQQFYQPK 6.000 506 LLKVSMSM. 6.000 304 NLSPFSIAL 5.400 602 RLMLYEGFY 5.400 104 LLVELANEF 4.500 132 IILTALATK 4.500 331 KTSVVKSFK 4.500 1027 SIMNLLFSL 4.050 1095 VLEEVDWLI 4.050 490 FLPIQTVQR 4.000 174 VIQHTSMFK 4.000 594 CLSQQADVR 4.000 Table IX-83P4B8-A3-9mers Pos 123456789 Score SeqID 584 CLEIMDSLR 4.000 627 LLSQLKQFY 4.000 75 LVESGDLQK 4.000 518 ILVLR1AMF 3.000 472 LVIQSCSSK 3.000 986 VTVTSLSK 3.000 1137 QLGTjLTFF 3.000 92 LLMLEAHHF 3.000 995 LLEPSSPQF 3.000 461 DLLSNIVMY 2.700 972 SQEEDFNSK 2.700 498 RLLKAVQPL 2.700 311 ALLLSVTRI 2.700 1005 QMLSWTSKI 2.700 911 GLQKIFSAV 2.700 232 GIIAFFSAL 2.430 1207 PLCYSFISY 2.400 626 TLLSQLKQF 2.250 659 SLQEPLDYL 2.025 215 YQLLVLSSK 2.025 984 LLVTVLTSL 2.025 969 LLSSQEEDF 2.000 1162 LLKDLCKMY 2.000 234 IAFFSALDK 2.000 524 AMFANQLIA 2.000 671 IQHCLAWYK 1.800 340 DLQLLQGSK 1.800 1175 AIVRYYLQV 1.800 1316 GQNKEPAKK 1.800 67 KIYTCCIQL 1.800 443 QVLNRVVTR 1.800 44 GALLRAIFK 1.800 462 LLSNIVMYA 1.800 439 EILEQVLNR 1.620 1282 STSRDFKIK 1.500 908 CLEGLOKIF 1.500 773 SLFCYKML 1.500 179 SMFKDVPLT 1.500 361 STMILEVVK 1.500 869 KIFQNLCDI 1.350 394 GPKKVLDGK 1.350 542 LLLKNFKVL 1.350 129 LLPIILTAL 1.350 228 SVLEGIIAF 1.350 1094 KVLEEVDWL 1.215 271 IILHIVFAI 1.215 1172 TLTALVRYY 1.200 493 LQTVQRLLK 1.200 1184 CQSSGGIPK 1.200 126 SLELLPIIL 1.200 00 00 Table X-83P4B8- A3-lOmers Pos 1234567890 Score SeqID 1031 LLFSLHVSYK 300.000 388 ILMDSYGPKK 90.000 74 QLVESGDLQK 90.000 771 ILSLFMCYKK 60.000 905 SLLCLEGLQK 60.000 930 FLRALDVTDK 60.000 499 LIKAVQPLLK 40.000 1006 MLSWTSKICK 40.000 524 AIFANQLDAR 30.000 1085 CLLVLSQAEK 30.000 32 LLQNQAVKGK 30.000 1253 LIFAIEQYEK 30.000 623 VMQTLLSQLK 20.000 7 SLAAEKTADK 20.000 1239 AMARVLRETK 20.000 16 KQEFLQTLR 18.000 206 NQEIPPLVY 15.000 1263 FLIHLSKKSK 15.000 784 ILNEKAGRAK 15.000 604 MIYEGFYDVL 13.500 994 KLLEPSSPQF 13.500 271 IILHIVFAIK 13.500 312 LLLSVTRIQR 12.000 831 VLRSSNEFMR 12.000 536 AVAGFLLLLK 9.000 149 GVLSGEECKK 9.000 914 KIFSAVQQFY 9.000 1022 ALFCKSLMNU 9.000 91 GLLMLEAHHF 9.000 381 GLVELGFILM 8.100 584 CLEIMDSLRR 8.000 1135 IMQLGTLLTF 6.000 670 CIQHCLAWYK 6.000 626 TLLSQLKQFY 6.000 1030 NLLFSLHVSY 6.000 173 YVIQHTSMFK 6.000 1S9 QLINTLCSGR 6.000 804 LLSMKFVSSL 5.400 1280 KLSTSRDFKI 5.400 712 RMIKSELEDF 4.50 329 LLKTS-VVKSF 4.500 1210 YSFISYVQNK 4.500 799 KTSDSLLSMK 4.500 770 DILSIFMCYK 4.050 1199 KLSGSHLTPL 4.050 985 LVTVLTSLSK 4.000 233 IIAFFSALDK 4.000 492 PLQTVQRLL( 4.000 272 ILHIVFAIIL 3.600 Table X-83P4B8- A3-lOmers Pos 1234567890 Score SeqID 179 SMFKDVPLTA 3.000 218 LVLSSKGSRK 3.000 968 NLLSSQEEDF 3.000 313 LLSVTRIQRF 3.000 1161 TLLKDLCKMY 3.000 132 IILTALATKK 3.000 471 PLVLQSCSSK 3.000 204 KMNLQEIPPL 2.700 603 LMLYEGFYDV 2.700 659 SLQEPLDYLL 2.700 1172 TLTALVRYYL 2.700 629 SQLKQFYEPK 2.700 1196 KLVKaSGSHL 2.700 278 AIKLDYELGR 2.400 657 KISLQEPLDY 2.400 1123 ATLPNQPVEK 2.250 983 LLLVTVLTSL 2.025 1003 FVQMLSWTSK 2.000 1094 KVLEEVDWLI 1.823 120 SLVNGKSLEL 1.800 795 KMANKTSDSL 1.800 384 ELGFILMDSY 1.800 490 FLPLQTVQRL 1.800 217 LLVLSSKGSR 1.800 813 LLTALRDSI 1.800 274 HIVFAIKLDY 1.800 512 SMRDCLILVL 1.800 891 SVEESGKKEK 1.500 816 ALFRDSIQSH 1.500 104 LLVELANEFI 1.350 23 ThREGDLTNL 1.350 541 LLLLKNFKVL 1.350 1316 GQNKEPAKKK 1.350 744 FLVMGVCEVL 1.350 618 QLANSVMQTL 1.350 1175 ALVRYYLQVC 1.350 304 NLSPFSIALL 1.350 498 RLLKAVQPLL 1.350 666 YLLCCIQHCL 1.350 420 KLGANILLET 1.350 1139 GTLLTFFHEL 1.215 270 TIIHIVFAI 1.215 467 VMYAPLVLQS 1.200 651 ILTQGDKISL 200 403 TIETSPSLSR 1.200 1028 LMNLLFSLHV 1.200 510 SMSMRDCLIL 1.200 198 AISMFSKMNL 1.200 322 FQDQVLDLLK 1.200 228 SVLEGIIAFF 1.012 1168 I KKYTTLTALV 3.000 164 N Table XI-834B-A11-9mers 00 POB 123456789 Score SeqID 249 GVLSGEECK 9.000 1272 KVNLMQHMK 6.000 LVESGDLQK 4.000 Ct 331 KTSVVKSFK 3.000 986 VTVLTSLSK 3.000 472 LVLQSCSSK 3.000 918 AVQQFYQPK 2.000 S 361 STMILEVVK 2.000 44 GALLRAIFK 1.800 4 KILSAAEAK 1.800 1316 GQNKEPAKK 1.800 ~t 780 KLSDILNEK 1.200 493 LQTVQRLLK 1.200 671 IQECLAWYK 1.200 1184 CQSSGQI1PK 1.200 00 412 RHPNQHACK 1.200 1004 VQMLSWTSK 1.200 S 1280 KLSTSRDFK 1.200 1160 DTLKLCK 0.900 215 YQLLjVLSSK 0.900 1262 IKPLIHLSKK 0.900 234 IAFFSALDK 0.800 388 ILMDSYGPK 0.800 906 ILCLEGLQK 0.800 174 VIQHTSMFK 0.800 791 KAKrKMANK 0.600 841 YAVNVAIJQK 0.600 624 MQTLLSQLK 0.600 861 GPDGQNPEK 0.600 1086 LLVLSQAEK 0.600 540 FLLLLK(NFK 0.600 394 GPKKVLDGK 0.600 443 QVLNRVVTR 0.600 757 NFSISSFSK 0.600 730 SQSTSIGIK 0.600 638 KPDLLPPLK 0.600 972 SQEEDFNSK 0.600 31 NLLQNQAVK 0.600 132 IILTALATK 0.600 218 LVLSSKGSR 0.600 1282 STSRDFKIK 0.500 389 L14DSYGPKX 0.400 219 VLSSKGSRX 0.400 771 ILSLFMCYK 0.400 1124 TLPNQPVEK 0.400 846 ALQKVQQLK 0.400 1222 SLNYTGEKK 0.400 537 VAGFLLLLK 0.400 133 ILTALATKK 0.400 272" IIVFAIX 0.400 Table XI-83P48-A11-9mers Pos 123456789 Score SeqID 150 VLSGEECKK 0.400 630 QLKQFYEPK 0.400 1254 IFAIEQYBK 0.400 1170 YTTLTALVR 0.400 33 LQNQAVKGK 0.300 257 VTVPSGELR 0.300 1211 SFISYVQNX 0.300 649 ACILTQGDK 0.300 871 FQNLCDITR 0.240 717 ELEDFELDK 0.240 1032 LFSIJHVSYK 0.200 1224 NYTGEKXEK 0.200 1264 LIHLSKKSK 0.200 1237 ATA14ARVLR 0.200 526 FANQLDARK 0.200 8 LAAEKTADK 0.200 936 VTDKEGEER 0.200 1240 MARVIJRETK 0.200 1188 GGIPIQNMEK 0.180 783 DILNEKAGK 0.180 328 DLLKTSVVK 0.180 117 REGSLVNGK 0.180 283 YELQRELVK 0.180 515 DCLILVLRK 0.180 313 LLSVTRIQR 0.160 1156 GSCVDTLLK 0.120 140 KKENILAYGK 0.120 340 DLQLLQGSK 0.120 952 TQRTAFQIR 0.120 924 QPKIQQFLR 0.120 1234 AAVATAMAR 0.120 748 GVCEVLIEY 0.120 825 HQESLSVLR 0.120 956 AFQIRQFQR 0.120 17 LQBFLQTLR 0.120 41 KVAGAIJLRA 0.120 889 PTSVEESGK 0.100 1 221. KSLNYTGEK 0.090 1094 KVLBEVDWL 0.090 269 GTIILHIVP 0.090 1319 KEPAXKKRK 0.090 1007 LSWTSKICK 0.080 490 FLPLQTVQR 0.080 429 TFKIHEMIR 0.080 466 IVNYAPLVL 0.080 584 CLEIMDSLR 0.080 594 CLSQQADVR 0.080 160 LINTLCSGR 0.080 506 LLKVSMSMR 0.080 275 IVFAIKL.DY 10.080 00 00 Table XII-83P4B8-Al1-l0mers Pos 1234567890 Score SeqID 149* GVLSGEECKK 9.000 173 YVIQHTSMFK 6.000 985 LVTVLTSIJSK 4.000 536 AVAGFLLLLK 4.000 799 KTSD)SILSMI( 3.000 218 LVLSSKGSRX 3.000 840 RYAVNIVALQK 2.400 1003 FVQMLSWTSI( 2.000 1253 LIFAIEQYEK 1.600 1123 ATLPNQPVEK 1.500 905 SLLCLEGLQK 1.200 74 QLVESGDLQK 1.200 322 FQDQVLDLLK 1.200 891 SVEESGKKEK 1.000 629 SQIJXQFYEPK 0.900 539 GFLLLLKNFK 0.900 1316 GQNKEPAKKK 0.900 1006 .MLSWTSKICK 0.800 233 IIAFFSALDK 0.800 670 CIQHCLAWYK 0.800 499 LLKAVQPLLK 0.800 771 ILSLFMCYKK 0.800 1031 LLFSLHVSYK 0.800 388 ILMDSYGPKK 0.800 271 IILHIVFAIK 0.600 387 FILMDSYGPK 0.600 422 GANILLETFK 0.600 1085 CLLVLSQAEK 0.600 132 IILTALATKK 0.600 1239 AMARVILRETK 0.400 623 VMQTLLSQL( 0.400 256 VVTVPSGELR 0.400 1190 IPKNNEKLVK 0.400 214 VYQLLVLSSK 0.400 930 FIRALDVTDK 0.400 1183 VCQSSGGIPK 0.400 7 SLAAEKTADK 0.400 923 YQPKIQQFLR 0.360 917 SAVQQFYQPK 0.300 1263 FLIHLSKKSI( 0.300.___ 845 VALQKVQQLK 0.300 1098 EVDWLITKLK 0.300 756 YNFSISSFSK 0.240 312 LLLSVTRIQR 0.240 831 VIRSSNEFMR 0.240 282 DYELGRELV( 0.240 955 TAFQIRQFQR 0.240 4 28 ETFKIHEMIR 0.240 32 LLQNQAVKGK 0.200 Table XII-83P4B8-Al1-lomers Pos 1234567890 Score SeqID 888 IPTSVEESGK 0.200 1212 FISYVQNKSK 0.200 784 ILNUKAGKAK 0.200 951 VTQRTAPQIR 0.200 1310 TASEHGONK 0.200 525 MFANQLDARK 0.200 348 KFLQNIJVPHR 0.180 1094 KVLEEVDWLI 0.180 593 RCLSOQADVR 0.180 770 DILSLFMCYK 0.180 195 VEKALSMFSK 0.180 716 SELEDFELDK 0.180 403 TIETSPSLSR 0.160 584 CLEIMDSLRR 0.160 1169 MYTTLTALVR 0.160 278 AIKLDYELGR 0.160 1038 SYKSPVILLR 0.160 524 AMFANOLDAR 0.160 514 RDCLILVLRK 0.120 1272 KVNLMQHMKL 0.120 1096 LEEVDWLITK 0.120 935 DVTDKEGEER 0.120 159 QLINTLCSGR 0.120 1059 DIDQDVEVEK 0.120 706 LESITNRI4IK 0.120 1260 YEKFLIHLSK 0.120 217 LLVLSSKGSR 0.120 1276 MQHMKLSTSR 0.120 889 PTSVEESGKK 0.100 779 KKLSDILNEK 0.090 1221 KSLNYTGEKK 0.090 148 KGVLSGEECK 0.090 339 KDLQLLQGSK 0.090 879 RVLLWRYTSI 0.090 447 RVVTRASSPI 0.090 605 LYEGFYDVLR 0.080 309 SIALLLSVTR 0.080 492 PLQTVQRLLK 0.080 870 IFONLCDITR 0.080 960 RQFQRSLLNL 0.072 790 GKAKTKMANK 0.060 131 PIILTALATK 0.060 1315 GGQNKEPAKK 0.060 30 TNLIJQNQAVK 0.060 471 PLVLQSCSSK 0.060 1__ 1017 NSREDALFCK 0.060 849 KVQQLKETGH 0.060 583 FCLEIMDSLR 0.060 950 SVTQRTAFQI 0.060 50 KVSMSMRDCL 10.060 00 00
CA
Table XIII-83P4B8-A24-9mers Pos 123456789 Score SegID 698 FYEDLDDIL 432.000 634 FYBPKPDLL 360.000 1259 QYEKFIHL 300.000 605 LYEGFDVL 300.000 777 CYKKLSDIL 240.000 922 FYQPKIQQF 216.000 1038 SYKSPVILL 200.000 677 WYKNTVIPL 200.000 755 MYFSISSF 150.000 321 RPQDQVLDL 72.000 767 RPEDILSLF 50*.400 172 QYVIQHTSM 37.500 961 QFQRSLLNL 30.000 976 DFNSKEALL 30.000 1286 DFKIKGNIL 24.000 633 QFYEPKPDL 24.000 1023 LFCKSLMNL 20.000 539 GFLLLLKNF 18.000 16 KQEFLQTL 17.280 437 RQBILEQVL 17.280 1192 KNMEKLVKj 15.840 1094 KVLEEVDWL 14.400 402 KTIETSPSL 14.400 1290 KGNILDMVL 14.400 498 RLLKAVQPL 14.400 884 RYTSIPTSV 14.000 574 HYNSVANET 13.860 715 KSELEDFEL 13.200 1179 YYLQVCQSS 12.600 866 NPEKIFQNL 12.096 926 KIQQFLRAL 12.000 1107 KG7QVSQETL 12.000 480 KVYEAFDYL 11.520 545 KIFKVLGSL 11.200 458 HFLDLLSNI 10.800 210 IPPLVYQLL 10.080 923 YQPKIQQFL 10.080 1049 LSQDIHGHL 10.080 583 FCLEIMDSL 10.080 619 LANSVMQTL 10.080 1178 RYYLQVCQS 10.000 336 KSFKDLQLL 9.600 214 VYQLLVISS 9.000 209 EIPPLVYQL 8.640 660 LQEPLDYLL 8.640 381 GLVELGFIL 8.640 984 ILVTVLTSL 8.400 129 LLPIILTAL 8.400 745 LVMGVCEVL 8.400 1214 SYVQNKSKS 8.250 Table XIII-83P4B8-A24-9mers Pos 123456789 Score SegID 1168 KIYTTLTAL 8.000 534 KSAVAGFLL 8.000 39 KGKVAGALL 8.000 357 RSYVSTMIL 8.000 67 KIYTCCIQL 8.000 1078 RTAAPTVCL 8.000 1140 TLLTFFHEL 7.920 277 FAIKLDYEL 7.920 282 DYELGRELV 7.500 542 LLLKNFKVL 7.200 491 LPLQTVQRI 7.200 454 SPISHFLDL 7.20 659 SIQEPLDYI 7.200 126 SLBLLPIIL 7.200 623 VMQTLSQL 7.200 152 SGEECKKQL 7.200 468 MYAPLVIQS 7.200 981 EALLLVTVL 7.200 999 SSPQFVQML 7.200 845 VALQKVQQL 7.200 1041 SPVILLRDL 7.200 1134 IIMQLGTL 7.200 232 GIIAFFSAL 7.200 333 SVVKSFKDL 7.200 535 SAVAGFLLL 7.200 1027 SLMNLLFSL 7.200 597 QQADVRLML 6.720 452 ASSPISHFL 6.720 85 IVSEIIGLL 6.720 374 SWDNVTQGL 6.720 873 NICDITRVL 6.720 413 MPNQHACKL 6.600 1189 GIPKNMEKL 6.600 121 LVNGKSLEL 6.600 1273 VNLMQHMKL 6.600 987 TVLTSLSKL 6.600 9 AAEKTADK 6.600 100 FPGPLLVEL 6.336 12 KTADKLQEF 6.336 710 TNRMIKSEL 6.160 342 QLLQGSKFL 6.000 73 IQLVESGDL 6.000 595 LSQQADVRL 6.000 904 ISLLCLEGL 6.000 697 AFYEDLDDI 6.000 509 VSMSMRDCL 6.000 199 LSMFSKMNL 6.000 652 LTQGDKISL 6.000 611 DVLRRNSQL 6.000 821 SIQSHQESL 6.000 Table XIV-83P4B8-A24-10mers Pos 1234567890 Score SeqID 922 FYQPKIQQFL 604.800 1214 SYVQNKSKSL 300.000 172 QYVIQHTSMF 150.000 574 HYNSVANETF 150.000 32. RFQDQVaDLL 100.800 808 KFVSSLLTAL 72.000 961 QFQRSLLNLL 43.200 99 HFPGPLLVEL 39.600 1144 FFHELVQTAL 33.600 976 DFNSKEALL 30.000 '697 AFYEDLDDIL 28.800 1023 LFCKSLMNL 28.800 582 TFCLEIMDSL 28.000 276 VFAIKLDYEL 26.400 633 QFYEPKPDL 24.000 484 AFDYLSFLPL 24.000 125 KSLELLPIIL 17.280 1178 RYYLQVCQSS 16.800 498 RLLKAVQPLL 16.800 720 DFELDKSADF 15.000 865 QNPEKIFQNL 14.515 318 RIQRFQDQVL 14.400 1040 KSPVILLRDL 14.400 1026 KSLMNLLFSL 14.400 412 RNPNQHACKL 13.200 1272 KVNLMQMMKL 13.200 209 EIPPLVYQLL 12.096 204 KNNLQEIPPL 12.000 1068 KTNHFAIVN 12.000 1132 KAIIMQLGTL 12.000 921 *QFYQPKIQQF 12.000 1196 KLVKLSGSHL 12.000 12 KTADKLQEFL 11.520 451 RASSPISHFL 11.200 1254 IFAIEQYEKF 11.000 767 RFEDILSLFM 10.800 280 KIDYELGREL 10.560 755 EYNFSISSFS 10.500 468 MYAPLVLQSC 10.080 128 ELLPIILTAL 10.080 534 KSAVAGFLLL 9.600 709 ITNRMIKSEL 9.240 665 DYLLCCIQHC 9.000 486 DYLSFLPLQT 9.000 1259 QYEKFLIHLS 9.000 638 KPDLLPPLKL 8.800 659 SLQEPLDYLL 8.640 586 EIMDSLRRCL 8.640 1157 SCVDTLLKDL 8.640 805 LSMKFVSSLL 8.400 Table XIV-83P4B8-A24-10mer Pos 1234567890 Score SeqID 84 EIVSEIIGLL 8.400 983 LILVTVLTSL 8.400 596 SQQADVRML 8.400 491 LPLQTVQRIL 8.400 305 LSPFSIALLL 8.400 872 QNLCDITRVa 8.400 190 EVEFVVEKAL 8.400 666 YLLCCIQHCL 8.400 744 FLVMGVCEVL 8.400 358 SWSTMILEV 8.250 373 HSWDHVTQGL 8.064 765 KNRFEDILSL 8.000 632 KQFYEPKPDL 8.000 960 RQFQRSLLNL 8.000 795 KMANKTSDSL 8.000 900 KGKSISLLCL 8.000 508 KVSMSMRDCL 8.000 1199 KLSGSHLTPL 8.000 1078 RTAAPTVCLL 8.000 244 HNEEQSGDEL 7.920 1188 GGIPKNMBKL 7.920 1139 GTLLTFFHEL 7.920 622 SVMQTLLSQL 7.200 453 SSPISHFLDL 7.200 231 EGIIAFFSAL 7.200 994 KLLEPSSPQF 7.200 332 TSVVKSFKDL 7.200 541 LLLLKNFKVL 7.200 1133 AIIMQLGTLL 7.200 296 GQQGDSNNNL 7.200 490 FLPLQTVQRL 7.200 987 TVITSLSKLL 7.200 1255 FAIEQYEKF 7.200 380 QGLVELGFIL 7.200 618 QLANSVMQTL 6.720 772 LSLFMCYCKL 6.600 986 -VTVLTSLSKL 6.600 201 MFSKMNLQEI 6.600 120 SLVNGKSLEL 6.600 255 DVVTVPSGEL 6.600 619 IANSVMQTLL 6.000 1087 LVLSQAEKVL 6.000 463 LSNIVMYAPL 6.000 658 ISLQEPLDYL 6.000 121 LVNGKSLELL 6.000 535 SAVAGFLLLL 6.000 303 NNLSPFSIAL 6.000 796 MANXTSDSLL 6.000 227 KSVLEGIIAF 6.000 820 DSIQSHQESL 6.000 Table XV-83P4B8-B7-9mers Po 123456789 Score SeqID 1081 APTVCLLVL 240.000 210 IPPLVYQIL 80.000 100 FPGPLLVEL 80.000 454 SPISHFLDL 80.000 306 SPFSIALLL 80.000 1041 SPVILLRDL 80.000 413 MPNQHACKL 80.000 491 LPLQTVQRL 80.000 466 IVMYAPLVL 60.000 745 LVMGVCEVT 60.000 536 AVAGFLLLL 60.000 319 IQRFQDQVL 40.000 285 LGELVKHL 40.000 710 TIRMIKSEL 40.000 958 QIRQFQRSL 40.000 962 FQRSLLNLL 40.000 256 VVTVPSGEL 30.000 866 NPEKIFQNL 24.000 1128 QPVEKAIIM 20.000 611 DVLRRNSQL 20.000 987 TVLTSLSKL 20.000 1215 YVQNKSKSL 20.000 333 SVVKSFKDL 20.000 IVSEIIGLL 20.000 1197 LVKLSGSHL 20.000 1232 KPAAVATAM 20.000 480 KVTEAFDY 20.000 809 FVSSLLTAL 20.000 1094 KVLEEVDWL 20.000 577 SVANETFCL 20.000 121 LVNGKSLEL 20.000 377 HVTQGLVEL 20.000 509 VSMSMRDCL 18.000 1027 SLMNLLFSL 12.000 620 ANSVMQTLL 12.000 797 ANKTSDSLL 12.000 1079 TAAPTVCLL 12.000 136 ALATKKENL 12.000 418 ACKLGANIL 12.000 535 SAVAGFLLL 12.000 805 LSMKFVSSL 12.000 277 FAIKLDYEL 12.000 452 ASSPISHFL 12.000 1236 VATAMARVL 12.000 511 MSMRDCLIL 12.000 1134 IIMQLGTLL 12.000 1192 KNMEKLVKL 12.000 981 EALLLVTVL 12.000 96 EAHHFPGPL 12.000 619 LANSVMQTL 12.000 Table XV-83P4B8-B7-9mers Poe 123456789 Score SegID 178 TSMFKVPL 12.000 796 MANKTSDSL 12.000 483 EAFDYLSFL 12.000 199 LSMFSKNNL 12.000 1133 AIIMQLGTL 12.000 845 VAIQKVQQL 12.000 9 AAEKTADKL 10.800 831 VLRSSNFM 10.000 1098 EVDWLITKL 6.000 1078 RTAAPTVCL 6.000 597 QQADVRLML 6.000 1158 CVDTLLKDL 6.000 659 SLQBPLDYL 6.000 391 DSYGPKKVL 6.000 1173 LTALVRYYL 6.000 1176 LVRYYLQVC 5.000 193 FVVEKALSM 5.000 984 LLVTVLTSL 4.000 498 RLLKAVQPL 4.000 381 GLVELGFIL 4.000 342 QLLQGSKFL 4.000 1069 TNHFAIVNL 4.000 667 LLCCIQHCL 4.000 806 SMKFVSSLL 4.000 652 LTQGDKISL 4.000 873 NLCDITRVL 4.000 1049 LSQDIHGHL 4.000 1267 LSKKSKVNI 4.000 926 KIQQFLRAL 4.000 1200 LSGSHLTPL 4.000 232 GIIAFFSAL 4.000-1 119 GSLVNGKSL 4.000 259 VPSGELRHV 4.000 583 FCLEIMDSL 4.000 73 IQLVESGDL 4.000 305 LSPFSIALL 4.000 988 VLTSLSKLL 4.000 1024 FCKSLMNLL 4.000 464 SNIVMYAPL 4.000 402 KTIVTSPSL 4.000 554 SSSQCSQSL 4.000 297 OQGDSNNNL 4.000 1189 GIPlNMEKIJ 4.000 1165 DLCKMYTTL 4.000 1107 KGQVSQETL 4.000 595 LSQQADVRL 4.000 821 SIQSHQESL 4.000 1190 IPKNNEKLV 4.000 773 SLFMCYK.KL 4.000 21 LQTLREGDL 4.000 Table XVI-83P4B8-B7-10mers Pos 1234567890 Score SeqID 491 LPLQTVQRLL 80.000 54 SPCSEEAGTL 80.000 1153 LPSGSCVDTL 80.000 636 EPKPDLLPPL 80.000 454 SPISHFLDLL 80.000 958 QIRQFQRSLL 60.000 37 AVKGKVAGAL 60.000 622 SVMQTLLSQL 60.000 1235 AVATAMARVL 60.000 23 TLREGDLTNL 40.000 512 SMRDCLILVL 40.000 765 KNRFEDILSL 40.000 838 FMRYAVNVAL 40.000 638 KPDLLPPL. 36.000 1080 AAPTVCLLVL 36.000 508 KVSMSMRDCL 30.000 255 DVVTVPSGEL 30.000 334 VVKSFKDLQL 20.000 121 LVNGKSLELL 20.000 1272 KVNMQHMKL 20.000 997 EPSSPQFVQM 20.000 844 NVALQKVQQL 20.000 987 TVLTSLSKLL 20.000 354 VPHRSYVSTM 20.000 1087 LVLSQAEKVL 20.000 504 QPLLKVSMSM 20.000 1036 HVSYKSPVIL 20.000 586 EINDSLRRCL 18.000 96 EAHHFPGPLL 18.000 502 AVQPLLKVSM 15.000 619 LANSVMQTLL 12.000 8 LAEKTADKL 12.000 417 HACKLGANIL 12.000 135 TALATKIENI 12.000 198 ALSMFSKINL 12.000 535 SAVAGFLLLL 12.000 1132 KAIIMQLGTL 12.000 1133 AIIMQLGTLL 12.000 8 0 5 LSMKFVSSLL 12.000 1255 FAIEQYEKFL 12.000 418 ACKGANILL 12.000 796 MANXTSDSLL 12.000 451 RASSPISHFL 12.000 1022 ALFCKSLMNL 12.000 1248 KPIPNLIFAI 8.000 642 LPPLKLDACI 8.000 211 PPIVYQLLVL 8.000 662 EPLDYLLCCI 8.000 643 PPLKLDACIL 8.000 1125 LPNQPVEKAI 8.000 Table XVI-83P4B-B7-lmers Pos 1234567890 Score SeqID 596 SQQADVRLML 6.000 632 KQFYEPKPDL 6.000 190 EVEFVVEKA 6.000 1037 VSYKSPVIL 6.000 658 ISLQEPLDYL 6.000 918 AVQQFYQPKI 6.000 873 NLCDITRVLL 6.000 745 LVMGVCEVLI 6.000 1172 TITALVRYYI 6.000 85 IVSEIIGLLM 5.000 830 SVLRSSBFM 5.000 465 NIVMYAPLVL 4.000 20 FLQTLREGDL 4.000 166 SGRWDQQYVI 4.000 1040 KSPVILLRDL 4.000 795 KMANKTSDSL 4.000 865 QNPEKIFQNL 4.000 305 LSPFSIALLL 4.000 604 MLYEGFYDVI 4.000 772 LSLFMCYKKL 4.000 490 FLPLQTVQRL 4.000 142 ENLAYGKGV 4.000 1157 SCVDTLKDL 4.000 12 KTADKLQEFL 4.000 1266 HLSKKSKVNL 4.000 263 ELRHVEGTII 4.000 125 KSLELPIIL 4.000 304 NLSPFSIALL 4.000 412 RMPNQHACKL 4.000 960 RQFQRSLLNL 4.000 231 EGIIAFFSAL 4.000 341 LQLLQGSKFL 4.000 594 CLSQQADVRL 4.000 1078 RTAAPTVCLL 4.000 776 MCYKKLSDIL 4.000 453 SSPISHFLDL 4.000 709 ITNRMIKSEL 4.000 541 LLLLKNFKVL 4.000 221 SSKGSRKSVJ 4.000 903 SZSLLCLEGL 4.000 957 FQIRQFQRSL 4.000 120 SLVNGKSLEL 4.000 72 CIQLVESGDL 4.000 128 ELLPIILTAL 4.000 155 ECKKQLINTL 4.000 209 EIPPLVYQLL 4.000 177 HTSMFKDVPL 4.000 112 FISAVREGSL 4.000 986 VTVTSISKL 4.000 736 GIKNNISAFL 4.000 Table XVII-83P4B8-B35-9mers Pos 123456789 Score SeqID 1128 QPVEKAIIM 80.000 1232 KPAAVATAM 80.000 833 RSSNEFMRY 30.000 1041 SPVILLRDL 20.000 1081 APTVCLLVI 20.000 100 PPGPLLVEL 20.000 454 SPISHFLDL 20.000 413 MPNQHACKL 20.000 491 LPLQTVQRL 20.000 210 IPPLVYQLL 20.000 306 SPFSIALLL 20.000 336 KSFKDLQLL 15.000 1267 LSKKSKVNL 15.000 658 ISLQEPLDY 15.000 197 KALSMPSKN 12.000 1190 IPKNMEKLV 12.000 788 KAGKAKTKM 12.000 1162 LLKDLCKMY 12.000 1288 KIKGNILDM 12.000 357 RSYVSTMIL 10.000 1049 LSQDIHGHL 10.000 534 KSAVAGFLL 10.000 616 NSQLANSVM 10.000 1202 GSHLTPLCY 10.000 165 CSGRWDQQY 10.000 1186 SSGGIPKNN 10.000 138 ATKKEN*AY 9.000 799 KTSDSLLSM 8.000 125 KSLELLPII 8.000 511 MSMRDCLIL 7.500 763 FSKNRFEDI 6.000 1021 DALFCKSLN 6.000 831 VLRSSNEFM 6.000 451 RASSPISHF 6.000 1255 FAIEQYEKF 6.000 285 LRELVKHL 6.000 877 ITRVLLWRY 6.000 39 KGKVAGALL 6.000 1094 KVLEEVDWL 6.000 978 NSKEALjLV 6.000 866 NPEKIFQNL 6.000 1217 QNKSKSLNY 6.000 483 EAFDYLSFL 6.000 259 VPSGELRHV 6.000 202 FSKMNLQEI 6.000 178 TSMFKDVPL 5.000 904 ISLLCLEGL 5.000 595 LSQQADVRT 5.000 1037 VSYKSPVIL 5.000 554 SSSQCSQSI 5.000 Table XVII-83P4B8-B35-9mers Pos 123456789 Score SegID 199 LSMFSKMNL 5.000 477 CSSKVTEAF 5.000 810 VSSLLTALF 5.000 305 LSPFSIALL 5.000 949 VSVTQRTAF 5.000 391 DSYGPKKVL 5.000 119 GSLVNGKSL 5.000 509 VSMSMRDCL 5.000 805 LSMKFVSSL 5.000 999 SSPQFVQ?4L 5.000 314 LSVTRIQRF 5.000 452 ASSPISHFL 5.000 300 DSNNNLSPF 5.000 760 ISSFSKNRF 5.000 113 ISAVREGSL 5.000 1200 LSGSMLTPL 5.000 713 MIKSELEDF 4.500 715 KSELEDFEL 4.500 1017 NSREDALFC 4.500 12 KTADKLQEF 4.000 662 EPLDYLLCC 4.000 193 FVVEKALSM 4.000 16 KLEFjQTL 4.000 402 KTIETSPSL 4.000 480 KVTEAFDYL 4.000 602 RLMLYEGFY 4.000 1192 KNEKLVIKL 4.000 1248 KPIPNLIFA 4.000 77 ESGDLQKEI 4.000 748 GVCEVLIEY 4.000 248 QSGDELLDV 3.000 54 SPCSBEAGT 3.000 1161 TLLKDLCKM 3.000 796 MANKTSDSL 3.000 710 TNRMISEL 3.000 535 SAVAGFLL 3.000 619 LANSVMQTL 3.000 958 QIRQFQRSL 3.000 1236 VATAMARVL 3.000 418 ACKLGANIL 3.000 422 GANILLETF 3.000 319 IQRFQDQVL 3.000 86 VSEIIGLLM 3.000 596 SQQADVRM 3.000 845 VALQKVQQL 3.000 277 FAIKLDYEL 3.000 1079 TAAPTVCL 3.000 96 EAHHFPGPL 3.000 221 SSKGSRKSV 3.000 1024 FCKSLMNLL 3.000 Table XVIII-83P4B8-_B35-lomers Pos 1234567890 Score SeqID 3 6 EPKPDLLPPLj 60.000 1270 KSKVNLMQHM 60.000 478 SSXVTEAFDY 45.000 1206 TPIJCYSFISY 40.000 354 VPHRSYVSTM 40.000 9 97 EPSSPQFVQM 40.000 504 QPLLKVSMSM 40.000 1.84 VPLTAEEVEF 30.000 1267 LSKKSKVNLM 30.000 54 SPCSEF.AGTL 30.000 454 SPXSHFLDLJ 20.000 491 LPLQTVQRLL~ 20.000 2.25 KSLELLPIIL 20.000 1153 LPSGSCVDTL 20.000 662 EPLDYLLCCI 16.000 1i248 KPIPNLIFAI 16.000 221 SSKGSRKSVL 15.000 763 FSKU.RFEDIL 15.000 595 LSQQADVRLM 15.000 638 KPDLLPPLI<L 12.000 227 KSVLEGIIAF 10.000 534 KSAVAGFLLL 10.000 1040 KSPVILLRDL 10.000 1000 SPQFVQMLSW 10.000 373 HSWDHVTQGL 10.000 1026 KSLMNLLFSL 10.000 151 LSGEECIUCQL 10.000___ 1185 QSSGGIP1NM 10.000 765 KURFEDILSL 9.000 531. DARKSAVAGF 9.000 137 LATKXENLAY 9.000 23 TLREGDLTNL 9.000 642 LPPLKLDACI 8.000 1125 LPNQPVEKAI 8.000 576 NSVANETFCL* 7.500 900 KGKSISLLCL 6.000 657 KISLQEPLDY 6.000 1132 KAIIMQLGTL 6.000 8 LAAEKTAlKL 6.00 224 GSRKSVL.EGI 6.000 394 GPKKVLDGKT 6.000 1255 FAIEQYEKFL 6.000 451 RASSPISHFL 6.000 512 SMRDCLILVL 6.000 924 QPKIQQFLRA 6.000 463 LSNIVMYAPL 5.000 805 LSMKFVSSLL 5.000 332 TSVVKSFKDL 5.000 829 LSVLRSSNEF 5.000 OE 453 1SSPISHFLDL 5.000 Table XVIII-83P4B8- Poe 1234567890 Score SegID 820 DSIQSHQESL 5.000 1037 VSYKSPVILL 5.000 772 LSLFMCYKKL 5.000 823 QSHQESLSVL 5.000 658 ISLQEPLDYL 5.000 553 LSSSQCSQSL 5.000 305 LSPFSIALLL 5.000 597 QQADVRLMLY 4.000 994 KLLEPSSPQF 4.000 12 KTADKIJQEFL 4.000 704 DILESITNRM 4 .000 85 IVSEIIGLLM 4.000 738 1'NISAPLVM 4.000 210 IPPLVYQLLV 4.000 615 RNSQLANSVM 4.000 206 NLQEIPPLVY 4.000 914 KIFSAVQQFY 4.000 381 GLVELGFIILM 4.000 1232 KPAAVATAM. 4.000 334 VVKSFKDLQL 3.000 1278 HMKLISTSRDF 3.000 600 DVRLMLYE:GF 3.000 96 BAHHFPGPLL 3.000 619 LANSVNQTLL 3.000 1080 AAPTVCLLVJ 3.000 838 FMRYAVNVAL 3.000 329 LIJKTSVVKSF 3.000 417 HACKLGANIL 3.000 1024 FCKSLMNLLF 3.000 135 TAILATKKENL 3.000 736 GIKUNISAFL 3.000 3~7 AVKGKVAGAL 3.000 1246 ETKPIPNLIF 3.000 1160 DTLIJKDLCKM 3.000 535 SAVAGFLLLL 3.000 418 ACKLGP.NILL 3.000 958 QIRQFQRSLL 3.000 796 !ANKTSDSLL 3.000 42 VAGALILRAIF 3.000 712 RMIKSELjEDF 3.000 643 PPLKLDACIL 3.000 204 KMNLQEIPPL 3.000 1283 TSRDFKIKGN 3.000 978 NSKnALLLVT 3.000 155 ECKKQLINTL 3.000 81 LQKEIVSEII 2.400 861 G;PDGQIJPEKI 2.400 578 VAN-ETFCLEI 2.400 164 LCSGRWDQQY 2.000 62 TLSQLjKQFY 12.000 Table V-109P1D4-A1-9mers Poo 123456789 Score SeqID 910 DLEEQTMGK 90.000 399 FTDHEIPFR 25.000 189 VIETPEGDK 18.000 594 VTDPDYGDN 12.500 278 IGENAKIHF 11.250 492 DADSGPNAX 10.000 275 DADIGENAK 10.000 370 LSENIPLNT 6.750 929 KPDSPDLAR 6.250 242 TNDNHPVFK 5.000 113 AILPDEIFR 5.000 163 AVDPDVGIN 5.000 674 IVPPSNCSY 5.000 688 STNPGTVVF 5.000 797 NTELADVSS 4.500 951 QPETPLNSK 4.500 220 KVEDGGFPQ 4.500 329 ASDGGLMPA 3.750 807 TSDYVKILV 3.750 932 SPDLARHYK 2.500 59 TAMQFKLVY 2.500 354 SIDIRYIVN 2.500 351 NVPSIDIRY 2.500 738 KCDVTDLGL 2.500 911 LEEQTMKY 2.250 789 STEAPVTPN 2.250 253 EIEVSIPEN 1.800 897 DSDGNRVTL 1.500 991 VSDCGYPVT 1.500 985 SSDPYSVSD 1.500 479 NSPGIQLTK 1.500 741 VTDLGLHRV 1.250 779 ATLINELVR 1.250 68 KTGDVPLIR 1.250 570 FTHNEYNFY 1.250 FTTGARIDR 1.250 522 LTVVKKDR 1.250 273 ATDADIGEN 1.250 148 IPENSAINS 1.125 192 TPEGDKMQ -1.125 858 NPENRQMIM 1.125 800 IADVSSPTS 1.000 438 AADAGKPPL 1.000 172 GVQNYELIK 1.000 518 RTGMLTVVK 1.000 527 KLDREKEDK 1.000 37 NVLIGDLLK 1.000 854 WATPNPENR 1.000 591 LITVTDPDY 1.000 972 FVACDSISK 1.000 Table V-109P1D4-A1-9mers Pos 123456789 Score SegID 316 DREETPNHK 0.900 644 KAEDGGRVS 0.900 76 RIEEDTGEI 0.900 708 NAEVCYSIV 0.900 128 LIEDINUNA 0.900 204 QKELDREEK 0.900 931 DSPDLLARHY 0.750 20 HSGAQEKNY 0.750 55 KSLTTAMQF 0.750 981 CSSSSSDPY 0.750 727 DQETGNITL 0.675 635 KQESYTFYV 0.675 612 ENfDFTIDS 0.625 495 SGPNAKINY 0.625 69 TGDVPLIRI 0.625 804 SSPTSDYVK 0.600 895 DVDSDGNRV 0.500 802 DVSSPTSDY 0.500 892 KADDVDSDG 0.500 241 DTNDNHPVF 0.500 974 ACDSISKCS 0.500 700 AVDNDTGMN 0.500 221 VEDGGFPQR 0.500 514 SLDCRTOML 0.500 740 DVTDLOLHR 0.500 645 AEDGGRVSR 0.500 725 AIDQETGNI 0.500 304 ATTGLITIK 0.500 201 LIVQKELDR 0.500 609 ILDENDDFT 0.500 617 TIDSQTGVI 0.500 389 DADHNGRVT 0.500 116 PDEIFRLIVK 0.450 475 IPE&NSPGI 0.450 77 IEEDTGEIF 0.450 401 DHEIPFRLR 0.450 109 EVEVAILPD 0.450 258 IPENAPVGT 0.450 780 TLINELVRK 0.400 435 KLLAADAGK 0.400 256 VSIPENAPV 0.300 940 KSASPQPAF 0.300 851 NSEWATPNP 0.270 90 RIDREKLCA 0.250 753 ANDLGQPDS 0.250 705 TGMNAEVCY 0.250 563 QNDNSPVFT 0.250 387 DKDADHNGR 0.250 744 LGLHRVLV 0.250 350 DNVPSIDIR 0.250 Table VI-109P1D4-A1-l0mers Pos 1234567890 Score SeqID 417 LLETAAYLDY 225.000 910 DLEEQTMGKY 45.000 494 DSGPNAKINY 37.500 370 LSENIPLNTK 27.000 423 YLDYESTKEY 25.000 163 AVDPDVGING 25.000 644 KAEDGGRVSR 18.000 220 KVEDGGFPQR 18.000 329 ASDGGLMPAR 15.000 115 LPDEIFRLVK 12.500 594 VTDPDYGDNS 12.500 617 TIDSQTGVIR 10.000 76 RIEEDTGEIF 9.000 985 SSDPYSVSDC 7.500 58 TTAMQFKLVY 6.250 399 FTDHEIPFRL 6.250 350 DNVPSIDIRY 6.250 .803 VSSPTSDYVK 6.000 635 KQESYTFYVK 5.400 673 FIVPPSNCSY 5.000 708 NAEVCYSIVG 4.500 148 IPENSAINSK 4.500 789 STEAPVPNT 4.500 807 TSDYVKILVA. 3.750 704 DTGMNABVCY 2.500 478 NNSPGIQLTK 2.500 514 SLDCRTGMLT 2.500 527 KLDREKEDKY 2.500 700 AVDNDTGMNA 2.500 609 ILDENDDFTI 2.500 206 ELDREEKDTY 2.500 345 VTDVNDNVPS 2.500 729 ETGNITLMEK 2.500 81 TGEIFTTGAR 2.250 504 LLGPDAPPEF 2.000 991 VSDCGYPVTT 1.500 963 IQELPLDNTF 1.350 741 VTDLGLHRVL 1.250 239 VTDTNDNHPV 1.250 273 ATDADIGENA 1.250 251 ETEIEVSIPE 1.125 858 NPENRQMIMM 1.125 492 DADSGPNAKI 1.000 438 AADAGKPPN 1.000 275 DADIGENAKI 1.000 590 GLITVTDPDY 1.000 389 DADHNGRVTC 1.000 186 GLDVIETPEG 1.000 241 DTNDNHIPVFK 1.000 743 DLGLHRVLVK 1.000 Table VI-109P1D4-A1-10mers Pos 1234567890 Score SeqID 779 ATLINELVRK 1.000 518 RTGMLTVVKK 1.000 253 EIEVSIPENA 0.900 457 KDENNAPVF 0.900 189 VIETPEGDKM 0.900 887 TIEETKADDV 0.900 288 FSNLVSNIAR 0.750 566 NSPVTHNEY 0.750 459 ENDNAPVFTQ 0.625 40 IGDLLKDLNI 0.625 563 QNDNSPVFTH 0.625 506 GPDAPPEFSL 0.625 132 INDNAPLFPA 0.625 666 VNDNKPVFIV 0.625 348 VNDNVPSIDI 0.625 738 KCDVTDtGLH 0.500 725 AIDQETGNIT 0.500 980 KCSSSSSDPY 0.500 508 DAPPEFSLDC 0.500 211 EKDTYVMKVK 0.500 113 AILPDEIFRL 0.500 778 NATLINELVR 0.500 624 VIRPNISFDR 0.500 521 MLTVVKKLDR 0.500 490 AMDADSGPNA 0.500 688 STNPGTVVFQ 0.500 112 VAILPDEIFR 0.500 974 ACDSISKCSS 0.500 50 SLIPNKSLTT 0.500 308 LITIKEPLDR 0.500 397 TCFTDHEIPF 0.500 277 DIGENAXIHF 0.500 820 GTITVVVVIF 0.500 895 DVDSDGNRVT 0.500 949 QIQPETPLNS 0.500 663 VVDVNDNKPV 0.500 86 TTGARIDREK 0.500 892 KADDVDSDGN 0.500 333 GLMPARAMVL 0.500 167 DVGINGVQNY 0.500 560 IIDQNDNSPV 0.500 941 SASPQPAFQI 0.500 200 QLIVQKELDR 0.500 311 IKEPLDREET 0.450 192 TPEGDKMPQL 0.450 772 VNESVTNATL 0.450 838 QAPHLKAAQK 0.400 46 DLNISLIPNX 0.400 59 TAMQFKVYK 0.400 931 DSPDLAPHYK 0.300 Table VII-109P1D4-A2-9mers Poe 123456789 Score Se ID 416 FLLETAAYL 8198.910 114 ILPDEIFRL 1986.272 757 GQPDSLFSV 385.691 333 GLMPARAMV 257.342 520 GMLTVVKKi 131.296 825 VVVIFITAV 90.423 340 MVLVNVTDV 88.043 880 NLLLNFVTI 73.343 3 LLSGTYIFA 69.676 121 RLVKIRFLI 60.510 609 ILDENDDPT 55.992 635 KQESYTFYV 50.389 658 KVTINVVDV 48.991 39 LIGDLLKDL 47.088 294 NIARRLFHL 39.184 539 TILANGV 35.385 764 SVVIVNjFV 33.472 64 KLVYKTGDV 31.646 914 QTMGKYNWV 29.487 813 ILVAAVAGT 29.137 234 ILQVSVTDT 29.137 965 ELPLDNTFV 28.690 298 RLFHLNATI 27.572 181 SQNIFGLDV 26.797 8 YIFAVLLAC 26.741 990 SVSDCGYPV 24.952 734 TLMEKCDVT 22.711 283 KIHFSFSNL 19.533 771 FVNESVTNA 18.856 616 FTIDSQTGV 18.219 915 TMGKYNWVT 16.550 999 TTFEVPVSV 14.654 693 TVVFQVIAV 13.997 685 VLPSTNPGT 12.668 344 NVTDVNDNV 12.226 368 VVLSENIPL 11.757 745 GLHRVLVKA 11.426 769 NLFVNESVT 11.305 61 MQFKjVYKT 10.931 359 YIVNPVNDT 10.841 334 LMPARAIVL 10.754 307 GLITIKEPL 10.468 270 QLRATDADI 10.433 4 LSGTYIFAV 10.296 948 FQIQPBTPL 9.963 550 LTSNVTVFV 9.032 903 VTLDLPIDL 7.652 SLIPNKSLT 7.452 483 IQLTKVSAM 7.287 748 RVIVKANDL 6.916 Table VII-109P1D4-A2-9mers Poe 123456789 Score SeqID 571 THNEYNFYV 6.317 546 GVPPLTSNV 6.086 733 ITLMEKCDV 6.076 690 NPGTVVFQV 6.057 12 VLLACVVFH 5.929 817 AVAGTITVV 5.739 743 DLGLHRVLV 5.216 43 LLKDLNLSL 5.211 360 IVNPVNDTV 5.069 826 WIFITAVV 4.242 532 KEDKYLFTI 3.789 135 NAPIPPATV 3.671 6 GTYIFAVL 3.608 823 TVVVVIFIT 3.566 176 YELIKSQNI 3.453 553 NVTVFVSII 3.271 127 FLINDINDN 3.233 822 ITVVVVIFI 3.116 57 LTTAMQFKL 2.925 250 KETEIEVSI 2.911 463 APVFTQSFV 2.497 513 FSLDCRTGM 2.263 810 YVKILVAAV 2.254 803 VSSPTSDYV 2.080 722 DLFAIDQET 2.068 885 FVTIEETKA 2.000 966 LPLDNTFVA 1.989 412 FSNOFLLET 1.956 414 NQFLLETAA 1.864 919 YNWVTTPTT 1.857 58 TTAMQFKLV 1.835 10 FAVLLACVV 1.822 335 MPARAMVLV 1.775 496 GPNAKINYL 1.764 51 LIPNKSLTT 1.742 13 LLACVVFHS 1.690 326 LVLASDGGL 1.528 741 VTDLGLHRV 1.511 879 IULLLNFVT 1.498 446 LNQSAMLFI 1.465 824 VVVVIFITA 1.404 768 VNLFVNESV 1.399 369 VLSENIPLN 1.195 575 YNFYVPENL 1.163 382 LITVTDKDA 1.161 837 RQAPHUKAA 1.159 284 IHFSFSNLV 1.154 514 SLDCRTGML 1.111 973 VACDSISKC 1.106 327 VLASDGGLM 1.098 Table VIII-109P1D4-A2-l0mers Pos 1234567890 Score SeqID 3 LLSGTYIFAV 1577.300 8 YIFAVLLACV 374.369 334 LMPARAMVLV 196.407 114 ILPDEIFRLV 184.215 761 SLFSVVIVNL 181.794 609 ILDENDDFTI 168.703 113 AILPDEIFRL 144.981 570 FTRNEYNFYV 141.751 283 KIHFSFSNLV 127.193 56 SLTTAMQFKL 123.902 339 AMVLVNVTDV 115.534 824 VVVVIFITAV 90.423 38 VIIGDLLKDL 83.527 159 TLPAAVDPDV 69.552 369 VLSENIPiNT 51.940 127 FLIEDINDNA 45.911 608 SILDENDDFT 41.891 333 GLMPARAMVL 32.407 812 KILVAAVAGT .30.519 964 QELPLDNTFV 27.521 757 GQPDSLFSVV 22.523 359 YIVNPVNDTV 21.556 582 NLPRHGTVGL 21.362 48 NLSLIPNKSL 21.362 821 TITVVVVIFI 18.147 685 VPSTNPGTV 15.371 882 LLNFVTIEET 14.277.
447 NQSAMLFIKV 13.398 ANQFKLVYKT 12.379 771 FVNESVTNAT 12.298 763 FSVVIVNLFV 11.487 2 DLLSGTYIFA 11.374 756 LGQPDSLFSV 10.296 LVYKTGDVPL 10.169 827 VIFITAVVRC 9.882 732 NITLMEKCDV 9.563 915 TMGKYNWVTT 9.149 233 AILQVSVTDT 8.720 183 NIFGLDVIET 8.720 994 CGYPVTTFEV 8.427 549 PLTSNVTVFV 8.416 962 IIQELPLDNT 8.049 996 YPVTTFEVPV 7.936 205 KELDREEKDT 7.693 706 GMNAEVCYSI 7.535 SLIPNKSLTT 7.452 781 LINELVRKST 7.142 560 IIDQNDNSPV 6.503 12 VLLACVVFHS 6.253 650 RVSRSSSAKV 6.086 Table VIII-109P1D4-A2lOmers Po 1234567890 Score SeqID 689 TNPGTVVFQV 6.057 180 KSQNIFGLDV 6.038 42 DLLKDLNLSL 5.928 474 SIPENNSPGI 5.881 43 LLKDLNLSLI 5.854 462 NAPVFTQSFV 5.313 767 IVNLFVNESV 5.069 484 QLTKVSANDA 4.968 381 ALITVTDKDA 4.968 68 KTGDVPLIRI 4.782 325 LLVLASDGGL 4.721 972 FVACDSISKC 4.599 538 FTILAKDNGV 4.444 913 EQTMGKYNWV 4.363 740 DVTDLGLHRV 4.304 290 NLVSNIARRL 4.272 360 IVNPVNDTVV 4.242 825 VVVIFITAVV 4.242 257 SIPEbAPVGT 4.201 663 VVDVNDNKPV 4.138 684 LVLPSTNPGT 4.101 269 TQLHATDADI 3.914 735 LMEKCDVTDL 3.861 794 VTPNTEIADV 3.777 696 FQVIAVDNDT 3.476 399 FTDHEIPFR 3.166 57 LTTAMQFKLV 3.120 514 SLDCRTGMLT 2.981 373 NIPLNTKIAL 2.937 169 GINGVQNYEL 2.937 445 PLNQSANLFI 2.903 51 LIPNXSLTTA 2.671 286 FSFSNLVSNI 2.666 817 AVAGTITVVV 2.495 430 KEYAIKLLAA 2.488 500 KINYLLGPDA 2.391 178 LIKSQNIFGL 2.331 351 NVPSIDIRYI 2.310 813 ILVAAVAGTI 2.306 692 GTVVFQVIAV 2.222 989 YSVSDCGYPV 2.088 437 LAADAGKPPL 2.068 137 PLFPATVINI 1.953 707 MNAEVCYSIV 1.946 367 TVVLSENIPL 1.869 902 RVTLDLPIDL 1.869 293 SNIARRLFHL 1.860 376 LNTKIAIITV 1.775 495 SGPNACINYL 1.764 666 VNDNKPVFIV 1.689 Table IX-109P1D4-A3-9mers Poe 123456789 Score SeqID 435 KLLAADAGK 90.000 197 KMPQLIVQK 90.000 527 KIDREXEDK 60.000 780 TLINELVRK 45.000 172 GVQNYELIK 36.000 56 SLTTAMQFK 30.000 AMQFKVYK 30.000 910 DLEEQTMGK 18.000 865 IMNKKKKKK 15.000 863 QMIMMKKKK 15.000 841 HLKAAQKNK 10.000 866 MMKKKKKKK 10.000 290 NLVSNIARR 9.000 520 GMLTVVKK 6.075 37 NVLIGDLLK 6.000 662 NVVDVNDNX 4.500 307 GLITIKEPL 4.050 121 RLVKIRFLI 4.050 972 FVACDSISK 4.000 921 WVTTPTTF 3.000 114 ILPDEIFRL 2.700 880 NLLLNFVTI 2.700 623 GVIRPNISF .2.700 447 NQSANLFIK 2.700 2 DLLSGTYIF 2.700 304 ATTOLITIK 2.250 827 VIFITAVVR 2.000 650 RVSRSSSAK 2.000 68 KTGDVPLIR 1.800 113 AILPDEIFR 1.800 864 MIMMKKKKK 1.500 6 GTYIFAVLL 1.350 416 FLLETAAYL 1.350 333 GLMPARAMV 1.350 745 GLHRVLVKA 1.350 334 LMPARAMVL 1.200 351 NVPSIDIRY 1.200 43 LLKDLNLSL 1.200 201 LIVQKELDR 1.200 518 RTGMLTVVK 1.000 12 VLLACVVFH 0.900 761 SLFSVVIVN 0.900 915 TMGKYNWVT 0..900 177 ELIKSQNIF 0.900 189 VIETPEGDK 0.900 821 TITVVVVIF 0.900 118 EIFRIVKIR 0.900 755 DLGQPDSLF 0.900 380 IALITVTDK 0.900 862 RQMIMMIKKK 0.675 Table Ix-109P1D4-A3-9mers Pos 123456789 Score SeqID 449 SAMLFIKVK 0.675 820 GTITVVVVI 0.608 85 FTTGARIDR 0.600 549 PLTSNVTVF 0.600 99 GIPRDEHCF 0.600 1013 GIQVSNTTF 0.600 779 ATLINELVR 0.600 3 LLSGTYIFA 0.600 522 LTVVKKLDR 0.600 674 IVPPSNCSY 0.600 309 ITIKEPLDR 0.600 270 QLHATDADI 0.600 553 NVTVFVSII 0.540 13 LLACVVFHS 0.540 636 QESYTFYVK 0.540 283 KIHFSFSN 0.540 769 NLFVNESVT 0.500 298 RLFHLNATT 0.500 479 NSPGIQLTK 0.450 8 YIFAVLLAC 0.450 951 -QPETPLNSK 0.450 813 ILVAAVAOT 0.450 822 ITVVVVIFI 0.405 591 LITVTDPDY 0.400 445 PLNQSANLF 0.400 1002 EVPVSVHTR 0.360 706 GNNAEVCYS 0.360 929 KPDSPDLAR 0.360 59 TAMQFKLVY 0.360 804 SSPTSDYVK 0.300 234 ILQVSVTDT 0.300_ 399 FTDHEIPFR 0.300 608 SILDENDDF 0.300 11 AVLLACVVF 0.300 428 STKEYAIKL 0.270 294 NIARRLFHL 0.270 64 KLVYKTGDV 0.270 881 LLLNFVTIE 0.270 124 KIRFLIEDI 0.270 824 VVVVIFITA 0.270 535 KYLFTILAK 0.270 740 DVTDLGLHR 0.240 50 SLIPNKSLT 0.225 734 TLMEKCDVT 0.225 536 YLFTILAKD 0.225 722 DLFAIDQET 0.225 839 APHLKAAQK 0.200 835 RCRQAPHLK 0.200 932 SPDLARHYK 0.200 524 VVKKLDREK 0.200 Table X-109PID4-A3-lomera Poe 1234567890 Score SeqID 743 DLGLHRVJV 36.000 590 GLITVTDPDY 18.000 379 KIALITVTD)K 18.000 635 KQESYTFYVK 16.200 865 IMMKKKKKKK 15.000 863 QMIMMKKKKK 15.000 527 )KLDREKEDKY 12.000___ 200 QLIVQKELtlR 12.000___ 866 MMKIKKKKKKK 10.000 41 AAYLDYAEK 30.000 5187 RTLVVKKQ 3.000 54 IJNLPKE 9.000 76 VIRNICSD 2.100 415 LEIFYLVK 1.000 864 MINMKKKK 1.000 252 TTAMQFPQRV 1.200 4206 ELDESKD 1.000 318 VLGLLVK 1.012 LGYIAVLIA 0.000 724 VIRPNITLFK 2.700 118 ILVKNFI 0.900 437 PLLKDLNI 0.900 770 AMQFLVK 0.250 4203 QLDEEK 0.00 169 GINGVQYL 0.80 910 LEEQI)TGK 0.800 308 LPDITIKELD 0.800 KTTAMQFK 0.675 Table X-109P1D4-A3-lomers Poe 1234567890 Score SeqID 127 FLIEDINDNA 0.675 188 DVIETPEGDK 0.608 113 AILPDEIFRL 0.608 582 NLPRXGTVGL 0.600 414 NQFIJLETAAY 0.600 826 VVIFITAVVR 0.600 821 TITVVVVIFI 0.540.
42 DLLKDLNLSL 0.540 803 VSSPTSDYVK 0.450 183 NIFGLDVIET 0.450 369 VIJSENIPLNT 0.450 862 RQMIMMKKKK 0.450 59 TAMQFKLVYK 0.450 48 NLSLIPNKSL 0.450 So SLIPNXSLTT 0.450 68 KTGDVPLIRI 0.405 813 ILVAAVAGTI 0.405 617 TIDSQTGVIR 0.400 484 QLTKVSAZ4DA 0.400 167 DVGINGVQNY 0.360_ 999 TTFEVPVSVH 0.338 LVYKTGDVPL 0.300 568 PVFTHNEYNF 0.300 148 IPENSAINSK 0.300 715 IVGGNTRDLF 0.300 241 DTNDNHPVFK 0.300 334 LMPARAMVLV 0.300 883 LNFVTIEETK 0.300 303 NATTOLITIK 0.300 523 TVV1GKLDREK 0.300 76 RIEEDTGEIF 0. 300 827 VIFITAVVRC 0.300 159 TLPAAVDPDV 0.300 880 NLLLNFVTIE 0.270 178 LIKSQNIFGL 0.270 823 TVVVVIFITA 0.270 692 GTVVFQVIAV 0.270 197 KMPQLIVQKE 0.270 325 LLVLASDGGL 0.270 448 QSANLFIKVK 0.225 370 LSENIPLNTK 0.225 49 AMDADSGPN~A 0.200 838 QAPHLKAAQK 0.200 514 SLDCRTGMLT 0.200 301 HIJNATTGLIT 0.200 397 TCFTDHEIPF 0.200 446 ILNQSAMLFIK 0.180 171 NGVQNYELIK 0.180 478 NNSPGIQLTK F0.180 367 TVVLSENI]PL 0.180 Table XI-109P1D4-All-9mers 00 Pos 123456789 Score SeqID 172 GVQNYELIK 12.000 650 RVSRSSSAK 6.000 37 NVLIGDLLK 6.000 972 FVACDSISK 4.000 535 KYLFTILAK 3.600 662 NVVIDVNDNK 3.000 tl 1518 RTGMLTVVK 3.000 921 WVTTPTTFK 2.000 447 NQSAMLFIK 1.800 435 KLLAADAGK 1.800 862 RQMIMMKKK 1.800 197 KMPQLIVQK 1.200 S 527 KLREKEDK 1.200 68 KTG3DVPLIR 1.200 304 ATTGLITII 1.000 780 TLINELVRK 0.600 00 779 ATLINELVR 0.600 -422 AYLDYESTK 0.600 309 ITIKEPLDR 0.600 835 RCRQAPHLK 0.600 522 LTVVKKLDR 0.600 AMQFKLVYK 0.400 56 SLTTAMQFK 0.400 865 IMNKKKKKK 0.400 642- YVKAEDGGR 0.400 864 MIMMKKKKK 0.400 189 VIETPEGDK 0.400 FTTGARIDR 0.400 863 QMIMMKKKK 0.300 884 NFVTIEETK 0.300 380 IALITVTDK 0.300 113 AILPDEIFR 0.240 740 DVDLGLR 0.240 577 FYVPENLPR 0.240 201 LIVQKELDR .0.240 929 KPDSPDLAR 0.240 910 DLEEQTMGK 0.240 524 VVKKDREK 0.200 841 HLKAAQKNK 0.200 399 FTDHEIPFR 0.200 18 VFHSGAQEK 0.200 866 MMKKKKKKK 0.200 449 SAMLFIKVK 0.200 932 SPDLARHYK 0.200 951 QPETPLNSK 0.200 839 APHLKAAQK 0.200 623 GVIRPNISF 0.180 827 VIFITAVVR 0.160 636 QESYTFYVK 0.120 1002 EVPVSVHTR 0.120 Table XI-109P1D4-All-9mers Pos 123456789 Score SegID 23 AQEKNYTIR 0.120 290 NIVSNIARR 0.120 748 RVLVKANDL 0.090 871 KICKKHSPK 0.060 47 LNLSLIPNK 0.060 744 LGLHRVLVK 0.060 368 VVLSENIPL 0.060 455 KVKDENDNA 0.060 275 DADIGENAK 0.060 218 KVKVEDGGF 0.060 492 DADSGPNAK 0.060 546 GVPPLTSNV 0.060 693 TVVFQVIAV 0.060 824 VVVVIFITA 0.060 265 GTSVTQLHA. 0.060 6 GTYIFAVLL 0.060 658 KVTINVDV 0.060 764 SVVIVNLFV 0.060 371 SENIPLNTK 0.060 635 KQESYTPYV 0.054 121 RLVKIRFLI 0.054 757 GQPDSLFSV 0.054 82 GEIFTTGAR 0.054 820 GTITVVVVI 0.045 692 GTVVFQVIA 0.045 479 NSPGIQLTK 0.040 861 NRQMIMMKK 0.040 854 WATPNPENR 0.040 730 TGNITLMEK 0.040 242 TNDNHPVFK 0.040 804 SSPTSDYVK 0.040 519 TGNLTVVKK 0.040 351 NVPSIDIRY 0.040 990 SVSDCGYPV 0.040 995 GYPVTTFEV 0.036 212 KDTYVMKVK 0.030 11 AVLLACVVF 0.030 326 LVLASDGGL 0.030 903 VTLDLPIDL 0.030 57 LTTAMQFKL 0.030 822 ITVVVVIFI 0.030 340 MVVNVTDV 0.030 825 VVVIFITAV 0.030 826 VVIFITAVV 0.030 289 SNLVSNIAR 0.024 90 RIDREKLCA 0.024 860 ENRQMIMMK 0.024 118 EIFRLVKIR 0.024 333 GLMPARAMV 0.024 1008 HTRPVGIQV 0.020-j 00 00 I TableXII -109P1D4 -All -lomers Poe 1234567890 Score SeqID 17 VVFHSGAQEK 4.000 635 KQESYTFYVK 3.600 518 RTGMLjTVVKK 3.000 86 RQMIMI4KKKK 1.800 779 ATLINELVRK 1.500 220 KVEDGGFPQR 1.200 379 KIALITVTDK 1.200 188 DVIETPEGDK 0.900 950 IQPETPLjNSK 0.600 826 VVIFITAVVR 0.600 203 VQKELDRBEK 0.600 729 ETGNITLMEK 0.600 971 TFVACDSISK 0.600 115 LPDEIFRLVK 0.400 8j65 IMMKKKKKKK 0.400 421 AAYLDYESTK 0.400 864 MIMMKKKKKK 0.400 59 TAMQFIUJVYK 0.400 241 DTNDNHPVFK 0.300 863 QMIMMKKKK( 0.300 523 TVVKKLDREK 0.300 200O QLIVQKEILDR 0.240 624 VIRPNISFDR 0.240 743 DILGLHRVLVK 0.240 148 IPENSAINSK 0.200 303 NATTOIJITIK 0.200 866 MMKKKKKKKK 0.200 838 QAPI1LKAAQK 0.200 209 REEKDTYVMK 0.180 308 LITIKEPLDR 0.160 521 MLTVVKKLDR 0.160 576 NFYVPENLPR 0.160 4i46 INQSAI4LFXK 0.120 641 FYVICAEDGGR 0.120 644 KAEDGGRVSR 0.120 902 RVTLDLPIDL 0.120 46 DLNLSLIPNK 0.120 6 GTYIFAVLLA 0.120 112 VAILPDEIFR 0.120 22 GAQEKNYTIR 0.120 86 TTGARIDREK 0.100 KSLTTAI4QFK 0.090 526 IM~DREKEDK 0,090 649 GRVSRSSSAK 0.090 692 GTVVFQVIAV '0.090 883 ILNFVTIEETK 0.080 712 CYSIVGGNTR 0.080 617 TIDSQTGVIR 0.080 778 NATLINELVR 0.080 TableXII-lO 9PID4 -All-lomers Poe 1234567890 Score SeqID 84 IFTTGARIDR 0.080 93 REKI 1 CAGIPR 0.072 626 RPN'ISFDREK 0.060 661 INVVDVNDNK 0.060 171 NGVQNYELIK 0.060 870 KKKKKKHSPK 0.060 909 IDLEEQTMGK 0.060 823 TVVVVIFITA 0.060 650 RVSRSSSAKV 0.060 367 TVVLSENIPL 0.060 68 KTGDVPLIRI 0.060 426 YESTKEYAIK 0.060 395 RVTCFTDHEI 0.060 333 GLMPARAMVL 0.048 820 GTITVVVVIF 0.045 398 CFTDHEIPFR 0.040 65 LVYKTGDVPL 0.040 509 APPEFSLDCR 0.040 803 VSSPTSDYVK 0.040 700 AVDNDTGMNA 0.040 36 ENVLIGDLLK 0.036 434 IKLLAADAGK 0.030 920 NWVTTPTTFK 0.030 832 AVVRCRQA.PH 0.030 11 AVLLACVVFH 0.030 824 VVVVIFITAV 0.030 570 FTHNEYNFYV 0.030 825 VVVIFITAVV 0.030 399 FTDHEIPFRL 0.030 326 LVIJASDGGLM 0.030 409 RPVFS'QFLL 0.027 169 GINGVQNYEL 0.024 534 DKYLFTILAK 0.024 860 ENRQMIMMKK 0.024 706 GMNAEVCYSI 0.024 999 TTFEVPVSVH 0.020 517 CRTGI4LTVVK 0.020 834 VRCROAPHLK 0.020 833 VVRCRQAPI{L 0.020 360 IVNPVNDTVV 0.020 785 LVRKSTEAPV 0.020 76 IVNLFVNESV 0.020 715 IVGGNTRDLF 0.020 817 AVAGTITVVV 0.020 370 LSENIPLNTK 0.020 491 MDADSGPNAK 0.020 267 SVTQIMATDA 0.020 F926 TTFKPDSPDL 0.020 274 TDADIGENAK 10.020 642 YVKAEDGGRV 0.020 478 NNSPGIQLTK 0.080 Table XIII-109P1D4-A24Smers Pos 123456789 Score SeqID 107 FYEVEVAIL 300.000 66 VYKTGDVPL 200*.000 762 LFSWIVNL 28.000 927 TFKPDSPDL 24.000 918 KYNWVTTPT 21.000 409 RPVFSNQFL 14.400 748 RVLVANDL 14.400 119 IFRLVKIRF 14.000 398 CFTDHEIPF 12.000 809 DYVKILVAA 10.500 681 SYELVLPST 10.500 175 NYELIKSQN 10.500 569 VFTHNBYNF 10.000 283 KIHFSFSNL 9.600 520 GMLTVVKK 9.240 903 VTLDLPIDL 8.640 106 CFYEVEVAI 8.400 899 DGNRVTLDL 8.400 36 ENVLIGDLL 8.400 307 GLITIKEPL 8.400 574 EYNFYVPEN 8.250 995 GYPVTFEV 8.250 738 KCDVTDLGL 8.000 425 DYESTIKYA 7.500 138 LFPATVINI 7.500 7 TYIFAVLLA 7.500 416 FLLETAAYL 7.200 114 ILPDEIFRL 7.200 496 GPNAKINYL 7.200 712 CYSIVGGNT 7.000 SGTYIPAVL 6.720 477 TNATLINEL 6.336 598 DYDNSAVT 6.000 374 IPLNTKIAPL 6.000 727 DQETQNITL 6.000 334 LMPARAKYL 6.000 477 ENNSPIQL 6.000 326 LVLASD LL 6.000 368 VLSENIPL 6.000 KSLTAMQF 6.000 152 SAINSKYTL 6.000 2.87 SFSNLVSNI 6.000 362 NPVNDTVVL 6.000 320 TPNHKLLVL 6.000 49 LSLIPNKSL 6.000 948 FQIQPETPL 6.000 43 LLKDLNLSL 5.760 39 LIGDLLKDL 5.760 575 YNFYVPENL 5.600 291 LVSNIARRL 5.600 TPh1PF XeTT-109P1D4-A24-9merA Pos 123456789 Score SeqID 428 STKEYAIK 5.280 763 FSVVIVNLF 5.040 431 EYAIKLLAA 5.000 88 GARIDREKL 4.400 170 INGVQNYEL 4.400 57 LTTAMQFKL 4.400 121 RLVKIRFLI 4.200 583 LPRHGTVGL 4.000 678 SNCSYELVL 4.000 602 NSAVTLSIL 4.000 6 GTYIFAVLL 4.000 438 AADAGKPPL 4.000 599 YGDNSAVTL 4.000 514 SLDCRTGML 4.000 940 KSASPQPAF 4.000 897 DSDGNRVTh 4.QOO 218 KVKVEDGGF 4.000 294 NIARRLFHL 4.000 715 IVGGNTRDL 4.000 505 LGPDAPPEF 3.960 76 RIEEDTGEI 3.960 462 NAPVFTQSF 3.600 177 ELIKSQNIF 3.600 608 SILDENDDF 3.600 241 DTNDNHPVF 3.600 562 DQNDNSPVF 3.600 665 DVNDNKPVF 3.600 688 STNPGTVVF 3.600 131 DINDNAPLF 3.600 99 GIPRDEHCF 3.000 278 IGENAKIHF 3.000 623 GVIRPNISF 3.000 11 AVLLACVVF 3.000 920 NWVTTPTTF 3.000 112 VAIIPDEIF 3.000 1013 GIQVSNTTF 3.000 2 DLLSGTYIF 3.000 292 VSNIARRLF 3.000 280 ENAKIHFSF 2.800 821 TITVVVVIF 2.800 552 SNVTVFVSI 2.520 877 SPKNLLLNF 2.400 404 IPFRLRPVF 2.400 124 KIRFLIFDI 2.400 372 ENIPLNTCI 2.376 822 ITVVVVIFI 2.100 820 GTITVVVVI 2.100 993 DCGYPVTTF 2.000 716 VGGNTRDLF 2.000 755 DLGQPDSF 2.000 00 00 TableXIV- 109PlD4 -A24 lmers Pos 1234567890 Score SeqID 574 EYNFYVPENL 420.000 598 DYGDNSAVTLj 240.000 175 NYELIKSQNI 90:-000 425 DYESTKEYAI 7S.000 66 VYKTGDVPLI 50.000 947 AFQIOPETPL 30.000 415 QFLLETAAYL 30.000 106 CFYEVEVAIL 24.000 299 LFHIjNATTGL 20.000 119 IFRLVKIRFL 20.000 358 RYIVNPVNDT 18.000 762 LFSVVIVNLF 16.800 918 KYNWVTTPTT 15.000 443 KPPLNQSAML 12.000 409 R.PVFSNQFLL 12.000 7 TYIFAVIJLAC 10.500 902 RVTLDLPIDL 9.600 776 VTNATLINEL 9.504 198 MPQLIVQKEL 9.240 519 TGMLTVVKKJ 9.240 681 SYELVLPSTN 9.000 809 DYVKILVAAV 9.000 306 TGLITIKEPJ 8.400 290 NTLVSNIARRL 8.400 496 GPNAKINYLL 8.400 225* GFPQRSSTAI 7.500 957 NS1OHHIIQEL 7.392 42 DLLKDLNLSJ 7.200 34 MPENVLIGDL 7.200 513 FSLDCRTGML 7.200 495 SGPNAKINYL 7.200 38 VLIGDLLKDLj 7.200 113 AILjPDEIFRL 7.200 76 RIEEDTGEIF 7.200 333 GLMPARAMVL 7.200 4* LSGTYIFAVL 6.720 169 GINGVQNYEL 6.600 675 VPPSNCSYEL 6.600 319 ETP2NHKLLVL 6.000 938 HYKSASPQPA 6.000 226 FPQRSSTAIL 6.000 582 NTJPRHGTVGL 6.000 192 TPEGDKMPQL 6.000 325 LLVLASDGGL 6.000 262 APVGTSVTQL 6.000 373 NIPLNTKIAL 6.000 293 SNIARRLFHL 6.000 772 VNESVTNATJ 6.000 714 1SIVGGNTRDL 6.000 3671 TVVLSENIPL 16.000 Table XIV-109PlD4-A24-lomers Pos 12 34567890 Score SegID 735 IJMEKCDVTDL 6.000 361 VNPVNDTVVL 6.000 407 RLRPVFSNQF 5.760 761 SLFSWVIVNL 5.600 399 FTDHEIPFIZL 5.600 437 LAADAGKPPL 4.800 428 STKEYAI1QLL 4.800 541 LAKDNGVPPL 4.800 741 VTDIJGIHRVL 4.800 56 SLTTAI4QFKL 4.400 427 ESTKEYAIKL 4.400 87 TGARIDREKJ 4.400 963 IQELPLDNTF 4.320 820 GTITVVVVIF 4.200 40 IGDLLKDLNL 4.000 48 NLSLIPMKSL 4.000 178 LIKSQNIFGL 4.000 506 GPDAPPEFSL 4.000 926 TTFKPDSPDL 4.000 151 NSAINSKYTL 4.000 833 VVRCRQAPML 4.000 601 DNSAVTLSIL 4.000 753 ANDLGQPDSL 4.000 5 SGTYIFAVLL 4.000 805 SPTSDYVKIL 4.000 65 LVYKTGDVPL 4.000 98 AGIPRDEHCF 3.600 403 EIPFRLRPVF 3.600 879 KNLLLNFVTI 3.600 876 HSPKNLLiLNF 3.600 1012 VGIQVSNTTF 3.000 10 FAVIJLACVVF 3.000 607 LSILDENDDF 3.000 622 TGVIRPNISF 3.000 461 DNAPVFTQSF 2.880 118 EIFRIJVKIRF 2.800 504 LLGPDAPPEF 2.640 551 TSNVTVFVSI 2.520 512 EFSLDCRTGM 2.500 277 DIGENAKIHF 2.400 68 KTGDVPLIRI 2.400 535 KYLFTILAKD 2.310 395 RVTCFTDHEI 2.200 856 TPNPENRQMI 2.160 706 GMNAEVCYSI 2.100 813 ILVAAVAGTI 2.100 466 FTQSFVTVSI 2. 100 690 NPGTVVFQVI 2.016 111ll EVAILPDEIF 2.000 715 _IVGGNTRDLF 2.000 Table XV-109P1D4-B7-9mere Pos 123456789 Score SegID 583 LPRHGTVGL 800.000 88 GARIDREKL 180.000 374 IPLNTKIAL 90.000 362 NPVNDTVVL 80.000 496 GPNAKINYL 80.000 409 RPVPSNQFL 80.000 320 TPNHKLLVL 80.000 792 APVTPNTEI 36.000 136 APLFPATVI 36.000 368 VVLSENIPL 20.000 291 LVSNIARRL 20.000 856 TPNPENRQM 20.000 715 IVGGNTRL 20.000 443 KPPLNQSAM 20.000 326 LVLASDGGL 20.000 748 RVLVKANDL 20.000 152 SAINSKYTL 12.000 463 APVFTQSFV 12.000 438 AADAGKPPL 10.800 246 HPVFKETEI 8.000 676 PPSNCSYEL 8.000 352 VPSIDIRYI 8.000 954 TPLNSKHHI 8.000 444 PPLNQSAML 8.000 226 FPQRSSTAI 8.000 805 SPTSDYVKI 8.000 49 LSLIPNKSL 6.000 858 NPENRQMIM .6.000 509 APPEFSLDC 6.000 948 FQIQPETPL 6.000 477 ENNSPGIQL 6.000 162 AAVDPDVGI 5.400 777 TNATLINEL 4.000 43 LLKDLNLSL 4.000 690 NPGTVVPQV 4.000 480 SPGIQLTKV 4.000 307 GLITIKEPL 4.000 678 SNCSYELVL 4.000 520 GMLTVVKKL 4.000 428 STKEYAIKL 4.000 686 LPSTNPGTV 4.000 39 LIGDLLKDL 4.000 170 INGVQNYEL 4.000 160 LPAAVDPDV 4.000 294 NIARRLFHL 4.000 36 ENVLIGDLL 4.000 57 LTTANQFKL 4.000 903 VTLDLPIDL 4.000 334 LMPARAVL 4.000 283 KIHFSFSNL 4.000 Table XV-109P1D4-B7-9mers Pos 123456789 Score SeqID 6 GTYIFAVLL 4.000 335 MPARAMVV 4.000 124 KIRFLIEDI 4.000 575 YNFYVPENL 4.000 899 DGNRVTDL 4.000 227 PQRSSTAIL 4.000 100 IPRDEHCFY 4.000 795 TPNTEIADV 4.000 114 ILPDEIFRL 4.000 5 SGTYIFAVL 4.000 416 FLLETAAYL 4.000 602 NSAVTLSIL 4.000 699 IAVDNDTGM 3.000 817 AVAGTITVV 3.000 475 IPENNSPGI 2.400 547 VPPLTSNVT 2.000 410 PVFSNQFLL 2.000 553 NVTVFVSII 2.000 263 PVGTSVTQL 2.000 1006 SVHTRPVGI 2.000 907 LPIDLEEQT 2.000 516 DCRTGMLTV 2.000 651 VSRSSSAKV 2.000 347 DVNDNVPSI 2.000 52 IPNKSLTTA 2.000 111 EVAILPDEI 2.000 1008 HTRPVGIQV 2.000 966 LPLDNTFVA 2.000 814 LVAAVAGTI 2.000 356 DIRYIVNPV 2.000.
816 AAVAGTITV 1.800 942 ASPQPAFQI 1.800 897 DSDGNRVTL 1.800 26 KNYTIREEM 1.500 332 GGLMPARAM 1.500 513 FSLDCRTGM 1.500 514 SLDCRTGML 1.200 115 LPDEIFRLV 1.200 727 DQETGNITL 1.200 758 QPDSLFSVV 1.200 738 KCDVTDLGL 1.200 165 DPDVGINGV 1.200 599 YGDNSAVTL 1.200 303 NATTGLITI 1.200 22 GAQEKNYTI 1.200 826 VVIFITAW 1.000 483 IQLTKVSAN 1.000 764 SVVIVNLFV 1.000 825 VVVIFITAV 1.000 810 YVKILVAAV 1.000 Table XVI-109P1D4-B7-Omere PoB 1234567890 Score SeqID 262 APVGTSVTQL 240.000 833 VVRCRQAPHL 200.000 198 MPQLIVQKEL 80.000 583 LPRHGTVGLI 80.000 496 GPNAXINYLL 80.000 443 KPPLNQSAML 80.000 226 FPQRSSTAIL 80.000 675 VPPSNCSYEL 80.000 805 SPTSDYVKIL 80.000 409 RPVFSNQFLL 80.000 506 GPDAPPEFSL 36.000 192 TPEGDKMPQL 24.000 34 MPENVLIGDL 24.000 902 RVTLDLPIDL 20.000 907 LPIDLEEQTM 20.000 LVYKTGDVPL 20.000 367 TVVLSENIPL 20.000 52 IPNKSLTTAM 20.000 333 GLMPARAIVL 12.000 113 AILPDEIFRL 12.000 856 TPNPENRQMI 12.000 519 TGMLTVVKK 12.000 437 LAADAGKPPL 12.000 541 LAKDNGVPPL 12.000 785 LVRKSTEAPV 10.000 374 IPLNTKIALI 8.000 690 NPGTVVFQVI 8.000 139 FPATVINISI 8.000 954 TPLNSKIHII 8.000 792 APVTPNTEIA 6.000 352 VPSIDIRYIV 6.000 463 APVFTQSFVT 6.000 858 NPENRQMIMM 6.000 48 NLSLIPNKSL 6.000 686 LPSTNPGTVV 6.000 87 TGARDREKL 6.000 326 LVLASDGGLM 5.000 373 NIPLNTKIAL 4.000 714 SIVGQITRDL 4.000 178 LIKSQNIFGL 4.000 290 NLVSNIARRL 4.000 957 NSKHHIIQEL 4.000 761 SLFSVVIVNs 4.000 319 ETPNH1LLVL 4.000 776 VTATLINEL 4.000 325 LLVLASDGGL 4.000 582 NTPRHGTVGL 4.000 4 LSGTYIFAVL 4.000 SGTYIFAVL 4.000 528 1DREKEDKYL 4.000 Table XVI-109P1D4-B7-l0mers Poe 1234567890 Score SeqID 547 VPPLTSNVTV 4.000 427 ESTKEYAIKL 4.000 38 VLIGDLLDL 4.000 877 SPKNLLLNFV 4.000 293 SNIARRLFHIL 4.000 169 GINGVQNYEL 4.000 495 SGPNAKINYL 4.000 428 STKEYAIKLL 4.000 119 IFRLVKIRFL 4.000 56 SLTTAMQFKL 4.000 306 TGLITIKEPL 4.000 601 DNSAVTLSIL 4.000 361 VNPVNDTVVL 4.000 1003 VPVSVHTRPV 4.000 42 DLLRDLNLSL 4.000 926 TTFKPDSPDL 4.000 151 NSAINSKYTL 4.000 900 GNRVTLDLPI 4.000 996 YPVTTFEVPV 4.000 513 FSLDCRTGML 4.000 753 ANDIGQPDSL 3.600 295 IARRLFHLNA 3.000 855 ATPNPENRQM 3.000 817 AVAGTITVVV 3.000 88 GARIDREKC 3.000 758 QPDSLFSVVI 2.400 29 TIREEMPENV 2.000 665 DVNDNKPVFI 2.000 100 IPRDEHCFYE 2.000 320 TPNHKLVLA 2.000 945 QPAFQIQPET 2.000 1010 RPVGIQVSNT 2.000 395 RVTCFTDHEI 2.000 966 LPLDNTFVAC 2.000 351 NVPSIDIRYI 2.000 516 DCRTGMLTVV 2.000 72 VPLIRIEEDT 2.000 947 AFQIQPETPL 1.800 135 NAPLFPATVI 1.800 816 AAVAGTITVV 1.800 791 EAPVTPNTEI 1.800 941 SASPQPAPQI 1.800 835 RCRQAPHLKA 1.500 331 DGGIMPARAM 1.500 579 VPENLPRHGT 1.350 724 FAIDQETGNI 1.200 40 IGDLLKDLNL 1.200 596 DPDYGDNSAV 1.200 839 APHKAAQKN 1.200 741 VTDLGLHRVL 1.200 Table XVII-109PID4-B35-9mers Pos 123456789 Score SeqID 100 IPRDEHCFY 360.000 443 KPPLNQSAM 80.000 856 TPNPENRQM 60.000 877 SPKNLLNF 60.000 583 LPRHGTVGL 60.000 409 RPVFSNQFL 40.000 567 SPVFTHNEY 40.000 362 NPVNDTVVL 30.000 931 DSPDLAPHY 20.000 374 IPLNTKIAL 20.000 496 GPNAKINYL 20.000 513 FSLDCRTGM 20.000 404 IPFRLRPVF 20.000 320 TPNHKLLVL 20.000 88 GARIDREKL 13.500 352 VPSIDIRYI 12.000 699 IAVDNDTGM 12.000 805 SPTSDYVKI 12.000 858 NPENRQMIM 12.000 HSGAQEKNY 10.000 981 CSSSSSDPY 10.000 940 KSASPQPAF 10.000 KSITTAMQF 10.000 218 KVKVEDGGF 9.000 226 FPQRSSTAI 8.000 792 APVTPNTBI 8.000 954 TPLNSKHHI 8.000 136 APLFPATVI 8.000 246 HPVFKETEI 8.000 59 TAMQFKLVY 6.000 428 STKEYAIKL 6.000 795 TPNTEIADV 6.000 43 LLKDLNLSL 6.000 763 FSVVIVNLF 5.000 292 VSNIARRLF 5.000 49 LSLIPNKSL 5.000 602 NSAVTLSIL 5.000 686 LPSTNPGTV 4.000 160 LPAAVDPDV 4.000 966 LPLDNTFVA 4.000 480 SPGIQLTKV 4.000 1010 RPVGIQVSN 4.000 335 MPARAMVLV 4.000 670 KPVFIVPPS 4.000 26 KNYTIREEM 4.000 463 APVFTQSFV 4.000 653 RSSSAKVTI 4.000 509 APPEFSLDC 4.000 907 LPIDLEEQT 4.000 690 NPGTVVFQV 4.000 Table XVII-109P1D4-B359mer Poe 123456789 Score SeqID 570 FTHNEYNFY 3.000 114 ILPDE.FRL 3.000 327 VLASDGGLM 3.000 462 NAPVFTQSF 3.000 651 VSRSSSAKV 3.000 146 ISIPENSAI 3.000 112 VAILPDEIF 3.000 152 SAINSKYTL 3.000 608 SILDENDDF 3.000 162 AAVDPDVGI 2.400 475 IPENNSPGI 2.400 124 KIRFLIEDI 2.400 22 GAQEKNYTI 2.400 115 LPDEIFRLV 2.400 748 RVLVKANDL 2.000 674 IVPPSNCSY 2.000 903 VTLDLPIDL 2.000 705 TGNNAEVCY 2.000 942 ASPQPAFQI 2.000 351 NVPSIDIRY 2.000 547 VPPLTSNVT 2.000 416 FLLETAAYL 2.000 131 DINDNAPLF 2.000 483 IQLTKVSAM 2.000 168 VGINGVQNY 2.000 774 ESVTNATLI 2.000 676 PPSNCSYEL 2.000 562 DQNDNSPVF 2.000 665 DVNDNKPVP 2.000 39 LIGDLLKDL 2.000 591 LITVTDPDY 2.000 924 TPTTFKPDS 2.000 283 KIHFSFSNL 2.000 52 IPNKSLTTA 2.000 444 PPLNQSAML 2.000 332 GGLMPARAM 2.000 802 DVSSPTSDY 2.000 495 SGPNAKINY 2.000 139 FPATVINIS 2.000 150 ENSAINSKY 2.000 241 DTNDNHPVF 2.000 229 RSSTAILQV 2.000 505 LGPDAPPEF 2.000 530 REKEDKYLF 1.800 207 LDREEKDT-Y 1.800 656 SAKVTINVV 1.800 455 KVKDENDNA 1.800 897 DSDGNRVTL 1.500 155 NSKYTLPAA 1.500 99 GIPRDEHCF 1.500 Table XVIII-109P1D4-B35-10mers Pos 1234567890 Score SeqID 907 LPIDLEEQTM 120.000 443 KPPLNQSAML 40.000 409 RPVFSNQFLL 40.000 52 IPNKSLTTAM 40.000 987 DPYSVSDCGY 40.000 583 LPRHGTVGLI 24.000 805 SPTSDYVKIL 20.000 198 MPQLIVQKEL 20.000 675 VPPSNCSYEL 20.000 262 APVGTSVTQL 20.000 226 FPQRSSTAI 20.000 496 GPNAKINYLL 20.000 541 LAKDNGVPPL 18.000 957 NSKHHIIQEL 15.000 877 SPKNLLLNFV 12.000 858 NPENRQMIMM 12.000 566 NSPVFTHNEY 10.000 513 FSLDCRTGHL 10.000 494 DSGPNACINY 10.000 69 0 NPGTVVFQVI 8.000 139 FPATVINISI 8.000 374 IPLNTKIALI 8.000 954 TPLNSKHHII 8.000 856 TPNPENRQMI 8.000 607 LSILDENDDF 7.500 192 TPEGDKMPQL 6.000 34 MPENVLIGDL 6.000 428 STKEYAIKLL 6.000 506 GPDAPPEFSL 6.000 437 LAADAGKPPL 6.000 407 RIRPVFSNQF 6.000 313 EPIDREETPN 6.000 4 LSGTYIFAVL 5.000 876 HSPKNLLLLNF 5.000 151 NSAINSKYTL 5.000 427 ESTKEYAIKL 5.000 547 VPPLTSNVTV 4.000 352 VPSIDIRYIV 4.000 966 LPLDNTFVAC 4.000 686 LPSTNPGTVV 4.000 1003 VPVSVHTRPV 4.000 996 YPVTTFEVPV 4.000 980 KCSSSSSDPY 4.000 670 KPVFIVPPSN 4.000 1010 RPVGIQVSNT 4.000 724 FAIDQETGNI 3.600 833 VVRCRQAPHL 3.000 855 ATPNPENRQM 3.000 99 GIPRDEHCFY 3.000 414 NQFLLETAA 3.000 Table XVIII-109P1D4-B35-lomers Pos 1234567890 Score SeqID 155 NSKYTLPAAV 3.000 178 IIKSQNIFGL 3.000 804 SSPTSDYVKI 3.000 10 FAVLLACVVF 3.000 326 LVLASDGGLN 3.000 43 ILKDLNLSLI 2.400 758 QPDSLFSVVI 2.400 286 FSFSNLVSNI 2.000 704 DTGMNAEVCY 2.000 320 TPNHKLLVIA 2.000 277 DIGENAKIHF 2.000 58 TTAMQFKLVY 2.000 590 GLITVTDPDY 2.000 335 MPARAVLVN 2.000 463 APVFTQSFVT 2.000 795 TPNTEIADVS 2.000 72 VPLIIIEEDT 2.000 404 IPFRLRPVFS 2.000 548 PPLTSNVTVF 2.000 362 NPVNDTVVS 2.000 480 SPGIQLTIVS 2.000 788 KSTEAPVTPN 2.000 839 APHIKAAQKN 2.000 698 VIAVDNDTGM 2.000 482 GIQLTKVSAI4 2.000 1005 VSVHTRPVGI 2.000 136 APIFPATVIN 2.000 551 TSNVTVFVSI 2.000 567 SPVFTHNEYN 2.000 180 KSQNIFGLDV 2.000 945 QPAFQIQPET 2.000 902 RVTLDLPIDL 2.000 673 FIVPPSNCSY 2.000 792 APVTPNTEIA 2.000 350 DNVPSIDIRY 2.000 331 DGGLMPARAM 2.000 444 PPLNQSAMLF 2.000 167 DVGINGVQNY 2.000 596 DPDYGDNSAV 1.800 68 KTGDVPLIRI 1.600 651 VSRSSSAKVT 1.500 629 ISFDREKQES 1.500 926 TTFKPDSPDL 1.500 113 AILPDEIFRL 1.500, 98 AGIPRDEHCF 1.500 361 VNPVNDTVVL 1.500 367 TVVLSENIPL 1.500 845 AQKNXQNSEW 1.500 982 SSSSSDPYSV 1.500 87 TGARIDREKL 1.500 Table V-151P1C7A-A1-9mere Poe 123456789 Score SeqID 230 GLEIFORCY .45.000 66 ILYPGGNKY 5.000 126 MCCPGNYCK 4.000 VSAAPGILY 3.750 140 SSDQNHFRG 3.750 154 ITESFGNDH 2.250 88 DEECGTDEY 2.250 183 GQEGSVCLR 1.350 171 RTTLSSKMY 1.250 QTIDNYQPY 1.250 149 BXEETITES 0.900 CAEDEECGT 0.900 214 LKEOOVCTK 0.900 192 SSDCA.SGLC 0.750 159 GNDHSTLDG 0.625 164 TLDGYSRRT 0.500 124 HANCCPGNY 0.500 150 IEETITESF 0.450 SVLNSNAIK 0.400 162 HSTLDGYSR 0.300 163 STLDGYSRR 0.250 241 EGLSCRIQK 0.250 .92 GTDEYCASP 0.250 239 CGEGLSCRI 0.225 147 RGEIEETIT 0.225 107 GVQICLACR 0.200 3 ALGAAGATR 0.200 Il1 CLACRKRRK 0.200 218 QVCTKMRRK 0.200 GILYPGGNK 0.200 139 VSSDQNHFR 0.150 172 TTLSGIK4YH 0.125 152 ETIrTESF'GN 0.125 43 KNLPPPLGG 0.125 31 ATLNSVLNS 0.125 103 GGDAGVQIC 0.125 44 NLPPPLGGA 0.100 GAAGATRVF 0.100 109 QICLACRKR 0.100 110 ICIAACRKRR 0.100 76 TIDNYQPYP 0.100 195 CASGLCCAR 0.100 238 YCGEGLSCR 0.100 138 CVSSDQNHF 0.100 254 ASNSSRLHT 0.075 227 GSHG3LEIFQ 0.075 203 RHFWSKICK 0.050 199 LCCARHFWS 0.050 53 AGHPGSAVS 0.050 61 SAAPGILYP 0.050 Table V- 151PIC7A-A1- 9mers Poe 123456789 Score SeqID 20 ALGGHPLLG 0.050 36 VIJNSNAIKU 0.050 248 QKDHHQASN 0.050 93 TDEYCASPT 0.045 174 LSSKMYHTK 0.030 108 VQICLACRK 0.030 196 ASGLCCARH 0.030 57 GSAVSAAPG 0.030 160 NDHSTLDGY 0.025 197 SGLCCARHF 0.025 22 GGHPLLGVS 0.025 216 EGQVCTIR 0.025 72 NKYQTIDNY 0.025 226 KOSHGLEIF 0.025 228 SHGLEIFQR 0.025 15 AMVAAALGG 0.025 45 LPPPLGGAA 0.025 11 RVFVANVAA 0.020 232 EIFQRCYCG 0.020 90 ECGTDEYCA 0.020 5B SAVSAAPGI 0.020 30 SATLNSVLN 0.020 62 AAPGILYPG 0.020 13 FVANVAAAL 0.020 200 CCARHFWSK 0.020 173 TLSSKMYHT 0.020 19 AALGGHPJL 0.020 207 SKICKPVLK 0.020 6 AAGATRVFV 0.020 14 VAI4VAAALG 0.020 257 SSRLHTCQR 0.015 217 GQVCTIG{RR 0.015 29 VSATLNSVL 0.015 191 RSSDCASQL 0.015 156 ESFGNDHST 0.015 34 NSVLNSNAI 0.015 98 ASPTRGGDA 0.015 27 LGVSATLNS 0.013 7 AGATRVFVA 0.013 106 AGVQICLAC 0.013 21 LGGHPLLGV 0.013 26 LLGVSATLN 0.010 112 LACRIRKR 0.010 198 GLCCARHFW 0.010 16 MVAAALGG3H 0.010 209 ICKPVLKEG 0.010 94 DEYCASPTR 0.010 2 MALGAAGAT 0.010 52 AAGHPGSAV 0.010 18 AAkALGGHPL 0.010 Table VI-151P1C7A-A1-lomers Pos 1234567890 Score SeqID 149 EIEETITESF 9.000 159 GNDHSTLDGY 6.250 192 SSDCASGLCC 3.750 59 AVSAAPGILY 2.500 87 EDEECGTDEY 2 .250 154 ITESFGNDHS 2.250 92 GTDEYCASPT 1.250 76 TIDNYQPYPC 1.000 230 GLEIFQRCYC 0.900 93 TDEYCASPTR 0.900 22E7 GSHGLEIFQR 0.750 183 GQEGSVCLRS 0.675 103 GGDAGVQICL 0.625 34 NSVLNSNAIK 0.600 164 TLDGYSRRTT 0.500 GILYPGGNKY 0.500 239 CGEGLSCRIQ 0.225 199 LCCARHFWSK 0.200 173 TLSSKMYRTK 0.200 125 AMCCPGNYCK 0.200 107. GVQICLACRK 0.200 61 SAAPGILYPG 0.200 110 ICLACRKRRK 0.200 2 MALGAAGATR 0.200 196 ASGLCCARHF 0.150 162 HSTLDGYSRR 0.150 171 RTTLSSKMYH 0.125 229 HGLEIFQRCY 0.125 147 RGEIEETITE 0.113 109 OICLACRKRR 0.100 44 NLPPPLGGAA 0.100 226 MCCPGNYCKN 0. 100 97 CASPTRGGDA 0.100 13 8 CVSSDQNHFR 0.100 66 ILYPGGNKYQ 0.100 Ill CLCKPK 0.100 137 ICVSSDQNHF 0.100 194 DCASGLCCAR 0.100 CAEDEECGTD 0.090 74* YQTIDNYQPY 0.07S 140 SSDQNHFRGE 0.075 139 VSSDQNHFRG 0.075 206 WSKICKPVLK 0.060 26 LLGVSATLNS 0.050 105 DAGVQICLAC 0.050 253 QASNSSRIZMT 0.050 106 AGVQICLACR 0.050 202 ARHFWSKICK 0.050 240 GEGLSCRIQK 0.0502-- 14 VAMVAAAILGG 0.050 Table VI-151PlC7A-Al-lomere Pos 1234567890 Score SeqID 22 G3GHPLLGVSA 0.050 19 AALGGHPLLG 0.050 35 SVLNSNAIKN 0.050 236 RCYCGEGLSC 0.050 198 GLCCARMFWS 0.050D 30 SATIJNSVLNS 0.050 6 AAGATRVFVA 0.050 172 TTLSSKMYHT 0.050 53 AGHPGSAVSA 0.050 20 ALGGHPLLGV 0.050 45 LPPPLGGAAG 0.050 150 IEETITESFG 0.045 88 DEECGTDEYC 0.045 214 LKEGQVCTQH 0.045 21.7 GQVCTKRRRK 0.030 57 GSAVSAAPGI 0.030 29 VSATLNSVLN 0.030 248 QKDHHQASNS 0.025 123 RHANCCPGNY 0.025 31 ATLNSVLNSN 0.025 216 EGQVCTKHRR 0.025 170 RRTTLSS1K4Y 0.025 4 LGAAGATRVF 0.025 163 STLDGYSRRT 0.025 43 KNLPPPIIGGA 0.025 182 KGQEGSVCLR 0.025 13 FVAI4VAAALG 0.020 18 AAALGGHPLL 0.020 11 RVFVANVAAA 0.020 213 VLKEGQVCTK 0.020 5 GAAGATRVFV 0.020 52 AAGI{PGSAVS 0.020 62 AAPGILYPGG 0.020 195 CASGLCCARH 0.020 256 N'SSRLHTCQR 0.015 191 RSSDCASGLC 0.015 108 VQICLACRKR 0.015 186 GSVCLRSSDC 0.015 98 ASPTRGGDAG 0.015 156 ESFGkTDHSTL 0.015 254 ASNSSRLHTC 0.015 '71 GNKYQTIDNY 0.013 r226 KGSHGLEIFQ 0.013 130 GNYC1QUGICV 0.013 158B FGNDHSTLDG 0.013 9 ATRVFVAMVA 0.013 .90O ECGTDEYCAS 0.010 20 ICKPVLKEGQ 0.010 1:61 DHSTLDGYSR 0.010 127 CCPGNYCKNG 0.010 Table VII-151P1C7A-A2-9mers Pos 123456789 Score SegID 125 AMCCPGNYC 19.734 173 TLSSKMYHT 17.140 28 GVSATLNSV 13.997 13 FVAMVAAAL 8.598 1 MMAIGAAGA 6.100 6 AAGATRVFV 5.313 11 RVFVAIVAA 3.699 182 KGQEGSVCL 2.001 213 VLKEGQVCT 1.818 21 LGGRPLLGV 1.775 PILGVSATL 1.739 44 NLPPPLGGA 1.485 19 AALGGHPLL 1.098 52 AAGHPGSAV 0.966 231 LEIFQRCYC 0.903 4 IAAGATRV 0.772 246 RIQKDHHQA 0.683 9 ATRVFVA1V 0.642 164 TLDGYSRRT 0.596 191 RSSDCASGL 0.572 37 LNSNAIKNL 0.545 187 SVCLRSSDC 0.435 198 GLCCARHFW 0.410 66 ILYPGGNKY 0.405 18 AAALGQHPI 0.297 102 RGGDAGVQI 0.279 68 YPGGNKYQT 0.224 211 KPVLKEGQV 0.207 7 AGATRVFVA 0.177 32 TLNSVLNSN 0.171 58 SAVSAAPGI 0.145 8 GATRVFVAI4 .0.131 36 VINSNAIKN 0.127 26 LLGVSATLN 0.127.
120 RCMRHAMCC 0.120 41 AIKULPPPj 0.103 188 VCLRSSDCA 0.100 59 AVSAAPGIL 0.100 29 VSATLNSVL 0.097 2 MALGAAGAT 0.085 255 SNSSRLHTC 0.075 ALGaHPLLG 0.075 252 HQASNSSRL 0.074 83 YPCAEDEEC 0.073 201 CARHFWSKI 0.071 34 NSVLNSNAI 0.068 33 LNSVINSNA 0.055 AMVAAALGG 0.054 254 ASNSSRILHT 0.049 205 FWSKICKPV 0.044 Table VII-151P1C7A-A2-Smer Pos 123456789 Score SeqID 142 DQNHFROEI 0.039 242 GLSCRIQKD 0.034 166 DGYSRRTTL 0.033 106 AGVQICLAC 0.032 229 HGLEIFQRC 0.032 104 GDAGVQICL 0.030 85 CAEDEECGT 0.027 199 LCCARHFWS 0.026 172 TTISSKMYH 0.021 89 EECGTDEYC 0.020 208 KICKPVLKE 0.016 177 KMYHTKGQE 0.016 3 ALGAAGATR 0.015 157 SFGNDHSTL 0.015 212 PVLKEGQVC 0.015 225 RKGSHGLEI 0.014 24 HPLLVSAT 0.014 156 ESFGNDHST 0.013 12 VFVANVAAA 0.013 146 FRGEIEETI 0.013 103 GGDAGVQIC 0.012 105 DAGVQICLA 0.012 77 IDNYQPYPC 0.012 78 DNYQPYPCA 0.012 131 NYCKNZCV 0.010 206 WSKICKPVL 0.009 51 GAAGHPGSA 0.009 31 ATLNSVLNS 0.009 45 LPPPLGGAA 0.007 80 YQPYPCAED 0.007 74 YOTIDNYQP 0.007 193 SDCASGLCC 0.007 138 CVSSDQNHF 0.007 14 VAMVAAALG 0.007 75 QTIDNYQPY 0.006 43 KNIPPPLGG 0.006 189 CLRSSDCAS 0.006 194 DCASGLCCA 0.006 130 GNYCIQGIC 0.006 215 KEGQVCTKH 0.005 136 GICVSSDQN 0.005 163 STLDGYSRR 0.005 76 TIDNYQPYP 0.005 239 CGEGTSCRI 0.004 238 YCGEGLSCP 0.004 98 ASPTRGGDA 0.004 139 VSSDQNHFR 0.004 230 GLEIFQRCY 0.004 165 LDGYSRRTT 0.004 23 GHPLLGVSA 0.003 'TableVIII-151P1C7A-A2-lomers I Pos 1234567890 Score SeqIDI ALGGHPLLGV 159.970 36 VLNSNAIKNL 83.527 3 ALGAAGATRV 69.552 B GATRVFVAMV 8.443 GAAGATRVFV 5.313 32 TLNSVLNSNA 4.968 11 RVFVANVAAA 3.699 198 GLCCARHFWS 2.377 27 LGVSATLNSV 1.775 2 30 GLEIFQRCYC 1.749 130 GNYCIQIGICV 1.453 238 YCGEGLSCRI 1.284 1 MMALGAAGAT 1.189 51 GAAGHPGSAV 0.966 172 .TTLSSKKYHT 0.881 28 GVSATLjNSVL 0.766 44 NIPPPLOGAA* 0.646 177 KMYHTKGQEG 0.603 164 TLDGYSRRTT 0.596 17 VAAALGGHPL 0.504 68 YPGGN'KYQTI 0.470 99 SPTRGGDAGV 0.454 66 ILYPGGNKYQ 0.446 200 CCARHFWSKI 0.440 6. AAGATRVFVA 0.377 2i34 FQRCYCG3EGL 0.371 163 STLDGYSRRT 0.314 18 AAALGGHPLL 0.297 NAIKNLPPPL 0.297 76 TIDNYQPYPC 0.273 187 SVCLRSSDCA 0.213 92 GTDEYCASPT 0.170 153 TITESFGNDH 0.160 155 TESFGNDHST 0.145 26 LLGVSATLNS 0.127 43 KNLPPPLGG. 0.126 102 RGG;DAGVQIC 0.125 112 LACRKRRKRC 0.117 33 LNSVLNSNAIT 0.116 236 RCYCGEGLSC 0.104 253 QASNSSRILHT 0.104 208 KICKPVLKEG 0.082 254 ASN'SSRIJHTC 0.075 242 GLSCRIQKDH 0.075 128 CPGNYCKNGI 0.068 57 GSAVSAAPGI 0.068 7 AGATRVFVAM 0.062 103 GGDAGVQICL 0.056 212 PVLKEGQVCT 0.053 174 _YQTIDNYQPY 0.052 TableVIII-1S1P1C7A-A2 -l0mers PoB 1234567890 Score* SeqID 165 LDGYSRR'FrL 0.050 124 HANCCPGNYC 0.048 211 KPVLKEGQVC 0.047 156 ESFGNDHSTL 0.039 65 GILYPGGNKY 0.038 22 GGHPLLGVSA 0.032 186 GSVCLRSSDC 0.032 53 AGRPGSAVSA 0.032 13 FVAMVAAALG 0.030 181 TKGQEGSVCL 0.030 179 YHTKGQEGSV 0.029 12 VFVAMVAAAL 0 .025 35 SVLNSNAIKN 0.024 173 TLSSKMYHTK 0.022 144 NHFP.GEIEET 0.022 139 VSSDQNHFRG 0.020 77 IDNYQPYPCA 0.018 24 HPLLGVSATL 0.018 1.91 RSSDCASGLC 0.017 15 AIVAAALGGH 0.016 104 GDAGVQICLA 0.016 193 SDCASGLCCA 0.016 58 SAVSAAPOIL 0.016 148 GEIEETITES 0.014
F
204 HFWSKICKPV 0.014 192 SSDCASGLCC 0.013 210 CKPVLKEGQV 0.013 23 GHPLLGVSAT 0.012 125 AMCCPGNYCK 0.011 246 RIQKDHHQAS 0.010 136 GICVSSDQNH 0.010 197 SGLCCARHFW 0.010 158 FGNDHSTLDG 0.009 97 CASPTRGGDA 0.009 31 ATLNSVLNSN 0.009 213 VILKEGQVCTK 0.008 146 FRGEIEETIT 0.008 54 GHPGSAVSAA '0.008 89 EECGTUEYCA 0.007 138 CVSSDONHFR 0.007 141 SDQNHFRGEI 0.007 228 SHGLEIFQRC 0.007 59 AVSAAPGILY 0.007 14 VANVAAALGG 0.007 25 PLjLGVSATLN 0.006 171 RTTILSSKMYHi 0.006 189 CLRSSDCASG 0.006 205 FWSKICKPVL 0.006 105 DAGVQICLAC 0.005 190 1LRSSDCASGL 0. 005 00 00 TableIX-151PC7A-A3-9mers P05 123456789 Score SeqID 66 ILYPGGNKY 30.000 GILYPGGNK 4.050 3 ALGAAGATR 4.000 230 'GLEIFQRCY 3.600 SVLNSNAIK 3.000 ill CLACRKRRK 2.000 200j CCARHFWSK 1.800 107 GVQICLACR 1.800 183 GQEGSVCLR 1.620 108 VQICLACRK 0.900 126 MCCPGNYCK 0.900 198 GLCCARHFW 0.600 217 GQVCTIGHRR 0.540 173 TLSSKq4YHT 0.450 125 AMCCPGNYC 0.300 163 STLDGYSRR 0.300 QTIDNYQPY 0.300 PLLGVBATL 0.203 44 NLPPPLGGA 0.203 1 MMALGAAGA 0.200 218 QVCTIGHRRK 0.200 138 CVSSDQNHF 0.200 203 RHFWSKICK 0.200 11 RVFVAMVAA 0.150 213 VLKEGQVCT 0.150 171 RTTLSSKMY 0.100 174 LSSIKIYHTK 0.100 214 LKEGQVCTK 0.090 28 GVSATLRSV 0.090 177 KMYHTKGQE 0.090 13 FVAMVAAAL 0.090 238 YCGEGLSCR 0.090 9 ATRVFVAMVV 0 .090 242 GLiSCRIQKD 0.090 ALGGHPLLG 0.060 AMVAAALGG 0.060 VSAAPGILY 0.060 195 CASGLCCAR 0.060 162 HSTLDGYSR 0.060 41 AIIGNhPPPL 0.060 2908 KICKVLI 0.054 164 TLDGYSRRT 0.045 32 TIJNSVLNSN 0.045 189 CLRSSDCAS 0.040 109 QICLACRKR 0.040 3 VLNSNAIKN 0.040 169 SRRTTLSSK 0.030 207 SKICKPVLK 0 .030 154 IrTESFGNDH 0.030 110 ICLACRIKRR 0.030 Table IX-152.PC7-A3-9mers Pos 123456789 Score SeqID 172 TTLSSKMYH 0.030-___ 121 CMRHANCCP 0.030 72 NKYQTIDNY 0.030 8 GATRVFVAM 0.027 26 LLGVSATLN 0.020 139 VSSDQNHFR 0.020 187 SVCLRSSDC 0.020 257 SSRLHTCQR 0.020 246 RIQKDHHQA 0.020 228 SH~GLEIFQR 0.018 31 ATIJNSVLNS 0.018 252 HQASNSSRL 0.018 94 DEYCASPTR 0.018 241 EGLSCRIQC 0.018 124 HAMCCPGNY 0.018 201 CAPHFWSKI 0.018 59 AVSAAPGIL 0.018 92 GTDEYCASP 0.013 19 AALGGHPLL 0.013 226 KGSHQLEIP 0.009 232 EIFQRCYCG 0.009 58 SAVSAAPGX 0.009 150 IEETITESF 0.009 16 MVAAALGGH 0.009 5 GAAGATPRVF 0.009 104 GDAGVQICL 0.008 160 NDHSTLDGY 0.006 136 GICVSSDQN 0.006 55 HPGSAVSAA 0.006 18 AAALiGGHPL 0.006 120 RCMRHAMCC 0.006 76 TIDNYOPYP 0.006 142 DQNHFRGEI 0.005 24 HPIJIJVSAT 0.005 68 YPGGNKYQT 0.005 34 NSVLNSNAI 0.005 180 HTKGQEGSV 0.005 112 IACRKRRKR 0.004 115 RKRRKRCMR 0.004 251 HHQASNSSR 0.004 88 DEECGTDEY 0.004 212 PVLKEGQVC 0.003 29 VSATLNSVL 0.003 137 ICVSSDQNH 0.003 206 WSKICKPVL 0.003 188 VCLRSSDCA 0.003 52 AAGMPGSAV 0.003 191 RSSDCASGL 0.003 182 KGQEGSVCLj 0.003 153 TITESFOND 0.003 ITable X-151P1C7A-A3-lomers Pos 1234567890 Score SeqID 213 VLKEGQVCTK 90.000 125 ANCCPGNYCK 60.000 173 TLSSKMYHTK 20.000 107 GVQICLACRK 6.000 199 LCCARHFWSK 1.800 GILYPGGNKY 1.800 ALGGHPLLGV 1.350 59 A5ISAAPGILjY 1.200 230 GLEIFORCYC 0.600 242 GLSCRIQKDH 0.450 36' VIJNSNAIKNL 0.450 227 GSHGLEIFQR 0.405 111 -CLACRIRRKR 0.400 138 CVSSDQN'HFR 0.400 198 GLCCARHFWS 0.360 240 GEGLSCRIQK 0.360 11 -RVFVAMVAAA 0.300 177 KMYHTKGQEG 0.300 217 GQVCTKHRRK 0.270 32 TLNSVLNSN'A 0.200 3 -ALGAAGATRV 0.200 109 QICLACRKRR 0.200 28 GVSATLjNSVL 0.180 168 YSRRTTLSSK 0.150 34 -NSVLjNSNAIK 0.150 AMVAAALGGH 0.135 149- EIEETITESF 0.135 74 YQTIDNYQPY 0.120 20.6 WSKICKPVLK 0.100 153 TITESFGNDH 0.090 2 -MALGAAGATR 0.090 44 NLPPPLGGAA 0.090 26 LLGVSATLNS 0.080 66 ILYPGGNKYQ 0.075 76 TIDNYQPYPC 0.060 136 GICVSSDQNH 0.0650 182 KGQEGSVCLR 0.054 8 GATRVFVANV 0.054 2 ARHFWSKICK 0.040 159 GNDHSTLDGY 0.036 71 GNKYQTIDNY 0.036 172 TTLSSKMYRT 0.034 110 ICLACRKRRK 0.030 9 ATRVFVAMVA 0.030 137 ICVSSDQNHF 0.030 1 MMALGAAGAT 0.030 92 GTDEYCASPT 0.022 171 RTTLSSKMYH 0.020 256 NSSRLHTCQRT- 0.020 189 CILRSSDCASG 10.020_ Table X-lS1P1C7A-A3-lomers Pos 1234567890 Score SeqID 187 SVCLRSSDCA 0.020 236 RCYCGEGLSC 0.020 162 HSTLDGYSRR 0.020 121 CIRHAMCCPG 0.020 108 VQICLACRKR 0.018 200 CCARHFWSKI 0.018 6 AAGATRVFVA 0.018 234 FQRCYCGEGL 0.018 215 KEGQVCTKHR 0.018 183 GQEGSVCLRS 0.016 180 HTKGQEGSVC 0.015 164 TLDGYSRRTT 0.015 24 HPLLGVSATL 0.013 51 GAAGHPGSAV 0.013 130 GNYCK1NGICV 0.012 194 DCASGLCCAR 0.012 237 CYCGEGLSCR 0.009 106 AGVQICLA.CR 0.009 68 YPGGNXYQTI 0.009 57 GSAVSAAPGI 0.009 5 GAAGATRVFV 0.009 211 KPVLKEGQVC 0.009 238 YCGEGLSCRI 0.009 40 NAIKONLPPPL 0.009 156 ESFGNDHSTL 0.007 208 KICKPVLJKEG 0.007 18 AAALGGHPLL 0.006 35 SVLNSNAIKN 0.006 128 CPGNYC1QNGI 0.006 17 VAAAL GGHPL 0.00D6. 103 GGDAGVQICL 0.005 12 HANCCPGNYC 0.005 186 GSVCLRSSDC 0.005 75 QTIDNYQPYP 0.005 25 PLLGVSATLN 0.005 246 RIQKDHHQAS 0.004 93 TDEYCASPTR 0.004 114 CRKRRKRCMR 0.004 161 DHSTLDGYSR 0.004 31 ATLNSVLNSN 0.003 225 RXGSHGLEIF 0.003 -195 CASGLCCARH 0.003 220 CTKKRRKGSH 0.003 41 AIXNLPPPLG 0.003 232 EIFQRCYCGE 0.003 48 PLGGAPAGHPG 0.003 201 CARHFWSKIC 0.003 229 HGIJEIFQRCY 0.003 54 GHPGSAVSAA 0.003 58 SAVSAAPGIL 0.003 Table XI-1S1P1CA-A11-9mers Pos 123456789 Score SegID 66 ILYPGGNCY 30.000 GILYPGGNK 4.050 3 ALGAAGATR 4.000 230 GLEIFQRCY 3.600 SVINSNAIK 3.000 11 CLACRKRRK 2.000 200 CCARHFWSK 1.800 107 GVQICLACR 1.800 183 GQEGSVCLR 1.620 108 VQICLACRK 0.900 126 MCCPGNYCK 0.900 198 GLCCARHFW 0.600 217 GQVCTKHRR 0.540 173 TLSSKMYHT 0.450 125 AMCCPGNYC 0.300 163 STLDGYSRR 0.300 QTIDNYQPY 0.300 PLLGVSATL 0.203 44 NLPPPLGGA 0.203 1 MMALGAAGA 0.200 218 QVCTKHRRK 0.200 138 CVSSDQNHF 0.200 203 RHFWSKICK 0.200 11. RVFVAMVAA 0.150 213 VLKEGQVCT 0.150 171 RTTLSSKMY 0.100 174 LSSKMYHTK 0.100 214 LKEGQVCTK 0.090 28 GVSATLNSV 0.090 177 KKYHTKGQE 0.090 13 FVAMVAAA 0.090 238 YCGEGLSCR 0.090 9 ATRVFVAMV 0.090 242 GLSCRIQKD 0.090 ALGGHPLLG 0.060 AMVAAALGG 0.060 VSAAPGILY 0.060 195 CASGLCCAP 0.060 162 HSTLDGYSR 0.060 41 AIKNPPPL 0.060 208 KICKPVLKE 0.054 164 TLDGYSRRT 0.045 32 TLNSVLNSN 0.045 189 CLRSSDCAS 0.040 109 QICLACRKR 0.040 36 VLNSNAIKN 0.040 169 SRRTTLSSK 0.030 207 SKICKPVLK 0.030 154 ITESFGNDH 0.030 110 ICLACRKRR 0.030 Table XI-151P1C7A-Al1-9mers Poe 123456789 Score SegID 172 TTLSSKMYH 0.030 121 CMRHAMCCP 0.030 72 NKYQTIDNY 0.030 8 GATRVFVAM 0.027 26 LLGVSATLN 0.020 139 VSSDQNHFR 0.020 187 SVCLRSSDC 0.020 257 SSRLHTCQR 0.020 246 RIQKDHHQA 0.020 228 SHGLEIFQR 0.018 31 ATLNSVLNS 0.018 252 HQASNSSRL 0.018 94 DEYCASPTR 0.018 241 EGLSCRIQK 0.018 124 RAMCCPGNY 0.018 201 CARHFWSKI 0.018 59 AVSAAPGIL 0.018 92 GTDEYCASP 0.013 19 AALGGHPLL 0.013 226 KGSHGLEIF 0.009 232 EIFQRCYCG 0.009 58 SAVSAAFGI 0.009 150 IEETITESF 0.009 16 MVAAAJGGH 0.009 5 GAAGATRVF 0.009 104 GDAGVQICL 0.008 160 NDHSTLDGY 0.006 136 GICVSSDQN 0.006 55 HPGSAVSAA 0.006 18 AAALGHPL 0.006 120 RCMRHAMCC 0.006 76 TIDNYQPYP 0.006 142 DQNHFRGEI 0.005 24 HPLLGVSAT 0.005 68 YPGGNKYQT 0.005 34 NSVLNSNAI 0.005 180 HTKGQEGSV 0.005 112 LACRKRRKR 0.004 115 RKRRKRCMR 0.004 251 HHQASNSSR 0.004 88 DEECGTDEY 0.004 212 PVLKEGQVC 0.003 29 VSATLNSVL 0.003 137 ICVSSDQNH 0.003 206 WSKICKPVL 0.003 188 VCLRSSDCA 0.003 52 AAGHPGSAV 0.003 191 RSSDCASGL 0.003 182 KGQEGSVCL 0.003 153 TITESFGND 0.003 Table XI I-151P1C7A-All-lomers Pos 1234567890 Score SeqID 107 GVQICLACRK 6.000 125 AI4CCPGNYCK 0.800 173 TLSSKMYHTK 0.400 138 CVSSDQNHFR 0.400 199 LCCARHFWSK 0.400 213 VLKEGQVCTK 0.400 240 GEGLSCRIQK 0.360 217 GQVCT1KiRRK 0.270 11 RVFVAMVAAA. 0.120 237 CYCGEGLSCR 0.080 2 MALGAAGATR 0.060 28 GVSATLNSVL 0.060 171 RTTLSSKMYH 0.060 109 QICLACRKRR 0.040 59 AVSAAPGILY 0.040 202 ARHFWSKICK 0.040 227 GSHGLEIFQR 0.036 110 ICLACRKRRK 0.030 34 NSVLNSNAIK 0.030 168 YSRRTTLSSK 0.020 187 SVCLRSSDCA 0.020 26 WSKICKPVLK, 0.020 .9 ATRVFVAMVA 0.020 GILYPGGNKY 0.018 215 KEGQVCTKHR 0.018 1a8 VQICLACRKR 0.018 182 KGQEGSVCLR 0.012 194 DCASGLCCAR 0.012 136 GICVSSDQNH 0.012 220 CTKOIRRKGSH 0.010 111 CLACRKRRKR 0.008 ALGGHPLLGV 0.008 106 AGVQICLACR 0.006 74 YQTIDNYQPY 0.006 SVLNSNAIIQU 0.006 234 FQRCYCGEGL 0.006 ANVAAALGGH 0.006 GAAGATRVFV 0.006 51 GAAGHPGSAV 0.006 242 GLSCRIQKDH 0.006 6 AAGATRVFVA 0.006 8, GATRVFVAMV 0.006 130 GMYCKNGICV 0.005 44 NLPPPLGGAA 0.004 266 NSSRLE{TCQR 0.004 32 TLNSVLJNSNA 0.004 114 CRKRRKRCMR 0.004 153 TITESFGNDH 0.004 162 HSTILDGYSRR 0.004 3 ALGAAGATRV 0.004 Table XII-151P1C7A-A11-lomers P08 1234567890. Score SegID 93 TDEYCASPTR 0.004 183 GQEGSVCLRS 0.004 198 GLCCARHFWS 0.004 64 PGILYPGGNK 0.003 92 GTDEYCASPT 0.003 24 HPLLGVSATL 0.003 '137 ICVSSDQNHF 0.003 172 TThSSKMYHT 0.003 40 NAIKNLPPPL 0.003 58 SAVSAAPGIL 0.003 12 VFVANVAAAL 0.003 73 KYQTIDNYQP 0.002 236 RCYCGEGLSC 0.002 167 GYSRRTTLSS 0.002 177 KMYNTKGQEG 0.002 161 DHSTLDGYSR 0.002 145 HFRGEIEETI 0.002 204 HFWSKICKPV 0.002 36 VLNSNAIKNL 0.002 16 MVAAAILGGHP 0.002 18 AAALGGMPLL 0.002 13 FVAMVAAALG 0.002,___ 128 CPGNYCKNGI 0.002 97 CASPTRGGDA 0.002 238 YCGEGLSCRI 0.002 68 YPGGNXYQTI 0.002 99 SPTRGGDAGV 0.002 195 CASGLCCARH 0.002 17 VAAALGGHPL 0.002 200 CCARHFWSKI 0.002 43 KNLPPPLGO3A 0.002 31 ATLNSVLNSN 0.002 75 QTIDNYQPYP 0.002 103 GGDAGVQICL 0.001 159 GNDHSTLDGY 0.001 246 RIQKDHHQAS 0.001 230 GLEIFQRCYC 0.001 115 RKRP.KRCMRH 0.001 224 RRKGSHGLEI 0.001 10 RCMHAM'CCP 0.001 71 GNKYQTIDNY 0.001 250 DHHQASNSSR 0.001 149 BIEETITESF 0.001 216 EGQVCTKHRR 0.001 154 ITESFGNDHS 0.001 180 HTKGQEGSVC 0.001 211i KPVLKEGQVC 0.001 67 LYPGGNKYQT 0.001 14 VAMVAAALG3G 0.001 26 ILLGVSATILNS 10.001 Table XIII-151P1C7A-A24-9mers 00 P09 123456789 Score SeqID S157 SFGNDHSTL 20.000 182 KGQEGSVCL 14.400 191 RSSDCASGL 9.600 Ct 19 AALGGHPLL 6.000 13 FVAMVAAAL 5.600 131 NYCKNGICV 5.000 kr 167 GYSRRTTLS 5.000 237 CYCGEGLSC 5.000 29 VSATLNSVL 4.800 41 AIKNLPPPL 4.800 206 WSIICKPVL 4.000 59 AVSAAPGIL 4.000 18 AAALGGHPL 4.000 252 HQASNSSRL 4.000 37 LNSNAIKNL 4.000 00 166 DGYSRRTTL 4.000 226 KGSHiGLEIF 4.000 197 SGLCCARHF 3.000 73 KYQTIDNYQ 2.520 138 CVSSDQNHF 2.400 102 RGGDAGVQI 2.400 GAAGATRVF 2.000 239 CGEGLSCRI 1.800 34 NSVLNSNAI 1.800 142 DQNHFRGEI 1.650 58 SAVSAAPGI 1.500 201 CARHFWSKI 1.100 79 NYQPYPCAE 0.900 8 GATRVFVAM 0.840 PLLGVSATL 0.840 67 LYPGGNKYQ 0.750 12 VFVAMVAAA 0.750 178 MYHTKGQEG 0.660 104 GDAGVQICL 0.560 145 HFRGEIEET 0.550 EYCASPTRG 0.500 150 IEETITESF 0.420 223 HRRKGSHGL 0.400 235 QRCYCGBGL 0.400 229 14GLEXFQRC 0.363 211 KPVLKEGQV 0.300 246 RIQKDHHQA 0.300 120 RCMRMAMCC 0.300 147 RGEIEETIT 0.300 32 TLNSVLNSN 0.252 225 RKGSMGLEI 0.220 LPPPLGGAA 0.216 QTID$YQPY 0.216 106 AGVQICLAC 0.210 236 RCYCGEGLS 0.200 Table XIII-151P1C7A-A24-9mers Poe 123456789 Score SegID 11 RVFVANVAA 0.200 171 RTTLSSKMY 0.200 149 EZEETITES 0.198 129 PGNYCKNGI 0.180 44 NLPPPLGGA 0.180 85 CAEDEECGT 0.180 146 FRGEIEETI 0.168 36 VLNSNAIKN 0.165 127 CCPGNYCKN 0.165 66 ILYPGGNKY 0.158 124 RAMCCPGNY 0.150 98 ASPThGGDA 0.150 230 GLEIORCY 0.150 31 ATLNSVLNS 0.150 24 HPLLGVSAT 0.150 2 MALGAAGAT 0.150 27 LGVSATLNS 0.150 254 ASNSSRLHT 0.150 152 ETITESFGN 0.150 188 VCLRSSDCA 0.150 247 IQKDHHQAS 0.144 22 GGHPLLGVS 0.144 205 FWSKICKPV 0.140 170 RRTTLSSKH .0.132 213 VLKEGQVCT 0.120 33 LNSVLNSNA 0.120 103 GGDAGVQIC 0.120 91 CGTDEYCAS 0.120 125 AMCCPGNYC 0.120 53 AGHPGSAVS 0.120 28 GVSATLNSV 0.120 69 PGONKYQTI 0.120 83 YPCAEDEEC 0.110 199 LCCARHFWS 0.100 90 ECGTDEYCA 0.100 6 AAGATRVFV 0.100 105 DAGVQICLA 0.100 198 GLCCARHFN 0.100 52 AAGHPGSAV 0.100 1 MMALGAAGA 0.100 60 VSAAPGILY 0.100 21 GGHPLLGV 0.100 130 GNYCKNGIC 0.100 180 HTKGQEGSV 0.100 7 AGATRVFVA 0.100 220 CTKHRRKGS 0.100 so GGAAGHPGS 0.100 185 EGSVCLRSS 0.100 255 SNSSRLHTC 0.100 187 SVCLRSSDC 0.100 00 00 Table XIV-151P1C7A-A24-lomers Pos 1234567890 Score SeqID 12 VFVANVAAAL 42.000 24 HPLLGVSPLTL 8.400 67 LYPGGNKYQT 7.500 NAIIQNLPPPL 7.200 145 HFRGEIEETI 7.000 58 SAVSAAPGIL 6.000 36 VLNSNAIKNL 6.000 103 GGDAGVQICL 5.600 149 EIEETITESF 5.040 131 NYC1NGICVS 5.000 178 MYHTKGQEGS 5.000 167 GYSRRTTLSS 5.000 28 GVSATLNSVJ 4.800 18 AAALGGHPLL 4.000 205 FWSKICKPVL 4.000 17 VAAALGGHPL 4.000 234 FQRCYCGEGL 4.000 156 ESFGNDHSTL 4.000 137- ICVSSDQNHF 3.600 196 ASGLCCARHF 2.000 4 LGAAdATIRVF 2.000 73 KYQTIDNYQP 1.500 238 YCGEGLSCRI 1.440 33 LNSVLiNSNAI 1.200 128 CPGNYCIQNGI 1.200 68 YPGGNXYQTI 1.200 200 CCARHFWSKI 1.100 57 GSAVSAAPGI 1.000 79 NYQPYPCAED 0.990 7 AGATRVFVAM 0.840 82 PYPCAEDEEC 0.825 222 KHRPRKGSHGL 0.800 204 HFWSKICKPV 0.700 251 HHQASNSSRL 0.600 237 CYCGEGLSCR 0.500 EYCASPTRGG 0.500 113 ACRRRKRRCM 0.500 165 LDGYSRRTTJ 0.400 225 RKGSHGLEIF 0.400 190 LRSSDCASGLs 0.400 181 TKGQEGSVCL 0.400 2*46 RIQKDHHQAS 0.360 43 IKLPPPLGGA 0.360 211 KPVIJKEGQVC 0 .360 102 RGGDAGVQIC 0.288 31 PATLNSVLNSN 0.252 191 RSSDCASGLC 0.240 224 RRKGSHGLEI 0.220 44 NIJPPPLGGAA 0.216 183 GQEGSVCLRS 10.2 10 Table XIV-151P1C7A-A24-lotnerB Poo 1234567890 Score SeqID 236 RCYCGEGLSC 0.200 11 RVFVA4VAA. 0.200 65 GILYPOGNKY 0.198 229 HGLEIFQRCY 0.180 163 STIJDGYSRRT 0.180 27 LGVSATILNSV 0.180 32 TLNSVLNSNA 0.180 124 HANCCPGNYC 0.180 35 SVLNSNAIKN 0.165 141 SDQNHFRGEI 0.165 135 NGICVSSDQN 0.150 188 VCLRSSDCAS 0.150 154 ITESFGNDHS 0.150 197 SGLCCARIFW 0.150 254 ASNSSRLHTC 0.150 230 GLEIFQRCYC 0.150 186 GSVCLRSSDC 0.150 70 GGNKYQTIDN 0.150 172 TTLSSKI4YHT 0.150 22 GGHPLLGVSA 0.144 132 YCKNGICVSS 0.140 105 DAGVQICLAC 0.140 9 ATRVFVAMVA 0.140 126 MCCPGNYCKN 0.132 53 AGHPGSAVSA 0.120 92 GTD)EYCASPT 0.120 97 CASPTRGGDA 0.120 74 YQTIDNYQPY 0.120 247 IQKWHHQASN 0.120 21 LGGHPJIGVS 0.120 219 VCTIQIRRKGS 0.100 26 LILGVSATLNS 0.100 159 GNDHSThDGY 0.100 130 GNYCKNGICV 0.100 6 AAGATRVFVA 0.100 52 AAGHPGS-AVS 0.100 198 GIICCARHFWS 0.100 76 TIDNYQPYPC 0.100 90 ECGTDEYCAS 0.100 112 LACRKRRKRC 0.100 187 SVCLRSSDCA 0.100 166 DGYSRRTTLS 0.100 1 MMALGAAGAT 0.100 180 HTKGQEGSVC 0.100 51 GAAGHPGSAV 0.100 201 CARHPWSKIC 0.100 99 SPTRGGDAGV 0.100 1011 TRGGAGVQI 0.100 2.9 VSATLNSVLN 0.100 8 GATRVFVANV 10.100 1__ 00 00
CA
Table XV-1S1P1C7A-E7-9mers Pos 123456789 Score SegID 59 AVSAAPGIL 60.000 19 AALGGHPLL 36.000 18 AAALGGHPL 36.000 13 FVANVAAAL 20.000 201 CARHFWSKI 12.000 41 AIKNLPPPL 12.000 166 DGYSRRTTL 6.000 9 ATRVFVAMV 6.000 113 ACRKRRKRC 4.500 29 VSATLNSVL 4.000 211 KPVLKEGQV 4.000 206 WSKICKPVL 4.000 252 HQASNSSRL 4.000 223 HRRKGSHGL 4.000 191 RSSDCASGL 4.000 37 LNSNAIKNL 4.000 182 KGQEGSVCL 4.000 8 GATRVFVAM 3.000 6 AAGATRVFV 2.700 52 AAGMPGSAV 2.700 83 YPCAEDEEC 2.000 68 YPGGNKYQT 2.000 LPPPLGGAA 2.000 24 HPLLGVSAT 2.000 HPGSAVSAA 2.000 118* RKRCMRHAN 1.500 58 SAVSAAPGI 1.200 28 GVSATLNSV 1.000 142 DQNEFRGEI 0.600 63 APGILYPGG 0.600 187 SVCLRSSDC 0.500 11 RVFVAMVAA 0.500 125 AMCCPGNYC 0.450 254 ASNSSRLHT 0.450 235 QRCYCGEGL 0.400 104 GDAGVQICL 0.400 102 RGGDAGVQI 0.400 34 NSVLNSNAI 0.400 PLIPGVSATL 0.400 157 SFGNDHSTL 0.400 2 MALGAAGAT 0.300 98 ASPTRGGDA 0.300 106 AGVQICLAC Q.300 21 LGGHPLLGV 0.300 105 DAGVQICLA 0.300 120 RCMRHAMCC 0.300 7 AGATRVFVA 0.300 51 GAAGHPGSA 0.300 4 GAAGATRV 0.200 189 CLRSSDCAS 0.200 Table XV-1S1P1C7A-B7-9mers Poe 123456789 Score SeqID 128 CPGNYCKNG 0.200 100 PTRGGDAGV 0.200 180 HTKGQEGSV 0.200 168 YSRRTTLSS 0.200 81 QPYPCAEDE 0.200 99 SPTRGGDAG 0.200 124 HAMCCPGNY 0.180 78 DNYQPYPCA 0.150 44 NLPPPLGGA 0.150 239 CGEGLSCRI 0.120 138 CVSSDQNHF 0.100 257 SSRLHTCQR 0.100 213 VLKEGQVCT 0.100 121 CMRHAMCCP 0.100 173 TISSKMYHT 0.100 1 MMALGAAGA 0.100 130 GNYCKNGIC 0.100 246 RIQKDHHQA 0.100 188 VCLRSSDCA 0.100 244 SCRIQKDHH 0.100 114 CRKRRKRCM 0.100 156 ESFGNDHST 0.100 229 HGLEIFQRC 0.100 90 ECGTDEYCA 0.100 255 SNSSRLHTC 0.100 170 RRTTLSSKM 0.100 234 FQRCYCGEG 0.100 33 LNSVLNSNA 0.100 145 HFRGEIEET 0.100 194 DCASGLCCA 0.100 62 AAPGILYPG 0.090 14 VANVAAALG 0.090 85 CAEDEECGT 0.090 30 SATLNSVLN 0.060 31 ATLNSVLNS 0.060 5 GAAGATRVF 0.060 53 AGHPGSAVS 0.060 107 GVQICLACR 0.050 212 PVLKEGQVC 0.050 218 QVCTKHRRX 0.050 16 MVAAALGGH 0.050 35 SVLNSNAIK 0.050 112 LACRKRRKR 0.045 97 CASPTRGGD 0.045 129 PGNYCKNGI 0.040 225 RKGSHGLEI 0.040 146 FRGEIEETI 0.040 69 PGGNKYQTI 0.040 253 QASNSSRLH 0.030 198 GLCCARHFW 0.030 I TihThY~IT-1P1C7A-B7-1Om~r~ TableXVI 1S1P1C7A-B7-1Omer~ oc
C
C
(N
C
C
C
(N
oc
C
C
(N
Pos 1234567890 Score SeqID 24 *HPIJLGVSATL 80.000 234 FQRCYCGEGL 40.000 18 AAALGGHPLL 36.000 113 ACRKRRKRCM 30.000 428 GVSATIJNSVL 20.000 58 SAVSAAPGIL 12.000 17 VAAALGGHPL 12.000 40 NAIKNLPPPJ 12.000 68 YPGGNKYQTI 8.000 128 CPGNYCIQNGI 8.000 36 VLNSNAIKNL 4.000 222 KHRRKGSHGL 4.000 156 ESFGNDHSTL 4.000 99 SPTRGGDAGV 4.000 I201 CARHFWSKIC 3.000 9 ATRVFVAMVA 3.000 7 AGATRVFVAM 3.000 211 KPVLKEGQVC 2.000 124 HANCCPGNYC 1.350 103 GGDAGVQICL 1.200 63 APGILYPGGN 1.200 169 SRRTTLSSKM 1.000* GAAGATRVFV 0.900 6 AAGATRVFVA 0.900 51 GAAGHPGSAV 0.900 ALGGHPLLGV 0.900 3 -ALGAAGATRV 0.600 165 LDGYSRRTTL 0.600 8 GATRVFVANV 0.600 11 RVFVAMVAAA 0.500 187 SVCLRSSDCA 0.500 59 AVSAAPGILY 0.450 253 QASNSSRLHT 0.450 11 LACRKRRKRC 0.450 190 LRSSDCASGL 0.400 145 HFRGEIEETI 0.400 12 VFVAMVAAAL 0.400 238 YCGEGLSCRI 0.400 205 FWSKICKPVL 0.400 251 HHQASN~SSRL 0.400 33 LNSVLNSNAI 0.400 181 TKGQEGSVCL 0.400 57 GSAVSAAPGI 0.400 200 CCARHFWSKI 0.400 53 AGHPGSAVSA 0.300 105 DAGVQICLAC 0.300 254 ASNSSRLHTC 0.300 97 CASPTRGGDA 0.300 130 GNYCKN'GICV 0.200 HPGSAVSAAP 0.200 Pos 1234567890 Score SeqID 27 LGVSATJNSV 0.200 83 YPCAEDEECG 0.200 81 QPYPCAEDEE 0.200 45 LPPPLGCAAG 0.200 52 AAGHPGSAVS 0.180 117 RRKRCMRHAM 0.150 43 KNLPPPLGGA 0.150 32 TLNSVLNSNA 0.100 35 SVINSNAIKN 0.100 22 GGHPLLGVSA 0.100 163 STLDGYSRRT 0.100 1 MMALGAAGAT 0.100 236 RCYCGEGLSC 0.100 186 GSVCLRSSDC 0.100 189 CLRSSDCASG 0.100 244 SCRIQKDHHQ 0.100 18YSRRTTLSSK 0.100 121 CMRHAMCCPG 0.100 102 RGGDAGVQIC 0.100 257 SSRLHTCQRH 0.100 172 TTLSSKMXHT 0.100 116 KRRKRCMRHiA 0.100 191 RSSDCASGLC 0.100 118 RKRCMRHAMC 0.100 180 HTKGQEGSVC 0.100 44 NLPPPLGGAA 0.100 50 GGAAGHPGSA 0.100 62 AAPGILYPGG 0.090 19 AALGGHPLLG 0.090 3.4 VAMVAAALGG 0.090 218 QVCTIG{RRKG 0.075 31 ATLNSVLNSN 0.060 30 SATLNSVLNS 0.060 141 SDQNHFRGEI 0.060 196 ASGLCCARHF 0.060 212 PVLKEGQVCT 0.050 107 GVQICLACRK 0.050 16 IVAAALGGHP 0.050 138 CVSSDQNMFR 0.050 13 FVAI4VAAAILG 0.050 41 AIKUNIPPPIJG 0.045 164 TLDGYSRRTT 0.045 230 GLEIFQRCYC 0.045 224 RRKGSHGLEI 0.0410 101 TRGGDAGVQI 0.040 106 AGVQICLACR 0.030 197 SGLCCARHFW 0.030 125 AMCCPGNYCK 0.030 15 AMrVAAALGGH 0.0 195 CASGLCCARH 10.0 30 00 Table XVII-1S1P1C7A-B35-9mers Poe 123456789 Score SeqID 191 RSSDCASGL 20.000 (i 1206 WSKICKPVL 15.000 VSAAPGILY 10.000 t 211 KPVLKEGQV 8.000 124 RAMCCPGNY 6.000 8 GATRVFVAN 6.000 29 VSATLNSVL 5.000 171 RTTLSSKMY 4.000 QTIDNYQPY 4.000 182 KGQEGSVCL 4.000 201 CARHFWSKI 3.600 0 S GAAGATRVF 3.000 19 AALGGHPLL 3.000 41 AIKNLPPPL 3.000 00 18 AAALGGHPL 3.000 83 YPCAEDEEC 3.000 S24 HPLLGVSAT 2.000 CK1 45 LPPPLGGAA 2.000 HPGSAVSAA 2.000 226 KGSRGLEIF 2.000 34 NSVLNSNAI 2.000 68 YPGGNKYQT 2.000 66 ILYPGGNKY 2.000 102 RGGDAGVQI 1.600 168 YSRRTTSS 1.500 138 CVSSDQNHF 1.500 58 SAVSAAPGI 1.200 118 RKRCMRHM 1.200 13 FVAMVAAAL 1.000 166 DGYSRRTTL 1.000 37 LNSNAIKNL 1.000 59 AVSAAPGIL 1.000 252 HQASNSSRL 1.000 197. SGLCCAPHF 1.000 247 IQKDHHQAS 0.600 114 CRKRRKRCM 0.600 180 RTKGQEGSV 0.600 9 ATRVFVAMV 0.600 230 GLEIFQRCY 0.600 52 AAGHPGSAV 0.600 6 AAGATRVFV 0.600 213 VLKEGQVCT 0.600 254 ASNSSRLHT 0.500 156 ESFGNDHST 0.500 198 GLCCARHFW 0.500 98 ASPTRGGDA 0.500 142 DQNHFRGEI 0.400 170 RRTTLSSKM 0.400 132 YCKNGICVS 0.300 SATNSVLN 0.300 Table XVII-151P1C7A-B35-9mers Poe 123456789 Score SeqID 105 DAGVQICLA 0.300 2 MALGAAGAT 0.300 220 CTKHIPRKGS 0.300 189 CLRSSDCAS 0.300 91 CGTDEYCAS 0.300 223 HRRKGSHGL 0.300 113 ACRKRRKRC 0.300 246 RIQKDHHQA 0.300 71 GNKYQTIDN 0.300 51 GAAGHPGSA 0.300 85 CAEDEECGT 0.270 81 QPYPCAEDE 0.200 28 GVSATLNSV 0.200 128 CPGNYCKNG 0.200 63 APGILYPGG 0.200 236 RCYCGEGIS 0.200 11 RVFVAMVAA 0.200 21 LGGHPLLGV 0.200 99 SPTRGGDAG 0.200 72 KYQTIDNY 0.200 120 RCMRHAMCC 0.200 229 HGLEIFQRC 0.200 160 NDHSTLDGY 0.200 4 LGAAGATRV 0.200 175 SSKMYHTKG 0.150 90 ECGTDEYCA 0.150 157 SFGNDHSTL 0.150 192 SSDCASGLC 0.150 257 SSRIHTCQR 0.150 152 ETITESFGN 0.150 239 CGEGLSCRI 0.120 1 MMALGAAGA 0.100 199 LCCARHFWS 0.100 104 GDAGVQICL 0.100 139 VSSDQNHFR 0.100 32 TLNSVLNSN 0.100 25 PLLGVSATL 0.100 125 AMCCPGNYC 0.100 106 AGVQICLAC 0.100 7 AGATRVFVA 0.100 187 SVCLRSSDC 0.100 130 GNYCKNGIC 0.100 78 DNYQPYPCA 0.100 255 SNSSRLHTC 0.100 188 VCIRSSDCA 0.100 194 DCASGLCCA 0.100 136 GICVSSDQN 0.100 31 ATLNSVLNS 0.100 27 LGVSATLNS 0.100 44 NLPPPLGGA 0.100
C
C
C
TableXVIII-1S1P1C7A-B35-loniers los 1234567890 Score SeqID 4 HPLjLGVSATLj 20.000 .8 YPGGNKYQTI 8.000 .28 CPGNYCKNGI 8.000 S.56 ESFGNDHSTL 7.500 S:11 KPVLKEGQVC 6.000 .~13 ACRKRRKRCM 6.000 Pi' GNKYQTIDNY 6.000 .96 ASGLCCARHF 5.000 29 HGLEIFQRCY 4.000 19 SPTRGGDAGV 4.000 8 SAVSAAPGIL 3.000 O NAIKNLPPPL 3.000 L8 AAAIJGGHPLL 3.000 !34 FQRCYCGEGL 3.000 L? VAAALGGHPL 3.000 i 5 GILYPGGNKY 2.000 F 4 YQTIDNYQPY 2.000 i7 GSAVSAAPGI 2.000 F AGATRVFVAM 2.000 ;9 AVSAAPGILY 2.000 .91 RSSDCASGLC 2.000 i3 APGILYPGGN 2.000 37 ICVSSDQNHF 1.500 L17 RRKRCMRHAM 1.200 LGAAGATRVF 1.000 !8 GVSATLNSVL 1.000 6 VILNSNAI1(NL 1.000 FO01 CAP.HFWSKIC 0.900 138 YCGEGLSCRI 0.800 51 GAAGHPGSAV 0.600 3 G3ATRVFVANV 0.600 122 KUiRRKGSHGL 0.600 L69~ SRRTTLSSKM 0.600 GAAGATRVFV 0.600 L49 EIEETITESF 0.600 L59 GNDHSTLDGY 0.600 Z47 IQKDHHQAS1N 0.600 29 VSATLNSVLjN 0.500 254 ASNSSRLHTC 0.500 186~~ GSVCLRSSDC 0.500 197 SGLCCARHFW 0.500 180 HTKGQEGSVC 0.450 17*0 RRTTLSSKNY 0.400 102 RGGDAGVQIC 0.400 123 RHAMCCPGNY 0.400 200 CCARHFWSKI 0.400 33 LNSVJNSINAI 0.400 9 ATRvF'vAmvA 0.300 124i~ HANCCPGNrYC 0.300 253 QASNSSRLHT 0.300 TableX'VIII-1S1P1C7A-B35-lomera Pos 1234567890 Score SeqID 97 CASPTRGGDA 0.300 105 DAGVQICLAC 0:300 236 RCYCGEGLSC 0.300 6 AAGATRVFVA 0.300 132 YCKNGICVSS 0.300 112 LACRIGRRKRC 0.300 83 YPCAEDEECG 0.300 30 SATLNSVLNS 0.300 103 GGDAGVQICL 0.300 52 AAGHPGSAVS 0.300 224 RRKGSHGLEI 0.240 246 RIQKDHHQAS 0.200 43 KNLPPPLGGA 0.200 130 GNYC1MGICV 0.200 3 ALGAAGATRV 0.200 81 QPYPCABDEE 0.200 11 RVFVAI4VAAA 0.200 225 RKGSHGLEIF 0.200 20 ALGGHPLLGV 0.200 55 KPGSAVSAAP 0.200 163 STIJDGYSRRT 0.200 27 LGVSATLNSV 0.200 45 ILPPPLGGAAG ~0.200 257 SSRLHTCQRH _0.150 192 SSDCASGLCC 0.150 175 SSKI4YHTKGQ 0.150 168 YSRRTTIJSSK 0.150 206 WSKICKPVLK 0.150 90 ECGTDEY CAS 0.150 145 HFRGEIEETI 0.120 87 EDEECGTDEY 0.120 187 SVCLRSSDCA 0.100 190 LRSSDCASGL 0.100 198 GLCCARHFWS 0.100 50 GGAAGHPGSA 0.1.00 2.51. HHQASNSSRL 0.100 181 TKGQEGSVCL 0.100 165 LDGYSRRTTL 0.100 126 MCCPGNYCQU 0.100 70 GGNKYQTIDN 0.100 12 VFVAMVAAAL 0.100 21 IGGHPLLGVS 0.100 172 TTLSSKMYHiT 0.100 49 LGGAAGHPGS -0.100 35 SVLNSNAIKN 0.100 53 AGHPGSAVSA 0.100 26 LLGVSATLNS 0.100 1 MMALGAAGAT 0.100 1I39 IVSSDQNHFRG 0.100 1205 1FWSKICKPVJ 0.1-00 Table XVIII-l51PC7A-B35-l0merB 00 POB 1234567890 Score SeqID 24 HPLLGVSATL 20.000 68 YPGGNKYQTI 8.000 128 CPGNYCKONGI 8.000 S 156 ESFGN'DHSTL 7.500 211 KPVLKEGQVC 6.000 113 ACRKRRKRCM 6.000 71 GINKYQTIDRY 6.000 S 196 ASGLCCARHP 5.000 229 HGLEIFQRCY 4.000 99 SPTRGGDAGV 4.000 58 SAVSAAPGIL 3.000 NAIKNLPPPL 3.000 18 AAALGGHPLL 3.000 234 FQRCYCGEGL 3.000 17 VAAAIJGGHPL 3.000 00 65 GILYPGGNKY 2.0-00 74 YQTIDNYQPY 2.000 S 57 GSAVSAAPGI 2 .000 (1 7 AGATRVFVAM 2.000 59 AVSAAPGILjY 2.000 191 RSSDCASGLC 2.000 63 APGILYPGGN 2.000 137. ICVSSDQNHF 1.500 117 RRKRCMRHAM 1.200 4 LGAAGATRVF 1.000 28 GVSATLNSVL 1.000 36 VLNSNAIflNL 1.000 201 CARHFWSKIC 0.900 238, YCGEGLSCRI 0.800 51 GAAGHPGSAV 0.600 8 GATRVFVA4V 0.600 222 KHRRKGSHGL 0.600 169 SRRTTLSSKM 0.600 GAAGATRVFV 0.600 149 EIEETITESP 0.600 159 GNTDHSTLDGY 0.600 247 IQKDHHQASN 0.600 29 VSATLNSVLN 0.500 254 AS1NSSRLHTC 0.500 186 GSVCLRSSDC 0.500 197 SGLCCARHFW 0.500 180 HTKGQEGSVC 0.450 170 RRTTLSSKMY 0.400 102 RGGDAGVQIC 0.400 123 RHAI4CCPGNY 0.400 200 CCARHFWSKI 0.400 33 LNSVLNSNAI 0.400 9 ATRVFVANVA 0.300 124 HANCCPGNYC 0.300 253 QASNSSRLHT 0.300 TableXCVIII-151P1C7A-E35-10merB PoB 1234567890 Score SeqID 97 CASPTRGGDA 0.300 105 DAGVQICLAC 0.300 236 RCYCGEQLSC 0.300 6 AAGATRVFVA 0.300 132 1YCKNGICVSS 0.300 112 LACRKRRKRC 0.300 83 YPCAEDEECG 0.300 30 SATLNSVLNS 0.300 103 GGDAGVQICL 0.300 52 AAGHPGSAVS 0.300 224 RRKGSHGLEI 0.240 246 RIQKDHHQAS 0.200 43 1QULPPPLGGA 0.200 130 GNYCIQ.GICV 0.200 3 ALGAAGATRV 0.200 81 QPYPCAEDEE 0.200 11 RVFVAMVAAA 0.200 225 RKGSHGLEIF 0.200 20 ALGGHPLLGV 0.200 55 HPGSAVSAAP 0.200 163 STILDGYSRRT 0.200 27 LGVSATLNSV 0.200 45 LPPPLGGAAG 0.200 257 SSRLHTCQRH 0.150 192 SSDCASGLCC 0.150 17 SSKMYHTKGQ 0.150.___ 168 YSRRTTLSSK 0.150 206 WSKICKPVLK 0.150 90 ECGTDEYCAS 0.150 145 HFRGEIEETI 0.120 87 EDEECGTDEY 0.120 187 SVCIJRSSDCA 0.100 190 LRSSDCASGL 0.100 198 GLCCARHFWS 0.100 50 GGAAGHPGSA 0.100 251 HHIQASNSSRL 0.10.0 181 TKGQEGSVCL 0.100 165 LDGYSRRTTL 0.100 126 MCCPGNYCKN 0.100 70 GGNIKYQTIDN 0.100 12 1VAVAAAL 0.100 21i LGGHPLLGVS 0.100 172 TTLSSKMYHT 0.100 49 LGGAAGHPGS 0.100 35 SVLNSINAIKN 0.100 53 AGHPGSAVSA 0.100 26 LLGVSATLNS 0.100 1 MMALGAAGAT 0.100 139 VSSDQNHFRG 0.100 205 FWSKICKPVL 0.100 TalV-151P4E1-Al-9mers 00 Pos 123456789 Score SeqID go9 IIEFLSFLH 4.500 9-9 LKEAGALDR 2.250 K 488 RTIIEFLSF 1.250 ;-481 IPENNIMRT 1.125 Ct108 LLDLPAAAS 1.000 SIPENNIMR 0.500 1l114 AASSEDIER 0.500 S21 SAGLWSPAK 0.400 54 FSDKNGLTS 0.375 71 DMKPGSFDR 0.250 ~t69 EDDMKPGSF 0.250 67 RPEDDMKPG 0.225 ELRPEDDMK 0.200 42. LLGPHAVGN 0.200 (i79 RSIPE1NNIM 0.150 00 46 HAVGNHRSF 0.100 59 GLTSKRELR 0.100 18 LSASAGLWS 0.075 6 ALLIAASLLJ 0.0.50 7 LIJIASLLLA 0.050 12 LLLAAALSA 0.050 33 GWTLNSAGY 0.050 103 GALDRLLDL 0.050 8 LLASLLLAA 0.050 24 LWSPAKEKR 0.050 NIMRTIIEF 0.050 4 GSALLLASL 0.030 ASLLLAAAL 0.030 44 GPHAVGNHM 0.025 34 WTIJNSAGYL 0.025 41 YLLGPHAVG 0.020 107 RLIDLPAAA 0.020 23* GLWSPAXEK 0.020 14 LAAALSASA 0 .020 11 SI 1 LLAAALS 0.020 16 AAILSASAGL 0.020 9 LASLLLAAA 0.020 96 FLHLKEAGA 0.020 TLNSAGYLL 0.020 WSPAIEKRG 0.015 ASAGLWSPA 0.015 2:15 ASSEDIERS 0.015 94 LSFLHLjKEA 0.015 52 RSFSDKNGL 0.015 3 ROSALLJAS 0.013 36 LNSAGYLLG 0.013 101 EAGALDRLJ 0.010 SALLLASLL 0.010 47 AVGN'HRSFS 0.010 AA.ALSASAG 0.010 Table V-151P4E11-Al-9mers Pos 123456789 Score SeqID 89 TIIEFLSFL 0.010 38 SAGYLIJGPH 0.010 17 ALSASAGLW 0.010 13 LLAAALjSAS 0.010 109 LDLPAAASS 0.010 92 EFLSFLHL( 0.010 75 GSFDRSIPE 0.007 37 NSAGYLLGP 0.007 68 PEDDMKPGS 0.005 49 GNHRSFSDK 0.005 76 SFDRSIPEN 0.005 1 MARGSALLL 0.005 56 DINGLTSKR 0.005 104 ALDRLLDLP 0.005 93 FLSFLHLKE 0.005 39 AGYLLGPHA 0.005 63 KRELRPEDD 0.005 28 AKEKRGWTL 0.005 91 IEFLSFLHL 0.003 83 E'NIMRTII 0.003 87 MRTIIEFLS 0.003 2 ARGSALLLA 0.003 73 KPGSFDRSI 0.003 43 LGPHAVGNH 0.003 58 NGLTSKREL 0.003 60 LTSKRELRP 0.001 84 NNIMRTIIE 0.001 102 AGALDRLLD 0.001 48 VGNHRSFSD 0.001 55 SDKNGLTSK 0.001 19 SASAGLWSP 0.001 110 DIJPAAASSE 0.001 113 AAASSEDIE 0.001 106 DRLLDLPAA 0.001 112 PAAASSEDI 0.001 86 IMRTIIEFL 0.001 51 HRSFSDKNG 0.001 22 AGLWSPAKE 0.001 95 SFLHiLKEAG 0.001 40 GYLLGPHAV 0.001 loo KEAGA1LDRL 0.001 78 DRSIPENNI 0.001 53 SFSDKNGLT 0.001 31 KRGWTLNSA 0.001 72 MKPGSFDRS 0.001 105 LDRLLDLPA 0.000 30 EKRGWTIJNS 0.000 26 SPAKEKRGW 0.000 32 RGWTLNSAG 0.000 66 LRPEDDMKP 10.000 TableVI-151P4E11-A1mers____ Pos 1234567890 Score SeqID 79 RSIPENNIMR 7.500 IIEFLSFLHL 4.500 54 FSDKN.GLTSK 1.500 108 LLDLPAAASS 1.000 ASAGLWSPAK 0.600 113 AAASSEDIER 0.500 67 RPEDDMKPGS 0.450 104 ALDRLTJDLPA 0.250 81 IPENNIMRTI 0.225 84 NNIMRTIIEF 0.125 42 LLGPHAVGNH 0.10 89 TIIEFLSFLH 0.050 17 ALSASAGLWS 0.050 7 LLLASLLLAA 0.050 22 AGLWSPAKEK 0.050 34 WTLNSAGYLJ 0.050 SALLLASLLL 0.050 11 SLLLAAALSA 0.050 TLNSAGYLLG 0.050 98 HLKEAGALDR 0.05 SIPENNIMRT 0.050 -6 ALLLASLLLA 0.050 48 VGNHPSFSDK 0.05 63 1K.ELRPEDDM 0.045 9.9 LKEAGALDRL 0.045 ASLILAAALS 0.030 GSFDRSIPEN 0.030 68 PEDDMKPGSF 0.025 43 LGPHAVQNHR 0.025S 87 MRTIIEFLSF 0.025 32 RGWTLNSAGY 0.025 88 RTIIEFLSFJ 0.025 58 NGLTSKRELR 0.025 107 RLLDLPAAAS 0.020 38 SAGYLLGPRA 0.020 8 LLASLLLAAA 0.020 AAALSASAG, 0.020 13 LLAAALSASA 0.020 9 LASLLLAAAL 0.020 41 YLLGPHAVGN 0.020 52 RSFSD1KIGLT 0.015 94 LSFLHLKEAG 0.015 -4 GSAIJLLASLL 0.015 37 NSAGYLLGPH 0.015 WSPAKEKRGW 0.015 102 AGAIJDRIJLDL 0.013 46 HAVGNIIRSFS 0.010 23 GLWSPAKEKR 0.010 19 ASGLWSPA 10.01.0 114 AASSElIR .10 Table VI-151P4E11-Al-lmera Pos 12-34567890 Score SeqID, 93 FLSFLHIJJIA 0.010 16 AALSASAGLW 0.010 91 IEFLSFIJHLK 0.010 12 LLLAAALSAS 0.010 96 FLHLKEAGAL 0.010 14 LAAALSASAG 0.010 101 EAGALDRLLD 0.005 47 AVGNHRSFSD 0.005 1 MARGSALLLA 0.005 3 RGSALLLASJ 0.005 24 LWSPAXEKRG 0.005 65 ELRPEDDMKP 0.005 59 GLTSKRELRP 0.005' 71. DMKPGSFDRS 0.005 28 AKEKRGWTLN 0.005 70 DDMKPGSFDR 0.003 57 KNGLTSKREL 0.003 76 SFDRSIPENN 0.003 .69 EDDMKPGSFD 0.003 53 SFSDKN'GLTS 0.003 86 IMRTIIEFLS 0.003 39 AGYIJLGPHAV 0.003 111 LPAAASSElI 0.003 44 OPHiAVGNHRS 0.003 2 ARGSALLLAS 0.003 21 SAGLWSPAKE 0.002 18 LSASAGLW SP 0.002 36 LNSAGYLLGP 0.001 83 ENNIMRTIIE 0.001 64 RELRPEDDNK 0.001 110 DLPAAASSED 0.001 85 NIHRTIIEFL 0.001 103 GALDRLLDLP 0.001 106 DRLLDLPAAA 0.001 95 SFLHLFAGA 0.001 40 GYLIJGPHiAVG 0.001 45 PHAVGNHRSF 0.001 55 SDIXIGLTSKR 0.001 33 GWTLNSAGYL 0.001 51 HRSFSDINGL 0.001 72 MKPGSFDRSI 0.001 78 DRSIPENNIM 0.001 109 LDLPAAASSE 0.001 31 KRGWTIJNSAG 0.001 10 KEAGAILDRLL 0. 001 66 LRPEDDMKPG 0.001 49 GNHRSFSDKN 0.000 73 KPGSFDRSIP 0.000 26 SPAKEKRGWT 0.000 92 EFLSFLHLKE 0.000 ITable VII-lSlP4Ell-A2-9mers 00 Pos 123456789 Score SeqID 89 TIIEFLSFL 578.910 6 ALLLASLLL 79.041 107 RLLDLPAAA 75.365 t 7 LLLASIJILA 71.872 G 12 LLLAAALSA 31.249 96 FLHLKEAGA 22.853 TLNSAGYLL 21.362 8 LLASLLLAA 19.425 86 IMRTIIEFL 12.356 103 GALDRLLDL 10.352 91 IEFLSFLHL 4.964 34 WTLNSAGYL 3.611 100 KEAGALDRL 1.638 16 AALSASAGL 1.098 s' SALLLASLL 1.098 00 41 YLLGPHAVG 0.520 52 RSFSDKNGL 0.516 ASLLLAAAj 0.516 94 LSFLHLKEA 0.469 4 GSALLLASL 0.321 13 LLAAALSAS 0.2'91 11 SLLLAAALS 0.276 9 LASLLLAAA 0.270 73 KPGSFDRSI 0.181 64 RELRPEDDM 0.175 42 ILGPHAVGN 0.127 23 GLWSPAKEK 0.124 14 LAA.ALSASA 0.117 39 AGYLLGPHA 0.104 58 NGLTSKREL 0.103 NIMRTIIEF 0.087 93 FLSFLHLKE 0.069 ASAGLWSPA 0.055 108 JLDLPAAAS 0.051 1 MARGSALLL 0.038 47. AVGNHRSFS 0.036 GYLLGPHAV 0.036 28 A1KEKRGWTL 0.014 79 RSIPENNIM 0.013 81 IPENNIMRT 0.012 97 LHLKEAGAL 0.012 17 ALSASAGLW 0.010 SIPENNIMR 0.008 59 GLTSKRELR 0.007 104 ALDRILDLP 0.007 IIEFLSFLH 0.006 31 KRGWTLNSA 0.006 18 LSASAGLWS 0.005 101 EAGALDRLL 0.004 32 RGWTLNSAG 0.004 Table VII-151P4Ell-A2-9mers Pos 123456789 Score SeqID 19 SASAGLWSP 0.004 53 SFSDKNGLT 0.003 115 ASSEDIERS 0.002 25 WSPAKEKRG 0.002 83 ENNIMRTII 0.002 82 PENNIMRTI 0.002 88 RTIIEFLSF 0.002 2 ARGSALLLA 0.002 112 PAAASSEDI 0.002 75 GSFDRSIPE. 0.001 36 INSAGYLLG 0.001 3 RGSALIoLAS 0.001 110 DLPAAASSE 0.001 15 AAALSASAG 0.001 48 VGNHRSFSD 0.001 54 FSDKNGLTS 0.001 105 LDRLDLPA 0.001 109 LDLPAAASS 0.001 106 DRLLDLPAA 0.000 22 AGIWSPAKE 0.000 60 LTSKRELRP 0.000 57 KNGLTSKRE 0.000 38 SAGYLLGPH 0.000 29 KEKRGWTIM 0.000 67 RPEDDMKPG 0.000 43 LGPHAVGNH 0.000 27 PAKEKRGWT 0.000 37 NSAGYLLGP 0.000 114 AASSEDIER 0.000 21 SAGLWSPAK 0.000 49 GNHRSFSDK 0.000 111 LPAAASSED 0.000 71 DMKPGSFDR 0.000 72 MKPGSFDRS 0.000 78 DRSIPENNI 0.000 87 MRTIIEFLS 0.000 44 GPHAVGNHR 0.000 102 AGALDRLLD 0.000 26 SPAKEKRGW 0.000 95 SFLHLKEAG 0.000 98 HLKEAGALD 0.000 68 PEDDMKPGS 0.000 76 SFDRSIPEN 0.000 65 ELRPEDDMK 0.000 113 AAASSEDIE 0.000 84 NNIMRTIIE 0.000 70 DDMKPGSFD 0.000 92 EFLSFLHLK 0.000 77 FDRSIPENN 0.000 66 LRPEDDMKP 0.000_ 00 00 Table VIII-151P4E11-A2-l0mers Pos 1234567890 Score SegID 7 LLLASLLjLAA 71.872 NIMRTIIEFL 67.366 93 FLSFLHLKEA 52.561 6 ALLIASLLLA 42.278 8 LLASLLLA.AA 19.425 11 SLLLAAALSA 18.382 88 RTIIEFLSFL 14.262 96 FLHLKEAGALj 12.775 SIPENNIMRT 9.662 13 LLAAALSASA 8.446 34 WTLNSAGYLL 5.050 104 ALDRLLDLPA 1.987 39 AGYLLGPHAV 1.453 41 YLLGPHiAVGN 1.268 107 RLLDLPAAAS 1.130 SAIJLLASLLL 1.098 12 LLLAAAIJSAS 1.078 IIEFLSFLHJ 0.607 9 LASLLILAAAL 0.504 17 ALSASAGIJWS 0.410 3 RGSAILLLASL 0.321 102 AGALDRLIJDL 0.321'___ AAALSASAQL 0.297 100 KEAGALDRLL 0.291 89 TIIEFLjSFLH 0.244 4 GSALLLASLL 0.139 19 SASAGLWSPA 0.117 TLNSAGYLLG 0.112 S7 IKGLTSKREL -0.098 38 SAGYLLGPIIA 0.069 2 GLWSPAKEKR 0.061 111 LPAAASSEDI 0.057 108 LLDLPAAASS 0.051 86 IMRTIIEFLS 0.040 42 LLGPHAVGNH 0.038 26 SPAKEKRGWT 6.035 52 RSFSDKNGLT 0.023 1 MARGSALLLA 0.021 72 MKPGSFDRSI 0.019 GSPDRSIPEN 0.017 91 IEFLSFLHLK 0.016 S9 GLTSKRELRP 0 .015 SFLHLKEAGA 0.013 47 AVGNHRSFSD 0.008 27 PAKEKRGWTL 0.007 77 FDRSIPENNI 0.005 32 RGWTIMSAGY 0.004 99 L1EAGALDRL 0.004 103 GALDRIALDLP 0.004 81 IPENNIMRTI 0.003 TableVIII-151P4-Ell-A2-lomers Poe 1234567890 Score SeqID 18 LSASAGLWSP 0.003 33 GWTLNSAGYL 0.002 105 LDRIIIDLPAA 0.002 82 PENNIMRTII 0.002 10 ASLLLAAALS 0.002 14 LA.AALSASAG 0.002 94 LSFLHLKEAG 0.001 114 AA.SSEDIERS 0.001 84 NNIMRTIIEF 0.001 110 DLPAAASSED 0.001 49 GNHRSSDKN~ 0.001 64 RELRPEbDMK 0.001 16 AALSASAQLW 0.000 44 GPHAVGNHRS 0.000 25 WSPAKEKRGW 0.000 54 FSDINGLTSK 0.000 36 LNSAGYLiLGP 0.000 22 AGLWSPAKEK 0.000 48 VGNHRSFSDK 0.000 53 SFSD1KIGLTS 0.000 113 AAASSEDIER 0.000 21 SAGLWSPAKE 0.000 46 HAVG3NERSFS 0.000 106 DRLLDLPAAA 0.000 29 KE1RGWTLNS 0.000 58 NGLTSKRELR 0.000 66 LRPEDDMKPG 0.000 43 LGPHAVG1NHR 0.000 60 LTSKRELRPE 0.000 37 bKSAGYLLGPH 0.000 73 KPGSFDRSIP 0.000 71 DMK.PGSFDRS 0.000 109 LDLPAAASSE 0.000 67 RPEDDMKPGS 0.000 51 HRSFSDKONGL 0.000 79 RSIPENNIMR 0.000 20 ASAGLWSPAK 0.000 30 EKRGWTLNSA 0.000 65 ELIZPEDDMKP 0.000 63 KRELRPEDDM 0.000 98 HLKEAGAIJDR 0.000 97 LHLKEAGALD 0.000 31 KRGWTLNSAG3 0.000 87 MRTIIEFLSF 0.000 70 DDMKPGSFDR 0.000 2 ARGSALLLAS 0.000 24 LWSPAKEKRG 0.000 40 GYLIJGPHAVG 0.000 1013 EAGAIJDRLLD 0.000 1__ Table IX-151P4E11-A3-9mers 00 Poe 123456789 Score SeqID 23 GLWSPAKEK 1.200 59 GTLTSKRELR 0.240 21 SAGLWSPAK 0.200 SIPENNIMR 0.160 49 GNHRSFSDK 0.120 ELRPEDDMK 0.120 44 GPHAVGNHR 0.120 88 RTIIEFLSF 0.090 92. EFISFLHLK 0.090 114 AASSEDIER 0.080 J 71 DMKPGSFDR 0.072 SDKNGLTSK 0.020 GYILGPHAV 0.018 103 GALDRLLDL 0.018 107 RLLDLPAAA 0.018 00 85 NIMRTIIEF 0.016 34 WTLNSAGYL 0.015 7 LLLASLL LA 0.012 K,1 90 IIEFLSFLH 0.012 6 ALLLASLLL 0.012 12 LLLAAALSA 0.012 8 LLASLLLAA 0.008 99 IKEAGALDR 0.008 TLNSAGYLL 0.008 89 TIIEFLSFL 0.006 86 IMRTIIEFL 0.004 1 MARGSALLL 0.004 24 LWSPAKEKR 0.004 96 FLHLKEAGA 0.004 17 ALSASAGLW 0.004 16 'AALSASAGL 0.003 SALILASLL 0.003 64 RELRPEDDM 0.003 91 IEFLSFLHi 0.002 LTSKRELRP 0.002 38 SAGYLLGPH 0.002 47 AVGNHRSFS 0.002 14 LAAALSASA 0.002 9 LASLLLAAA 0.002 100 KEAGADRL 0.002 52 RSFSDKNGL 0.001 56 DKNGLTSKR 0.001 79 RSIPENNIM 0.001 93 FLSFLHLKE 0.001 31 KRGWTLNSA 0.001 33 GWTLNSAGY 0.001 41 YLLGPHAVG 0.001 73 KPGSFDRSI 0.001 4 GSALLLASL 0.001 11 SLLLAAALS 0.001 Table XI-1S1P4E11-A11-9ner Poe 123456789 Score SeqIn 13 LLAAALSAS 0.000 28 AKEKRGWTL 0.000 105 LDRLLDLPA 0.000 39 AGYLLPHA 0.000 42 LLGPHAVGN 0.000 108 LLDLPAAAS 0.000 104 ALDRLLDLP 0.000 81 IPENNIMRT 0.000 19 SASAGLWSP 0.000 98 HLKEAGAID 0.000 2 ARGSALLLA 0.000 95 SFLHLKEA 0.000 67 RPEDDMKPG 0.000 46 HAVGNHRSF 0.000 10 ASLLLAAAL 0.000 97 LHLKEAGAL 0.000 75 GSFDRSIPE 0.000 20 ASAGLWSPA 0.000 53 SFSDKNGLT 0.000 112 PAAASSEDI 0.000 is AAALSASAG 0.000 113 AAASSEDIE 0.000 94 LSFLHLKEA 0.000 26 SPAKEKR(3W 0.000 76 SFDRSIPEN 0.000 43 LGPHAVGNH 0.000 111 LPAAASSED 0.000 29 KEKRGWTLN 0.000 32 RGWTLNSAG 0.000 3 RGSALLLAS 0.000 84 NNIMRTIIE 0.000 83 ENNIMRTII 0.000 110 DLPAAASSE 0.000 106 DRLLDLPAA 0.000 36 LNSAGYLLG 0.000 63 KRELRPEDD 0.000 48 VGNHRSFSD 0.000 57 KNGLTSKRE 0.000 87 MRTIIEFLS 0.000 78 DRSIPENNI 0.000 69 EDDMKPGSF 0.000 101 EAGALDRLL 0.000 37 NSAGYLLGP 0.000 102 AGALDRLLD 0.000 18 LSASAGLWS 0.000 66 LRPEDDMKP 0.000 54 FSDKNGLTS 0.000 58 NGLSKREL 0.000 109 LDLPAAASS 0.000 22 AGLWSPAKE 0.000 Table X-151P4E11-A3-l0mers 00 Pos 11234567890 Score SeqID 23 JGLWSpAXEKR 60.000 98 HLKEAGALDR 12.000 S91 IEFLSFLHLjK 1.350 7 LLLASLLLAA 0.900 t 6 ALLILASILLLA 0.900 .11 LLLAALSA 0.600 S 20 ASAGLWSPA( 0.450 104 ALDRLLjDLPA 0.400 IIEFLSFLHL 0.360 8 LLASLLLAAA 0.300 42 LLOPHAVGNH 0.270 NIMRTI IEFL 0.203 88 RTIIEFLSFL 0.203 13 LLAAALSASA 0.200 .96 FLHLKEAGAL 0.1-80 86 IMRTIIEFLS 0.180 00 93 FLSFLHIJKEA 0.150 54 FSD1t-GLTSK 0.150 89 TIIEFLSFLH 0.135 34 WTLNSAGYLL 0.135 59 GLTSKRELRP 0.120 79 RSIPENNIMR 0.090 107 RLLDLPAAAS 0.090 12 LLILAAALSAS 0.090 64 RELRPEDDMK 0.090 17 ALSASAGLWS 0.080 113 AAASSEDIER 0.080 48 VGNHRSFSDK 0.060 71 DMKPGSFDRS 0.054 41 YLLGPHAVGN 0.045 SIPENNIMRT 0.045 108 ILDIPAAASS 0.040 TLNSAGYLLG 0.040 22 AGLWSPAXEC 0.023 32 RGWTLNSAGY 0.020 84 NNIMRTIIEF 0.018 ELRPEDDMKP 0.018 SALLLASLLL 0.018 87 NRTIIEFLSF 0.012 1 MARGSALLLA 0.009 4 GSALLLASLL 0.009 43 LGPHAVGNHR 0.006 58 NGLTSKRELR 0.006 9 LASLLLAAAL 0.006 110 DLPAAASSED 0.006 47 AVGNHRSFSD 0.006 AAALSASAGL 0.006 il11 LPAAASSEDI 0.006 DDMKPGSFDR 0.005 55 SDKNGLTSKR 0.004 Table X-1SIP4EI1-A3-l0mers Pos 11234567890 Score SeqID 27 PAKEKRZGWTL 0.003 75 GSFDRSIPEN 0.002 29 KEKRGWTLNS 0.00 19 SASAGLWSPA 0.002 38 SAGYLLOPHA 0.002 102 AGALDRLLDL 0.002 103 GALDRLLDLP 0.001 81 IPENNIMRTI 0.001 44 GPHAVGNHRS 0.001 39 AGYLLGPHAV 0.001 77 FDRSIPENNI 0.001 63 KRBIJRPEDDM 0.001 99 LKEAGALDRJ 0.001 3 RGSALLLASL 0.001 46 HAVGNHRSFS 0.001 16 AALSASAGLW 0.001 100 1K.AGALDRLL 0.001 52 RSPSDKNGLT 0.001 37 NSAGYLLGPH 0.001 73 KPGSFDRSIP 0.001 114 AASSEDIERS 0.001 51 HRSFSDKNGL 0.001 33 GWTLNSAGYL 0.001 94 LSFLHLKEAG 0.001 18 LSASAGLWSP 0.000 67 RPEDDMKPGS 0.000 36 LNSAGYLLGP 0.000 49 GNHRSFSDKN~ 0.000 57 KN'GLTSCEL 0.000 95 SFLHLKEAGA 0.000 105 LDRLLDLPAA 0.000 10 ASLLLAAALS 0.000 26 SPAKEKRGWT 0.000 72 MKPGSFDRSI 0.000 21 SAGLWSPAKE 0.000 14 LAAALSASAG 0.000 82 PENNIMRTII 0.000 68 PEDDMKPGSF 0.000 60 LTSKRELRPE 0.000 30 EKIRGWTLNSA 0.000 40 GYLLGPHAVG 0.000 2 ARGSALL-LAS 0.000 101 FAGALDRLLD 0.000 61 TSKRLRPED 0.000 25 WSPAKEKRGW 0.000 106 DRIJLDLPAAA 0.000 53 SFSDKNGLTS 0.000 31 KRGWTLNSAG 0.000 78 DRSIPENNIM 0.000 109 LDLPAAASSE 0.000 TbeXI-151P4E11-A11-9mers Pos 123456789 Score SeqID 23 GLWSPAKEK 1.200 59 GLTSKRELR 0.240 21 SAGLWSPAX 0.200 SIPENNINR 0.150 49 GNERSFSDK 0.120 ELRPEDDM( 0.120 44 GPHAVGNHR 0.120 88 RTIIEFLSF 0.090 9 2 EFLSFLHLK 0.090 114 AASSEDIER 0.080 71 DMKPGSFDR 0.072 SDKONGLTSK 0.020 GYLLGPHAV 0.018 103 GALDRLLDL 0.018 107 RLLDLPAAA 0.018 NIMRTIIEF 0.016 34 WTIJNSAGYL 0.015 7 LLLASLLLA 0.012 IIEFLSFLH 0.012 6 ALLLASLiLL 0.012 12 LLLAAALSA 0.012 8 LLASLLLAA 0.008 .99 LKEAGAIDR 0.008 TLNSAGYLL 0.008 89 TIIEFLSFL 0.006 86 IMRTIIEFL 0.004 1 MARGSAIJLL 0.004 24 LWSPAKEKR 0.004 96 FLiELKEAGA 0.004 17 ALSASAGLW 0.004 16* AALSASAGL 0.003 SALLLASLL 0.003 64 RELRPEDDM 0.003 91 IEFLSFLKL 0.002 LTSKRELRP 0.002 38 SAGYLLGPH 0.002 47 AVGNHRSFS 0.002 14 LAAALSASA 0.002 9 LASLLLAAA 0.002 10-0 KEAGALDP.L 0.002 52 RSFSDKNGL 0.001 56 DKN'GLTSKR 0.001 RSIPENNIM 0.001 93 FLSFLHILKE 0.001 31 KCRGWTLNSA 0.001 33 GWTLNSAGY 0.001 41 YLLGPHAVG 0.001 73 KPGSFflRSI 0.001 14 GSALLLASL 10 .001 11 SLLLAAALS 0. 001 Table XI-151P4E11-Al1-9mers____ Pos 123456789 Score SeqID 13 LLAAALiSAS 0.000 28 AXEKRGWTL 0.000 105 LDRLLDLPA 0.000 39 AGYLLOPHA 0.000 42 LLGPHAVGN 0.000 108 LLDLPAAAS 0.000 104 ALDRLLDLP 0.000 81 IPENNIMRT 0.000 19 SASAGLWSP 0.000 98 HLKEAGALD 0.000 2 ARGSALLLA 0 .000 95 SFLHLKEAG 0.000 67 RPEDDMKPG 0.000 46 HAVGNIIRSF 0.000 10 ASLLLAAAL 0.000 97 -LHLKEAGAL 0.000 75 GSFDRSIPE 0.000 20 ASAGLWSPA 0.000 53 SFSDKNGLT 0.000 112 PAAASSEDI 0.000 15 AAALSASAG 0.000 113 AAASSEDIE 0.000 94 LSFLHLKEA 0.000 26 SPAKEKRGW 0.000 76 SFDRSIPEN 0.000 43 LGPHAVGNH 0.000 111 LPAAASSED 0.000 29 KEKRGWTLN 0.000 32 RGWTLNSAG 0.000 3 RGSALISLAS 0.000 84 NNIMRTIIE 0.000 83 ENNIMRTII 0.000 110 DLPAAASSE 0.000 106 DRLLiDLPAA 0.000.
36 LbISAGYLLG 0.000 63 KRELRPEDD 0.000 48 VGNHRSFSD 0.000 57 KNGLTSKRE 0.000 87 MRTIIEFLS 0.000 78 DRSIPENNI 0.000 69 EDDMKPGSF 0.000 101 EAGALDRLL 0.000 37 NSAGYLLGP 0.000 102 AGALDRLLD 0.000 18 LSASAGLWS 0.000 66 LRPEDDMKP 0.000 54 FSDKGNGLTS 0.000 58 NGLTSKRBL 0.000 109 LDLPAAA SS 10.000 22 1AGLWSPAXE 10.000 Table XII-1SiP4E11-A11-lomers Pos 1234567890 Score SeqID 23 GIJWSPA1KE 0.480 64 RELRPEDDMK 0.270 98 HLKEAGALDR 0.160 91 IEFLSFLRLK 0.120 113 AAASSEDIER 0.080 as RTIIEFLSFL 0.045 79 RSIPENNIMR 0.036 34 WTLNSAGYLL 0.030 ASAGLWSPA( 0.020 54 FSDKNGLTSK 0.020 48 VGNHRSFSDK 0.020 89 TIIEFLSFJR 0.018 22 AGLWSPAKEK 0.015 11 SLLLAAALSA 0.012 6 ALLLASLLLA 0.012 7 LLLASLIJLAA 0.012 104 ALDRLLDLPA 0.008 IIEFLSFLHL 0.008 INIMRTIIEFL 0.008 DDMKPGSFDR 0.007 58 NGLTSKRELR 0.006 SALLLASLLL 0.006 47. AVGNHRSFSD 0.006 1 MARGSALjLLA 0.004 96 FILmJKEAGAL 0.004 SDKNGLTSKR 0.004 43 LGPHAVGNHR 0.004 8 LLASLLLAAA 0.004 42 LLGPHAVGNH 0.004 13 LLAAALSASA 0.004 16 AALSASAGLW 0.003
SFI
1 HLKEAGA 0.003 59 GLTSKRELRP 0.002 AAALSASAGL 0.002 111 LPAAASSEDI 0.002 93 FLSFLHLKEA 0.002 38 SAGYLLIGPHiA 0.002 19 SASAGLWSPA 0.002 -9 LASLLILAAAL 0.002 GYLLGPHAVO 0.002 107 RLLDLPAAAS 0.002 86 IMRTIIEFLS 0.001. 84 NNIMRTIIBF 0.001 32 RGWTLNSAGY 0.001 103 GALDRLLDLP 0.001 SIPENNIMRT 0.001 17 ALSASAGLWS 0.001 TLNSAGYLLG 0.001 73 KPGSFDRSIP 0.001 33 WTLSAGYL 0.00 Table XII-151P4E11-A11-l0mers Pos 1234567890 Score SeqID 44 GPHAVGNHRS 0.001 63 KRELRPEDDM 0.001 67 RPEDDMKPGS 0.001 4 GSALLLASLL 0.001 41 1YLLGPHAVON 0.001 2.2 LLLAAALSAS 0.001 3 RGSALLLASL 0.001 27 PAXEKRGWTL 0.000 87 MRTIIEFLSF 0.000 39 AGYLLGPHAV 0.000 53 SFSD1NGLTS 0.000 108 ILDLPAAASS 0.000 102 AGALDRLLDL 0.000 29 KEKRGWTLNS 0.000 46 HAVGNHRSFS 0.000 65 ELRPEDDMKP 0.000 76 SFDIRSIPENN 0.000 51 HRSFSDKNGL 0.000 37 NSAGYLLGPH 0.000 105 LDRLLDLPAA 0.000 114 AASSEDIERS 0.000 77 FDRSIPENNI 0.000 99 LKEAGALDRL 0.000 81 IPENlNIMRTI 0.000 26 SPAKEKRGWT 0.000 14 LAAALSASAG. 0.000 21 SAGLWSPAKE 0.000 92 EFLSFLHLKE 0.000 100 KEAGAIJDRLL 0.000 52 RSFSDKNGLT 0.000 49 GNHRSFSDKN 0.000 57 KNGLTSKREL 0.000 75 GSFDRSIPEN 0.000 101 EAGALDRLLD 0.000 71 DMKPGSFDRS 0.000 110 DLPAAASS.ED 0.00 0 60 LTSKRELRPE 0.000 106 DRLLDLPAAA 0.000 36 LNSAGYLLGP 0.000 31 KRGWTLNSAG 0.000 30 EKRGWTLNSA 0.000 68 PEDDMKPGSF 0.000 78 DRSIPE1NNIM 0.000 B2 PENNIMRTII 0.000 94 LSFLHLKEAG 0.000 2 ARGSALLLAS 0.000 18 LSASAGLWSP 0.000 109 LDLPAAASSE 0.000 10 ASLLLAAALS 0.000 97 IJHIKEAGALD 0.000 [Table XIII-151P4E11-A24-9mers I 00 00 Pe 123456789 Score SeqID 52 RSF'SDKNGL 9.600 GYLLGPHAV 7.500 SALLLASLL 7.200 88 RTIIEFLSF 7.200 89 TIIEFLSFL 7.200 103 GALjDRLLDL 7.200 ASLLLAAAJ 7.200 58 NGLTSKREJ 6.600 34 WTLNSAGYL 6.000 6 ALLLASLLL 6.000 16 AAIJSASAGL 6.000 TLNSAGYLL 6.000 86 IMRTIIEFL 5.600 101 EAGALDRLL 4.800 4 GSALLLASL 4.800 1 MARGSAILLL 4 .000 NIMRTIIEF 3.300 46 HAVGNHRSF 3.000 79 RSIPENNIM 2.160 73 KPGSFDRSI 2.000 83 ENNIMRTII 1.500 100 KEAGALDRL 0.800 28 AKEKRGWTL 0.600 97 LHIJKEAGAL 0.600 53 SFSDKQNGLT 0. 600 76 SFDRSIPEN 0.550 91 IEFLSFLaHL 0.480 107 RLLPLPAAA 0.432 3 RGSALLLAS 0.240 69 EDDI4KPGSF 0.200 64 RELRPEDDM 0.150 HT SLLLAAALS 0.150 12 LLLAAALSA 0.150 7. LLLASLLLA 0.150 81 IPENNIMRT 0.150 14T IAAALSASA 0.120 78 DRSIPENNI 0.120 39 AGYLLGPHA 0.120 9 LASLLLAAA 0.120 115 ASSEDIERS 0.120 ASAGLWSPA 0.120 4'2 LLGPHAVGN 0.120 8 LLASLLLAA 0.120 94 LSFLHLKEA 0.110 18 LSASAGLWS 0.100 54 FSDKN1GLTS 0.100 47 AVGNHRSFS 0.100 13Y ILAAALSAS 0.100 108 1LLjDLPAAAS 10.100 Table XIII-151P411-A24-9mers Poe 123456789 Score Seq=D 17 ALSASAGLW 0.100 26 SPAKEKRGW 0.100 33 GWTLNSAGY 0.100 96 FLHILKEAGA 0.100 95 SFLHLKEAG 0.090 92 EFLSFLHLK 0.075 67 RPEDDMKPG 0.036 32 RGWTLNSAG 0.024 31 KRGWThNSA 0.024 82 PENNIMRTI 0.021 29 KEKRGWTLN 0.020 57 KtIGLTSKRE 0.020 72 MKPGSFDRS 0.018 19 LDLPAAASS 0.018 s0 SIPEWNIMR 0.018 90 IIEFLSFLH 0.018 44 GPHAVGNHR 0.017 22 AGLWSPAXE 0.017 48 VGNHRSFSD 0.015 84 NNIMRTIIE 0.015 106 DRIJLDLPAA 0.015 41 YLIIGPHAVG 0.015 25 WSPAKEKRG 0.015 110 DLPAAASSE 0.015 43 LGPHAVGWI 0.015 77 FDRSIPENN 0.014 87 MRTIIEFLS 0.014 93 FLSFLHLKE 0.013 24 LWSPAKEKR 0.013 98 HLKEAGAJD 0.012 27 PAIEKRGWT 0.012 104 ALDRLLDLP 0.012 49 GNHRSFSDK 0.012 65 ELRPEDDMK 0.012 105 IJDRLLDLPA 0.012 75 GSFDRSIPE 0.012 71 DMKPGSFDR 0.012 38 SAGYLLGPH 0.012 114 AASSEDIER 0.011 23 GLWSPAKEK 0.011 so N1HRSPSDKN 0.011 I1I LPAAASSED 0.011 59 GLTSKRELR 0.010 61 TSKRELRPE 0.010 60 LTSKRELRP 0.010 102 AGALDRLLD 0.010 15 AAALSASAG 0.010 36 LNSAGYLLG 0.010 F30_ EKRGWTLNqS 0.010 2 ARGSALLLA 0.010 112 12 PAAASSEDI 1 0.100 00 00 Table XIV-151P4E11-A24-lomers Pos 1234567890 Score SeqID 88 RTIIEFLSFL 12.000 3 RGSALLLjASLa 9.600 57 KNGLTSKREL 8.800 NIMRTIIEFL 8.400 IIEFLSFLHL 7.200 34 -WTLNSAGYLL 6.000 SALLLASLLL 6.000 4 GSALLLASLL 4.800 9 LASLLLIAAA. 4.800 102 AGALDRLLDL 4.000 AAALSASAGL 4.000 33 GWTLNSAGYL 4.000 96 FLHLKEAGAL 4.000 84 NNIMRTIXEF 3.300 81. IPENNIMRTI 2.100 111 LPAAASSEDI 1.000 100 KEAGALDRLL 0.960 SFLHLKEAGA 0.750 GYLLGPHAVG 0.750 76 SFDRSIPEN'N 0.700 99 LKEAGALDRL 0.600 53 SFSDKNGLTS 0.600 51 HRSFSD1WGL 0.480 27 PAKEKRGWTL 0.480 107 RLLDLPAAAS 0.360 67 RPEDDMKPGS 0.360 87 MRTIIEFLSF 0.240 32 RGWTLNSAGY 0.200 52 RSFSDIGNGLT 0.200 SIPENNIMRT 0.180 7 LLLASLLLAA 0.180 WSPAKEKRGW 0.150 63 KRELRPEDDM 0.150 ASLILLAAALS 0.150 16 AALSASAGLW 0.150 72 MKPGSFDRSI 0.150 12 LIJIAAALSAS 0.150 11 SLLLAAALSA 0.150 46 HAVGNHRSFS 0.150 41 YLLGPHAVG' 0.150 6 ALLLASLI.LA 0.150 7-1 DMKPGSFDRS 0.144 86 IMRTIIEELS 0.140 GSFDRSIPEN 0.132 38 SAGYLLGPHA 0.120 13 LLAAALSASA 0.120 19 SASAGLWSPA 0.120 104 ALDP.LLDLPA 0.120 8E LIIASLLLAAA 0.120 177 1FDRSIPENNI 0.120 Table XIV-151P4El1-A24-10mers Pos 1234567890 Score SeqID 93 FLSFLHLKEA 0.110 49 GMHRSFSDKN 0.110 39 AGYLLGPHAV 0.100 1 MARGSALLIJA 0.100 114 AASSEDIERS 0.100 44 GPHAVGNHRS 0.100 108 LLDLPAAASS 0.100 17 ALSASAGLWS 0.100 26 SPAKEKRGWT 0.100 92 EFLSFLHLKE 0.099 78 DRSIPENNIM 0,060 79 RSIPENNIMR 0.036 43 LGPHAVGNIHR 0.025 68 PEDDMXPGSF 0.024 89 TIIEFLSFILH 0.022 103 GALDRLLDLP 0.022 29 KEKRGWTLN4S 0.020 45 PHAVGNHRSF 0.020 73 KPGSFDRSIP 0.020 106 DRLLiDLPAAA 0.018 48 VGNHRSFSDK 0.018 22 AGLWSPAKEK 0.017 110 DLPAAASSED 0.017 82 PE.NNIMRTII 0.015 28 AKEKRGWTLN 0.015 83 ENNIMRTIIE 0.015 58 NGLTSKRELR 0.015 35 TLsNSAGYJLG 0.015 61 TSKRELRPED 0.013 65 ELRPEDDMKP 0.013 42 LLOPHAVGNH 0.012 2 ARGSALLLAS 0 .012 94 LSFLHLKEAG 0.012 24 LWSPAKEKRG 0.012 30 EKRGWTIJNSA 0.012 98 HIJKEAGALDR 0.012 37 NSAGYILLGPH 0.012 21 SAGLWSPAXE 0.011 113 AAASSEDIER 0.011 23 GLWSPAKEKR 0.011 20 ASAGLWSPAK 0.010 14 JAAALSASAG 0.010 54 FSDKNGLTSK 0.010 60 LTSKRELRPE 0.010 36 LN'SAGYLLGP 0.010 47 AVGNHRSFSD 0.010 101 EAGALflRLLD 0.010 105 LDRLLDLPAA 0.010 18 ELSASAGLWSP 0.010 59 1GLTSKRELRP 0.010 I Table XV-151P4E11-B7-9mers 00Pos 123456789 Score SegID 1 MARGSAILLL 120.000 86 IMRTIIEFL 40.000 16 AALSASAGL 36.000 Ct 10 ASLLLAAAL 12.000 103 GALDRLLDL 12.000 SALLLASJI 12.000 -101 EAGALDRLL 12.000 6 ALLLASLLL 12.000 73 KPGSFDRSI 8.000 34 WTLNSAGYL 4.000 "A89 TIIEFLSFL 4.000 58 NGILTSKRBL 4.000 __52 RSFSD1ONGL 4.000 TLNSAGYLL 4.000 C14 GSALLLASL 4.000 00 19 RSIPENNIM 1.000 83 ENNIMRTII 0.600 81 IPENNIMRT 0.600 47 AVGNHRSFS 0.450 97 LHLKEAGAL 0.400 26 SPAI(EKRGW 0.400 100 KEAGALDRL 0.400 91 IEFLSFLHL 0.400 28* AKEKRGWTL 0.360 39 AGYLLGPHA 0.300 14 LAAALSASA 0.300 ASAGLWSPA 0.300 9 LASLLLAAA 0.300 44 GPHAVGNHR 0.200 111 LPAAASSED 0.200 64 RELRPEDDM 0.150 112 PAA.ASSEDI 0.120 107 RIILDLPAAA 0.100 8 LLiASLLLAA 0.100 ELRPEDDMK 0.100 94 LSFLHLKEA 0.100 j-2 LLLAAALsA 0.100 96 FLHLKEAGA 0.100 7 LLLASLLLA 0.100 105 LDRLLDLPA 0.100 AAALSASAG 0.090 TI .1 AAASSEDIE 0.090 114 AASSEDIER 0.090 NIMRTIIEF 0.060 17 ALSASAGLW 0.06U 78 DRSIPENNI 0.060 67 RPEDDMKPG 0.060 115 ASSEDIERS 0.060 46 AVGIiRSF 0.060 27-FPAKEKRGWT 0.045 Table XV-151P4M1-B7-9mers Pos 1.23456789 Score SeqID 102 AGALDRLLiD 0.045.
21 SAGLWSPAK 0.030 19 SASAGLWSP 0.030 2 ARGSAJJLLA 0.030 38 SAGYLLGPH 0.030 22 AGLWSPAKE 0.030 40 GYLLGPHAV 0.020 88 RTIIEFLSF 0.020 50 NHRSFSDQN 0.020 42 LLGPHAVGN 0.020 18 LSASAGLWS 0.020 77 FDRSiPENN 0.020 3 RGSALLLAS 0.020 30 EKRGWTJNS 0.020 11 SLLLAAALS 0.020 13 LLAAALSAS 0.020 59 GLTSX(RELR 0.015 62 SKRELRPED 0.015 23 GLWSPAICEK 0.015 41 YLLGPI{AVG 0.015 57 1KIGLTSKRE 0.010 75 GSFDRSIPE 0.010 49 GNHRSFSDK 0.010 98 HIJKEAGALD 0.010 106 DRLLDLPAA 0.010 37 NSAGYLLGP 0.010 71 DMKPGSFDR 0.010 61 TSKR-ELRPE 0.010 110 DLPAAASSE 0.010 25~ WSPAXEKRG 0.010 60 LTSKRELRP 0.010 80 SIPENNIMR 0.010 93 FIJSFLHLKE 0.010 32 RGWTLNSAG 0.010 53 SFSDKNGLT 0.010 43 LGPHAVGNH 0.010 84 NNIMRTIIE 0.010 36 IMSAGYLLG 0.010 48 VGNHRSFSD 0.010.
31 KRGWTLNSA 0.010 108 LIJDLPAAAS 0.009 104 AIJDRLLDLP 0.009 54 FSDK&GLTS 0.006 70 DDMKKPGSFD 0.005 82 PENNIMRTI 0.004 90 IIEFLSFLH 0.003 29 KEKRGWTLN 0.002 109 LDLPAAASS 0.002 33 GWTLNSAGY 0.002 87 _IMRTIIEFLS 0.002 TableXVI-1514E2-B7-lO0lers Pos 1234567890 Score Seq1D AA.ALSASAGL 36.000 as NIMRTIIEFL 12.000 9 LA.SLLLAAAL 12.000 SALLLASLLJ 12.000 102 AGALDRLLD. 12.000 Ill IPAAASSEDI 8.00 3 RGSALLLASL 4.000 34 WTIJNSAGYLL 4.000 57 KNGLTSKREJ 4.000 88 RTIIEFLSFLj 4.000 4 GSALLLjASL, 4.000 96 FLHLIEAGAL 4.000 1 MARGSALLLA 3.000 26 SPAXEKRGWT 3.000 81 IPENNIMRTI 2.400 27 PAKEKGWTJ 1.200 IIEFLSFLHL 1.200 77 FDRSIPENNI 0.600 39 AGYLLGPHAV 0.600 44 GPRAVGNHRS 0.400 1100 KEAGALDRLL 0.400 51 HRSFSDKNG. 0.400 33 GWTLNSAGYLi 0.400 38 SAGYLLGPHA 0.300 6 ALLLASLLLA 0.300 73 KPGSFDRSIP 0.300 19 SASAGLWSPA 0.300 86 IMRTIIEFLS 0.200 114 AASSEDIERS 0.180 16 AALSASAGLW 0.180 47 AVGN14RSFSD 0.150 67 RPEDDMKPGS 0.120 99 LKEAGALDRL. 0.120 78 DRSIPENNIM 0.100 8 LLsASLLLAAA 0.100 ELRPEDDMKP 0.100 SIPENNIMRT 0.100 13 LLAAALSASA 0.100 EKRGWTLNSA 0.100 93 FLSFLHLKEA 0.100 7 LLLASLLLAA 0.100 1.05 LDRLLDLPAA 0.100 52 RSFSD1NGLT 0.100 11 SLLLAAALSA 0.100 113 AAASSEDIER 0.090 46 HAVGNHRSFS 0.090 104 ALDRLLDLPA 0.090 17 ALSASAGLWS 0.060 ASLLLAAALS 0.0,60 22 AGLWSPAKEK 10.045 TableXVI-151P4E1-B-10mers____ PoB 1234567890 Score, SeqID 101 EAGALDRLLD 0.045 63 KRBLRPEDDM 0.045 72 MKPGSFDRSI 0.040 20 ASAGLWSPAK 0.030 14 LAAALSASAG 0.030 103 GALjDRLLDLP 0.030 107 RLLDLPAAAS 0.030 21 SAGLWSPAKE 0.030 49 GNHRSFSDKN 0.020 12 LLLAAALSAS 0.020 41 YLLGPHAVGN 0.020 75 GSFDRSIPEN 0.020 32 RGWTLNSAGY 0.020 25 WSPA1E1RGW 0.020 71 DMKPGSFDRS 0.020 84 NNIMRTIIEF 0.020 61 TSKRELRPED 0.015 58 NGLTSKRELR 0.015 106 DRLLDLPAAA 0.010 42 LLGPHAVGNH 0.010 35 TLNSAGYLLG 0.010 94 LSFI*HLKEAG 0.010 98 HLKEAGALDR 0.010 18 LSASAGLWSP 0.010 37 NSAGYLLOPH 0.010 110 DLPAAASSED 0.010 43 LGPRAVGNKR 0.010 95 SFIJHLKEAGA 0.010 60 LTSKRELRPE 0.010 79 RSIPENNIMR 0.010 50 NHRSFSDKNG 0.010 59 GLTSKRELRP 0.010 89 TIIEFLSFLH 0.010 83 ENNIMRTIIE 0.010 23 GLWSPAKEKR 0.010 36 LNSAGYLLGP 0.010 62 SKRELRPEDD 0.010 48 VGNHRSFSDK 0.010 2 ARGSALLLAS 0.006 82 PENNIMRTII 0.00.6 108 LLDLPAAASS 0.006 112 PAAASSEDIE 0.003 70 DDMKPGSFDR 0.003 54 FSDIQNGLTSK 0.003 53 SFSDKN~GLTS 0.002 29 KEXRGWTLNS 0.002 87 MRTIIEFLSF 0.002 28 AKEKRGWTLNt 0.002 140 GYLILGPHAVG 0.002 64 RELRPEDDMK 0.001 00 Ct I TRW! e XVII-1~1P4E1-R3-qmerg Pos 123456789 Score SeqID 79 RSIPENNIM 30.000 73 KPGSFDRSI 16.000 26 SPAKEKRGW 15.000 52 RSFSDKMGL 15.000 1 MARGSALLL 9.000 103 GALDRLLDL 6.000 4 GSALLLASL 5.000 ASLLLAAAL 5.000 86 RTIIEFLSF 3.000 SALLLASLL 3.000 101 EAGALDRLL 3.000 16 AALSASAGL 3.000 86 IMRTIIEFL 3.000 46 HAVGNHRSF 3.000 89 TIIEFLSFL 2.000 115 ASSEDIERS 1.500 34 WTINSAGYL 1.000 58 NGLTSKREL 1.000 6 ALLLASLLL 1.000 TLNSAGYLL 1.000 NIMRTIIEF 1.000 81 IPENNIMRT 0.600 17 ALSASAGLW 0.500 94 LSFLHLA 0.500 ASAGLWSPA 0.500 18 LSASAGLWS 0.500 64 RELRPEDDM 0.400 107 RLLDL
P
AAA 0.400 83 ENNIMRTII 0.400 67 RPEDDMKPG 0.360 9 LASLLLAAA 0.300 14 LAAALSASA 0.300 61 TSKRELRPE 0.225 44 GPHAVGNHR 0.200 33 GWTLNSAGY 0.200 111 LPAAASSED 0.200 100 KEAGALDRL 0.200 3 RGSALLLAS 0.200 27 PAKEKRGWT 0.180 54 FSDKNGLTS 0.150 97 LHLKEAGAL 0.150 112 PAAASSEDI 0.120 GSFDRSIPE 0.100 7 ILLASLLLA 0.100 12 ILLAAALSA 0.100 8 LIASLLLAA 0.100 47 AVGNHRSFS 0.100 39 AGYLLGPHA 0.100 96 FLHLKBAGA 0.100 42 LLGPHAVGN 0.100 Table XVII-151P4E11-B35-9mers Pos 123456789 Score SeqID 91 IEFLSFLHL 0.100 13 LLAAALSAS 0.100 11 SLLLAAALS 0.100 98 HLKEAGALD 0.060 29 KEKRGWTLN 0.060 37 NSAGYLLGP 0.050 25 WSPAKEKRG 0.050 114 AASSEDIER 0.045 65 ELRPEDDMK 0.045 78 DRSIPBNNI 0.040 30 EKRGWTLNS 0.030 105 LDRLLDLPA 0.030 21 SAGLWSPAK 0.030 113 AAASSEDIE 0.030 19 SASAGLWSP 0.030 71 DMKPGSFDR 0.030 so NHRSFSDKN 0.030 38 SAGYLLGPH 0.030 77 FDRSIPENN 0.030 15 AAALSASAG 0.030 69 EDDMKPGSF 0.030 28 AXEKRGWTL 0.030 108 LLDLPAAAS 0.030 57 KNGLTSKRE 0.020 32 RGWTLNSAG 0.020 80 SIPENNIMR 0.020 53 SFSDKNGLT 0.020 40 GYLLGPHAV 0.020 31 KRGWTLNSA 0.020 102 AGALDRLLD 0.015 106 DRLLDLPAA 0.015 2 ARGSALLLA 0.010 93 FLSFLKLKE 0.010 36 LNSAGYLLG 0.010 23 GLWSPAKEK 0.010 110 DLPAAASSE 0.010 87 MRTIIEFLS 0.010 59 GLTSKRELR 0.010 22 AGLWSPAKE 0.010 48 VGNHRSFSD 0.010 84 NNIMRTIIE 0.010 72 MKPGSFDRS 0.010 41 YLLGPHAVG 0.010 109 LDLPAAASS 0.010 60 LTSKRELRP 0.010 49 GNHRSFSDK 0.010 43 LGPAVGNH 0.010 62 SKRELRPED 0.006 82 PENNIMRTI 0.004 55 SDKNGLTSK 0.003 00 00 TableXVIII-1S1P4E11-B35-1'Omera Poe 1234567890 Score SeqID 111 LPAAASSEDI 8.000 4 GSALLLASLL 5.000 32 RGWTLNSAGY 4.000 WSPAKEKRGW 3.750 SALLLASLLL 3.000 9 LASLLLAAAJ 3.000 is AAALSASAGL 3.000 67 RPEDDMKPGS 2.400 81 IPENNIMRTI 2.400 26 SPAKEKRGWT 2.000 88 RTIIEFLSFL 2.000 44 GPRAVGNHRS 2.000 57 K1NGLTSKREL 2.000 3 RGSALLLASJ 2.000 27 PAKEKRGWTL 1.800 16 'AALSASAGLW 1.5 00 96 FLHLKEAGAL 1.500 NIMRTIIEFL 1.000 52 RSFSDK&GLT 1.000 34 WTLNSAGYLiL 1.000 GSFDRSIPEN 1.000 84 NNIMRTIIEF 1.000 102 AGALDR.LLDL 1.000 1 MARGSALLLA 0.900 73 KPGSFDRSIP 0.600 ASLLLAAALS 0.500 114 AASSEDIERS 0.450 107 RLLDIPAAAS 0.400 46 HAVGNHRSFS 0.300 86 IMRTIIEFLS 0.300 19 SASAGLWSPA 0.300 IIEFLSPIML 0.300 38 SAGYLLGPHA 0.300 78 DRSIPENNIM 0.300 71 DMKPGSFDRS 0.300 39 AGYLLGPHAV 0.200 SIPENNIMRT 0.200 100 KEAGALDRLL 0.200 87 MRTIIEFLSF 0.150 61 TSKRELRPED 0.150 51 HRSFSDKN4GL 0.150 77 FDRSIPEI4NI 0.120 63 KRELRPEDDM 0.120 7 LLLASLLLAA 0.100 41 YLLGPKAVGN 0.100 8 LLASLLLAAA 0.100 12 LLLAAALSAS 0.100 17 ALSASAGLWS 0.100 49 GNHRSFSDIQN 0.100 6 ALLLASLLLA 0.100 TableXVIII-151P4E1-B35-lomers Poe 1234567890 Score SeqID 11 SLLLAAALSA 0.100 13 LLAAALSASA 0.100 33 GWTLNSAGYL 0.100 93 FLSFLHLiKEA 0.100 79 RSIPENNIMR 0.100 29 KEKRGWTLN~S 0.060 98 HLKEAGALDR 0.050 103 GA~lDRLLDLP 0.060 94 LSFLHLKEAG 0.050 18 LSASAGLWSP 0.050 37 NSAGYLLGPH 0.050 ASAGLWSPA( 0.050 105 LDRLLDLPAA 0.045 113 AAASSEDIER 0.045 65 ELRPEDDMKP 0.045 101 EAGALDRIJLD 0.045 72 MKPGSFDRSI 0.040 [21 SAGLWSPAXE 0.030 14 LAAALSASAG 0.030 30 EKRGWTLNSA 0.030 99 L1EAGAiLDRL 0.030 104 ALDRLLDLPA 0.030 108 LLDLPAAASS 0.030 53 SFSDKNGLTS 0.020 89 TIIEFLSFLH 0.020 60 LTSKRELRPE 0.015 54 FSD1GNGLTSK 0.015 83 ENNIMRTIIE 0.010 2 ARGSALLLAS 0.010 45 PHAVGNHRSF 0.010 23 GLWSPAXEKR 0.010 95 SFLMLKEAGA 0.010 59 GLTSKRELRP 0.010 35 TLNSAGYLLG 0.010 42 LLGPHAVGIH 0.010 110 DLPAAASSED 0.010 47 AVGNHRSFSD 0.010 106 DRLLDLPAAA 0.010 48 VGNXRSFSDK 0.010 43 LGPHIAVGNHR 0.010 36 LNSAGYLLGP 0.010 58 NGLTSKRELR 0.010 22 AGLWSPAKEK 0.010 68 PEDDMKPGSF 0.006 62 SKRELRPEDD 0.006 82 PENNIMRTII 0.004 112 PAAASSEDIE 0.003 55 SDKNGLTSKR 0.003 50 N.HRSFDKNG 0.003 66 LRPEDDMKPG 10.003- I~beV- 154P2A8 -Al- 9mers Pos 123456789 Score SeqID 308 CLOPIZYFF 100.000 286 ESAQKILYY 3.750 41 DTIVLjPVLY 2.500 306 NVCLDPIIY 2.500 319 RSFSRRLF( 1.500 334 RSESIRSLQ 1.350 92 LTFPFRIVH 1.250 37 HNEFDTIVL 1.125 73 KTSFIFYLK 1.000 227 IAISRYIHK 1.000 172 LSLPNJIILT 0.750 26 RSDGPGKNT 0.750 151 RMYSITFTK 0.500 VADLIMTLT 0.500 218 VLVILIGCY 0.500 224 GCYIAISRY 0.500 88 LIMTLTFPF 0.500 283 LLDESAQKI 0.500 131 FLGLISIDR 0.500 307 VCLDPIIYF 0.500 118 SVLFYANMY 0.500 282 RLLDESAQK 0.400 134 LISIDRYLiK 0.400 241 ISQSSRKRK 0.300 346 RSEVRIYYD 0.270 207 VTYVNSCLF 0.250 264 CFLPYHLCR 0.250 147 FGDSRMYSI 0.250 1 MGFNLTLAK 0.250 103 GFGPWYFKF 0.250 12 NNELHGQES 0.225 295 CKEITLFLS 0.225 184 PTEDNIHDC 0.225 43 IVLPVLYLI 0.200 188 NIHDCSKLK 0.200 WIFFHIRNK 0.200 17 GOESHNSG' 0.135 345 RRSEVRIYY 0.125 145 KPFGDSRMY 0.125 260 VFFTCFLPY 0.125 1i32 IJOIISIDRY 0.125 NGLjAVWIFF 0.125 3T9 EIDT-IVLPV 0.125 223 IGCYIAISR 0.125 114 CRYTSVLFY 0.125 19 IHDCSKLKS 0.125 285 DESAQKILY 0.125 MTLTFPFRI 0.125 1 55 ITFTKVISV 0.125 34 TTILiNEFDT 0.125 Table V- 154P2A8 -A1-9rners Pos 123456789 Score SeqID 45 LPVLYLIIF 0.125 123 AN14YTSIVF 0.125 126 YTSIVFLGL 0.125 143 VVKPFGDSR 0.100 257 VVAVFFTCF 0.100 89 IMTLTFPFR 0.100 101 DAGFGPWYF 0.100 102 AGFGPWYFK 0.100 240 FISQSSRIR 0.100 149 DSRMYSITF 0.075 74 TSFIFYLIQN 0.075 135 ISIDRYIJKV 0.075 71 RNKTSFIFY 0.062 215 FVAVLVILI 0.050 163 VCVWVIMAV 0.050 269 HLCRIPFTF 0.050 9 KLPNNELHG 0.050 56 SILLNGLAV 0.050 4 NLTLAKIJPN 0.050 129 IVFLGLISI 0.050 221 ILIGCYIAI 0.050 255 RVVVAVFFT 0.050 42 TIVLPVLYL 0.050 311 PIIYFFMCR 0.050 171 VLSLPINIIL 0.050 216 VAVLVILIG 0.050 213 CLFVAVLVI 0.050 298 ITLFIJSACN 0.050 61 GLAVWIFFH 0.050 5 LTLAKLPNN 0.050 47 VLYLIIFVA 0.050 262 FTCFLPYHL 0.050 204 HTAVTYVNS 0.050 279 HLDRILLDES 0.050 83 IVVADLIMT 0.050 173 SLPNIILTN 0.050 53 FVASILLNG 0.050 162 SVCVWVIMA 0.050 166 WVIMAVLSL 0.050 44 VLPVLYLII 0.050 51 IIFVASILL 0.050 116 Y'rSVLFYAN 0.050 82 NIVYADLIM 0.050 136 SIDRYLKVV 0.050 100 HDAGFGPWY 0.050 217 AVIJVILIGC 0.050 128 SIVFLGLIS 0.050 256 VVVAVFFTC 0.050 119 VLFYANNYT 0.050 84 1VVADLIMTL 0.050 TableVI-154P2A8-A1mers Pos 1234567890 Score SeqID 346 RSEVRIYYDY 135.000 308 CLDpIIYFFM 25.000 VAflLIMTLTF 25.000 284 LDESAQKILY 11.250 334 RSESIRSLQS 6.750 259 AVFFTCFLPY 2.500 99 VHDAGFGPWY 2.500 136 SIDRYLKVVK 2.000 319 RSFSRRLFKK 1.500 17 GQESHNSGNR 1.350 226 YIAISRYIHK 1.000 26 RSDGPGKNTT 0.750 117 TSVLFYANNY 0.750 172 LSLPNIILTN 0.750 305 CNVCLDPIIY 0.625 87 DLIMTLTFPF 0.500 131 FLGLISIDRY 0.500 222 LIGCYIMISR 0.500 43 IVLPVLzYLII 0.500 217 AVLVILIGCY 0.500 263 TCFLsPYHLCR 0.500 18S TEDNIHDCSK 0.500 44 -VLPVLYLIIF 0.500 306 NVCLDPIIYF 0.500 283. ILDESAQKIL 0.500 122 YANMhYTSIVF 0.500 133 GLISIDRYLK 0.400 101 DAGFGPWYFK 0.400 113 LCRYTSVIJFY 0.250 184- PTEDNIHDCS 0.225 295 CKEITLPLSA 0.225 12 NNELHGQESH 0.225 307 VCLDPIIYFF 0.200 88 LIMTLTFPFR 0.200 240 FISQSSRKRK 0.200 .273 IPFTFSHLDR 0.125 207 VTYVNSCIIFV 0.125 102 AGFGPWYFKF 0.125 41 DTIVLPVLYL 0.125 223 IGCYIAISRY 0.125 310 DPIIYFFMCR 0.12S 59, LNGLAVWIFF 0.125 285 DESAQKILYY 0.125 147 FGDSRMYSIT 0.125 33 NTTLHNEFDT 0.125 73 KTSFIFYLKN 0.125 266 LPYHLCRIPF 0.125 62 LAVWIFFHIR 0.100 200 GVKWHTAVTY 0.3.00 F206 IAVTYVNSCLF 0.100 Table VI-154P2A-AI0lmers Pos 1234567890 Score SeqID 312 IIYF'PMCRSF 0.100 256 VVVAVFFTCF 0.100 58 LLNGLAVWIF 0.100 127 TSIVFLGLIS 0.075 55 ASILLNGLAV 0.075 161 LSVCVWVIMA 0.075 187 DNIHDCSKLK 0.050 61 GLAVWIFFHI 0.050 216 VAVLVILIGC 0.050 171, VLSLPNIILT 0.050 188 NINflCSKLKS 0.1050 39 EFDTIVLPVL 0.050 154 SITFTKVLSV 0.050 92 LTFPFRIVHD 0.050 40 PDTIVLP-VLY 0.050 128 SIVFLGLISI 0.050 91 TLTFPFRIVH 0.050 220 VILIGCYIAI 0.050 118 SVLFYA'ThYT 0.050 150 SP.MYSITFTK 0.050 291 ILYYCKEITL 0.050 116 YTSVLFYAN4 0.050 170 AVLSLPNIIL 0.050 50 LIIFVASILL 0.050 51 IIFVASILLN 0.050 134 LISIDRYLKV 0.050 318 CRSFSRRLFK 0.050 215 FVAVLVILIG 0.050 212 SCLPVAVLVI 0.050 279 HLDRLLDESA 0.050 82 NIVVADLIMT 0.050 167 VIMAVLSLPN 0.050 255 RVVVAVFFTIC 0.050 162 SVCVWVIMAV 0.050 83 IVVADLIMTL 0.050 76 FIFYUKNIVV 0.050 69 HIPNKTSFIF 0.050 37 HNEFDTIVP 0.045 287 SAQKILYYCK 0.040 252 QSIR'VVVAVF 0.030 153 YSITFTKVLS 0.030 238 RQFISQSSRK 0.030 286 ESAQKILYYC 0.030 211 NSCLFVAVLV 0.030 268 YHLCRIPFTF 0.025 90 MTLTFPFRIV 0.025 181 NGQPTEDNIH 0.025 a AY1LPNNELHG 0.025 2751 FTFSHLDRLL 0.025 34 1TTLHNEFDTI 0.025 00 00
CA
Table VII-154P2A8-A2-9mera Poe 123456789 Score SeqID 124 NNYTSIVFL 624.542 159 KVLSVCVWV 433.461 49 YLIIFVASI 419.440 119 VIFYPNMYT 257.802 299 TLFLSACNV 257.342 111 FILCRYTSV 244.154 47 VLYLIIFVA 147.816 160 VLSVCVWVI 125.436 265 FLPYHLCRI 110.379 301 FLSACNVCL 98.267 58 LLNGLAVWI 97.547 76 FIFYLKNIV 66.735 255 RVVVAVFFT 47.841 350 RIYYDYTDV 45.904 42 TIVLPVjYL 37.157 213 CLFVAVLVI 36.401 56 SILLNGLAV 35.385 84 VVADLIMTL 29.965 283 LLDESAQKI 29.087 221 ILIGCYIAI 26.604 133 GLISIDRYL 23.499 MTLTFPFRI 20.088 166 WVIMAVLSL 19.776 290 KILYYCKEI 18.577 51 IIFVASILL 18.476 112 ILCRYTSVL 14.890 171 VLSLPNIIL 14.890 164 CVWVIMAVL 14.630 155 ITFTKVLSV 13.975 43 IVLPVLYLI 13.206 129 IVFLGLISI 13.206 341 LSVRRSEV 11.988 209 YVNSCLFVA 10.937 44 VPVLYLII 10.907 91 TLTFPFRIV 10.836 258 VAVFFTCFj 10.542 105 GPWYFKFIL 10.459 TLHNEFDTI 9.713 215 FVAVLVILI 9.658 219 LVILIGCYI 8.535 72 NXTSFIFYL 8.272 291 ILYYCKEIT 8.144 256 VVVAVFFTC 8.144 177 IILTNGQPT 6.445 46 PVLYLIIFV 6.267 275 FTFSHLDRL 5.691 272 RIPFTFSHL 5.581 61 GLAVWIFFN 5.468 135 ISIDRYLKV 4.747 217 AVLVILIGC 3.699 Table VII-154P2AB-A2-9mers Poe 123456789 Score SeqID 136 SIDRYLKVV 3.607 104 FGPWYFKFI 3.274 62 LAVWIFFHI 2.715 126 YTSIVFLGL 2.593 83 IVVADLIMT 2.550 34 TTLHNEFDT 2.221 50 LIIFVASIL 2.047 206 AVTYVNSCL 1.869 122 YANMYTSIV 1.822 163 VCVWVIMAV 1.775 220 VILIGCYIA 1.762 212 SCLFVAVLV 1.680 210 VNSCLFVAV 1.466 170 AVLSLPNII 1.385 262 FTCFLPYHL 1.365 197 SPLGVKWHT 1.350 94 FPFRIVHDA 1.270 54 VASILLNG 1.160 268 YHLCRIPFT 1.114 252 QSIRVVVAV 1.044 162 SVCVWVIMA 1.000 153 YSITFTKVL 0.999 287 SAQKILYYC 0.873 199 LGVKWHTAV 0.772 172 LSLPNIILT 0.704 296 KEITLFLSA 0.642 169 MAVLSLPNI 0.567 309 LDPIIYFFM 0.561 36 LHNEFDTIV 0.525 294 YCKEITLFa 0.506 211 NSCLFVAVL 0.500 312 IIYFFMCRS 0.487 251 NQSIRVVVA 0.475 297 EITLFLSAC 0.448 57 ILLNGLAVW 0.442 202 KWHTAVTYV 0.428 308 CLDPIIYFF 0.377 88 LIMTLTFPF 0.374 193 SKLKSPLGV 0.357 147 FGDSRMYSI 0.288 82 NIVADLIM 0.280 9 KLPNNELHG 0.261 282 RLLDESAQK 0.226 151 RMYSITFTK 0.200 109 FKFILCRYT 0.194 89 IMTLTFPFR 0.191 198 PLGVKWHTA 0.186 117 TSVLFYANM 0.185 263 TCFLPYHLC 0.180 173 SLPNIILTN 0.171 TableVIll -154 P2A8 -A2- l0mers____ Po8 1234567890 Score SeqID 57 ILLNGLAVWI 360.923 153. RM'YSITFTKV 305.411 89 IMTLTFPFRI 282.314 282 RLLjDESAQKI 158.266 291 ILYYCKEITL 116.211 61 GLAVWIFFI 114.969 TILHNFDTIV 108.362 218 VLVILIGCYI 97.547 308 CILDPIIYFFM 95.088 159-~ KVIJSVCVWVI 83.609 213 CLFVAVLVIL 74.536 340 SLQSVRRSEV 69.552 76 FIFYLKlNIVV 66.735 257 VvAVFFTCFL 66.413 316 FMCRSFSRRL 53.938 209 YVNSCLFVAV 53.190 38 NEFDTIVLPV 47.187 49 YLIIFVASIL 40.289 232 YIMKSSRQFI 36.293 16B IMAVLSLPNI 29.461 171 VLSLPNIILT 29.137 207 VTYVNSCLFV 28.903 324 RLFKKSNIRT 27.572 283 LLDESAQKIL 24.419 134 LISIDRYLKV 24.387 154 SITFTKVLSV 21.996 6 TLAKLPNNEL 21.362 111 FILCRYTSVL 20.497 53 FVASILLNGI, 19.776 WIFFHIRRKT 17 .440 201 VKWHTAVTYV 17.242 251 NQSIRVVVAV 16.219 162 SVCVWVIMAV 13.997 220 VILIGCYIAI 13.535 118 SVLFYANMYT 13.269 84 VVADLIMTLT 10.453 LPVLYLIIFV 9.764 79 YLKNIVVADL 7.910 299 TIFLSACNVC 7.536 83 IVVAflLIMTL 7.30 9 123 ANMYTSIVFL 6.527 298 ITLFLSACNV 6.076 160 VLSVCVWVI' 5.887 104 FGPWYFKFIL 5.797 LIIFVASILL 4.993 255 RVVVAVFFTC 4.790 43 IVLPVLYLII 3.531 42 TIVLPVLYLI 3.299 128 SIVFLGLISI 3.2-99 335 SESIRSLQSV 3.111 TableViII- 154P2A8 -A2- l0mers____ pos 11234567890 Score SeqID 135 ISIDRYLKVV 2.984 296 KEITLFLSAC 2.955 170 AVLSLPNIIL 2.836 290 KILYYCKEIT 2.666 82 NIVVADLIMT 2.357 124 NMYTSIVFLG 2.297 1 MGPNLTLAKL 2.017 116 YTSVLFYANMh 1.809 198 PLGVKWHTAV 1.530 71 RNKTSFIFYL 1.361 196 KSPLGVKWHT 1.277 119 VLFYAMYTS 1.078 176 NIILTNGQPT 1. 025 275 FTFSHLDRLL 1.010 132 LGLISIDRYL 0.965 90 MTLTFPFRIV 0.947 58 ILNGLAVWIF 0.896 210 VNSCLFVAVL 0.849 47 VLYLIIFVAS 0.770 126 YTSIVFI 1 GLI 0.757 33 NTTLHNEFDT 0.600 347 SEVRIYYDYT 0.586 74 TSFIFYLKNI 0.580 158 TKVLSVCVWV 0.531 105 GPWYFKFILC 0.511 34 TTLHNEFDTI 0.499 262 FTCFLPYHLC 0.476 211 NSCL'VAVIJV 0.454 55 ASILLiNGLAV 0.454 155 ITFTKVLSVC 0.409 131 FILGLISIDRY 0.386 183 QPTEDNIHtDC 0.306 219 LVILIGCYIA 0.303 205 TAVTYVNSCL 0.297 41 DTIVLPVLYL 0.281 216 VAVLVILIGC 0.270 110 KFILCRYTSV 0.254 224 GCYIAISRYI 0.240 212 SCLFVAVLVI 0.238 163 VCVNVIMAVL 0.224 63 AVWIFFHIRN 0.206 197 SPLGVKWHTA 0.204 46 PVLYIJIIFVA 0.194 68 FHIRNKTSFI 0.183 4 NLTLAXLPNN 0.171 173 1SLPNIILTNG 0.171 303 SACNVCLDPI 0.163 114 CRYTSVLFYA 0.162 307 VCLDPIIYFF 0.159 301 FLSACNCLD 0.1S8 0C
C
0C
C
C
C
(N
C
C
eTabl IX-154P2A8-A3-9mere Pos 123456789 Score SeqID 151 RNYSITFTK 450.000 73 KTSFIFYLK 40.500 194 KLKSPLGVK 40.500 282 RLLDESAQK 30.000 4 308 CLDPIIYFF 20.250 324 RLFKKS1IR 20.000 63 AVWIFFHIR 18.000 213 CLFVAVLVI 18.000 131 FLGLISIDR 12.000 89 IMTLTFPFR 12.000 316 FMCRSFSRR 12.000 269 HICRIPFTF 9.000 49 YLIIFVASI 8.100 61 GLAVWIFFH 8.100 47 VLYLIIFVA 6.750 134 LISIDRYLK 6.000 160 VSVCVWVI 5.400 124 NMYTSIVFL 4.500 218 VLVILIGCY 2.700 221 ILIGCYIAI 2.700 112 ILCRYTSVL 1.800 171 VLSLPNIIL 1.800 257 VVAVFFTCF 1.800 143 VVKPFGDSR 1.800 118 SVLFYANMY 1.800 TLHNEFDTI 1.800 288 AQKILYYCK 1.800 WIFFHIRNK 1.500 44 VLPVLYLII 1.200 311 PIIYFFMCR 1.080 299 *TLFLSACNV 1.000 188 NIHDCSKLK 1.000 319 RSFSRRLFK 1.000 119 VLFYANMYT 1.000 43 IVLPVLYLI 0.911 129 IVFLGLISI 0.900 265 FLPYHTCRI 0.900 58 LLNGLAVWI 0.900 224 GCYIAISRY 0.900 88 LIMTLTFPF 0.900 253 SIRVVVAVF 0.900 283 LLDESAQKI 0.900 105 GPWYFKFIL 0.810 42 TIVLPVLYL 0.810 306 NVCLDPIIY 0.800 102 AGFGPWYFK 0.675 164 CVWVIMAVI 0.675 301 F.LSACNVCL 0.600 238 RQFISQSSR 0.600 227 IAISRYIHK 0.600 Table IX-1542A8-A3-9mers PoB 123456789 Score SegID 51 IIFVASILL 0.600 166 WVIMAVLSL 0.540 207 VTYVNSCLF 0.500 291 ILYYCKEIT 0.500 92 LTFPFRIVH 0.450 57 ILLNGLAVW 0.450 133 GLISIDRYL 0.405 90 MTLTFPFRI 0.405 290 KILYYCKEI 0.405 256 VVVAVFFTC 0.405 337 SIRSLQSVR 0.400 162 SVCVWVIMA 0.360 215 FVAVjVILI 0.360 155 ITFTKVLSV 0.300 45 LPVLYLIIF 0.270 126 YTSIVFLGL 0.270 275 FTFSHLDRL 0.225 1 MGFNTLAK 0.200 272 RIPFTFSHL 0.180 107 WYFKFILCR 0.180 84 VVADLIMTL 0.180 217 AVLVILIGC 0.135 307 VCIDPIIYF 0.135 50 LIIFVASIL 0.135 255 RVVVAVFFT 0.135 219 LVILIGCYI 0.135 159 KVLSVCVWV 0.135 62 LAVWIFFHI 0.121 24 GNRSDGPGK 0.120 260 VFFTCFLPY 0.120 114 CRYTSVLFY 0.120 9 KLPNNELHG 0.120 76 FIFYLKNIV 0.100 350 RIYYDYTDV 0.100 320 SFSRRLFKK 0.090 170 AVLSLPNII 0.090 145 KPFGDSRNY 0.090 41 DTIVLPVLY 0.090 220 VILIOCYIA 0.090 91 TLTFPFRIV 0.090 209 YVNSCLFVA 0.090 262 FTCFLPYHI 0.090 206 AVTYVNSCL 0.090 312 IIYFFMCRS 0.090 79 YLUNIWAD 0.090 173 SLPNIILTN 0.090 103 GFGPWYFKF 0.081 347 SEVRIYYDY 0.081 69 RIRNKTSFI 0.060 82 NIVVADLIM 0.060 00 00 Table X-154P2A8-A3-10merB Poe 1234567890 Score SeqID 133 GLISIDRYLK 270.000 58 LLNGLAVWIF 27.000 61 GLAVWIFFHI 24.300 44 VLPVLYLIIF 18.000 259 AVFPTCFLPY 12.000 213 CLFVAVLVIL 6.750 291 ILYYCKEITL 6.000 131 FLGLIS1DRY 6.000 89 IMTLTFPFRI 5.400 142 KVVKPFGDSR 5.400 226 YIAISRYIHK 4.000 238 RQFISQSSRK 3.000 151 RMYSITFTKV 3.000 256 VVVAVFFTCF 2.700 87 DLIMTLTFPF 2.700 79 YLKNIWADL 2.700 159 KVISVCVWVI 2.430 319 RSFSRRLFKK 2.250 136 SIDRYLKVVK 2.000 112 ILCRY'SVjF 2.000 88 LIMTLTFPFR 1.800 124 NMYTSIVFLG 1.350 218 VLVILIGCYI 1.350 308 CDPIIYFFM 1.350 49 YLIIFVASIL 1.350 200 GVKWHTAVTY 1.200 263 TCFLPYHLCR 1.200 222 LIGCYIAISR 1.200 91 ThTFPFRIVH 1.200 299 TLFLSACNVC 1.000 240 FISQSSRKRK 1.000 324 RLFKKSNIRT 1.000 57 ILLNGLAVWI 0.900 168 IMAVLSLPNI 0.900 306 NVCLDPIIYF 0.900 6 TLAKJPNNEL 0.900 119 VLFYAMYTS 0.900 47 VIYLIIFVAS 0.900 282 RLLDESAQKI 0.900 42 TIVLPVLYLI 0.608 TLHNEFDTIV 0.600 194 KLKSPLGVKW 0.600 69 HIRNKTSFIF 0.600 287 SAQKILYYCK 0.600 62 LAVWIFFHIR 0.540 283 LLDESAQKIL 0.450 221 ILIGCYIAIS 0.405 255 RVVVAVFFTC 0.405 TableX-154P2A8-A3-10merB Poe 1234567890 Score SeqID 273 IPFTFSHLDR 0.400 310 DPIIYFFMCR 0.324 253 SIRVVVAVFF 0.300 171 VLSLPNIILT 0.300 160 VLSVCVWVIM 0.300 111 PILCRYTSVL 0.270- 170 AVLSLPNIIL 0.270 101 DAGFGPWYFK 0.270 217 AVLVILIGCY 0.270 43 IVLPVLYLII 0.270 128 SIVFLGLISI 0.270 72 NKTSFIFYLK 0.270 83 IVVADLIMTL 0.270 113 LCRYTSVIFY 0.240 307 VCLDPIIYFF 0.203 266 LPYHLCRIPF 0.200 279 HLDRLLDESA 0.200 340 SLQSVRRSEV 0.200 206 AVTYVNSCLF 0.200 76 FIFYLKNIVV 0.200 220 VILIGCYIAI 0.180 105 GPWYFKFILC 0.180 316 FMCRSFSRRL 0.180 50 LIIFVASILL 0.180 269 HLCRIPFTFS 0.180 257 VVAVPFTCFL 0.180 34 TTTHNEFDTI 0.135 102 AGFGPWYFKF 0.135 150 SRMYSITFTK 0.135 41 DTIVLPVLYI 0.121 341 LQSVRRSEVR 0.120 343 SVRRSEVRIY 0.120 154 SITFTKVLSV 0.120 155 ITFTKVLSVC 0.113 17 GQESHNSGNR 0.108 207 VTYVNSCLFV 0.100 312 IIYFFMCRSF 0.100 117 TSVLFYANmY 0.090 162 SVCVWVIMAV 0.090 204 HTAVTYVNSC 0.090 9 KLPNNELHGQ 0.090 219 LVILIGCYIA 0.090 346 RSEVRIYYDY 0.090 53 FVASILNGL 0.090 65 WIFFHIRNKT 0.075 252 QSIRVVVAVF 0.068 232 YIHKSSRQFI 0.060 198 PLGVKWHTAV 0.060 185 TEDNIHDCSK 0.060 63 AVWIFFHIRN 0.060 330 337
NIRTRSESIR
SIRSLQSVRR
0.400 I 0.400 I Table XI-154P2A8-All-9mer 00 Pos 123456789 Score SeqID 151 RMYSITFTK 7.200 73 KTSFIFYLK 6.000 C1 282 RLLDESAQK 1.800 288 AQKILYYCK 1.200 194 KLKSPLGVK 1.200 63 AVWIFFHIR 0.800 134 LISIDRYLK 0.800 238 RQFISQSSR 0.720 227 IAISRYIHK 0.600 320 SFSRRJFKK 0.600 1 324 RLFKKSNIR 0.480 143 VVKPFGDSR 0.400 107 WYFKFILCR 0.320 239 QFISQSSRK 0.300 319 RSFSRRLFK 0.240 00 315 FFMCRSFSR 0.240 188 NIHDCSKLK 0.200 131 FLGLISIDR 0.160 24 GNRSDGPGK 0.120 264 CFLPYHLCR 0.120 159 KVLSVCVWV 0.090 1 MGFNLTLAK 0.080 316 FMCRSFSRR 0.080 129 IVFLGLISI 0.080 89 IMTLTFPFR 0.080 337 SIRSLQSVR 0.080 WIFFHIRNK 0.080 102 AGFGPWYFK 0.080 209 YVNSCLFVA 0.060 166 WVIMAVLSL 0.060 43 IVLPVLYLI 0.060 MTLTFPFRI 0.045 215 FVAVLVILI 0.040 92 LTFPFRIVH 0.040 155 ITFTKVLSV 0.040 306 NVCLDPIIY 0.040 164 CVWVIMAVL 0.040 162 SVCVWVIMA 0.040 84 VVADLIMTL 0.040 115 RYTSVLFYA 0.036 105 GPWYFKFIL 0.036 6*1 GLAVWIFFH 0.036 170 AVLSLPNII 0.030 118 SVLFYANMY 0.030 219 LVILIGCYI 0.030 255 RVVVAVFFT 0.027 311 PIIYFFYCR 0.024 47 VLYLIIFVA 0.024 88 LIMTLTFPF 0.024 350 RIYYDYTDV 0.024 Table XI-154P2A8-A1-9er Pos 123456789 Score SeqID 126 YTSIVFLGL 0.020 343 SVRRSEVRI 0.020 207 VTYVNSCLF 0.020 137 IDRYLKVVK 0.020 206 AVTYVNSCL 0.020 257 VVAVFFTCF 0.020 275 FTFSHLDRL 0.020 262 FTCFLPYHL 0.020 182 GQPTEDNIH 0.018 103 GFGPWYFKF 0.018 213 CLFVAVLVI 0.016 292 LYYCKEITL 0.016 51 IIFVASILL 0.016 247 KRKHNQSIR 0.012 269 HLCRIPFTF 0.012 224 GCYIAISRY 0.012 272 RIPFTFSHL 0.012 82 NIVVADLIM 0.012 56 SILINGLAV 0.012 259 AVFFTCFLP 0.012 208 TYVNSCLFV 0.012 18 QESHNSGNR 0.012 42 TIVIPVLYL 0.012 221 ILIGCYIAI 0.012 220 VILIGCYIA 0.012 157 FTKVLSVCV 0.010 241 ISQSSRKRK 0.010 256 VVVAVFFTC 0.009 142 KVVKPFGDS 0.009 62 LAVWIFFHI 0.009 290 KILYYCKEI 0.009 139 RYLKVVKPF 0.009 226 YIAISRYIH 0.008 171 VLSLPNIIL 0.008 274 PFTFSHLDR 0.008 76 FIFYLKNIV 0.008 160 VLSVCVWVI 0.008 230 SRYIHKSSR 0.008 124 NMYTSIVFL 0.008 260 VFFTCFLPY 0.008 299 TIFLSACV 0.008 308 CLDPIIYFF 0.008 223 IGCYIAISR 0.008 44 VLPVIYLII 0.008 77 IFYLKNIVV 0.008 240 FISQSSRKR 0.008 342 QSVRRSEVR 0.006 251 NQSIRVVVA 0.006 218 VLVILIGCY 0.006 50 LIIFVASIL 0.006 00 00 TableXII-154P2A8-All1 lmerB PoB 1234567890 Score SeqID 238 RQFISQSSRK 3.600 133 GLISIDRYIJK 3.600 142 KVVKPFGDSR 1.800 226~* YIAISRYIHK 0.800 136 SIDRYLKVVK 0.400 287 SAQKILYYCK 0.400 319 RSFSRRLFKK 0.360 17 GQESHINSGNR 0.360 314 YFFMCRSFSR 0.240 240 FISQSSRKRK 0.200 159 KVLSVCVWVI 0.180 222 LIGCYIAISR 0.160 88 LIMTLTFPFR 0.160 273 IPFTFSHLDR 0.160 263 TCFLPYMLCR 0.160 150 'SRMYSITFTK 0.120 130 VFLGLISIDR 0.120 341 LQSVRRSEVR 0.120 101 DAGFGPWYFK 0.120 330 NIRTRSESIR 0.080 315 FFMCRSFSRR 0.080 259 AVFPTCFLPY 0.080 337 SIRSLQSVRR 0.080 43 1IVLPVLYLII 0.060 185 TEDNIHDCSK 0.060 170 AVIJSLPNIIL 0.060 83 IVVADLIMTL 0.060 200 GVKWHTAVTY 0.060 219 LVILIGCYIA 0.060 62 LAVWIFFHIR 0.060 306 NVCLDPIIYF 0.040 207 V'rYVfSCLFV 0.040 162 SVCVWVIMAV 0.040 72 NXTSFIFYLK 0.040 318 CRSFSRRLFK 0.040 310 DPIIYFFMCR 0.036 61 GLAVWIFFHI 0.036 193 SKL.KSPLGVK 0.030 256 VVVAVFFTCF 0.030 217 AVLVILIGCY D.030 255 RVVVAVFF'TC 0.027 151 R!YSITFTKV 0.024 53 FVASILLNGL 0.020 143 VVKPFGDSRM 0.020 23 SGNRSDGPGK 0.020 209 YVNSCLFVAV 0.020 257 VVAVFFTCFL 0.020 98 IVHDAGFGPW 0.020 206 AVTYVNSCLF 0.020 323 RLKKNIR 0.018 TableXII-154P2AB-A11-l0mers Poe 1234567890 Score SeD 282 RLLjDESAQKI 0.018 208 TYVNSCLFVA 0.018 76 FIFYLIWV 0.016 291 ILYYCKEITL 0.016 34 TTLHNEFDTI 0.01 298 ITT.FLSACNV 0.015 246 RKRKNQSIR 0.012 50 LIIFVASILL 0.012 128 SIVFLGLISI 0.012 220 VILIGCYIAI 0.012 225 CYIAISRYIH 0.012 *42 TIVLPVLYLI 0.012 89 IMTLTFPFRI 0.012 69 HIRNKTSPIF 0.012 1.94 KLKSPLGVKW 0.012 308 CLDPIIYFFM 0.012 157 FTKVLSVCVW 0.010 126 YTSIVFLGJI 0.010 116 YTSVLFYANM 0.010 281 DRLLDESAQK 0.009 41 DTIVLPVLYL 0.009 46 PVLjYLIIFVA 0.009 187 DNIHDCSIULK 0.009 110 KFILCRYTSV 0.009 266 LPYHLCRIPF 0.008 213 CLFVAVLVIL 0.008 107 WYFKPILCRY 0.008 293 YYCKEITLFL 0.008 134 LISIDRYIJKV 0.008 154 SITFTKVLSV 0.008 125 MYTSIVFLGL 0.008 63 AVWIFFHIRN 0.008 44 VLPVLYIIIIF 0.008 58 LLNGLAVWIF 0.008 292 LYYCKEITLF 0.008 91 TLTFPPRIVH 0.008. 239 QFISQSSRKR 0.006 214 LFVAVLVILI 0.006 73 KTSFIFYLKN 0.006 307 VCIJDPIIYFF 0.006 57 ILLNGLAVWI 0.006 270 LCRIPFTPSH 0.006 48 LYLIIFVASI 0.006 212 SCLFVAVLVI 0.006 118 SVLFYANMYT 0.006 28 VLVILIGCYI 0.006 Ill FILCRYTSVL 0.006 251 NQSIRWVVAV 0.006 45 LPVI.YLIIFV 0.006 56 SILLNGLAVW 0.006 TableXIII -154P2A8-A24-9mer 00 ?o 123456789 Score SeqID 139 RYLKVVKPF 420.000 292 LYYCKEITL 200.000 225 CYIAISRYI 105.000 293 YYCKEITTLF 100.000 313 IYFFMCRSF 100.000 121 FYANNYTSI 50.000 tf 214 LFVAVLVIL 42.000 2 GFNLTLAKL 33.000 276 TFSHLDRLL 24.000 272 RIPFTFSHL 14.400 1 115 RYTSVLFYA 14.000 103 GFGPWYFKF 13.200 T8 LYLIIFVAS 12.600 267 PYHLCRIPF 10.000 133 GLISIDRYL 8.400 00 50 LIIFVASIL 8.400 208 TYVNSCLFV 7.500 78 FYLKNIVVA 7.500 i 75 SFIFYLKNI 7.500 126 YTSIVFLGL 6.720 294 YCKEITLFL 6.720 152 MYSITFTKV 6.600 187 DNIHDCSKL 6.600 32 KUTTLHNEF 6.336 258 VAVFFTCFL 6.000 166 WVIMAVSL 6.000 153 YSITFTKVL 6.000 12 TIVLPVLYL 6.000 37 HNEFDTIVL 6.000 28. DGPGKNTTL 6.000 34 VVADLIMTL 5.760 54 VASILLNGL 5.760 206 AVTYVNSCL 5.600 164 CVWVIMAVL 5.600 7 LAKIPNNEL 5.280 191 DCSKKSPL 4.800 262 FTCFLPYHL 4.800 BI KNIVVADLI 4.200 NGLAVWIFF 4.200 51 IIFVASILL 4.000 112 ILCRYTSVL 4.000 171 VLSLPNIIL 4.000 124 NMYTSIVFL 4.000 275 FTFSHLDRL 4.000 317 MCRSFSRRL 4.000 211 NSCLFVAVL 4.000 301 FLSACNVCL 4.000 105 GPWYFKFIL 4.000 307 VCLDPIIYF 3.600 88 LIMTITFPF 3.600 TableXIII- 154P2A8-A24-9mers Pos 123456789 Score SeqID 308 CLDPIIYFF 3.360 290 KILYYCKEI 3.300 123 ANMYTSIVF 3.000 45 LPVLYLIIF 3.000 253 SIRVVVAVF 2.800 269 HLCRIPFTF 2.800 43 IVLPVLYLI 2.520 62 LAVWIFFHI 2.520 257 VVAVFFTCF 2.400 170 AVLSLPNII 2.160 219 LVILIGCYI 2.100 59 LNGLAVWIF 2.000 207 VTYVNSCLF 2.000 232 YIHKSSRQF 2.000 101 DAGFGPWYF 2.000 113 LCRYTSVLF 2.000 149 DSRMYSITF 2.000 181 NGQPTEDNI 1.800 305 CNVCLDPII 1.800 44 VLPVLYLII 1.800 104 FGPWYFKFI 1.800 58 ILNGLAVWI 1.800 283 LLDESAQKI 1.584 127 TSIVFLGLI 1.500 169 MAVLSLPNI 1.500 110 KFILCRYTS 1.500 221 ILIGCYIAI 1.500 304 ACNVCLDPI 1.500 231 RYIHKSSRQ 1.500 265 FLPYHLCRI 1.500 90 MTLTFPFRI 1.500 49 YLIIFVASI 1.500 215 FVAVLVILI 1.200 35 TLHNEFDTI 1.200 161 LSVCVWVIM 1.050 147 FGDSRMYSI 1.000 213 CLFVAVLVI 1.000 330 NIRTRSESI 1.000 69 HIRNKTSFI 1.000 343 SVRRSEVRI 1.000 129 IVFLGLISI 1.000 160 VLSVCVNVI 1.000 66 IFFHIRNKT 0.924 300 LFLSACNVC 0.900 80 LWIVVADL 0.840 117 TSVLFYANM 0.750 82 NIVVADLIM 0.750 52 IFVASILLN 0.750 156 TFTKVLSVC 0.700 39 EPDTIVLPV 0.700 00 00 TableXIV- 154 P2A8-A24 -1rmers____ PoB 1234567890 Score SeqID 125 MYTSIVFLGL 336.000 231 RYIHKSSRQF 300.000 293 YYCKEITLjFL 280.000 152 MYSITFTKVL 200.000 29 LYYCKEITLF 100.000___ 48 LYLIIFVASI 75.000 300 LFLSACNVCL 30.000 39 EFDTIVLPVL 28.000 261 FFTCFLjPYHL 24.000 115 RYTSVLFYAN 14.400 67 FPHIRNKTSP 10.000 214 LFVAVLVILI 9.000 264 CFLPYHLCRI 9.000 132 LOLISIDRYL 8.400 49 YLIIFVASIL 8.400 205 -TAVTYV1NSCL 8.400 163 VCVWVIMAVL 8.400 71 RNKTSFIFYL 8.000 332 RTRSESIRSL 8.000 208 TYVNSCLFVA 7.500 83 IVVADLIMTL 7.200 103 GFGPWYFKFI 7.200 107 WYFKPILCRY 7.000 LIIFVASILL 6.000 111 FILCRYTSVL 6.000 170 AVLSLPNXIL 6.000 16 VWVIMAVLSL 6.000 104 FGPWYFKFIL 6.000 123 ANMYTSIVFL 6.000 41 DTIVLPVLYJ 6.000 53 FVASILLNGL 5.760 79 YLKNIVVADL 5.600 213 CLFVAVLVIL 5.600 6 TLAKLPNNEL 5.280 307 VCLDPIIYFF 5.040 120 LFYANMYTSI 5.000 313 IYFFMCRSFS 5.000 121 FYANMYTSIV 5.000 275 FTFSHLDRLL 4.800 283 LLDESAQKIL 4.800 282 RLLDESAQKI 4.752 I. MGFNLTLAKJ 4.400 252 QSIRVVVAVF 4.200 257 VVAVFFTCFL 4.000 21.0 VNSCLFVAVL .4.000 316 FMCRSFSRRL 4.000 291 ILYYCKEITL 4.000 256 VVVAVFFTCF 3.600 87 DLIMTLTFPF 3.0 122 YANMYTSIVF 13.000 TableXIV- 154P28 -A24 lmers P09 1234567890 Score SeqID 58 LLNGLAVWIF 3.000 159 KVLSVCVWVI 3.000 44 VLPVLYLIIF 3.000 253 SIRVVVAVFF 2.800 59 LNGLAVWIFF 2.800 102 AGFGPWYFKF 2.200 169 MAVLSLPNII 2.160 43 IVLPVLYLII 2.160 139 RYI 1 KVVKPFG 2.100 42 TIVLPVLYLI 2.100 218 VLVILIGCYI 2.100 112 ILCRYTSVLF 2.000 274 PFTFSHLDRL 2.000 306 NVCLDPIIYF 2.000 206 AVTYVNSCLF 2.000 266 LPYHiLCRIPF 2.000 312 IIYFFMCRSF 2.000 85 VAflLIMTLTF 2.000 69 HIRNKTSFIF 2.000 317 MCRSFSRRLF 2.000 57 ILLNGLAVWI 1.800 304 ACkTVCLflPII 1.800 34 TTIJHNEFDTI 1.800 61 GLAVWIFFHI 1.680 110 KFILCRYTSV 1.500 81 KNIVVADLIM 1.500 128 SIVFLGLISI 1.500 329 SNIRTRSESI 1.500 212 SCLFVAVLVI 1.500 220 VILIOCYIAI 1.500 32 QSVRRSEVRI 1.500 224 GCYIAISRYI 1.400 232 YIHKSSRQFI 1.200 75 SFIFYLKNIV 1.080 7 FYLKN~IVVAD 1.050 93 TFPFRIVHDA 1.050 303 SACNVCLDPI 1.000 180 flNGQPTEDNI 1.000 89 IMTLTFPFRI 1.000 74 TSFIFYLKNI 1.000 126 YTSIVPLGLI 1.000 95 PFRIVHDAGF 1.000 168 IMAVLSLPNI 1.000 271 CRIPFTFSHL 0.864 308 CLDPIIY FM 0.840 320 SFSRRLFKKS 0.792 225 CYIAISRYIH 0.750 36 160 186
LHNEFDTIVL
VLSVCVWVIM
ED1NIHDCSKL 0.720 0.700 0.660 Table XV-154PIA8-B7-9mer "oa 123456789 Score SeqID GPWYFKFIL 80.000 !06 AVTYVNSCL 60.000 17 MCRSFSRRL 40.000 143 SVRRSEVRI 20.000 S.64 CVWVIMAVL 20.000 S14 VVADLIMTj 20.000 L 66 WVIMAVLSL 20.000 LAXLPNNEL 18.000 i4 VASILLNGL 12.000 158 VAVFFTCFL 12.000 12 TIVLPVLYL 6. 000 AVLSLPNII 6.000 L71 VISLPNIIL 6.000 48 EVRIYYDYT 5.000 1I 175 FTFSHLDRL 4.000 11-1 NSCLFVAVL 4.000 112 ILCRYTSVL 4.000 L24 NMYTSIVFL 4.000 01 FLSACNVCL 4.000 ;9 HIRNKTSFI 4.000 L91 DCSKLKSPL 4.000 L53 YSITFTKVL 4.000 L26 YTSIVFLGL 4.000 51 IIFVASILL 4.000 ?62 FTCFLPYHL 4.000 LIIFVASIL 4.000 Z94 YCKEITLFL 4.000 330 NIRTRSESI 4.000 187 DNIHDCSKL 4.000 28 DGPGKWTTL 4.000 133 OLISIDRYL 4.000 272 RIPFTFSHL 4.000 310 DPIIYFFMC 2.000 197 SPLGVKWHT 2.000 129 IVFjGLISI 2.000 219 LVILIGCYI 2.000 215 FVAVLVILI 2.000 94 FPFRIVRDA 2.000 43 IVLPVLYLI 2.000 217 AVLVILIGC 1.500 304 ACNVCDPI 1.200 169 MAVLSLPNI 1.200 62 LAVWIFFHI 1.200 37 HNEFDTIVL 1.200 117 TSVLFYANM 1.000 161 LSVCVWVIM 1.000 15.9 KVLSVCVWV 1.000 82 NIVVADLIM 1.000 122 YANMYTSIV 0.600 255 RVVVAVFFT 0.500 Table XV-154P2AB-B7-9mers Pos 123456789 Score SeqID 83 IVVADLIMT 0.500 200 GVKWHTAVT 0.500 162 SVCVWVIMA 0.500 209 YVNSCLFVA 0.500 256 VVVAVFFTC 0.500 292 LYYCKEITL 0.400 58 LLNGLAVWI 0.400 214 LFVAVLVIL 0.400 81 KNIWADLI 0.400 49 YLIIFVASI 0.400 160 VLSVCVWVI 0.400 305 CNVCLDPII 0.400 72 NKTSFIFYL 0.400 265 FLPYIJLCRI 0.400 127 TSIVFLGLI 0.400 44 VLPVLYLII 0.400 145 KPFGDSRMY 0.400 221 ILIGCYIAI 0.400 333 TRSESIRSL 0.400 246 RKRKHNQSI 0.400 276 TFSHLDRLL 0.400.
35 TIHNEFDTI 0.400 2 GFNLTLAXL 0.400 80 LKNIVVADL 0.400 45 LPVLYLIIF 0.400 181 NGQPTBDNI 0.400 213 CLFVAVLVI 0.400 290 KILYYCKEI 0.400 40 FDTIVLPVL 0.400 90 MTLTFPFRI 0.400 104 FGPWYFKFI 0.400 341 LQSVRRSEV 0.300 55 ASILLNGLA 0.300 91 TLTFPFRIV 0.300 270 LCRIPFTFS 0.300 205 TAVTYVNSC 0.300 250 HNQSIRVVV 0.300 287 SAQKILYYC 0.300 1 163 VCVWVIMAV 0.200 76 FIFYLKNIV 0.200 155 ITFTKVLSV 0.200 253 SIRVVVAVF 0.200 199 LGVKWHTAV 0.200 273 IPFTFSHLD 0.200 113 LCRYTSVLF 0.200 56 SILLNGLAV 0.200 252 QSIRVVVAV 0.200 111 FILCRYTSV 0.200 321 FSRRLFKKS 0.200 210 VNSCLFVAV 0.200 Table XVI-154P2A8-B7-l0mers Pos 1234567890 Score SeqID 170 AVLSLPNIIL 90. 000 332 RTRSESIRSL 40.000 123 ANMYTSIVFL 36.000 53 FVASILLNGL 20.000 257 VVAVFFTCFL 20.000 83 IVVAJDLIMTL 20.000 205 TAVTYVNSCJ 12.000 41 DTIVLPVLYL 6.000 6 TLAKTJPNEL 6.000 143 VVKPFGDSRM 5.000 316 FMCRSFSR.L 4.000 210 VNSCLFVAVL 4.000 LIIFVASILL 4.000 1ll FILCRYTSVL 4.000 132 LGLISIDRYL 4.00 104 FGPWYFKFIL 4.000 213 CLFVAVLVIL 4.000 79 YL1ONIWADL 4.000 1 MGFNLTLAQI 4.000 163 VCVWVIMAVL 4.000 LPVLYLIIFV 4.000 275 FTFSHLDRLL 4.000 71 RNKTSFIFYL 4.000 291 ILYYCKEITL 4.000 49 YLIIFVASIL 4.000 43 IVLPVLYLII 2.000 159 KVLSVCVWVI 2.000 105 GPWYFKFILC 2.000 197 SPLGVKWHTA 2.000 183 QPTEflNIHDC 2.000 283 LLDESAQKIL 1.200 169 MAVLSLPNII 1.200 304 ACNVCLDPII 1.200 303 SACNVCLDPI 1.200 81 KNIVVADTJIM 1.000 343 SVRRSEVRIY 1.000 209 YVNqSCLFVAV 1.000 149 DSRMYSITFT 1.000 116 YTSVLFYAN' 1.000 160 VLSVCVWVIM 1.000 162 SVCVWVIMAV 1.000 ASILLNGLAV 0.600 145 KPFGDSRNYS 0.600 26 LPYHLCRIPF 0.600 232 YIHKSSRQPI 0.600 219 LVILIGCYIA 0.500 348 EVRIYYDYTD 0.500 84 WADLI4TLT 0.500 2551 RVVVAVFFTC 0.500 i~ SLFYAI4YT 0.500 Table XVI-154P2A8-B7-lomers Pos .1234567890 Score SeqID 329 SNIRTRSESI 0.400 125 MYTSIVFLGL 0.400 190 HDCSKLKSPL 0.400 342 QSVRRSEVRI 0.400 61 GLAVWIFFHI 0.400 168 IMAVLSLPNI 0.400 57 ILIMGLAVWI 0.400 152 MYSITFTKVL. 0.400 261 FFTCFLPYHL 0.400 165 VWVIMAVLSL 0.400 282 RLLDESAQKI 0.400 74 TSFIFYLKI. 0.400 126 YTSIVFLGLI 0.400 224 GCYIAISRYI 0.400 180 TNGQPTEDNI 0.400 293 YYCKEITLFL 0.400 212 SCLFVAVLVI 0.400 300 LFIJSAONVCL 0.400 186 EDNIHDCSKL 0.400 322 SRRLFKKSNI 0.400 89 IMTLTFPFRI 0.400 128 SIVFLLtISI 0.400 42 TIVIJPVLYLI 0.400 220 VILIGCYIAI 0.400 29 GPGKNTTLHN 0.400 218 VLVILIGCYI 0.400 36 LHNEFDTIVJ 0.400.
271 CRIPFTFSHJ 0.400 27 SDGPG1K'TTL 0.400 34 TTLHN!FDTI 0.400 308 CLDPIIYFFPM 0.300 206 AVTYVNSCLF 0.300 340 SLQSVR.RSEV 0.300 90 MTLTFPFRIV 0.300 216 VAVLiVILIGC 0.300 217 AVLVILIGCY 0.300 54 VASILLINGLA 0.300 317 MCRSFSRRLF 0.300 63 AVWIFFHIRN 0.300 259 AVFFTCFLPY 0.300 134 LISIDRYLKV 0.200 69 HIRNKTSFIF 0.200 310 DPIIYFFMCR 0.200 10 LPNNELHGQE 0.200 151 RNYSITFTKV 0.200 35 TLHNEFDTIV 0.200 298 ITLFLSACKV 0.200 251 NQSIRVVVAV 0.200 321 FSRRLKKSN' 0.-200 24 1GNRSDGPGKN 0.200 TableXVII-154P2A8-B3S-9mer POB 123456789 Score SeqID 145 KPFGDSRMY 120.000 105 GPWYFKFIL 20.000 LPVLYLIIF 20.000 14*9 DSRMYSITF 15.000 71 RNKTSFIFY 12.000 161 LSVCVWVIM 10.000 117 TSVLFYANM 10.000 286 ESAQKILYY 10.000 7 LAKLPNNEL 9.000 294 YCKEITLFi 6.000 211 1SCLFVAVL 5.000 153 YSITFTKVL 5.000 306 NVCLDPIIY 3.000 253 SIRVVVAVF 3.000 113 LCRYTSVLF 3.000 54 VASILLNGL 3.000 258 VAVFFTCFL 3.000 317 MCRSFSRRL 3.000 101 DAGFGPWYF 3.000 94 FPFRIVHDA 2.000 132 LGLISIDRY 2.000 310 DPIIYFFMC 2.000 2198 VLVILIGCY 2.000 135 ISIDRYLKV 2.000 82 NIVVADLIM 2.000 84 VVADLIMTL 2.000 41 DTIVLPVLY 2.000 224 GCYIAISRY 2.000 118 SVLFYANmY 2.000 L27 TSIVFLGLI 2.000 307 VCLDPIIYF 2.000 272 RIPFTFSHL 2.000 32 KNTTLHNEF 2.000 197 SPLGVKWHT 2.000 L87 DNIRDCSKL 1.500 321 FSRRLFKKS 1.500 229 ISRYIHKSS 1.500 236 SSRQFISQS 1.500 169 MAVLSLPNI 1.200 343 SVRRSEVRI 1.200 330 NIRTRSESI 1.200 69 HIRNXTSFI 1.200 62 LAVWIFFMI 1.200 164 CVWVIMAV 1.000 NGLAVWIFF 1.000 126 YTSIVFIGL 1.000 207 VTYVNSCLF 1.000 232 YIHKSSRQF 1.000 166 WVIMAVLSL 1.000 88 LIMTjTFPF 1.000 TableXVII -154P2A8-B35-9mers Poe 123456789 Score SeqID 171 VLSLPNIIL 1.000 191 DCSKJKSPL 1.000.
257 VVAVFFTCF 1.000 133 GLISIDRYL 1.000 206 AVTYVNSCL 1.000 339 RSLQSVRRS 1.000 275 FTFSHLDRL 1.000 59 LNGLAVWIF 1.000 51 IIPVASILL 1.000 301 FLSACNVCL 1.000 124 NMYTSIVFL 1.000 336 ESIRSLQSV 1.000 50 LIIFVASIL 1.000 28 DGPGKNTTL 1.000 269 HLCRIPFTF 1.000 123 ANMYTSIVF 1.000 42 TIVLPVLYL 1.000 262 FTCFLPYHL 1.000 252 QSIRVVVAV 1.000 112 ILCRYTSVL 1.000 344 VRRSEVRIY 0.900 332 RTRSESIRS 0.900 345 RRSEVRIYY 0.800 81 KNIVVADLI 0.800.
290 KILYYCKEI 0.800 35 TLHNEFDTI 0.600 108 YFKFILCRY 0.600 183 QPTEDNIHD 0.600 350 RIYYDYTDV 0.600 157 FTKVLSVCV 0.600 122 YANMYTSIV 0.600 172 LSLPNIILT 0.500 55 ASILLNGLA 0.500 74 TSFIFYLKN 0.500 243 QSSRKRKHN 0.500 57 ILLNGLAVW 0.500 19 ESHNSGNRS 0.500 37 HNEFDTIVL 0.450 58 LLNGLAVWI 0.400 215 FVAVLVILI 0.400 219 LVILIGCYI 0.400 90 MTLTFPFRI 0.400 104 FGPWYFKFI 0.400 213 CLFVAVLVI 0.400 265 FLPYHLCRI 0.400 160 VLSVCVWVI 0.400 181 NGQPTEDNI 0.400 49 YLIIFVASI 0.400 43 IVLPVLYLI 0.400 159 KVLSVCVWV 0.400 Table XVIII-154P2A8-B35-l0mers Pos 1234567890 Score SeqID 266 LPYHLCRIPF 20.000 117 TSVLFYANMhY 10.000 343 SVRRSEVRIY 9.000 143 VVKPFGDSRM 6.000 113 LCRYTSVLFY 6.000 200 GVKWHTAVTY 6. 000 346 RSEVRIYYDY 6.000 71 RNKTSFIPYL 6.000 332 RTRSESIRSL 6.000 252 QSIRVVVAVF 5.000 145 KPFGDSR"YS 4.000 LPVLYLIIFV 4.000 183 QPTEDNIHDC 4.000 81 IQNIVVADLIM 4.000 69 HIRNIKTSFIF 3.000 194 KLKSPLGVKW 3.000 317 MCRSFSRJRLF 3.000 122 YANMYTSIVF 3.000 253 SIRVVVAVFF 3.000 305 CNVCLDPIIY 3.000 79 YLIGNIVVADL 3.000 192 CSKLKSPLGV 3.000 205 TAVTYVNSCL 3.000 342 QSVRRSEVRI 2.000 160 VLSVCVWVIM 2.000 105 GPWYFKFILC 2.000 29 GPGKN~TTLHN 2.000 197 SPLGVKWHTA 2.000 131 FLGLISIDRY 2.000 116 YTSVLFYANI 2.000 307 VCLDPIIYFF 2.000 217 AVLVILIGCY 2.000 259 AVFFTCFLPY 2.000 135 ISIflRYLKVV 2.000 223 IGCYIAISRY 2.000 74 TSFIFYLKNi 2.000 282 RLLDESAQKI 1.600 17 FTKVLSVCVW 1.500 236 SSRQFISQSS 1.500 244 SSRKRKHNQS 1.500 321 FSRRLFKKSN 1.500 149 DSRMYSITFT 1.500 303 SACNVCLD)PI 1.200 169 MAVLSLPNII 1.200 58 LLNGLAVWIF 1.000 112 ILCRYTSVLF 1.000 21 VNTSCLFVAVL 1.000 170 AVILSLPNIIL 1.000 132 LGLISIDflYL 1.000 98- IVHDAGFGPW 1.000 Table XVIII-154P2A8-B35-lomers Pos 1234567890 Score SeqID 196 KSPLGVKWHT 1.000 41 DTIVLPVLYL 1.000 49 YLIIFVASIL 1.000 50 LIIFVASILL 1.000 328 KSNIRTRSES 1.000 235 KSSRQ FISQS 1.000 87 DLIMTLTFPF 1 .000 59 LNGLAVWIFF 1.000 55 ASILLNGLAV 1.000 163 VCVWVIMAVL 1.000 256 VVVAVFFTCF 1.000 291 ILYYCKEITL 1.000 257 VVAVFFTCFL 1.000 102 AGFGPWYFKP 1.000 312 IIYFFMCRSF 1.000 111 FILCRYTSVL 1.000 206 AVTYVNSCLF 1.000 275 FTFSRJJDRLL 1.000 211 NSCLFVAVLjV 1.000 53 FVASILLNGL 1.000 306 NVCLDPIIYF 1.000 316 FMCRSFSRRL 1.000 6 TLAKLPNNEL 1.000 104 FGPWYFKFIL 1.000 1 MGFNLTLAXL 1.000 *83 IWVADLIMTL 1.000 213 CLFVAVILVIL 1.000 44 VLPVLYLIIF 1.000 123 ANMYTSIVFL 1.000 85 VADILIMTLTF 0.900 159 KVLSVCVNVI 0.800 263 LLDESAQKIL 0.600 34 TTIIHNEFDTI 0.600 308 CILDPIIYFFM 0.600 294 YCKEITLFLS 0.600 344 VRRSEVRIYY 0.600 56 SILLNGLAVW 0.500 172 LSLPNIILTN 0.500 127 TSIVFLGLIS 0.500 153 YSITFTKVLS 0.500 286 ESAQKILYYC 0.500 161 I.SVCVWVIMA 0.500 224 GCYIAISRYI 0.400 232 YIHKSSRQFI 0.490 304 ACNVCLDPII 0.400 2181 VLVILIGCYI 0.400 180 TNGQPTEDNI 0.400 128 SIVFIGLISI 0.400 57 ILLNGLAVWI 0.400 61 GLAVWIFFHI 10.400 Table V-156P1D4-A1-9mer 00 Poe 123456789 Score SeqID 98 AVEVQSAIR 18.000 87 VTDPSKNHT 12.500 GAENAFKVR 9.000 Ct122 TLEFLKIPS 4.500 66 ATEISHVL 4.500 197 PSDPLDMKG 3.750 tf 43 DTNEEYLFK 2.500 13 HAEI 1 CQPGA 1.800 32 RTALGDKAY 1.250 44 TNEEYLFKA 1.125 213 MTEDERLTP 1.125 181 DAEDKCEM 0.900 135 PMDPSVPIW 0.500 117 FLNDQTLEF 0.500 C1 139 SVPIWIIIF 0.500 00 178 EVDDAEDKC 0.500 52- AIVAFSMRK 0.500 94 HTLPAVEVQ 0.250 63 NREATEISH 0.225 132 LAPPNDPSV 0.200 143 WIIIFGVIF 0.200 191 TIENGIPSD 0.180 163 LSGIWQRRR 0.150 101 VQSAIRMNK 0.150 190 ITIENGIPS 0.125 77 VTQRV8FWF 0.125 118 LNDQTLEFL 0.125 18 QPGAENAFK 0.100 210 DAFMTEDER 0.100 51 KAMVAFSMR 0.100 16 LCQPGAENA 0.100 131 TLAPPMDPS 0.100 72 VLLCNVTQR 0.100 161 LILSGIWQR 0.100 162 ILSGIWQRR 0.100 17*3 NKEPSEVDD 0.090 185 KCENMITIE 0.090 138 PSVPIWIII 0.075 200 PLDMKGGHI 0.050 144 IIIFGVIFC 0.050 160 LLILSGIWQ 0.050 TAIHAELCQ 0.050 YAWDTNEEY 0.050 157 AIALLILSG 0.050 15.5 IVAALIL 0.050 CNVTQRVSF 0.050 164 SGIWQRRRK 0.050 148 GVIFCIIIV 0.050 119 NDQTEFLK 0.050 68 EISHVLLCN 0.050 TableV-156P1D4-A1-9mers Poe 123456789 Score SeqID 152 CIIIVAIAL 0.050 145 IIFOVIFCI 0.050 195 GIPSDPLDM 0.050 196 IPSDPLDMK 0.050 156 VAIALLILS 0.050 154 IIVAXALLI 0.050 149 VIFCIIIVA 0.050 111 RINNAFFLN 0.050 45 NEEYLFKAM 0.045 56 FSMRKVPNR 0.030 176 PSEVDDAED 0.027 204 KGGHINDAF 0.025 41 AWDTNEEYL 0.025 9 VTAIIAELC 0.025 214 TEDERLTPL 0.025 95 TLPAVEVQS 0.020 84 WFVVTDPSK- 0.020 15 ELCQPGAEN 0.020 151 FCIIIVAIA 0.020 34 ALGDKAYAW 0.020 8 LVTAIHAEL 0.020 28 RLSIRTALG 0.020 33 TALGDKAYA 0.020 80 RVSFWFVVT 0.020 3 WLLFFLVTA 0.020 153 IIIVAIALL 0.020 48 YLFKAVAF 0.020 30 SIRTALGDK 0.020 71 HVLLCNVTQ 0.020 17 CQPGAENAF 0.015 69 ISHVLLCNV 0.015 102 QSAIRMNKN 0.015 147 FGVIFCIII 0.013 130 STLAPPMDP 0.013 140 VPIWIIIFG 0.013 208 INDAFMTED 0.013 158 IALLILSGI 0.010 177 SEVDDAEDK 0.010 42 WDTNEEYLF 0.010 4 LLFFLVTAI 0.010 74 LCNVTQRVS 0.010 159 ALLILSGIW 0.010 53 MVAFSMRKV 0.010 76 NVTQRVSFW 0.010 103 SAIRMNKNR 0.010 73 LLCNVTQRV 0.010 86 VVTDPSKNH 0.010 65 EATEISHVL 0.010 85 FVVTDPSKN 0.010 114 NAFPLNDQT 0.010 00 00 TableVI-156P1D4-Al-lmera Pos 1234567890 Score SegID 118 LINDQTLEFLK 12'.500 87 VTDPS1NHTL 12.500 66 ATEISHVLLC 11.250 185 KCENMITIEN 4.500 98 AVEVQSAIRM 4.500 176 PSEVDDAEDK 2.700 213 MTEDERLTPL 2.250 GAENAFKVRL 1.800 122 TLEFLKIPST 1.800 135 PMDPSVPIWI 1.250 100 EVQSAIRMNK 1.000 51 KANVAFSMRK 000 16 LCQPGAENAF 1.000 181 DAEDKCENMI 0.900 197 PSDPLDMKGG 0.750 138 PSVPIWIIIF 0.750 94 HTLjPAVEVQS 0.500 41 AWDTNEBYLF 0.500 76 NVTQRVSFWF 0.500 173 NKEPSEVDDA 0.450 163 LSGIWQRRRK 0.300 44 TNEEYLFKAM 0.225 195 GIPSDPLDMK 0.200 74 LCNVTQRVSF 0.200 131 TLAPPMDPSV 0.200 102 QSAIRMNKTR 0.150 43 DTNEEYLFKA 0.125 194 NGIPSDPLDM 0.125 121 QTLEFLKIPS 0.125 9 VTIHAELCQ 0.125 160 LLILSGIWQR 0.100 161 LILSGIWQRR 0.100 71 -HVLLCNVTQR 0.100 162. ILSGIWQRRR 0.100 191 TIENGIPSDP 0.090 NEEYLFKANV 0.090 13 HAELCQPGAE 0.090 17 CQPGAENAFK 0.060 189 MITIENGIPS 0.050 32 -RTALGDKAYA 0.050 153 IIIVAIALLI 0.050 148. GVIFCIIIVA .0.050 144 IIIFGVIFCI 0.050 42 WDTNEEYLFK 0.050 151 FCIIIVAIAL 0.050 200 PLDMKGGHIN 0.050 143 WIIIFGVIFC OAOO 159 ALLILSGIWQ 0.050 1i56 VAIALLILSG 0.050 1.54 IIVAIALLLIL 10.050 Table VI-156P1D4-A1oiers Pos 11234567890 Score SeqID 139 SVPIWIIIFG 0.050 155 IVAIALIJILS 0.050 178 BVDDAEDKCE 0.050 63 NREATEISHV 0.045 29 LSIRTALGDK 0.030 31 IRTALGDKAY 0.025 179 VDDAEPKCEN 0.025 116 FFLNDQTLEF 0.025 39 AYAWDTNEEY 0.025 130 STLAPPMflPS 0.025 97 PAVEVQSAIR 0.020 33 TALGDKPIYAW 0.020 149 VIFCIIIVAI 0.020 165 GIWQRRRKNK 0.020 152 CIIIVAIALL 0.020 83 FWFVVTDPSK 0.020 4 LLFFLVTAIH 0.020 127 KIPSTLAPPM 0.020 7 FLVTAIRAEL 0.020 54 1VAFSMRKVPN 0.020 65 EATEISHVLL 0.020 69 ISHVLLCNVT 0.015 147 FOVIFCIIIV 0.013 22 ENAFKVRLSI 0.013 102 AEDKCENI4IT 0.013 18 QPGAENAFKV 0.013 137 DPSVPIWIII 0.013 205 GGHINDAFMT 0.013.
35 LGDKAYAWDT 0.013 208 INDAFMTEDE 0.013 140 VPIWIIIFGV 0.013 196 IPSDPLDMKG 0.013 158 IALLILSGIW 0.010 142 IWIIIFGVIF 0.010 86 VVTDPS1QNHT 0.010 55 AFSMRKVPNR 0.010 73 LLCKVTQRVS 0.010 145 IIFGVIFCII 0.010 15 ELCQPGAENA 0.010 11 AIRAELCQPG 0.010 60 KVPNREATEI 0.010 3 WLLFFLVTAI 0.010 47 EYLFKAMVAF 0.010 14 NAPFLNDQTL 0.010 151 AIALLILSGI 0.01 72 VLLCNVTQRV 0.010 117 FLNDQTLBFL 0.010 132 LAPPMDPSVP 0.010 95 TLPAVEVQSA 0.010 210 DAFMTEDERL 06.01 TableVII-156P1D4-A2-9mers Pos 123456789 Score SeqID 1 MLWLLFFLV 10814.793 3 WLLFFIVTA 739.014 4 LLFFIVTAI 150.931 145 IIFGVIFCI 120.368 73 LLCNVTQRV 118.238 78 TQRVSFWFV 42.004 141 PIWIIIFGV 23.295 212 FMTEDERLT 20.301 144 IIIFGVIPC 14.690 153 IIIVAIALL 11.485 188 NNITIENGI 7.535 148 GVIFCIIIV 5.739 53 MVAFSMRKV 4.759 149 VIFCIIIVA 4.052 8 LVTAtHAEL 3.178 64 REATEISHV 3.111 155 IVAIALLIL 2.997 152 CIIIVAIAL 2.937 48 YLFKAV4VAF 2.917 154 IIVAIALLI 2.439 158 IALLILSGI 2.096 123 LEFLKIPST 2.096 69 ISHVILCNV 1.775 132 LAPPMDPSV 1.642 21 AENAFKVRL 1.578 214 TEDERLTPL 1.567 117 FLNDQTLEF 1.405 33 TALGDKAYA 1.404 46 EEYLFKANV 1.233 125 FLKIPSTLA 0.800 195 GIPSDPLDM 0.683 118 LNDQTIEFL 0.588 23 NAFKVRLSI 0.536 RVSFWFVVT 0.508 147 FGVIFCIII 0.488 174 KEPSEVDDA 0.381 34 ALGDKAYAW 0.306 19. PGAENAFKV 0.238 161 LILSGIWQR 0.222 91 SKNHTLPAV 0.222 67 TEISHVLLC 0.222 72 VLLCNVTQR 0.216 114 NAFFLNDQT 0.188 FKAMVAFSM 0.184 205 GGHINDAFM 0.178 99 VEVQSAIRM 0.164 7 FLVTAIHAE 0.158 120 DQTLEFLKI 0.151 79 QRVSFWFVV 0.148 151 FCIIIVAIA 0.141 Table VII-156P1D4-A2-9mers Pos 123456789 Score SeqID 160 LLILSGIWQ 0.139 136 MDPSVPIWI 0.135 96 LPAVEVQSA 0.127 61 VPNREATEI 0.116 44 TNEEYLFKA 0.114 111 RINNAFFLN 0.113 104 AIRMNKNRI 0.109 171 RKNKBPSEV 0.097 110 NRINNAFFL 0.095 131 TLAPPMDPS 0.084 76 NVTQRVSFW 0.082 182 AEDKCENNI 0.081 40 YAWDTNEEY 0.079 28 RLSIRTALG 0.075 95 TIPAVEVQS 0.075 143 WIIIFGVIF 0.073 87 VTDPSKNHT 0.070 6 FFLVTAIHA 0.059 9 VTAIHAELC 0.057 77 VTQRVSFWF 0.056 128 IPSTLAPPM 0.055 115 AFFLNDQTL 0.055 106 RMNKNRINN 0.054 26 KVRLSIRTA 0.053 93 NHTLPAVEV 0.048 25 FKVRLSIRT 0.048 86 VVTDPSKN1 0.045 162 ILSGIWQRR 0.043 52 AMVAFSMRK 0.041 65 EATEISHVL 0.037 137 DPSVPIWII 0.036 206 GHINDAFMT 0.030 85 FVVTDPSKN 0.030 88 TDPSKNHTL 0.030 150 IFCIIIVAI 0.028 16 LCQPGAEKA 0.027 203 MKGGHIIDA 0.027' 211 AFMTEDERL 0.027 178 EVDDAEDKC 0.026 157 AIALLILSG 0.024 134 PPMDPSVPI 0.023 2 LWLLFFLVT 0.019 66 ATEISHVLL 0.019 27 VRLSIRTAL 0.019 165 GIWQRRRKN 0.017 127 KIPSTLAPP 0.016 1S9 ALLILSGIW 0.015 97 PAVEVQSAI 0.013 200 PLDMKGGHI 0.012 45 NEEYLFKAM 0.012 00 00 TableVIII- 156P1D4-A2-10merB Poo 1234567890 Score SeqID 117 FLNDQTLEFL 2497.344 72 VLLCNVTQRV 437.482 3 WLLFFLVTAI 408.402 1 MLWTJLFFLVT 311.258 77 VTQRVSFWFV 128.707 YAWDTNEEYL 125.169 7 FLVTAIHAEL 98.267 131 TLAPPMDPSV 69.552 143 WIIIFGVIFC 39.750 144 IIIFGVIFCI 32.532 52 AM'VAFSMRKV 23.107 149 VIFCIIIVAI 20.753 48 YLFKAMVAFS 16.044 TLPAVEVQSA 11.426 140 VPIWIIIFGV 10.296 106 RMNKNRINNA 8.252 78 TQRVSFWFVV 8.233 145 IIFGVIFCII 7.029 152 CIIIVAIALL 6.756 154 IIVAIALLIL 4.709 86 VVTDPSKNHT 4.545 157 AIALLILSGI 3.299 KVPNREATEI 3.195 18 QPGAENAFKV 2.633 123 LEFLKIPSTL 2.613 153 IIIVAIALLI 2.439 127 KIPSTLAPPM 2.391 147 FG3VIFCIIIV 1.969 68 EISRVLLCNV 1.650 92 IK1HTLPAVEV 1.589 109 IMRI1NNAFFL 1.183 114 NAPFLNDQTL 1.098 122 TLEFLKIPST 1.097 151 FCIIIVAIAL 0.641 204 KGGHINDAFM 0.624 34 ALGDKAYAWD 0.504 26 KVRLSIRTAL 0.497 160 LLILSGIWQR 0.437 148 GVIPCIIIVA 0.410 32 RTALGDKAYA 0.380 135 PMDPSVPIWI 0.365 8 LVTAIHAELC 0,.362 192 IENGIPSDPL 0.346 NEEYLFKAMV 0.329 213 MTEDERLTPL 0.304 159 ALLILSGIWQ 0.303 43 DTNEHYLjFKA 0.283 205 GGHINDAFMT 0.282 LGDKAYAWDT 0.248 76 NVTQRVSFWF 0.208 TableVIII-156PlD4-A2-10merB Poe 1234567890 Score SeqID 212 FMTEDERLTP 0.203 87 VTDPSKNHTL 0.202 177 SEVDDAED)KC 0.194 4 LLFFLVTAIH 0.192 15 ELCQPGAENA 0.183 136 NDPSVPIWII 0.174 64 REATEISHVL 0.170 103 SAIRNNKNRI 0.145 96 LPAVEVQSAI 0.116 65 EATEISHVLL 0.091 139 SVPIWIIIFG; 0.082 20 GAEbTAFKVRL 0.072 133 APPMDPSVPI 0.068 57 SMRKVPNREA 0.055 210 DAPMTEDERL 0.040 2 LWLLFFLVTA 0.038 69 ISHVLLCNVT 0.034 194 NGIPSDPLDM 0.032 85 FVVTDPSKNH 0.030 1011 VQSAIRMN1N 0.030 98 AVEVQSAIRM 0.028 119 NDQTLEFLKI 0.028 141 PIWIIIFGVI 0.027 155 IVAIAIJLILS 0.025 30 SIRTALGDKA 0.025 12 IHAELCQPGA 0.024 113 NNAPFLNDQT 0.024 182 AEDKCENMIT 0.024 161 LILSGIWORR 0.022 5 LFFLVTAIHA 0.022 202 DMKGGHINDA 0.022 1461 IFGVIFCIII 0.01.9 187 ENI4ITIENGI 0.019 189 MITIENGIPS 0.017 165 GIWQRRRKNK 0.017 44 TNEEYLFKA4 0.016 121 QTLEFLKIPS 0.016 28 RLSIRTALGD 0.015 111 RINNAPFLND 0.015 25 FKVRI 1 SIRTA 0.015 80 RVSFWFVVTD 0.011 73 LLCNVTQRVS 0.010 11 AIHAELCQPG 0.010 51 KAI4VAFSMRK 0.01.0 66 ATEISMVLC 0.010 199 DPLDMKGGHI 0.010 46 EEYLFKANVA 0.010 17 CQPGAENAFK 0.008 54 VAFSMRXVPN 0.007 175 CNVTQRVSFW 10.006 ITable IX-156P1D4-A-9mers Poe 123456789 Score SeqID 52 AMVAFSMRK 180.000 72 VLLCNVTQR 18.000 48 YLFKANVAF 15.000 4 LLFFLVTAI 9.000 1 MLWLLFFLV 9.000 162 ILSGIWQRR .9.000 117 FLNDQTLEF 4.000 145 IIFGVIFCI 3.038 161 LILSGIWQR 2.700 139 SVPIWIIIF 1.800 101 VQSAIRMNK 1.800 188 NMITIENGI 1.350 3 WLLFFLVTA 1.350 SIRTALGDK 0.900 43 DTNEEYIJFK 0.900 143 WIIIFGVIF 0.900 34 ALGDKAYAW 0.600 51 KAM'VAFSMR 0.540 149 VIFCIIIVA 0.450 196 IPSDPLDMK 0.450, 77 VTQRVSFWF 0.450 958 AVBVQSAIR 0.400 73 LLCNVTQRV 0.300 125 FLKIPSTLA 0. 300 148 GVIFCIIIV 0.270 154 IIVAIALLI 0.270 152 CIIIVAIAL 0.270 18 QPGAENAFK 0.200_ YAWDTNEEY 0.200 GAENAPKVR 0.180 14*4 IIIFGVIFC 0.180 155 IVAIALLIL 0.180 153 IIIVAIALL 0.135 131 TLAPPMDPS 0.135 195 GIPSDPILDM 0.120 32 RTALGDKAY 0.100 RVSFWFVVT 0.090 23 N'AFKVRLSI 0.090--- 8 LVTAIHAEL 0.090 159 ALLILSGIW 0.090 PMDPSVPIW 0.090 17 CQPGAENAF 0.090 56* FSMRKVPNR 0.090 177 SEVDDAEDK 0.090 122 TLEFLKIPS 0.080 141 PIWIIIFGV 0.068 119 NDQTLEFLK 0.060 210 DAPMTEDE. 0.060 1TLPAVEVQS 0.060 104_[ AIRMNIMRI .0_.060 Table IX-156P14-A3- 9mers Pos 123456789 Score SegID 160 LLILSGIWQ 0.060 76 NVTQRVSFW 0.060 78 TQRVSFWFV 0.054 7 FLVTAIHAE 0.045 106 RMNKNRINN 0.040 120 DQTLEFLKI 0.032 84 WFVVTDPSK 0.030 57 SMRKVPNRE 0.030 66 ATEISI{VLL 0.030 103 SAIRMIM4 0.030 158 IALLILSGI 0.020 28 RLSIRTALG 0.020 202 DMKGGHIND 0.018 111 RINNAFFLN 0.018 200 PLDMKGGHI 0.018 212 FMTEDERLT 0.015 86 VVTDPSKNH 0.015 151 FCIIIVAIA 0.013 137 DPSVPIWII 0.012 109 KNRflNNAFF 0.012 207 HINDAFMTE 0.012 9 VTAIHAELC 0.010 166 IWQRRR1GNK 0.010 204 KGGHINDAF 0.009 127 KIPSTLAPP 0.009 15 ELCQPGAEN 0.009 38 KAYAWDTNE 0.009 26 KVRLSIRTA 0.009 190 ITIENGIPS 0.009 44 TNEEYLFKA 0.008 87 VTDPSKNHT 0.007 94 HTLPAVEVQ 0.007 75 CNVTQRVSF 0.006 24 AFKVRLSIR 0.006 42 WDTNEEYLF 0.006 163 LSGIWQRRR 0.006 178 EVDDAEDKC 0.006 60 KVPNREATE 0.006 61 VPNREATEI 0.006 96 LPAVEVQSA 0.006 157 AIALLILSG 0.006 147 FGVIFCIII 0.005 21 AEbTAFKVRL 0.005 174 KEPSEVDDA 0.005* 67 TEISHVLLC 0.005 121 QTLEFLKIP 0.005 114ii NAFFLNDQT 0.005 130 STLAPPMDP 0.005 81 VSFWFVVTD 0.005 33 1TALGDKAYA 10.005 Table X-156PD4-A3-10mers Poe 1234567890 Score SeqID 160 LLILSGIWQR, 27.000 165 GIWQRRRKaUK 15.000 195 GIPSDPLDMK 13.500 1 MLWLLFFLVT 9.000 51 KAMvVAFSMRK 5.400 3 WLLFFLVTAI 2.700 145 IIFGVIFCII 2.025 162 ILSGIWQRRR 1.800 100 EVQSAIRNNK 1.800 71 IVLLCNVTQR 1.800 4 LIJFFLVTAIH 1.500 7 FLVTAIHAEL 1.350 161 LILSGIWQRR 0.900 117 FLNDQTLEFL 0.900 76 NVTQRVSFWF 0.900 17 CQPGAENAFK 0.900 149 VIPCIIIVAI 0.675 144 IIIFGVIFCI 0.608 TLPAVEVQSA 0.600 48 YLFKAI4VAFS 0.600 72 VLLCi.TVTRV 0.450 148 GVIFdIIIVA 0.405 106 RI4NIKRINNA 0.300 131 ThAPPMDPSV 0.300 23 TAFKVRLSIR 0.300 26 I(VRLSIRTAL 0.270 154 IIVAIALLIL 0.270 153 IIIVAZALLI 0.270 135 PMDPSVPIWI 0.270 KVPNREATEI 0.180 143 WIIIFGVIFC 0.180 .122 TLEFLKIPST 0.150 157 AIALLILSGI 0.135 202 DMKGGHINDA 0.135 152 CIIIVAZALL 0.135 118 YNDQTLEFLK 0.120 83 FWFVVTDPSK 0.100 77 VTQRVSFWFV 0.090 29 LSIRTALGDK 0.068 43 DTNEEYLFKA 0.061 66 ATEISHVLLC 0.060 ELCQPGAENA 0.060 159 ALLILSGIWQ 0.060 212 FMTEDERLTP 0.060 127 KIPSTLAPPM 0.060 78 TQRVSFWFVV 0.054 GAENAFKVRL 0.054 213 MTEDERLTPL 0.045 87 VTDPSKNHTL 0.045 52 AMVAFSMRKV 0.045 Table X-156PlD4-A3-10mers Poe 1234567890 Score SeqID 141 PIWIIIFGVI 0.041 125 FLKIPSTLAP 0.040 42 WDTNEEYLFK 0.040 98 AVEVQSAIRM 0.040 28 RLSIRTALGD 0.040 111 RINNAFFLND 0.036 57 SMRKVPNREA 0.030 114 NAFFLNDbQTL 0.030 16 LCQPGAENAF 0.030 40 YAWDTNEEYL 0.030 151 FCIIIVAIAL 0.027 85 FVVTDPSQNH 0.022 138 PSVPIWIIIF 0.020 140 VPIWIIIFGV 0.020 30 SIRTALGDKA 0.020 74 LCNVTQRVSF 0.020 8 LVTAIHAELC 0.020 34 ALGDKAYAWD 0.020 s0 RVSFWFVVTD 0.018 33 TALGDXAYAW 0. 013 123 LEFLKIPSTL 0.013 s0 FKAMVAFSMR 0.012 55 AFSMRKVPNR 0.012 155 IVAIALLILS 0.012 109 1KNRINNAPPL 0.011 176 PSEVDD)AEDK 0.010 102 QSAIRNNKNR 0.010 86 VVTDPSKNHlT 0.010 163 LSGIWQRRRK 0.010 32 RTALGDXAYA 0.010 142 IWIIIFGVIF 0.009 97 PAVEVQSAIR 0.009 133 APPMDPSVPI 0.009 68 EISHVLLCNV 0.009 103 SAIRMNQNRI 0.009 139 SVPIWIIIFG 0.009 207 HINDAFMTED 0.009 188 NMITIENGIP 0.009 210 DAPMTEDERL 0.009 96 LPAVEVQSAI 0.009 121 QTLEFLKIPS 0.009 189 I4ITIENGIPS 0.008 130 STLAPPMDPS 0.007 94 HTLPAVEVQS 0.007'___ 107 -MNKNRINNAF 0.006 41 AWTNEEYLF 0.006 116 FFLNDQTLEF 0.006 18 QPGAENAFKV 0.006 137 DPSVPIWIII 0.005 203 MKGGI;NA.F 0. 005 Table XI-156P1D4-Al1-9mers -Pos 123456789 Score _SeqI 5 2 ANVAFSMRK 1.200 101 VQSAIRMNJK 1.200 4'3 DTNEEYLFK 0.600 SIRTALGDK 0.400 98 AVEVQSAIR 0.400 84 WFVVTDPSK 0.300 161 LILSGIWQR, 0.240 51 KANMVAFSM.R 0.240 18 QPGAENAFK 0.200 196 IPSDPLDMK 0.200 148 GVIFCIIIV 0.180 72 VLLCNVTQR 0.120 177 SEVDDA.EDK- 0.090 162 ILSGIWQRR 0.080 11-9 NDQTLEFLK 0.060 GAENAFKVR 0.0650 139 SVPIWIIIF 0.040 155 IVAIALLIL 0.040 24 AFKVRLSIR 0.040 77 VTQRVSFWF 0.030 103 SAIRMNKNR 0.030 195 GIPSDPLDM 0.024 145 IIFGVIFCI 0.024 1 MLjWLLFFLV 0.024 210 DAFMTEDER 0.0 24 8 LVTAIHAEL 0 .020 76 NVTQRVSFW 0.020 149 VIFCIIIVA 0.016 32 RTA LGDKAY 0.015 154 IIVAIALLI 0.012 152 CIIIVAIAL 0.012 78 TQRVSFWFV 0.012 86 VVTDPSKNH 0.010 166 IWQRRR1KIK 0.010 66 ATEISHVLL 0.010 56 FSMRKVPNR 0.008 48 YLFKAMVAF 0.008 117 FLNDQTLEF 0.008 4 LLFFLVTAI 0.008 23 NAFKVRLSI 0.008 34 ALGDKAYAW 0.008 RVSFWFVV'D 0.006 KVPNREATE 0.006 3 WLLFFLVTA 0.006 17 CQPGAENAP 0.006 6 FFLVTAIHA 0.006 143 WIIIFOVIF 0.006 153 IIIVAIALL 0.006 26 KVRLSIRTA 0.006 1881 NNITIENGI 0.006 Table XI-156PID4-A1..gmers Pos 123456789 Score SeqID 159 ALLILSGIW 0.006 104 AIRMN1QURI 0.004 40 YAWDTNEEy 0.004 5 LFFLVTAIH 0.004 211 AFM.TEDERL 0.004 125 FLKIPSTLA, 0.004 115 AFFLNDQTL 0.004 73 LLCNVTQRV 0.004 111 RINNAPFLN 0.004 120 DQTLEFLKI 0.004 47 EYLFKAMVA 0.004 164 SGIWQRRRK 0.003 130 STLAPPMDP 0.003 71 HVLLCNVTQ 0.003 85 FVV7DPSKN 0.003 151 FCIIIVAIA 0.003 190 ITIENGIPS 0.003 33 TAIJGDKAYA 0.003 158 IALLILSGI 0.003 106 RNNKNRINN 0.002 141 PIWIIIFGV 0.002 213 MTEDER 1 TP 0.002 13 HAEILCQPGA 0.002 16 LCQPGAENA 0.002 61 VPNREATEI 0.002 132 LAPPMDPSV 0.002 128 IPSTLAPPM 0.002 146 IFGVIFCII 0.002 53 MVAFSMRKV 0.002 96 LPAVEVQSA 0.002 1750 IFCIIIVAI 0.002 174 KEPSEVDA 0 .002 99 VEVQSAIRM 0.002 64 REATEISHV 0.002 94 HTLPAVEVQ 0.002 144 IIIFGVIFC 0.001 127 KIPSTLAPP 0.001 109 KNRINNAFF 0.001 44 TNEEYLFKA 0.001 28 RIJSIRTALG 0.001 160 LLILSGIWQ 0.001 38 KAYA1WDTNE 0.001 137 DPSVPIWII 0.001 9 VTAIHAELC 0.001 87 VTDPSIQiHT 0.001 1 0 NRINNAFFL 0.001 79 QRVSFWFVV 0.001 199 DPLDMKGGH 0.001 124 EFLKIPSTL 0.002 122 TLEFLKIPS 0.001 Table XII-156P1D4-All-lmers Pos 1234567890 Score SeqID] 51 KANVAFSMR, 2.400 165 GIWQRRRIQNK 1.200 100 EVOSAIRI4NK 1.200 195 GIPSDPLDMK 1.200 71 1{VLLCNVTQR 0.600 17 CQPGAENAFK 0.600 160 LLILSGIWQR 0.240 148 GVIFCIIIVA 0.180 118 L2NDQTLEFLjK 0.120 161 LILSGIWQRR 0.120 23 NAPKVRLSIR 0.080 KVPNREATEI 0.060 76 NVTQRVSFWF 0.060 26 KVRLSIRTAL 0.060 98 AVEVQSAIRM 0.040 AFSMRKVPNR 0.040 42 WDTNEEYLFK 0.040 83 FWF'VVTDPSK 0.040 29 LSIRTALQDK 0.030 32 RTALGDKAYA 0.030 77 VTQRVSFWFV 0.020 144 IIIPGVIFCI 0.018 78 TQRVSFWFVV 0.018 F'VV1'DPSKNII 0.015 106 RMNKUlRINNA 0.012 153 IIIVAIALLI 0.012 154 IIVAIALLIL 0.012 127 KIPSTLAPPM 0.012 213 MTEDERLTPL 0.010 8 VTDPSKNHTL 0.010 140 VPIWIIIFGV 0.009 43 DTNEEYLFKA 0.009* 145 IIFGVIFCII 0.008 149 VIFCIIIVAI 0.008 4 LLFFLVTAIH 0.008 162 ILSGIWQRRR 0.008 LFFLVTAIHA 0.008 97 PAVEVQSAIR 0.006 72 VLLCNVTQRV 0.006 s0 RVSFWFVVTD 0.006 151 FCIIIVAIAL 0.006 GAENAFKVRL .0.006 3 WLLFFLVTAI 0.006 7 FLVTAIHAEL 0.006 49 LFKAt4VAFSM 0.006 116 FFLNDQTLEF 0.006 18' QPGAENAFKV 0.006 33 TALGDKAYAW 0.006 .152 CIIIVAIALL 0.006 SIRTALGDKA 0.004 Table X1I- 156PlD4 -All-l0mers Poe 1234567890 Score SeqID 155 IVAIALLILS 0.004 146 IFGVIFCIII 0.004 40 YAWDTNEEYL 0.004 95 TLPAVEVQSA 0.004 50 FKAMVAFSM'R 0.004 157 AIALLILSGI 0.004 39 AYAWDTNEEY 0.004 131 TLAPPMDPSV 0.004 139 SVPIWIIIFG 0.004 117 FLNDQTLEFL 0.004 114 NAFFLNDQTL 0.004 209 NDAFMTEDER 0.004 109 1KTRINNAFFL 0.004 158 IALLILSGIW 0.003 103 SAIRMNKN.RI 0.003 121 QTILEFLKIPS 0.003 28 RIJSIRTALGD 0.002 111 RINNAFFLND 0.002 163 LSGIWQRRRK 0.002 176 PSEVDDAEDK 0.002 102 QSAIR'Th7IR 0.002 16 LCQPGAE1NAF 0.002 86 VVTDPSKNHT 0.002 150 IFCIIIVAIA 0.002 133 APPMDPSVPI 0.002 66 ATEISHVLLC 0.002 8 LVTAIHAELC 0.002 9 VTAIMAELCQ 0.002 74 LCNVTQRVSF 0.002 96 LPAVEVQSAI 0.002 64 REATEISHVL 0.002 47 EYLFKANVAP 0.002 1 MLWLLFFLVT 0.002 94 HTLPAVEVQS 0.002 190 ITIENGIPSD 0.002 130 STLAPPMDPS 0.002 92 KNHTPAVEV 0.001 38 KAYAWDTNEE 0.001 143 WIIIFGVIFC 0.001 159 ALLILSGIWQ 0.001 185 KCENMITIEN 0.001 123 LEFLKIPSTL 0.001 68 EISHVLLCNV 0.001 89 DPSKNHTLPA 0.001 13'7 DPSVPIWIII 0.001 15 ELCOPGAENA. 0.001 210 DAFMTEDERL 0.001 202 DMKGGHINDA 0.001 5 MVAFSMRKVP 0.001 124_ EFLKIPSTLA .0.001 TableXIII-156PlD4-A24-9mers 00 Pos 123456789 Score SeqID 124 EFLKIPSTL. 42.000 211 AFMTEDERL 30.000 115 AFFLNDQTLj 24.000 ct 146 IFGVIFCII 8.400 S152 CIIIVAIAL 8.400 47 EYLFKANVA 7.500 tn' 150 IF'CIIIVAI 7.000 S659 EATEISHVL 6.720 8 LVTAIHAEL 6.160 66 ATEISHVLL 6.000 t* 153 IIIVAIALL 6.000 204 KGGHINDAF 5.600 77 VTQRVSFWF 4.200 193 ENGIPSDPL 4.000 ci155 IVAIALLIL 4.000 00 109 KNRINNAFF 4.000 S41 AWDTNEEYL 4.000 118 INDQTLEFL 4.000 cI 117 FLNDQTLEF 3.960 17 CQPGAENA.F 3.600 143 WIIIFGVIF 3.000 139 SVPIWIIIF 3.000 CNVTQRVSF 3.000 142 IWIIIFGVI 2.520 188 N?4ITIENGI 2.520 158 IALLILSGI 2.100 154 IIVAIALLI 2.100.
48 YLFKANVAF 2.000 61 VPNR-EATEI 1.650 147 FGVIFCIII 1.500 23 NAFKVRLSI 1.400 145 IIFGVIFCI 1.400 120 DQTLEFLKI 1.320 104 AIRMNKN1RI 1.200 4 LLFFLVTAI 1.200 137 DPSVPIWII 1.000 11 DAEDKCJNM 0.900 27 VRLSIRTAL 0.840 6 FFLVTAIHA 0.750 195 GIPSDPLDM 0.750 39 AYAWDTNEE 0.660 21 AENA.FKVRL 0.600 *110 NRINWAFFL 0.600 128 IPSTLAPPM 0.600 88 TD.PSKNHTL 0.600 108 NKNRINNAF 0.504 49. LFKANVAFS 0.500 205 GGHINDAFM 0.500 PSRKVPN 0.500 214 TEDERLTPL 0.480 TableXIll -156PlD4 -A24- 9mers Pos 123456789 Score SegID 111 RINNAFFLN 0.360 106 RMNIQNRINN 0.300 138 PSVPIWIII 0.252 97 PAVEVQSAI 0.252 80 RVSFWFVVT 0.240 136 MDPSVPIWI 0.210 151 FCIIIVAIA 0.210 95 TLPAVBVQS 0.210 26 KVRLSIRTA 0.200 32 RTAIGDKAY 0.200 42, WDTNEEYLF 0.200 44 TNEEYLFKA 0.198 134 PPMDPSVPI 0.180 2 LWLLFFLVT 0.180 159 ALLILSGIW 0.180 132 LAPPMDPSV 0.180 190 ITIENGIPS 0.180 16 LCQPGAENA 0.180 156 VAIALLILS 0.180 122 TLEFLKIPS 0.180 73 LLCNVTQRV 0.168 85 FVVTDPSKN 0.-165 148 GVIFCIIIV 0.150 74 LCNVTQRVS 0.150 1441 IIIFGVIFC 0.1.50 100 EVQSAIRM'N 0.150 33 TALGDKAYA 0.150 13 RAELCQPGA 0.150 3 WLLFFLVTA 0.150 1 MLWLLFFLV 0.144 87 VTDPSIQNHT 0.144 68 EISHVLLCN 0.140 149 VIFCIIIVA 0.140 83 FWFVV'rDPS 0.140 178 EVDDAEDKC 0.132 40 YAWDTNEEY 0.132 102 QSAIRMNKN 0.132 212 FMTEDERLT 0.120 107 MN1ONRINNA 0.120 1841 DKCENNITI 0.120 78 TQRVSFWFV 0.120 114 NAFFLNflQT 0.120 34 ALGDKAYAW 0.120 96 LPAVEVQSA 0.120 182 AEDKCENMI 0.120 69 ISHVLLCNV 0.120 131 TLAPPMDPS 0.120 165 GIWQRRRQT 0.110 15 ELCQPGAEN 0.110 53 MVAFSMRKV 0.110 TableXIV- 156P1D4 -All- lamers____ Pos 1234567890 Score SeqID 47 EYLFKAMVAF. 150.000 116 FFLNDQTLEF 16.500 26 KVRLSIRTAL 11.200 7 FLVTAIFIAEL 9.240 151 FCIIIVAIAL 8.400 109 KRINNAFFL 8.000 213 MTEDERLTPL 7.200 117 FLNDQTLEFL 7.200 1S2_ CIIIVAIALL 6.000 154 IIVAIALLIL 6.000 GAENAFKV.L 6.000 39_ AYAW'DTNEEY 5.500 146 IFGVIFCIII 5.000 87 VTDPSKUHlTL 4.800 EATEISHVLL 4.800 YAWDTNEYL 4.800 114 NAFFLNDQTL 4.800 16 LCQPGAE&A? 4.320 210 DAFMTBDE.L 4.000 49_ LFKA!4VAFSM 3.500 107 MNKNRINNAF 3.360 KVPNREATEI 3.300 74 LCNVTQRVSF 3.000 142 IWIIIFGVIF 3.000 76 NVTQRVSPWF 2.800 187 ENMITIENGI 2.520 181 DAEDKCENMI 2.160 144 IIIFGVIFCI 2.100 153 IIIVAIATLLI 2.100 41 AWDTNEEYLF 2.000 103 SAIRMvU4IQRI 1.800 127 KIPSTLAPP4 1.800 3 WLLFFLVTAI 1.800 199 DPLDMKGGHI 1.800 145 IIFGVIFCII 1 .680 133 APPMDPSVPI 1.500 149 VIFCIIIVAI 1.400 137 DPSVPIWIII 1.400 22 ENAFKVRLSI 1.400 96 LPAVEVQSAI 1.400 157 AIALLILSO: 1.400 44 TNEEYLFKAM 1.296 64 REATEISHVL 1.120 204 KGGHINDAFM 1.000 194 NGIPSDPLDM 0.900 84 WFVVTDPSKN 0.825 211 AFMTEDERLT 0.750 124 EFLKIPSTLA 0.750 .98 AVEVQSAIRN 0.750 150 IFCIIIVAIA 0.700 TableXIV- 156P1)4 -All- l0wers Pos 1234567890 Score SeqID 82 SFWFVVTDPS 0.700 24 AFKVRLSIRT 0.600 192 IENGIPSDPL 0.600 123 LEFLKIPSTL 0.560 5 LFFLV'TAIHA 0.500 185 KCENMITIEN 0.462 138 PSVPIWIIIF 0.360 106 RINKRINNA 0.360. 108 NICNRINNAFF 0.300 203 MKGGHINDAF 0.280 94 HTLjPAVEVQS 0.252 72 VLLCNVTQRV 0.252 92 KWHTLPAVEV 0.220 121 QTLEFLKIPS 0.216 140 VPIWIIIFGV 0.210 148 QVIFCIIIVA 0.210 32 RTALGDKAYA 0.200 119 NDQTLEFLKI 0.198 43 DTNEEYLFKA 0.198 158 IALLILSGIW 0.180 95 TLPAVEVQSA 0.180 77 VTQRVSFWFV 0.180 135 PMDPSVPIWI 0.168 141 PIWIIIFGVI 0.168 52 AMVAPSMRKV 0.165 164 SGIWQRRRKN 0.165 122 TLEFLKIPST 0.150 136 MDPSVPIWII 0.150 75 CNVTQRVSFW 0.150 10 STLAPPMDPS 0.150 143 WIIIFGVIFC 0.150 33 TALGDKAYAW 0.150 61 VPNREATEIS 0.150 66 ATEISHVLLC 0.150 147 FGVIFCIIIV 0.150 2 LWLLFFLVTA 0.150 86 .VVTDPSKNHTr 0.144 69 ISHVLLCNVT 0.144 30 SIRTALGDKA 0.132 101 VQSAIRMNKN 0.132 68 EISHVLLCNV 0.120 1 MLWLLFFLVT 0.120 131 TLAPPMDPSV 0. 120 202 DMKGGHINDA 0. 120 113 NNAFFLNDQT 0.120 155 IVAIALLILS 0.120 18 QPGABNAFKV 0.110 57 SMRKV1PNRRA 0.110 189 t4ITIENGIPS 0.100 48 YLFKAMVAFS 0.100 00 00 Table XV-156P1D4-B7-9mers Poo 123456789 score SeqID 128 IPSTLAPPM. 20.000 155 IVAIALLIL 20.000 8 LVTAIHAEL 20.000 EATEISHVL 12.000 137 DPSVPIWII 12.000 104 AIRMNKRRI 12.000 61 VPNREATEI 8.000 193 ENGIPSDPL 6.000 26 KVRLSIRTA 5.000 152 CIIIVAIAL 4.000 153 IIIVAIALL 4.000 2T11 AFNTEDERL 3.600 134 PPMDPSVPI 3.600 66 ATEISHVLL 3. 600 96 LPAVEVQSA 2.000 78 TQRVSFWFV 2.000 23 NA.FKVRLSI 1.800 158 IALLILSGI 1.200 115 AFFLNDQTL 1.200 21 AENAFKVRL 1.200 118 LNDOTLEFL 1.200 148 GVIF*CIIIV 1.000 53 M4VAFSMRKV 1.000 195 GIPSDPLDM 1.000 205 GGHINDAFM 1.000 181, DAEDKCENM 0.900 132 LAPPI4DPSV 0.600 27 VRLSIRTAL 0.600 133 APPMDPSVP 0.600 RVSFWFVVT 0.500 88 TDPS1NHTL 0.400 .145 IIFGVIFCI 0.400 4 LLFFLVTAI 0.400 188 NI4ITIENGI 0.400 154 IIEVAIEALLI 0.400 147 FGVIFCIII 0.400 120 DQTIJEFLKI 0.400 124 EFLKIPSTL 0.400 110 NRINNAFFL 0.400 41 AWDTNEEYL 0.360 33 TALGDKAYA 0.300 114 NAFFLNDQT 0.300 196 IPSDPLDMK 0.300 73 LLCNVTQRV 0.200 EPSEVDDAE 0.200 1 MLWLLFFLV 0.200 f99 DPLDMKGGH 0.200 140 VPIWIIIFG 0.200 89 DPSJK1HTLP 0.200 109 NRINWAFF 0.200 TableXV-156P1D4-B7-9mers Pos 123456789 Score SeqID 178 QPGAENAFK 0.2010 69 ISHVLLCNV 0.200 125 FLKIPSTLA 0.150 178 EVDDAEDKC 0.150 97 PAVEVQSAI 0.120 214 TEDERLTPL 0.120 100 EVQSAIRM~N 0.100 144 IIIFGViFC 0.100 16 LCQPGAENA 0.100 167 WQRRRIKEn 0.100 76 NVTQRVSFW 0'100 107 MNKNRINNA 0.100 151 FCIIIVAIA 0.100 85 FVVTDPSKN 0.100 212 FMTEDERLT 0.100 9 VTAIHAELC 0.100 99 VEVQSAIRM 0.100 149 VIFCIIIVA 0.100 50 FKAMVAFSM 0.100 139 SVPIWIIIF 0.100 3 WLLFFLVTA 0.100 57 SMRKVPNRE 0.100 30 SIRTALGDK 0.100 51 KAI4VAFSMR 0.090 13 HAELCQPGA 0.090 86 VVTDPSKNH 0.075 159 ALLILSOIW 0.060 40 YAWDTNEEY 0.060 34 ALGDKAYAW 0.060 1 56 VAIALLILS 0.060 6;0 KVPNREATE 0.050 71 HVLLCNVTQ 0.050 98 AVEVQSAIR 0.045 54 VAPSMRKVP 0.045 146 IFGVIFCII 0.040 150 IFCIIIVAI 0.040 142 IWIITFOVI 0.040 184 DKCENMhITI 0.040 136 MDPSVPIWI 0.040 138 PSVPIWIII 0.040 182 AEDKCENMI 0.036 131 TLAPPMDPS 0.030 38 KAYAWDTNE 0.030 56 FSMRKVPNR 0.030 52 AM'VAPSMRK 0.030 157 AIALLILSG 0.030 187 ENMITIENG 0.030 11 AIHAELCQP 0.030 103 SAIRMM1QNR 0.030 15 ELCQPGAEN 0.030 Table XVI-.156P1D4-B7-10mers 1234567890 Score SeqID 26 KVRLSIRTAL, 300.000 109 IQNRINNAFFLa 40.000 133 APPMDPSVPI 36.000 YAWDTNEEYL 12.000 114 NAFF'LNDQTL 12.000 210 DAFZ4TEDERLs 12.000 EATRISHVLL 12.000 137 DPSVPIWIII 8.000 96 LPAVEVQSAI 8.000 199 DPLDMKGGHI 8.000 98 AVEVQSAIRM 4.500 140 VPIWIIIFGV 4.000 154 IIVAIAIa.II 4.000 117 FLjNDQTLEFL 4.000 7 FLVTAII{ABL 4.000 152 CIIIVAIALL 4.000 151 FCIIIVAIAL 4.000 is QPGAENAPKV 4.000 GAENAFKVRL 3.600 KVP.1REATEI 2.000 78 TQRVSFWPVV 2.000 89 DPSIK4HTLPA 2.000 57 SMRXVPNREA 1.500 157 AIALLILSGI 1.200 213 MTEDERLTPL 1.200 87 VTDPSINITL 1.200 103 SAINNJRI 1.200 187 ENMITIENGI 1.200 204 KGGHINDAFM 1.000 127 KIPSTLAPPM 1.000 194 NGIPSDPLDM 1.000 SIRTALGDKA 1.000 192 IENGIPSDPL 0.600 52 AMVAFSI4RKV 0.600 22 ENAFKVRLSI 0.600 104 A.IRNNKNRIN 0.600 148 GVIFCIIIVA 0.500 a LVTAIHAELC 0.500 86 VV'TDPSIQNHT 0.500 144 IIIFGVIFCI 0.400 145 IIFGVIPCII 0.400 3 WLLFFLVTAI 0.400 149 VIFCIIIVAI 0.400 61 VPNREATEIS 0.400 64 REATEISHVL 0.400 153 IIIVAIALLI 0.400 123 LEFLKIPSTL 0.400 181 DAEDKCENMI 0.360 92 IQNHTLPAVEV 0.300 44 TNEEYLFKAM 0.300 Table XVI-156P1D4-B7-lomers Pos 1234567890 Score SeqID 175 EPSEVDDAED 0.200 77 VTQRVSFWFV 0.200 68 EISHVLLCNV 0.200 131 TLAPPMDPSV 0.200 128 IPSTLAPPMD 0.200 72 VLLCNVTQRV 0.200 196 IPSDPLDMKG 0.200 147 FQVIFCIIIV 0.200 134 PPMDPSVPIW 0.120 76 NVTQRVSFWP 0.100 113 NNAFFLI4DQT 0.100 69 ISHVL~CNVT 0.100 15 ELCQPGAENA 0.100 155 IVAIALLILS 0.100 32 RTALGDKAYA 0.100 205 GGHINDAFMT 0.100 95 TLPAVEVQSA 0.100 143 WIIIFGVIFC 0.100 106 RMNRINNA 0.100 167 WQRRRXNKEP 0.100 202 DMKGGHINDA 0.100 180 DDAEDKCENN 0.100 43 DTNEYLFA 0.100 49 LFKAMVAFSM 0.100 1 MLWLLPFLVT 0.100 211 AFMTEDERLT 0.090 51 KAI4VAPSMRK 0.090 66 ATEISEVLLC 0.090 53 M4VAFSMRKVP '0.075 100 EVQSAIRMNK 0.07S 85 FVVTDPSKUH1 0.075 33 TALGDKAYAW 0.060 16 MDPSVPIWII 0.060 158 IALLILSGIW 0.060 54 VAFSMRKVPN 0.060 80 RVSFWPVVTD 0.050 71 HVLLCNVTQR 0.050 139 SVPIWIIIFG 0.050 119 NDQTLEFLCI 0.040 141 PIWIIIFGVI 0.040 183 EDKCENMITI 0.040 146 IFGVIFCIII -0.040 164 SGIWQRRRKN 0.030 23 1N".FVRLSIR 0.030 132 LAPPMD)PSVP 0.030 38 KAYAWDTNER 0.030 24 APKVRLSIRT 0.030 74 LCNVTQRVSF 0.030 [11 AIHABLCQPCG 0.030 1159 ALLILSG3IWQ 0.030 F TableXVII-156P1D4-B35-9mers Pos 123456789 Score SeqID 128 IPSTLAPPM 40.000 YAWDTNEEY 12.000 61 VPNREATEI 12.000 137 DPSVPIWII 8.000 109 KNRINNAFF 6.000 EATEISHVL 6.000 32 RTALGDKAY 4.000 181 DAEDKCENM 3.600 195 GIPSDPLDM 3.000 96 LPAVEVQSA 3.000 205 GGHINDAFM 2.000 1.17 FLNDQTLEF 2.000 204 KGGHINDAF 2.000 134 PPMDPSVPI 1.600 158 IALLILSGI 1.200 23 NAFKVRLSI 1.200 104 AIRMJ1QRI 1.200 152 CIIIVAIAL 1.000 193 ENGIPSDPL 1.000 153 IIIVAIALL 1.000 155 IVAIALLIL 1.000 8 LVTAIHAEL 1.000 69 ISHVLLCNV 1.000 17 CQPGAENAF 1.000 139 SVPIWIIIF 1.000 143 WIIIFGVIF 1.000 CNVTQRVSF 1.000 77 VTQRVSFWF 1.000 48 YLFKAMVAF 1.000 34 ALGDKAYAW 1.000 26 KVRLSIRTA 0.600 132 LAPPMDPSV 0.600 120 DQTLEFLKI 0.600 78 TQRVSFWFV 0.600 76 NVTQRVSFW 0.500 102 QSAIRMNKN 0.-500 159 ALLILSGIW 0.500 33 TALGDKAYA 0.450 154 IIVAIALLI 0.400 4. LLFFLVTAI 0.400 145 IIFGVIFCI 0.400 147 FOVIFCIII 0.400 175 EPSEVDDAE 0.400 196 IPSDPIDMK 0.400 199 DPLDMKGGH 0.400 188 NMITIENGI 0.400 ,33 APPMDPSVP 0.300 118 LNDQTLEFL 0.300 66 ATEISHVLL 0.300 212 FMTEDERLT 0.300 TableXVII-156P1D4-B35-9mers Pos 123456789 Score SeqID 156 VAIALLILS 0.300 107 MNKNRINNA 0.300 125 FLKIPSTLA 0.300 114 NAFFLNDQT 0.300 18 QPGAENAFK 0.300 97 PAVEVQSAI 0.240 148 GVIFCIIIV 0.200 1 MLWLLFFLV 0.200 80 RVSFWFVVr 0.200 50 FKAMVAFSM 0.200 190 ITIENGIPS 0.200 106 RMNKNRINN 0.200 73 LLCNVTQRV 0.200 111 RINNAFFLN 0.200 99 VEVOSAIRM 0.200 140 VPIWIIIFG 0.200 89 DPSIMHTLP 0.200 138 PSVPIWIII 0.200 53 MVAFSMRKV 0.200 42 WDTNEEYLF 0.150 85 FVVrDPSKN 0.150 211. AFMTEDERL 0.150 90 PSKNHTLPA 0.150 172 KNKEPSEVD 0.120 74 LCNVTQRVS 0.100 151 FCIIIVAIA 0.100 108 NKNRINNAF 0.100 144 IIIFGVIFC 0.100 27 VRLSIRTAI 0.100 9 VTAIHAELC 0.100 110 NfINNAFFL 0.100 165 GIWQRRRKN 0.100 149 VIFCIIIVA 0.100 21 AENAFKVR 0.100 124 EFLKIPSTL 0.100 16 LCQPGAENA 0.100 131 TLAPPMDPS 0.100 is ELCQPGAEN 0.100 95 TLPAVEVQS 0.100 115 AFFLNDQTL 0.100 22 ENAFVRLS 0.100 100 EVQSAIRMN 0.100 68 EISHVLLCN 0.100 3 WLLFFLVTA 0.100 88 TDPS OHTL 0.100 13 HAELCQPGA 0.090 184 DKCENMITI 0.080 169 RRRIQNKEPS 0.06 0 171 RKMEPSEV 0.060 38 KAYAWDTNE 1 0.060 Table XVIII-156P5C12-B35-lorners Pos 1234567890 Score SegID 182 LSAMALYQSK 10.000 153 IAICALVRTVL 9.000 208 VALHTVHFIY 6.000 155 KALVRTVLQF 6.000 131 TLREKRLQLF 6.000 68 ISLFPALWFL 5.000 198 QSFFCVWARJ 5.000 123 GALPVDDPTL 4.500 KPWTEYVDMT 4.000 164 FARDQGYSEV 3.600 36 LLKULPRTLIL 3.000 62 LALVFSISLF 3.000 28 HAPATFRQLL 3.000 66 FSISLFPALW 2.500 93 DMSDITKSYL 2.000 206 RLVALHTVHF 2.000 34 RQLL!QJPRTL 2.000 161 VLQFARDQGY 2.000 176 DTGTIQLSAM 2.000 16 WVVGLLSRGM 2.000 24 GMAEHAPATF 2.000 173 VILDTGTIQL 2.000 38 KLPRTLILLL 2.000 76 FLAKIKPWTEY 2.000 179 TIQLSAMALY 2.000 77 LAKKPWTEYV 1.600 204 WAPLVALHTV 1.600 11 ESDRQWVVGL 1.500 51 LALLLVSGSW 1.500 99 KSYLSERGSC 1.500 218 HLPSSKVGSL 1.000 191 MGFKKT1'QSF 1.000 184 AMALYQSMOF 1.000 FCIVWALAL 1.000 46 LLGGPLALLL 1.000 67 SISLFPALWF 1.000 53 LLLVSGSWLL 1.000 57 SGSWLLALVF 1.000 56 VSGSWLLALV 1 .000 42 TLILLLGGPL 1.000 LVSGSWLLAL 1.000 195 KTGQSFFCVW 1.000 61 LLALVFSISL 1.000 178 GTIQLSAMAL 1.000 LLLjGGPLALL 1.000 44 ILaLLGGPLAL 1.000 52. ALLLVSGSWL 1.000 101 YLSERGSCFW 1.000 133 REKRLQLFHL 0.600 88 MTLCTDMSDI 0.600 TableXVIII-156P5C12-B35-lomers Pos 1234567890 Score SeqID 79 KKPWTEYVDM 0.600 110 WVAESEEKVV 0.600 39 LPRTLILIJLG 0.600 85 YVDMTLCTDM 0.600 113 1ESEEKVVGMV 0.600 73 ALWFLAKKPW 0.500 58 GSWLLALVFS 0.500 125 LPVDDPTLRE 0.400 35 QLLKIJPRTLI 0.400 112 AESEEKVVGM 0.400 207 LVAIJHTVHFI 0.400 12 SDRQWVVGLL 0.300 30 PATFRQLLUJ 0.300 192 GFKKTGQSFF 0.300 148 HRRQGIAKAL 0.300 102 LSERGSCFWV 0.300 129. D)PTLREIK.LQ 0.300 23 RGMAEHAPAT 0.200 152 GIAKALVRTV 0.200 47 LGGPL.AIJLLIV 0.200 215 FIYHLPSSKV 0.200 105 RGSCFWVAES 0.200 92 TDMSDITKSY 0.200 49 GPLAL&LVSG 0.200 29 APATFRQLLK 0.200 71 FPALWFLAKK 0.200 2 APCHIRKYQE 0.200 118 VVGM4VGALPV 0.200 166 RDQGYSEVIL 0.200 21 LSRGMAEHAP 0.150 94 MSDITICSYLS 0.150 142 ISVDSEHRRQ 0.150 170 YSEVILDTGT 0.150 145 DSEHRRQGIA 0.150 12 LQFARDQGYS 0.150 8 KYQESDRQWV 0. 120 177 TOTIOLSAMA 0.100 122 VGALPVDDPT 0.100 48 GGPLALLLVS 0.100 69 SLFPALWFIAA 0.100 181 QLSAMALYQS 0.100 212 TVHPIYHLPS 0.100 '196 TGQSFFCVWA 0.100 60 WLLALVFSIS 0.1.00 65 VFSISLFPAL 0.100 190 SMGFKKTGQS 0.100 89 TLCTDMSDIT 0.100 151 QGIAKALVRT 0.100 37 LKLPRTLILL 0.100 F12 8 DDPTLREKRL 10.100 Table V-156P5C12-A1-9mers 00 Pos 123456789 Score Se ID 9 91 CTDMSDITK 125.000 MAEHAPATF 18.000 C1 82 WTEYVDMTL 11.250 127 VDDPTLREK 5.000 113 ESEEKVVGM 2.700 174 ILDTGTIQL 2.500 209 ALHTVHFIY 2.500 170 YSEVILDTG 1.350 145 DSEHRRQGI 1.350 111 VAESEEKVV 0.900 94 MSDITKSYL 0.750 68 ISLFPALWF 0.750 185 MALYQSMGF 0.500 1 MAPCHIRKY 0.500 143 SVDSEHRRQ 0.500 00 93 DMSDITKSY 0.250 71 FPALWFLAR 0.250 186 ALYQSMGFK 0.200 CK1 207 LVALTVHF 0.200 215 FIYHLPSSK 0.200 198 QSFFCVWAR 0.150 11 ESDRQWVVG 0.150 142 LSVDSEHPR 0.150 180 IQLSAMALY 0.150 102 LSERGSCFW 0.135 9 YQESDRQWV 0.135 41 RTLILLLGG 0.125 176 DTGTIQLSA 0.125 47 LGGPLALLL 0.125 195 KTGQSFFCV 0.125 151 QGIAKALVR 0.125 PATFRQLLK 0.100 101 YLSERGSCF 0.100 123 GALPVDDPT 0.100 141 HLSVDSEHR 0.100 63 AIVFSISLF 0.100 69 SLFPALWFL 0.100 58 GSWLLALVF 0.075 162 LQFARDQGY 0.075 56 VSGSWLLAJ 0.075 WLLALVFSI 0.050 178 GTIQLSAIA 0.050 LVSGSWLLA 0.050 136 RLQLFHLSV 0.050 62 ILALVFSISL 0.050 211 HTVHFIYH 0.050 YVDMTCTD 0.050 187 LYQSMGFK( 0.050 179 TIQLSAMAL 0.050 181 QLSAMALYQ 0.050 TableV-156P5C12-A1-9ners Pos 123456789 Score SeqID 45 LLLGGPLAL 0.050 201 FCVWARLVA 0.050 156 AIVRTVLQF 0.050 132 LREKRLQLF 0.045 72 PALWFLAKC 0.040 182 LSAMALYQS 0.030 66 FSISLFPAL 0.030 106 GSCFWVAES 0.030 15 QWVVGLLSR 0.025 27 EHAPATFRQ 0.025 37 LKLPRTLIL 0.025_ 33 FRQLLKLPR 0.025 165 ARDQGYSEV 0.025 125 LPVDDPTLR 0.025 97 ITKSYLSER 0.025 126 PVDDPTLRE 0.025 158 VRTVLQFAR 0.025 138 QLFHLSVDS 0.020 218 .HLPSSKVGS 0.020 67 SISLFPALW 0.020 155 KALVRTVLQ 0.020 44 ILLLjGGPLA 0.020 124 ALPVDDPTL 0.020 46 LLGGPLALL 0.020 189 QSMGFKKTG 0.015 99 KSYLSERGS 0.015 49 GPLALLLVS 0.013 31 ATFRQLLKL 0.013 88 MTLCTDMSD 0.013 48 GGPLALLLV 0.013 119 VGMVGAPV 0.013 16 WVVGLLSRG 0.010 183 SAMALYQSM 0.010 161 VLQFARDQG; 0.010 172 EVILDTGTI 0.010 110 WVAESEEKV 0.010 61 LLALVFSIS 0.010 109 FWVAESEEK 0.010 28 HAPATFRQL 0.010 90 LOTDMSDIT 0.010 160 TVLQFARDQ 0.010 54 LLVSGSWLL 0.010 52 ALLLVSGSW 0.010 208 VALHTVHFI 0.010 173 VILDTGTIQ 0.010 53 LLLVSGSWL 0.010 89 TLCTDMSDI 0.010 24 GMAEHAPAT 0.010 43 LILLLGGPL 0.010 117 KVVGMVGAL 0.010 00 00 Table VI-156P5C1-Al0lmer5 Pos 1234567890 Score SeqID 25 MABHAPATFR 9.000 208 VALHTVHFIY 2.500 127 VDDPTLREKR 2.500 82 WTEYVDMTLC 2.250 Ill VABSEEKVVG 1.800 94 MSDITKSYS 1.500 170 YSEVIIJDTGT 1.350 145 DSEHRRQGIA 1.350 113 ESEEKVVGMV 1.350 91 CTDMSDITKS 1.250 LCTDMSDITK 1.000 186 ALYQSMGFKX 1.000 126 PVDDPTLREK 1.000 179 TIQLSAMALY 1.000 102 LSERGSCFWV 0.675 67 SISLFPALWF 0.500 143 SVDSEHRRQG 0.500 YVDMTLCTDM 0.500 174 ILDTGTIQLS 0.500 69 SLFPALWFLA 0.500 155 KALVIZTVLQF 0.500 161 vLQFARDQGY 0.500 184 AMALYQSMGF 0.250 29 APATFRQLLK 0.250 206 RLVPALETVHF 0.200 123 GALPVDDPTL 0.200 185 M.ALYQSMGFK 0.200 11 ESDRQWVVGL 0.150 9 YQESDRQWVV 0.135 47 LGGPLALLLV 0.125 178 GTIQLSAMAL 0.125 57 SGSWLLALVF 0.125 71 FPALWFLAKK 0.100 62 LALVFSISLF 0.100 24 GMAEHAPATF 0.100 141 HLSVDSEHRR 0.100 124 ALPVDDPTLR 0.100 150 RQGIAKALVR 0.075 44 ILLLGGPLAL 0.050 173 VILDTGTIQL 0.050 46 LLGGPLALLL 0.050 54 LLVSGSWLLA 0.050 LFPALWFLAK 0.050 61 LLALVFSISL 0.050 64 LVFSISLFPA 0.050 LVSGSWLLAL 0.050 212 TVHFIYHLPS 0.050 209 ALHTVHFIYH 0.050 76 FLAKKPWTEY 0.05 118 WGHVGALPV 0.050 Table VI-156P5C12-Al10mers____ Pos 1234567890 Score SeqID 157' LVRTVIJQFAR 0.050 66 FSISLFPA 1 W 0.030 198 QSFFCVWARL 0.030 56 VSGSWLLkALV 0.030 165 ARDQGYSEVI 0.025 37 LKLPRTLILL 0.025 159 RTVLQFARDQ 0.025 92 TDMSDITKSY 0.025 88 MTLCTDMSDI 0.025 176 DTGTIQLjSAM 0.025 195 KTGQSFFCVW 0.025 132 LREKRLOLFH 0.022 114 SEEKVVGMVG 0.022 181 QLSAMALYQS 0.020 19 GLLSRGMAEH 0.020 201 FCVWARLVAL 0.020 45 LLLGGPIAALL 0.020 43 LILLLGGPLA 0.020 142 LSVDSEHRRQ 0.015 99 KSYLSERGSC 0.015 68 ISLFPALWFL 0.015 182 LSAMALYQSM 0.015 197 GQSFFCVWAR 0.015 189 QSMGFKKTGQ 0.015 48 GGPLALLLVS 0.013 168 QGYSEVILDT 0.013 52 ALLLVSGSWL 0.010 27 YHLPSSKVGS 0.010 131 TLREKRLQLF 0.010 183 SAMALYQSMG 0.010 21 FIYHLPSSKV 0.010 218 HLPSSKVGSJ 0.010 28 HAPATFRQLL 0.010 1 MAPCHIRKYQ 0.010 110 WVAESEEKVV 0.02.0 214 HFIYMLPSSK 0.010 53 LLLVSGSWLL 0.010 42 TLILLLGGPL 0.010 60 WILALVFSIS 0.010 10 YLSERGSCFW 0.010 160 TVLOFARDQG 0.010 207 LVALjHTVHFI 0.010 172 EVILDTGTIQ 0.010 16 WVVGLLSRGM 0.010 17 VVGLLSRGMA 0.010 96 DITKSYLSER 0.010 89 TLCTDMSDIT 0.010 51 LALLLVSGSW 0.010 14 RQflJVGLLSR 0.007 180o IOLSAM'ALYQ 0.007 TableVII-156P5C2-A2-9ners 00 Pos 123456789 Score SegID 69 SLFPALWFL 7499.003 160 WLLALVFSI 2368.734 S)53 LLLVSGSWL 739.032 54 LLVSGSWLL 272.371 t 136 RLQLFHLSv 264.298 38 KPRTLILL 171.967 t 45 LLLGGPLAIJ 134.369 46 LLGGPLALL 83.527 110 WVAESEEKV 56.241 195 KTGQSFFCV 37.259 202 CVWARLVAL 35.683 44 ILLLGGPLA 31.249 89 TLCTDMSDI 23.995 24 GMAEHAPAT 22.066 124 ALPVDDPTL 21.362 00 10 QESDRQWVV 17.050 QLLKLPRTL 15.808 174 ILDTGTIQL 14.526 ri 1208 VALHTVHFI 11.529 9 YQESDRQWV 11.418 197 GQSFFCVWA 10.527 62 LALVFSISL 7.092 150 RQGIAKALV 7.052 131 TLREKRLQL 6.657 188 YQSMGFKKT 6.604 34 RQLLKLPRT 6.430 103 SERGSCFWV 3.279 179 TIQLSAMAL 2.937 119 VGMVGALPV 2.856 31 ATFRQLLKI 2.525 43 LILLLGGPL 2.402 152 GIAKAIVRT 2.357 117 KVVGMVGAL 1.956 KPWTEYVDM 1.413 101 YLSERGSCF 1.405 LVSGSWLLA 1.256 66 FSISLFPAL 1.219 48 GGPLALLLV 1.044 57 SGSWLLALV 1.044 194 KKTGQSFFC 0.770 83 TEYVDMTLC 0.711 157 LVRTVLQPA 0.710 36 LLKLPRTLI 0.621 56 VSGSWLLAL 0.545 29 APATFRQLL 0.530 94 MSDITKSYL 0.522 76 FLAXKPWTE 0.514 WFLAKKPWT 0.484 183 SAMALYQSM 0.383 LLSRGMAEH 0.291 Table VII-156P5C12-A2-9mers Poe 123456789 Score SeqID 138 QLFHLSVDS 0.276 47 LGGPLALLL 0.237 123 GALPVDDPT 0.188 209 ALHTVHFIY 0.177 63 ALVFSISLF 0.171 156 ALVRTVLQF 0.171 17 VVGLLSRGM 0.148 171 SEVILDTGT 0.145 73 ALWFLAKXP 0.124 23 RGMAEHAPA 0.120 180 IQLSAMALY 0.109 61 LLALVFSIS 0.099 199 SFFCVWARL 0.093 211 HTVHFIYHL 0.088 82 WTEYVDMTL 0.087 205 ARLVALHTV 0.082 181 QLSAMALYQ 0.082 186 ALYQSMGFK 0.078 65 VFSISLFPA 0.078 37 LKLPRTLIL 0.077 177 TGTIQLSAM 0.075 219 LPSSKVGSL 0.071 178 GTIQLSAMA 0.069 16 WVVGLLSRG 0.069 90 LCTDMSDIT 0.068 167 DOGYSEVIL 0.067 14 RQWVVGLLS 0.063 161 VLQFARDQG 0.062 201 FCVWARVA 0.061 70 LFPALWFLA 0.058 19 GLLSRGMAE 0.055 184 AMALYQSMG 0.054 162 LFARDQGY 0.048 64 LVFSISLFP 0.045 200 FFCVWARLV 0.044 86 VDMTLCTDM 0.043 111 VAESEEKV 0.043 39 LPRTLILLL 0.041 67 SISLFPALW 0.039 204 WARLVALHT 0.036 52 ALLLVSGSW 0.036 206 RLVALHTVH 0.031 215 FIYHLPSSK 0.030 18 VGLLSRGMA 0.027 153 IAKALVRTV 0.026 114 SEEKWGMV 0.026 173 VILDTGTIQ 0.022 68 ISLFPALWF 0.017 93 DMSDITKSY 0.017 216 IYHLPSSKV 0.016 TableVIII-156P5C12-A2-l0mers POe 1234567890 Score SeqID 53 LLLVSGSWLL- 1007.771 52 ALLLVSGSWL 434.725 LLLGGPLALL 309.050 69 SLFPALjWFLA 181.243 38 KLPRTLILLL 171.967 215 FIYHLPSSKV 140.773 61 LI&ALVFSISL 138.001 44 ILLLGGPILAL 134.369 68 ISLFPALWFL 83.218 173 VILDTGTIQL 75.751 156 ALVRTVLQFA 62.84S 110 WVAZSEEKVV 47.059 QLLKLPRTLI 38.601 164 IVPSISLFPA 36.475 46 LLGGPLALLL 36.316 -93 DMSDITKSYL 26.093 207 LVALHTV{FI 19.631 54 LLVSGSWIJLA 14.358 118 VVGMVGALPV 10.346 101 YLSERGSCFW 7.730 LVSGSWLZAL 7.309 9 YQESDRQWVV 6.384 152 GIAKALVRTV 4.399 43 LILLLGGPLA 4.297 LLSRGMAEHA 4. 138 194 KKTGQSPFCV 3.726 42 TLILLILGGPL 2.777 88 MTLCTDMSDI 2.096 164 FARDQGYSEV 2.077 47 LGGPLALLLV 1.775 56 VSGSWIJLALV 1.775 34 RQLLKLPRTJ 1.603 KPWTEYVDMT 1.593 102 LSERGSCFWV 1.576 89 TLCTflMSDIT 1.497 201 FCVWARLVAL 1.475 123 GALPVDDPTL 1.098 WLLALVFSIS 0.988 112 AESEEKVVGM 0.911 198 QSFFCVWARL 0.877 YVDMTLCTDM 0.800 209 ALHTVHFIYH. 0.779 204 WARLVAIJHTV 0.777 8 KYQESDRQWV 0.762 196 TGQSFFCVWA 0.678 19 GLLSRGMAEH 0.634 73- ALWFLAKKPW 0.619 76 FLAKKPWTEY 0.583 36 ILKLPRTIJIL 0.521 135 KRIJQLFMLSV 0 .475 Table VIII-156P5C12-A2-l0mers Poe 1234567890 Score SeqID 83 TEYVDMTLCT 0.464 37 LKLPRTLILL 0.429 16 WVVGLLSRGM 0.400 168 QGYSEVILDT 0.358 178 GTIQLSAMAL 0.297 186 ALYQSMGFKK 0.277 24 GMAEHAPATF 0.221 210 LHTVHFIYHJ 0.220 218 HLPSSKVGSL 0.217 133 REKRLQLFHJ 0.194 23 RGMAEHAPAT 0.180 181 QLSAMALYQS 0.171 77 LAKKPWTEYV 0.155 188 YQSMGFKKTG 0.132 161 VLQFARDQGY 0.127 202 CVWARLVALH 0.124 174 ILDTGTIQLS 0.117 151 QGIAKALVRT 0.112 144 VDSEHRROGI 0.101 17 VVGLLSRGMA 0.096 182 LSAMALYQSM 0.083 63 ALVFSISLFP 0.082 206 RLVALHTVHF 0.075 59 SWLLALVFSI 0.072 138 QLFHLSVDSE 0.062 67 SISLPPALWF 0.056 184 AMALYQSMGF 0.054 131 TLREKRLQLF 0.053 180 IQLSA MALYQ 0.052 58 GSWLIAALVFS 0.051 65 VFSISLaFPAL 0.048 137 LQLFHLSVDS 0.048 99 KSYLSERGSC 0.047 82 WTEYVDMTLC 0.047 103 SERGSCFWVA 0.043 122 VGALPVDDPT 0.041 28 HAPATFRQJL 0.038 79 KKPWTEYVDM 0.036 74 LWFLAXKPWT 0.036 199 SFFCVWARLV 0.036 193 FKKTGQSFFC 0.035 162 LQF'ARDOGYS 0.034 177 TGTIQLSAKA 0.032 155 KALVRTVLQF 0.031 14 RQWVVGLLSR 0.029 171 SEVILDTGTI 0.026 197 GQSFFCVWAR 0.026 130 PTLREKRLQL 0.024 179 TIQLSAMAY 0.024 109 FWVAESBEKV 0.022 Table IX-156P5C12-A3-9mers Pos 123456789 Score SeqID 186 ALYQSMGFK 45.000 69 SLFPALWFL 20.250 209 AIHTVFIY 18.000 156 ALVRTVLQF 18.000 215 FIYHLPSSK 10.000 WLLALVFSI 8.100 38 KIPRTLILL 5.400 63 ALVFSISLF 4.500 141 HLSVDSEHR 4.000 71 FPALWFLA 3.600 101 YLSERGSCF 3.000 54 LLVSGSWLL 2.700 LLLGGPLAL 2.700 46 LLGGPLALL 2.025 91 CTDMSDITK 2.000 131 TLREKRLQL 1.800 136 RLQLFHLSV 1.200 174 ILDTGTIQL 1.200 53 LLLVSGSWL 0.900 89 TICTDMSDI 0.900 36 LLKLPRTLI 0.900 93 DMSDITKSY 0.900 97 ITKSYLSER 0.900 198 QSFFCVWAR 0.900 211 HTVHFIYHL 0.608 124 AIPVDDPTL 0.600 162 LQFARDQGY 0.600 31 ATFRQLLKL 0.450 202 CVWARLVAL 0.450 24 GMAEHAPAT 0.450 117 KVVGMVGAL 0.364 58 GSWLLALVF 0.300 206 RLVALHTVH 0.300 LLSRGMAEH 0.300 44 ILLLGGPLA 0.300 180 IQLSAMALY 0.270 195 KTGQSFFCV 0.270 120 GMVGALPVD 0.203 207 LVALHTVHF 0.200 138 QLFHLSVDS 0.200 19 GLLSRGMAE 0.180 61 ILALVFSIS 0.180 .72 PALWFLAKK 0.135 52 ALLLVSGSW 0.135 179 TIQLSAMAL 0.120 QLLKLPRTL 0.090 82 WTEYVDMTL 0.090 187 LYQSMGFKK 0.060 67 SISLFPALW 0.060 125 LPVDDPTLR 0.060 Table IX-156P5C12-A3-9mers Poe 123456789 Score SegID 185 MALYQSMGF 0.060 77 LAKKPWTEY 0.060 55 LVSGSWLLA 0.060 76 FLAKKPWTE 0.060 184 AMALYQSMG 0.060 62 LALVFSISL 0.054 197 GQSFFCVWA 0.054 73 ALWFLAKKP 0.050 157 LVRTVLQFA 0.045 178 GTIQSAMA 0.045 68 ISLFPALWF 0.045 152 GIAKALVRT 0.045 218 HLPSSKVGS 0.040 181 QLSAMALYQ 0.040 30 PATFRQLLK 0.040 109 FWVAESEEK 0.030 14 LSVDSERR 0.030 764 LVFSISLFP 0.030 80 KPWTEYVDM 0.030 110 WVAESEEKV 0.030 208 VALHTVFI 0.027 43 LILLLGGPL 0.027 56 VSGSWLLAL 0.027 190 SMGFKKTGQ 0.020 161 VLQFARDQG 0.020 25 MARHAPATF 0.020 15 QWVVGLLSR 0.018 26 AEHAPATFR 0.018 29 APATFRQLL 0.018 14 RQWVVGLLS 0.018 39 LPRTLILLL 0.018 42 TLIILLGGP 0.013 66 FSISLFPAZ, 0.013 158 VRTVLQFAR 0.012 151 QGIAKALVR 0.012 87 DMTLCTDMS 0.012 147 EHRRQGIAK 0.012 123 GALPVDDPT 0.010 176 DTGTIQLSA 0.009 172 EVILDTGTI 0.008 33 FRQLKLPR 0.008 34. RQLLKLPRT 0.007 16 WVVGLSRG 0.007 192 GPKKTGQSF 0.006 1 MAPCHIRKY 0.006 9 YQESDRQWV 0.006 5 HIRKYQESD 0.006 150 RQGIAKALV 0.006 201 FCVWARLVA 0.006 12 SDRQWVVGL 0.005 00 00 Table X-1S6P5C12-A3-lotners PoB 1234567890 Score SegID 186 ALYQSMGFK( 300.000 24 GMAEHAPATF 9.000 76 FLAKKPWTBY 6.000 38 KLPRTLILLL 5.400 69 SLFPAIJWFLA 4.500 131 TLREKRLQIF 4.500 161 VLQFARDQOY 4.000 141 HLSVDSEsHRR 4.000 124 ALPVDDPTLR 4.000 184 AMMJYQSMGF 4.000 61 LLALVFSISL 3.600 197 aosFFCVWAR 3.240 LLLGGPLALL 3.038 206 RLVALHTVHF 3.000 53 LLLVSGSWLL 2.700 44 ILLLGGPLAL 1.800 46 LLGGPLALLL 1.800 14 RQWVVGLLiSR 1.800 QLLY..PRTLI 1.350 19 GLLSRGMABH 1.350 209 ALHTVHFIYH 1.200 36 LLKLPRTLIL 1.200 157 LVRTVLQFAR 1.200 52 ALLLVSGSWL 0.900 71 FPALWF'LAKK 0.900 LVSGSWLLAL 0.810 156 ALVRTVLQFA 0.675 54 LLVSGSWLLA 0.600 179 TIQLSAMALY 0.600 67 SISLFPALWF 0.600 155 KA.LVRTVLQF 0.540 96 DITKSYLSER 0.540 218 HLPSSKVGSL 0.540 73 ALWFLAKKPW 0.500 64 LVFSISLFPA 0.450 HIRKYQESDR 0.400 29 APATFRQLLK 0.400 LCTDMSDITK 0.400 LFPALWFLAK 0.360 202 CVWARLVALH 0.300 138 QLFHLSVDSB 0.300 101 YLSERGSCFW 0.300 195 KTGQSFFCVW 0.270 208 VALHTVHFIY 0.270 WLaLALVFSIS 0.270 42 TLILLLGGPL 0.270 178 GTIQLSAMAL 0.270 150 RQGIAKAJVR 0.240 LLSRGMAEHA 0.200 93 DMSDITI(SYL 0.180 Table X-156P5C12-A3-10mers Pos 1234567890 Score SeqID 207 LVALHTVHFI 0.180 173 VILDTGTIQL 0.180 181 QLSAMALYQS 0.180 215 FIYHLPSSKV 0.150 80 KPWTEYVDMT 0.135 120 GMVGALPVDD 0.135 185 MALYQSMGFK 0.135 146 SEHRRQGIAK 0.120 89 TLCTDMSDIT 0.100 108 CFWVAESEEK 0.100 63 ALVFSISLFP 0.090 88 MTLCTDMSDI 0.068 25 MAEHAPATFR 0.060 174 ILDTGTIQLS 0.060 62 LALVFSISLF 0.045 123 GAIJPVDDPTL 0.041 118 VVGMVG3ALPV 0.040 214 HFIYHLPSSK 0.030 126 PVDDPTLREK 0.030 43 LILLLGGPLA 0.030 136 RLQLFHLSVD 0.030 212 TVHPIYHLPS 0.024 198 QSFFCVWARL 0.022 117 KVVGM4VGALP 0.020 68 ISLFPALWFL 0.020 85 YVDMTLCTDM 0.020 9 YQESDRQWVV 0.018 28 HAPATFRQLL 0.018 152 GIAKALVRTV 0.018 82 WTEYVDMTLC 0.015 110 WVAESEEKVV 0.015 201 FCVWARLVAL 0.013 50 PLAIJLLVSGS 0.012 190 SMGFKKT(IQS 0.012 87 DMTLCTDMSD 0.012 191 MGFKKTGQSF 0.010 130. PTLREKRLQL 0.009 121 MVGALPVDDP 0.009 153 IAKALVRTVL 0.009 194 KKTGQSFFCV 0.008 59 SWLIIALVFSI 0.008 210 LHTVHFIYHL 0.008 133 REKRLQLFHL 0.008 11 ESDRQWVVGL 0.008 103 SERGSCFNVA 0.008 32 TFRQLLKaJPR 0.008 140 FRLSVDSEHR 0.006 192 GFKKTGQSFF 0.006 127 VDDPTLREKR 0.006 77 LAKKPWTEYV 0.006 Table XI-156P5C12-A11-9mers Pios 123456789 Score SeqID 91 CTDMSDITK 2.000 187 LYQSMGFKK' 1.200 186 ALYQSMGFK 0.800 215 1FIyHLPSSK 0.800 711 FPALWFLAK 0.400 97 ITKSYLSER 0.200 195 KTGQSFFCV 0.090 117 KVVGMVGAJ 0.090 141 HLSVDSEHR 0.080 125 LPVDDPTLR 0.060 178 GTIQLSAMA 0.045 202 CVWARLVAL 0.040 31 ATFRQLLKL 0.040 PATFRQLLK 0.040 LVSGSWLLA 0.040 72 PALWFLAKK 0.030 109 'FWVAESEEK 0.030 211 HTVHFIYHL 0.030 38B KLPRTLILL 0.024 136 RLQLFHLaSV 0.024 157 LVRTVIJQFA 0.020 82 WTEYVDMTL 0.020 207 LVALHTVHF 0.020 110 WVAESEEKV 0.020 150 RQGIAKALV 0.018 WLLALVFSI 0.018 206 RLVALHTVH 0.018 197 GQSFFCVWA 0.018 69 SLFPALWFL 0.016 198 QSFFCVWAR 0.016 158 VRTVLQFAR 0.012 151 QGIAKAIJVR 0.012 1s QWVVGLLSR 0.012_ 26 AEHAPATFR 0.012 LLLGGPLAL 0.012 KPWTEYVD4 0.012 147 EHRRQGIAC 0.012 54 LLVSGSWLL 0.012 162 LQFARDOGY 0.012 156 ALVRTVLQF 0.012 209 ALRTVHFIY 0.012 172 EVILDTGTI 0.009 180 IQLSAMALY 0.009 41 RTLILLLGG 0.009 33 FRQLLKaJPR 0.008 174 ILDTGTIQL 0.008 64 LVFSISLFP 0.008 1131 TLREKRLQL 0.008 1179 TIQLSAMAL 0.008 [14 RQWVVGLLS 0.00 TableXI-156PSC12-A11-9mers Poe 123456789 Score- SeqID 142 LSVDSEHRR 0.006 44 ILLLiGGPLA 0.006 201 FCVWARILVA 0.006 53 LLLVSGSWL 0.006 70 LFPALWFLA 0.006 192 GFKKTGQSF 0.006 62 LALVFSISL 0.006 52 ALLLVSGSW 0.006 -3 ALVFSISLF 0.006 65 VFSISLFPA 0.006 43 LILLLGGPL 0'.006 185 MALYOSMOF 0.006 176 DTGTIQLSA 0.006 9 YQESDRQWV 0.006 159 RTVLQFARl 0.005 124 ALPVDDPTL 0.004 101 YIJSERGSCF 0.004 6 IRKYQESDR 0.004 20 LLSRGMAEH 0.004 67 SISLFPALW 0.004 183 SAM.ALYQSM 0.004 216 IYHLPSSKv 0.004 3i6 LLKLPRTLI 0.004 199 SFFCVWARL 0.004 89 TLCTDMSDI 0.004 46 LLGGPLALL 0.004 39 LPRTLILLL 0.004 19 GLLSRGMAE 0.004 133 REKRLQLFH 0.004 16 WVVGLLSRG 0.003 208 VALHTVMFI 0.003 88 MTLCTDMSD 0.003 34 RQLLKLPRT 0.003 58 GSWLLALVF 0.002 169 GYSEVILDT 0.002 127 VDDPTLREK 0.002 77 LAKKPWTEY 0.002 212 TVHFIYHLP 0.002 118 VVGMVOALP 0.002 85 YVDMTLCTD 0.002 29 APATFRQLL 0.002 17 VVGLLSRGM _0.002 25 MAEHAPATF 0.002 121 MVGALPVDD 0.002 219 LPSSKVGSL 0.002 49 GPLALLLVS 0.002 120 GMVGALPVD 0.002 167 DOGYSEVIL 0.002 103 SERGSCFWV 0.002 152 GIAKALVRT 10.001 Table XII-156P5C12-A11-lomers Pos 1234557890 Score SeqID 186 ALYQSMGFKK 2.400 14 RQWVVGLLS. 1.440 157 LVRTVLQFAR 1.200 150 RQGIAKALVR 0.720 197 GQSFFCVWAR 0.720 LFPALWFLAX 0.400 LCTDMSDITK 0.400 108 CFWVAESEEK 0.400 29 APATFRQLLK 0.400 185 MALYQSMGFK 0.300 214 HFIYHLPSSK 0.300 71 FPALWFLAXK 0.200 146 SEHRRQGIAX 0.120 64 LVFSISLFPA 0.120 178 OTIQLSAMAL 0.090 124 ALPVDDPTLR 0.080 32 TFRQLLKLPR 0.080 141 HLSVDSEHRR 0.080 1HIRKYQESDR. 0.080 MARHAPATFR 0.040 LVSGSWLLAL 0.040 202 CVWARLVALH 0.040 118 VVGMVGALPV 0.040 195 KTGQSFFCVW 0.030 69 SLFPALWFLA 0.024 38 KLPRTLILLL .0.024 96 DITKSYLSER 0.024 17 VVGLLSRGMA 0.020 126 PVIDDPTLREK 0.020 207 LVALHTVHFI 0.020 YVDMTLCTDM 0.020 19 GLLSRGMAEH 0.018 206 R.LVAIJHTVXF 0.018 1.55 KALVRTVLQF 0.018 88 MTLCTDMSDI 0.015 44 ILLLGGPLAL 0.012 173 VILDTOTIOL 0.012 24 GMAERAPATF 0.012 9 YQESDRQWVV 0.012 54 LLVSGSWLJA 0.012 8 KYQESDRQWV 0.012 53 LLLVSGSWLL 0.012 110 WVAESEEKW 0.010 117 KVVGMVGALP 0.009 123 GALPVDDPTL 0.009 208 VALHTVHFIY 0.009 215 FIYMLPSSKV 0.008 67 SISLFPALWF 0.008 146 LLGGPLALLL 0.008 F611 LLALVFSISL 10.008 -Table XII-156P5012-A11-lomers Pos 12345',7890 Score SeqID 209 ALHTVHFIYH 0.008 36 LLKLPRTLIL 0.008 184 AMALYQSMGF 0.008 140 FHLSVDSEHR 0.006 42 TLjILLLGGPL 0.006 100 SYLSERGSCF- 0.006 35 QLLKLPRTJI 0.006 156 ALVRTVLQFA 0.006 43 LILLLGGPLA 0.006 192 GFKKTGQSFF 0.006 52 ALLLVSGSWL 0.006 45 LLLGGPLALL 0.006 133 REIRLQLFHL 0.005 41 RTLILLLQGP 0.005 179 TIQLSAM'ALY 0.004 218 HLPSSKVGSL 0.004 212 TVHFIYHLPS 0.004 76 FLAKKPWTEY 0.004 131 TLREKRLQLF 0.004 73 ALWFLAKQCPW 0.004 161 VLQFARDQGY 0.004 20 LLSRGMAEHA 0.004 101 YLSERGSCFW 0.004 127 VDDPTLRBKR 0.004 200 FFCVWARLVA 0.004 201 FCVWARIIVAL 0.003 16 WVVGLLSRGM 0.003 130 PTLREKRLQL 0.003 160 TVLQFARDQG 0.003 176 DTQTIQLSAM 0.003 51 LALLLVSGSW 0.003 62 LALVFSISLF 0.003 34 RQLLIKJPRTL 0.003 204 WARLVALHTV 0.002 164 FARDQGYSEV 0.002 139 LFHILSVDSEH 0.002 65 VFSISLFPAL 0.002 28 I{APATFRQLL 0.002 77 LAKXPWTBYV 0.002 153 IAKALVRTVJ 0 .002 121 MVGALPVDDP 0.002 194 KKCTQQSFFCV 0.002 135 KRLQLFHLSV 0.002 120 GMVGALPVDD 0.002 180 IQLSAMALYQ 0.002 211 HTVHFIYHLP 0.002 63 AIJVFSISLFP 0.001 80 KPWTEYVDMT 0.001 162 LQFARDQGYS 0.001 169 GYSEVILDTG 0.001 Table XIII-156P5C12-A24-9mers al II16S1-2-mr 00 00 Pos 123456789 Score SeqID 199 SFFCVWARL. 28.000 8 KYQESDRQW 18.000 117 KVVGMVGAL 12.000 38 KLPRTLILL 12.000 192 GFKKTGQSF 12.000 84 EYVDMTLCT 9.000 66 FSISLFPAJ 8.640 1Y69 GYSEVIIJDT 8.400 82 WTEYVDMTL 8.400 100 SYLSERGSC 7.500 43 LILLLGGPL 7.200 QLLKLPRTL 7.200 28 HAPATFRQL 7.200 124 ALPVDDPTL 6.000 53 LLLVSGSWL 6.000 62 ijALVFSISL 6.000 179 TIQLSAMAL 6.000 L54 LLVSGSWLL 6.000 211 HTVHFIYHL 6.000 LLLGGPLAL 6.000 47 LGGPLALLL 5.7150 21 IYHLPSSKV 5.500 131 TLREKRLQL 4.800 69 SLFPALWFL 4.800 39 LPRTLILLL 4.800 29 APATFRQLL 4.800 31l ATFRQLLKL 4.400 174 ILDTGTIQL 4.000 94 MSDITKSYL 4.000 129 DPTLREKRL 4.000 1767 DQGYSEVIL 4.QOO 202 CVNARLVAL 4.000 46 LIGGPLALL 4. 000 219 LPSSKVGSL 4.000 56 VSGSWLLAL 4.000 63 ALVPSISLF 3.-000 68 ISLFPALWF 3.000 MAEHAPATP 3.000 185. MALYQSMGF 3.000 156 AIJVRTVLQF 3.000 101 YLSERGSCP 2.400 58 QSWLLALVF -2.400 207 LVALHTVHF 2 .000 145 DSEHRRQGI 1.800 WLLALVFSI 1.800 149 RRQGIAKAL 1.680 172 EVILDTGTI 1.500 208 VALHTVHFI 1.500 183 SAMvALYQSM 1.080 KWTEYVDM 1.000 Pos 123456789 Score SeqID 89 TLCTDMSDI 1.000 36 LIJKT.PRTLI 1.000 70 LFPALWFLA 0.900 113 ESEEKVVGM 0.900 13 DRQWVVGLL 0.840 187 LYQSMGFKK 0.825 75 WPLAKXPWT 0.750 214 HPIYHLPSS 0.750 37 LKLPRThIL 0.720 17 WGLLSRG4 0.600 154 AKAJVRTVI 0.560 163 QFARDQGYS 0.500 65 VFSISLFPA 0.500 177 TGTIQLSA4 0.500 200 FPCVWARJV 0.500 12 SDRQWVVGL 0.400 134 EKRLQLFHL 0.400 132 LREKRLQLF 0.360 136 RLQLFHLSV 0.300 23 RGMABRAPA 0.300 34 RQLLKLPRT 0.300 166 RDQGYSEVI 0.300 14 RQWVVGLLS 0.280 123 GALPVDDPT 0.252 195 K'TGQSFFCV 0.240 52 ALLLVSGSW 0.210 193 FKKTGQSFF 0.200 99 KSYLSERGS 0.200 150 RQGIAKALV 0.200 9 YQESDRQWV 0.180 49 GPLALLLVS 0.180 178 GTIQLSAMA 0.180 196 TGQSFFCVW 0.180 51 LALLILVSGS 0.180 157 LVRTVLQFA 0.168 93 DMSDITKSY 0.168 61 LLALVFSIS 0.168 1 MAPOHIRKY 0.165 119 VGMVGALPV 0.150 102 LSERGSCFW 0.150 180 IQLSAMALY 0.150 59 SWLLALVFS 0.150 48 GGPLALLLV 0.150 218 HLPSSKVGS 0.150 I11 VAESEEKVV 0.150 201 FCVWARLVA 0.150 18 ViGLLSRGMA 0.150 44 ILLLGGPILA 0.150 209 ALHTVHFIY 0.140 176 DTGTIQLSA 0.140 00 00 Table XIV-156PSC12-A24-lomers Pos 1234567890 Score SeqID 186 ALYQSMGFKK 2.400 14 RQWVVGLLSR 1.440 157 LVRTVLQFAR 1.200 150 RQGIAKALVR 0.720 197 GQSFFCVWAR 0.720 LFPALiWFLAK 0.400 LCTDMSDITK 0.400 108 CFWVAESEEK 0.400 29 APATFRQLLK 0.400 185 MALYQSMGFK 0.300 214 HFIYHLPSSK 0.300 71 FPALWFLAKK 0.200 146 SEHRRQGIAX 0.120 64 LVFSISLFPA 0.120 178 GTIQLSA4AL 0.090 124 ALPVDDPTLR 0.080 32 TFRQLLKLPR 0.080 141 RLSVDSEHRR 0.080 HIRKYQESDR 0.080 MA.EHAPATPR 0.040 LVSGSWLLAL 0.040 202 CVWARLVALH 0.040 118 VVGMVGALPV 0.040 195 KTGQSFFCVW 0.030 69 SLFPALWFLA 0.024 38 KLPRTLILLL 0.024 96 DITKSYLSER 0.024 17 VVGLLSRGMA 0.020 126 PVnDPTLREK 0.020 207 LVALHTVHFI 0.020 YVDMtLCTDM 0.020 19 GLiLSRGMAEH 0.018 206 RLVALHTVF 0.018 155 KAXJVRTVLQF 0.018 B 88 MTLCTDMSDI 0.015 44 ILLLGGPLAL 0.012 173 VILDTGTIQL 0.012 24 GMAEHAPATF 0.012 9 YQESDRQWVV 0.012 54 LLVSGSWLLA 0.012 8 KYQESDRQWV 0.012 53 LLLVSGSWLL 0.012 110 WVAESEEKVV 0.010 117 KVVGMVGALP 0.009 123 GALPVDDPTL 0.009 208 VALHTVHFIY 0.009 21$_ FIYHLPSSKV 0.008 67 SISLFPALWF 0.008 46 LLGQPLALLL 0.008 61 LI±ALVFSISL 0.008 Table XIV-156P5C12 -A24-10mers I Pos 1234567890 Score SeqIDI 209 ALHTVHFIYH 0.008 36 LLKLPRTLIL 0.008 184 AMAIJYQSMGF 0.008 140 FHLSVDSEHM 0.006 42 TLILLLGGPL 0.006 100 SYLSERGSCF 0.006 35 QLLKLjPRTLI 0.006 156 ALVRTVLQFA 0.006 43 LILLLGGPLA 0.006 19 GFXKTGQSFF 0.006 52 ALLLVSGSWL 0.006 45 LLLGGPLALL 0.006 133 REKRLQLFHL 0.005 41 RTLILLLGGP 0.005 179 TIQLSAMALY 0.004 218 HLPSSKVGSL 0.004 212 TVHFIYHLPS 0.004 76 FLAKKPWTEY 0.004 131 TIJREKRLQLF 0.004 73 -ALWFLAKKPW 0.004 161 VLQFARDQGY 0.004 20 LLSRGMAEHA 0.004 101 YLSERGSCFW 0.004 127 VDDPTLREKR 0.004 200 FFCVWARLVA 0.004 201 FCVWARLVAL 0.003 16 WVVGLLSRGM 0.003 130 PTLREKRJJQL 0.003 160 TVLQFARDQG 0.003 176 DTGTIQLSAM 0.003 51 LALLLVSGSW 0.003 62 LALVFSISLF 0.003 34 RQLLKLPRTL 0.003 204 WARLVALHTV 0.002 164 FARDQGYSEV 0.002 139 LFHLSVDSEH 0.002 65 VFSISLFPAL 0.002 28 HAPATFRQLL 0.002 77 LAKKPWTEYV 0.002 153 IAKALVRTVL 0.002 121 MVVGALPVDDP 0.002 194 KKTGQSFFCV 0.002 135 KPLQLFHLSV 0.002 120 GNVGALPVDD 0.002 180 IQLSAMALYQ 0.002 211 HTVRFIYHLP 0.002 63 ALVFSISLFP 0.001 80 KPWTEYVDMT 0.001 162 LQFARDQGYS 0.001 F1697 G3YSrviIDTU3 0.001 Table XV-156P5C12-B7-9mers 00 Pos 123456789 Score SeqID 39 LPRTIILL. 800.000 29 APATFRQLL 360.000 129 DPTLREKRL 80.000 ct 219 LPSSKVGSL 80.000 131 TLREKRLQL 60.000 KPWTEYVDM 20.000 kf 202 CVWARLVAI 20.000 117 KVVGMVOAL 20.000 31 ATFRQLLKL 12.000 124 AIPVDDPTI 12.000 28 MAPATFRQL 12.000 62 LALVFSISL 12.000 183 SAMALYQSM 9.000 46 LIJGGPLALL 6.000 Ci 17 VVGLLSRGM 5.000 00 157 LVRTVLQFA 5.000 i167 DQGYSEVIL 4.000 179 TIQLSAMAL 4.000 43 LILLLGGPL 4.000 47 LGGPLALLL 4.000 12 SDRQWVVGL 4.000 56 VSGSWLLAL 4.000 211 HTVHFIYHL 4.000 54 LLVSGSWaL 4.000 69 SLFPALWFL 4.000 38 KLPRTLILL 4.000 66 FSISLFPAL 4.000 53 LLLVSGSWL 4.000 QLLKLPRTL 4.000 134 EKRLQLFHL 4.000 LLLGGPLAL 4.000 204 WARLVALHT 3.000 172 EVILDTGTI 2.000 154 AKA1VRTVL 1.800 174 ILDTGTIQL 1.200 208 VALHTVHFI 1.200 82 WTEYVDMTL 1.200 94 MSDITKSYL 1.200 110 WVAESEEKV 1.000 21 ISRGMABHA 1.000 177 TGTIQLSAM 1.000 2 APCHIRKYQ 0.900 36 LLKLPRTLI 0.900 119 VGMVGALPV 0.600 153 IAKALVRTV 0.600 LVSGSWLLA 0.500 199 SFFCVWAJ 0.400 49 GPIALLLS 0.400 149 RRQGIAKAL 0.400 WLLALVFSI 0.400 Table XV-156P5C12-B7-9mers Pos 123456789 Score SeqID 37 LKLPRTLIL 0.400 89 TLCTDMSDI 0.400 13 DRQWVVGLL 0.400 23 RGMAEHAPA 0.300 113 ESEEKVVGM 0.300 86 VDMTLCTDM 0.300 164 FARDQGYSE 0.300 123 GALPVDDPT 0.300 71 FPAIWFLAK 0.200 48 GGPLALLLV 0.200 136 RLQLFHLSV 0.200 150 RQGIAKALV 0.200 57 SGSWLLALV 0.200 125 LPVDDPTLR 0.200 103 SERGSCFWV 0.200 195 KTGQSFFCV 0.200 111 VAESEEKVV 0.180 145 DSEHRRQGI 0.180 201 *FCVWARLVA 0.150 18 VGLLSRGMA 0.150 178 GTIQLSAMA 0.100 188 YQSMGFKKT 0.100 44 ILLLGGPLA 0.100 197 GQSFFCVWA 0.100 152 GIAKALVRT 0.100 90 LCTDMSDIT 0.100 5 HIRKYQESD 0.100 176 DTGTIQLSA 0.100 34 RQLLKLPRT 0.100 148 HRRQGIAKA 0.100 207 LVALHTVHF 0.100 24 GMARHAPAT 0.100 77 LAIKPWTEY 0.090 9 YQESDRQWV 0.090 63 ALVFSISLF 0.060 156 ALVRTVLQF 0.060 52 ALLLVSGSW 0.060 51 LALIJVSGS 0.060 78 AKKPWTEYV 0.060 209 ALMTVHFIY 0.060 205 ARLVAILHTV 0.060 185 MALYQSMGF 0.060 1 MAPCHIRKY 0.060 160 TVLQFARDQ 0.050 64 LVFSISLFP 0.050 212 TVHFIYHLP 0.050 16 WVVGLSRG 0.050 118 VVGMVGALP 0.050 121 MVGALPVDD 0.050 166 RDQGYSEVI 0.040 TableXCVI -156P5Cl2-B7-10mers Pos 1234S67890 Score SegID LVSGSWLLA. 20.000 153 IAKALVRTVL 18.000 28 HAPATFRQLL 18.000 123 GALPVDDPTL 12.000 52 ALLLVSGSWL 12.000 164 FARDQGYSEV 6.000 204 WAR.LVALHTV 6.000 LLLGGPLALL 6.000 16 WVVOLDLSRGM 5.000 53 LLIAVSGSWLL 4.000 36 LLKLPRTLIL 4.000 148 HRRQGIAKAL 4.000 12 SDRQWVVGLL 4.000 198 QSFFCVWARLj 4.000 46 LLGGPLALLL 4.000 218 HLPSSKVGSL 4.000 44 ILLLGGPLAL 4.000 42 TLILLLGGPL 4.000 201 FCVWARLVAL 4.000 173 VILDTGTIQL 4.000 61 LLAIlVFSISL 4.000 178 GTIQLSAMAL 4.000 68 ISLFPALWFL 4.000 93 DMSDITKSYL 4.000 38 KLPRTLILLL 4.000 34 RQLILaJPRTL 4.000 39 LPRTLILLLG 2.000 207 LVALHTVHFI 2.000 KPWTBYVDMT 2.000 YVDMTLCTDM 1.500 11 ESDRQWVVGL 1.200 PATFRQLLKL 1.200 110 WVAESEEKVV 1.000 176 DTGTIQLSAM 1.000 118 VVGMVGALPV 1.000 182 LSAMALYQSM 1.000 QLLKLPRTLI 0.900 17 VVGLLSRGMA 0.750 130 PTIJREKRLOL 0.600 29 APATFRQLLK 0.600 2 APCHIRKYQE 0.600 77 LAKKPWTEYV 0.600 64 LVFSISLFPA 0.500 157 LVRTVLQFAR 0.500 166 RDQGYSEVIL 0.400 VFSISLFPAL 0.400 116 EKVVGMVGAL 0.400 27 EHAPATFRQL 0.400 210 LHTVHFIyHL 0.400 1i28 IDDPTJREKRJ 0.400 TableXVI-156PSC12-B7-orners Pos 1234567690 Score SeqID 37 LKLPRTLILL 0.400 88 MTLCTDMSDI 0.400 133 REKRLQLFHL 0.400 112 ABSEEKVVGM 0.300 156 ALVRTVLOFA 0.300 23 RGMAEHAPAT 0.300 215 FIYHLPSSKV 0.300 125 LPVflDPTIJRE 0.300 129 1DPTLRBKRLQ 0.200 56 VSGSWLLALV 0.200 71 FPALWFI.AKK 6.200 131 TLREKRZLQLF 0.200 47 LGGPLALLLV 0.200 49 GPLALLLVSG 0.200 152 GIAKALVRTV 0.200 99 KSYLSERGSC 0.150 212 TVHFIYHLPS 0.100 151 QGIAKALVRT 0.100 168 QGYSEVILDT 0.100 103 SERGSCFWVA 0.100 69 SLFPALWFLA~ 0.100 5 HIRKYQESDR. 0.100 79 KKPWTEYVDM 0.100 147 EHRRQGIAKA 0.100 54 LLVSGSWL 1 A 0.100 196 TGQSFFCVWA 0.100 20 LLSRGMAEHA 0.100 122 VGALPVDDPT 0.100 21 LSRGMABHAP 0.100 43 LILLLjUOPLA 0.100 89 TLCTDMSDIT 0.100 '177 TGTIQLSAMA, 0.100 183 SAMALYQSMG 0.090 121 MVGALPVDDP 0.075 160 TVLQFARnOG 0.075 155 KA.LVRTVLQP 0.060 62 LALVFSISLF 0.060 144 VDSEHPRRGI 0.060 73 ALWFLAKKPW 0.060 28 VALHTVHFIY 0.060 51 LALLLVSGSW 0.060 184 AMALYOSMP' 0.060 9 YQESDRQWVV 0.060 102 LSERGSCFWV 0.060 113 ESEEKVVGMV 0.060 172 EVILDTGTIQ 0.050 202 CVWARLVALH 0.050 117 KVVGMVGALP 0.050 1 MAPCHIRKYQ 0.045 171 SEVILDTGTI 0.040 TableXVII-156P5C12-B35-9mers 0 POe 123456789 Score SeqIDI KPWTEYVDM. 120.000 3.9 LPRTLILLL 60.000 C1 29 APATFRQLL 20.000 S129 DPTLREKRL 20.000 219 LPSSKVGSL 20.000 77_ LAKKPWTEY 18.000 113 ESEEKVVGM 6.000 I MAPCHIRKY 6.000 131 TLREKRLQL 6.000 183 SAMAIDYQSM 6.000 j- 5.8 GSWLLALVF 5.000 ~t 68 ISLFPALWF 5.000 56 VSGSWLJAL 5.000 66 FSISLFPAL 5.000 93 DMSDITKSY 4.000 00 28 HAPATFRQL 3.000 S62 LALVFSISL 3.000 S185 MALYQSMGF 3.000 C1 209 ALHTVHFIY 2.000 101 YIJSERGSCF 2.000 38 KLPRTLILL 2.000 17 WGLLSRGM 2.000 117 KVVGMVGAJ 2.000 49 GPLALLLVS 2.000 162 LQFARDQGY 2.000 180 IQLSAMALjY 2.000 177 TGTIQLSAN 2.000 153 IAKALVRTV 1.800 94 M~SDITKSYh 1.500 21 LSRGMAEHA 1.500 124 ALPVDDPTL 1.500 208 VALHTVHFI 1.200 36 LLKLPRTLI 1.200 47 LGGPLALLL 1.000 63 ALVFSISLF 1.000 99 KSYLSERGS 1.000 156 AILVRTVLQF 1.000 43 IjILLIGGPL 1.000 202 CVWARLVAL 1.000 53 LLLjVSGSWL 1.000 31 ATFRQLLKLj 1.000 167 DQGYSEVIL 1.000 54 LIJVSGSW'LL 1.000 207 LVALHTVHF 1.000 LLIJGGPLAL 1.000 QLLKLPRTL 1.000 69 SLFPALWFL 1.000 46 LLGGPI.ALL 1.000 179 TIOLSAMAL 1.000 211 HTVHFIYHL 1.000 Table XVII-15~PSC12-~-qm~~ Poe 123456789 Score SeqID 204 WARLVALHT 0.900 25S MAEHAPATF 0.900 102 LSERGSCFW 0.750 89 TLCTDMSDI 0.600 125 LPVDDPTLR 0.600 145 DSEHRRQGI 0.600 172 EVILDTGTI 0.600 10 GSCFWVAES 0.500 196 TGQSFFCVW 0.500 182 LSAMALYQS 0.500 67 SISLFPAL.W 0.500 5 2 AXJLLVSGSW 0.500 110 WVABSEEKV 0.400 60 WLLALVFSI 0.400 195 KTGQSFFCV 0.400 136 RLQLFHLSV 0.400 150 RQGIAKALV 0.400 82 WTEYVDMTL 0.300 12 SDRQWVVGL 0.300 193 FKKTGQSFF 0.300 192 GFKKTGQSF 0.300 134 EKRLQLFHL 0.300 157 LVRTVLQFA 0.300 51 LALLLVSGS 0.300 123 GALjPVDDPT 0.300 23 RGMAEHAPA 0.300 174 ILDTGTIQL 0.300 111 VAESEEKVV 0.270 86 VDMTLCTDM 0.200 14 RQWVVGLLS 0.200 8 KYQESDRQW 0.200 2 APCHIRKYQ 0.200 34 RQLLKajPRT 0.200 149 RRQGIAKAL 0.200 119 VGMVGAL.PV 0.200 48 GGPLAIJLLV 0.200 90 LCTDMSDIT 0.200 57 SGSWLLALV 0.200 71 FPALWFLAK 0.200 24 GMAEJ{APAT 0.200 164 FARDQGYSE 0.180 12 GIAXALVRT 0.100 142 LSVDSEHRR 0.100 138 QLFHLSVDS 0.100 218 RLPSSKVGS 0.100 178 GTIQLSAMA 0.100 61 LLALVFSIS 0.100 197 GQSFFCW 0.100 199 SFFCVWARL 0.100 191 MGFKKTGQS 0.100 T~hTh Table XVIII-156PSC12-B35-in a P06 1234567890 Score SeqID 182 LSAMALjYQSM 10.000 153 IAXALVRTVL 9.000 208 VALHTVHFIY 6.000 155 KALVRTVLQF 6.000 131 TLREKRLQLF 6.000 68 ISLFPALWFL 5.000 198 QSFFCVWARL 5.000 123 GALPVDDPTL 4.500 KPWTEYVDMT 4.000 164 FARDQGYSEV 3.600 36 LLKLPRTLIL 3.000 62 ILALVFSISLF 3.000 28 HAPATFRQLL 3.000 66 FSISLFPALW 2.500 93 OMSDITKSYL 2.000 206 RLVALMTVRE 2.000 34 ROLLKaLPRTL 2.000 161 VLQFARDQGY 2.000 176 DTG;TIQLSAM 2.000 16 WVVGLLSRGM 2.000 24 GMAEHAPATF 2.000 173 VILDTGTIQL 2.000 38 1KLPRTLILLL 2.000 76 FLAKKPWTEY 2.000 179 TIQLSAMAJY 2.000 77 LARKPWTEYV 1.800 204 WARLVALHTV 1.800 11 ESDRQWVVGL 1.500 51 LALLLVSGSW 1.500 99 KSYLSERGSC 1.500 218 HLPSSKVGSL 1.000 191 MGFKKTGQSF 1.000 184 AMALYQSMGF 1.000 201 FCVWARLVAL 1.000 46 LLGGPLALLL 1.000 67 SISLFPALWF 1.000 53 LLLVSQSWLL 1.000 57 SGSWLLALVF 1.000 56 VSGSWLLALV 1.000 42 TLILLLG3GPL 1.000 LVSGSWLLAL 1.000 195~ KTQQSFFCVW. 1.000 61 LLiALVFSISL 1.000 178 GTIQLSAMAL 1.000 LLLGGPLALL 1.000 44 ILLLGGPLAL 1.000 52' ALLLVSGSWL 1.000 101 YLSERGSCFW 1.000 133 REKRLQLFHL 0.600 L88 MTLCTDMSDI 0.600 Pos 1234567890 Score SesID 79 KKPWTEYVDM 0.600 110 WVAESEEKVV 0.600 39 LPRTLILLLG 0.600 85 YVDMTLCTDM 0.600 113 ESEEKVVGMV 0.600 73 ALWFLAXKPW 0.500 58 GSWLLALVFS 0.500 125 LPVDDPTLRE 0.400 35 QLLKLPRTLI 0.400 112 AESEEKVVGM 0.400 207 LVALHTVHFI 0.400 12 SDRQWVVGLL 0.300 30 PATFRQLLKaJ 0.300 192 QFKKTGQSPF 0.300 148 HRRQGIAKAL 0.300 102 LSERGSCFWV 0.300 129 DPTLR3IRLQ 0.300 23 RGMAEHAPAT 0.200 152 GIARALVRTV 0.200 47 LGGPLALLLV 0.200 215 FIYHLPSSKV 0.200 105 RGSCFWVAES 0.200 92 TDMSDITKSY 0.200 49 GPIAILLVSG 0.200 29 APATFRQLLK 10.200 71 FPAIJWFLAKK 0.200 2 APCHIRKYQE 0.200 118 VVGMVGALPV 0.200 166 RDQGYSEVIJ 0.200 21 LSRGMAEHAP 0.150 94 MSDITKSYLS 0.150 142 LSVDSEHPRQ 0.150 170 YSEVILDTGT 0.150 145 DSEHRRQGIA 0.150 162 LQFARDQGYS 0.150 8 KYQESDRQWV 0.120 177 TGTIQLSAMA 0.100 122 VGAIJPVDDPT 0.100 48 GGPLALLLVS 0.100 69 SLFPALWFLA 0.100 181 QLSAMALYQS 0.100 212 TVRFIYHIIPS 0.100 196 TGQSFFCVWA 0.100 60 WIJLALVFSIS 0.100 65 VFSISLFPAL 0.100 190 SMGFKKTGQS 0.100 89 TLCTDMSDIT 0.100 151 QGIA1CALVRT 0.100 37 LKLPRTLILL 0.100 128 1DDPTLREKRL 1.0.100 Table V-161P2B7A-A1-9mers oo Pos 123456789 Score SegID 174 IADLRLKAK. 10.000 LSEARVQVW 1.350 C~I111 QLDSAVAHA 1.000 149 AADSASAAS 1.000 Ct 2 EDEGQTKIK 0.900 NVGAIRMPF 0.500 128 AAHAPYMMF 0.500 158 VVAAAAAAK 0.400 172 SSIADLRLK 0.300 33 THYPDAFMR 0.250 122 HLHPHLAAH 0.200 162 AAAAKTTSK 0.200 181 AASOFEACR 0.200 68 KQENQLHKG 0.135 23 LNELERLFD 0.113 S4 RVQVWFQNR 0.100 00 22 QLNELERLF 0.100 133 YMMFPAPPF 0.100 ri 89 RVAPYVNVG 0.100 134 MMFPAPPFG 0.100 77 VIGAASQF 0.100 FDETHYPDA 0.090 ELERLFDET 0.090 19 TLEQLNELE 0.090 171 NSSIADLRL 0.075 32 ETHYPDAFM 0.050 130 HAPYMMFPA 0.050 173 SIADLRLKA 0.050 FEACRVAPY 0.050 137 PAPPFGLPL 0.050 142 GLPIATLAA 0.050 93 YVNVGALRM 0.050 67 RKQENQLHK 0.050 MREELSQRL 0.045 41 REELSQRLG 0.045 153 ASAASVVAA 0.030 156 ASVVAAAAA 0.030 113 DSAVAHAHH 0.030 18 FTLEQLNEL 0.025 LEQLNELER 0.025 170 KNSSIADLR 0.025 4 EGQTKIKQR 0.025 141 FGLPLATLA 0.025 166 KTTSKNSSI 0.025 1 MEDEGQTKI 0.025 RTNFTLEQL 0.025 27 ERLFDETHY 0.025 146 ATLAADSAS 0.025 147 TLAADSASA 0.020 76 GVLIGAASQ 0.020 Table V-161P2B7A-A1-9mers Pos 123456789 Score SegID 127 LAAHAPYMM 0.020 90 VAPYYNVGA 0.020 49 GLSEARVQV 0.020 152 SASAASVVA 0.020 109 QLQLDsAVA 0.020 126 HLAAHAPYM 0.020 159 VAAAAAAT 0.020 154 SAASVVAAA 0.020 157 SVVAAAAAA 0.020 47 RLGLSEARV 0.020 155 AASVVAAAA 0.020 82 ASQPEACRV 0.015 55 VQVWFQNRR 0.015 151 DSASAASVV 0.015 79 IGAASQFEA 0.013 35 YPDAFMREE 0.013 114 SAVAHAHHH 0.010 116 VAHAHHHLH 0.010 161 AAAAAKTTS 0.010 148 LAADSASAA 0.010 57 VWFQNRRAK 0.010 80 GAASQFEAC 0.010 100 RMPPQQVQA 0.010 43 ELSQRLGLS 0.010 107 QAQLQLDSA 0.010 118 HAHHHLHPH 0.010 115 AVAHAHHHI 0.010 160 AAAAAAKTr 0.010 37 DAFMREELS 0.010 145 LATLAADSA 0.010 84 QFEACRVAP 0.009 104 QQVQAQLQL 0.007 106 VQAQLQLDS 0.007 125 PHLAAHAPY 0.005 31 DETHYPDAF 0.005 29 LFDETRYPD 0.005 138 APPFGLPLA 0.005 97 GALIRMPFQQ 0.005 39 FMREELSQR 0.005 96 VGARMPFQ 0.005 75 KGVIGAAS 0.005 72. QLHKGVLIG 0.005 46 QRLGLSEAR 0.005 99 LRMPFQQVQ 0.005 110 LQLDSAVAH 0.003 71 NQLHKGVLI 0.003 14 SRTNFTLEQ 0.003 182 KKRAAALGL 0.003 53 ARVQVWFQN 0.003 48 LGLSEARVQ 0.003 Table VI-161p27A-A1mers Pos 1234567890 Score SegID 19 TLEQLbNELER 45.000 LSEARVQVWF 27.000 174 IADLRLKAKK 20.000 84 QFEACRVAPY 4.500 32 ETHYPDAFMR 1.250 149 AADSASAASV 1.000 127 LAAHA.PYMMF 0.500 1 MEDEGQTKIK 0.500 111 QLDSAVAHAH 0.500 FDETHYPDAP 0.450 157 SVVAAAAAAK 0.400 171 NSSIADLRLK 0.300 134 MI4FPAPPFGL 0.250 124 HPHLAARAPY 0.250 41 REELSQRLGL 0.225 2 EDEGQTKIKQ 0.225 89 RVAPYVNVGA 0.200 122 MHiHP1HLAAHA 0.200 GAASQFF.ACR 0.200 1611 AAAAAKTTSK 0.200 173 SIADLRLKAK 0.200 68 KQENQLHKGV 0.135 94 VNVGALRMPF 0.125 136 FPAPPFGLPL 0.125 141 FGLPIATLAA 0.125 YPDAPMREEL 0.125 23 LNBLERLFDE 0.113 54 RVQVWFQNRR 0.100 76 QVLIQAASQF 0.100 ELERLFDETH 0.090 172 SSIAfLERLKA 0.075 78 LIGAASQFEA 0.050 91 APYVNVGALR 0.050 1 05 QVQAQLQLDS 0.050 14 ATLAADSASA 0.050 2 9 LFDETHYPDA 0.050.
37 DAPMREELSQ 0.050 MREELSQRLG 0.045S 151 DSASAASVVA 0.030 156 ASVVAAA.AAA 0.030 153 ASAASVVAAA 0.030 RTNFTLEQLN 0.025 129 AHAPYMMFPA 0.025 166 KTTS1NSSIA 0.025 4 EGQTKIKQRR 0.025 6 QTKIKQRRSR 0.025 148 LAAflSASAAS 0.020 109 QLQLDSAVAH 0.020 126 HLAAHAPYMM 0.020 152 SASAASVVAA 0.020 Table VI-161P2B7A-A10mers Pos 1234567890 Score SeqID 56 QVWFQNRRAK 0.020 118 HAHHHLHPHL 0.020 137 PAPPFGLPLA 0.020 95 NVGALRMPFQ 0.020 158 VVAA.AAAAKT 0.020 154 SAASVVAAAA 0.020 155 AASVVAAAAA 0.020 82 ASQFEACRVA 0.015 21 EQLNELERLF 0.015 113 DSAVAHAHHH 0.015 96 VGALRMPFQQ 0.013 138 APPFGLPLAT 0.013 170 KNSSIAflLRL 0.013 115 AVAHAHHHLH 0.010 133 YHNFPAPPFG 0.010 159 VAAAAAAKTT 0.010 162 AAAAKrTSKN 0.010 114 SAVAHAHHHL 0.010 47 ARIGISEARVQ 0.010 90 VAPYVNVGAL 0.010 81 AASQFEACRV 0.010 145 IiATLAADSAS 0.010 99 ILRMPFQQVQA 0.010 147 TLAADSASAA 0.010 160 AAAAAAKTTS 0.010 49 GLSEARVQVW 0.010 107 QAQLQIJDSAV 0.010 13 RSRTNFTLEQ 0.008 71 NQLHKGVLIG 0.007 103 FQQVQAQLQL 0.007 66 CRKQENQLHK 0.005 22 QLNELERLFD 0.005 53 ARVQVWPQNR 0.005 48 LGLSEARVQV 0.005 143 LaPLATLAAlS 0.005 52 EARVQVWFQN 0.005 70 ENQLHKGVLI 0.005 72 QLHKGVLIOA 0.005 3 DEGQTKIKQR 0.005 101 MPFQQVQAQL 0.005 169 SIQ4SSIADLR 0.005 116 VAHAHHHLHP 0.005 58 WFQNRRAKCR 0.005 43 ELSQRLGLSE 0.005 75 KGVLIGAASQ 0.005 100 RMPFQQVQAQ 0.005 128 AAEAPYMMFP 0.005 168 TSIQNSSIAlL 0.003 108 AQLQLDSAVA 0.003 59 FQNRRA CRK 0003 Table VII-161P27A-A2-9mers 00 Pos 123456789 Score SeqID 0 49 GLSEARVQV, 285.163 47 RLGLSEARV 69.552 18 FTLEQLNEL 47.620 108 AQLQLDSAV 26.092 98 ALRMPFQQV 10.043 142 GLPLATLAA 4.968 tf 147 TLAADSASA 4.968 111 QLDSAVAHA 4.571 71 NQLHKGVL 3.914 100 RMPFQQVQA 3.588 7t 173 SIADLRLKA 2.801 104 QQVQAQLQL 2.166 109 QLQLDSAVA 2.037 93 YVNVGALRM 2.000 115 AVAHAHHHL 1.869 00 134 MMFPAPPFG 1.862 69 QENQLHKGV 1.352 28 RLFDETHYP 1.244 CK1 126 HAAHA.PYM 0.929 133 YMMFPAPPF 0.916 56 QVWPQNRPA 0.722 21 EQLN&ELERL 0.677 83 SQFEACRVA 0.627 1 MEDEGQTKI 0.566 141 FGLPLATLA 0.552 166 KTTSKNSSI 0.507 148 LAADSASAA 0.481 82 ASQFEACRV 0.454 157 SVVAAAAAA 0.435 86 EACRVAPYV 0.398 is RTNFTLEQL 0.334 79 IGAASQFEA 0.320 ilo LQLDSAVAH 0.195 159 VAAAAAAKT 0.176 178 RLKAKKHAA 0.174 154 SAASVVAAA 0.159 135 MFPAPPFGL 0.146 171 NSSIADLRL 0.139 91 APYVNVGAL 0.133 77 VLIGAASQF 0.127 8 KIKQRRSRT 0.126 127 LAAHAPYMM 0.117 VAPYVNVGA 0.117 42 EELSQRLGL 0.115 182 KKHAAALGL 0.104 160 AAAAAAKTT 0.104 150 ADSASAASV 0.097 SQRLGLSEA 0.088 107 QAQLQLDSA 0.078 138 APPFGLPLA 0.075 Table VII-161P2B7A-A2-9mers Pos 123456789 *Score SeqID 153 ASAASVVAA 0.075 72 QLHKGVLIG 0.070 155 AASVVAAAA 0.069 169 SKNSSIADL 0.068 80 GAASQFEAC 0.064 22 QLNELERLF 0.061 24 NELERIFDE 0.059 145 LATLAADSA 0.057 65 KCRKQENQL 0.037 180 KAKKRAAAL 0.036 39 FMRBELSQR 6.035 25 ELERLFDET 0.033 156 ASVVAAAAA 0.032 130 HAPYMMFPA 0.031 32 ETHYPDAFM 0.028 152 SASAASVVA 0.028 167 TTSKUSSIA 0.028 137 PAPPFGLPL 0.025 78 LIGAASQFE 0.019 12 RRSRTNFTL 0.017 58 WFQNRRAKC 0.016 85 FEACRVAPY 0.015 119 AHHHLHPHL 0.015 88 CRVAPYVNV 0.014 151 DSASAASVV 0.014 106 VQAQLQLDS 0.013 179 LKAKKHAAA 0.012 55 VQVWFQNRR 0.010 51 SEARVQVWF 0.008 103 FQVQAQLQ 0.007 59 FQNRRAKCR 0.007 95 NVGALRMPF 0.007 89 RVAPYVNVG 0.006 123 LHPHLAAHA 0.006 122 HLHPHLAAH 0.006 76 GVLIGAASQ 0.005 97 GALRMPPQQ 0.004 177 LRLKAKKRA 0.004 139 PPFGLPLAT 0.004 68 KQENQLHKG 0.004 146 ATLAADSAS 0.004 30 FDETHYPDA 0.003 105 QVQAQLQLD 0.003 54 RVQVWFQNR 0.002 158 VVAAAAAAK 0.002 96 VGALRMPFQ 0.002 10 KQRRSRTNF 0.002 16 TNFTLEQLN 0.002 116 VAHAHHHLH 0.002 75 KGVLIGAAS 0.002 TableVIII-161P2B7A-A2-lomers Pos 1234567890 Score SegID 134 MMFPaPPFGL. 562.859 FEACrVAPYV 34.216 110 LQLDsAVA{A 29.877 39 FMREeLSQRL 22.114 72 QLHKgVLIGA 11.426 103 FQQVqAQLQL 9.963 97 GALRmPPQQV 6.791 78 LIGAaSQFEA 6.735 133 1YMMFpAPPFG 5.038 147 TLAAdSASAA 4.968 48 LGLSeARVQV 2.856 136 FPAPpFGLPL 2.438 24 NEL~rLFDET 2.046 68 KQNqLRKQV 1.580 158 VVAAaAAAKT 1.108 KQRRsRTNPT 1.105 107 QAQ~iqLDSAV 0.966 81 AASQfEACRV 0.966 106 VQAQ1QLDSA 0.965 101 MPFQqVQAQL 0.877 LEQLnELERL 0.796 108 AQL01DSAVA 0.764 141 FGLP1ATIAAA 0.552 170 KUSSIADLRL 0.488 89 RVAPyVNVGA 0.435 149 AADSaSAASV 0.386 22 QLNE1BRLFD 0.336 1.14 SAVAhAHHHL 0.297 49 GLSEaRVQVW 0.288 146 ATLAaDSASA 0.255 28 RLPDeTHYPD 0.226 159 VAAAaAAKTT 0.176 178 RLKAkKHAAA 0.174 VQVWfQNRRA 0.171 126 HLAAhAPYmM 0.169 -122 HLHPhLAAHA 0.16.9 152 SASAaSVVAA 0.159 VAPYvNVGAL 0.151 77 VLIGaASQFE 0.139 44 LSQR1GLSEA 0.127 YPDAfMREEL 0.126 166 KTTSkNSSIA 0.099 13ASAABVVAAA 0 .075 109 QLQLdSAVAH 0.075 154 SAASvVAAAA 0. 069 155 AASVvAAAAA 0.069 144 PLATlAADSA 0.054 87 ACRVaPYVNV 0.052 79 1GAsQFEAC 0.051 179 LKAKkHAAAL 0.050 Table VIII-161P2B7A-A2-lomers Pos 1234567890 Score seqID 138 APPFgLPLAT 0.049 129 AHAPyMMFPA 0.046 31 DETHyPDAFM 0.040 150 ADSAsAASVV 0.040 46 QRLG1SEARV 0.036 142 GLPLaTLAAD 0.034 17 NFTLeQLNEL 0.034 156 ASVVaAAAAA 0.032 172 SSIAdLRLKA 0.032 III QLDSaVA{AH 0.030 64 AKCRkQENQL 0.030 176 -DLRLkAKQRA 0.028 51 SFARvQVWFQ 0.027 41 REELsQRLGL 0.027 71 NQL~kGVLIG 0.026 139 PPFG1PLATL 0.026 100 RMP~qQVQAQ 0.025 76 GVLIgAASQF 0.024 83 SQFEaCRVAP 0.023 69 QENQ1HKGVL 0.022 173 SIAD1RLKAK 0.019 95 NVGA1RMPFQ 0.016 165 AKTTsIQNSSI 0.014 29 IFDEtHYPDA 0.014 168 TSKNsSIADL 0.011 -7 TKIKqRRSRT 0.010 118 HAHHhLHPHL 0.010 148 LAAflaASAAS 0.007 18 FTLEqLNELE 0.007 59 FQNRrAKCRK 0.007 105 QVQAqLQLDS 0.007 115 AVARaHHHLH 0.007 70 ENQLhKGVLI 0.005 54 RVQVwFQNRR 0.005 177 IRLKaIKKRAA 0.004 57 VWF'QnRRAKC 0.004 99 LRMPfQQVQA 0.004 137 PAPPfGLPLA 0.003 104 QQVQaQLQLD 0.003 119 AHHH1HPHLA 0.003 14 SRTNfTIEQL 0.003 143 LPLAtLAAfS 0.003 93 YVNVgALRMP 0.003 82 ASOFeACRVA 0.003 127 LAAI~aPYMMF 0.003 128 AAHApYMMFP 0.003 56 QVWFgNRRAK 0.002 98 ALRMPFQQVQ 0.002 1i45 LATLaADSAS 0.002 125 PHLAaHAPYM 10.002 00 00
CA
Table IX-161P2B7A- A3-9mers Pos 123456789 Score ID 39 FMREELSQR 9.000 133 YMMFPAPPF 4.500 77 VLIGAASQF 4.500 54 RVQVWFQNR 3.600 158 VVAAAAAAX 2.000 142 GLPLATIAA 1.200 49 GLSEARVQV 0.900 98 ALRMPFQQV 0.900 111 QLDSAVAHA 0.600 VQVWFQNRR 0.540 GQTKIKQRR 0.540 122 HLHPHLAAH 0.450 95 NVGALRMPF 0.400 22 QLNELERLF 0.300 147 TLAADSASA 0.200 162 AAAAKTTSI 0.200 109 QLQLDSAVA 0.200 47 RLGLSEARV 0.200 178 RLKAKKHAA 0.200 126 HLAAAPYM 0.200 100 RMPFQQVQA 0.200 KQRRSRTNF 0.180 174 IADIRLKAK 0.150 134 MMFPAPPFG 0.150 72 QLHKGVLIG 0.120 81 AASQFEACR 0.120 18 FTLEQLNEL 0.101 28 RLFDETHYP 0.100 ELERLFDET 0.090 166 KTTSKUSSI 0.090 33 THYPDAFMR 0.090 67 RKQENQLHK 0.060 115 AVAHAHHHL 0.060 59 FQNRRAKCR 0.060 128 AAHAPYMMF 0.060 104 QQVQAQLQL 0.054 RTNFTLEQL 0.045 QNRRAKCRK 0.040 173 SIADLRLKA 0.040 93 YVNVGALPM 0.040 170 KUSSIADLR 0.036 FEACRVAPY 0.036 175 ADLRLKAKXK 0.030 8 KIKQRRSRT 0.030 176 DLRLKAIG 0.030 157 SVVAAAAAA 0.030 91. APYVNVGAL 0.027 89 RVAPYVNVG 0.027 71 NQLHKGVLI 0.027 LEOLNELER 0.024 Table IX-1P2B7A- A3-9mers Pos 123456789 Score SeqID 172 SSIADLRLK 0.022 19 TLEQLNELE 0.020 80 GAASQFEAC 0.018 180 KAKIGAAAL 0.018 65 KCRKQENQL 0.018 21 EQLNELERL 0.012 167 TTSKNSSIA 0.010 57 VWFQNRRAK 0.010 S6 QVWFQNRRA 0.010 46 QRLGISEAR 0.009 45 SQRLGLSEA 0.009 110 LQLDSAVAH 0.009 130 HAPYNMFPA 0.009 108 AQLQLDSAV 0.009 76 GVLIGAASQ 0.009 154 SAASVVAAA 0.009 51 SEARYQVWF 0.009 127 LAAHAPYMM 0.006 171 NSSIADLRL 0.006 43 ELSQRLGLS 0.005 31 DETHYPDAF 0.005 137 PAPPFGLPL 0.005 83 SQFEACRVA 0.005 2 EDEGQTKIK 0.005 32 ETHYPDAFN 0.005 144 PLATLAADS 0.004 182 KKHAAALGL 0.004 90 VAPYVNVGA 0.003 138 APPFGLPLA 0.003 105 QVQAQLQLD 0.003 101 MPFQQVQAQ 0.003 114 SAVAMAHHH 0.003 155 AASVVAAAA 0.003 131 APYMMFPAP 0.003 146 ATLAADSAS 0.003 107 QAQLQLDSA 0.003 so LSEARVQVW 0.003 118 HIAHHHLHPH 0.003 153 ASAASVVAA 0.003 68 KQENQLHKG 0.003 97 GALRMPFQQ 0.003 135 MFPAPPFGL 0.003 1 MEDEGQTKI 0.003 106 VQAQLQLDS 0.002 152 SASAASVVA 0.002 148 LAADSASAA 0.002 116 VAMAHHHLH 0.002 78 LIGAASQFE 0.002 145 LATLAADSA 0.002 12 RRSRTNFTL 0.002 00 00 Table X-161P2BA-A3-l0mers Poe 1234567890 Score Seq1D 134 MMFPAPPFGL. 20.250 19 TLEQLNELER 8.000 157 SVVAAAAAAK 3.000 49 GLSE.ARVQVW 2.700 17 SIADLRLKAK 1.500 54 RVQVWFQNRR 1.200 56 QVWFQNRRAK 1.000 39 FMREELgQRL 0.900 72 1QLHKGVLIGA 0.900 76 GVLIGAASQF 0.900 126 HLAAHA.PyImm 0.600 59 FQNRRAXCRK 0.600 GAASQFEACR 0.360 122 HIDHPHLAAHA -0.300 III QLDSAVAHAH 0.300 -91 APYVNVQALR 0.300 28 RLFDETHYPD 0.300 109 QLQLDSAVAH 0.200 174 IAflLRLKAKK 0.200 161 AAAAAKITSK 0.200 147 TLAADSASAA 0.200 178 R.LKAKIK{AAA 0.200 32 ETHYPDAFMR 0.180 ELERLFDETH 0.180 SQRLGLjSEAR 0.120 142 GLPLATLAAD 0. 090 100 RNPFQQVQAQ 0.060 127 LAAHAPYMMF 0.060 2 QIJNELERLFD 0.060 78 LIGAASQF'EA 0.060 98 ALRMPFQQVQ 0.060 53 ARVQVWFQNR 0.054 136 FPAPPPGLPL 0.054 89 RVAPYVNVGA 0.045 77 VLiIGAASQFE 0.045 101 MPFQQVQAQL 0.045 1 MEDEGQTKIK 0.045 97 GALRMPFQQV 0.041 66 CRICQENQLHK 0.040 124 HPHLAAHAPY 0.040 103 FQQVQAQLQL 0.036 166 KTTSKaNSSIA 0.030 *133 YMMFPAPPFG 0.030 176 DLRLKARKRA 0.030 110 LQLDSAVAHA 0.027 144 PLATLAAflSA 0.020 115 AVAHAHHHLH 0.020 6 QTKIKQRRSR 0.020 94 VNVGALRNPF 0. 018 171 NSSIADLRLK 0.015 Table X-161P2BA-A3-10mers Pos 1234567890 Score SeqID s0 LSEARVQVWF 0.015 146 ATLAAPSASA 0.015 84 QFEACRVAPY 0.012 26 LERLFDETMY 0.012 43 EIJSQRLG3LSE 0.012 139 PPFGLPLATL 0.010 158 VVAAAAAAKT 0.010 38 APMREELSQR 0.009 108 AQLQTJDSAVA 0.009 114 SAVAI{AHHHL 0.009 106 VQAQLQLDSA 0.009 10 KQRRSRTNFT 0.009 68 KQENQLHKGV 0.009 105 QVQAQLQLDS 0.008 170 1XISSIADLRL 0.007 169 SKNSSIADLR 0.0 06 30. FDETHYPDAF 0.006 35 YPDAPMREEL 0.006 118 MAHXRLHPHL 0.006 65 KCRKQENQLH 0.006 152 SASAASVVAA 0.006 71 NQLHKGVLIG 0.005 90 VAPYVNVGAL 0.005 168 TSIK1SSIADL 0.005 153 ASAASVVAAA 0.005 83 SQFEACRVAP 0.005 41 REELSQRLGIL 0.004 154 SAASVVAAAA 0.003 87 ACRVAPYVNV 0.003 172 SSIADLRIKA 0.003 95 NVGALRNPFQ 0.003 131 APYMMFPAPP 0.003 3 DEGQTKIKQR 090~3 21 EQLNELERLF 0.003 20 LEQLNELERL 0.003 18 FTLEQILNELE 0.002 24 NELERLFDET 0.002 9 IKQRRSRTNF 0.002 138 APPFOLPLAT 0.002 167 TTSKNSSIAD 0.002 81 AASQFEACRV 0.002 -58- WFQNRP.AKCR 0.002 107 QAQILQLDSAV 0.002 155 AASWVAAAAA 0.002 149 AADSASAASV 0.002 47 RLGLSEARVQ 0.002 11 QRRSRTNFTL 0.002 128 AAHAPYMNFP 0.002 4 EGQTKIKQRR 0.002 156 ASVVAAAAAA 0.002 Table XI-161P2B7A-A1-9ers 00 Poe 123456789 Score SeqID 158 VVAAAAAAK. 2.000 54 RVQVWFQNR 1.200 GQTKIKQRR 0.360 ct162 AAAAKTTSK 0.200 VQVWFQNRR 0.180 67 RKQENQLHK 0.120 tn 174 IADLRLKAK 0.100 39 FMREELSQR 0.080 59 FQNRRAKCR 0.060 QNRRAKCRK 0.040 93 YVNVGALRII 0.040 NVGALRNPF 0.040 81 AASQFEACR 0.040 175 ADLRLKAKK 0.030 RTNFTLEQL 0.030 00 166 KTTSKNSSI 0.030 0 157 SVVAAAAAA 0.030 33 THYPDAFMR 0.024 170 KNSSIADLR 0.024 142 GLPLAThAA 0.024 LEQLNELER 0.024 115 AVAHAHHH 0.020 KQRRSRTNF 0.018 104 QQVQAQLQL 0.018 18 FTLEQINEL 0.015 92 PYVNVGAR 0.012 47 RLGLSEARV 0.012 49 GLSEARVQV 0.012 100 RMPFQQVQA 0.012 178 RLKAKKHAA 0.012 167 TTSKNSSIA 0.010 110 LQLDSAVAH 0.009 71 NQLHKGVLI 0.009 76 GVLIGAASQ 0.009 108 AQLQLDSAV 0.009 133 YMMFPAPPF 0.008.
173 SIADLRLKA 0.008 46 QRLGLSEAR 0.006 89 RVAPYVNVG 0.006 130 HAPYMMFPA 0.006 77 VLIGAASQF 0.006 KCRKQENQL 0.006 180 KAKKHAAAL 0.006 SQRLGLSEA 0.006 135 MFPAPPFGL 0.006 57 VWFQNRRAK 0.004 109 OLQLDSAVA 0.004 128 AAHAPYMMF 0.004 126 HLAAHAPYM 0.004 91 APYVNVGA 0.004 Table XI-161P2B7A-A11-gmers Poe 123456789 Score SeqID 56 QVWFQNRRA 0.004 147 TLAADSASA 0.004 122 HLHPHLAAH 0.004 98 ALRMPFQQV 0.004 111 QLDSAVAHA 0.004 127 LAAHAPYMM 0.004 172 SSIADILRLK 0.003 32 ETHYPDAPM 0.003 2 EDEGQTKIK 0.003 114 SAVAHAHHH 0.003 97 GALRMPFQQ 0.003 21 EQLNELERL 0.003 28 RLFDETHYP 0.002 105 QVQAQLQLD 0.002 90 VAPYVNVGA 0.002 155 AASVVAAAA 0.002 152 SASAASVVA 0.002 116 VAHAHHHLH 0.002 1 4 5 .LATLAADSA 0.002 148 LAADSASAA 0.002 154 SAASVVAAA 0.002 118 HAHHHLHPH 0.002 107 QAQLQLDSA 0.002 138 APPFGLPLA 0.002 12 RPSRTNFTL 0.002 68 KQENQLHKG 0.002 146 ATLAADSAS 0.002 83 SQFEACRVA 0.001 106 VQAQLQLDS 0.001 8 KIKQRRSRT 0.001 182 KIOIAAALGL 0.001 134 MMFPAPPFG 0.001 34 HYPDAFMRE 0.001 38 AFMREELSQ 0.001 72 QLHKGVLIG 0.001 80 GAASQFEAC 0.001 7 TKIKQRRSR 0.001 79 IGAASQFEA 0.001 121 HHLHPHLAA 0.001 63 RAKCRKQEN 0.001 103 FQQVQAQLQ 0.001 176 DLRLKAKKH 0.001 85 FEACRVAPY 0.001 86 EACRVAPYV 0.001 1 MEDEGQTKI 0.001 51 SEARVQVWF 0.001 4 EGQTKIKQR 0.001 26 LERLFDETH 0.001 42 EELSQRLGL 0.001 22 QLNELERLF 0.000 TablXIl-126 1P27A-Al1 -orers P08 1234567890 Score SeqID 157 SVVAAAAAAK 3.000 54 RVQVWFQNRR 1.200 59 FQNRRAKCRK 0.600 56 QVWFQNRRAK 0.400 173 SIADLRLKAK 0.200 174 IADLRLKAKK 0.200 161 AAAAAKTTSK 0.200 32 ETMYPDAFMR 0.180 19 TLjEQLNELER 0.160 GAASQFEACR 0.120 SQRLGLSEAR 0.120 76 GVLIGAASQF 0.090 38 APMREELSQR 0.080 91 APYVNVGALR 0.080 89 RVAPYVNVGA 0.060 66 CRKQENQLHK 0.040 166 KTTSKNSSIA 0.030 1 MEDEGQTKIK 0.030 134 MMFPAPPFGL 0.024 58 WFQNRRAKCR 0.020 6 QTKIKQRRSR 0.020 115 AVAHAHHIILH 0.020 146 ATLA.ADSASA 0.015 178 RLKAKIKAAA 0.012 78 LIGAASQFEA 0.012 103 FQQVQAQLQL 0.012 7__ 49 GLSEARVQVW 0.012 97 CALjRMPFQQV 0.009 110 LQLDSAVAHA 0.009 108 AQLQLDSAVA 0.009 68 KQENQLHKGV 0.009 126 HLA.AEAPYNM 0.008 72 QLHKGVLIGA 0.008 53 ARVQVWFQNR 0.006 1KCRKQENQLH 0.006 106 VQAQLQLDSA 0.006 28 RLFDETHYPD 0.005 105 QVQAQLQLDS 0.004 39 FMREELSQRL 0.004 127 LAAHAPYMMF 0.004 101 MPFQQVQAQL 0.004 1f22 HLHPHLaAAHA 0.004 111 QLDSAVAHAH 0.004 109 QLQLflSAVAH 0.004 136 FPAPPFGLPL 0.004 147 TLAADSASAA 0.004 169 SJKTSSIADLR 0.004 41 REELSQRLGL 0.004 RTNFTrLEQLN 0.003 114 SAVAHAHHHL 0.003 TablXII-162.P2B7A-Al1 lmers PoS 1234567890 Score SeqID 170 KNSSIAflLRL 0.002 171 NSSIADLRLK 0.002 152 SASAASVVAA 0.002 95 NVGALRMPFQ 0.002 149 AADSASAASV 0.002 90 VAPYVNVGAL 0.002 107 QAQLQLjDSAV 0.002 1T58 VVAAAAAAXT 0.002 29 LFDETHYPDA 0.002 35 YPDAFMREEL 0.002 167 TTSIGTSSIAD 002 124 HPHLAAHAPY 0.002 155 AASVVAAAAA 0.002 87 ACRVAPYVNV 0.002 81 AASQFEACRV 0.002 154 SAASVVAAAA 0.002 17 NFTLEQLNEL 0.002 84 QFEACRVAPY 0.002 118 HAHHHLHPHL 0.002 10 KQRRSRTNFT 0.002 71 NQLHKGVLIG 0.002 3 DEGQTKIKQR 0.002 18 FTLEQLNELE 0.002 83 SQFEACRVAP 0.001 92 PYVNVGALRN 0.001 100 RNPFQQVQAQ 0.001 142 GLPLATLAAD 0.001 94 VNVGALRNPF 0.001 25 ELERLFDETH 0.001 4 EGQTKIKQRR 0.001 55 VQVWFQNRRA 0.001 104 OOVQAOLQLD 0.001 132 PYMMFPAPPF 0.001 133 YNMFPAPPFG 0.001 22 QLNELERLFD 0.001 77 VLIGAASQFE 0.001 11 QRRSRTNFTL 0.001 180 KAKKHAAALG 0.001 63 RAKCRKOENQ 0.001 141 FGLPLATLAA 0.001 129 AMAPYI4MFPA 0.001 172 SSIADLRLKA~ 0.001 176 DLRLKAKKHA 0.001 20 LEQLNELERL 0.001 85 FEACRVAPYV 0.001 26 LERLFDETHY 0.001 69 QENQLHKGVL 0.001 120 MNHfLJPHLAA 0.000 181 AKKHAAALGL 0.000 139 PPFGLPLATJ 0.000 00 00 TableXIII-161P2B7A-A24-9mers Pos 123456789 Score SeqID 135 MFPAPPFGL. 30.000 RTNFTLEQL 12.000 KCRKQENQL 9.600 18s FTLEQLNEL 9.504 180 KAKKHAAAL 8.000 104 QQVQAQLQL 6.000 ENQLHKGVL 6.000 21 EQIJNELERL 6.000 22 QLNELjERLF 4.320 102 PFQQVQAQL 4.200 171 NSSIADLRL 4.000 115 AVAHAHHHL 4.000 KQRRSRTNF 4.000 91 APYVNVGAL 4.000 77 VLIGAASQF 3.000 133 YMNFPAPPF 3.000 NVGALRMPF 2.400 166 KTTSKNSSI 2.000 140 PFGLPLATL 2.000 128 AAHAPY.ThF 2.000 71 NQLHKGVLI 1.500 34 HYPDAFMRE, 1.080 MREELSQRL 1.037 58 WFQNRRAKC 0.825 182 KKRAAALGL 0.800 12 RRSRTN'FTL 0.800 93 YVNVGALRM 0.750 137 PAPPFGLPL 0.720 42 EELSQRLGL 0.600 169 SMISSIADL 0.600 127 LA.AHAPYMM 0.500 126 HIJAAHAPYM 0.500 32 ETHfYPDAFM 0.500 119 AHKHLHPHL 0.480 KGVLIGAAS 0.420 100 RM~PFQQVQA 0.300 51 SEARVQVWF 0.280 63 RAKCRKQEN 0.264 ELERLFDET 0.238 141 FGLPLATLA 0.216 VAPYVNVGA 0.210 47 RLGLSEARV .0.200 178 RLKA.KKHAA 0 .200 8 KIKQRRSRT 0.200 31 DETHYPDAP 0.200 LSEARVQVW 0.180 _108 AQLQLDSAV 0.180 173 SIADLRLKk 0.158 130 RAPYMMFPA 0.150 82 ASQFEACRV 0. 150 Table XIII-161P2B7A-A24 -9mers I Pos 123456789 Score SeqIDI 157 SVVAAAAAA 0.150 1T46 ATLAADSAS 0.150 138 APPFGLPLA 0.150 156 ASVVAAAAA 0.150 109 QLQIJDSAVA 0.150 107 QAQLQLDSA 0.150 142 GLPLATLAA 0.150 98 ALRMPFQQV 0.144 16 TNFTLEQLN 0.144 154 SAASVVAAA 0.140 86 EACRVAPYV 0.140 155 AASVVAAAA 0.140 1 MEDEGQTKI 0.132 83 SQFEACRVA 0.120 106 VQAQLQLDS 0.120 49 GLSEARVQV 0.120 148 LAADSASAA, 0.120 80 GAASQFEAC 0.120 163 AAAKTTSKN 0.110 79 IGAASQFEA 0.110 45 SQRLGLSEA 0.110 159 VAAAAA.AXT 0.110 92 PYVNVGALR 0.105 161 AAAAAKTTS 0.100 43 ELSQRLGLS 0.100 147 TLAADSASA 0.100 87 ACRVAPYVN 0.100 6 QTKIKQRRS 0.100 164 AAKTTSKONS '0.100 11 OLDSAVAHA 0.100 145 LATLAADSA 0.100 56 QVWFQNRRA 0. 100 10 AAAAAAKTT 0.100 37 DAFMREELS 0.100 167 TTSKU'SSIA 0.100 152 SASAASVVA 0.100 149 AADSASAAS 0.100 153 ASAASVVAA 0.100 151 DSASAASVV 0.100 38 APMREELSQ 0.075S 132 PYMMFPAPP 0.075 84 QFEACRVAP 0.075 29 LFDETHYPD 0.060 17 NFTLEQLNE 0.050 36 PDAFMREEL 0.044 54 RVQVWFQNR 0.043_ 68 KQENQLHKG 0.033 89 RVAPYVNVG 0.029 170 KNSSIADLR 0.028 28 RILFDETHYP 0.024 T~h1~ XTV-~~1P2~-A24-1Ompr~ Pos 1234567890 Score SeqID 17 NFTLEQLNE. 26.400 132 PYMNFPAPPF 15.000 170 KONSSIADLRL 8.000 39 FMREELSQRL 6.912 103 FQQVQAQLQL 6.000 VAPYVNVGAL 6.000 114 SAVAMAHRHL 6.000 101 MPFQQVQAQL 5.600 136 FPAPPFGLPL 4.800 134 MHFPAPPFGL 4.800 118 HAHHHLHPHL 4.800 YPDAFMREEL 4.400 s0 LSEARVQVWF 4.200 168 TSIQISSIADL 4.000 92 PYVNVGALRM 3.750 94 VNVGALRMPF 3.600 21 EQI 1 NELERLF 3.600 76 GVLIGAASQF 3.000 127 LAAHAPYMMF 2.000 ENQLHKGVLI- 1.500 41 REELSQRLGLj 1.200 34 HYPDAFMREE 0.990 84 QFEACRVAPY 0.750 20,1 LEQLNELERL 0.600 69 QENQLjHKGVL 0.600 29 LFDETHYPDA 0.600 126 HLAAHAPYM4 0.500 64 AKCRKQENQL 0.480 RTNFTLEQLN 0.432 11 QRPSRTNPTL 0.400 181 AKKHAkAALG3L 0.400 14 SRTNFTLjEQL 0.400 139 PPFGLPLATL 0.400 179 LKAKKHAAAL 0.400 68 KQENQLJ{KGV 0.360 89 RVAPYV'NVGA 0.336 FDETHYPDAF 0.300 9 IKQRRSRTNF 0.300 KQRRSRTNFT 0.240 97 GALRMPFQQV 0.216 8 KIKQRRSRTN 0.200 166 KTTSK1NSSIA. 0.200 178 RLI(A1OKAAA 0.200 172 SSIADLRLKA 0.198 143 LPLATLAADS 0.180 105 QVQAQLQLDS 0.180 107 QAQLQLDSAV 0.180 138 APPFGLPLAT 0.180 141 FGLPLAkTLAA 0.180 110 1LQ fSAVAHA 0.180 Table XIV-161P2B7A-A24-l0mers Pos 1234567890 Score SeqID 44 LSQRLGLSEA 0.165 55 VQVWFQNRRA 0.150 48 LGLSEARVQV 0.150 146 ATLAADSASA 0.150 82 ASQFEACRVA 0.150 108 AQLQLDSAVA 0.150 156 ASVVAAAAAA 0.150 49 GLSEARVQVW 0.144 122 HLHPHLAAHA 0.144 52 E-ARVQVWFQN 0.140 72 QLHKGVLIGA 0.140 153 ASA.ASVVAAA 0.140 154 SAASVVAAAA 0.140 148 LAA.DSASAAS 0.120 164 AAKTTSKNSS 0.120 79 IGAASQFEAC 0.120 78 LIGAASQFEA 0.110 57 VWFQNRRAKC 0.110 18VVAAAAAAKT 0.110 1i62 AAAAKTTSKaN 0.110 17 TLAADSASAA 0.100 [86 EACRVAPYVN 0.100 S GQTKIKQRRS 0.100 87 ACRVAPYVNV 0.100 159 VAAAAAAKTT 0.100 176 DLRILKAKKEIA 0.100 160 AAAAAAKTTS 0.100 149 AADSA.SAASV 0.100 165 AKTTSWSSI 0.100 81 AASQFEACRV 0.100 152 SASAASVVAA 0.100 16 AAAKTTSKNS 0.100 106 VQAQLQLDSA 0.100 124 HPHILAAHAPY 0.100 145 LATLAADSAS 0.100 15 A.ASVVAAAA.A 0.100 151 DSASAASVVA 0.100 135 MFPAPPFGLP 0.090 38 AFI4REELSQR 0.075 58 WFQNRRAKCR 0.075 140 PFGLPLATLA 0.060 31 DRTRYPDAFM 0.050 100 RMPFQQVQAQ 0.036 54 RVQVWFQNRR 0.036 75 KGVLIGAASQ 0.030 24 NELERLFDEr 0.029 62 RRAKCRKQEN 0.026 4 EGQTKIKQRR 0.025 65 KCRKQENQLH 0.024 28 1RLFDETHYPD -0.02 Table XV-161P2B7A-B7-9mets Tabl V-61PB7A-7-q~r~Table XV-161P2B7A-B7-9me 00 00 Poe 123456789 Score SeqID 91 APYVNVGAL. 240.000 115 AVAHAHHHL 60.000 KCRKQENQL 40.000 180 KAKKHAAAL 12.000 98 ALRMPFQQV 9.000 138 APPFGLPLA 6.000 93 YVNVGALRM 5.000 18 FTLEQI;NEL 4.000 ENQLHKGVI 4.000 21 EQLNELERL 4.000 RTNFTLEQL 4.000 104 QQVQAQLQL 4.000 171 NSSIADLRL 4.000 127 LAAHAPYMM 3.000 32 ETHYPDAFM 1.500 119 AHHHLHPHL 1.200 137 PAPPFGLPL 1.200 126 HLAAHAPYM 1.000 SQRLGLSEA 1.000 155 AASVVAAAA 0.900 160 AAAAAAKTT 0.900 131 APYMMFPAP 0.600 87 ACRVAPYVN 0.600 135 MFPAPPFGL 0.600 86 EACRVAPYV 0.600 108 AQLQLDSAV 0.600 42 EELSQRLGL 0.600 82 ASQFEACRV 0.600 56 QVWFCNRRA 0.500 157 SVVAAAAAA 0.500 169 SKNSSIADL 0.400 71 NQLHKGVLI 0.400 12 RRSRTNFTL 0.400 166 KTTSKNSSI 0.400 182 KKHAAALGL 0.400 136 FPAPPFGLP 0.300 156 ASVVAAAAA 0.300 130 HAPYMMFPA 0.300 KQRRSRTNF 0.300 GAASQFEAC 0.300 145 LATLAAfSA 0.300 49 GLSEARVQV 0.300 152 SASAASWA 0.300 148 LAADSASAA 0.300 VAPYVNVGA 0.300 107 QAQLQLDSA 0.300 153 ASAASVVAA 0.300 154 SAASWAAA 0.300 159 VAAAAAAKT 0.300 52 EARVQVWFQ 0.300 Poe 123456789 Score SeqID 128 AAHAPYMMF 0.270 124 HPHLAAHAP 0.200 143 LPLATLAAD 0.200 101 MPFQQVQAQ 0.200 139 PPFGLPIAT 0.200 151 DSASAASVV 0.200 47 RLGLSEARV 0.200 163 AAAKTTSKN 0.180 164 AAKTTSKNS 0.180 161 AAAAAKTTS 0.180 8 KIKQRRSRT 0.150 95 NVGALRMPF 0.150 173 SIADLRLKA 0.150 40 MREELSQRL 0.120 178 RLKAKKHAA 0.100 142 GLPLATLAA 0.100 79. IGAASQFEA 0.100 39 FMREELSQR 0.100 11 QRRSRTNFT 0.100 60 QNRRAKCRK 0.100 141 FGLPLATLA 0.100 13 RSRTNFTLE 0.100 109 QLQLDSAVA 0.100 167 TTSKNSSIA 0.100 100 RNPFQQVQA 0.100 176 DIRLKAIG 0.100 147 TLAADSASA 0.100 83 SQFEACRVA 0.100 133 YMMFPAPPF 0.090 162 AAAAKTTSK 0.090 81 AASQFEACR 0.090 36 PDAFMREEL 0.060 150 ADSASAASV 0.060 35 YPDAFMREE 0.060 140 PFGLPLATL 0.060 146 ATLAADSAS 0.060 63 RAKCRKQEN 0.060 37 DAFNREELS 0.060 149 AADSASAAS 0.054 54 RVQVWFQNR 0.050 89 RVAPYVNVG 0.050 76- GVLIGAASQ 0.050 105 QVQAQLQLD 0.050 158 VVAAAAAAK 0.050 102 PFQQVQAQL 0.040 114 SAVAHAHHH 0.030 116 VAHAMHHLH 0.030 118 HAHHHLHPH 0.030 88 CRVAPYVNV 0.030 97 GALRMPFQQ 0.030 00 00 TableXVI-161P2B7A-B7-lomers Pos 1234567890 Score SeqID 124 HPHLAAHAPY. 40.000 136 FPAPPFGLPL 20.000 101 MPFQQVQAQL 20.000 168 TSKNSSIADL 15.000 YPDAPMREEL 6.000 39 FMRBELSQRLj 6.000 127 LAAHAPYMMF 3.000 114 SAVAHAHHHL 3.000 118 HAMHHLHPHL 3.000 VAPYVNVALj 3.000 143 LPLATILAADS 2.000 126 HLAAHAPYM4 2.000 139 PPFGLPLATL 2.000 170 IKISSIAflLRL 2.000 138 APPFGLPLAT 2.000 so LSEARVQVWF 1.S0oo 94 VNVQALRMPF 1.000 49 GLSEARVQVW 1.000 103 FQOVQAQLOL 1.000 76 GVLIGAASQF 1.000 21 EQLNELLERLF 1.000 134 MMFPAPPFGL 1.000 26 LERLPDETHY 0.900 81 AA.SQFEACRV 0.900 164 AARTTSKCNSS 0.900 52 EARVQVWFQN 0.900 97 GALRMPFQQV 0.600 87 ACRVAPYVWV 0.600 107 QAQLQLDSAV 0.600 148 LAADSASAAS 0.600 178 RLKA&KHAAA 0.600 8 KIKQRZRSRTN 0.600 KQRRSRTNFT 0.600 172 SSIALRLKA 0.500 153 ASAASVVAAA 0.500 44 LSQRLjOLSEA 0.500 151 DSASAASVVA 0.500 156 ASVVAAAAAA 0.500 82 ASQFEACRVA 0.500 ENQLHKGVLI 0.400 176 DLRIJKA.KKHA 0.300 13 RSRTNFTLEQ 0.300 154 SAASVVAAAA 0.300 145 LATLAADSAS 0.3 00 152 SASAASVVAA 0.300 163 AAAKTTSKNS 0.300 86 EACRVAPYVN 0.300 162 AAAAKTTSKN 0.300 11 QRRSRTNFTL 0.300 181 AKKHAA.LL 030 Table XVI-161P2B7A-B7-lomers P06 1234567890 Score SeqID 159 VAAAAAAKTT 0.300 160 AAAAAAKTTS 0.300 155 AA.SVVAAAAA 0.300 15 RTNFTLEQLN 0.200 131 APY1NMFPAPP 0.200 110 LQLDSAVAHA 0.200 91 APYVNVGALR 0.200 166 KTTSIKJSSIA 0.200 89 RVAPYVNVGA 0.200 31 DETHYPDAFM 0.200 48 LGLSEARVQV 0.200 180 KAKKHAAALG 0.150 63 RAKCR-KQENQ 0.180 149 AAflSASAASV 0.180 108 AQLQLDSAVA 0.150 146 ATLAADSASA 0.150 20 LEQLNELERL 0.150 68 KQENQLHKGV 0.120 14 SRTNFTLEQL 0.100 141 FQLPLATLAA 0.100 9 IKQRRSRTNF 0.100 106 VQAQLQLDSA 0.100 122 HLHPHLAAHA 0.100 55 VQVWFQNRRA 0.100 79 IGAASQFEAC 0.100 105 1QVQAQLQLDS 0.100 179 LKAKIK!AAAL 0.100 69 QEbIQLHXGVD 0.100 158 VVAAAAAAKT 0.100 7 QLHKGVLIGA 0.100 147 TLAAflSASAA 0.100 64 AKCRKQENQL 0.100 5 GQTKIKQRRS 0.100 78 LIGAASQFEA 0.100 17 NFTLEQLNEL 0.100 65 KCRKQENQLH 0.090 171. NSSIADLRLK 0.075 41 RBELSQRLGL 0.060 84 QFEACRVAPY 0.060 113 DSAVAAHH 0.050 37 DAFM.REELSQ 0.045 165 AKT TSKNSSI 0.040 28 RLFDETHYPD 0.040 130 HAPYMMFPAP 0.030 60 QNRRAKCRKQ 0.030 137 PAPPFGLP 1 A 0.030 125 AAHAPYMMFP 0.030 73 LHKGVLIGAA 0.030 116 VAHAHMHLRP 0.030 22 QLNELERLFD T0.030 00 00 TableXVII-161P287A-B35-9 POr. 123456789 Score SeqID 91 I APYVNVGA. 20.000 180 KAKKGHAAAL 18.000 KQRRSRTNF 6.000 127 LAAHAPYMM 6.000 KCRKQENOL 6. 000 171 NSSIADLRL 5.000 128 AAI{APYMMF 3.000 1i38 APPFGLPLA 2.000 32 ETHYPDAFM 2.000 RTNFTLEQL 2.000 93 YVNVGALR4 2.000 22 QLNELjERLF 2.000 126 HLAAHAPYM 2.000 18 FTLEQLNEL 2.000 63 RAKCRKQEN 1.800 21 EQLNELERL 1.500 82 ASQFEACRv 1.500 104 QQVQAQLQL 1.000 77 VLIGAASQF 1.000 ENQLHiKGVL 1.000 115 AVAIRAHHHL 1.000 151 DSASAASVV 1.000 NVGALR4PF 1.000 133 YMNFPAPPF 1.000 164 AAKTTSKaNS 0.900 166 KTTSKNSSI 0.800 LSEARVQVW 0.750 EACRVAPYV 0.600 98 ALRMPFQQV 0.600 178 RLKAX1KiAA 0.600 148 LAADSASAA 0 .60 0 8 KIKQRRSRT 0.600 153 ASAASVVAA 0.500 156 ASWAAAAA 0.500 47 RLGLSEARV 0.400 71 NQLHKGVLI 0.400 49 GLSEARVQV 0.400 AASVVAAAA 0.300 145 -LATLAAflSA 0.300 163 AAAKTTS1OU 0.300 37 DAFREELS 0.300 107 QAQLQLDSA 0.300 27 ERLFDETRY 0.300 87 ACRVAPYVN 0.300 VAPYVNVGA 0.300 154 SAASVVAAA 0.300 13 RSRTNFTLE 0.300 137 PAPPFGLPL 0.300 152] SASAASVVA 0.300 L130 IHAPYMMFPA 10.300 Table XVII-161P2B7A-B35.9 Pos 123456789- S'core SeqID 160 AAA.AAAKTT 0.300 80 GAASQFEAC 0.300 159 VAAAAAAKr 0.300 161 AAAAAKTTS 0.300 4-5 SQRLGLSEA 0.300 6 QTKIKQRRS 0.300 83 SQFEACRVA 0.200 182 KKRAAAIWL 0.200 1-i24 HPHLAAHAp 0.200 143 LPLATLAAD 0.200 101 MPFQQVQAQ 0.00 139 PPPGLPILAT 0.200 108 AQLQLDSAv 0.200 100 RMPFQQVQA 0.200 85 FEACRVAPY 0.200 136 FPAPPFGLP 0.200 12 RRSRTNFTL 0.200 173 SIAflLRLKA 0.200 75- KGVLIGAAS 0.200 131 APYMMFPAP 0.200 147 TLAADSASA 0.5 168 TSKNSSIAD 0.150 109 QLQLDSAVA 0.150 167 TTSKNSSIA- 0.100 43 ELSQRLGLS 0.100 146 ATIIAADSAS 0.100 79 IGAASQFEA 0.100 141 FGLPLATLA 0.100 119 AHHNIJHPHL 0.100 56 QVWFQNRRA 0.100 157 SVVAAAAAA 0.100 142 GLPLATLAA 0.100 S106 VQAQLQLDS 0.100 3 1 DET{YPDAF 0.100 169 SKSSIAlL 0.100 16 TNFTLEQJN 0.100 51 SEARVQVWF 0.1 00 42 EELSQRLGL 0.100 135 MFPAPPFGL 0.100 39 FMREELSQR 0.090 52 EARVQVWFQ 0.090 149 AADSASAAS 0.090 172 SSIADLRLK 0.075 35 YPDAFMREE 0.060 28 RLFDETHYP 0.060 40 MREELSQRL 0.060 44 LSQRLGLSE 0.050 113 DSAVAMAHH 0.050 11 QRRSRTNFT 10.030 1761 DLRLKAKKH 0. 03 0 T~h1~ YvTTT-1~1P2R7A-~S-1OmerR Poe 1234567890 Score SeqID 124 H~PHLAAHAPY. 40.000 136 FPAPPFGLPL 20.000 101 NPFQQVQAQL 20.000 168 TSKNSSIADL 15.000 YPDAFMREEL 6.000 39 FMREELSQRL 6.000 127 LAAHAPYNNF 3.000 114 SAVAHAJIHHL 3.000 118 HAHHHLHPHL 3.000 VAPYV1NVGAL 3.000 143 LPLATLAADS 2.000 126 HLAAHAPYMM 2.000 139 PPFGLPI.ATL 2.000 170 KNSSIADLRL 2.000 138 APPFGLPLAT 2.000 s0 LSEARVQVWF 1.500 94 VNVGALaRPF 1.000 49 GLSEARVQVW 1.000 103 FQQVQAQLQL 1.000 76 GVLIGAASQF 1.000 21 EQLNELER.LF 1.000 134 MMFPAPPFGL 1.000 26 LERLFDETHY 0.900 81 AASQFEACRV 0.900 164 AA.KrrSiKSS 0.900 52 EARVQVWFQN 0.900 97 GALRMPFQQV 0.600 87 ACRVAPYVNV 0.600 107 QAQLQLDSAV 0.600 148 LAADSASAAS 0.600 178 R.LKAX1HAAA 0.600 8 KIKQRRSRTh 0.600 KQRRSRTNFT 0.600 172 SSIAlLRIJKA 0.500 153 ASAASVVAAA 0.500 44 LSQRLGLSEA 0.500 151 DSASAASVVA 0.500 156 ASVVA.AAAAA 0.500 82 ASQFF.ACRVA 0.500 ENQLHKGVLI 0.400 176 DLRLKAKXHA 0.300 13 RSRTNPTLEQ 0.300 154 SAASVVAAAA 0.300 145 LATLAADSAS 0.300 152 SASAASVVAA. 0.300 163 AAAKTTSKNS 0.300 86 EACRVAPYVN 0.300 162 AAAAKTTSKNI 0.300 11 QRRSRTNFTL 0.300 [81 AKKHAAALGL 0.300 Table XVIII-161P27A-B35-lomers Pos 1234567890 Score SeqID 159 VAAAAAAKTT 0.300 160 AAAAAAKTTS 0.300 155 AASVVAAAAA 0.300 15 RTNFTLEQLN 0.200 131 APYMMFPAPP 0.200 110 LQLDSAVAHA 0.200 -91 APYVNVGALR 0.200 166 KTTSKNSSIA 0.200 89 RVAPYVNVGA 0.200 31 DEThYPDAPM 0.200 48 LGLSEARVQV 0.200 180 KAKKHAAALG 0.180 63 RAKCRKQENQ 0.180 149 AADSASAASV 0.180 108 AQLQLDSAVA 0.150 146 ATLAADSASA 0.150 20 LEOLNELERL 0.150 68 KQENQLH1CGV 0.120 14 SRTNFTLEQL 0.100 141 FGLPLATILAA 0.100 9 IKQRRSRTNF 0.100 106 VQAQLQLDSA 0.100 122 HLHPMLAAHA 0.100 55 VQVWFQNRRA 0.100 79 IGAA.SQFEAC 0.100 105 QVQAQLQLDS 0.100 179 LKAK{A.AAL 0.100 9 QENQLHKGVL 0.100 158 WAAAAAAKT 0.100 72 QLFIKGVLIGA 0.100 147 TLAADSASAA 0.100 64 AKCRKQENQL 0.100 S GQTK.IKQRRS 0.100 78 LIGAASQFEA 0.100 17 NFTLEQLNEL 0.100 65 KCRKQENQLH 0.090 171 NSSIADLRLK 0.075 41 REELSQRLGL 0.060 84 QFEACRVAPY 0.060 113 DSAVAHAHHH 0.050 37 DAFMREELSQ 0.045 165 AKTTSIQISSI *0.040 28 RLFDETHYPD 0.040 130 RAPYMMFPAP 0.030 60 QNRRAKCRKQ 0.030 137 PAPPFOLPIA 0.030 128 AAI4APYMMFP 0.030 73 LH.KGVLIGAA 0.030 116 VAMAHHHLHP 0.030 22 QISNELERLFD 0.030 00 00 I TABLE V 179P3G7 HLA Al 9-ME~ ISTART SUBSQUNCEIr F~S~ Q D [T7][WGDPKAAYR 2.017 [12[YAEPLAPG 18. 00 QLDSWGDPK 10OoI_____ 186~] HLESPQLGG j4. 500 140_ EFIEVPVPSY 14.50011____ 246 DNEAKEEIK 1[4.5001[ 284 EKEFLFNMY I1061 KEENVCCMY 67 NYPSYLSQ 16 LAApGG.GER _]00T- 64_ LAIJNTYPSY][T 48 [GLAPSLSKR [183I RAEHLESPQ [254 115 [SANRAKSG 36_ 11.51 -237]1[AAlSSPDTS 10501____ I ]QTPSPNEIK 0~.so1 50 0 1 fAAPGGGERY 2587 0TNLA ~.500 224 1 KGSPSESEK Jf0.500 169]1 DFEAPFEQ 0[.450 T1T ]1 GPEAALYSH 0.450 28211 ELEKEFFN -2511 KTEQSLAGP ___ESEKERAKA __10.270 SSYSA DK 110.25011 1291QTLELEKEF 0.250 47_ CGLAPSLSK 10.2501 13 ][LPESCLGEH 110.225 1 FPETPKSDS 11~T 0.22 166 GANDFEAPF 0.200[ F 81SCSYPPSVK 10.200 142] EVPVPSYYR !0.2001 IF___57 KVSFPETPI( [.i02I 1[22?[WLTAKSGRK- 19YSHPLPESC 015oI[ IKSDSQTPSP ]O.is~ TABLE V 179P3G7 HLA Al 9-MBRS ESTAR SUSCRESEQ.EC ID [239 IIDSSPDTSDN 11 0.is 150 227__ PSESEKERA 10.135]____ [61 I[SPSLALNTY ][0.125 307 LTDRQVKIW]10.1251 257 10I TPSPNEIK 101251 1220]I LAGPKGSPS IW~h___ 15 ASPSYSAL I~il 17 LESPQLGGK 0.100 I 17 SLNP.EHL L ]I CCMYSAENR 87~J RLEQPVGRP ][TI 249 AKEEIKAEN][0.090][* 6 RDEGSSPSll -g NSYAEPLAA 0.075 1 7 RSAG;MYMQS 1_2441 TSDNEAKEE 75 ___CSGA1NDFEA 007 L_ 1F305 INLTDRQVK 110. 05011 F 290 1NYLTRERR0.51 277]_KHQTLELEK 10.050_____ ___ALDKTPHCS 263 I LTAKSGRKK i T] F3271 NRENRIREL 0. 1 lI VKEENVCCM 0.045 1 5 1KEEIKAENTj 0.0451 332 j1 IRELTSNFN 11_0045 11 138 LGEHEVPVP ][0.0451[ F 9-61 LSSCSYPPS [0.030] 99FJ CSYPPSVKE 0.030[ [178 ]ooR 333_ RELTSNFNF ]005]I 26 SPSESEKER 10021 '[167 ]ANDFEAPFE 1.025 '289] FNM~YLTRER 0.029 I111 HPLPESCLG 11002117771 1TABLE V 179P3G7 HLA Al 9-MERS STR SBEQUENCE SCORE] S1EQ. ID
NUM.
F160s 75 KTuP CSGAN 0.2 S2811 f IELEKEFLFI[ 93--7[ GRPLSSCSY F21- jfGGERYSRSA F_2_1 PNEIKTEQS [0.022J____ 1,010 VCCMYSAEN[0001 306 NLTDRQK 0.020W CIJQH VPV 0.020 TABLE VI -179P3G7 HLA Al 10- STRjSUBSEQUENCE SCOR 215~I KTEQSLAGPK ]4.o 280~j TLELEKEFLF 145.000 1 12 YAEPLAAPGG]iaoo 3.86 3 iGSDFNCGVMR F 15.o 01 16E LAAPGGGERY 500
SPSESEKERAK
79[WGDPKAAYRL 2.0 [ih[SPDTSDNEAK L2.500 F1401W EHWPSY 2I5 1332-1 IRELTSNFNF 2.2505[__ 1051 VKENVCCMY 2.250 J RAEHLESPQL H1.800 ASPSYSALDK 1.500 DNEAKEEIKA 1.125[ QLDSGDPKA I.001 63 ][SLALNTYPSY ii1.000 K7Fl GCGLAPSLSK 1.000 Z __87 RLEQPVGRPLJ____[ 'riNWi L~ L244[ tSDNEAXEEI J .5 ISSPSLALNTY 177__ 12 KSGPEAAIYS Ir0.750 59 GSSPSLALNT ]10.750 203_ KSDSQTPSPN 10.750]L 1 67 ][ANDFEAPFEQ f_0.625 l=~ 2571 NTTGNWLTAC 0.500 29411 TRERRLEISK If0.450 282 ]1 ELEKELFN M .I 040 TABLE VI 179P3G7 HLA Al I MERS STR]SUBSEQUENCE SCOR 1161LGEIIEVVPS_ 0.450 J 0.300_]=Z 1261SQTPSPNEIK ][0.300 17INTYPSYLSQL If0.250 ]I M_ 0 2 5 0 j j106 IKENCCM=YSl 0. 2 25 1982j FPETPKSDSQ 0. 22 284 0.225 1 22IWLTAKSGRKK 0.2007 304~ TINLTDRQVK [020I 14 iPSYYRASPSY 015 VTl_DSWG3DPKAAY 0. 1507 [il1YSHPLPESC F~~IGSPSESEKER 1 229_ ESEKERAKAA .3 .201 VGRPLSSCSY 0.2 20 __SNEK 0.125 J= VCCM4YSAENR 0o.100l r12 C?4YSAENRAK 010 [iT[SAENRAKSGP I KSGRIMCPY I .7 [TfTTGNWLTAKS f00 f_ [T 1ALDKTPHCSG3 0 .050 APGGGERYSR I ~s 163_ HCSGAN4DFEA If0.050 GrYMQSGSDF If0.050 EHEVPVPSY I5 .050 5_5f KDEGsSPSL If0.050 189. SPQLGGKVSF~j 0.050 2 AKSGPEAALY7 15 SGAJNDFEAPFL =237 AADSSPDTSD 0.050 276_ TKHQTLELEK 4 A005 KEEIKAENT' If.045 6 RDEGSSP=SLA j 0.045 j DFEAPFEQRA Jf0.045- 249 AKEEIKA 0.045LI I 0.045 r SQLD)SWG=DPK 0.030_IF LSSCSYPPSV [0.030 E-_ 155] YSALDKTPHC [0.0I0 4# 3vpvSVyAS_ 0.025 3 2 IYMQSG3SDFNC- [.02571 TABLE VI 179P3G7 HLA Al 10-
MERS
START SUBSEQUENCE SCORE ID
NUM..
279 QTLELEKEL 0.02S 263 LTAKSGRKKR 0.025 289 FNMYLTRERR 0.025 47 CGLAPSLSKR 0.025 23 ERYSRSAGMY 0.025 303 KTINLTDRQV 0.025 EFLFNMYLTR 0.025 161 TPHCSGANDF 0.025 123 GPEAALYSHP 0.025 211 PNEIKTEQSL 0.022 21 GGERYSRSAG 0.022 133rPESCLGEHEF0.022 6 NVTPNSYAEP 0.020 127 ALYSHPLPES 0.020 136 SCLGEHEVPV 0.020 1 KVSFPETPKS 0.020 313 KIWFQNRRMK 0.020 171 EAPFEQRASL 0.020 177 RASLNPRAEH 0.020 NVCCMYSAEN 150 RASPSYSALD 0.020 ALNTYPSYLS 0.020 220 LAPKGSPSE 0.020 142 J EVPVPSYYRA 0.020 TABLE VII 179P3G7 HLA A0201 9-
MERS
ST7ART SBEUNE COE SEQ. ID [S~~QUENE SCORE 137 CLGEHEVPV 285.163 1ALNTYPSYL 117.493 F285 KEFLFNYL 1112.425 306 NLTDRQVKI 42.774 112 CMYSAENRA 11.482 179 SLNPRAEHL J1lO.468 SGSDFNCGV J 7.074 S334 ELTSNFNFT 5.841 33- MQSGsrFNC 4.966 313 KIWFQNRRM J[3.969 280 I TLELEKEFL J3.685 84 AAYRLEQPV 3.091 255 AENTTGNWL 2.285 172 1f APFEQRASL 2.115 304 TINLTDRQV jF 1.913 TABLE VII 179P3G7 HLA A0201 9mERS START SUBSEQUENCE SCORE SEQ. ID
NUM..
72 YLSQLDSWG 1.885 170 FEAPFEQRA 1.689 236 KAADSSPDT 1. 485_ 283 LEKEFLFNM 1.195IIT 206 SQTPSPN9I 1.058 is SALDKTPHC 1.047 299 LEIKTINL _f 0.706 YMQSGSDFN 0.667 97SSCSYPPSV 0.454 273 CPYTKHQTL 0.446 150 RASPSYSAL 0.445 212 NEIKTEQSL 0.415 fTJ AEHLESPQL 0.415 F287 LFYLTR 0.380 281 LE_EKEFLF 0.217 42 ;GVMRGCGLA 0.209 191 QLGGKVSFP 0.189 CSGANDFEA 0.188 32 KMN RE NR 0.188 5 RNVTPNSYA 0.178 EISKTINLT 0.177 88 LEQPVGRPL 0.141 41 -CGVMR(3C(3L 0.13.9 45 RGCGLAPSL 0.139 257 NTTGNWLTA 0.117 NSYAEPLAA 0.104 247 NEAKEEIKA '0.097 143 VPVPSYYRA 0.083 293 LTRERRLEI 0.077 63 SLALNTYPS I 0.075 310 RQVKIWFQN 0.074 129 YSHPLPESC 0.073 328 RENRIRELT 0.071 39 FNCGVMRC][ 0.069 L 8 TPNSYAEPL 0.068 315 WFQNRRMKL Jr06f 104 SVKEE CC J0.062[ 25 YSRSAGMYM 0.062 125 RCPYTKQT 0.049 60 SSPSLALNT 0.049 208 TPSPNEIKT 0.049 275 YTHQTLEL 0.048 127 ALYSHPLPE 0.048 52 SLSKRfEGS 0.037 I 48 GLAPSLSKR 0.034 135 ESCLGEEV f0.034[ rTABLE VII 179P3G7 HLAz A0201 9-
MERS
START ISUBSEQUENCE RE if SEQ.ID IT IRELTSNFNF][001 [17 ALDKTPHCS .3 GDPKAAYRL ][0.030 120 j[AKSGPEAAL][ 0.030 j [245 SDNEAKEEI 1( 0.029I [256 [EINTTGNWLT 00 027 125 EAALYSHPL 002 91Li PVRPLSSC 2 297 sIer S 0.02 I__ 77 DSWGDPKAA :r0. 020 I 2906] GANDFEAPF 1!0.016 31 FNRMKK 0.01611____ I250 K EERIKAEMNT ii0.016 279 j[QTLBLEKEF 0.1 230 ][SEKERAKAA 10041___ I292 J[YLTRERRLE 10.01411___ 24 SPTSNE 0.013 E76 LDSWGDPKA .1 122 SGPEAALYS 001 [251 EEIKAENTT J[0.011 [58 EGSSPSLAL IFj 0.010 [64 LALNiYPSY j .1 114l YSAEI4RAKSI j009 262 ILWLTAICSGRK 10.0091] 200 ETPKSDSQT [0.008 571DEQSSPSLA i ~o 1265 1FSGRKK][ Jo.007 13 [GEHMVVPS ](0.006 74 iSLDSWGDP 0.005 [PVEEW 0.005 GMMSGSDp 0.005 18: EFK 0.004____ G;NWLTAKSG; 0.004 jTABLE VIII 179P3G7 HLA A0201 STAR SUBEQUECE SORESEQ. ID 32YMQSGSDFNC 95.728[ ITABLE VIII 179P307 HLA A0201 10-1
MERS
r START ISUBSEQUENCE SCORE I SEQ. ID I NUM.
22[YLTRERRLEI 147.9911 _279 I[QTLEKEFL l12.33011 F64 ILALNTYPSYL 10io.2641 1 9 INMYLTRERRL9.874JJ i333 [RELTSNFNFT 5[.603 285 KKFL T 83Wj KAAYRLEQPV 3.381 167 1NTYPSYLSQL 2.184J[____ __JjFCG 17251[ 136_ SCLGEHEPV 1 .680 28 ELEKEFLFN .01 LENTWLT1.08711____ 101 I YPPSVKENVJ 1.023 F-96 LSSCSYPPSV 0.772 303 IKrINRQVI[0T761 11LJIl YSHPLPESCL 10.641 I 287 IFLFNMYLTREJ[0.583Jj____ 127 IALYSHPLPES054 72 1YLSQL SWGDIT0T51 F- jSESEKERAKA[ 39 6]] J281 I1LELElEFLFN ]0.390[] 17[LESPQLGGKV [.9 Nj[DnQVKIW 88 iT[RLEQPVGRPLI 79 WGDPYAAYRL 0j.257][___ ASLNPRAEHL 0.253 .VTPNSYAEPL]02471[___ r)GMYMQSGSDF 0.172I 2711~] IGGKVSFPET]I.7] [i 1YSALDKTPHC 1I0.149][____ [T VT][v VCCM ]0.143[ 40 NCGVMRG3CGL] 272 ][RCPYTKHQTL ]0.139 Ll31CCMYSAENRA 63 SLAINTPSY 0.112 S212 ][IcrEQSLA]I0.097 [T]QLGGCVSFPE]jT~ 0 FQPVGRPLSSC LI2 ]I -LNTYPSYLS a j"071 11TABLE VIII 3.79P3G7 HLiA A0201 0 ir MERS START SUBSEQUENCE [SCORE SEQ. ID 219[ SLAGPKGSPS 0.075 226 137 ICLGEEVPVP] 0.058I____ 142_ 1(VPYY 0.04 91 3267] MNRENRIRELj] 0.0341 250 11 KEEIKAENTT [0,0321j____ 8 ITPNSYAEPLA 0.032 57 DEGSSPSLAL I 7jADKTPHCSG 0.0301 134 11 PESCLGEHEV]I0.030 2807 ITLELEKEFJF 0.028 I 29 IRERRLEISKiIj 0.025 337 JMQSGSDFNCG II0.024_____ 19571 [KVSFPETPKS 10.023I[____ 171_ EAFQAL I 1497 YRASPSYSALlI 2677 ISGRKKMCPYTJ 0.020[ 1837 IRAEHLESPQLJI.11 314_JIIWFQNRR'Th .019[ 3 3 71RRET7F T-771 EENVCCMYSA 0.017 r~ [VMRGCGLAPS 10. -1 KTPHCS __0__16 179 )SLNPRAEHLE oiSl____ 48IFGLAPSLSKRD 0.015~ 2621 JWLTAKGRKK I0011 ~GEHEVPVPSY ]F0.014 24]TSDNEAMcEI 110-013 313 IIKIWFQNMZMKJ10. 012I 76 LDS WGDPKAA ]o .0 -2o 7.4fl SQLDSWGDPK0 1 119 1RAKSGPE~'1 .11 235 IAKAADSSPDT j.010I __010_ 121 KSGPEAALYS [114 IYSAENRAKSG 11 0. 0 09JJ [124 JPEAALYSHPL f009[ 172 [APFEQRASLN 0.0071 [2 [GERYSRSAGM[007 L j~IKAADSSPDTS SGSDFNCGVMj -107 ~TABLE VIII 179P37 HLA A0201 l0j START 1 SUBSEQUENCE SCORE [316 [FQNRRNKLKK 1 .07[ [12[CMYS~i~AE 1 .07] 163 IHCSGANDFEA1006] [25I[DSQTPSPNEIJF0051_____ I~3MRGCGLAPSTLL 00= ITABLE IX 179P3G7 HLA A3 9-MERS START SUBSEQUENCEJjSCR Ic~ SEQ..ID 7-911 QLDSWGDPK 160.00011 E27IFLFNMYLTR40001____1 ___GLAPSLSKR 27.0001 KFPETPK 19.000]____ 22 WLTAKSGRX [ii[QVKIWFQNR [3.600 SLNPRAEHL 10.900 I NLTDRQVKI I~0 ___TLELEKEFL r:j j~T[EVPVSYYR ][.540 ___FQNRRNKL: VhISPSYSALDI( F98 1SCSYPPSVK 110 310 1 [331] RIREL.TSNF 110. 300Ii____ 137 CLEEVV] I0.0 I21 ALYSHPLPEJ F166 GANDFEAPF 28 E~FLFNMEh1I.12 277 KQTLELEK['0. [295 IIRERRLEISK 177_ [FII SLALNTPS 1~iI 263_1 LTAKSGRKK 011001____ 22 KGSESEK II 090 SCGLAPSLSKjj0.090I1 231LTRERRLEII1.II 11[KSGPEAALY TABLE IX 179P3G7 HLA A3 9-MERS START SUBSEQUENCE SOEISEQ. ID 3 34 ELTSNFF 110.090 11 19111 QIJGGKVSFP 0.0901 7307 qIf (SGT 0_ .090j 317 II QN.M~CKnK -110. 08 0 IE- 305_ INLTDRQVKI 2691 RKKRCPYTK j[ 0.OSj 060__1_ 11171 CCMYS AENR 171 AAPGGGERY(ooo____ 43 I VMRGCGLAP] 00 186 HLESPQLGG I_ 64 1[~s II spi1 r __LNY0.6 2757 YTKHQTLEL 175_1 EQRSNRlo54 10_1 KEENVCCM4Y LO_ 172 [APiFEQRASL Ti] 71 LELEKEFLF 141_ HEVPVPSYY SLSKRDEGS 157_1 ALDKTPHCS 0.040____ 282 ELE1EFLFN 10.03611____ 104_ SVKEENVCC 030 22_] KIWFQNKR 0.0301 I 0.030] 257J[ NTTQNWLTA .0.0391 GPEAALYSH 0.0271____ 33_ MQSGSDFNC 0.12 87_ RLEQPVGPP __.027 33_ RELTSNFNF0.21 7271[YLSQLDSWG 0.2 26_ TAKSG3RKKR 00201 1477[yy..ss JjY 0.0201.
RLEISKTIN 10 .020 32 [YMQSG SDFN 10.0201 31 VKI:WFQNRR- 10.01811 8 TPNSYAEPL [0.018j 215 TEQSLAGPK 161 LAAPGGGER [.oJ[ 307LJ LTDRQVKIW 0o.01s1____ NTYPSYLSQ Ioi I fPQLGGVSF TABLE IX 179P3G7 HLA A3 9-MERS START SUBSEQUENCE[SIC]j SEQ. ID
NUM.
f121 ISLAGPKGSP 13 VPVPSYYRA11003I 2 LEKEFLF'NM J1 012 I93 ]GRPLSSCSY I[1 T] 246LI DNEAKEEIK 110.0121 F314 IWFQNRMvK FOl10T1____ 84 [0.0EP 11 10 NSYAEPLAA_ 0.010 86I YRLEQPVG;R 0.0091 15 fRASPSYSAL 0.009 fNVTPNSYAE][T 13081 TDRQ'VKIWF 10.00 __SKTINLTDR O LTAKSGR1006 ___WGDPKAAYR 10-0061 78!SWGDPKAAY 0.0 ___PLSSCSYPP [TIT32 PLPESCLGE 10. 0061 1 1EIKTEQSLA f.0) ITAB3LE X 179P3G7 HLA A3 E START SUBSEQUENCEJI
SCORESE.I
NUM.
f_30] GMYQSGSDF13001 3221 IcNENR I1.01 ](SpQLWK 112_.70011 F-2577WTAKSORXK If ,750 VTW](j LALNYPS 14.0010_____ 310- ]I1QKIWFQNR 3. 01_0__0 2067 SQTPSPNEIK 292 11LTARELI!FKK 31 QVKIWFQNR .01 33FQNRRMKLKK____ NTY[SYLI TL 1 1 1KTEQSLAGPK 10.900I [ELL-FLEF O.8io) 32 [YQSGSDFNCJ 00 00 TABLE X 179P3G7 HLA A3 10-MERS iSTART SUBSEQUENCE SCORE SEQ. ID ___*~jjNUM.
[127fALYSHPLPESI 0.4501 28 FLFNMYLTRE 10.45011 307 LTDRQVXIWF 10.3001_____ 306_ NLTDRQVKIW 10.3001 f139 ]fGEHEVPVPSY 0.243 1241I SPDTSDNEAK 0j.200 QLDSWGDPKA 10.200 I 11ASPSYSALDK [0.200 28GRKKRCPYTK 10.180 18_ APGGGERYSR jO.180____ IALNTYPSYLS 0o.180[____ 97 SSCSYPPSVK 191 0.3 168 ]NDFEAPFEQR, 10-135[____ 1945..~ GKVSFPETPK 10.135~] [141 IfHEVPVPSYYR i .2] KMNRENRIRE_ 26 ILTAKSGRKKR0101 7J[VTPNSYAEPL _09 67 RLEQPVGRPL j[ 09I1____ F137 CLGEHEVPVP 0.090 f 7 fQTLELEKEPL 01.068 219 SLAGPKGSPS [0.060 I [36 IGSDFNCGVMR 0. 00j J 83 LEKEFLFNNY ]f0.054] F-48 JJGLAPSLSKRD[.4][___ -94 TR RRIEISK 0.040F____ VTh[CPRNVTPNSY 0.040 110VCCi.YSANR 0.0401____ TLLE 0.0401 2 45 [SDNEAKEEIK 0.030 157 [ALD1CPHCSG)[0.030 227 I 21iI SKTINLTRToI 5 03 TABLE X 179P3G7 HLA A3 START SUBSEQUENCE SEQ. ID 179 [SLIPRAEHLEI 10.030 11 64LALNTYPSYL 0. 02 7 I285 ifKEFLjFNMYLT 10. 0201 189 [SPQLGGKVSF 10.02011____ 161 ]TPHCSGANDF]1 0.020Jf______ KsETTNW 11 0.01811_ 142 IEVPVPSYYRA 0.0181jf 174 IIFEQRASLNPRI[0.018 315 WFQNRR14MKJ[ 0.01511.
13 PLPESCLGER 0.013jf____ 289_ FNMYLTRERR jf0.012]3 fTTJ( LKKMNR 01 .012] V JH1SKSIDEGSS' 0.012 19I KVSFPE-TPK f 0.0123 9_j QPVGRPLSSC 0[.010( 261IJTAKSGRK 0.09 47 [CGLAPSLSKR 0.___009 105s 3vKEENvcC-my o o o Jf 163 ]HCSGANDFE 0.009I 19 RAKSOPEAAL II 0. 009 .129 YSHPLPESCLj 10.00711____ .92 ]VGRPLSSCSY]oof[____ 12 1KuSGPEAALY 30.0061 [332] IRELTSNFNF 0.006 165 ISGANFEAPF )0.006 F-183 RAEHLESPQL 1[0.006 f 09JNVCCMSAEN if0.006 I 83 ]KAAYRLEQPVJLi 0.0063 ITABLE XI 179P3G7 MLA A1101 9- [START SUBSEQUENCESCR SEQ. m] 19_ KVSFPETPK 207_ QTPSPNEIK oo TTGNWLTAK SP75 Q LDDK 0.400 95 RERRLEISK I 6 IZ Z TABLE XI 179P3G7 HLA A1101 9-1 HERS1 START QUEN[ SE .ID F287 ]FLFNMYLTR 10.32011 3163 ]6 FQNRRM~K 0.30 GLPLSR0.240F '1 142 ]EVPVPSYYR0.4 98 SCSYPPSVK 10.200El 290 11 NI4YLTRERR 0.160j [269 ]jRKKRCPYTK j0 .12 0~ 42 GCE L 10.1201 263] LTAKSGRKK 10.10011 i N RRKK 10.0801 S47 1CGLAPSLSK ]I0.060F 3105 INLTDRQVK10.61 22 KGSPSESEK 000ZZ 23.6 TEQSLAGPK]I~6I~ LESPQIJGG, 1006 1-1 1MYSAEUREAK I] F =MENRI R lI.2-~ r2 9311 TASGXr F 0270 264J NTARI 0.020 1 ___SPSESEKERm 0.020 1251YTKHiQTLEL0.2 121 PEAALYSH0.1 jjj 33 jRIRELTSNF F. 012i SDFEAPFEQR 10. 0121 ___RYSRSAGMY 0.0121 1 I61 DNEAKEEIK FO.O12IIZ I I RELTSNFNF 008:z 31 IfRQVKIWFQN 0.0081 12CM4YSAENRA 0.00811 31 J YMQSGSDF 0.008 1 SYYRA.SPSY 008I 37 SDFKCGVMRoooIZ 279 QTLELEKEF 007~ 0.007E 86T YRLEQPVGR006 I312] VKIWFQNRR F,7 7 119 ASPA .0 _221 SYLSQLSW 006 ADFEA0.0061 (TABLE XI 179P3G7 HLA A1101 9-1 MERS SEQ. ID] I KENTTGNIW I oo6 RASPSYSA.Io oj jSQTPSPNEI 0 0 6 __143_ VPVPSYYRA 006E~ 307[ LTDRQVKIW 0F. 005 303 J[KTINLTDRQ I.oIr~ 34 IWFQNRRNK 10.00411 ___TYPSYLSQL J0.004 jjjj WFNRK 0.0 04] 32[LKKnENR!0.004]I____ 84] AAYRLEQPV ]10 0041 1__273_ CPYTKHQTL ~i0.004I ___NTYPSYLjSQ 10.0041 11721 APFEQRASL ]I2024 I TII LDQKIF 110.0041 r6 INVTPNSYAE 000 I__CLG3EHEPV0.O4ZI ___SKTINLTDR 000 SNAEHL 100.04 641 LA~a1rypsy 0.0031 FiETHCGA Hc0.0017 KTEQSLAGP003( FLELEKE LF 10.00311 17 242 PDTSDNEAK FO2W072] AAPGGGERY 0'0 I TF1 SPSLALTY 0.0021L i 1331 LPESCLGEH 0002
Z
10o9 IfNVCCMYSAE 0. 0021 12411 SPDTSDNEA 0.0021 IZ ___RfVTPNSYA 0.002 33Th MQSGSDFNC 0 0021 106j 1 KENVCCMY 10. 002Ij 283 11 LEKEFLFNM 10-002] LEISKTINL 0_002~ FNMLmRR 0.0021 12 ]E MNRI0.001~ 7TABLE XII 179P3G7 HLA A1101 10 215 IfKTEQSLAGPK 13. 000 I 316 Rp~K 1.200 4 GCLPLK11. 2 001 257 NTTGNWLTAK 000 IZ Z 174 [SQLDSWGDPK 10 .9 0 0 206 ISQTPSPNEIKI 0' 600 ZZ 3~1 RQVKIWFQNR 10 41 304 (TINLTDRQVK 0.400 J~ 31_ VIWQR 0.400 E Z 313 IWQNRM 10.400l 32 LKMRN 0.240 241 PDTSNEAK0.200 268 JGRKKRCPYTK 10.12 0 z 263 ][LTAKSGRKMI 10.10011 315 lWFQNRRMKLK 0.1001 [194I GKVSFPETPK 0.090 AYREQPVGR 0.0801 GEYS 0.08 0~ 1.12~ CMYSAENRAK 0.080EZ 319RRMLKo NR0.4BE Z 260 ii NWLTAKSGR 0.0481 F262J WLTAKSGRIG(K 0.040 11 IVCCMYSAENR 0.040 ALDK__ 10. 040 1 izz F2867 EFLPNMYLTR] 03 I 5-7 KNWLTAKSGRK 110 .03 0 0JGMYMQSGSDF 10.024 1298 [RLEISKTINL 10.024 IGVMRGCGLAP 0j.0 24 1j~ [Z NTYPSYLSQL 0.020 Z 307z.. ]LTDRQVKIWF I0.020J SDNEAKEEIK J0.020i 28 NYLRR 0.016I 27 TEEEL0.0151 3J GSDFNCGVMR 0.012 174 FEQRASLNPR 0.012Z TLELEKEPLF 0. 012 [iiT A II 77 7 IVVSYR .1 TABLE XII 179P3G7 HLA AllOI I -MERS-- [START SUBSEQUENCE ISCORElI SEQ. IDj 7 VTPNSYAEPL 10.010] 15 11 PLAAP GG GER] 0.0 08 EZZZI 142.jTh YYRASPSYSAI .0 168 ]NDFEAPFEQR [pJ[ 292[YLTRERLEI 0.0 47 [CGLAPSLSKR 0.0.06 J 83 KAAYRLEQPV 0.006 [254] KAENTGIWL 10.006 J 272 JjRCPYTKHQTL I0.066Z 119~i RAKSGPEAAL 10.006 163 J HCSGANDFEA 0.06 J 177 RASLNPRAEH 0.006 195j KVTPKS 0.006 183T ]RAEHLESPQL 0~.06 z: 303 I KTINLTDRQV 0.005z F781 JSWQDPKAAYR 0.0041 301 rISKTINLTDR 0.004 LIIIII [63 SLALNTYPSY0.4 [11 CCMYSAENRA 0.004 ____LFNMYLTRER 0.004 I [282 JELEKEFLFNM 10.004 136 ~.SCLGEHEVPV 0o.003! 64i] LALNTYPSYL 0.003 16 KPHSGND0.0031E IZ 32 K? UMNRENRIRE 0 .00211 324_ KKMNRENRIR 0.002r I 223 PKISSESEK .002 109]IivcsAN000
I
[306 N JDQVIW 0.00 [101 YPVEN 0.002[ RNVTPNSY] 0. 002 [226[ SPSESEKERA 0.002 161 ~hTPHCSGANDF002~ 207 IfQTPSPNEIKT 10.002 Z [0 JCGMCL 10 0-1 F6 NVPSA 10.0021 189_ SPQLGGKVSF 0.002~ 8 TPN0Y002LA LAAPGGGERY 10.002111 _1 IGERYSRSAGM O.O00 2 139 jGEHEVPVPSY 0. 00 TABLE XII 179P3G7 HLA A1101 10
-MERS
START ISUBSEQUENCEII l~CORE SEQ. ID I NUM.
j 175 fEQPASLjNPRA. 0 21l 191[QLGKVSFPEIIT31I 320[RMKLKK1NRE 0i1I 331 [RIRELTSNF10. 1 [32 1f YMQSGSDFNC 10.ool 0 0 f87 1[RLEQPVGRPL 07 oo1I I 1 [TCPRNVTPN 0011 29ILTRER.LBIS 0001 27SI YTKHQTLELE 0 001 fTABLE XIII 179P307 HIA A24 9j MERS STAT UBSQUNC SEQ. ID 31_ MYMQSSD 113 3. 0 00 [RGCGLAPSL 960 [71 SYLSQ~w 7.500 r sr.Uin 7.200 r_ CG3VMRCGL 6.000 ALNTYPSYL I[6.0 TPNSYAEPL 116.000 J31 RIRELTSNF [570] LYSHPLS .soo)I0 ~148~ YYRASPSYS 5.000 I_ 273 ]jCPYTKHQTIS 4.800 EG3SSPSELAIJ 4.000 J EAALYSP 4.000____ j166~ GANDFEAPF 3[.600I 206 SQTPSPNEI LTERE 1.3_ 306 NLTDQVI 1.320 1561 RDEGSSPSL 1[.200 88 I!QVGRPL If1.008]f____I 31 ~KIWFQNRRM IiojSYPPSVKEE'j 0.9901_ TABLE XIII 179P3G7 HLA P.24 9-
_____MERS
STR SUBSEQUJENCEI SCR ]SEQ. ID 25 KEFLFNMYL .0 EFLFNMYLT F~070 NEIKTEQSL 2-51AENTTGNWL 0.7 0 L3271 NRENRIREL ]f 0.660 [TT[SYSALDKTP_10.600 299__1 LEISKTINL ]0.600 331RELTSNFNF H0.600 80 ODPKAAYRL 11 SmYAPLAA 0.600____ 10 SHPLPESCL- 0.600 2;7 RRLEISKTI f0.504 T[AYRLEQPVG 0.500 I ITJ[YSRSAGMYM] .500 363[GSDFNCGVM_ _.500 30 RQVIWFQNI 0.420 I 184I AEHLIESPQL ~f0.400 12 JAKSGPEAAL jf 0.400 1~ 281 1 LELEKEFLF ji 0. 3601=__ 272 ]fYTHQ 0.300 1 28 RLEISKTIN 1[T 0.[300 S__1 R.NVTPNSYA 1flT0.300 *P KPCSGAN f0.-300 23__ IAADSSPDT 0240 f 12 KSGPEAALY If0.240 1017] YPPSVKEEN J[ 0.231 27 -RSAGMYMQS 0.200_ 245_ SDNEAKEEI 0.198 188_ ESPQLGGSVJ 0[.3.98 1~ 2591 TGNWLTAKS__________ 156_ SALDKTPHC 1431 VPVPSYYRA 0.1.80 282 jELEKEFLFN o18 229 ESEKERAKA J[0.165 2 TCPRVP 10 l~mmsA 0.150 VRPLS TABLE XIII 179P3G7 lILA A24 9-
MERS
START fSU13SEQUENCE] E SCORE SEQ.ID 171_ EAPFEQRAS 0.150 17~j AAPGGGERY 0.150 f42[ GVMRGCGLA 01I50~ 200 fETPKSDSQTj 0.1.50 [32h YMQSGSDFN 110.150 I [64h LALNTYPSY7 0.150 304 TINLTDRQV 0.150 QPVGRPLSS [2 fAGMYMQSGS 0.150 ___GGERYSRSA I .5 198_ FPETPKSDS Fio] 218_ QSLAGPKGS [oioI 19 SPQLGGKVS J[0.150 92_ VGRPLSSCS][014 84 AAYRLEQPVIf 0. 144~ 334 ELTSINFNFT 110.144 11291 YSHPLPESCI 0.144 131 CPRNVTPNS-11 0.140 I 39TI FNCGVMRGC 0.14 0 I 193[ GGKVSFPET ][0.132 I F16 VSFPETPKS -PPEK 10.32[ fYSAENRAKSI- 0.132 TABLE XIV 179P3G7 HLA A24 10-
MERS
STR I~ C i SEQ. ID 24] RYSRSAGMYM 274 IIPYTKHQTLELI2.0 87T [RIJEQPVGRPL 116.8001 100 0f 13.860EE F183 I RA.EHLESPQL r 2-98 1s~rn RLIK I112-0001 31lMYMQSGSDFNJ7.S00J[____ 27.9 QTLELEKEFLI 700]_ 7 1 VTNSAEPL~fI 6.000__ JLYSHPLPESC 16.000 I 1-78 AsiLNRAEHLj 116. 0 [4]LALNTYPSYL 6[T [MYsAENRAKS.500- TABLE XIV 179P3G7 HLA A24 I MERS_ SATSUB SEQUENCE SOR S EQ.IDJ 79 ]WGDPKYRL4eo] 129~ YSHPLPESCL 4. Ti~][ 97 [NTYPSYLSQL[ [314 IWPQNRRMKL[ 4.400 40[NCGVMRGCGL] 4.000] 290 YLTRERRL[ 4.0001_____ 19SPQLGGKVSF] 3.000 278 IfHQTLELEKEF 2.640~~ 1 161 IfTPHCSGANDF 112.400 J -165 SGANDFEAPF 12.000 I 30 GMYMQSGSDF J 205 fDSQTPSPNI 1.980 292 YLREMR.LEI][1.100~ 244F TSDNEAKEEI] 1. 100]f____ 68 TYPSYLsQLD]1.0801[____ 71 J SYLSQLDSWG 10001 197 FPETKSS 090 169 DFEAPFEQRA 090 291T MYLTRERRLE Fo0.75 21 PN~KTESL jf0.720 fTfSYEPLAAPG In 0.120 ___SGSDFlICGVM 0.600f 104_ jSVEEWi 0.60011____ [154 IfSYSALDKTPH fojJ I [4 'i[MRGCG.ASL][0.480 57 ]DEGSSPSLAL Q.400 149~ YRASPSYSAL 0 .4o00 330 NRIRELTSNF L0.360_____ [332 IRELTSNFNF O9.300 12 rKSGPEAALYS________ 261KAADSSPDTS10201____ TABLE XIV 179P3G7 HILA A24 10- I NERS TATjSUBSEQUENCE SCOREj SEQ. ID F2401 SSPDTSDNEA 0.23811 195 KVSFPETPKS 138 LGEHEVPVPS I .1 2 [TCPRNVTPNS 10.21011 1 RGCGLAPSLSJ 0[ 0.2 0 0 203 II KSDSQTPSPN[020I 266 IIKSGRKKRCPY[~1_ 248 EAKEEIKAEN[o s 11 SALDKTPHCs 110.o 80 S113.I CCM.YSAEND.A[ 0. 18 011___ S180 J[LNPRAEHLES] FO~ 1-6 I r221 IfAGPKGSPSES][.6j____ 207 QTPSPNEIKT[015____ 8 EQPVGRPLSS 41 [CGVMRGCGLA I~ iiI [ALNTYPSYLS]I.s]____ 8 [TPNSYAEPLA 0. 15 ~T~YMQSGSDFNC10.10110I 14_[EVPVPSYYRAI 0.150 _____I1GKVS ESEKERAKAA F GSSPSLALNTj0.144]____ J3kIERRLEISKTI 0140i][____ 258 ITTGNWLTACS 0.132 TTjLGGKVSFPET 0.132 1 L IfRN1 .11 MTCPRNVTPN 10.120 9 fLTRERRLE IS1 0[ '12 I306 NLTDRQVKIW 110. 1201 TABLE XV 179P3G7 HLA B7 9-MERS] ISATSUBSEQUENCE SCORE SEQ. ID
NUM.
17 fAPFEQRASIL 360.0001____] 8 TPNSYAEPL_ 80.000 [273 CPYTKHQTLJ 80.00011____ 125 jf T4DT 12 0001I TABLE XV 179P3G7 HLA B7 9-MERS ISTARTISUB SEQUENCE I SCORE 11NUN.
I
___ALNTYPSYL 1I2.00j 25 ][YSRSAGMYM II10.000 293 1[ LTRERRLEI f600 EQSSPSLAL If16.000 I 45LRGCGLAPSL ___CGVMRGCL] 4.000 I CPVTnPNS ]F4.000 J[ 25 YT!OHQTLEL If4.000 1811 JNPRAEHLES 143f VPVPSYYRA~ 2.000 120 AKSGPEAAL i .800 1.500 280JfTLLEEFL 1.200 255 fAiENTTGNWL 14 AE LESQ ~[1.200 1_APGGGERYS I 1.200Jj____ 313 IIKIWFQNRR.M ][1.000f 315 4WFQNRRMKIL 0.600 I 50 SLSKRDE 0-600 21 SPDTSDNEA If0.600 1 130 SHPLPESCL 0.600[ 14 SVKEEN CC 0.0J 18 SP GGVS] 90 *QPVGRPLSS 0.400[ 212 ][NEIKTEQSL 040 306[ NLTDRQVKI If040][____ 11021 PPSVEEN V I .0 1 80 jGDPKAAYRL If0.400][____ 25 KFLFNMYL If0.400 29]9 LEISKTINL If0.400 f291 IfMYLTRERRL If0.400 1681 TYPSYLSQL 040] 26 SQTPSPNEI 0.0 145 ]IVPSYYRASP[TW 2__7 SGRKKRCPY 1361 G.SDFNCM I .0 11 jI RAKSQPEAA If 0.30 TABLE XV 179P3G7 HLA B79-MERS SATSUB SEQUENCE] SCORE ~jSEQ
I
236_ KAADSSPDT 0.0 [156 ISALDKTPHC ]0.300 31 RIRELTSNF_ 0.200 188_ ESPQLGGKV 0.200 I 81i DPKAAYRLE 0.200[ 12 SPSYSALDK Jf0.200jf____ 137 CLGE14EVPV jf0.200 12011 TPKSDSQTP 0.20[ 13291 ENRIRELTS If0.200 135 ESCLGEHEV 0.200J[~ 94 RPLSSCSYP J[0.200 210 IfSPNEIKTEQ Jf0.200 131 I HPLPESCLG 0.200 304_ TINLTDRQV [0.200 97T sscsyppsv J 0.200 226 J[SPSESEKER J[0.200 92] VGRPLSSCS 0[.2]0 SGSDFNCGV 0.200Jf____ 14 EPLAAPGGG 0.200 69_ YPSYLSQLD 0j J 200 161 TPHCSGAND 0.200 171 AAPGGGERY J0.180 1.8-FPETPKSDS If071807J I 29 1 IR 0.180J(_ __RNqVTPNSYA 0.150J[_ [324j 0.120 327 NRENRIREL 0.120J VT i REGSSPSLJ[010i____ 213T EIKTEQSLA ][0.100 39 NCGV1MRGC ]oio 72727 RCPYTKHQTIF010[I TJ[SSPSLALwr 0.100 T]GGKVSFPETj 0.1 If0 3 MQSGSDF 0.10 26 EEISKTL O 0. 100 [181ENVCCMYSA F 0100 191YSHPLPECI 0.100 I ETPKSDSQT 0.100 Vi~1ENRAXSGPE [0.100 r 3'27I QNRR liK 0.100 NTTGNWLTA [0.100[ 12 CMYSAENRA 0.100r_____ DSGPI 7[ 1 __0_0 TABLE XV 179P3G7 HLA B7 9-MERS STAT UBUNCE O EID 283 LEKEFLFNM E0.100 26ENTTGNWLT] .0 10 NSYAEPLAA ji0.100 TABLE XI-179P3G7 liLA B7 SATSUBSEQUENCE SCORE SEQ. ID [36]MNRENRIREL 40.000 j f 11 RAKSGPEAAL 18.000 171 EAFEQL 1.0001 LLTP2L1.000 FTIfYSHPLPESCL 6.000I 104 fSVKEENVCCM 5. 000II F NCGVMRGCGL IfTTf_____ 272 ifRCPYT1GHQTL 4.0100 67 JNYPSYLSQLi 4.000[ [QTLELEKEFLJ[4.000( 11YPPSVKEENV][4.000[____ 90IIPGRPLSSCJ300I____ [181I NPR.AEHLESP120011 152 fSPSYSALDKT If2.00011 87 J RLEQPVGRPL [1.200 TJ[APFEQRASLN J .0 7.9[WGDPKAAYRL F1.200II 22 GJ[YSAGM 1.000 175 ]EQRASLNPRAJ 26[SGRKKRCPYT Jr1.000____ 117_jENRAKSGPEAJ[1.000]_____ [18 IAPGGGERYSR 0900__ 83 KAAYRLEQPVI0.600[ [F31 IWFQNRRMKLJ[0.600[____J 29 1YLTRERRLE 1110 .6 0 0[ EIDESSSLLEJj TABLE XVI 179P3G7 HLA B7 10-MERS START SUBSEQUENCE SEQ ID 1421[EVPVPSYYRAI 0.s00 i[ '12071[TPKSDSQTPS1040[_____ F 4 VPSYYRASPSI O 4 0 315 INLTDRQVKI[.00[____ 143 Vs~PPRI [10.40011 1[189 iSPQLGGKVSPf[0.400j____ i YPSYLSQLDS 0.400 44 ](MRGCGLAPSL Ir 0 81 DPKAAYRLEQ 0 3 0 j[ 282] ELEKEFLFNM] 0.3 00 22[GPKSPSESEJO30 111][CCMYSAEND.A][T3 14 ]rEPLAGGr3 264 )~TKGRKKRC0. 136 ]SCLGEHEVPV:][.200l____ 2931 LTRERRLEIS 110._ 200 Ji-IKTINLTDQ 0.2001 QsGSDFCGV 2001 2](CPYTKHQTLE 0 11 61 JISPSLALN'rYP 10.200] 3Jr92IPLSSCS Y1K200I 961 ILSSCSYPPSV] 0.200 94 j[RPLSSCSY'PP10.20011_____ 329 ENRIRELTSN W0]__ 31RIRELTNF M E0201 T[VMGCGLAPS 0.20011 17IAAPGGRYS 0.180 [T1YRA 0101____ I~ [EKEFLFNMYL 0.1201 21]PNEIKTEQSLII0.1201 KREGSSPSLIk .20 295i RERRLEISKT 0.00 [312 J[VKIWFQNRRN] 0.100 1251 YSRSAGMYMQ 10101 240 SSPDTSDEA 0.1) 1591 a SSPSLALT 1TABLE XVI 179P3G7 HLA B7 I BSEQUE F SCORE SEQ. ID El 1_ NUM.
19NVCCMYSAEN T 163 HCSOANDFEA 1[ 0.100[ F32 YMQSGSDFNC][Ti[ C24 RYRSAGMYM Fo 1 19 KVSFPET 10. 100 207 0f YSLDKT r20 GGERYSiSA]0.10011 fli]ALYSH 0.0E]IT]I I [291 ]AGMYMQC-DI 0.09011____ [i fALYSF!PLPES of__ 0.090__ 8 4 1[AAYRLEQPVG 10.09011____1 6sI ALNTYPSYLS, ji-5-75ii TABLE XVII -179P3G7 HLA B3501 9- MERS TART
SEQ.ID
172 140.000I 11 KSGPEAALY 130.0001 1 TPNSAPL 120.000 273_ CPYTIGHT 20-75-0 3 31 RIRELTSNF 112. o000l 181 jfNPRAEHLES [150 ~[RASPSYSAL .o ___AAPGGGERY 6.000][ 1166 [GANDFEAPF 16.000[ 313!j KIWFQNRRM 4.000 Lo] 36 GSDFNCM 3.000 27S YTKHQTLEL 3.000]_ 125 1EAALYSHPL 15-0001L 23[ LTRER.LEI 2.400 5 LSKRflEGSS 12.2501 9 QPVGRPLSS If2.000 I 279 ITEEE __0 189[ SPQLGGKVS 12.000f I [VPVPSYYPA 2.000____ fTABLE XVII -179P3G7 HLA B3501 9
MERS
START SUBSEQUENC .E SCORE SEQ. ID
NUM.
I 1 APGGGERYS 11_oF F101 1YPPSVKEEN 20 0J RGCGLAPSL 12.00011] 208 ][TPSPNEiKT' 12.001 lj pi RAKsGPEAA jil.soof____ 28 1~ LEKEFLFNM [1.00 236 1[ KAADSSPDT_ I1.2001____ F411 j[CGVMRGCGL o__o__o EGSSPSLALI io or [27 IRSAGMYMQS 11i.000f _I 188_ ESPQLGGKV I 1. 000 I 114~h YSAENRAICSJioo ESCLGEHEV 100i 201[ TPKSDSQTP 0[.9 KA~ETTGW 110.900] NLTDRQVKI J .0] [W[VSFPETPKS 771DSWGDPKAA 239_ DSSPDTSDN ]o7 o l 11SYAEPLA 1.511____ 156i] SA.LDKrPHC .10.600 [181FPETPKSDS j0.600 247 SPDTSDNEA060 DPKAAYRLE 10601 K iIAAYRLEQPV 10.6001____ 7164 CSGAkNDFEA 050J[_ 591 GSSPS±ALN 0.5001[ YSHPLPES ~~o 2__8 QSLAGPKGS11.01____ 23[ElKTEQSLA 110.4501 171 [EAPFEQRAS [0.4501 210_ SPNEIKTEQ 24 IIRYSRSAGMY I040[ 137 CLGEHEPV SGSDFNCGv l10.400[ 78 1swGD)PKAAY[040____ 226 4SPSESEKER [.40] TABLE XVII 179P3G7 ElLA B3501 9-
MERS
JSTART SUBSEQUENCE SSO EQ.__ID_ 94_rRPLSSCSYP IFTj~ l 206J SQTPSPNBI J0.400[ 12jPPSVKEENV-] 0.400 329 [ENIRELTS 10.300D1_____ 131 j[HPLPESCLG 0.300_1 22[ LAGPKGSPS 0.0 92 J1 VGRPLSSCS 0[.300 1_ 193 GGKVSFPET F0370r 308 F _0.300 (248[ EAKEEIKAE r229 ESEKER~aA 91 YPSYLSQLD] 14 SYYRASPSY 0.~T 200 r145J VPSYYRASP 1020i____ 21 LELEKEFLF 1001 34 TINLTDRQV 10.200 I 28 KFLFNMYL [152 [_SPSYSALDK [23 ERYSRSAGM 1 11611 HCSGAN J EPLAAPGGG]1.01 FRNVTPNSA 0.200 jTPHCSGAND 0.o200 _20_1 GGGERYSRS 0[.20011 122- Sc3PEAALYS3 0.200 2721 RCPYTKHQT 020 13i33 ELTSNFNF [T~f RQVKIWFQN I TALE XIII 179P3G7 BHiA B3501 I SUBEQUNC [IO2,E ]r SEQ.- D 1CPRNVTPNSY]iI.20.0l Vh19SPQLGGKVSF 20.0001 266 sG RJ RCPY120.000I_____ 1161 ITPHCSGAND] 2000] I104 [SVKEENVCCM 1112.0001 77 DSWGDPKAAYj 110.0001 [60 ISSPSLALN'rY 10.000 l I 36IMNREN4RIREL]F6 000 I 21ITPKSDSQTPS 11 6. 0 0 ISPSESEKERA 11 .001 TABLE XVIII 179P3G7 HLA B3501 START SUBSEQUENCE SCORE 11SEQ. ID 16 LAAPGGGBRYJ 6.000 II 37QNRRMKLKKM 6.0?7 18ASLNPRAEHLi 5.0001 12 Y PPECL[15.000_I___ 1f SGDNCV 4.0001 210 ]SPNEIKTEQS3 4.000 I 10171fYPPSVKEENV]i 4.000 APFEQRASLN Im 27971IfQTLELEKEFL'300 _171 EAPFEQRASLi 3.000 64 I1 LALNTYPSYL 3.0 18 J!RAER~LESPQL 1i 2.700 12ILSPSYSALDT 2.0 8 ~fTPNSYAEPLAJI 2.000O 6371f SLALNTYPSY]j 200 272 IRCPYTKHQTL]J 143 iiVPVPSYYRAS 2.000 145 I[VPSYYRASPS 2.000] 69I[YPSYLSQLDS 2.007F 907 PVRLSSC]11_2.000 254 1.0 236 iiKAADSSPDTS If1.200 ____LFgKEFLFNMY 1.200 331 IRIRELTSNFIN Ii.200 16 SGANDFEAPFf 1.000 If NLTDRQVKIW 11.0001 1.0001 67 ]NTYPSYLSQL I i.oo 0If 121 JKSGPEAALYSI 1.000 1I~ 240 ISSPD)TSDNEA 1.00 3 011GMYMQSGSDF 3 .000 27 8 HQTLELEKEFf 1.000 71[VTPNSYAPI 1.000 9671 LSSCSYPPSV 11 1.000 264 1fQSG3SDFNCGVI[1 1.000 26=4 AKSGRKRCI 0.900 1 87 nREQPVGRPLi [0.600) 7727 GPKGSPSS 0.600____ If GEYSSAM TABLE XVIII 179P3G7 HLA B3501 ~START SSEQUENCE SCOREISE.D
NUM.
LTRERRLEIS 1060 1181 NPRAEHLESP~I 0.600 2 ELEKEPLFNMj[060 0.600 244 IITSDNEAKEEIJ[ 0.600 j 55jYSALDRTPHC 0 .500[ E178flESPLGGKVS 1 0.__00 I32 IENRTRELTSN] 0I 5 f IGEHEPPY][ .0 305 IINLTDRQVKI][ 0.400 I 303 IKTINLTDRQV~ f.0]_ .94 IRPLSS SYPP 24~ RYSRSAGMYM] 0.4 0 0 R37LTDRQVKIWF][ .300_I___ 175 i EQRASLNPRA] 0.300 [1252 IEIKAENTTGN 0.300l[_1__ [W.1 1 [79 WGDPKAAYRL 0.300 IF1- PPSVKEENVC'f 0.300 18 APGGERYSR[0.300 1__ F2037 [KSDSQTPSPN 11~~I 0.300__ 1 E71 KVSFPETPKS 0.3 TPPNI 0.300 1 AAPGGGERYSI[ F ]ITLELE1EFLFI[ 0.300 24 RAKAADSSPD If0.270 70 11PSYLSQLDSW II 0.250 I ___]IVK-IWFQNRRI4 1f__ [.2I S~~~0.200 IASLSREG[ 0. 200 14I EPLAALPGGGEf020 _45: RGCGLAPSLS .0.200 I 131 LAMP1 0.200 11 TABLE V 7- 184P3C10B HLA Al 9- START SUBSEQUENCE fSCOREI SEQ. ID [16[HTDNMVFYJ 6.250 i ASNPHEARK 6.000 114T KSSPSNYVR 3.00~ 341 LLVHRFLPY 2.500f~ 26DHDPGRHLF 2.500 1 1 305 ELEGLKPAS 1.800 170 JHGILQWDF 1 .250 I~ 12911 DIFPIDDVF 1.00 j~ 162 LLELEAQTH 10.900f~ SSFDC Y 0.750 j [39LSSFDPCFY 0.750 [28NGDDDVFAH 0.625 [256f EVVIQNERY 0.500 [364 J[TCGNQTQIY 0.500E Z 74 [ATQPQHVQN 10.500 ZZ 214 TDMV 0.0 I37[ YRDLLLVHR 0.500 ___HVQNFLLYR 0.500 303[ CLELEGLK 5 r 14FLLQDVPPSK 040 115SSPSNYVRR0.0 [51TSMVTHPDF0.0 [aofDSFFNLTLK0.0 289 VDF I0 o.270I Zfl I025EZ 294 f(PIDDVFLGM ]20.20~ IPEALAWPT0.2 28LIQNVGPI-R 241_ NVGPIAFW
LLSPPCK
[T INLTLKQVLF 0.200 fllI [3 CLEEGLK 0.200 E 328) HLSSFDPCF 0 .200 1291TQNERYPPY 010 76 ]jHPDPATQPQ012 F 137 RGLQLRLLF f17 J IGAFTLLLF 0.125 11 ATLILAIGA 10.125 [78f QHVQNFLLY0.21 F 16871 QTHGDILQW 01E ZII] TABLE V 184P3C10B HLA Al 9-
MERS
ISTART SUSQCE OR ISQ ID 12Th TLIIIAIGAF 11.10011 97[DVPPSKCAQ 0.1001LLI~ 149 -TASNPHEAR M.ooj [206jVLNGDDVF1000~ F137 PHAR 0.090 [1 164 IfELEAQTHGD lo. 090E 9 I QDVPPS.KC0.7 224 LQDHDPGRH 1l0.0751 I41 )1PAIPEALAW 0.050 352 LLMWDALNQ oo 57- 31SP'DPCFYRD 0o.050 13231 0ASHS .051 I 22J LLLFSLLVS 0.5011 _67[ MVTHPDFAT 00- 18~ GAFTLLLFS 0.050f f F RCANASFVL 0.50 im 10 FKCAQPVFLL 0.050 IZ 136IFLPYEMLLM0.0 [2 (TLLLFSLLV 0I.50~ZZ 2~T1 AHTDNMVFY 232I HLFVGQLIQ ___ALNQPNLTC 0i.00 197j ETRCANASF 0.050
TW(RTSGVRAPS
12 [RPELLRRTW 10.04511 QNERYPPYC J1.05 106l PVFLLLVIK 000--- 38_ ESLPPTE 0.3IZ 25_ FSLSPT0.030 36 V][QPPAP 0.027EI -I] 1345 RFPEL 0F.0251 358 LNQPNLTCG 0.02511 24 QNVGPIRAF 005E Z F1798 FHSFL 0.025 IDDVFLC;MC 10.062511 P AB3LE V 184P3Cl0B HLA Al 9- [START ISUBSEQUENC .E COESEQ
ID
36 [ITCQNQTQI0.21___ 245i IRFSY .2 FTLLLFSLL 10.025 551RPAPAPCHA0.2 277j1 RFTAAALRR 0.025 148 If GTASNPHEA JF.0251 TABLE VI 184P3C10B HLAA Al I MERS [START SUBSEQUENCE FCOREj SE.I 114ii~ KSSPSNYVRR 3.000 [3~ilVTQNERYPPY2.500 74]7 ATQPQHVQNP 1j2. 50 0 216 jHTr .IVFYLQ]J 0 340 jLLVHLPY1250 [24IVPEVVTQNER2.5 I351 ELEGLKPASH E ___LTCGNQTQIY~ 2 ~.24]FAHTDNMVFY ioo~ 164 ]IELEAQTHG 0.900 329] LSSFDPCFYR0.5 2 H7 LS SFDPCFY1. oj 2=41 I NVGPIRAFlWS [0 oI1 f16 IfAIGAPTLLLF 0~.500I 103 II CAQPVFLLLV 0~.500J 289 VLDIFPIDDV 0.501 149 TASNPHEARK 0.4001 1148 1 GTASPHA 10.250 1 i F3311 SFDPCFYRDL 0.250 Z 1l11 ATL-ILAIGAF 0.250O 3371 YRDLLLVHRF 0. 2S I~ HPDFATQPQH 10.5 NGDVAT 0. 20_O [261 SLLVSPPTCK] 0.2001Z 2~37]IQLIQNVGPIR 0.200E 291 IfDIFPIDDVFLJ 0. 2 00~ 46 ALAWPTPPTR 20 I 3 1ISGIRTSGV 0.i 7 TABLE VI 164P3C1OB HLA Al 10-1
MERS
;START SUBSEQUENCE
SCOREISE.D
ISOHEAPXV 10.150 195 1 WQETRCANAS 1. 3 295_ DDVFLGMC LJ10. EZZ 1771QWDFHDSFFN l. 2 118 If1 SvRRELL 1 12S 268 ]CGWGGFLLSR 0b. 125 178 DSFF&FLTL 110 125 1 1.70 ]JHGDILQWDFH 0.1211fl 83 1[ FLLCRF 1).V1050 -27LvSPPTCKVQI~ 0.100o loT1IQPVFLLLVIK 0.10 173 JILQWDFHDSF 01 0~ 19 VLFLQWQETR 0.100 3 G MCLELEGLK 0.100 32.3 FASH]j :1a 180 ]j.INLTKQ 0 0 224f LQDRDPGRHL 0. 075 36 26711 YCGGGGFLLS~ h~ 242 Vr.PIRAPWSK)7 238 ILIQNVGPIRA I0F.050] 166 11EAQTEGDILQ])0.05011- 354 MWDALNQPNL 10.050 I 102 IfN KC QVLL 0.050 294 JPIDDVFLGMC 0.50 t 184 I NLTLKQVLFL 0.050 T1 NATLILAIGA 0.050 50 PTPPTRPAPA 0.050I 12 .1NPHEARKVNR 0.0501 346FLPEM LMW 0.050I 21 TIJLLFSLLVS 0.0501 Z~ 15 LIATL 2991 FLGMCLELEG 0.050 IS GAFTLLLPSL .SJ 138 1ILQLRLIJFLV 0.oS0o Z 297I DVFLGMCLEL 0.050 1i LVIKSSPSNY 0o oSO j 3 2 1I {IFV G Q L IQ 13]ILILAIGAFTLI 0.050 1 [TABLE VI -184P3C10B HLA Al 10- I. !4ERS rI ISEQ.- ID]1
[S
T
AR
T
[SUBSEQUENCE SCORE
""U
[286 [AAHVLDIFPI 050 356 [DALNQPNLTC FO. 050 I43 JIPEALAWPTP .04 260 ]QNERYPPYCG 10 4 12 i~IRRELLRRTWG 0.045 93rPLLQDVPPSK 0.4 177 ]PQHVQNFLLY 0.037 f275 LSRFTAAAJR0.3 29 IVSPPTCKVQE 0.030 25IFSLLVSPPTCI.3 213 JI TDMV 0.025 f I S269 fGGGGFLLSRF 0.025 EZ 78 QHVQNFLLYR 0.025J [28 [RTWGRER.KVR 0.025 [66 [SMVTHPDFAT 0.025 i~ [322J VRAPSQHLSS 0~.02 [358 LNQPNLTCGN0.2 [T8 VTHPDFATQP 10.25 II 345 RFLPYELLM 1.025:1 1 APA] E5S 0.
155]11RPAPCHAN 10. 025 1I JTABLE VII 184P3C10B LA01 I 9-MERS ~START SUSEUECE SCR E.I I ~NUM._ F21 TLLLSLLV 97.901 139 QRLL 59.0 138 GLQLRLLFL 270.234I~ 114 ]i FTLJ210633 j11jRLLELEAQT Jr13047 Ff 11041 AQPVFLLLV 161.6331___ 346_ FLPYEMLLM 52. 561 [205 FVLNGDDDV II50.754J 13~l LILAIGAFT [35.448]f~ [274 ifLLSRFTAAA 132.093 f- 34_ YEMLLMWDA 2361][~ 185 3 LTLKQVLFL [2.608 1 I1*92 ][FLQWQETRC )[22.853 246 ]FPAFWSKYY'J I[19.6s8 1 26]SLLVSPPTC I=8.8 TABLE VII 184P3C10B HLA A0201.
9- MERS ISTARTIISUBSEQUENCEI SCOjE SEQ. ID 301 jGMCLELEGL 17.3881 35 [KVQEQPPAI J[13. 10 0 f16 [Al GAPTLLL 11 111
_J
[28 [LVSPPTCKV ii 10.346 [66 fSMVTHPbFA ]f9.6703 20 FTLLLFSLL ~f9.595 4ALAWPTPIPT 9=45 67 MVTHPDFAT 6.42 34 LELEGLKPA ]5.730 142~~J RLLFLVGTA 5.496 3S7L1 ALNQPNLTC 4.968 267 JYCGGGGFLL 3.720 281 AALRRAARVf 3.574 [350J ELMuWDAL i 3.566]j 27 QLIQNVGPI 3.119 3 YR.RRNA 1.737 128[ RTWGRERKV 1.64 33 LMWDALNQP 1.432 f_ 193_ LQWQETRCA ](1.421 83 P'LLYRHCRH J1.268 207f LNGDDDVFA j[1.243 183 IiFNLTLKQVL 0.973 15sJ LAIGAFTLL j[0.958] 113fIKSSoS 0.903 239[ 1OVPR 25 FSLLVSPPT~j088J 174 LQWDFHDSF )[0.8141 76 QPOHVQNFL .6 282 [ALRRAAHVL 1066I 103 CAQPVFLLL 0.564Jf___ 340 LVRFP 0.544 I 135 KVRGLQLRL 143 IfLLFLVGTAS jf0.469 351 IIMLLMWDALN 1[ 0.469_ 221 LLLPSLLVS j[0.442 1 95i LQVPK 0.343 199 JfRCANASFVL]1 0.332 216 HTDNMVYL 0.296 1 253_ YVPEVVITQN 0.283 23 YLQDHflPGR7 28 1- TABLE VII 184P3C10B HLA A0201 9-MERS SATSUSEQUENCE SCORE SE.I L[PQHVQNFLL 0O.276 KQVLFLQWQ 0.5 363 TGQQ [026 341 J[ 0.241 11 0.219 11 121 GGFLLSRFT [018I___ AFTLLLFSL .198 11 249 WSKYYVPEV I FDPCFYRDL ][0.156 T [WQETRCANA]0.4 FTAALRRA ][0.146 I I31[GVRAPSOHL i .4 22 IFPIDDVFL 0.3 355 WALNPNL]J 0.136 LLVIKS-- 219;=] NMVFYLQH][.-124I_ 293 jFPIDDVFLGJ[022I____ 342 J[LVHRFLPYE 0.107 42 J(AIPEALAWP 10.1061 9 LLQDVPPSK 287 JAHVLDIFPI I .9 LLLVIKSSP 0.094 352 iiLLMWDALNQ 0.094 298 VFLGMCIXL ]0.093 i -L-s 17 SNPHEARKV 0.091 -3811 EQPPAIPEAI _.8 1841 LL-RHCRHF If=.8 I86 JYRHCRHPPL 0.O 079 299j FLGMCLELE I077f____ 8 RPNATLILA]I00S TABLE VIII 184P3C10B HLA A0201 STATSUBSE UENCORE SEQ. ID~ I138 ]IQLLFLV 97.2 273T FLLSRFTAAAI 1 321.3-101 1] LLVSPP TCKV18.3 [TABLE VIII 10-MERS0 HLA A0201] [START [SUB SEQUEN'CE SOE]SEQ.ID] 13 11LIGFTIL_ 1 7 14 I.ILAIGAF'TLL 1[1 6 9 .oo~ 0 01 201 FTLLLFSLLV 6.7 1~IV7.DIFPIDDVI5.0]___ 206~- VLNGDDDVFA J46.451] 12_ TLILAIGAFT J40-9861 274 ]LLSRFTAAALJ 136_316 94 ~LLQDVPPSKC 134.627 I__ 42 Al PEALAWPT ][31.508 66 ISMVTHPDFAT[ 131.216J[___ 75 I TQPQHVQNPL J(11-913 fliTi1 QTQI[ 10.433J____ CAQPVFLLLV J[8.443 [17]RGLLRLLL][ 6.527 17 IWDFHDSFF4 s:: 10]QLRLLFLVG3T][~ 192~] FLQWQETRCA f .71J 21DIFPIDDVFL]4.8][___ 215 J[AHTDNI4VFYL ~443___ [189 QVLFLQWQET1I411J [112IVIKSSPSN~YVI13 [353LMWDALNQPN~f~T[__ [3J YLRHRRNAT f205J J [174 LQWDFHDSFF K0[ 286I AAHVLDIFPI f3W[ FIs LAIGAFTLLL l~~T[ 211DVFAHTDNMV I~1.9 158 11 KVNRLLELEA I1.521E- 341~ IJLVHRFLPYE 1.1 293 IIFPIDDVFLGMlJ162r E238 LIQNVGPIRA 1.161 16 RLLELEAQTHI I1. 130JL-~ F104jAQPVFLLLVI If0.997 00]LGMCLELEGLf 0.989___ 2801IAAA-nRvI1 0.966 [12IKCAQPVFLLL 0.927 IiPQHVQNFLL I0.809] IFLPYEMLLM l 8 J[ 98]V'PPSKCAPV] 77J___ [ILVRFLPYEM]IO7 [L13I CLELEGLKPA1 TABLE VIII -184P3C10B HLA A0201 JSTART SUBSEQUE~qCE [SCORE IS__.ID] 271 [GGFLLSRFTAI[ 0. 696 ]FSLIJVSPPTC O .552 297 ]DVFLGMCLEL J[ 0.519 326 ]SQHLSSFDPC][1 143 ]LLFLVGTASN][ 0.469 191 LLLVIKSSPS]( 0.469 i 59]IAPCHANTwSK~V][ 0.454 281 IA.A.IRRAAHvL][ 0.450 84 LLYRHCRHFP][ .4 I 181 ISFFN1imKQVj[ 0.411 S101 !SKCAQPVFLJ]1 0.396 308 GLKPASHSGI]i36 1 ~299 FLGMCLELEGJ 0.343 145_ FLVGTASNPHj 0.343 LQDVPSKCA 0.4 1224 JLQDHDPGRFBLJ 0.295 142 RLFVGTASI 0.276] 21 ]TLLLPSLLVS][0.260 ]VQNFLLYRHCI[027] 108IF IKISSPI( .5 F 17 FMS 0.25436 135 1KVRGLQLRLL[ 0.229 37 [QEQPPAIPEJ 0.222 723fLLFSLLVSPPl 0.216 j__ LMDA 2P .16J 22[ LLLFSLLVSP[ 0. 216__ 241 ][1VGPIRAFWS1 0.208 f___I 233 [LFVGQLIQNVI 0.189f 223 3[YLQDHDPG3RH 0.183 [ALNQPNLTCG _.7 310 if KPASHSGIRT 0.170 i 8 11 RPNATLILAI 0. 157 3_2__8I NGDDDVFAHT 0.152 i 165 EAGDIL 0.142 1107 LLVIKSSPSN[ 0.127 3387RLLHF 0.1 12 0 YVRRZLLRRT 0~ .105I____ 178_ 0.104 -2481 FSKYY___ 0.102Jf___ 3IIMJLMWDALNQ IOr. 0941 130 IWGREKVRGLl1092II 150 I[ASNPHEA RKVJ[001[____ TABLE VIII 184P3C10B HLA A0201 10 -MERS START [SUBSEQUENCE SEQ. ID 2451 IRAFWSKYYVI 0.090 3347 PCFYRDLLLV[0.8 10 I[NATLILAIGA][o 0.06 TABLE IX 1B4P3C1OB HLA A3 9-
MERS
STARTI SUBSEQUENCE SCRESE.
I
27_ LLVSPPTCK- 45.000___ 94! LLQDVPPS( 30.000 I243~ GPIRAFWSK [8.1cO__0 328__ HLSSFDPCF ][6.000jj___ 138 I GLQLRLLFL 5.400 11 124T ELLRRTWGR 5.00f I223 JfYLQDHDPGR 4.000 J [7 fHVQNFLLYR ]j3.6001[ [206 (VLNGDDDVF j3.000] 301 GMCLELEGL 2.700 ___TIJLLFSIJLV 1.80011 1i4[ ILAIGAPTL JFl 800 106i] PVFLLLVIK 1fi50071 1.2 1TLILAIGAF][.o] 12011 YVRRELLRR, 1. 200 847 L[ 1.000[ 174 IFL-QWDFHDSF 273 1 FLLSRFTAA .0J 237_1 QLIQNVGPI _10. 810 291 jDIFPIDDVF 1I0.67511 238 ]fLIQNVG;PR 0.600[
L
357p] ALNPNTC_ 0.60011 24 LLSRFTAAA 110.600 346 11FLPYEMLLM ~[0.600 282___00 I 135_ 0.5401[ 1.01VLFLQWQET 0.500 ___SSFDPCFYR J0.450] 11211 VIKSSPSNY if0.4001 16 AIGAFTLLL 0.360 1437 -LLFLVGTAS ]fO.3o 831 FLLYRHCRH 10. 3 0 01 TABLE IX 184P3C10B HLA A3 9- MERS START SUBSEQUENC E SCORE E~I 5's_66_ SMVTH PDFA [0.30011___ 1~~h LAWPTPPTR0.0 HTDNMVFYL10.71 KVQEQPPAI1[ToI_ 350_ EMLLMWDAL 1020I 114 IIKSSPSNYVR 1I.71 LTLKQVLFIJ [W S321 1GVRAPSQHL________ 142 IRLLFLVGTA 0271 102 jKCAQPVFLL [0.243 FT[DSFFNLTLK 11RLLELE.AQT 2 I [LLELEAQTH 0.200_ I1 YLRHRRPNA 110.2001 192 ~EFLQNQETRC .0 2592 HLFVGQLIQ ql LLLFSLL.VS1 R TQPQRVQNF ][0.180I J256][ EVVTQNERY 0.180_ 269 ]fGGGGFLLSR___ I353 DAQ Fis0 ASNPHEARK] =0.10 r_046][1 ALAWPTPPT 1[ 0.1.50 186 11 TLKQVLaFLQ] 110.1351 FTLLLFSLL 110.35 I~(VLDIPDD 1__.1201 QLRLLFLVG 110.120] 173 10.120 31 MLLMWDALN To0.090 I I21GLKPASHSGI10.090 34 _LLLHFLP_0.090 103 CAQPVFLLL 110.08~1I ]F 108 1FLLLVIKSS10.61 36 GIRTSGVRA ][F.06I_ LLVIKSSPS ]1 0. 06 149 IfTASNPHEARi 0.06011_ 352 LLMWDALNQ J[0.0601 10[4 PFLL )0.054] 128 IfLVSPPTCKV 110.0451 21 NVGPIRAFW 10.T04SE 1347 LPYEMLLMW. ]0.045 45] FLVG ANP1 Em TABLE IX 184P3C10B lILA A3 9-
MERS
SATSUBSEQUENCE1 CR E.I ~i~fLLLVIKSSPjoos[____ __285 RAAHVIIDIF 16 QTHGDILQW 363 LTCG;NQTQI 67 MVTHPDFAT1 10.0451 15if LAIGAFTLL ][0.041ff 1339 j[ iFL I 0Olf__ "iTI LQLRILLFLV ]I 0. 041i[___ _-03 CLELEGLKP 0. 04 0 M241FAHTDMF 10. 0 I_ TCGNQTQI I0. 040~___ F781 QHIf LL 3 310 KPASHSGIR I0. 036]___ ___APSQHLSSF =j.3 ___ETRCANASF 0.030 fFVLNGDDDV 1~0. 03 0 FLGMCLELE E= l_ TABLE X 184P3C10B HLA A3 MERS SUBEQ ENC lSCRE SEQ. ID I SCR Num.
F-267 ]SLIVSPPTCK p45.000] Fli34071 LLLVHRFLPY 36.000][ 301 ifGMCLELEGLK 18.0001 237] QIJIQNVGPIR 9f .00 93 1[PLLQDVPPSK 4,500____ EALAWPTPPTR r4.00011____ 114NLTL 13.60_ 30]GLKPASHSQIj 2.700 12.700j 14 ILAIGAFTLLI111. 800 I __TLKQVLFLQW 11.2 0 0_ ___LLRRTWGRER j 273W [FLrLSRFTA J[ f148 1( GTASNPHEAR ]I 0. 900 128_ RTWGRERKVRI] 0.7501[___ SMTPFTI0 7 LVKSSY 10 0 TABLE X 184P3C10B HLA A3
MERS
Si~TRTSUBSEQUENCE SCORE IE'I _1 NUM.
S16 IAIGAFTLLLF 0.600]1___ S243 ]GPIRAFWSKY j74 JATQPQHVQNF J[0.4501____ F27 J[ LLVSPPTCKVI[0.450l___ 14 Ii QLRLLFLVGT 0.450 1.05 jQPVFLLLVIKj 45 11RLLELEAQTH 110.450]_ J[0.450] 18][GATLLLFSL 83_ FLLYRHC RHHF 0I.300[____ 205][FVLNGDDDVF 0.3001____ 23 ]LLFSLLVSPPJ[0.300] 14LQWDFHDSFF 0[.300 i [363 ]LTCGNQTQIY[0.3001 94 LLQDVPPSKCIF0.300I___ 1232 JHLFVGQLIQN 0.300l I 13 I IGAFJI-0.270 I 149 ITASNpHpjARXJ0.200[___ [258[VTQNERYPP [.242 VGPIRAFWSK 0.18011 ~~DVFLGMCLEL 0t.180[____1 21 jTLLLFSLLVSj 0O.180oF 102 ]KCAQPVFLLL 10.1621[ 0 ~CLELEGLKPA][_.15 1 311LLVHRFLPYE[0151 8 IQNFLLYRHCR][.2 I 1143 ILLFLVGTASN][0. 100 II 14 LLYRHCRHFP o. i0 1 I33 LMWDALNQPN '10. 100o I_4[NTSMVTHPDF J 1 fYLRRHRRPNAT 1010I___ 305_ ELEGLKPASH F[ 00907] [329[LSSFDPCFYR FTLLFSLLV f0.090 79HVQNFLLYRH LI[09o1 42 RLLFLVGTAs Jj .09011 I 1 IILAIGAFTLLL Fo0o08j] IM I~ SNYVRRELLR-j l 0.001 TABLE X -184P3C10B HLA A3 START [SUBSEQUENCE SCORE SEQ. ID1 77 PHVQNFLLY 0.072 11 110.072[____ 35i1MLLMWDALNQ 0.2060 f 342rLVHRLPYEM 0 223I YLQDHDPGRHf 0.060 244 I PIRAFWSKYY 0.060][_ [214 JFAHTDNVFy 0.060____ 152 NPEAKVN 0.06011___ 109 [LLLVIKSSPS 10.0601j 164 [ELEAQTHGDIj 0.0541 268_ CGGGGFLLSR 10.054 104 ]AQPVFLLLVI 0[ 0054 [123 RELLRRTWGRf 0.054 [22][LLLFSLLVSPf004 352~ JLLMWDALNQP[ 108 jjFLLLVIKSSP 0O.045][___ 28LIQNvGPIRA] 0 __040_ 276 JSRF TAAALRR ]0.0401 299 jFLGMCLELEG ]J0.040~f____ 25 [VPEVVTQNER 0~.040 179 JHDSFFNLTLK J0.030j[____ 112 I iSSPSNYVJ 0.030J____ 323[ RAPSQHLSSF] 0.030] 1101 LLVIKSSPSN][0.030[___ 212. IDVFAHTDNMV][0.0301___ 131CAQPVFLLLVF1-0 IDIJIJLVHRFLPI TABLE XI 184P3C1OB lILA A1101 9-MERS START 11SUBSEQUENCEllSCORE SEQ. ID lI P NUM.
_4 GPIRAFWSK ~1.800 j~ YVRELLRR0.8001 79__ HVQNFLLYR 0.800 _27_ LLVSPPTCK 0.600 94h LDPPSC 0.400 10IPFVIKT 040 3 02 ]1MCLELEGLK, 0.300~o TABLE XI 184P3CI0B HLA A1101 9-MERS I I IDm 11 VrMELLR0.4 1.35 j[KVRGLQLRL0.2 [33.0 KPASHSGIR 0,120 22 YLQDHDPGR 0.080 L l S LAWPTPPTR 008 238 iiLIQNVGPIR 10.08,0 fjjj 12I~ ELLRRTWGR 10.0721 [127 j RRTWGRERK =0.0601 82~ NFLLYhHCR 0.06 ___KVQEQPPAI 0.060j ___GVRAPSQHL 06 L_191 IJFLQWQETR. 10.0601 149 TASNPHEAR J10. 04 r 14 8 GTASNPHEA 0.030 185 IILTLKQVLFL 0.030 =1 ATLILAIQA 10.0301 21.6 HTNVY 10.030 205 1FVLNODDDV 10.0301 272 269__ GGGGFLLSR 10.024 114 11KSSPSNYVR 10.024 18GLQLRLLFL002 246 R.APFSKYYV I0FO241 11 16 1QHLQW 0 02Oi 234 FVGQLIQNV 0. 020 28 JLVSPPTClcV 0.020 146 1 VTANH1000 TABLE XI -184F3C10B HLA A1101 9-ME RS STR USQUNECRl SEQ. ID 7T0111 GMCLELEGL [0.03.21 ZZ 1 I ILAIGT 10.0121E Z [80 1 VQNFLLYRH 10. 0121 [63 1 LTCGNQTQI 10. 010 w 256 J[ EVVTQU.ERY 1 0.009 CFYRDLLLV 10.008 347 LPYEMLjLMW 10. 008 I _16_I AIGAFTLLL 110.008[Z 26J[ SRPTAAALR 0.0081 1 1346 FLPYEMLLM 10.008 __336_ FYRDLLLVH 0081 [315[ SGI1RTSrGVR 0. 0061 661SMVTHPD1'A 0.006I~ [i I FLSFTAA 1 fl 105i1 QPVLLLVI 10. 0061 F371QLIQNVGPI 10.0061 259 TONERYPP 0.06:Z 219 ](VT~H 0T[. 006 EZ [.21 [TLILAIGAF J F. 0 RTWGRERXV I .0 APTLLLFSL 110.006R _LQDHDPORH ]0.0061 110.0061 189. FI YCGGGQFLL 29 V1GCL 0. 006 1 267 YjCWQETRCAN 10.0065 83 NLLELEr: 0. 006 (1 27 RAAA 0.004F 55 RAPPH 0. 004 _ISL 0.00 184 ]NLLKQFTA 0. 004 11 LLELEAQTH 0. 004 224 FLAHIVF 0.004 126 VFSSSN 0.0041 H.4 LSSFDPCF 0.004~ 103 JLECAQPVPLL 0.004 214_ YIJHRRNA 0.004 L Ii 21 A A2L R R A A HVN 0 0 0 3 150 ASNPHEARK 0.02011l 71RKVRG;LQLR 0. 018 Z 102][1 KCAQPVFLL 10.0181 345][1 RFLPYEMILJ.1 142 irRLLFLVGTA 1 199 R C ANA SEVL IooeIZ 2 0) FTLLLFSLL]loos Z 316]1 GIRTSGV. 10.0121 2123 1QNVGP IRA 0012~ 180 DFFNTK 0.12I___ 14 LQWDFHDSF 1012 V111 TLLLFSLLV1012 10411 AQPVFLLLV T43 341 LJJVHRFLPY I 0.012 00 00 TABLE XII 184P3C10B FHLA Allol START SUBEQUNCE SOR SQ ID 301.1 GMCLELEGLK1.0J_____ (148 IGTASNPHEAR 0.600 f~ [26i SLLVSPPTCK 0.600~ [128 (RTWGRERKVR 0.600EIZ 105s QPVFLLLVIK 0.300 119 j VRELR 0.240 _L ASPFIR 0.200 I190 VLQQETR 0.16J 237 ]QLIQNVGPIR 0.120]~ 158 KVNRLLELEA 0.2 1235 RELLR.RTWGR0.0EZZ 46 ALAWPTPPTR 0.80 j~ r336 FRLLH .8 [93 PLLQDVPPSK0.6 NPHEARKVNR004 ~TjjVPEVVTQNER0.4 342 LVRLPE 0.040 EZZ 79 IHVQNFLLYRH 0.04EZZ 22VGPIRAFWSK 0.040 ZZ 1_ GATLFS .36] 118T] SNYVRRJELLR 10.032 FVNGDDVF 0.030 V~rF-111LVIKSSPSNY J0.030J 236_ JGQLIQNVGPI 0.027IIZ [297J DVFLGMCLEL0.2 [1261 LRRTWGRERK0.2 F19~HDSFFNLTLK [1.2ol- LILAIGAPTL ]0,0183 11]RLLELE.AQTH 10. 018Ii Z RFLPYEMLLM 0[.018 2 KYiRHRRPNA 10.018B[Z~ 276 SRFTAAALRR 0.016 81QNFLLYRHCR 0,016 liATILAIGAF 0j. 015 78 jQHVQNFLLYR 0.1 114 11KSSPSNYVRR 0.012 j~ 329 ]LSSFDPCFYR J0. 012 308 JGLKPASHSGI 30.0121 1047 jAQPVFLLLVI 0.012 85 ILYRHCR=HFPL 0.12 17 41 LQWDFHDSFF 0O.0121 TABLE XII 184P3C10B HLA A1101 START SUB SEQUENCEI SCORE SEQ. ID p_ NUM.
f102 K[AQVFLLL 0.12 f 8flJ RPNATLILA 0.01 212 DV[ HT012 340 [LLLVHRFLPY 0.012 67 T1AQTHGDILQW 0.012 jj j 363 ]LTCGNQTQIY 0.1 747 TsrPv'IiVQN 001 258 VTNBRYPPY 0.010I L272 GFLLSRTAA 10.0091 f346 ffFLPYEMLLMW [186 JfTLKQVLFLQW 0.008 11_ KSPNV 0.008 Il [84 LTLKyVFL [268 [CGGGGFLLSR 0.08~_ 23 0.008 33SICFYRDLLLVH 0. 008 125 ILLRRTWGRER 10.008w 293 (FPIDDVFLGM 10.006 27 [LLVSPPTCKV 0.00 32 [RAPSQHLSSF 0.006 L145 ff FLVGTASNPH 0.006
I
~241 [NVGPIRAFWS0.6 2868 AHVLDIPI 0.006 L2GAFTQLL 0.006 7I L~A 0.006 75 I.QWQE0.00 r 286 [AHLFP 10.004 L15 RTALL 0. 00461____ 35[VVQERPP 0.004 188: K[ LPTWkA 0. 0045 328_ HILPSSGIRC 0.004 11] 23VATNV 0.004 223] ILQDHDSGHF .004 ITABLE XII 184P3C10B HLA A1101 10 -MERS SATSUBSEQUENCE jSCORE SEQ. ID] L31mvFYLQrDHDP o0.00o4h [112] VIKSSPSNYV 10.0041 [206J VLNGDDDVFA 10. 0041 F-103 CAQPVFLLLV I0. 004I] INATLILAIGA 10. 004 314 HSGIRTSGVR- 110041 [14I ILAIGAPTLLI 004] 004 132 RERKVRGLOL 0.j004 FVi- II 1V0.003 E Z [TABLE XIII 184P3C10B BLA A24 9 MERS STR SBEUNE[CR SEQ. ID
NUM.
298~ VFGCEL3.J 292_ IFPIDDVFL 19 AFLFSL]2.0Ijj r266 IPYCGFL 20001 21KYLRHRRPN 11.0J I QPVFLLL 11.
71 QPQHVQNFL 1110.080IIIII1j 251 1KYWPWTT10.0h _ILR 960 FTLLLFSLL 18.6401I 13FNLTLKQVL 18.6401 339_ DLLLVHRFL[800 39__ OPPAIPEAL8.0 19RCANASFVL r 1027 KCP.QPVFLL 800 1S~LAIGAFTLL 1720 17RGLQLRLLF.~ao 18GLQL-RLL-FL .0] 3501 EMLLMWDAL ]600 166 EAQTRGDILI_______ (151LTLKQVLFL .0] I285[ RAAHVLDIF] S.600 IIILAIGAPTL J 4.000 HT~] IDNMVFYIL 4.00[ 118i' SNYVRRELL YCGGGGFLL TABLE XIII -184P3C10B HLA A24 9-
MERS
START SUBSEQUENCE!SOEI SEQ. ID Fm_ I_ I NUM.
275f LSRF TAL14.0 31GMCLELEGL 14.00 [282]I~]T55 33 DPCFYRDLL 4001_____ 16 AIGAFTLLL 14001 [H2~ 35 KVQEQPPAI F13.6001 75__ TQPQHVQNF 13.60011 [291 JDIFPIDDVF1336I 24 QNVGPIRAF 13.0001___ 20 [VLNGDDDVF I 3.0001 6 TSMVTE-DFj 3. 0 00.1__ [14[LQWDFHDSF 2[.400[ GDILQWDF 2.4001 I27 IGQGFLLSRP 112.4001_____ 841 LLYRHCPJ{F 0 00 214 FAHTNM 12.0001 324 j1 APSQHLSSF 2.0001 17 [2.000 HLSSFDPCF7 2.000
IGAFTLLLF__
3811NLTLKQVLF ECASF 2.oooF[ 263_ MRYPPYCGGG 1 27QLIQNVGPI 1i.500[____ R~LLL 1.200I 363 LTCGNQTQI6j JE_ 107 VFLLLVIKS_ 0.901[ 87 ](RHCRHFPLL 17PSNYVRREL 0.924] 2521 YYVEVQ _.90 5 RHRRNATL0.0 233j LFVGQLIQN 0.750 119 ][NYVRRELLR [346 FLPYEMLLM][.0]___ 22FYLQDHDPG 0.750o 27 GFLLSRFTA 144 iiLFLVGTASN 10o.7 5o 18 FF'NLTLKQV][ 0.750 296_ DDVFLGMCL][ 1 338 ][RDLLLVHRP 1.21 336 RDLLLVH [T I_ 1VFAHTDNMV 16ool__ DFATQPQHV LL._60 TABLE XIII 184P3CI0B HLA A24 9- I. MERS START ISUSEQIJENE ISCO R SEQ. ID I NUJM.
131 [GRERKVRGL 0.600 [332 fjFDPcFYRrlL- 0.60011_____ 231_ RHLFVGQLI 10.50411 335] CFYRDLLLV__________ 225 QDHDGH 0.48_ 1 61 RLLELEAQT 0.4321 E[E7 7]PQHVQNFLL10401 735 DLQPL10.40011 [~~"IERKVGL'QL 10401___ ___PCFYRDLLL 10401 VTTISKCAQPVFL10.011 [TTJVRGLQLRLL 1 .0j ___HRFLPYEML J04o[__ 230 11 GRBLFVGQL SYRHCRHFPL I 421RLLFLVGTA jT~ T~[RPNATIJILA ]o30] RAPSQHLSS 3030[_____1 :318_f[8 RTSGVR.APS][2o[ TABLE XIV 184P3C10B HLA A24 10-1
MERS
START SCORE
UM
8 5 _LR C H P T 2 0 0 0F 331 1 fSFDPCFYRL 1[24.O000 lPYCGGGGFLLjj20.000 I_1 I2 KYImHRPNAI[.5 000___ T I KCAQPVFLL1[13.44oI____I 117RGLQLRLLFLII12.000[ 1 75 TQPQHVQNFLJ 1 0. 0 8 0 3=8 EQPPAIPEAL 3.0. 080 V'F1 VFAXTDNMVF] 10 11 0J 13 5]KVRGLQLRLL 8.0001 S3 07SGVRAPSoHL317.200.[ _1 __IYRELr TABLE XIV 184P3C10B HLA A24 7 MERS ISTART~ SUBSEQUENCE SCOEQ
ID~
1LAIGFTLLLI 6.000 11~J 600 F3007 OjGCEEL 6.TW~ F 1 LIAIGAFm] 6.000 F31?.PSQHLSSF 6.000[ 1 81 IAALRRAAIVL[ 6.000 184 1[ILAITLKL 4.00J1 130LQDWGREKVG 4.00___ 291DFII)FTAL 4.800 IE]J RPATLLAI][ 3.600 29711 DQVGPIRA[ 4.00___ 174 ]ILQWDHVDF 4.30_ 7141NLTLKQV4L3 3.000 33__ 3.000 j_ LLYHCRHF 41.000J 72-74G1LLSRF2A OO 4.00 17 LQWDFHSFi 2.4000 283 j1 FNSTKPDF 1 3.000 I 264_ RYPPYCGGGG 1.8000] 14[QFLLLVI1.0031 205T FPINDDVF 3.000 16 ELEAQTHGDI 2.50001 64_P GQLIQVPI 2 .5000I 104 ]IAVFLLLVI] 5 23 3 8GFLLSVRFA L090 16 DFMQTDSFNT3 06 TABLE XIV 184P3C10B liLA A24 io-) MERS SATSUBSEQUENCE SCORE SEQ.
ID
[132 l[RERXVRGLQL] 0.800 [IFYLQDHlPGR]I7 50 F2041[SFVLNGDDDl0.5 19~1 j[LFLQWQETRC]0.5 133 6 FYRDLLLVHR] 0.720 jLPSLLVSPoi;F 0.00 1342 ILVHRFLPYEMIF 0. 660 332 1FDPCFYRDLL]Iooo 34 IYEMLLMWDALaI060 1117[PSNYVRRELL]I 0.oo IHEARKVmuI 050 284 ][RPAAHVLDIFI 0.560 181 SFFNTLKQVj II 176_ WDFHDSFFNL] .8 186 1YRHCRHFPLLI1 0.480 1[H RPNATLILI048]____ 21 H=DNV 1 I 0.4 80 2.90 IDIFPIDDVF042 r142 1 RLLFLVGTAS(040] f 265]PPYCGGGGFL]I040ii 229 PGRHGQL 040 344 [HRPLPYEMLLJ 0.400 LEAQTMODIL 0.0 :LRHRRPNATL .0 1178][-FHDSFFNLTL[~[ F-343]1 VHRFLPYEML I .0] 100 ]PSKCAQPVFL[ 0.400 158 0.396 327 ][QHLSSFDPCFj 0.300 r169 THGDILQWDF 1199 IfRCANASFVLN 0.240 I 225 1.]QDHDPGRHLFII0.240 RPAPAPC HAN 0O.240 ITABLE XV 184P3C10B liLA B7 9-HERS START SUBSEQECE SCR SEQ. ID I~ NUM.
31 GVRPSQH 3.000~ ITABLE XV 184P3C20B liLA B7 9-MERS] FSTARTISBEQEC SEQ.
ID~
s NUM.
ALRRAV 2.01 ___QPPAIPEAL 0._0_0_0 ___QPQHVQNFL I 0001____ __93 APCHANTSM 6000I 127 511 LSRFTAL 4.0 EAQTHGDIL 1112.00011 F13 CAQPVFLLL 112.000o~ EM__ LAIGAFTLL 12.000]____1 SAIGAFTLLL 12.000 jis[QPVFLLLVI 8.0 110211 KCAQPVPLL 6.000 _j RliRRPNATL 116.000 1212 1 DV HDN 160001L1 1 TLLLFS=LL 4.0oJ:0: 185 4.000 RCANASFVL 400 339_1 DLLLVHRPL 4.000 [18"1TT LKV [4.000 14 F301l GMCLELEGL 400 [267 YCGGGGFLL [400I 35: EMLLMDAL ][4.0001 511TPPTR.PAPA 2.000 35 KVQEQPPAI II2.000f -T1[RPNTLILA ]2.000 7281]1AALRAAHIvj 1.800/f___ I YLRHRRPNA 1.500I____ __28 LVSPPTCKV 1.500 ][AFTLLLFSL 1.200 21 I1.200 234_ FVGQLIQNV Jj1.000 36 GIRTSGVRA 1j .000 20 FVLNGDDDV 1KOO0I0 __HFLPYELM 1.000 00 00 !ITABLE XV 184P3C10B HLA B7 9-MERSJ START)JUBSEQUENCE] SCORE ]ISEQ. ID 225I QDHDPGRHL 10.600 104 JAQPVFLLLV 0[.WI_00 [117 PSNYVR.REL LO-0600 F152 I NPHEARKVN 0~.600 I 246 RAFWSKYYV10.01____] YVRRELLRR 0.0 L279J TAA.ALRRAA ]0.450Jj____ ALNQPNIITC 040 ;46 ALAWP PPT 0__ 61 HRRPNATLI 0.0 2301 GRHLFVGQL 0.400i 7 RNTI 0.400 345[ RFLPYEMLL .400 J[ 292 IFPIDDVFLro 0.400 101_ SKCAQPVFL 0.400 237[ QLIQNPI 99] PPSKCAQPV 0.400 33 FPCYRE)I, 0.400 87 CRFL 0.400[ 771PQHVQINFLL 0.0 17711 DFHDSFFNL ][0.400 355_ WflALNQPNL 157j RKVNRLLEL 0.0 298__ VFIJGMCLEL I040I____ 136__ VRGLQtRLL 0.40 0 133[ ERKVRGLQL I0.40 0 179 fHDSFFNLTL 0.400 342 PCFYRDLLL *0.4 00 347f11 LPYEMLLM4W j~ 0.400 l D6I VFLG;MCL~j .0 356_ DALjNQPNLT 0.3 00 ___YPPYCGGGG 0.2001 11511 SKPHEARKV 0.200] _4 llWSKYYVPEV 0.0 'F2431 GPIERAFWSK 0.200 314_ HSGIRTSGV [0.200 1310 [KPASHSGIR [0.200 [23]FPIDDVFLG 0.200 13?9 IFLQLRLLFLV_ 0.200 V3j:]I SPPTCKVQE ir D 0.200 ST ART]UtBSEQUENCEj SCORE SE__.UI.
112811 RTWGRERKV 020 [650 QPNLTCGNQ 0.20 197 ETRCANASF 0.200 P92 FPLLQDVP-P 0.200 r11TLLLFSLLTV 0.0 TABLE XVI 184P3C10B HLA B7
MERS
SATSUBSEQUENCE SCORE SE.I .11 1NUM.
[116 SPSNYVRREL~II2OoJ[ 76 IQPQHVQNFLL 80.000(____ 130 IWGRERVRGIJ1 Jf8.0 1__ F281 ]AALRRAAFHVL 36.00011____ 1297 IDVFLGMCILEL 120.0001 23 IFPIDDVFLGM[20.0001l [300][LGMCLELEGL [12.000 18 1(12. 000 11 Fi 5 LAIGAFTLLL1.0 59 ]IAPCHANTsM7v] 1200F___ 265 [PPYCGGGGFLl If 8 RPNATLILAI800 P O I WRAPOL][ 6.000 J ~I[VHRFLPYEML][600J___ [TWYRRELLRRT][ .0 342_ 11 5.RLP E I 0007
J[
Ip RGLQLRLLFL1F4.O0D 14 ILAIEGAFTLL 400 [7TQPQHVQNFL ]j4.000 11___ [6 HRmPNATLIL J 4.000 LLIAMTI 4.00 184]NTLKQL JL 4.000 r]DFPIDDVFL j .0 98][VPPSKCAQPVII400J 102 JKCAQPVFLLL 4.000_ 85 LYRHCRHFPL jF 4.0007____ 38 IEQPPAIPEAJ! 229 -IPGHVL I4.0 28=6 AAVDF_ 3.600 197 IIETRCANASFV 200____ 310 KPASHSGIRT I 2.000 J TABLE XV 184P3C10B HLA B7 9-MERS STABLE XVI 184P3C10B HILA B7 10- I MERS STR SUBSEQUENCE SCO EQN. I [360 QPNLTCGNQT 2E00 2924J LQDHDPGRELJ 1. F 57 FAPAPCHMNTS] 1.200 F1-04 ]1 AQPVFLLjLVI[ 1.20J 2 15 1 AHiTDNMVFYL l] 3 4 9 YEMLLMWDAL r~~ 19 ifATLJLFSLLI[120If___ 156 1ARKVNRIJLEL F~ I 3 YLRHRRPNATI 1.00 32 GVRAPSQRLS]I1 1.0 0 VT O1LRLLFLVGTI 1.000 F212 DVFAHTDNNV 100[_ 11 LRHRR.PNATL 0.600o ~sQ~s~n I0.600 1 1 10] SKCAQPVFLL 0.0 APAPAPCHN 0.6001 1~ 10 HASNPHEARKVJ] 00 17 PSNYVRRELL 0.6 o.OoI 189 JIQVLFLQWQET 0.0 158 KVNRLLEIJEA [0.500 r356 IjDALNQPNLTC [0.450 JfEALAWPTPPTI 0.5 Ij ARKVNRLLEJ[040Jf___ E0IPSKCQPFLI 0.400 :l=S4HEARKNRL 0.400 I 338f RDLLLVHRFL ~[0.4001 198 T[RC40 236_ IGQLIQNVGPI 0.400 I RHRRPNATLI.1 0.400 283 1 92Jf1FPLLQDVPPS[ 0.400 134[ RKVRGLQLRL][ 0.400 308~ GLKPASHSOI 0.400 LEAQTHGDIL][0.400[___ 17 6 I)FHDSFFNL J 0.400 344 IfHRF-LPYEMLL 0.0 362 IfNLTCGNQTQI .0 1172 ][vIJcSSPSNYVl030 m27 IfLLVSPPTCKVj0.0 ITABLE XVI 184P3C10B HLA B7
MERS
jSATSUBSEQUENCE SCORE SEQ I [9IfWPTPPTRPAPI 0.300____ TTSMVTHPDFAI[030I '142 1 JRA,% .0 152 NPHEARKVNR 0.200]f____ 52 ~EPPTRPAPAPC 0.200 13_8_ GLQLRLLFLV 1 0.200__ 2 FTLLLPSLLVJ1J 0.200 [=±::IWSKYYVPEVV J( 0.200 It I15]QPVFLLLVIK JIOw0If =3;]SPPTCKVQEQJ020 228 .~JDPG EFVGQ ~0I 166 11SM TABLE XVII 184P3C1OB liLA B3S01 I 9-HERS ISATSUBSEQUENCE SCORE] S.EQ. ID I~ NUM.
324 fPSQ SF J20.0001 1J QPPAIPEA L 20.000 I DPCFYRL 1..120 0001rI 371LPYEMLLMW 20.0001 [F[QPQHVQNFL 2-0.0001 [25 LSRFTAAAL 15.000 [*~fLSSFDPCFY .15.000 QPVFLLLVIJ1~~ IfKVRGiQLeRlt 6~~ol I0 [65 ]TSMVTHPDF I~I I FAHTDNMVF 14.5001[____ 29 TQNERYPPY II 4.000 1 RPALL 1I4.000][____ 1 CAQPVFLLL If3.00 GVRAPSQHL _249_ WSKYYVPE oi I4n TABLE XVII 184P3C10B HLA B3501 9-MsRS START]ISUBSEQUENCE SCORE NUSE. I 1151 LAIGAFTLL [3.000 I 282Tl A.LRRAAHVL 166 [EAQTHGDIL][.o[_____ 364 [TCGNQTQIY Ti] RGLQLRLLF ][2.000] 341 RFPY ______12.0001 49 WPTPPTRPA1 2.000 2*1 DVFPJITDNM 12.000 .256 EVVTQNERY 1200I T1[ RCANASFVL12.01 [1 KCAQPVFLL 12. 0001il 26 PPYCGGGGF 2.000J 174 ]LQWDFHDSF [2.oooj r51~ TPPTRPAPA [2.000j 57 [APAPCHAN[T I[_ KVQEQPPAIIiTJ 1 6 ~DDDVF 1.5001]f GMCLELEGL [1.500] 16I AIGAFTLLL 11.0001] 2I FTLLLFSLL 314 LSGIRTSGV 1.000____ LTLKQVLFL j1.0001____ _14_ NLTLKVFI__ [75]1 TQPQHVQNF I 14-]1 ILAIGAFTL 84 LLYRECRHF 1~.000f 2701 GGGFLLSRF 1.000 oI .18 SNYVRRELL 1.000_ T[IGAFTLLLF [T1.000 ___GLQLRLjLFL 1____000 ___QNVGPIRAF 1.0001_ I 3 fDLLLVHRFL_]1.000] STLILAIGAF ]1.000 168_ QTHGDILQW 0.750]1 281] AI.RR.AHV( 01.600 ___IPEALAWP 10.600 11o r o TLE XVII -184P3C10B liLA B3501 I 9-MERS START SUBSEQUENCEJ SCORE _EQ._I
NUM.
34] HFLPYEm oJf__ 244 IfPIRAFWSKY 0 25j FSLLVSPPT 0.50 241T NVGPIRAFW 0.500 99_ PPSKCAQPV 0I.400]____ 11 RLLELEAQT 0.40 [128 0.400 310_ KPASHSGIR If0.400 237[QLINVGPII0.400l 363 LTCGNQTQI I~~I 200 ]'CANASFVLN I 3 IYRHRRPNA 0.~300f____ 11511 SNPHEARKV 0.3001[ 279~1 TAAALRRAA]0.300] 1159J VNRLLELEA 0.300l 216_ RTDNMVFYL 0.3001____ ___DALNQPNLT 10.300 ___GAFTLLLFS 133_ ERKVRGLQL 10.3001!_____ 316 ]GIRTSGVRAJ[0.300[ 170 ]HGDILQWDFI 0 .300rI____ 41~ PAIPEALAW AQPVFLLLV[ RRPNATLIL] 0.200__ 1JIRAFWSKYY J200 [TABLE XVIII 184P3C10B liLA B3501 1 10 -MERS SUBSEQUEN[ SEQ. ID 243 [GPIAFWSKY 140.000 116T ]SPSNYVRREL I000~I 26 YPPYCGGGGFI0 00Z 333 DPCFYRLLL1Ioooj f76 ][PQHVQNF!LL 120. 00 0EZ [F [RPATLLAI111.00[ r 3 37E[kSS F 6.00 TABLE XVIII 184P3C10B HIIA B350 0] STAR SUBSEQUENCE] SCORE] SEQ. ID T3 0[WGRERKVRGLf 16.000 135 KVROLQLRLLIF oo.0001_ 1J KPASHiSGIRT 0 0 ll RPAPAPCHANI 4. .00 98 ][VPPSKCAQPV f~ 4.0 M 249Nrr# o I _00 IS I[LAIGAFTLLL][ 3.000 3281HLSSFDPCFY 00011____ 28B1 I1 AALRIRAAHVL[ 3. 00 01 FPLLQDVPPS] 3Th 18 EGAFTLLLFSL [3.000I [LVHRFLPYEM 12. 1 '01o ]:1 I KcAQPLI.T][2.oo000 2 5][1VTONERYPPY][T]____ 57 11APAPCHANTS 12-00011____ 3 63]1 LTCGNQTQIY 1f 111 LVIKSSPSNY [2.000j 1i3 77 RGLQLRLLFL j[2T-000 3.9 11 QPPAIPEALA]200I 265 11 PPYCc3GGGFL][ 2. 0 I_0__0 I1LQWDP1DSFF~f.01____ IPPSKCAQPVF][.01____ 34 LLLVHRFLPY ][2.000 360 QPNLTCGNQT [2.000 286 AAHVLDIFPI 0 1501 ASNPHEARKV 1.5001 205 FVLNGDDDVF 1.500 100J IPSKCAQPVFL 1501____ 186 TLKQVLFLQW][TTj PPAIPEALAW 1.5001____ 300_ LGMCLELEGL 291 DIFPIDDtVFL[ 11.50011____ 308 jGLKPASI4SGI 1201 38 IfEQPPAIPEAL[ 1. 0001 IfTQPQHVQNFL][1 000i 11 IfATLILAGAFI1 1.0001 14][ILAIGAFTLL[ 183 IFNLTLKQVLF 1.000 274 ][LSFAA 1.000 184 j[NLTLKQVLFL [1.000 I 1.6 [AIGA.rmLLF 74 [ATQPQHVQNF 1.000~i 64~~ INTSMVTHPDFJ 1.000 13 LILAIOAFTL f1. [TABLE XVIII 184P3C10B HLA B3501 10 -MERS SARjSUBSEQUENCEISCR 11 jS NU. M ID 1131ILQWDFHDSF JI -0 0 0 29IIDVFLGMCLELIf 1. 000) 1291IQNVGPIRAF] 1.000 11___ ]j GG3GGFLLSRF 1.000 831FLLYRHCRHF][1. 0 0 011___ 1 IAQTHGDILQWI10.750j[____ 2441 PIRAFWSKY-Yj 0.6_0_R 58_ 1PAPCHANTSM][0.60I
TWIVIKSSPSNYV][~~[___
12 RER KVRGLQL1060!_____ 34 RFLPYRMLLM 0.0I 110311 CAQPVPLLLV 060 I F346I FLPYEM-LL~mw ]osoo 240 IQNVPIRFW1150!_____ 117 i PSNYVRRELL] 10.5001 65 ITS 'viDFA 1 0.500J "T]TCKVQEQPPA 10401____ [~[NLTCG Q TQI 10.0]__ GQLIQNVGPI 104 AQPVFLLLVI 11.401 73 FATQPQHVQN FjT~] 6. HRNTI10.3001 [10 YVRRELLRRT I 0.300 1 L Ii1VRRELLRRTW II0.3001 ARKcVNLLEL I 00 FYR CRHFPL 0.30011 14 0 jQLRLLFLVGT 10.300 11 10 1NATLILAIGA I1.01 __YLRHRRPNAT 0.300( [24]LQDHDPGRHL jj0.3001____ [~]PGRHLFVGQL~ 0.3001_____ [-321 ]r vRAPsQHLs 0[.300 EALAWPTPPT I 0.0 RHRRPNATLI 353 LMWDALNQPN If0.2001 169-] jTMGDILQWDF ][0.200 J I PPTRPAPP____ 00 00 fTABLE V -184P3G10 HLA Al 9-MERS RSTART FSUBSEQUEMC -El SCORE ]1 SEQ ID 234 1 _TDALP 112 50.0OI~ 453_ IAEPOECHF J1so.oooJJ____ IALEPcLJRAF 1[90O1____ r I~m SAEEALRR] 45.0 698 11 LVELAPPYFJ[ iiT00 I 49ESELAVNPF 1[T 13.500_ 1.57 CTGPNTLLR J[12.5 0 17261 MADSTAGSKJI 10i.000I 37 VIDSG LELR 5~.000 ___ELEAPPLPQ J[4.500 13991 QAEARRLRA 4.500 Ins EVESLLLQG 4.500 489 LSDLGVILS ]f13.750 I152 LTLGHEVGY I 2 .500j 100 SGEPGSGKS 2.250 1 4-i FQALPIWAARf 200 23 11 FLELEAPPL J1 1.800 J[_ [TT1CAEFAAG If1.8001 47 fALEDLDYLAJ[ 1.800 J [TT[GLELRSVYNJ[r 1. 80 0 [342] WEDMDRJ 1.800 [jj~ SSVLLK J[O VSEIQPQMLI 1 I5 _14[GSEQNRRDL [HTDGDHSSL 120 ___DTDGTGNYL 1.250 I 1528 JLTAAPGFTR Jf 1.250 I [i1-7 LTGCSAFCR, 1 1.250 8j DGLPFSSRY] 1.250 RGELLELMQ 1.125:~ 427j EAPPLPQPR 1.[00 216_1 LLQDARLEK] 1.00 76257 ALVSGYFLKJ[I 1.000 [6-971 MnLVE~pJ 1.000 118I FALARG;FQKJr 1.000 L461 IfFDPPEA ~1.000[_ 887j 0.900 283 J[VLELCRKEL 090 2-75 RVEAACQAV 0 9 0 30fl CCESLSREV]J 0.900JI 59 ALEHTDGDH 090I___ 436' VCEENLSSL I .0 44 SSLVLL L RI 0 75 f 2 091 ASDSLQ=GLL]_070I TABLE V 184P3G10 lILA Al 9-MERS ISTARTSBSEQUECE [SEQ ID] 712 ~fPSESRDLLN 1 0.675 If 54DGDI1SSLIQ I 0 12 486_ DGDLSDLGV If0.625____ 413 [GSCLCLYPK 0.600J[____ [571r GADEAWCQA Ifo.soo J~ 114 IfWCAEFALAR 050____ 71LAPPYFLSN '1 0.-500 70 EAPYFS 0.500 EL~sPGDVLVpI 0.500 323_ 0.0 LPPRVLPLI~ 345_ DMDARKVVV J0.500 11_F GLPFSSRYY 0[ .500I 12671 YWDTIPPDR IF0.500 I ALDDDGDLS 0.0 30 ]ATMTSQPLR 0.5001 __lCDETA O 5070o[__ ___APELAXALL I040J___ ___RAEFQVLPP .5 [TT~AfEAWCQAR WAALCOAHK 0.400~ 471 D E 0.375 99_ VSGEPGSGK 0.0 39 [LSAEEAALR:[.o 738FAQEFRDPCV!F.7
E
46LSEFPLAPE .0271 49 1FPLAPELAKO020I 708_ SNPPSE SR 0.5 71 1f SRDLLNQLR1I 0.250J 11 259 IfPGERPSPIY]I -1 VDMTA 0.2 301f SEEEISLCC LO. 0225____ 466 APEALMQALV25 31 rf LLLQGLPPR 025J 281 QAVLELCRK'020i 1107f QIPQWCAEF 0 .200r 75 ALPIWAARF f0.200 12] RVLPLMPDCi 0.200~] 27_0_ TIPPDRVEA If0.0 ITABLE V 184P3G10 HLA Al 9-MERS ISTARTIISUBSEQEq SCORE l[ SEQ. ID 39 1I LAEEYGPSP 180 512 ]1 SCEFDCVDE J1 0.18 [631~ SSRYYXLLK ]0.150 389 1FQVLRPISK ]fl 656_1 SSYCCYRSR F73471J KSSSAQEFR 0.150 ___YSIPQEDCT 1! 0 .5 RSVYNPRIR 0.5 [TABLE VI 184P3G10 HLA Al110-MERS [START SUSQEC CR SEQ' ID 34!VTDPALEPKL 2.03 72 3 871ALEPKLRAFW 18.000f_____ 167 CTG;PNT1JLRF 12I 0] 594 [R 2 IJELMQR 111. 2 5 [53 IAEPGECHFL J 71157 jcAE9.000] P 39. QAEARRLRAR 3 .0] 69I[VSEIQPQMLV_][6.7 13 11 VTQPYPL~AAR][.0] 53 _NPDGP 571][GADBAWCQAR5.0[ 603 IRIELPLSLPA 5_q7] LLELMQRIEL 1I~4.S00][ 496[LSEPPLAPEL][2.7001 LAflFSFSLPS 2.500_1 _1 637 DTDGTGNYLL-1.0 517 CVDEMLTLAA][ 2 37- VIDSO LR]2.500j I SGEPOSGKST] 2.250 74 [QALPIWAARF]12.000 ii 698 rLEAPPYFL] [I 6145 RVEAACQAVL 1.800 SEQNRRDLQ[ 1.35011____ 583 DGLPFSSRYY[ 1. 25 0 ~LMQALEDLDY 1. 25 01 6 3 531 ARIDTDGTGNY 2120F 521HTDGDHSSL 1.25 3] VTHWLADFSF 1. 1= .DLTLGHEVGY .0 [TABLE VI 8PG [STAR SUBSEQ. ID F40INLSSLVLLLK I jKALVSGYFLK J T 25I GLLQDAR.LEK ]1oot__ 74IVLYHNFTISK][1T000][___ 39 LAEEYGPSPG][~~] 88 QLESNPTGvv LO0.900]____ 3 ~EVESLLLQGL 11.90] 54IJ ALEHTDGDHSj 9 0][ SAEEAALRiRA f0.900 [512 SCEFDCVDEM1I0.0 386_ RAEFQVLRPI 0.900 743[6 Ems~ 11 0.9001SL 0 goo 85FLEQLESNPT I~I 221 ][ILK If 0.900 [41 1LSSLVLLLKR1 0.7501 372 ][DSG3LELRSVY [305 ]ISLCCESLS T T I_ 539__ LSAEEAALRRi 0. 7~ 5 7121 IPSESiDLLQI 0.6751 300 ifPSEEEISLCCJ[ 0.675 ,554 DGDHSSLIQV1 0-625 26 DTIPPDRVrEA][F050-0If___ 166- 1 DCTOPNTLLR] 0. 5 0-0 199 1II~Es]0.500 700] ELAPPYFLSN] 0.S0 726IMfSTAG S 46.1 0.5.00PEL] ~f 52 j mLTAApr.FTR 0-.500I_ 417 CLYSFL0.0 14 67VADEMDLTLG][0p00 16 1f DLTGCSAFCR] 0 .5 00[ 69 [IQMLVELAPPYW 500.50 6 52 JjVAQLSSYCCY3[0. 500 I 79 IACQAVLE 'CR 0.50 3417AhED
M
I)ARKf 0.0 489] LSDLG3VILSE3 0.375 -62771 VSGYFLKVAR~f030[___ 90I1 ESNTPTGVVLV EI 49I ESELAVNPFD[ 0.270!____1 171 NTLLRFCWDR] 0 _._2_50 258 IIEPORS II 0.250 289. KELPGDVLVF 1!0.250 L 4 jALDDDODLSD][ .250I____ TABLE VI 184P3G10 HLA Al 10-MERS ISTART SUBSEQUENCE]CORE SEQ. ID
NUM.
14 KYDLTGCSAF]0.25[ 476 DLDYLAALDD 0.250 149 EMDLTLGHEV 0.250 437 CEENLSSLVL[ 0.225 [155 [GHEVGYSIPQ 0.225 147 ADEMDLTLGH 110.225 I1ll][SREVESLLLQ 0.225 697 MLVELAPPYF 0.200 323 GLPPRVLPLH]0.200 427 EAPPLPQPRV 0.200 i1525 AAMLTAAPGF 1 0.200 98 LVSGEPGSGK 0.200 [233 VVTDPALEPK 0.200 318 SLLLQGLPPR 0.200 29 RATMTSQPLR 0.200 351 11VVVTHWLADF 0.200 692 EIQPQMLVEL 0.200 425 I1ELEAPPLPQP 0.180 374 r LELRSVYNP I2T JFLELEAPPLP J[T I SFSSRYYELLK O. 150 TABLE VII 184P3010 HLA A0201 9-
MERS
START, UBSEQUENC E SCORE SEQ. ID
NUM..
356 IWLADFSFSL 8879.803 644 YLLLTHKHV 1183.775 320 LLQGLPPRV 118_.238 181 LLLQEVAST J[ 107.808 673 WVLYHNFTI 90.115 469 AMQALEDL 89.079 440 NLSSLVLLL 1[ 49.134 323 GLPPRVLPL 49.134 509 LLASCEFDC 48.984 224 IPGDLRJ 45.911 472 QALEDLDYL 27.899 596 ELLELMQRI 27.301 600 LMQRIELPL 26.228 311 SLSREVESL 24.075 624 KALVSYFL 21.132 626 LVSGYFLKV 19.657 362 FSLPSIQHV r17.773 289 KELPGDVLV 1 17.514 TMTSQPLRL 15.428 TAbLE VII 184P3G10 HLA A0201 9-1
MERS
STAR]T[SUBSEQUENCE SCORE SEQ. ID 699 VELAPPYFL 14.370 560 LIQVYEAFI 13.413 445 VLLLKRRQI 13.124 592 KLRGELLEL 13_070 446 LLLKRRQIA 12812 645 LLLTH1IUVA 12[812 521 MLTLAAMLT 12.668 291 LPGDVLVFL 12.295 523 TLAAMLTAA 11.426 212 SLQGLLQDA 11.426 350 KVVVTHWL A 11.411 493 GVILSEFPL 10.841 461 FLDQPAPEA 9.141 527 MLTAAPGFT 9.058 73 RQALPIWAA I 8.689 693 IQPQMLVEL 8.469 494_VILSEFPLA 8.164 577 CQARGLNWA 6.372 423 FLELEAPPL 6.289 68 ELLKQRQAL 5.928 416 LCLYPKSFL 4.824 208 VASDSLQGL 4.756 88 QLESNPTGV 4.451 520 EMLTLAAML 4.281 363 SLPSIQHVI 4.277 718 LLNQLREGM 4.138 390 QVLRPISKC 3.699 367 IQHVIDSGL 3.682 9 MVSVTKYDL 3.178 231 VV_ DPAL 3.178 689 IVSEIQPQM 3.030 145 RVADEMDLT 3.013 47 ]DLSDLVIL 2.693 598 LELMQRIEL 2.613 [T F APARPPPWV 2.497 283 VLELCRKEL 2.324 173 LLRCWDRL 2.299 112 PQWCAEFAL 2.294 I.j AEPGECHFL 2.285 501 LAPELAKAL 2.068 16 DLTGCSAFC .2.049 46 SPGESELAV 1.861 [2 f LQDARLEKL f1.660 CEFDCVDEM I 1.652 517 CVDEMLTLA] 1.640 F 6 [VESLLLQGL 1f 1.624 [TABLE VII 184P3G10 HLA A0201 9- I: MERS -SAR FSUBSEQUEZ4CE [CR sc1 SEQ. ID1 327 ]RVLPLHPDC 1.608[ [T[TLLRFCWDR [1.572 ___SEFPLAPEL hf1.537 L1[.ASCEFDCV 1.529 W_379 SVYNPRIRA 11 i 679 FTIS1DNCL 1.365 691 J[SEIQPQMLV 1.352 47][ ALEDLDYLA[ 1.3 04] 225 LPGDLRVVV [_1.297 7T[APPYFLSNL) 1.21.9 ~z[LTHKHVAQL~l 1.160L AALCQAHKL 1.098 52 ][LNWAALCQA[ F1.052 9 SNPTGVVLV 1.044 52 jLTLAAMLTA j .998J [291LPSEEEISL ]o972] 2l~ NTAFAGKMV] 0.6 ]j 146 VADEMDITL] 47 WGNPPIVHI 270~ TIPPDRVEA][ 0.683 278 JjAACQAVILEL 1[ 0.682 13 0 TVQYL F0.652 410 J 0.641 FJ___ 54S1 ALRRALEHT ~F0. 38 __39 0.630 F107 3KSTQIPQWC 0.624 MDLTLGHEV 604 IIELPLSLPAI 0.608 41 AALDDDGDL 0[.585 ~NCLSIVSEI][ 0.580 TABLE VIII 18-.MERS HLA A020.1 START SUSQENESOE
E.I
LPR 437.4821SQ D 216 l67.806 j~ f ALVSGYFLKV 132.149lZ m CLPKFLELMQ 9.83LIZ TABLE VIII 184P3G10 HLA A0201 1 10 -MERS [ST7ARTISUBSSEQ.NID 47T11 CLCLYPKSFL 1F17.493____ 50o9J LLASCEFDCVioooI 08IALLASCEFD)C]10.111___ [c K! aPGDLRVVV][ 99.807 I [298- FLPSEEEISL][82711____ [661LLTH1UHVAQL][8.21 I T"RCWDPL65.841 SLIV!AP 1 5730 I 9 VLDEAQERSV1 3 8. 7 8 YLLLTHKHA3.6 282 I 29 fELPGDVLVFL- N E2I28 52 MLTLAA4LTA 19.425 I [41IFDQPAPEAL 19. 26 01 [T435 1RVCEENLSSL 17-6271 5-16fAMLTAAPGFT 14.2381____ 6__9 IVSEIQPQ1I 13081 fVLLLKRRQIA 12.812 ompimAI7 liL 7426 7153 IfTLaiiEVaYSI 11.3 I~T TAFAGKMVSV11822 F IALPIWAARFT 8.197 I 87_ [EQLES1NPTGV 18.023 II [~IRVADEMDLTLII 7.664 ~I[YELKQRQAL] 7.070 I If ~j ELMQRIELPL-11j5.928 P 77 PIWAARFTFL]I565I 38q~lfFoV-zaPISKC 1 5.329JI I.~pw 66d ]jR-PV' 5.313If____ F568 I QSGADEAWC]I 4.710If____ 701 IILAPPYFLSNL]I440 [07ISVASDSLQGL I 4.299 [709 NI PSR L [4.2721____ [737 SAQEFRDPCV 577 IfCQARGLNWAA 3.778 [213 LQGLLQDARL] 3.682 [1 CEFDCVDEML] .08 225 ILPGDLRVV] 2.984] 320 ILLQGLPPRVL] 2.978 ["~1SIQHVIDSGL][297I E WIMLVELAPPYff 1296 j LVFLPSEEEI 00 00 TABLE VIII 184P3G10 HLA A0201 10-MERS START SUBSEQUENE SC.E648 I 141_ 2 .434 lJLLELMQRIEL]I2.4J[____] IT FLEQLESNPT 2.194 J j~LAPEAKALL 12.068[ 1 3 ]CQAEARRLRA 2.065 73 1ALEDLDYLAA 1.955 576 JWCQARGLNWAI 1.887J____ ___RVVVVrnPALj 1.86w i~]QVTVTQPYPL 1.869 j]QIPQWCAEFA 1.841 1.726 _12J GFKQT 1.6801 31 IITMTSQPLRLA[ 1.650 143 FERsVABE 1.64I 14 IIEMDLTLGHEV][150 1520 IIEMLTLAAMLTJ 1.494j __ELAVNPFDGL ITTIKLRGELLELI 1.489 16WJTISKENCLSI 1.435 J [A~k ]LGVILSFP] 1 1.37.5 [TJIPQWCABFE TrwIAACQ~AHK 1.365 J 1.316 I EJFPPLPLKII 1.1870 E~]LLLKRRQI 1141.148 IQLREGMAD)ST7j[ 7 [72811 LVELAPPYFL 1. 13819 [1 T 18LLNQLREGMAI 1.098 f [1 3IATMTSQPLRLI [472] QALEDLDYLA][ 1.047 33]YEDMDAK-VV][.20[_ [11 ISVTKYDLTGCj 52 jLTLAAMLTAA'. 0.998 T6993 IMMLVELA [0.965 I 71 J1 SESRDLLNQL JEO-955 504 1 ELAKALLASCJ 0.85 7 33 I VQAVY'EDMrjAf 0.856 TT[GVILSEFPLA j[0.826 MNTAFAGKMV J1 0T 77 TABLE VIII 184P3G10 lILA A0201 10 -MERSj [START ISUBSEQUENCE SCORE IISEQ.- ID ETIPPDRVEAAI 0.7707___ 71 KQRQALPIWA 0.737 I 517Th CVDEMLTLA A 01I TABLE IX 184P3G10 lILA A3 9-MERS -A SEQ. ID 625 ALVSGYFLK 190.0001 12 TLLRFVCWDR 154.000 216 LLQDARLEK 140.ER 65 1 QSYCYR]12. 00 f 319 ]f LLLQGLPPR 19.000I 162 1 LLQE VASTR 119.0001____ 592f KLRGELL=EL 306 JSLCCESLSR][8 .0001 75 ALPIWAARF 6.000 290 ELPGDVLVF S-4001 356_ WLADFSFSL 341 AVYEDMDAR JT[ 443_ SLVLLLKRR IT] i 559_ SLIQVYEAF I1T I 4.500__ 442__ NLSSLVLLL] 13.600]J 526J[ AMLTAAPGF ITi[] 37671 ELRSVYNPR J[IT 6001 11.80011 311 1f SLSREVESL 469l ALMQALEDL [1.3501____ 41371_GSCLCLYPK 31 T?4TSQPLRL GLPFSSRYY 6057 IELPLSLPAFIF0.900 I 52 LTAAPGFTR I 0.9001____ 363 fSLPSIQHVIl1 0 .9001! 352 iVVTHWLAlFI0 118j IFALARGFQK F0 0If TABLE IX 184P3G10 liLA A3 9-M4ERS S STAT I 493 fGVILSEFPL 10.___01 I ELLELMQRI 1I.6)8Is S17 ~(LTGCSAFCR 63__ SSRYYELLK If0. 600 509 3 LLASCEFDC.11 0.01 18 LVLDHAOER 1060O][ 110 jQIPQWCAEF 110.600 j 13 LLPRFCWDRL If0.600 43 ALEDLDYLA 110.6 _0 IDG R _60 1 __0.600_ T1[ CTGPNTLLR J10 60 01 142 3 ][FLELEAPPL 0f.6001I 66 LVSG3YFLKV 10.401I 1813(LLLQEVAST -1_.45 4. SSVLK0.4501! 28 QAVLELCRK I .51 212 31 SLQGLLQDA 1 .51 I622 ]LQKALVSGY ro .360 61 fEQNRRDLQK 0[.3601I 23]TLAAMLTAAII0.3001___ ATMTSQPLR ]0.303 77- IPIWAARFTF 10.300[ 461 FLDQPAPEA 0[.300 LLLTHIMVA 0o.300 311LLQGLPPRV 379_ SVYNPRIRA 3 446_ LLLKRRQIA 23 VLELCRKEL .0 68 ELLKQRQAL [520 IfEMLTLAAML J0.270 350 IIKVVVTHWLA 10.2?01 280 IfCQAVLELcR 0I.24011_____ 471j MQALEDLDY 10.24011 99sI VSGEPGSGK 10.225 LLNOLREON J 0 SAFCRSCQR 10.200I [54 WAALC QAHK TABLE IX 184P3G10 IiLA A3 9-MERSI SUBSQUECE SORESEQ. ID SUSEUEC
NU
M
[TFh LTLA LIT 3020 [l[QLESNPTGV [T1Im [681LVELAPPYF7 0.200 49 DT IfISFLP] .8 488 DLSDL GVIL 01 80I 50 LIQVYEAFI __10.180__1 i[MVSVTKYDL 3(0.180 I1 653[AQLSSYCCY (080I_ _56 QVYEAPIQS 0.180 221] RLEKLPGDL ]0.180 369 IHVIDSGLiEL If0.180 34RIRAEFQVL. .180 GEIJLELMQR f0.162[ 644 F LLHH 0.i'rai IT~1 5 45 =If 011 K24 PGDLRV 10.135 1 n 74 fQAP I WAAR 01__ TABLE X 184P3G10 HLA A3 START SUBSEQUENCE E Ij SEQ.ID 64VLYHNFTISK 600.0001 417 ICLYPKSFLEL]32.0 7 91; G
M
ADS
T
AGSKji:OI 18.000_ [341J AVEMD 15.0001 318 ISLLLQG3LPPR(____ 181 ILLLQEX'ASTRJ 9.000 8 [KMVSVTKYDLI .0 147 01 LMQALEDLDY 1r 8.000Jj____ L331SLQGLLQDARj 6.000 [TIVLVLDEAQER 1T__ 221 IRLEKa.PGDLR3 6.000 3 2 8 1 V 6.000 16 J DLTGCSA.FCR 3[5.400 69 MLVELAPYFIT4.500 98 LVSGEPSGX3 4.500f 621___ IDQAIG 13601 1I~vv'DPALEPK]1 3.000I 1 fTLGHEVGYSI 2.00 00 00 jTABLE X 184P3G10 liLA A3 10-MERS ISTART SUBSEQUENCE SCORE SEQ. ID [559 [SLIQVYEAFI 1f 2.700j IF__ 171 ifNTLLRFCWDR- If T00 62 AVSYL 2.700] 646_ 1-.800 592 JKLRGELLELM][ 1.350 597 [LLELMQRIEL1[ 1.200 298 FLPSEEEISL 1.200 J S69 ][ILiQRQA.LPI) 1.200 143 [ARVADEMDLJ[ 1 I 0 IDLTLGREVGY][ 1.200 RI1.200 kCLCLYPKSFL]090 11 LISLSREVESLL ]j0.900 581 [GLNWAALCQA l .0 [280 ICQAVLELCRKI .0 [58 fALLASCEFDC 1 o _._00 6 1 LLQDAL'EKLq 0.900 f 224 IKLPGDLRVVV[ 0.900 i 369 HVIDSGLELRI[o9oi 172 ]TLLRFCWDRLJ 0.900 759-[ ELMQRIELPL] 0.810 51]ELAVNPFDGL[ 1~3[ VTOPYPLAAR] 0.6 7T90ELPGDVLVFL Jf0.608Ir___ 136 IPLAARSLALR[ 0.600____ 62 IFSSRYYELLK[ 0.600 461 IfFLDQPAPEAL 0.600 509 !LLASCEFDCV1 0.eo 521 iMLTLAAI4ITA1 0.600 3 11 AVNPFDGLPF10.0 653 IfAQLSSYCCYR] 0.540 37 jfGLELRSVYNP j0.540 571- [GADEAWCQARj ~0.540_i 191 J.4 T JTGWLRVP 0.540 i 16771[CTGPNTLLRF 11 0.450 180 IRLLQEVSTI 0.450 10971 TQIPWCAEF[ 538 LAEAAR 0.400 4 7 3 1 LEDLDYLA TT0[400J 319 LLQGLPPRV 0.300 ]FAGKMVSVTK 0.300__ 644 1[ YLJLLTHKHVA TABLE X 184P3G10 HLA A3 1 START SUBSEQUENCEJ SCORE SEQ. ID
NUM.
[11[SLALRVADEM 0.300 [~IAEPKLRAFW 0.300 F JfVLRPISKCQAI 0.300 656 ][SSYCCYRSRR 445 [VLLLKRRQA 0.300 I TT]VTHWLADFSF 0.300~J 698W 3LVELAPPYFL 0.270 493 I LEFPLA jf0.270 289]KELPGDVLv 0.243 L_128 I QVTVTQPYPL 0[.180f_ [22IKLRA.FWGNPPI 0.180___ 159 IGLPFSSRYYEI 0.180 73' RALPIWAAR 0.8 173~; LLRFCWDRLLI01 700j ELAPPYFLsNI 0.o-162 72 _EGAS 0.150 43___E_.qT 0.135 320 1LLQGLPPRVI[ o.1 130TVTQPYPLAAJ 0.120 680[TISKDNCLSI ]f0.120 34 jSQPLRLAEEY J 0.120 61 ISPONR[DQK[ 0.120[ 145 ]RVADEMDLTL[010I 248IGNPPIVHIPR][_.0 85FLEQLESNPT I0.100 )NPS E;RL ~i0.090 [T VSEQPQML f TABLE XI 184P3Gl0 HLA A1101 9-1
HERS
[START SUBSEQUENCE SC E.I _389 FQVLRPISK 11.800I 65 ALVSGYPLK 1.800I 23 VDPALEPK 1 [00f0] FALARGFQK ~.0I ___LYHNFTISK 0.8 0I 34 fAVYEPMDAR Fo.800r] 216_ LLQDARLEK' .0 499__ FPLAPELAK 0.00 00 fTABLE XI 184P3010 lILA A1101 9- I MERS ~SUSEQUENCEIjSCOREI SEQ. ID 18I LVLDEAQER 10. 611 I 1 LTGCSAPCR 10. 611 34 fVYEDMARK i' 167] CTGPNTLLRJ 0 4 0 0 30~ ATMTSQPLR 40 0
IZ
281 QAVLELCRK 10.3001 1493 Ij GVLE 1020 6421 GNYLLLTIK j 172 TLLRFCWDR 0.2401 CAVLC 1 RYYELLKQR 10.24011 584 If WAALCQAHK 10.200 g 726 MADSTASK 10.2001 350 i KVVVTHWLA 0.1801 36 SLCCESLSR 01 ___GSCLCLP ]0.120J i11 TQPYPLAAR ]0.011 319 iLLQGLPPR 0120 673[ WVYTI 009 2301 RVVVVTDPAJL.0901 114 WCAEFALAR j 0. 0 21 1 SAFCRSCQR 0.080 f540!!_ SAEEA.ALRR 254 1f HIPREPGER 10.0801____ [657j QSYCCYR 0.080 182- 1[ LLQEVASTR 1~0.080j 1379 IfSVYNPRIRA ]I0.080E Z 369 IDGLEL 0.060LZ Z 443 SL'JLLLKRR 0.60 39 LPLHPDCGR 0.060 F747 I WAA 1 0.060 13711 LAARSLALR~I LVSGYFLKV J0001___ 1 fMVSVTKYDII10.0401_____ 1612]! EQNRR0.040 [T~T1 ALQAHKJR 0.*040~ 4411LSSLVLLLK 0.40 1 73 IL RQALPIWAA 0.036j [TABLE XI 184P3GI0 lILA A11OI. 9- MERS START SBEUNCE EIISNM. ID] __VTVTQPYPL 0 3] TAWV] 0 .0 3 0 [231] VVVVTDPAL003] S TL2ALLTA 0.030 [TT[GQVTVTQPY 0.0 7]I 592 [KLRGELLEL 10.024 33GLPPRVLPL 10.024ZZZ 36ELRSVYNPR 0. 14 338 ][VAYDM 110.2011~ 6HAGKMVSVTK 321VVTHWLADF 6981 LVLPYF0.0I 991 GPG 0.020FI 130j TVTQPYPLA 0.00 Z Z 131 VTQPYPLAA0.2 J 11_ IAVSGIQPQ 10.0 r71]i PIW0 8F 1121LTLGHEVGY ].iI 93CQAEARIRLR 0.12F 13]KSSAQEFR 0.012 17 fRFCWDRLLL 10.012 244 PLSA 0.012 10-012ZZ RIRAEFQVL 10 012 KYDLTGCSA 10.03.1ZZ ___MQALEDLDY j0 .0 12~ 12 1IREKLPGDL j 1 EKDGLR 100121 135611WADSS 3 JO-012 [69!RPPPWVLYH0.1 I H1 GEHSSL ]O 0170 F-6477.1 LTHKHVAQL_]Io IZIZIZ I I51 GVVLVSGEP JF..0009[ l [T I RVLPLHPDC 0.009 I 65 1AQLSSYCCY 0L.009I I1 SoI 07 IASE 7.097 1 If VLVLDEAQ 000 TABLE XII 18AP3G1O HLA A1101 TART SUSENCECRE SE.7DI F341 I1AVYEDMDARK( 4.0O001 215 11 GLLQDARLEK 360 7624KALVSGYFLK2.00 1 98 1 VSGEGSGK2.00011 7[ VVTDPALEPK 2.000 67411 TZITFIK I.oo 9 25GMADSTAGSKi i 1.200__ 44 1 ]IoLLLK .800 369 ]HVIDSGLELR0.0 28_ C1VECK0.6001 317 NTLLRFCWDR 0.600 7II[RQALPIWAAR 0.6 5271 IMAPFT 0.24 653 JAQLSSYCCYR 0.180] 266 [IYWDTIPPDR 0.160_____1 571 GAlEAWCQAR 0.120 388 IEFQVLRPISK 01i 2 29 RATMTSQPLR 0.120! 145 11RVADEMDLTL 0.120LZJ 318 [SLLLQGLPPR 0 .20 615[SEQNRRDLQK 0.120L] 181 ]LLLQEVASTR. 0.120 498 IIEFPLAPELAK 0.120 4931 GVISEPP~ ~230 RVVTPA .9 [38jVLPLHPDCGR 10.08013 6601 CYRSRRAPAR r07870 lX 279 ACQAVLELCR 0.80 212 JSLQGLLQDAR 0.0801 16 !DLTGCSAFCR 0.7 [.435 [RVCEENLSSL 0.0601 340 ~[QAVY EDMDAR 000I Z 275[ RVEAACQAVL0. 0 I 191 GTGAWGVLVL 10.060r 64006 EZZZ 1LT 0O.048E Z )[ATMTSQPLRL 10.001 Z I610 LPAFGSEQNRI
I
TABLE XII 184P3G10 HLA A1101 I STRISUBSEQUENcCE SEQ. ID 12961 l[LVFLPSEEEI 000l [128 QVTVTQPYPL l0.040 1~ 1571CVDEMLTLAA j 0 0 4 0 [T98I 'VLA FL 0. 040 E ZZ 62Th FSSRYYELLK 0.0401 53 AVPFI)GPF J0.0401 130 ITVTQPYPLAA. 10.040 8fKVSVTKYDL j0.036 71 KQRQALPIWA 0.36 ZZ 585AACQA IR0.03 IZ 351 [VVwHWLAD 0.0 0 3 I [353 VTHWLADFSF 0.030 Z Z I 451 J[RQIAEPGECH 0.027 594] ~E MQR 0.024[ ILLLA0.024I 166DTPTL 0.024 j 2071 SVASDSLQGL 0. 0210 E 68 IVSEIQPQML 10.020~ 167CTGPNTLLRF I 0.020 Z~ 583 NWAALCQAHK0.20 [641 TGNYLLLTHK 0.020 Z Z [169 ]GPNTLLRFCW 0.1 350 [LKVYNPRD *0 375LERSVNP 0.018 417[CLYPKSFLEL~ 0.016 129 VTVTQPYPLA j0.015 52 LTAMLA 0.012 12821 AVLELCREL 10. 051 397 I KCQAEARRLR 10.02F I 30 ISLCCESLSR jO. .012E 581 I GLNWAALCQA 0.0121 1 0j]MQR ELPLSL b0.0121_____ 1 339]VQAVYEMD _12 -24J KLPGDLRVVV 0.0121 32ilGLPPRVLPLH 0.02[1111 1][KYDLTGCSAF 0.012 592_ KLIRGELLELM 0.0121 40 FPLCL 0.01 577 CQRLNA 0.0121 398 CQEARL 0 .0121 62S [ALVSGYFLKV 0.0121 426 LEPLQP .1 W &9STAGSKSSSA 10D.01011 626f LSGFLKVA no.olI fTABLE XII 184P3G10 HLA Al101 1 10 MERS FA SUBSEQUENCE SC0ORE j SEQ.
ID
RHTDGflSD I .1 23ITVTDPAJEPKL 001 548 1JRALEHTDGDH]0 0 9 1 1 37IRAVQAVYBDM 009 32 ]f RVLPLHPDCG 009EZ Z ][GVVLVSGEPG 0. 009]I Z 196 GVVDAE0.0091E Z [109 [TQIPQWCABF 0.0091 PIWAAFTF 000 TABLE XIII 184P3G10 HLA A24 9-
HERS
STA CIr I EQ. ID __418 LYPKSF LL 1396.00011j[ RFCNDRLLL 140.000 14 PYPLAARSL j 3 0. 0 0 0 r54[EFDC VDEML 1[28-000 I221 RLEKUJPGDL [440I KCAAR_ 12.000 62 KAVGF 3.2.000 14] KYDLTGCSA 110.0 IFT ~RATMTSQPL ][9.600 IROFPPGSCL -f9.600 ~KLRGELLEL 8.800 501_ LAPELAKAL 8.640 LMQRIELPL 8.400 190_ RGTGAWGVL f8.000[ 369[ HVIDSGLEL [7.920 323 IfGLPPRVLPL ___DCVDEMLTL 7.200 6 68 ELLKQRQAL 48 fAALDDDGDL 7.200[ 679 FTISINCL 11 7.200 690 ]VSEIQPQML J[7.200 ESNPTGVVL- [7.[200 1520 IIEMLTLAAIL 7.200]___ 436 VCEENIJSSL_ 7[ O ALEDLDYL 200~__ F.52 LAVNPFDGLt70 TABLE XIII 1B4P3G1O ElLA A24 9-
MERS
STARTj SUBSEQUENCEj SCORE1 SE2.ID 714 1 ESRDLLNQL IT -312 I1 LSREVESLL 670 291 LPGDVLVILI 6.720 6934 07 KALLASCEF ~[6.600 2 3VLELCRKEL16.0 85] 1 AALCQAHKL 42]1 EYGPSPGES I 72 APPYFLSNL 3mT~I 49 ALMQALEDL T1 VTVTQPYPL 600 410 FPPGSCLCL J[6.000 416_ LCLYPKSFL7I .0 4937[GVILSEPPL I 439 ENLSSLL foof 710 JjLPPSESRDL][600 S0OJ APELAKALL 231 71 VVVV'rDPAL 6.000 I 42371 FLELEAPPL If6.000 214Th QGLLQDARL 208 j[VASDSLQGL 5.6 36711 IQHVIDSOL Jj5.600 4fGPSPGESELI I.8 QAHKaJRGEL 5.28 39 DFSFSLPSI 5.000 660 CYRSEPAPA Jj5.00o 159 GYSIPQEDC 5.000 209,] ASDSLQGLL 4.800____ 146] VAflEMDLTL F4, .8 0I 3 W LADFSFSL ff4.800 II___ 563 fGTNY 4.80 787] IWAARFTFL 4.800 3 81 ifYNPRIRAEF j 4 620 2178 AACQAVLEL ii~ I -17 LQDARLEKI L .O SLIQVYEAF 4j 420 0 647 fLTIVAL 4j 4.000 311 IfSLSREVESL II 166f DCTGPINTLL Jj4.000 MVSVTKYDL ~400 552_ HTDGDHSSL- 4~ 4000 3.7 LLRFCWDRL [0 00 00 [TABLE XIII 184P3G10 HLA A24 9-
MERS
SS TART]~ SCSR ID j jU [531 APGFTRPPL[400Jf____ 4T33] QPRVCEENL 4.0 ___EISLCES 4.0 [3211 LQOLPPRVLJ if400 16391DGTGNYLLL 1 2IFSSRYYELL 400 192 TGAWGVLVL 4.000J 5741 EAWCQARGL_ [4000 31 TMTSQPLRL 4. 00 0]I 453TI IAEPGECHF 3.600 J 49 ESELAVNPF] 3.60011 I= 110 1 QIPQWCAEF 113.3001____ 3.080 E2Tf ELPGDVLVF ~F-07 ELPLSLPAF]I .0 F69 8 1 LVELAPPYF If3.0 ___ALPIWAARF If3.000 i ___TGPNTLLRFJf 3. 000][ 26 AIILTAAPGF F3.000 54_ VNPFDGLjPF 3.0 r~-iELLELMQRI 2.59:2I 1T~ NCLSIVSEIJ1230j I~~j PFSSRYYLi .0 TABL XIV 184P3G10 liLA A24 10- TABLEXIV MERS START SUSEUECESCR SE.ID] 14 KYDLTGCSAF 1200.000:[____ 42 ]fFLELEAPPL 1j3 6. 0 00[ 6. 00 70F___ T INFTISKDNCLIf___ If 12. 0 0 0 8 ]MV'svTncYDL If1.0 5631 JVYEAFIQSGA I 0501___ 342 If VYEDMDARKV[ 9.900 14.5 [RVADE~Lm 9.600 4 51IRVCEELS S L][9.600 -31571EVESLLLQGL)[8601 2 90 1 ELPGDVLVFLIII 8.400 1 TABLE XIV l84P3G10 HLA A24 SUBSEQUENCE SCORE IFSEQ. ID [~TI[EMQRIEPL [8.400[_ f IfSIQHIDS7r:] 8.400 f 92[EIQPQMLVEL 7.920 216__ LLQDARLEKL 7.920 Zij][LSEFPLAPEL][7.920I 1~ 2 82 AVLELCRKEL 7.920 F66I1 Y.YELLKQRQA[ 7.500 64 NLTHKif 7.500 [701 JLAPPYFLSNL.I 7.200 r 709 INLPPSESRDLI 7.200 1-n 43 ENLSSLVLLL 7.200 I 4531 IAEPGECHFL 7.200 322 QGLPPRVLPL 7.200 629GYFLKVARDT 7.000Ii____ .1 I[LMRIELI 6.600 V 1~hYGPSPGESEL[ 6.600 [234 fv'rDPAJLEPKu 6. -336 i F417T ICLYPKSFLELJ 6.336 738AQEFRDPCVLf 15.000 ill I[IPQWCAEFALT[ 6.000 TF fm:SPLRL~ [6.000 49 [LGVILSEFPL 6.000 K 1YPLARSrA7L1 6.0 7355]1IHWLADFSFSL1 6 F0 I 42981EALMQALEDL 6.000 I 29 1FLPSEEEISLI 6.000 I 320 IGIPV 6.000If____ 530 AG fPl 6.000 I 7T1 1 LPPSESRDLL1I 6.000 6987I LVELAPPYFL J .0 172TLRCDRIJ 6.000 208_ VADSLQGLL 5S. 760 1 T SI~ QQl[ 5.7601 311j SLSREVESL1j 560 5 8 8[CQAHKLRGEL 5.280 i 159 f GYSIPQEDCT [5.000 i 65.7 SYCCYRSRRA 5 .000 207 [SVASDSLQGL 4.800]_ 'NRD A 4.800f_ 51 ELAVNPFDGL [4.800 601f MQRIELPLSL If4.800 613 FGSNRRL 1 4.800 IL 1331QPYPLAARSL[ 4.0 3 12 SL f4 0 TABLE XIV 184P3G10 HLA A24 10-
MERS____
I START SUBSEQUENCE[SCO[ SEQ. ID F6671 LPFSSRYYEL][ 15s84 11WAALCQAHKL][440] 386 IIRAEFQVLRPI] 4.200 558 SSLIQVYEAF[ 4.200___] 578 If ARGLNWAA.L][ 4.000 415 jCLCLYPKSFL[ 4.000 1f r213 LQGLLQDARL 400 r 66IFAPPWL1 4. 0 00 11 [AARFTFLEQL][ 4.000 471 ][MQALEDLDYL I 4.0001 646 ][LLTHKHVAQL Ii4.000 I .000 637 ]TDTNYLL ]I=ffl]I 480[LAALDDDGDLI 4.00 [58 1]QAHKLRGELL 4.000=j 1 17 IILLRFCWDRLLf 1 4.00 [461 IFLDQPAPEAJI 1 143T AIJRVADEMDLI I 109 TQIPQWCAEF If I]CAFALARFf I 53 IIAVNPFDG.LPF]I 3.600 1 9 NLVELAPPYF13.0 74_ QALPIWAARF If3.0 155.AAk MTAAPGF 13.000 351 3.0001 76ILPIWA.IRFTF r[3.00071 414 SCLLYS 300 622 L"ALVSGF 3.00 732 IGSKSAQEF 2.60I____ 1362 IFSLPSIQHVI 2.520 1 167If CTGPNTLLRF] 2.400 1 22 [RPSPIYWI)TI_ __j I IAEPGEcHFP .001~ 337 IRVAYDJ .0 61. [PFSSRYYELL] 2.000 I 353 L.FSF 2.000 [RYYELIFQRQ][178I TABLE XV 184P3G10 BLA B7 9-MERS SRTSUBSEQUENCE OR]EQIDJ [TABLE XV 184P3G10 HLA B7 9-MERS [START SUBSEQUENCE SCORE [1 SEQ. ID 433J QPRVCEENL 1800.000[____ 11240o.0001_____ [1[LPPSESRDL 80.000oo1 I1LPSEEEISL 11 80.ool 000 __1 4 GPSPGESEL If 80.000 I _1 IF~ LPGDVLVFL jf[80.000 50 ___~IAELAKALL '72.000] 174 6 I APEALMQAL [172.0001 384] RIRAEFVL __40.000 714 [ESRDLLN QL 140.00011____ 312 LSREVESLL 40.0001I 5992 KLRGELLEL] 4 0.o0 1F48111 AALDDDGDL ]36.000 1278 AACQAvLEL ]36.000 I ALMQALE:DL 36.000 I 585 If AACQARKL 136.000 I .11 MVSVTKYDL 2 20.00 2T31~ VVVVTDPA. I 20.000 493 GVILSEFPL 20.0001 If 36 HVIDSGLEL If20.0001 66-7. If PPiF7 18ppv 000TW[ L iQAHKLRGELI 18a.000[____ 14281 APPLPQPRV Ii18.000[____ ___APAPPPWV If18*.000][___ 138F AARSLALRV 118.000 J LAVNPFDGL 18.000 AVQAVYEDN 208 VA DS rG 12.000[_ 64 KALVSGYPL __00 574 EAWCQARGL 112.000 29 ATMTSQPL 12.0001 501TJ LAPELAKAL 258][EPGRPSPI 8.000 41 LLPKF 6.000 225 )[LPGDLRVVV 116.000 I 68 ELLKQRQA. 6.000 689 SIPM 500 LTHKHVAQL_][ 4.000 0 TABLE XV 1a4P3G1O HLA B7 9-MERSI fSTART SUBSEQUENCE SOE SEQ. ID] 397 KCQAEARRL [400 [s E[EMLTLAA4L J[4.000 488_ DLSDLGVIL j[4.000 [214 ~[QGLLQDARL [4.000 46 _SPGESELAV J .0 F304 [EISLCCESL ][4.000 367 ][IQHVIDSGL ][4.000 I600][LMQRIELPL ][4.000 439 ][ENLSS L 4.000J 192_ 4.000 323 IIGLPPRVLPL I~ 4 E0 [1ojRGTGAWGVL 14.000 [6 JfFSSRYYELL II4.000I 440_ NLSSLVJLL '4.000 516 DCVDEMLTL f .0 [T T79 FTISKDNCLJf400]____ 618T~ NRRDLQKAJ[400 ___DGTGNLLL 400 r 31] TMTSQPLRL VhJWLADFSFSIJ 400 [ASDSLQGLL [3.600Jf____I VTT[VADEMDLTL 360j [578 ]QARGLNWAA] 300JI FIPREPGERP 300I 142 LAVAEM f3.000J[_ __J 545_ ALRRAIIEHT [3.000 111_ IPQWCAEFA j[2.000 [32 PRIRAEFQjf200] _573 WLYHNFTI J .0 _T97 GPNTLLRFC ]f2.000[ r_2627 RPSPIYWDT I .0 PE I[RPPLSAEEA[ F2.000 271 ][IPPDRVEAA ][2.000]j 61 fGSEQNRRDL if1.800 I SVLELCRKEL 1.0 718 LLNQLEG 1.500 463 ]fDQPAPEALM- 1.500 ___DTDGTGNY .0 HTGDHSSL .20 TABL XV- 184P3G10 HLA 57 -ES START SUBSEQUENCE SCORE SEQ. ID _1 NUM.
244_ RAFWGNPPI 1.200 221 RLEKLPGDL 1[ .200 127[LQDARLEK ]1.200 ARFTFLEQL ]1.200 4_ AEPGECHFL 1.2 I601 VSEIQPQMiL TABLE XVI 184P3G10 HLA B7 START IUSEUENCElSE SE'I"1 180 [AARIFTFLEQL36.0 I666] APARPPPWVL360.00~ 1710 ][LPPSESRDLJ 120.000 I143 ARAED 120.000 j~ 578 1112 0. 000 of 282 1AVL~ELCRKELJI9.0] 111 [IPQWCAEFAI- 180-00011i 13]QPYPLAARS 180.0001____ 135 11 YPLAARSLAL 80. 0001 530 JIAAPGFTRPPL][54.000I1___ 61 LOKA 40.000 I32kINPRIRAEF7V]0.00 l!IfLSREVESLLLI[40.0001~ 1 IATMTSQPLRL ]1[36.oo0 128i QVTVTQPYPL 12000 1To] I~ 1__EES TL 12o0][] 23J[RVVVVTDPAL]if20.000____ 145T [RVADEMLTL]I 2 21~ [SVASDSLQGLII =20.000 F ][IVSEIQPQML~~2.00[____ F-237 [FCRSCQRATMi I5.I00] 277 12.000][__1 599 [ELMQRIELPL 1200i_____I 480 [LAALDDDGDL 12.0001I [584]IWAALCQAHKL[2=000____ I ]f EALMQALEDL 12. 0 0 0 TABLE XVI 184P3G10 HLA B7 10- MERS START SUBSEQUENCE SCOR ID 12 FILAPPYFLSNL[1.01 118IAARSLALRVAJ1 9.0001____ 69 ILVEIAAPPYFLj 9. 00 262 8.000WTI I "IPPLSAEEAAL [8.000 l102 I_____800 I--ILARGQKGQV 16.000 88]COAHKLRGELII 6.000 415~ CLCLYPKSFL I .0 613 FGSEQNRRDL j .0 275 RVEAACQAVL [6.000 51 IELA.VNPFDGL I6.0001 LLQGLPPRVJ1 [6:~.00 [428 11 APPLPQPRVC I_.0 406 IIRARGFPPGSCJ(450 2-551 IPREPGERPS][400] 92EIQPQMLVEL =(4.000 216 fjLLQDARIJEKL 4.000 [2981 [FLPSEEEISL] 4.000 24jQERSVASDSL[4.0 j[QPRVCEENmS][____ 0__0_0 -3 YGPSPGESEL][_ 4.000 s 36 SIHVDSGL 4.000 I_ 8 1 KVSVTKML L 4.000 [[NLPPSESRDL400 f IT~ESLSREVESL[ 4 .000 Vi~l[M~z 1 D~im][4.0 00 1 39!ENLSSLVLLL[400 F21 I LQGLLODARL 4.0001 4.000 311 1SLSREVESLL] 4.000 F.417 CLYPKSPLEL (4.0-00 T j[TLLRPCWDRJ][ 4.0 F4.9271[ LGVILSEFPL[ 4.000 322 1QGLPPRVLPL 4.000 646 LLTHKVAQL[ 4.000F_ 453 IIAEPGECHFLI[ 3___600 1 3.600 [TLT[LvLKcRQI F3.000 fTTRAVQLVY EDm[ F3 .0 I 2IDPALEPKLRZA][-3.Oo 0 TABLE XVI 184P3GI0 HLA B7 FMERS ISTART ISUBSEQUENCESOE[ SEQ. I7 188 [STRGTO;AWGV~j200____ [29ILPSEEEISLCJf .0 [6I[RPPLSAEEAI 200____ [LVLPSEEEI .0 4I[QPAPEALMQAJ 2.000____ 286 [LCRKELPGDV[ 2.000____ S39JLPLHPDCGRAI 2.000O F 41 YP[SLE 2. 00 0 F 44 GPPES 2.000 27[IPPDRVEAAC][ 2.000 _07ARGFPPGSCLJ 0 IF I T)LLELMQRIEL (1.800E ITPGFRnPPLS] i.200 F r 63-7 [DTDGTMNYL][ 1.200 [T][DEMLTLAAML 1. 2 0 [TABLE XVII 184P3G10 ELLA B3501 9-
MERS
STR SUBSEQEC SEQ. ID ~I QIVEN 60.M00 29_9 LPSEEEISL60 0E: 2E91 LPGDVLVFL 35 QPLRLAEEYl 40001 714 ESJLLNQL 0.000l F710 LPPSDL30.000 31 LSREVESLL 0.0001 702_ APPYFLSNL 2000]j [F531][ APGFTRPPL 20OO 0j0 RSP 16.0001 ISKDNCLSI jL2.000 fl- F384 RIRAEFQVL 9F.OOO0 ___QALEDLDYL 0 [Tf[AALDDDGDL ][9001___ 00 00 TABLE XVII 184P3G10 HLA =3501 9-1 MERS START ISUBSEQUENCEJ SCORE SEQ. ID [225 ~[LPGDLRVVV ]8.O0]I0 46 SPGESELAV 18.000 I L291 RATMTSQPL 16.0001 208 J[VASDSLQGL j6.000 142 ]fLALRVADEM 6.000 335 ][CGRAVQAVY 16.0001j____ 64 KALVSGYFL JV6.000 466 APEALMQAL 502_ APELAKALL 501 ]jLAPELAKAL] 6.000 I 62 2 LQKAIJVSGY 16.000 [62 FSSRYYELL ][.000 711 JfPPSESRDLL 114.00011____ NPFDGLPFS]j400____ [536J -RPPLSAEEA- 14.0001 666 APARPPPWV 4.000h1 I262 ]RPSPIYWDT 697 MLVELAPPY 4.000f 69 IVSEIQPQM 4.000f 13731 SGLELRSVY 4.000_ [TTTfIPPDRVEAA 41 PPGSCLCLY 5851 AALCQAHKL 3.000 471_ MQALEDLDY 521 LA5VNPFDGL 13.00011 278 JfAACQAVLEL ]j3.0 0 0j( 56 DCVDELTL 3.000 1 574_ EAWCQARGL 3.000 KQRQALPIW 3.0001 397 [KCQAARL 3.000 173 ~jLLRFCWDRII 3.000[] 589 QAHIKJRGEL I5 00 ___RAPARPPPW 1TTjASTRGTGAW 2.500 244_ RAPWGNPPI 1811LLNQLjREGM 1[ 2.000 RGTGAWGV 2.00[0 r 4-08If RGFIPPGSCL 12.000 653 AQLSSYCCY 112.000 STABLE XVII 184P3G10 HLA B3501 9-] LSTART ISUBSEQUENCE SCORE SEQ. ID [671 [PPWVLYH" 2.00011____ [1271 GQVTVTQPY J[2.000j[____ 152T~ LTLGHEVGY 2.0001_____ 111ll I PQWCAEFA 2[.000j____ I59 ][GLPFSSRYY 2.000 488 ]fDLSDLGVIL 12.000Ii____ 46 DiPAPEAL 338 IAVQAVYEDMJ[~~]___ 1 35 WIAAFSSLA 2.000F_____ 76~i LPIWAAREr I 2.000 92_ NPTGVVLVS _2.000 11 ~369[ HVIDSGLEL [2.000 1 58 DGLSSRY 2[.0001~ 146I VA.DEMDLTL 11.80011 138 JfAARSLALRV 11.8001 406 ~fRARGFPPGS- 1.800 20 ELPGDVLVF_11.500 j 311 SLSREVESL 1~.500 j372 DSGILELRSV 1.so00F 209"I ASDSLQGLL 1.500 1TTIGSEQNRRDLI1.500]____ VSEQPMLIfi 49_1 ESELAVNPF 1.500 1 1 .54 jVNPFDGLPF 1.500 ____IPREPGERP 1.2~[_00 [32 FSLPSIQHV TI [600 LMQRIELP 3[__I 192 TGAWGVLVL J T F- I 31_ TMTSQPLRL I ~ol ___LCLYPKSFL iTi[I ___GVILSEFPL f~]I 1_LTHHVAQL].00 TABE XIII- 184P3G10 [START ISUBSEQUENqE ISCORE4 SEQ.;~ IDl 258 jEPGEPiY 8.01 31 jLSREVESLLL 45.0001l TABLE XVIII 184P3G10 HLA B3507 STR]SUBS EQUENdE :Q ID 41 FPPGSCLCLY5 ~40. 0oo0L0 [T]LPIWAARFTF]I00oz~ ___IPQWCAEFAL 2. 0 133iTI[QPYPLAARSL 2 .0 0 4666 PARPPWVL20.000 13 5 1YPLAARSLAL 120.0 0 0 710 LPSDL 2000 60 JILPFSRYLjiiO.
1262 1 RPSPIYWDTI 16.00011 73271 GSKSSAQEF 115.000 592 1 LGLEM12. 000 E [P3i~ 13IIRVAYEi 12. 0 0 01 [255 IPEPERPS112.00 1 32 IDSGLRSVY1110.0001 16.9 11 GPNTLLRFCW ioFoo 401Tj EARRZLRARGF 9.000____ 1 QPRVCEENLS III AARFTFLEQL 19. 00 578 QARGLNWAAL][ .00075 2251 LPGDLRVVVV[ 8.0001_____ IEPGSGKSTQI][ 8.000 F ESLSREVESLI[__ 46 ISPGESELAVN 208[ VASDSLQGLLI6OO1 6 IAGKK'VSVTKY
F-
419 YIF~LELEAII6. 0 0 0 299 LPSEESLC]j 240 fEPKLRAFWGN ]j 58 i SSLI:QVYEAF 5l.00i_____ 14 ALRVAflEMlLI 4.500][_ I fDARKVVVTHW F LAALDDDG3DL 1~ 4.50[0 I RVCEEN_ S__J1 4. 00 0 _I fEMDJTL Ir Oo fIPFDGLPFSSIF] 126 11KGQVTVTQPY ][FT] 669 ][RPPPWVLYHN14 .00 33 RPISKCQAEFA j4.000 I 162 1 PQEDCTGPNI 00 0o11 7 I 1PPDRVEAAC 14. ooo30] 536 IRPPLSAEEAAL.01 TABLE XVIII -184P3G10 HLA B3501 I 10- MERS S T SUNcPERE I SEQ. ID I_
NUM.
I277 ]EAACQAVLEL 3. 0 00 584 0 f530 67]QNRRDLQKAL]3.000 1 LPLHPDCGRA] 3.0 0 0 61 MQRIELPLSL 3.0001 44 GPSPGESELA IOO 173- [LIRFCWDRLL]j300____ 46 EALMQALEDL 3.000f_____ 1LAPPYFLSNLII3.000 F 4707 JfIMQALEDLDOY Jj3.00 j 525 AAM'LTAAPGF 113.0001 74 1 QALPIWAARF 3.00 0 4 9 9[ FPLAPELAKA J 3. 00 0 I~3 [PPLSAEEAALIF3. 0 001 VRTDGTGN I 2.700 1 [TFIDLTLGHEVG1 .01 DOLPFSSRYY 2.000 [~FSLPSIQHiVI Ir2T. [II[DLQKALVSGYi 2.F00 []AVLECREL IF 2. 00 0 [APGFTRPPLS] 2.00 11[SLALRVADEM 0 0 0 QIAEPGECHF 2. 0 0 0_ LomLVELAPY )1oo [TWI][LPLSLPAFGS]11 2.000] [FQ ][KSVTKYDL 11 2. 0001 [2 3] 0 RVVVVTDPAL 0 0 0[_ .3[LLQDARLEKaJ1 2. 00 0[ 688]1 SIVSEITQPQM] 2. 000ar____ 689 11 IVSEIQPQML 1f F464IJQPAPEALMQ 12.0001~____ 613 1 FGSE NRL2I2.00 L ~DLLNQLREGM 11 2. 0 00 11 -3 34 DC VAVY 2. 000 1 697 MLVELAPPYF 42 1[PLQRVC 12.000]IF____ 431 LPQPRVCEEN 3611LPSIQHVIDS 2.00 7T II PPPW LYHNj 12.-0 0 0 236 ]IDPA;EPKLRA k2.o0 0] 0 ___11 E 1SQPLRLAEEY PARPPPWVLY II I 406 11RARGFPPGSC 1. 800 1 TABLE XVIII 184P3G10 RLA B3501 START SUBSEQUENdE SCORE SEQ. ID
NUM..
120 LARGFQKQV 1.800 709 LPPSESRDL 1.500 186 VASTRGTIAW 1.500 298 FLPSEEEISL 1.500 471 MQALEDLDYL 1.500 105 SGKSTQIPQW 1.500 TABLE V 185P2C9 Vl lILA Al 9-MRSS START SUBSEQUENCE SCOR SEQ. ID
NUM..
1288 TAEPGPMEN 145.000 1 604 SAESKGALK 36f.000I 212 DSEYLVTLK 27.000 011 716 CADASIPF 25.000 867 STEPFPDSS 22.500 589 QLEEKTENK 18.000 148 DAESDAGKK 18.000 198 ASEPCPTEL 13.500 54 ISEIEDHNR 13.500 308 LTESSSFLS 11.250 905 LTEQSGLRV 11.250 1130 RTSPGMAQK 10.000 29 SLESSTELR 9.000 552 RAELREDER 9.000 1193 SAEPRPELG 9.000 740 ASNLYLDA 6.750 268 QOEPLLGT 6.750 234 ITDTDSFLH 6.250 889 MTSPEHCQK 5.000 577 DVEWAVLKC 4.500 7 4 EPEEPPAHR 4.500 404 ELEMHSLAL 4.500 466 FTEGEHPET .5001 771 LPEEEENHK 4.5001 856 RTEVGRAGH 4.500 458 QMEEEGEEF 4.500 534 VVENQQLFS 4.500 799 DISPFLPK 4.000 421 WSDEKNLMQ 1140 YSESAWARS 2.700 6 RQEWERQK 2.700 622 LADSHSLVM 2.s 335 PDLQSRLK 2.500 I- 2-- TABLE V 185P2C9 VI HLA Al 9-MERS START SUBSEQUENCE SCORE SEQ. ID
NUM.
200 EPCPTELLK 2.500 821 PLSPDDLKY 2.500 391 jEMEEEHLYA 2.250 593 KTENKLGEL 2.250 504 VGEHSPHSR 2.250 43 VEEEAELLR 2.250_ 44 EEEAELLRR If2I 33 STELRRKLQ 2.250 THELSKFKF 2.250 220 KHEAQRLER 2.250 1051 QTEALRGSG 2.250 1247 LTENVARIL 2.250 524 TADRGQPHK 2.000 1094[ AIEKVQAKF 1.800 547 LLEDFRAEL 1.800 1079 VSSPSRSLR 1.500 324 DSPIGNLGK 1.500 107 ISELSKVL 1.350 1221 GSEMCREEG 1.350 96 LQEELKSAR 1.350 1203 GQETGTNSR 1.350 179 DSEEMFECT 1.350 1160 INDGLSSLF 1.250 354. RGDERESLR 1.250 236 DTDSFLHDA 1.250 869 EPFPDSSWY 1.250 159 DGEESRLPQ 1:125 922 RVDSITAAG 1.000 333 ELGPDLQSR 1.000 1170 IIDMSPVVQ 1.000 853 WADRTEVGR 1.000 46 EAELLRRSI 0.900 994 SLEMSKNLS 0.900 345 QLEWQLGPA 0.9001 752 DDEPEEPPA 10.900 970YVEARRPL 10.9001 56 EIEDHNRQL 0.9001 389 SLEMEEEHL 0.900 586_ RLEQLEEKT 1 393 EEEHLYAR 291 FLEQVNRIG 0.900 829_ YIEEFNKSW 0.900 42 FVEEEAELL 0.900 671 RIEQLQKEN 0.900 1177 VQDPFQKGL 0.750 157 ESDGEESRL 0.750 [TABLE V 185P2C9 Vi HLA Al 9-MERE [SATSUBSEQUENCE RE SEQ. ID 78 VSSMSEFQR- 1l.0I____ [011LSDDMKEVA 110.75011 [F146 DSDAESDAG 10. 7 5 0 [071CSGPG3ELQV 0.750 SDAGKKES 1 0 .7.5 0 14291 ]j QELRL P0.67511___ [429 11 MQRLM 10-675 1 48QADGPDHDS 11 so]j 122 HIALILSNIQR 10501____ 1123 JjKADQPNNRT loso 1002 SDDMKEVAF 1050 807 iiKGLPSTSSK 050 111111 YGSPKLQRK 11.01 737I RCSASENLY10.01 125 YTLTENVAR :osoI____ 3~1 7 AD2DTGSHTo~o [F 14 E T7LSKFK 0.SO~ __00_ [E3 i1 RCDLAAHLG 110o.sol 5 [186Ij KTS)F GSGK 1~0.5001j____ [TABLE VI 185P2C9 VI HLA Al 10- F MERS START SUBSEQUENCEI SCORE HSEQ. ID [33 STELRRHiLQFI1.0 604 SAESKGALKK 00011____ [TTjESDSEEI4FEK 7 75. 0 0 0 [T107 :sELSGKVLiK j54.oo000 F647 KVELLDRLDR 45.0001 38 SLEMEEEHLY 145.0001 146 11 DSDA SDAGK 30.000 I ViiT] E:E TEFDSSW ][22.500 F345 QLEWQLGPAR][ 18.000 1001 1 LSDDMKEVAF][ 1 5.
0 0 0 ]j I J~fIASEPCPTELL][ 13.500 '961 ICTSPRHSRDY][ 12.500 11 F468I JEGEHPETS]11.250 JLTESSSPLST ]11.250 I 9 I LLEDFRAELR]~900 TABLE VI 185P2C9 VI liLA Al
MERS
START SUBSEQUENCE SCORE SEQ 11 57 DVEWAVLKCRI 11o 1281 TAEPGPMENQ ]I 9.000L 212 DSEYLVTLKH]-__ 79111 MSEFQRLMDI V6,7 1 71871ADIPEDI 5.000 688 LCDQKDGNVR T 1193 31 SAEPRPELGP 4.500 421]r WSDEIUfLMQQ i 107I CSGPGBLQVK IH [SEKNWNREK 2.700 175 IGGESDSEMF 220 437] VEEEAELLRR 2.5 31 IEEFNSWD)y i .5 4667 JFTEGEHPETh 225 1051 11 QTEALRGSGV 11_2.250 901GGEGPFPTSR II 2.2507 107511~GATPVSSPSR 2.000 1161CCSPKYGSPKj 1.00011 44]ELEMESLALQ
[P#
12204 GSEMCREEGGI f.350] 179 ]DSEEMFEKTS I1.350] _547 ISEIEDHNRQI 1350 114 0 IYSESAWARSTI 1.350 I 740 IASENLYLDALI 1.350 268 QQEPQLLGTI 1.350 64_ =LTHELSK(FK 629 ]VMDLRWQIHH 1.250 949 JGGPPEPMLSR 1.250 236 ]DTDSFLHDAG I1.250[1 5 13QTADRGQPHK1I100][___ 349 ][QLGPARaiDE1I 1.000 922 1 RVDSITAAGG] 1.000 5 7 51 AWDVEWAVLK]1 1000 160 GEE SRLPQPK 589]1QLEEI'rNaj1 0.900][_ 67]1 IEQLQKcENS1 090 72 1[KFEPPREPGW IL 0.90031_____ =6]EIEDHNRQLT]0.031____ TABLE VI 185P2C9 VI HLA Al 10-
MERS
OC
C
C
(N
CC
C
C
C
C
SEQ. ID START SUBSEQUENCE SCORE SEQ.
46][EAELLRRSIS 0.900 552 RAELREDERA 0.900 752 DDEPEEPPAH 0.900[ 392 MEEEHYALR 0.900 1279 0.750 979 DSPLCTSLGF 0.750 1079 VSSPSRSLRS 0.750 1131 TSPGMAQKGY 0.750 354 RGDERESLRL 0.625 234 ITDTDSFLHD .0.625 515 1 IGDHSLR.LQT 0.625 1298 IGDGLSPLPH 0.625 871 FPDSSWYLTT 0.625 1160 INDLSSLFN 0.625 603 SSAESKGALK 0.600 1057 GSGTSSPHK 0.600 787 SVSSMSEFR 0.500 967 SRDYVEGARR 0.500 1123 KADQPNNRTS 0.500 988 FASPLHSLEM 0.500 323 RDSPIGNLOKI 0.500 847 GGGPDLWADR 0.500 92 GGAPLQEELK 0.500 372 RADGDTGSHG 0.500 994 SLEMSKNLSD 0.450 291 FLEQVNRIGD 0.450 458 QMEEEGEEFT 0.450 555 LREDERARLR]0.450 155 KKESDGEESR 0.450 598 LGELGSSAES 0.450 276 TINAKMKAFK 0.400 495 DSDRGCGFPV 0.375 1062 SSPHKC TPK 0.300 b 1 LQEELKSARL 0.270 r _97 RPFPHQGSLR TABLE VII 185P2C9 V1 ELA A0201 9-MERS STAT SBSEUENE SORE SEQ. IDI
NUM..
436 KQNIFLFYV 6881.295 796 RLMDISPFL a782.372 1299 VLLTAPWGL 11007.7711 1000 NLSDDMKEV r655.87.5 [621 LLADSSLV .484.777_ TABLE VII 185P2C9 Vi HIA A0201 9-MERS START SUBSEQUENCE SCORE SEQ. ID 620 KLLADSHSL 276.643 574 AAWDVEWAV 246.547 62[ LVMDLRWQI 176.565 539 QLFSAFKAL 150.178 233 LITDTDSFL 112[603 1246 TLTENVARI 98.381 877 YLTTSVTMT 78.842 116 KLQEENHAL 74.768 597 IaGELGSSA 71.291 743 NLYLDALSL 68.360 438 NIFLFYVKL 61.948 851 DLWADRTEV 43.296 123 AILSNIQRC 42.278 547 LLEDFRAEL[36.211 297 RlGDGLSPL 27.699 1159 TINDGLSSL 27.699 215 YLVTLKHEA 22;853 912 RVLHSPPAV 22.517 287 ELQAFLEQV 22.340 1277 GLHSDSHSL 21.362 307 HLTESSSFL 16.379 1169 NIIDHSPVV 16.076 117 LQHENHALL 15.096 427 LMQQELRSL 12.065J 514 QIGDMSLRL 12.043 790 SMSEFQRLM 11.180 538 QQLFSAFKA 10.809 273 LLGTINAKM 8.446 1163 GLSSLFNII 8.127 532 KQVVENQQL 7.581 301 GLSPLPHLT 7.452 280 KMKAFKKEL 7.182 1040 TQTVQTISV 7.052 1090 QVAPAIEKV 6.859 822 LSPDDLKYI 6.005 1177 VQDPFQKGL 5.597 1037 TMGTTVT 5.382 545 KALLEDFRA 5.183 4031KELEMESLA 5.129 106 QISELSGKV 5.097 35 ELRRHLQFV 5.0151 877 SSWYLTTSV 3.768 109[ELSGKVLKL 3.685 T0T] KAGGGATPV 3.381 IDMKEVAFSV 1 3.136 897 KQPLRSHVL f 3.108 TABLE VII 185P2C9 Vl HLA A0201 9-MERS F-START SUBSEQUEN6E
ID
[49](LLRRS=ISEI I .0 F4331 RSLKQNIFL I .3 TITJ RTWSDEKNIJ 2.6 757(VENQQLF1SA F2.191 F 191KVQAKFERT if.15 FNIIDHSPV 1 2.088J RLRLQQY 2.077 KGYSESAWA 1.998 984.1 TSLGFASPL 1.961 [384J GQTCFSLEM 1.914_ F512-11 RVQIGDHSL ~j1.869 11042]11 TVQTIVLI .6 338 ]LQSRLKEQLIf 1.804 Jr ___SEFQRLMDI If1.726[ [8[GNLQRAVSV 6 80[ 76771 QQYASDKAA I1.12 ___RLERTVERL J11 1.541 [TT[KAAWDVEWA If1.497 58 fVJK.CRLEQL 1.432 [i FJ[FLPEKGLPS If1.405 F 1]WLGEGASPO I 1.405 240_ FLHDAGLRG 11 1.405 [W[LGGQTCFSL .37 [ST707ASDA~WDVr 136 [SOS I GEHSPHSRV If1.352] 10521 TE.ALRGSGV If1.352 FLFYVnjRW [1.268 J F1PvEEEAELL [106J KTIPLQEELKSA 103 P7]_1 SSMSEFQRL 0.8 3341 LGPDLQSRL-11 0.972 Fr___ [l14 871 STTTRESPV 11 0.966 1r___ 294 iiQVNRIGDGL If0.916[ 1047 0.916 .10081 0.911 728271 KAFKKELQA Ij0.894J_____ 72087KAREDSEYL 0.872J [1292 GPMENQTVL F0.867J [1143] SAWARSTTT j0.859 467 0.834 r 125 0.791 Fr__ 7738I CSASEWLYL]I 0.767[ S23.81 TLKHEAQRL [o0.74 IF___ 1 P1LRWC 7_87 TABLE VII 185P2C9 Vl HLA A0201 [START SUBSEQUENCE
SOE
1
SEQ.ID]
P 9176=[ RPLDSPLCT j078I 609 I GALKKEREV f075I____ 67 FLCDQKDGN] 0.69 TA L V I 18SP2C9 Vi HLA A 2 1 TABL VII -10 -MERS A21 SCOR SEQ. ID] F 546 IFA LL D R E 11231.45711 [440 I FLFYVKLRWL] 919.8781 6201 fLASHSLV1900698I_ 904 1IVLTEQSGLRV 484.77 [0 1FLPEKGLPSTJ 1323.253 f_ 5 3 9 IQLFSAFKALL -Il 300.351 F-68771FLCDQKcDGNVII 170.S28 5 I IIYASDKAWDV II136.641 1 1 I 8GLGGQTCFSLj 1123.92I 1 -ITDDSFL f117.493 I 81IWLGEGASPGA9396I____ F2 86J[KEIQA FTEVf7.0 F_ 1 ~JKLQEH.LF7.6 128JTVLLTAPWGL 51.871 f_ 176VVQDPFQKOL 49.S08 fLKQNIFIFYVJj4.8 I1115] KLQRKPLPKA 39.992_ 42 JNLMQQELRSI] 36.359I___ 1I [LLSNIQRCDL13616I J 877~J ThTV T E3.7 f 5s73 [KAAWDVEWAVI2.358II_ I341 fRLKEQLEWQL If22.9.91 [403 KELEMHSLALIF 22.055 32 NGELOD 21.362 !RZITMGTQTVQTIf1730I I[901LEMEEEHLYAI 13.702 F99 IFKNLSDDMKEV 13.523]____ 39ITESSSFLSTV If11.820 124I ILLEHA Ir 9 -5918 7 TABLE VIII 18SP2C9 VI HLA A0201 START SUBSEQUENE
SEQ.ID
-F NUM..
1089 RQVAPAIEKV 7.947 581 AVLKCRIEQL 7.794 1246 TLTENVARIL 7.182 574 AAWDVEWAVL 7.037 48 ELLRRSISEI 6.659 6166 KEFLWRIEQL 6.062 156 KESDGEESRL 5.961 578 VEWAVLKCRL 5.861 1245 YTLTENVARI] 5.672 589 QLEEKTENKL 5.605 106 Q'ISELSGKVL 4.938 388 FSLEMEEEHL 4.768 1000 NLSDDKEVA 4.092 641 KNWNREKVEL 4.051 396 HLYALRWKEL 3.951 312 SSFLSTVTSV] 3.864 458]QMEEEGEEFT 3.806 513 VQIGDHSLRL 3.682 411 ALQNTLHERT 3.651 108 SELSGKVLKL][ 3.535 537 NQQLFSAPKA 2.921 821 PLSPDDLKYI 2.903 897 KQPLRSHVLT 2.644 _31 KDRCSA 2.495 663 RQKKEFLWRI 2.427 1269J[RQAAHGPPGL 2.166 1292 GPMENQTVLL 2.11 r 986 LGFASPLHSL 2.017 1250 NVARILNKKL 1.869 SVTSSPHKCL J____1.869 217 IVTLKEAQRL 1.866 I JLEA1258 KLEAKE 1.820 I(GEGDQQEPQL 1.703 1238 DLSAPPGYTL 1.602 333 IELGPDLQSRL 1.602 [iTJ EPFPDSSWYL 1.596 779 KGNLQRAVSV 1.589 105 LQISELSGKV 1.558 73 EPPREPGWL 1.366 796 FLP 1.311 1043 VQTISVGLQT 1.284 1023 LQVKDMACQT 1.284 289 QAFLEQVNRI 1.233 962 TSPRHSRDYV 1.224 398 YALRWKELEM 1.174 3097 KVQAKFERTC 1.156 TABLE VIII 185P2C9 Vl HLA A0201 START SUBSEQUENCEJ SCORE SEQ. ID 983 CTSLGFASPLI 1.127 NUM.
101 KSARLQISELi 1.123 208 IKAREDSEYLVt 1.054 228 (1RTVERLITDT 0.976 96 LQEELKSARL 0.966 1039 GTQTVQTISV 0.966 469 GEHPETLSRL 0.955 406 EMHSLALQNT 0928 1085 SLRSRQVAPA 0.868 1098 VQAXFERTCC 0.856 FI _1 _FNIIDHSPVV 0.856 437 _QNIFLFKL 0.795 337 DLQSRLKEQL 0.785 IiO16 IICSGPOELQV 0.772 737 RCSASENLY LJ 0.767 679 (NSPRRGSFL 0.767 430.7QELRSLKQNI.[ 51 1263 ALKEERRQAA 0.713 TABLE IX 185P2C9 VI HLA A3 9-
MERS
SUBSESE SCORE SEQ. ID 1115 KLQEPLPK 120.000 272 QLLGTINAK 67.500 LLKHWRQGK 60.000 589 QLEEKTENK 3.0000 fFGSGK 13.500 L± SLKQNIFLF 9.000 913 VLHSPPAVR 6.000 F7437 NL~YLDALSL 6.000 SALQNTLHER 6.000 600 ELSSAESK 6.000 1163 GLSSLFNII 5.400 1250 NVARILNKK 4.500 539 QLFSAFKAL 4.500 182 EMFEKTSGF 4.500 799 DISPFLPEK 4.050 991 PLHSLEMSK 4.000 674 QLQKENSPR 4.000 29 SLESSTELR 4.000 443 YVKLRWLLK 4.000 519 QTADR 4.000 4581QMEEEGEEFJE 3.000 TBEIX 185P2C9 Vi HLA A3 9- F MERS START ISUBSEANE OR SEQ. ID I NUM.
63 QLTHELSKF I3.0001 FLFYVKLRW I3.0 F2327 RLITDTDSF 300 F6201 KLLfSS I2001____ 28I] KMKAFKKEL 270___ I19iVLLTAPWGL ii 2.700____ I 26jTLTENVARI 33 ELGPDLQSR 2.700 109RQVAPAIEK2.0 1130 RTSPGMAQK 2.5 5 57 LILEDFRAEL I1. 800 111RQLTHELSK 'Fo .0 1537 IfNQQLFSAFK Ifiao] 1161KLQHNA .0 1 VLTEQSGLR 1I0 L QQYASDK I .0 125]RLERTVERL] aoo____ 127GLRISDSHSL 1800 11091 ELSGKLJ 1.620 89MTSPEHCQK 1500 I 105 ][LOISELO .5 ___RLMDISPFL f130I____ PLSPDDLKY If1.200 I 11841f GLRAGSRSR If1.200I____ 7061 RRPVAM4 83511KSWrpmRI 0.90 438 [NIF a YVK f 0 00 I 3_ 107q SSF If s f F 11 5 1 PVVQDPFQKI .0 428l MQQELRSIK I0. 900 1582 1 VLKCRLEQL Jf0.90 0 F-49 LLRRSISEI If 0.900 G;PPEPLSRjI 0.810 V~Th1 THELS F 5_750 [~3I RQKEFLWR If0.720 I IT1254 ILNKKLLEH If 0. 60 16581 RQEWEPQKK If0.600 1f___ _38_9 SLEEELI 0.-6002f 93 JjGAPLQEELKl 0.600If____ 28NAIcKx IfK 0.600 12DIAAHLGLR ~[0.540 47QNIFLFYVK 0.40 116SLFNIIDHS If0.450 TABLE IX 185P2C9 Vl HLA A3 9- 1= MERSSE.D s T7ART][SUBSEQUENCE~ SCORE
NN
123_ ALLaSNIQRC j .5 ___337 QWVENQQLF F311GLSPLPHLT 045 ALRWKELEM f0.40 1 650][LIrL1R L .00I 404] ELEMHSLAL i I99 ifELKSARLQI Jj0.360 1 QETGTNSR ___HLYALRWKE 0.300 i 1124S] YTLTENVAR j030I 27 VTLKHEAQR If0.300 81 DLWADRTEV ~f0.300 103~sPKCLrPK 10.30011r I 0.300 771_ LPEEEENHK If0.300 J F871LKYIEEFNK If .0 1 107]1 CSPKYGSPK .0 23 LLGTINAKM 1 0.300 [74[SLRMPRPVAIr 0.300 87 LTVM1 0.300 1109- AIEKVQAXF 110.300 71jRLPEEEENH][0.0 1681LVMDLRWQI][ 0.270_I___ F 'I KLLEHALKEI 0-.270 I F287 ELQAFLEQV 0.7 F F701 If HQGSLRMPR .4 i~-iVMDLRWQIH 0.200 r SLFASPLH j(.200 lET -ATPVSSPSR ITABLE X 185P2C9 Vi HLA A3 10-1 MERS ~START 'UBSEQNCE SCOR SEQ. ID 448][WLLKHWRQKI 90.000] 1 564 RfQYASDKlooo[ 434 [[SLKQNIFLFY 104 _I L E SK L3 30. 000 T7][iLPEE- Lt3000] 00 00 TABLE X 185P2C9 Vi HLA A3 10- I ~MERS____ ISTARTIISUBSEQUENCE SCORE SEQ. ID 47LMQQELRSLK 20.000 8881 TMTSPEHCQK 20.000 826 LKYI IFN 18.000 [T[KQNIFLFYVK 16.200 J [445 K[u.RWLLKuRW 12.000 J 273 [LLGTINAKMK~ 10.000J[ 63[QLTHELSKFK 10 3 [NIFLFYVKLR 9.000 [~]QLFSAF AL[ 9.000 [81 GiGaTCFSL 8.100[___ 36 H 8.000Jr J29 SLESSTELRRJ 8.000 J~ 1349 QGAGDER 6.000____ 913 VHPAR .0 MALLD RL 5[.400 I 54 ALE[AE '4.5 345 1QLEWQLGPAR] 4.000 I 674TJ QLQKENSPRR J4.000 547 fLEFRLR 4.000 [206J LLKAREDSEY 4.000 389 ]SLEMEEEHJY[ 4.000 [136 ]HLGLRAPSPR[ 4.000 [TT~FSTTSVSR( 4.000 129LLEHALKEER j[4.000] 172]IPFEDRPLSK 3.000 627 ]SLVMnLRWQI f 2 7 00 1-T] RtKEQLEWQL][2.700 KVELLDRLDR j2.400Jf___ 27 IAMAK 2,0 11 LHEHL 1.800 j [1037 ITMGTQTVQTII 1.800 111S iiiPLPKA 1.350J[_ __I 391 JEMEEEHLYAL. 1.215[ I.L]FVEEEAELLR 1j.200 _787_ SVSSMSEFQR ~[1.200J[_ []VMLRWQIii 1.200[
F
523 ][QTADRGQPHK JI .000 589 IQLEEKTENKLj 0.900 1106 IfCCSPKYGSPJ 0.900 58 JIKCRLEQLEEKII 0.900 620j KLLADSHSLVf 0.90 232_ RLITDTSL 900 1174 1SPVVQDPFQ] 0.900 7317 I KLKESDRCSA][ 900 9 12 1[RVLHS PPAVR][ 0.9 0 -go_57 TABLE X 185P2C9 -Vl HLA A3 I -MERS START jSUBSEQUENCE SCORE 1SEQ. ID1 123811 DLSAPPGYTL' 0.810 272 ][QLLGTINAKM 10.675) 431__ IILSKNI .0 53][SISEIEDHNR[ 0.600 J [904 fVLTEQSGLRV 1[ .600 910 jE GLRVLHSPPA [0.60] SPLHSLEMSK if0.600' 1329 INLGKEGD 0.600] I95 11 PLQEELKSAR II0.60011 2085 SLRSRQVAPA 0.600 [6 JIQQEREGPGRj 0.540 64~h LTHELSKFKF 0.450 h1 440 [FLFYVKLRWLJ 0.450Jf___ 939 RRGSPGT'rK 0~.450 1 282 IKAFKKELQAF][0.4SO 457_ KQMEEEGEEF JTiJ___ 58 [EQLEEKTENK[ 0.405Jr___ 48 ELLRRSISEII 0.4051 1047]ISVLQEALR] 0. 4 0 0 IF604 SAESKGALIcKI 0.400 216ILVrLKHEAQRI[040~ 474 ITLSRLGEGj 0.400 728J PLSKLKESDR AO f J [51 j RVQIGDHSLR 040]___ [[KQDLSAPPGYI[ 0. 36 [1163J1 FLIII F0 36 0 O2IDMACQTNGSR~f030J rIGTINAKMKAF( 0.338 I AWPCADADS r 0.73001 105 TPDDK 10.300 1263IALKERRQAAI 0.300EZ I 81] WLGEGASPGAI 0.300 124ILNKKLLEHA .0.300 785 AVSVSSMSEFI 0.300 877 YLTTSVTMTT ~j0.300 697RPFPHQGSLRII.0.300 j 5,54ELREDERARL 027 0 12.98][ TVLLTAPWdL 270 333 IELG PDLQSRL 020~ 53IKQVVENQQLF 0.270 TABLE X 165P2C9 VI HLA A3 10- I MKERS STR[SUBSEQUENCjE SCRESE.
D
___GLSPLPHLTE 0.270 Z ~RQKFLWRI[023E Z TABLE XI lBP2C9 VI HLA A1101 j62I RQLTHELSK 5.400 108.9 1J RQVAPAIEK, F51I407: 443f 1 VKRWLLK 1.01 110RTSPGMAQK 1.0 PP 2.40P.j RQEWERQKK a07 889 ii MTSPEHCQK 1~ f~ 1175 IfPVVQDPFQK 110.900 F1051 LQISELSGK 10.9001 661I RQKKEFLWR 10 .7261 F N57 QVFSAFK 10.6001 278 If NAKMKAFKK 0 6 0 Z 565 0.6001!I 48MQQELRSLK 10.6001 93 GAPLQEELK 11.0 272 If LLOTINAK,1060 64 11 LTHELSKFK 10.500 111391 GYSESAWAR 110.4l 1111KYGSPKLQR I3~oI____ 1591QLEEKTENK I~I 449 IfLLKHWRQGK 110.40 11___ 11203 1GQETGTNSR 10.3 601I 27IVTL1QREAQR 10.30011 J.5oI PPEPMLSR =0.240~ r 7 01][HQGSLRMPR 11024 IT771 LPEEEEX 10200 1063[ SPHKCLTPK 1.0 524_ TAD RQPHK 0.200 _ft SAESKGALK 1H ATPVSSPSR 110.200EZ~ 51 J[ GHSR0.8 4~ 3 7JQNIFLFYvK' 10.120 F8277J[LKYIEEFNK, 10.120 -U EPPEL 0.121 IZ TABLE XI 1BSP2C9 VI lILA A1101 9-M4ERS START SUSEUNESCR
E.I
7 JQQEREGPGR012 364]1 RAA0.120 677 LQKENSPRR 012 12I HALLSNIQR 10.120 60011 ELGSSAESK 10.1.201 S799 f DISPFLPEK 0.120 605 AESKGALKK 0.120 807 If KGTSSK 0.09 912 I1 RVLHSPPAV '.9 275 1f GTINAKMKA 009 108 SELSGKVLK009 674I QLQKENSPR 1.080 913 11 VLHSPPAVR 110.08011II 29l1 SLESSTELR 90 VLTEQSGLR ]o.o8o 411 IfALQNTLHER FoI0.-875 F~ 519 IISLPLOTAflR0.8 -Ts j QAFLEQVNR 0.080 IIIZ~ 628 I1 LVIMDLRWQI10.8 469 GEHPETLSR 10.072 II 633 RWQrIHSEK 1.6 612 IfKKEREVHQK 110.0601 684 1 SR~ 0.060 1 DEFK 0.0601 2397If SFLHDAGLR 0.0601 5121 JFRQGHLln-0-i 417 HERTWSDEK 10.0601 148I DAESDAGKK 853 If )TEG 10.04011~ 7231 PFEDRPLSK]l.4 ZZ 6691 LWRIEQLQK_____ 277 INAlK KAFK 0.0401 1028 IMACQTNGSR 0.0401 425 KNMQL 1006 1249 ENVARILANK 10.0361 9 GEG.PFPTSR 10.0361F 648 1VELLDRLDR 10.0361 TABLE XI -185P2C9 Vl HLA A1101 I 9-MERS START SUBSEQUENC .ESE SEQ. ID I R!IF SGUTSM.
384 JGQTCFSLEM 0.036 108SGTSPK0.030
E
103PAIEKVQAK 0. 030 [576 WDVEWAVLK 0.030 [5851 CRLEQLEEK 0.030E~ 820 PPLSPDDLK- .3 9 3 ][HVLTEQSGL 0.3 86 RTEVGRAGH0.3 [533] Q0.NQ30 24-ITDTDSFLH ]0.030 439 ][IFLFYVKLR 10.030EZ '419 RTWSDEKUL 0.030 59 KTENKLGEL 10.03 0J 545 -KALLEDF RA 10.027 1 53811 QQLFSAFKA Lo.0271 532_ KQVVENQQL 0.0271 [T184 1 GLRAGSRSR 10.02411 TABLE XII -185P2C9 VI HLA A.il7l START SUSQEC CR E.I .361 KQNIFLFYVK 3.600
I
PPV 1.800 107KYGSPKLQRK 1.20 1Z 104 RLQISELSGK 1.200111 442_ FYVKLRWLLK L.01111 512 [RVQIGDHsLR 1.200E~: 787 [SVSSMSEFQR 1.200E Z E770S RLPEEEENHK 11. 20 0EZIII 1174 ]SPVVQDPFQK 0.900 4]FVEEAELLR 0.800 I72IPFEDRPLSK0.0 ___HVLTEQSGLR FO0. 6070o 1111KFERTCCSPK] 0. 600 T [54[KCRLjEQL EEK L0P6 EZTr .9.90 SPLHSLEMSK1 0.600] 448T 1WLJLKHWRQGK 060 362 IRAARELHRI0.4-8-0 TABLE XII 185P2C9 VI I{LA Allol1 I ISTART SUBSEQUENSCE !SEQ. ID 1216 LTKEQ .0 [1047 [SVGLQTEALR 0.400~~ 276 J TINAKMXAFK 0.400__ 427 MQQERSLX0.400 [6 J[GQQEREGPGR 030J 826 ~[DLKYIEEFNK 0.360 11 588 [EQLEEKTENK 0.7 5 99 [GELGSSAESK 0.270 i~ 697 RPFPHQGSLR 0.240 j~ 445 KJRJ HW 0.240 [1244 [GYTLTENVAR 0.24 819 [TPPLSPDDLK 0.200 _10 CCPYGP 0.200 273 0.200 63 1[LHLKI2000ZZ 160 [GEESRLPQPK]I0 .180 29~ [SLESSTELRR 0160] 27 NAMA 1K0.1201 1323 RDSPIGNLGK I0.120E zz 1075 GATPVSSPSR 10.120 1=: [288 LQA0.120]F0.12 [1177 f[VQDPFQKGLR ~0.120 1181 IFQKGLRAGSR 50.10 271 JPQLLGTINAK0.9 113 KV 0.O9OIII0.090 674 OLKNPR0.080
L
345 0.0801 913 JVLMSPPAVRR 0.080 54 JLLEDFRAELR 0.080 1291 LLEHALKEER0.8 136 11 HLGLRAPSPR 0.8 3147 JFLSTVTSVSR 0.8 4381 INIFLFYVKLR 0.080IZ ZI 349 Ii PAPGDER 0.0801 :Z 114311 TTT 0.080 53 JI~sEIEDHNR 0.0801 925 GGQEELK 0.061 107jSGTSH 0.060 8f 2 GGFLDK 0.060f fl 4 VENQFSAI 0.060 f TABE XI -185P2C9 VI HLA A1101 TABE XI -10 -MERS [SAR SSEQUENdE SEQ.R IS
ID~
f49I[RTWSDEIXNLM F410 ILALQNTIJHER 0o.060r____ 10 39ff1 GTQTVQTI SV 0o.060 [1232 [f TPVKQDLSA o00 577IDVEWAVLKCR ~0.060 67 JEQLQKBNSPR1054 332 ELGPLQSR0.05S4 [138 KOYSESAWAR 0.048 Z Z 3 ]IRWQIHIISEK] 0 ___YVKLRWLL1K Io.0401 [66 LCDQKDGNVR 0. 040 E I~Z 1078 IPVSSPSRSLR.040 [919f AVRRVDSITA f628 LVMDLR1WQIHIF~O.040L11911 959_ WPCTSPRHSR11.4LZIIZ 543 [AFKALLEDFR IooZ Z h 108SRQVAPAIEC 10.04 611 JNRQLTHELSK1.00F 7T 503 ff PVGEHSPI{SR 000 [1121 f LPKADQPNNR f0.04011 I [1095I IEKVQAKFER Fo00361 663 IfRQKKEFLWRI 0. 03 6 358 jf ESLRLRAAR]F 0.03 6 381T J GLGQQTCFSL 1.3 45~7 ][KQMEEEGEEF 10. 0361 798 11MDISPFLPEK 003 581T ]f LCRQL 0.3[ FEDPL K0.030jj f TESKK 64 )f 0030 LE XII -185P2C9 Vl HLA A24 9 STABE XII MERS9] !SATUBUENCE SC EQ.ID 442 360.00011 __360_000 [220.00011 ][QFVEEEAEL 1 39.6001l 1WYLTTSVTM 1[37.500] _667_ EFLWRIEQL j3.00] 82 KYIEEFNCS 12.1 I RNISPFL 02607 STABLE XIII -185P2C9 Vl HLA A24 9- I MERS START SUBSEQUENCEIt SCORE SEQ. ID 44 LFYVKLRWL 1f 15401 LFSAFKALL7 120.0001____ ____GFASPLHSL7 20.0001 532 KQVVENQQL 114.4001I I53 KTnR=JGEL 1[13.200]____ 6201 KLLADSHSL [112.0001 25 RLERTVERL !.PP 0 F283 IIAFKKELQAF 112.000 F51271 RVQIGDHSL 1f12.0001I1____ 41 R If O :FL 897 RKQL E1200 RSAEPRPEL 1[10-560i KGGPPEPML ][9.600 697 H[ RPFPHQGSL f960 [297[ RI rDQLSPL 9.600 KAREDSEYL 79.6007___ F2807I KMKAFKKEL 18.800 IL F34 LGPDLQSRL 8.640- [iTVQTISVGL 8.400 I 294 QVNRIGDGL L8.400____ __247 8400 1231i~ EGTPVKQDL 804 419_ 8.000 JfASEPCPTEL I_.2 ___DSLESSTEL 790 54T]ELEDFRAEL f7.920 9_93 7.200_11 56] RIE L -7.200 [Tj GPMENQTvIJ F7.2007 42 J[FVEEEAELLJ 7.200 [19ITINDGLSSL_1720____ _473_ ETLSRLGEL F_.0 [f[GOAPLQEEL 16.3361 244~i AGLRGGAPL [6.000 1 124GYTLTENVA 6.000 29 GAPLPGPGL 6.000 90 HLTQSL 6.000 125i LSNIQRCDL 6.0 9 _GRPT .0 00 00 STABLE XIII 185P2C9 VI HLA A24 .9-
MRS
START SUBSEQUENE SCORE SEQID [232 RLITDTDSF 6.000 [427 LMOQELRSL 6.000 J [1299[ VLLTAPWGL [389 SLEMEEEHL 81 TPPLSPDDL 6.000 j~ 107 ISELSGKVL 16.000 f I984[ TSLGFASPL 6.000 J 74~ii EPPREPGWL 6. 0 0 WJJ DYTPNRGHN 6.000]I 721T] SIPFEDRPL j[6.000 [330 ][LGKELGPDL 32JSSTELRRHL (5.760 [1251 VARILNKKI 5.280 [G0]IHURQLTHELI5.280j[___ f568 QYASDKAAW J ~o 624 DSHSLVMDLJ4.0 [1177 [VQDPFQKGL]4.800 [338 IILQSRLKEQL 4.800IF____ 117_ LQHENHALL 4.800 I603 Sf SAESKGAL IF4.800____] 218__ TLKHEAQRL ]j4.800 307 ESSFL 4.0Jj____ 539T QLFSAFKAL 4.800 WNREKVELL 4.800 IT [LSAPPGYTL 4.800 j 1233 ]r LITDTDSFL____[____ [579j[EWAVLKCRL1[ .o l [54jQIGDMSLRL] 4.800 1094_AIEKVQAKF I4.620 105 ICGPE 4.400 102 SARLQISEL 4.400]_ 109_ ELSGKVLKL ~[4.400 43 jNILK I .00 II__0 1181SPKYGSPKL i440J II~ QVVENQQLF 430 5361 ENQQLFSAF F4.320 1173TJ HSPVVQDPF 4~ .200 582 VIJKCRLEQL ~J4.000 8,11SPFLPEKGL[4.0 ___CSASEN'LYL 4.000 11047 1 SVGLQTEAL j4.000j 575 [AwVEWAVI 14.000 1G(LHSDSHSLI 4.000 .F1-01V'SSPHKCL TBEXIII -185P2C9 Vl HIJA A24 9-
MERS
SUBSEEFS4EIQ SE. ID 2-38 II DSFTHDAGI. 1F000
I
STABLE XIV 18SP2C9 Vl HLA A24
MRS
[START ISUBSEQUENCE ISCORE ISEQ. ID
NUM.
969 [DYVEGRPL]I360.000[____1 41 [QFVEEEAELL [441 j 24.0001(____ 23APKKELQAF 1 24.000 82 1YEFKW18.000 76[RPEREFRNRIJ 14.40 23[RLITDTDSFLf 12.000 116iI KLiQHENIHALL] 12.000 214 YLVTHE__ 9.900 JRGDERESLRL] 140 1RWKELEMHSL) 9.600 589 IQLEEKTENKL[ 9.504_ 101. JKSARPIISEL] 8.800 64i KNWNREKVBLj 8.800 101QTVQTISVGLJ 8.400 j~ 293 EQVRIDGL[ 8.400 F1269 [RoAHGPPGL[ 8.000 'F37RCSASEINLYL 843_ 8.000 13IRCLAAHiGL[ 8.000 j325 ISPIGNLGKEL 7 9 o _LEFR 7.92L I 27 ]IKQMEEEGEEF] 7.920 876 IWYLTTSVTMT[ 7.500 53lIQQLFSAFL1I 7.200 j I I[VVQDPFQKGL 7.200 F720I[DSIPFEDRPL] 7.200 818_[VTPPLSPDDLI 7.200 7 9-11 [SPEHCQKQPLIF7.200 S 32 I!KQNQIL 7.200_ [1292 GPMNTV_ 7.200_ 31EMEEHLYAL j 7 200 33 LSRKQI 2~17 VrIiuFARL f7.200 96 LQ ~I 7.0 19 [ASEPCPTELL f7.200 I38007FSLEMEEEHL[7.0 TABLE XIV 185P2C9 VI lILA A24 10- [STARTISUBSEQUENCE1 SCORE 1SEQ.
ID
T LTENVAIL F .720j ISSKEDVTPPL 16.720 [iTj CSPKYGSPKLI 6.6001 62 16.60 [1014 11~ NICSGPGELj 6.600 437J[QNIFLFYVKLj 6.600 0 1298 TVILTAPWG3L 16.000 679 [NSPRRGGSFL 6.0 466IFTEGEPTLI 6.000 3 1 RSLKQNIFLF! 6.000I ASENLYLDALJ600I 11]GsPKLQRKPL 11_6.000 1077 ][TPVSSPSRSLII 6.000 800 ~fISPPLPEKGL. jf "00o 742 ENLYLDALSLjI600 jiIVQIGDHLRL IF6.00071 1158 ITTINDGLSSL II 104][ISVGLQTMA II 6.000 __LTEQSG.LRvL Tooo fAVLKCRLEO 004_ IT]GYSESAWARSI[ 6.000 11 66 [EWERQKKEFLJI6.0 426 3[ NLMQQELRSLjf 1 642]fNWREKVELL If .0 I8]VSSMSEFQRLIJ 5.760 33 ]ELGPDLQSRL _.60J 91][GGGAPLQEEL Jf5.280 197 11EASEPCPTELJ[ 5.280 125I(NVARILNKKL1= 31 ][ESSTLRRHLu.j .0 f__ 106 QISELSGICLM .0 12 11IQRCDLAAmJJ 4.800[ ___EGDQQEPQLL 4.800 321[VSRSPINLf 4. 80 0 869_ IEPNLGKELGPLI 4.800] 97371 GAPLOPGL] 4.8001 7i4 1 4.800 4 LQFVEEEAEL If4.400 3 6 HLYALRWKEL 4[.40071I 3607 SLRLRAAREL][ 4.400 1=91TINDGLSSLF 1 4.3201 TA13LE XIV 185P2C9 Vl ELA A24 MERS ST7ART SUBSEQUENCEI SOE EQ ID 71_T_ RLERTVERL 4. 2 0 0 986]I1 LGFASPLSL[.0 LA.ISPGAGGGAPLIr 4.000 i 21.] IPTSPFGDSL[ 4.000 124 LLSNIQRCDL[ 4.000 381 jLGGQCFSL 4.000 440 FLFYVXLRWL] 4.000 1_S9 I GVTSSPHKCL 4.000 ARLNM 4. 0 00 1~-i QLFSAFKAL 4. 00 0 I_ 1238 1IDLSAPPGYTL]I1 4. 000 243 IDAGLRGGAPLI 4.000 983 CTSLGFASPLI[ 4.000 73 PFEDRPLSU I 7 33 STELRRHLQFII 3.00 TABLE XV 185P2C9 VI lILA B? 9-
MERS
-1 I1 SEQ. ID _80_ SPRRGGSFL 800o.0001 1292! GPME&QTV 112 40. 00 01 102 IfSARLOISEL f120.0001 111311 SPKLQRKPL ]1120. 00 208 11 KAREDSEYL.1120.0001 801_1 1251 VARILNXXL j120.000 f 697 1 RPFPHQOSL 11 80.000 74 11EPPREPGWLJ 80.0 819 i PLSDLI _3.08G1 PKLKYfSPKf if HNRQLTHEL 14.0] 643 1f WNREKVELL14000I_____ 399 I1 ALRWKELEM 130.000f____ 512 ifRVQIGDHSL 20.000_ 1042 fTVQTISVGL 20.000] 294 QVNRIGDGL 1[ .20. 000 104[ SVGLQTEAL 1120.000 69 FPHQGSLRM I 000I 12161 SPIGVGSMj200 _994_ GAPLPGPGL 800I TABLE XV 185P2C9 V1 HLA B7 9-
MERS
START SUBSEQUENCESCORE 919 AVRRVDSIT o_15. 000 974 ARRPLDSPL ]f12.000_ 1015 AICSQPGEL 112.000 1 789 SSMSEFQRL 112. 000 244 AGLRGGAPL ]112. 000 796 RLMDISPFL ]f12.0001
I
1270 QAAHGPPGL 12.0001 953 EPMLSRWPC 9.000 1192 RSAEPRPEL 9.000 970 YVEGARRPL- .9.000 628 LVMDLRWQI 9.000 365 AAREIHRRA 9.000 714 WPCADADSI 8.000 I[ 1060 VTSSPHKCL 6.000 42 FVEEBAEL 6.000 141 APSPRDSDA 6.000 1239 LSAPPGYTL 6.000 125 LSNIQRCDL 6.000 948 KGGPPEPML 6.000 1092 APAIEKVQA 6.000 32 SSTELRRHL F-6 O 300 DGLSPLPHL 6.000 881 SVTMTTDTM 5.000 280 KMKAPKKEL 4.000 984 TSLGFASPL 4.000 603 SSAESKGAL 4.000 620 KLLADSHSL 4.000 661 WERQ1MEFL 4.000 218 TLKHEAQRL 4.000 2 LMQQELRSL 4.000 DSHSLVMDL 4.000 233 LITDTDSFL 4.000 [97 KQPLRSHVL 4.000 [921 GAPLQEEL 4.000 73T CSASENLYL 4.000 1382 LGGQTCFSL 4.000 419 RTWSDEKNL 4.000 143 SPRDSDAES 4.000 116 KLQHENHAL 4.000 431 ELRSLKQNI 4.000 28 DSLESSTEL 4.000 ETLSRLEL 4.000 F129.9 VLTAPWGL _4.000 4.000 1431 RSLKQNIFL I QLFSAFKAL 4.000 TABLE XV 185P2C9 VI HLA B7 9-
MERS
SUBSEQUENCE SCORE S MID 743 NLYLDALSL 4.000 438 NIFLFYVKL 4.000 338 LQSRLKEQL 4.000 993 HSLEMSKNL 4.000 334 LGPDLQSRL 4.000 49 LLRRSISEI 4.000 109 ELSGKVLKL 4.000 408 HSLALQNTL 4.000 238 DSFLHDAGL 4.000 613 KEREVHQIJj 4.000 721 SIPFEDRPL 4.000 297 RIGDGLSPL 4.000 1277 GLHSDSHSL 4.000 117 LKENHALL 4.000 1087 RSRQVAPAI 4.000 532 KQVVENLQL 4.000 330 LGELUPDL 4.000 582 VLKCRLEQL 4.000 1231 EGTPVKQDL 4.000 514 QIGDHSLRL 4.000 30T HLTESSSFL 4.000 198 ASEPCPTEL 3.600 939 RARGSPGDT 3.000 989 ASPLHSLEM 3.000 1078 PVSSPSRSL 3.000 704 SLRMPRPVA 2.250 709 RPVAMWPCA 2.000 194 KPSEASEPC 2.000 1069 TPKAGGGAT 2.000 78 EPGWLGEGA 2.000 898 QPLRSHVLT 12.000 TABLE XVI 185P2C9 VI HLA B7
MERS
START SUBSEQ E S SEQ. ID
NUM..
1292 GPMENQTVLL j2240.000 1251II VAILNKKLL 120.000 .973] GARRPLDSPL 120.000 F1077 TPVSSPSRSL 120.000 86 1EPFPDSSWYL 1180.000 325 SPIGNLGIEL I80.000 87 1 SP AGGGAPL 180.000 21 IIPTPFDSL 1180.000 TABLE XVI L85P2C9 VI HLA B7 10-
MERS
STA SBSEQUENCEOE SEQ. ID 554 31ELREDERARL 60.0001 If 581 A~iVIKCRLEQL [60.O000_____ 1 321 JIiVSRDSPIGNL 60.000] 128 31IQRCDLAAHL]i 360 31SRRAEL 1140.000______ 574 AAWDVEWAVJ3 36. 0 0 01___ 762 RPEREFRNR 1 33.00I 109GVTS SPHKCL 3 30. 00 0 891 ISPEHCQKPL24.0001_____ fT~11TVLTAPWGL 2 0. 000 1 IS]sPRRGGSFL [oj_ 1 I71 VVQDPFQKGL1 0.001 1 -JI MPRPVAMWPC 2 0. FT~[QPNkNRTSPGM3 12 0. 0 00 13521 PAPGDERESL][1.01 5 46 [ALLEDFRAEL rl 18. 0 0 0 [-91.9 AVRRVDSITA 3[.5.00I 1041NAICSGPG;EL j12.000 I f 9 F ASEPCPTEL o1 426NLMQEaLL 1.2. 00 0 23fDAGLRGGAPLf 12. 000 f T[SxLxMPRPVA3[IoooI____ f12 IfGPGRDHAPSI if8.000 APLQEE6LKSA1 6.000I 9S3_I EPMLSRWPCTI1 6.000 14 LLSNIQRCDL [600I____ 8 jIGFASPLHSL[ F.0 13JfDLSAPGT] 6.000 28IKAREDSYV[I f 7 1ESSTELRRHL[ 6.000 1 K FGCAP PGPGLI 6.00 I GSPKLQRKPLi 6.000j____ WIISPFLPEKGL3[ 6.0001 198 SEPTELL][
I
29 IEQVNRIGDGL][ 4.000 [720 IfDSIPFEDRPL 3[ 4.00 [4 fLQFVEEEAEL][ 4.000 3IF [813 IISSKEDVTPPL' J4.0 0 [10411 QTVQTISVGLI400 0 IQISELSGKVL]4.0 GGQALEEI 4.000 CSPKYGSPKLl 4.0001 TABLE XVI 18SP2C9 VI lILA B7 MERS STARTIISUBSEQUENCE SCORE ISEQ. ID 747 ENYDLL4. 000 7371 RCSASENLYL31400I 641 31IONWNREKVELIj 4 .000 I -513 IIVQIGDHSLRLI 4.000_1 1046]! ISVGLQTEAL~l400I 12 6:91 RQAAHGPPGL 31 4. 0 0 0 I 165 IJLPQPKR.EGPV ii4.000 602 GSSAESKGAL 4.000 15 ITTNDLSSL 4.0001 818 IVTPPLSPDDL 4.000 _37QNILFYVL 14 .000 77351 SDRCSASENL 341 IfRLKEQLEWQL 000 3961 HLYALRWKL If4.0007 :58*QQLFSAFKA 4.00 13 KLOHALL 4. 1 T[LPSTSSKE-VJ 400 809Iin7 r La r~I 4.000 T1 1NSRGRSPSPIIl .0 613 IKEREVHQKLLj[400i___ 311GLGGQTCPS~Lj[4.000 31 4T I[FLFYVKLRWLI I[4.000 31 91 CTSLGFASPLJ[ 4.000-1 337 31 DLQSRLEQL f4003 2173[VTKHaIQRL~] 03 84 IROBNCGPDL3[ 4.000 3 39NLGKELGPDL 34.0001 679 1 NS R G FL 4.000 12T6[ TLTENVARIL 14.0 539 If QLFSAFKALL[ 4.000 3 101 IKSARLISEL[ 4.000 232 RLITDTDSFL 34.000W 38FSLEMEEEHL[ 4.000 1290~ EPGPMBNQTV 4.000 279 AKMriKKL 3.600_ 740 IfASENLYLDAL 3.600 I 789 1 SSMSEFQRLM 3.000 10291 ACGSRM 3.000 S1007 EVFRNAIE 3.000 988 1 FASPLHSLEM II~~ 3.000 1211 ]RGRSPSPIGVI2.000_____ 270 ][EPQLLGTINA I2.000 1216 IfSPIGVGSEMCv0 I 1034 SRGTQTVI 2.000 TABLE XVII 185P2C9 VI HLA B3501 I ~9 -MERS TRTSUBSEQUENJ [SCORB~ [SQ. ID [680] SPRRGGSFL 360.000_____ 1108 S PKYGSPKL 60.000 8691 SPFPDSSWY 160.000r [11131 SPKaJQRKPL I60. 000 208 KAREDSEYL 154. 000 1 I~ 697I RPPPHQGSL 140. 00 699 F PHQGSLRM Fo4. 00011 [1132 J[SPGMAQKGYI[40.000] [1216 SPG[ SE 140.000111 74 IfEPPREPGWL 30.0O0 [997 M[!SKQNhSDDM 130.00011 819 J[TPPLSPDDL 20.000j 801T] SPFLPEKGL 120.00) 980 ]S LCSLGF 120.000@1 zzi 1192] RSAEPRPEL L j 0 18 ]APSIPTSPF j20.000 [07 SRVA_ _200 f714 I WPCADADSI 112.000 I~ 143 fSPRDSDAES 12.000 p~ 63__ SPHRY J12.000~f~~ 962T TSPRHSRDY 110. 00 0 433_ RSLKQNIFL 110.000 L 993 HSLEMSIKMNL 10.000 9__9 ASPLHSLEM 10.0 28 DLSTL10.0001 32 SSTELRRHL_10.000~ 603_ SSAESKGAL 10.0 ___VARILNKKLa 1021 SARLQISEL 9.0 [11211 LPKADQPNN 9.000~) [976 RPLDSPLCT 8.0 [194 KPSEASEPC 8.000 789~l SSMSEFQRL 738_ CSASENTJYL [722 IPFEDRPLS 643_ WNREKVELL 16.0001 399[ ALRWXELEM 6.000l 82 LSPDDLKYI[6001 1280 KMKAFKKcEL 6.000_ 330 LGKELGPDL F0769L TPKAGGGAT I NSPRRGGSF 1[15-i___00 TABLE XVII 185P2C9 Vl HLA B3501 I9-MERS
SE.I
STSUBEQUECE SCOREJ
NUM.ID
125[ LSNIQRCDL 94 TSLGFASPL 5.000][ [238 DSFLHDAGL 5___000 1239 LSAPPGYTL __.000 r11733[HS PVVQDPF 5.000[ 786_ VSVSSMSEF f5..0001____ 624] DSHSLVMDL 5s.000l____ 218 JjTLKHEAQRL 4.500J 1796 11RLMDISPFL 737 JRCSASENLY ]4.000 709 RPVAMWPCA J4.000[I 297 JjRIGDGLSPL jj4.000j[____ 790J SMSEFQRLM 14.000[____ 72 7 RPLSKLKES [116 LOHENHAL 121GPGQETGTN 3[ 12 GPGRDHAPS 3.000II 582_ VLjKCRLEQL 3.000 22 RLITDTDSF II3.0001_____ 249 ]jGAPLPG3PGL 1!3.000J 475i IJSRLGELGV J_ 60 JHNRQLTHEL 3[.000] 45 KLRWLIAGHW 3[.000 J1092JfAPAIEKVQA 3.[00 4~19 RTWSDEKNL 3.00[ ___TAAGGEGPF ___KQVVENQQL I3.000_____ 620 L.LAfSHSL 3.000j_____ 94i [APJQEELKS [3.000 31 VSRDSPIGN 3.000 434_ SLKQNIFLF 3.000J 626I HSLVNDLRW 2.50 [17JESDGEESRL 2.250 1959] WPCTSPRHS 12.000 1 990 ]JSPLHSLEMS 12.000 1030 CQTNGSRTM 2.000[1____ 1179][ DPFQKGLRA jf2.000J 233][TDTDSFL 172_ GPVGGESDSJ2oo[_ [182 1f EMFEKTSGF[ EPGWLGEGA EPQLLGTIN J2.000 TABLE XVII 185P2C9 Vl HLA B35011 9-MERS (507 SHRQ 1.T1 11 M 13] EPMLSRWPC 11j 01 ISVTMTTD)T I 11.001 TSVSRDSPI 2.000 11 'F-8978 QPLRSHVLT 1] j~1 948 [KGOPPEPML 2.000 I 512 (RVQIGtDHSL 2.0 11 APSPRDSDA 12.000 I 1233 TPVKQDLSA [2.000 3051-] LPHLTESSS 1200I GQTCFSLEM If .000 TABLE XVIII 185P2C9 VI HLA B3501 10 -MERS FSTART SUBSEQUENCEI SCORE ~fSEQ.
ID
TIF16QPNNRTSPGM 4.0 1292 OPMENQTVLL 4 0.000 I RLRLQQQY3600 321 VSRDSPlGNLj3.L 21_ 11 PTSPFGDSL12000 r 325 SPINLCKL' 2 0. 00 01 (1077 1TPVSSPSRSL 120. 0001[ 1869 lEPFPDSSWYL 20.000 F -g -oGPPEPMLSRW 20.000 r 87 SPGAGGGAPL 20.000 1388! IFSLEMEEEHL 15.000 E=34 1 RLKEQLEWQL 12. OOOEZIZZ TSVTMTTDTM 10.000 J I11331 TSPGMAQKQY 10.000 I 89_ SSMSEFQRLM 10.000 E~ 101 KSARLQISEL 10. Oro Z 54ELREDERARLI 9.000 93GARRPLDSPLI 9[.OOL m 125T1 VARILNKLL 9.0001 I202 LKAKELQAF] 9.000 (TABLE XVIII 185P2C9 VI HLA 535011 I START SUBSEQUENCE I[ E.
I
121GPGPDHAPSi1(8.o000 1 .976 ]RPLDSPLCTSj 000 72 ]DSIPFEDRPL 20 (KAREDSEYLV][7. 2 00 14571 KQMEEEGEEF]6.00ON 419 RTWSDEI(NJM] 6.000____ DQIWGNVRPF 16.0001[____ ___PPLSPDDLKY16.000[ F7047 SLRMPRPVAMI[.0I____ 946 DTKGGPPEPM[6.000J____ 12091 NSRGRSPSPI .00 707_ MPRPVANWPCl ]j6 0 0 0 7 8 1 98FASPLHSLEM 1600I SPRRG;GSFLC 1600I 43 4 1 SLKQNIFLFY 11 6000 7- 1290 EPGPMENQTV If6.000 11971 JEASEPCPTEL If600____
SPEHCQKQPL_____
110[C.SPKYG.SPKLa 5.0001I____ [ij[GSPIKLQRKPL 1(5.000 I 979 ~FDSPLCTSLGF S. 1O 1 602 1 GSSAESKGAL Vo0 Vn FA 31 ESSTELRRHL 5.000]j____ 1800o ISPFLPEKGL S.T~1 00 [79[NSPRRGGSFL 5. 000 79 FQRLMDISPF 14. 500 I 1119 KPLPADQPNT LPQPKGPV 14.000!! m L.r[GPARGDERES f300____ 431ifELRSL QIF 13. 0001 [542 SAFIALEnF 3.000 104!GSRTMGTQTV 3.OOOIf V R QLTH~r ELKF~ 1 64z1 .KsIPTSPF13.000f 1737 IfRCSASENLYL F3.000 1014 JNIGPGEL .ooo f [TABLE XVIII 185P2C9 Vi HLA B3501j 1 10 -MERS ISAR S UBSEQUENCE ISCOREI NEQ.D3 200 ][EPCPTELLKA][300j____ [iT2437DAGLRGGAPL. 1 3 000[ 1255r nLN LEL 3 .(j F-2- 12 IQRCDLAAHL]___ 729 RQKKEFLWRI 8[ 843 ]1 RGHNGGGPDLJ2. 0 0 0[ r758 IPPAHRPEREF][.0]____ [232 RLITDTDSFL] 2. 000][_1 [32 KQVVENQQLF][i 2J I 303 SPLPHLTS]20 I] 916 11p SPA VDS j2 000 I 111761 VVDPFQKGL]2.00 8121AGHEDSTEF20 82721 [QLLGTINAX][ F2 [1029 ACQTNGSRTM 2. 00 [~[QISELSGKVL 2. 000J[____ [I [FGSLESSJj 2.000 ___SPIGVGSEMC K jWGGQTCFSLEM TLTENVARIL N EI JESKLSDDM 1 2.0001F
I
TABLE V 185P2C9 V2 HIAA Al 9- MERS
I
START fSUBSEQUENCE SCORE SEQ. ID [64jSAESKGALK- 36.000 [22! DSEYLVTLK 27.000 [-7161 CADADSIPF ]25. 0001 r 877 TEPFPD SS .50 1 D AESDAK Ls8 0001 54 [ISEIEDHNlR 113.500 ITW[ASEPCPTEL I350 Z VT[LTEQSGLRV I120~Z ___LTESSSFLS l111.25011 74=0W ASENLYLDA 6-.750 1268[ QQEPQLLGT 6.750 __ITDTDSFLH V6250 TABLE V 185P2C9 V2 HLA Al 9- I HERS ISTART1 SUBSEQUENCE ISOE SEQ. ID so NUM.
45 j] QNEEEGEEF 4.01 74 EPEEPPAR1 4 o I1 F-8-561 RTEVGRAGH 11 4.5 00 I 1I LPEEEENHK 114. 50 0 __404 ELEMHSLAL [4.500[ 7577 ]DVEWAVLC14.00[ 799 01~ 421. WSDE1ULMQ 3.750 I 658_ RQEWERQKK V 1 622 J[LADSHSLVM 335_ GPDLQSRLK 2003 EPCPTELLK 112.500 821_ 1PLSPDDLKY F2.50011 J 3_91 EMEEEHLYA1 2_ IV 33STELRR.HLQ 2 50j1____ 65 THELSKFKFI J[ 11j____ 44 EEEAELLRR 20KHEAQRLER 43]jVEEEAELLR12 2 50 11 504_ =VGEHSPHSR] ]FQTEALRGSG 2. 2 524I TADRGQPHK 12. 0 0 01__ 1094 AIEKVQAKF 11.00 547 1[ LLEDFRAEL J[1.8001 10791 VSSPSRSLR 11 1.500~j_11 DSEEMFEKT 1 107 [ISELSGKVL 11.350J[_____ 354_ QGDERESLRJ 1 .250i _T3_6 DTDSFLHDA]1 .5j 853 WADRTEVGR [1.000 J 46_ 1F EAELLRRSI 1jj.0- 9 0 0 SLEMSKULS 1f1 J 0] 0 6711 RIEQLQKEN, __.900 97_ YlVEGARRPL 0o. 10[0 1 EEERLYALR _0T] 900]7 TABLE V 185P2C9 V2 HLA Al 9- I MERS START SUBSEQUENC6E fSEQ. ID 42 )FVEEEAELL 10. 001 586 ]R I.JEEKT ][O.900j1 829 9 0 071 752 DDEPEEPPA 56 EIIDHRQL 0.0 I345 QLEWQLGPA 150 ESDAGKKES 0j.7503[ 17 ESDQ;EESR.L I0r.750 788!i VSSMSEFQR 1146] DSDAESDAGi)FF.
7 so0 11001 LSDDM1EVA ]j0.750 110171CSPEQ]j. 791 ]MSEFQRLMD 0.675 SQQELRSLKQ 187) KGLPSTSSK, 0.50 130 QADGPDHDS RCDLAAHLG I T] 1641 LTHELSKFK 122 HALLSIJIQR 10.5001[ 102ISDDMKEVAF 0O.5001 I--LCDQKDGNV7 10.50011 LLDRLDRDR 1[ RADGDTGSH 110.500_ [~nfYOSPKCLQRK FlO. 00 F7237 PFEDRPLSK 0.450 [051MKEVAFSVR 930. IfGGEGPFPTS_1.51 82 IfLGEGASPGA If0.450] 72 KFEPPREPG =.5 177 -EDSEEMFE I10.37-5 1 [.315 LSTVTSVSR 10.300 [7 QQEREGPGR 0~.70 469 11_GEHPETLSR f020 TABLE VI 185P2C9 V2 HLA Al MERS START SUSQECE R S5EQ. ID] 333STELRRHLQF 1112.00 ]1 604 ]sAESKALIc I 9 0 0 177 [ESDSEEMFEK7 5. 0 10 [IsELSGKVLjK 54. 0001____ 64 KVELLDRIJDR 145.000]! [FVEEEAELLR )45. 0 0 0]J W I[ SLESThLR 45.000~ 3891 JSLEMEEMHLY 4500 867]ISTEPFPDSSW,[22.5001 1011iLSDDMKEVF1ooj____ M198 ]IASEPCPTELL]1I13.5001____ 96 1 CTSPRHsmDY][j 12. 5 0 0 f_1__ 4611 FTR ji 11.250]J[ 308 JLTESSSFLST 1111.250 I ~LLEDFRAELsRI 9.0 577 rfDVEWAVLKCR If9.000 791 MSEFQ'iRLMI1 6.750 212 6.750 718 IDADSIPFEDRl 5.000 688 ILCDQKDGNVR S.0 0 0 5 34 IfVVENQQLFSA 1 421([WSDELMQQ k 4.500O 1017 jfCSO3PGELQVX 3. 000 638 JHSEKNWNREK II2.7001 13 0 R-CDLAAMLGL 2.500 88H TDMSE 2500 93 G(GEGPFPTSR jj2.250 I 10 :1 OTALR. c r2.250 C1 4i6j][FTEEr!HPETL)[ 2.5 .59 lKTEM3EL][l 2.250 175 ]GGESDSEEM] .5 I 43 VEEEAELLRRj 2.250 90 [LTEOSGLRVL 2.250I l 11061CCSPKYGSPK[200)____ 10751GATPSSPS 2.000 ~j3 51QJEWQLGPAQ:1.0 40471 ELEMHSLALQ] 1.800____ 7401ASELYLDAL1 1.350 4 1.350 f_ 268_ QQEPQLLGTI[ 1.350 99GGPPEPMLSR- 1.250 IF 64 ILTHELSKPKPI120If___ 236 11 DTDSFLHDEAQ G120 00 00 TBEVI- 185P2C9 V2 HLA Al 0 1 T~~LE MERS l- TART_ SUBSEQUENCE SCO E QN. ID 69-MLWIH1 1.250Jf____ I523 [QTADRGQPHKII 1.000 575[ AWDVEWAVLKI 1.000 349 QLGPAQGDER]I 1. 000 922 RVDSITAAGG 11.000[____ [71RIEQLQKENS 0.900_ 391 IEMEEELYALII 0.900 589 JQLEEKTENKL 0.900 56 BIEDEIRQLT 0.900I r46IIEAELLRRSIS] 0.900 392 MEELYALRI 0.900 )J REER 0.900 1752 [DDEPEEPPAHI 0.9001 979 DSPLCTSLGFJl 0.750 1079 ][VSSPSRSLRS[ 0.750 J 515 [IGDHSLaRLQIr 0.625J 871 ]FPDSSWYLTTi 354 IQGDERESLRL 1[ 0.625 [234 ITDTDSFLIMD 0.625T] [298 I GDGLSPLPHJ 0.625 03ISSAESKGALKI [105 IISGVSSPXJ 0.600 787 [SVSSMSEFQR] 0.500 98IFASPLHSI 1 EM 0.50 323_ RDSPIGNLGK 113 ___PNRG o~o 8 0.500 3 921 GGAPLQEELK 0.500 372 RADGDTGSHG 0.500 J 99-SLEMSEMULSDI 0.450_ REEARR 0.450 98 0.450 [4581 QMEEEGEEFT[ 155 [KKESDGEESR[ 0.450 [76 TINAMuKA'K] 0.400 [495 DSDRGCGFPV[ 0.375 102SSPHKCLTPK][0.300f 96 LQEELKSARLJ 0.270ff___] 49~3)DHDSDRGC(GF] 0.250 j 17221 IPFEDRPLSK ]0.25 l S8 I MTSPEHCQKQ [70 025S0 [4341 ISLKQNIFLFY L0[250 I 169 nEIPPHQGSLR11 0.250 I jTABLE VI 185P2C9 V2 HLA Al 1.MERS -J [1STAT SUBSEQUENCE SCORE~ SEQ. *ID [5 GTINAMKAF] 0.250 [i MEDRG2ER[ 0.250 818 VPPLSPDDLf 0.250 990 SPLHSLEMSKJ 0.250S 1678L][ENSPRRGGSF 0.250 926 lITA1AGGEGPF 0-2501 17711 LPEEEENHKG 10.2S__ [18 IQHENHALLSNE:22[ ~TABLE VII 185P2C9 V2 HLA A0201 1 STARTSUSQEC
SOR
4361 KQNIFLFYV 6881.295 E I796 IFRLMDISPFL 11782.372 F1 62 LASSV J484.777)[___ 60 KLLADSHSL 276.643]____ !574__ 246.547 628~J LVMDLRWQI J176.565____ 59 QLFSAFKAL 233_ LITDTDSFL [112.603 J [877 )[YLTTSVTMT )[78.842 116][LHNA] 74.768 I597 KLGELGSSA if71.291 J 74 NLYLDALSL 68.360 I 14381 NFFVL161.948 iF 128711EQFQV1 45.591 851 DLWADRTEV ~J43.296 [123I ALLSKIQRC 42.278 1547 1LLEDFRAEL.If 36.211____ 297 'RIG(DGLSPL f27.69.9 912T RVLHSPPAV J[ 2 2.517 307 HTESSSFL ][16.379 I 137LQHENRALL ][15.096 427TI LMQQELRSL][106 514 QIGDHSLRLj I[ 2.043 79 SMSEFQORLMIF1. SQQLFSAFKA 10.809 f 273Jl LLGTINAK 8.446 532TJI KQVVENQQL ]j 7.581 1TTI GLSPLPMLT 7.452_]l___ LU2801 KmKAPKKEL 18211 00 00 TABLE VII 185P2C9 V2 HLA A02011 9 -MERS START SUBSEQUENCE S CO EQ fSJID 100TQTVQTISV 7.51 1090 QVAPAIEKV 6.859f[___I 822 LSPDDLKYI J[6.005-9 10J37 TNGTqTVQT _5.382_I 1545 KALLEDFRA 5. 183f___I 403 KELEMHSLA S .1291 106 QISELSK 5.097 L..IELRRHLQFV II5.015 1331AQGDERESL ]f4.5 I 84 SSWYLTTSV 3.768 I ELSGKVLIU f3.8 I107 11 KAGGGATPV J[ 3.381 If 1004 DMKEVAFSV 3.136 I 897_ ICQPLRSHVL- 3.108 [49k iLRRISEI 3.100 433_ RSLKQNIFL f[2.838If___ 1491RTWSDBKNL f243 [i5i3 VENQQLFSAf 2.191 JKVQAKYERT 2.125 56 MLRLQQQYA 2[ 2.077 98 1TSLGFASPL J[1. 961If F3841 GQTCPSLEN If .1 IT RVQIGDHSL 1.6 E A 1 021TVQTISVGL 189I___ 138 LQSRLKEQL I. 1804 724 FEDRPLSKJ [1.758 792 jSEFQRLMDI 1.2 7801 _GNLjQRAVSV 1.8 567 3 _.612__ 35 1 I FS573 FKAAWDVE WAJ 1.4____II97 r5821 VLKCRLEQL If1.432 24 FLRDAGLRGr 1.40S Ra [LSPG] 1.405 801 LPEKGLPS J[1.40S L382J LG.GQ'CFsL] 1.37SI _570_ ASDKAAWDV 1.362 _10_2_ TEAROSGV 11 1.352 1 GEHSPHSRV[ 1.352_ 440~i FLFYVKaJRW 1.268 A2 G 1.157 42_ FVEEEAZLL If1.1061 IfPLQEELKSA If1.0 31 789f SSMSEFQRL] 0.980]j 34 LG3PDLQSRL ]=O0!972] 2941 ]QVNRIGDGL .1 TALE VII 185P2C9 V2 ElLA A0201] I -9-MERS STRTjSUBSEQUENCE [SCOT S NUM ID] 1071SVGLQTEAL 0.916 I___3 282L1 KAFKKELQA [0 0.894 2o ]KAREDSE-1 J1 0.872 1AZlTEGEHETL[ 0.834 1781CSASENLYL 0.6 1281TLKEAQRL 3..74 954 PMLSRWPCT If0.74 976 RPLDSPLCT ][0.73 60.9 GALKKEREV [687 FLCDQKDGN 3[0.689 J [2 fNIQRCDLA 5 6871~ 1~L__3EH 0.670]F 88 fVTMTTDTMT If0.651 [1098 VQAKFERTC 0.651 i 41 fLQNTLRRT[ 0. 62 9 121_ SIPFEDRPL If0.587 FLWRIEQLQ 1 .6 0 SPFLPEKGL 0.516 1 244 1ALRGGAPL] 0.51 ___VSSPH KCL 0.504 KGQPPEPML 10.4881 [741 IfSENLYLA .6 I TABLE VIII 185P2C9 V2 lLA lO011-MERS F-4 4][FLYVlLRWL1I919.878]I___ 620 UKLADSHSLV If900.698 90 VTSGR1484.777 I 803 fFLPEKGLPST]i 323.253 [T]FLCDQKaNV 11 170.528 I 286] KELQAFLQQV I .6 F_ 59YASDKAAWDV 11136.64111 [381 GLGGQTCFSLI 123.90211___ 232~ RLITDTDSFL] 117.49311 WLGEGASPGAII 93.6961 [TIf=rSLLWQI 1_78.246 116 ]tKLa LI7.6 ][lTLSRLGEL QV] 69.552D fI_ _1 6329 TEI RRI____ STABLE VIII 18SP2C9 V2 HLA1 I. A0201 10_MERS [START SUBSEQUENCE CR II.D [TTLKQNIFLFYV[4576I____ 426 [NLMQQELRSL[3.57I___ 124 ~]LLSNIQRCDL[ 36.31-67 1877][YLTTSVTMTTI[ 34.2 79 1573[KAAWDVEwAv][ 2538 31JRLKEQLEWQL] 22.993.11J____ 329 NLGKLGPDL ii21.362 272[QLL~TINIxN1I 18.382 1037]TMGTQTVQTI 1 17.330 1 538 QQLFSF 1 F15.22645 621 1 ILLADHSLVNI-1-4.1977__ 13.70,2] E 1LQFVEEEAEL1 13-624_ 9991 KLSDDME F-:3.537 309_ TESSSFLSTV [i82 [~"1RQVAPAIE KVJ[T 7.94 581 AVLKCRLEQLIE i AAWDVEWAVL][1 7. 03 7 fT[ELLRRSISEI[ F6.659 16[KEFLWRIEQL][6_. 062 [16[KESDGEES7RL][ 5.961 J IT]VEWAVJL [5.6 [TQLEEKTENKuL] 5.605 [T[FSLEMEEEHLII NSDDMcEVAI1 4.092 [41 11 NWNREKVEL1 4.051 39 ]HLYALRWKELI1 3.951 SSFLaSTVTSV][ 3.864 [1QMEEEGEEFTJ[_3.8061 [iIVQIGDHSLRL][ 3.6821 [i fALQNTLHERT 3.651 [~ISELSGKVuaj!I 3.535 jNQQLFSAFkAJ 2.921 i 8211 JPLSPDDLKyI Ij .0 89 QLRHL 2.644 J 73IKLKESDRCSA 2.495J[ RKELR 2. 42 7 105 FVSPH 1.869 217 [VTLKH EAQRL]1. [6 264 [GEGD0QEPQL J 1.703 33 E ELGPDLQsRL]j 1.602 869 JEPFPDSS yL 1 1.596 TBEVIII 185p2C9 V2 HLA TBE A0201 10-MERS ISTART SUSQEC SCORE SEQ. IDj 77 GLQASI 1.589 73 JFEPPREPGWL] 1.366 796~ ]RLMDISPFLP[ 1.311 1023 [LQViDMC~.QT[ 1.284 1043 ]VQTISVGLQT] 1.284 289 GfAFLQQVNRI f1. 233 1398 YALRWKELEM 11097 IKVQAKFERTCI 1.156 98 TLOAP 1.127 1017 fKSARLQISEL If1.123][- 293 [QQVNRIGDGL If1.061 J [KAREDSEYLV[ 1.054 28JRTVERLITDT If0.976 I iEELKSAII 0.96 [T I]GTQTVQTISV[ 0.966 g I46 GEHPETLSRL] 0.955 46IEMHSLALQNTJ 0.92 8 1085][SLRSRQVAPA[ 0.868 J 10981[VQAKFERTCC[ 0.856 iF-43I1QNIFLFYViai 0.795][___I 11016] ICLSRGEL ~0.785j ICSGP43EI-O 0.772 1 679q NISPRuGG::FLI 0.767 77RCSASENLYJ 0.767 477 IfRLGELGVQGG 0.75 [FEMEEEHLYALi 0.698][__ 1045 TL 0'v 0.68 3 1 556 11 REDERARLRL If 0.681 F 8 817 JSVTMTTDTTJ 0.521 107I[CLTPAGG 0.646 ~928 ]EAGGPFPTIj060I___ IF41971 RTWSDEKNLMI[057 TABE I -185P2C9 V2 HLA A3 9- ]TABL IX- MERS 1115 KLQRlP I20 ,0_O I TABLE IX 185P2C9 V2 -HLA A3 9- MERS 2~1I WT~ SCOE ISEQ. ID F44.9 11 LLDKtWRQGK 116 0.OOJ 0_0__1F 589__ QLEEKTENK ][3o.o0o[ 18a611 KTSQPGSGKJ 13.507[0 43471I SLKQNIFJF J(9.000 1ELGSSAESK J[6.000 [7434 NLjYLDALSL If6.000 1 411 ALQNTLHER If6.000 F91331VLHSPPAVR i 6.000 F7___ 1539JI1 QLFSAFKAj 14.50I ~1 EMFEKTSGF 450 799DISPFLPEKIJ .5 991~ PLiHSLEMSK 4.0 591SLRLQTADR 4.0 443 iiYKRWLLK 114.000 29 SLESSTELR 4.000 674~ QLQKENSPR 4.0=0- 458 OMBEEGEEF 3.0 440 FjFVLR .0 422 RLITDTDSF 3000] 63 [QLTHELSKF 113.000 1089 Rf RVPIEK 12.700 i 620 JfKLILADSHSL 112.700 ___ELGPDLQSR 270 7F8 0[ KMKAFKL 112.700 11 7225 jf RLERTVERL 1 .800 1167 KQHENHAL 1.800ooIF 53771 NQQLFSAFK 1.800 1 62fRQLTHELSK IJ801 .904 jVLTESIGLR 1.800 547 J[LLEDFRAEL j1.800 109 ELSGKVLUL 1.620 889_ MTSPEHCQK __00_ 761RLMDISPFL .350 __71 LQISELSGK 1.350Jf____ 82 1[1PLSPDDLKYj1.2001 706RMPRPVAMW jf0.900 438 jIFLFYVKLi 0.900Ga 835 J[KSWDYTPNR If 0.900 37 HLTESSSFL ~f0.900 59 KGELGSSA I0.900 42871 MQQEJRSLK _90 491LLRRSISEI L T.,9If J1 GPPEPMLSR 1 o TABLE IX 185P2C9 V2 HLA A3 9-
MERS
START fSBSEQUENCE] SORE SEQ. ID 64FI LTHELSKFKIf .50 663i~I RQKK.EFLR 070 389 IfSLEM4EEEHL F060J 218 ITLGIEAQRL If0.600 RQ E O .600I W~T[ APIQEELK 0.600 [~[NAKMK.FK( 0.6001 F~T[QNIFLFYVK 0.540 712 DLAAHLGLR =0.540 123[ ALSNQRC 10.450 445 KLRWLLKHiW II 0.4501 301_ GLSPLPHLTI 11 .450 L.33. QVVENQQLF 1 0.450 1004 FSV 0.405 399_ ALRWKELEM 110.400 650I LLDRLDRDR Ir0. 400 1-1321 GRHMQFPRX oK 99 ELKSARLQI 0.30 4041] ELEMHSLAL 030 704 II RMPRV EN 0.300 I 77 1RLPEEEENH(0.0I____ 396 11HYALRWKE jf0.300 If 8771 YLTTSVTMT_ 0.3 00 8511 DLWADRTEv 0.300 F 39 HLQFVEEEA 0.300 273 11LLGTINqAKM_j 0.300 I 2 VTL1GHEAQR 0; W AIEKVQAK 0.300J 3L17CSPKYGSPK J .o M 1 YLVTLKHRA J 0 j 771 LPEEEENHK f JI 1063] SPHKCLTPK 0.300_ 8271 LKYIEEMN 0.300 J 287 ELQAFLQQV II0.270 513 VQIGDHSLR j0.270 _2 LVMDLRWQI-j B. 270 436_ KQNIFLFYV if0.243 7011 HQG;SLRMPR i[0.240 1 289 11 QAFLQQVNR 0.0 6294:] SAESKGALK 0.200J 629 0.200 60EALKKEREVH j[L0.200 7491SLALQNTUI] .00J___ 6531 RLDRDRQEWII~~~f___ 52 4 TAtDRGQPHCIfT] J .985 SLGFASPLE]f 0.0 00 00 TABLE IX 185P2C9 V2 HLA A3 9- SATSUBSEQUENCE]{E SCORE JSEQ. ID 621_ LLASHSLV J[ 0.200 7 562 ][RLRLQQQYA ]f0.200 1076] ATPVSSPSR ]0.200 KKEREVRQK _-54J ELREDERAR1 TABLE X 185P2C9 V2 -HLA A3 MERS START SUBSEQUENCE SCORE SQ.I _668KFLWRIEQKJ0.0_ 77 LPEEEENHKJ[30.000____ [888 IfTMTSPEHCQK( 20.000 42 MQQELRSLKI[20.000 I f D~LKcYIEEFK18.000 r 3 IQNIFLFYVK][16.200 445T] KLRWLLHWR][12.000 -63IQLTHELSKFK] 10.000 ff S273 LLGTINA'KW 10 ~.00~ 539 QLFSAFKALL 9.000 438 INIFLFYVKLRI 9.000]f____I 381 !GIJGGQTCFSLI 8.100 362 I RLRAARELHR 8.000 I 29 ISLESSTELRRI 8.000 E 34 QLGPAQGDE-R 6.000 913 ]VISPPAVRRb.Oj 1004 DMKEVAFSVRjf i [39]SLEMEEEHLY][400 r 3147 ]FLSTVTSVSR)[400 (16[HLGLRAPSPR] 4.000 fT[ LQNSPR][ 4.000J____ VT] LLEDFRAELR[ 4.000 J~~ 2_0_6 LLKAREDSEY 1F 3.000_I [72 IPFEDRPLSK 3411 .LKQLEWQL1 2.700 [627 ]ILNLRWQIgf 2.700 jf r647 JjKVELLDRLDR 1.2.400 TABLE X 185P2C9 V2 liLA A3
MERS
[START [SUBSEQUENCE SCORE jSEQ. ID 276 2.00 I[ 116 JKLQHENHAL]I 1.800 107TGTQTVQTII 1.800 36HIJYALRWKEL] 1.500 1115 KLa.QRKcPLPKA1 1.350 391 IEMEEEHLYALJ 1.215 787 JfSVSSMSEFQR- 1.200 629 VMDLRWQIHR 1.200 42~ ]F LR 1i.200 11061ICCSPKYGSPKI[0.900 620]jKLLADSHSLV] 0.900 I 731 ]KLKESDRCSA 0.900[ 589 QLEEKTENKL 0.9001 54KCRLEQLEEK 0.900 232 JRLITDTDSFL 0.900 912 fRVLHSPPAVRJ 0.90 272 IQLLGTINAKM1I 0.675 I 990 SPLHSLEMSKJ 0.600 94VTQGR 0.600 1f-9 APIEKQU 0.600 32. NGK__r) 0.600 910 IGLRVLHSPP[ 0.600 124 JLLSNIQRCDL][ 0.600If____ 95 1PLQEELKSAR[ 0.600 53 fSISEIEDHNR[ 0.600 431 ELRSLKQNIF [0.600If____I I~SLR.SRQV'A 0.600 16 jGQQEREGPGR 0.540 I KAFKK0A50 J0. J~IRARGSPGDTK 0.450 F-440I[FLYVKLRWLI 0.450 64_ ILTHELSKFKF II0.450 IKQMEEEEEFI 0.405___I 59_ fG;ELGSSAESKI[ 0.405 588 [EQLEEKTENK 0.405 I [48 0.05 72 PLSKLKESDR][ 0.400 1047 [SVGLQTEALR] 0.40 [512 ifRVQIGDMSLR] 0.400 216~i LV'rLIKHEAQRf 0.400 472!iITLSRLGEG~ 0.400 621 ]LLASHSLVM[ 0.400 64 SAESKGALKC] 0.400 1 ZIDAQ~GR[ 0.360 I 275II TINKMKF [TABLE X 185P2C9 V2 HLA A3 10-] I MERS [SATSUBSEQUENCE [CORE SEQ._ID] 1877 1YLTTSVTMTTI 0.300 ___AVSVSSMSEF 030____ [8JWLGEGASPGAI030___] 139 ALRWKELEMHI 0.3 00 1 P 0.300 IF 697 I[RPFPIQGSLR]I 0.300- 11057GSGVTSPHK 0.300 532 KQVVENQQLF I# I 33ELGPDLQSRLJ1- 0 .2 70 301 ][OLSPLPHLTE 0.270 554 [fELREDERAPL .27 r631ROKKEFLWRI .24 1 0= CGPEQK .225 F0 I- FLPEKGLPSTII[ [1000 NLSDMKEVAj 0.200 33 ]STELRRHLQF ]0.200 7 04l ISLR?4PRPVAMII 0.200 114 IIVLKa.QHENHA 00I 1054 11[ALRGSGVTSSi 010I_
[T]DLSRLKEQL]J
69 ]ELLDRLDRDR]I010i TABL EXI -185P2C9 V2-HLA I TAL A1101 9-MERS START SUBSEQUENCE1 I SEQ ID 4 [YVKLRWLLK 186~] KTSGFGSGK 3.000Z~ I658] RQEWERQKK 1.800 [889 ][MTSPEHCQK __1.000 105~] LQISELS GK 0.900 [663][ KEFW 0.720 I I37[NQQLFSAPK 0.600 r~ 278 jNArM1cAs'uc_0.600~ 565T] LQQQYASDK ]0.600 f~ 93[GAPLQEEJK 1.0 LloKYG3sPKLQR 0.8IL1 TABLE XI 185P2C9 V2 HLA A1101 9-MERS START SUBSEQUENCE SCOREJ SEQ. ID 1 _N UM.
1 ILLJG{WRQGK )J1 0.J_4__0_0 12171 VJILot______ 950 GPPEPMLSR 020 70 QGLRMPR020E~ 771I LPEEEENHK 10.200 Z 1T TI TARGQPHK 0. 0 [6041 SAESKGALK 0.200 fTPiT]I TPKI 0[ F1076 ATVPSR 10.201 ff i2 LKYIEEFNK 1.2 _437 QNIFLFYVK 1132 GNRHQFPRK 1.21 1 RARL1RR 10.120 Z 799] DIPFLPEK 0.120 552 RALEE 0 .12 0 22jHALLSNIQR 0.1 75FLQKENSPRRI01L11] I00~ 605f AESKGALKK J0. 12 0 8i07[ KGLPSTSSK 10.9 Z RVIIHSPPAV000 108 11 SESKLK0On [991 If PLI{SLEMSK 0.080III] 628T VLRWQI 0.08 OR IZ [904 VLFSL
H
[913 IfVLHSPPAVR 0.080 289f QAFLQQN 10.080 2 SLESSTELR ]0 8 64S J 0.072D 64GGSFLCDQK 0.06D 1335 GPDLQSRLK 0.060 I 61 KOEREVHQK 0.060 17] SDSEEMFEK 10.00L~Z 239 f SFHDALR 060rzzI 47HERTWSDEK 10.O6OIIZZI TABLE XI 185P2C9 V2 RLA1 A I IO I 9 ME R S _E Q _I D ISTAT iiSUBSQUENCE! 1 SCORE SEQU. I 11481 DAESDAGKK0. O] 512RVQIGDHSL 00O~z 1121FERTCCSPK 0.60j 4T36" KQNIFLFYV 0O4~ [l102 8]1 MACQTNGSR 004 [277 1 INAXMKAFK 1.4~ [7231 PFDPS 0.4OLEiZ 1[KLMQQELR 10.0361 931_ GEGPFPTSR ]5-7-376 f 156_ KESDGEESR ]0o6~ 648 VELLDRLDR PPLT[ SPDDLK 000 1093 PAIEKVQAK 0OOZZ 585j CREE 0 .030 419 RTW DEN IrUJ 00301_ [903][HVLTEQSGL SKTKN1MGEL0.3 53QVVENQQLF003I 8561 RTEVGRAGH 00 [58jQQLFSAFKA 07J KO QL 10.027w [835 [KSWDYTrNM007I 968_RDYVEGARR 10.0241 220_ NHEAQRLERI004~J 933 GPFPTSRAR F1321 DL&AAHLL 0O EZ 131LESSTELR L.2~ 796 [RLMISPFL 10.0241 TABLE XI 8529V HLA STARTI[SUBSEU
-NM
436 ]IQFLFYVK 3601] 647ELLDRLDR 12.400 L_ fTABLE XII 185P2C9 V2 HLA A1101 [START ISUBSEUNEICR I .I 91 I RVLHSPPAVRI 1~oj S668 FLWRIEQLQK1.01 5641 R.jQQQYASDK 1.2001____ 512_ RVQIGDHSLR 1 .2001j 770I RLPEEEENHK 1.200 F78711 SVSSMSEFQR I1.2001[____ 1110 KYGSPKLQRK 1.I 200 I-.20 1 442JjFYVKLRWLLK M1.001 104 p1.200 j I523 IIQTADRGQPHK 1i.000 E I 722 PFDRLK I0.8 00 42 It FVEEEAELLR 0.800EIZ _448 [1WLLKHWRQGK0.600[ 15 84 1j KCRLEQLC' EKI-0 990 SPHLMS .0 1 RARGSPGDt K]0.o [uIjKFERTCCSPK 10-6001 VLTEQSGLR 10.600 I LAAEIiR [T]SVGLQTE LR 10.01 427 JLMQQELRSLK 0.400 60][SAESKGALKK i 216 ][LVTLIGIEAQR'I.400IZZI [88T rrSPEHCQK 0.400 F7T1-37JRPGNRHQFPR !.61 6]JGQQEREG.PGR 036f 82611 DLKYIEEFNK 599_1 GELGSSAESKI027 iI .5887 EQLEEKTENK .201 ___KLRWLLKHWR I .4~ 6 9711 RPFPHOSLR 0.4 273 jLLGTINAKMK 1020iZZ 63 QLTHELSKFK J0.2001L 1092 JIAEKQK0.200 1106_ CCSPKYGSPK 10.200 19TJ TPPLSPDDLK 0.200w 160 [GEESRLPQPK 1010I 29 [SLESTELRR F0,71670 323 DPGNLK. 120] 277 [INAMO.KAFKj2j] 99][SEPCPTELLKI 223[AQRLERTVER 0 2 1075 GATPVSSPSR 10.120 2 8 8[ QEQ 2 .E 3 AT][ERESLR0. 12 IL 00 00 TABLE XII 185P2C9 V2 lILA A1101 10-MERS
SATSUBSEQUENCESE.I
___PQLLGTINAK I0. 9 14 ]IFLFYVEF.080I 9 113 0LT T V Rj .080 1 F34971 QLGPAQGDER008 [T54T71LLEDFRAELR0.8 [T-71IQLQcM~SPuR 0.0801 F1361 HGLRASPR0. 0801 KW]1 PLEELY .00l IG][SGVTSSHKJooi *63IRGGSFLCDQK" 0.060111 [41911TSE M .0d 57 rvEwAvLKCRg 673! IEQLQIENSPR] 0.0541 32I LRWQIHiHSEK 10. 0401 _ILVMDLR WQIH 000 1 YVKLRWLLIKI Jo. 040 9S9_ [WPCTSPRHSR ]0 41 788 [LCD)QKDGNVR]0001I VDITA0.040 1 [NRQLTHELSK 10. 04OF 108PVSSPSRSLR_10. 040 I4 AFKALLEDFR ]i10. jj04 jj01 503 J[PVGEHSPHSRj
F-
[DQPI4NRPGNR 10.036 E Z 381]fGLGGQTCFSL 10.036I '457 KQMEEEGEEF 10.0361 358 J[RESLRLRAAR 10.036 _0_95 IEKVQAKFER 10. 03 6 663 [RQKKEFLWRI l0.036 [98MDISPFLPEK 0.3 Z 724 FEDRPLSKLK0.3 51AVLKCRLEQL .3 64 ]=LTHELSKFKF 10. 030 1059 GVTSSPHKCL 0O.0301 1091RQVAPAIEKV 10. 027 532= ifKqVVE-NQQLF]0.02'7 62 RQLTHELSKF 10. 0271 TABLE XII -185P2C9 V2 -EQ.ID ISATISUBSEQUENCE] Num.
1 4IGGPPEPMLSR J004I____ [31VEEEAELLRR M10024 j31I[RLKEQLEWQLJ 00241____ 1 DM[ACQNGR 10. 024FI I E 1ASF0. 02 4 G][TINAMKA~uc 07771 11 [TABLE XIII 185P2C9 V2 -lL A24 9-MERSJ START SUBSEQUENCE I SEQ. ID 397_1 LYALRWKEL J220. 00 ___QFEELIF 3 9.600 'F7731WYLTTSVTM13750 [671EFLWRIEQL ___KYIEEFNKS I 852___ 120.1601 ___LFYVIKJRWL V FWIIGFASPLHSL___, 20. 000 I501 LFSAFKALL 1[20.000If___ 532TI KQVVENQQL 1440j___ 'pfli KTENKLGELJ[1201 'F-54731 AFKALLEDF if12.000 RSLKQNIFL 12.0001 1 225_ RLJERTVERL 3.200.
16201 KLLADSRSL= 11161 KLQHENEAL iF12.0 [512 RVQIGDHsL][12.000f___ [897Jj KQPLRSHVL ]12.00011__ 1 297 RIGDOLSPL if9.600 1 F948 j[l KGGPPEPML 1f 9.600 I 697[ RPFPHQGSL[ [2087 KAESY 9.600 I~ 201AFLQQVNRI l .0 280 KMKAicKK I8.8009 789_ SSMSEFQRL 18.640 1 331 LGPDLQSRL 8.6 1HSLALQNT 8.640 fTItQVNRIGDGL -8.400 TVQTISVGL 8.400 _7 R T W S D E K N L 8 0 0 j f L L D R E LI9~I 00 00 TABLE XIII 18SP2C9 V2 HLA A24 9-MERS [ST7ART~ SUBSEQUENCE SCO
EQ.I
s I_ NUM.
ASEPCPTEL 790 F_2_8_ DSLESSTEL7.2 ___FVEEEAEILL 720 [~~IEIEDHNQ 99 ~HSLEMS ]L 7.200 ETLSRLGEL J-.600[ -NWNREKVEL ]6.600 92]GGAPLQEEL .3 ]IYVEGARRPL 6.0 249 1 G LPGPGL 0 F244q1 AGLRGGAPL 1600 ___DYTPNRGH EPPREPGW .0 81 fTPPLSPDDL 600] 12S5 LSNIQRCDL 600 300_ 'DGLSPILPHL IL6.0001 38 fSLEMEEEHL Ff600 107_ ISELSGKVL If6.000 23 fRLITDTDSF 6f 6000 ~~iJfSIFEDRPL If6.000 I ___TSLGFAP f.00I___I 32 ISSTELRRHL i1 5.760 ___LGKELGPDL [7 0 HNRQLTHEL7] .8 58If QYASDK W[5.0 643]1 WNREKVEIJIJ 3 4.800) 2_18 rTKHERL 3707* HLTESSSFL 4.800___ 38 LQSRLKEQL 4.80 579 EWAVLKCRL1. 4[.800___ 60O3 lSSAESKGA]4800_ 241DSHSLVMDL 4.800 117II LQHENHALL I[4.800 33 AQGDERESJ r4. 800 53911 QLFSAFKAL ]4.800 23 ITDDF 4.800 104[AIEKVQAKF ]4.620 11087 SPi YPKL ]J 4.400 AICSGPGEL 4.4001 SAR1QISEL 4.400 TT[ELSGKVIAKJ 4 4.400] ILYK 4.400 E TABLE XIII 18SP2C9 V2 HLA1 I A24 9-MERS [SATISUBSEQUENCE SCORE SEQ. ID] 1 56 ENQQLFSAF I[ 4.320 If_ QVVENQQLF]I .2 3741 DGDTGSHGL 11 4.000 J 582~ I VLKCRLEQL7] 4.000 [3982 ILLGGQTCFSL][400___1 [80[ SPFLPEKGL 238 DSLHDGj 4.000][___I 104711 SVGLQTEAL] .00 1AWDVEWAVL .000 100VTSSPHKCL]I fWfSPRRGGSFL ]4.000IF 2SEGDQQEPQL II .00 ___ESDGEESRL]I400___ [78 CSA.SENLYL E400 f~[NLYLDALSL I .00 113[SPKLQRKPL I 4.000 I FIQMEEEGEEFI1_3.960 ___PFPDSSWYL]I 3.600!I l~~FEWERQKE[ .00I ITISPLCTSLGF If3.0 I [TABE XV OC9 V2 HAA4 [START UBISQL;JDE 969~ Df DEGARRPL]36.0t___I I fQFVEEEAELL 36.000f 3 AIlKELI[4.ooF 441L i 24000[ I 8287 .1 [62 II RPEREFRNRL][.io]___ [T116 KLQHENHALL I 2321 IRLITDTrDSFL 341 IRLKQLEWQL I 1.2] 214 IEYLVTLKHEA 900 [401jRWKELEMHSLJI .0 ~101][KSARLQISEL 8. a!ao 6]41KNWNREKVEL j8. 800 104IoTTvISVGL] 81.400 _E 737 [RCSASENLYL] E.00I[ 13 0 ]RCDLAAHIJGL 1 8.000 I1 00 00 TABLE XIV 185P2C9 V2 HLA A24 F l10-MERSI [START SUBSEQUENCE! SCOR [843 11 RGHNGQGPDL 325 I[SPIGNLGKELJ 7.920 [546 I[ALLEDFRAELII 7.920 [457j KQMBEGEEFI( 7.920 (876 jWYLTTSVT14TII 7.500 [538 VQLPSAKALII 7.200 38 -ISEMER 7.200 720DSIPEDRPLJI 7.200 532jT1VVNLFl 7._0 217 IfVTLKI!EAQRLIj .0 F-891 SPEHCQKQPLI 7.200 I__ r- ASEPCPTELL [1 7.2o00__ 818 J VTPPIJSPDDLj[ 7.200____ -96 [LQEELKSARL(( 7.200 3 7I1DLOSRLKEQL I 3910 EMEEEHLYAL 7.200_ 81371 SSKEDVTPPI F6.77201___ 1107 ][CSPKYGSPKL I 437 i QNIPLPYVU.J 101 NAICSGPGEL 6.600 J_ IfRSLKQNIFLF [6.000J 42 ]NLMQQELRSL 6.000 jLTEQSGLRVL] 6.00 660 EWERQKKEFL __IITPVSSPSRSL 6.000 [i8 001ISPFLPEKGL 6.000 [T1046 ISVGLQTEAL[ 6.000f 6.000 [466 FTEGEHPETL 6.000 f 679 iiNSPRRGGSFL] 6.000 11 ~~AVLKCRLEQL]6.000]] 51 VQIGDSLRL 6.000 NWNE~KVELL 6.000 333. I ELGPDLQSRL 5.760 788__ VSSMSEFQRL 5.760 197 EASEPCPTEL 5.280~I= _1O GGAPLQEEL 5.280)f 354 QGDERESLRL_ 4.800] 554 IfELREDERARL I4.800o] 31!ESSTELRRHLI 4.800 ~~EPFPDSSWYL 14.8001 ~INLGKLGPDLI If EDQPQL1 4.800 j[ [TABLE XV- 185PERS V2 -HLA A241 ISTART1ISUBSEQUENCE SCO EQ
ID~
I JIAAWDVEV1 4.80 0[ 10 [QISELSGKVL 4.800 97 GARRPLDSPL 4.80 ]f I321VsRDSPI3NL] 4.800 J J248 GGAPLPGPOLI 4.800J[___ I lIQRCDLAAHL 14.800 2 82 1j KAFKKELQAF f4.800j[___ F40 ILQFVEEEALI 4.400 30IfSLRIJRAAREL1f 4.400 [iiF225 sN1RLERTELI 1 4.00I [24 D G 4.000 [96ILGFASPLHSLII
I
21 T][QLSFA.L] 4.000 87 ][SP AGRGGAPL][400i___ 539 QLSAFsKAL1[ 4.00011 440 E~FLFVKRF 4.000 01o 31AGGPL 4000jf___ 3302j GSEGLQ GlGTCS 3.000 7257INAKMSPF 3.000 979 ]IGDSCSMFl 3.000 64J ILTHELSKFKF] 2.640 862) AGHEDSTEPFJ .0 542 ]ISAFKALLEDF]I 2.4 00 1001 ILSDDMKEVAF]J 2.400 690 DQKDGNVRPF 2.4001[_ 43 ELRSLKQIF]2.4 00] 1128 NNRPGNRHQF 2.400 678 i ENSPRRGGSF' 2V 4 fl TABLE XV 185P2C9 V2 lILA B7 9-
MERS
START jSUBSEQUENCE SCORE SE.I I_ NUM.
68011 SPRGL 800.000 102j SARLQISEL 0 _F1 SPLPKG 1120.000IL Z TABLE XV -185P2C9 V2 HLA B7 9-
MERS
[STR SUBSEQUENCEJ SCORE SE.ID 11 SKRP_1120.00011____ 28 KAREDSEYL ]1120.0001[____ F6971 RPFPHQGSL 80a.oo 000 74LI EPPREPGWL 80a.o000 8191 TPPLSPDDL J[80.0001____ 11081 SPKYGSPKL J[ 80.000 963 SPRSRYV 1J 63 WNREKVELL]14.0J 1601 HNRQLTHEL I14.0 13.99_ALRWKELEM 1130.000r 5121 RVQIGDHSLJ12.0]___ 903_ HVLTEQSGL 1200] 699 20.0001 31047 ~[SVGLQTEAL Jf20.000J[____ 1042 TVQTISVGL 20~.000[___ 94_ QVNRIGDGL]I 249_ GAPLPO3PGL][i00____ fTIfAQGDERESL ___AVRRVDSIT 15i.oo~ 000 [974]1 ARRPLDSPL )[12.0001[ AGLRGGAPL _[.oo1 ___RLNDISPFL ]1.oj ___SSMSEFQRL ]L12 .00o[ _01 fTT~[AICSGPGEL 1[12.000j_____ ___LVMDLRWQI 953_ EPMLSRWPC 900 YVEA rRPL 9. 000 ___wPCADADSI 1 V 1FVEEE.AELL 1600I___ [16[VTSSPRKL 600I ___KGGCPPEPML 0 [19 [APAIEKVQA 600) 141 APSPRDSDA 600 ___LSNIQRCDL o 321SSTELRRHL 6[.000 13001 DGLSPLPHL If6.000 iiJ[SVTMTTDT 47 5.0002 33 fLQSRLKEQL 4. 000_ __18 TLIUIEAQRL 4.000] 738_ CSASENLYL 400 T] GGAPLQEEL 4.000 [2801 KMKAFKKEL 400Jj____ EiJ[LITDTDSFL 400I 47 LMQQELRSL 400I TAL XV 185P2C9 V2 HLA B7 9j] STARTI SUBSEQUENCE 17o SQ ID 1091 ELSGKVLKL 400I 438 NIFLFYV=KL ]400[ 11 ~KLQHENHAL ]400 ___SPRDSDAES- 1F7T4 000 514_ QIGDHSLRL 14.000) U~T[ELRSLKQNIf 43I1 SLGE 4.0001I ___HLTESSSFL 4.000l [238 DS TE- I 28_ RSLKQIJIFL 4.00 624_ DSHSLVMDL 400If____ 539~] QLFSAFKAL 4.000 53 KQVVENQQL 400 F721ISIFEDRPL 11 4.000 .000~ ___LLRRSISEI .0 jLGKELGPDLII400____ 1KQPLRSHVL J[ 4. 00 0 10871[ RSRQVAPAI ]1 4.000 58 IVLKCP.LEQL If [~~fRIGDQ3LSPLIf400[____ 19 ASEPC PTEL If 3.600[I 1078I PVSSPSRSL If3.000 989 IfASPLHSLEM I .0 99 RARGSPGDT I .0 704 IfSLRMPRPVAIf250I 75 ][LSRLGELGV I .0 109TPKAGGGAT] 2.000 898 IFQPLRSMVLT iF2.000 707 MPRPVAMWP IF2.000 35 ELRHQF 2.00 i 194 KPSEASEPC 2.000 78 ]EPGWLGEGA 709 a RPVAMWPCA r2. 000 9761 RPLDSPLCT 2.000 TABLE XV 185P2C9 V2 HLA B7 9- MERS ISTARTI SUBSEQUENCk SCORE ISEQ. ID ii= 1NUM.
18 APSPTSPF 1.800 157 LLEDFRAEL 1.8001 1541AAWDVEWAV 1.80: I 1008 1 VAFSVRNAI 18 [1116 PPKA 1.0 jTABLE XVI 185P2C9 V2 LA B7 I STARTJJ UtENCEI SCORE SQ D 973i GARSPL 120.000 ITPVSSPSRSLJ1000[] 32 SPIGNLGKEL soo [-~-1EPFPDSSYL]8000 I~jIPTSPFGDSL][8.0)[____ 87 SPGAGGGAPL 80.000[ ]j 581 IIAVLKCRLEQL j6o.ooo 131IVSRDSPIGNL'6.0 128 IEQRCDLAAHiL 40.00] TjREREF F~t]3 6.o0[ 5-7 11WDEWV [1059 jGVTSSPHKCL 130.000 J 89 SEHQQL 24.000 ri 019 rGPGELQVXMj 20.00 546 [ALLEDFRAELJ 18-000 1I 104INATCSGPGEL 12.000 [74[SLRMPRPVAM f10-000]____ r 782 I LQRAVSVSSM 10. 000 Ipsil 8.000 953][EPLSRWPCTI 6.000 1112 jSPiKQRPL[ 6.000____ 208_ 6.000 31 J[ESSTELRm.H] 6.000 Boo IsPLPEK3L]600 14)APLQEELKSA] r6.000 IL2 1LLSNIQRCDL Q6.0 TABLE XVI 185P2C9 V2 HLA B7 10 -MERS START SUBS EQUENCE[SCORE rSEQ. ID 1986] ]LGFASPLHSL 11 6.0001 248_ 6.000 1983] CTSLGFASPL][ 4.000 53VQIGDHS LRL ][4.000 1 L OIICSPKYGSPKL] 4.000j[___ 538 QQLFSAFKAL I 4~..000 33ELGPDLQSRLIJ 4.000 QQVNRGDGL 4000][__ 02IGSSAESKGAL 15ILPQPKREGPV1[ 7 818 VTPPLSPDDL 4A. 000 [2321RLIDTDsFL F [09 [LPSTSSKEDV~ .0 32 106I ISVGLOTEAL.1I 4.0o 0 1 SIRCSAS NYl .00 FLYKLW 4 .000 788_ 4.000 VTLE AQRL 400 72IDSIPFEDRPL j 40007____ [36HLYALRWXEL4.0 [341~ RLKEQLEWQLj 4.0 Fj 63KEREVHQKaLJJ 4.000____ 73i5] SD1RCSASENL 4.000 101QTVQTISVGLI 4.000 I ~T GGGAPLQEEL 4.000 TiKLQHENHALL 4.000 F381 G[ QTCFS .00 388 1FSLEMEEEHLI 4.000 flT N~YLnMLSL 4.000I[_ __1 5397 QLFSAFKALLj 4.000 8i~1SSKEDVTPPLI 4.000 337 DLQSRLKEQLJ 4.000_ [101 [KSARLQISEL 4.000 78~SSMSEFQRLMI 3.0001 988_ FASPLESLEM 300 00 00 TABLE XVI -185P2C9 V2 -HLA B7 I ~~10 -MERS SATSUBSEQUENCE SCORE SEQ. II] F 1-00 7)[EVAFSVRNAIj___ JT~~]~~GSTM F3.000 r 1034rGSRTMGTQTV3.0 143 ]IPRSDAESD]1 2.000 116 ISPHKCIJTPKAII 2.0001 I IGNRIIQFPRKV ]f2.000j j [980 ISPLCTSLG3FA[2.0 963 SPRHSR.D~ 2.000____ 270 ]jEQLTINA 2.000 11___ F3527] PAQGDERESLIj .0 695 ]NVRPFPHQGS I .0 E46TKGGPPEPM[1.0 F311 ARELR j[135RA____ 1 2 89 JQAFLQQVNRI J[ 1.200 130 1 CLHG 1.200 F283 j[AFKKELuQAFLJ 1.200 354fQGDERESLRL] 1.200 L4 FTEGEHET[I.' o TABLE XVII -185P2C9 V2 -HLA COR SEQ. ID _s NUM.
000 891EFPSWY7 60.00011 [ii 1SPKLQRKPL600 0] [1 1 SPKYGSPKL 60.000I.
208 [KAREDSEYL ]54.000I RFPHQGSLjIoo i_ 74 EPPREPGWL 30.0001 [97[MSKNLSIDDM 1I30.000 f [I1SPFLPEKGL 20.000~.~ __9807 SPLCTSLGF 20.0001____ APSIPTSPF2000____ I 1 TPPLSPDDL2.0 [143 1] SPRDSDAES 11.01 j1087[ RSRQVAPAI 1.0 'a I2.00Zp 32 SSTELRRHL 1000 LAIFSSAESKGAL 10.000 1o TABLE XVII 185P2C9 V2 HLA1 ~B3501 9-MERS_____J STAR SUSQUNCEl R SQ ID) 433_ RSKNL 10.000_____ 96 SRSD 10.000 I98.9 AS PLHSLEM 10i.0001l 102 SARILQISEL 9.000I 111LPKADQPNN J9.000 96RPLDSPLCT 8~ I789 jjSSMSEFQRL f7.00O I722 1IPFEDRPLS j _43WNREKVELL__ [330 LGKELQPDL ][6000] I 280 JfKMKAFKKEL 1600____ 822__ LSPDDLKYI 238 wDcnSF t GL .000___ 76[VSVSSMSEF [624] DSHSLVML]_______ 679f NSPRRGGSF 5 ___000_L 984 TSILGFASPL 5.000 ___LSNIQRCDL [40871 HSLALQNTL I1T~~] 218 1[ TLKHEAQRL _4.50 RPS IKf 000 [2971 RIGDGLSPL ]4.oo000 7967_7 RLMDISPFL 14.000 SMSEFQRLM o1.001 709_1 RPVAM4WPCA 114.00011 ___KLLADSHSL 3.T~1 00 31VSRDSPIGN 0 [10921 APAIEKVQA 24_1 SPFGDSLES ]IT3.__000_ 44SLKQNIFLF ]I53.i0_0_0 24 G(APLPGPGL 1f 232 ijRLITDTDS',F] I 3.000 I_ 582_ VCRQL 13.0001 353 AQGREL j 3. 0001 60 R-FNRQLTHEL [3 .00011 966 HSRDYVEGA j[3.00011_____ 445 KLRWLLKHW 113.000)___ ___KQ53Q2 3.01 TABLE XVII 185P2C9 V2 HLA B3501 9-MERS SATSUBSEQUNE~ I SEQ. ID LSRLGELGV ___APLQEELKS 927I TAAGGEGPF][ 1661HSLVKDLRWIo][_ I' IESDG ESRL 12. 25 141 QIQDRSLRL 2.000 1 SPLHSLEMS ]jI2. 00d[ 182 I EMFEKTS F H 2.00 1 53 JI QLF j2.000 319 aTSVSRDSPI ][F2.2.1[ 384I GQTCSEM jj1001 CQNGR 12.0070[ 21] IPTSPFGDS 2.0001 1TT1 LQHENRALL:][ 305 HTES 2.000 89]KQPLRSHVL 2. 0 0 10771f TPVSSPSRS ]i~ 93.5 FPTSRARGS 270 EPQ LGTIN ___KGGPPEM ]2.000 521RVQIGDS 2.000 78 11EPQ-WLQ3EGA 959 1 PTPRHS 12.000 I QPHKQVVEN 1[2.oo __23_1 LLGTI M4 I(9 37 EPMLSRWPC IF2.000]j _R7 SPHSRVQI 12.000 I 3341 I 1 GPDLQSRL 2.000 APSPRDSDA 1 2. 0 0 01 I 9 QPLRSMVLT, 2.00011 ]LITDTDSFL ~00 [TABLE XVIII 185P2C9 V2 LA1 B3501 10-MERS_____ [ISTART SUBSQUECE SCR SEQ. ID 1911 GPG;ELQVKDMI 80. 0 0 0 I 560 1[ RARLRLQQQY 13 6. 0 0 0 321ER VSRflSPIOrNL F30-000]n 813SSKEDVTPPLI TABLE XVIII 185P2C9 V2 HLA B3501 [SATSUBSEQUENCE SCORE SEQ. ID 305 [1LPHLTESSSF 130. 0001[____ [3.0 771TPVSSPSRSL 120. 00 0 [32Th[SPIGNLGKEL 20-000w [507 GPPEPMLSRW 20.000 [~[EPFPIDSSWYL 2 .0 0 [8771SPGAGGGAPL 20.000r IPPEREF 15.000 IR34 1LEQLj320 :339 1QSRLKEQLEW11.20 789 [SSMSEFQRLM 1. 0 F101I[KSARLQISEL 1000 [880 ITSVTMTTDTM 1000 I43 RSLKCQNIFLF F -~oo[ .973[ GARRPLDS PL)[ 9. 0 00 77][ AAWDVEWAVL w9001 206_ LLKA.REDSEY F[9-00I 12 ](GPGRDHAPSI 18.0001 976IIRLcTs F8.000 *ii]jVS SMSEFQRL 17, 75 720~ DSIPFEDRPL)[7.500 208 I KAREDSEYLV][.0j[___ 4- jj RTWSD 1 690I DQKDGNVRPF][ 6.00 14]VOOESDSEEM][F6 000 988]IFASPLHSLEM ][000 3.98 IIYALRWKELEM[ 6.000____ 9461 DTKGGPPEPM 1[6. 000 707 MPRPVAMWPC 6.000 4571 KQMBEEGEEF][.0 7E1S JI RSVSSM600I 680 SPRRGGSFLC F6.oo0 PPLSPDDLKY 60 434 SLKQNIFLFY I600I_ 1_97 EASEPCPTEL 116. 00I 704 ]jSLRMPRPVAM][j "j 891 ]SPEHCQKQPL][6.000 800 I SPFLPEKGL] 0 1112 GSPKLQRKPL [Tj 10461 FISVGLQTEAL 1 31 ][ESSTELRL[___ 679 INPRRGGSFL15001 .1 GSSAESK=GAL js 0 TABLE XVIII 185P2C9 V2 HLA B3501 10-MERS TABLE XVIII 185P2C9 V2 HLA 83501 START SUBSEQUENCE SCORE SEQ. ID I NUM 1107 CSPKYSPKL I.o 979 DSPLCTSLGF 5.000 794 FQRLMDISPF 4.500 1119 KPLPKADQPN 4.000 .165 LPQPKREGPV 4.000 809 LPSTSSKEDV .4.000 621 LLADSlSLVM 4.000 431 ELRSLKQNIF 3.000!_ 62 RQLTHELSKFI3.000 1128 NNRPGNRHQF 3.000 243 DAGLRGGAPL) 3.000 351 QPAQGDERES 3.000 360 SLRLRAAREL 3.000 737 RCSASENLYL 3.000 641 [NWNREKVEL 542 SAPKALLEDF 3.000 1034 GSRTMGTQTV 300 17 HAPSIPTSPF 3.000 I04NAICSPOEL 3.000 94APLQEELKSA 3.000 200 EPCPTELKA 3.000 1001 LSDDMKEVAF 3.000 128 IQRCDLAAHL 3.000 663 RQKKEFLWRI 2.400 729 LSKLKESDRC 2.250 106 QISELSGKVL 2.000 270 EP LLG 2.000 78 EPGWLGEGAS 2.000 953 EP14LSRWPCTI 2.000 916 SPPAVRRVDS 2.000 502 FPVGEHSPHS 2.000 [8Ti RGHNGGGPDL 2.000 532 KQVVENQQLF 2.000 4 [SPFGDSLESS 2.000 546 ALLEDFRAEL 2.000 116 QENHALL F2.000 980 SPLCTSLGFA 2.000 383 GGQTCFSLEM 2.000 IG29 ACQTNGSRTM 2.000 961 CTSPRHSRDY 2.000 758 PPAHRPEREF 2 .000 2T][RLITDTDSFL 2.000 1063 SPHKCLTPICA 12.000 862 AGHEDSTEPF 2.000 64 LTHELSKFKF _M EMSKNLSDDM ~2.00~~ ISTART SUBSEQUENCE SCORE SEQ. ID 303 sPLPHLTESS]I 2.000 NUM.
FIT[QLL;TINAKM 2.000 401 RWKELEMRSL 1.800 1431SPPDSDAESD 1 800 TABLE V 185P2C9 V3 HLA Al 9-
MERS
START iSUBSEQUENCE SCORE SEQ. ID 1 1[ NUM..
586 RLEQNC4Y 5.000 598 WIEEETLGF 45.000 642 SAESKGAK 36.000 212 DSEYLVTLK 27.000 726 CADADSIPF 25.000 877 STEPFPDSS 22.500 148 DAESDAGKK 18.000 627 ELEEKTENK 18.000 54 ISEIEDHNR 13.500 198 ASEPCP
T
EL 13-50 915 LTEQSGLRV 11.250 308 LTESSSFLS 11.250 1140 RTSPGMAQK 10.0001 552 RAELREDER .0 1203 SAEPRPELG [9.00011 29 SLESSTELR 9.000 750 ASELYLDA 6.750 268 11 QQEPQLLGT 6.750 1 234 ITDTDSFLH 6.250 899 MTSPEHCQK 5.000 458 QMEEEGEEF 4.500 764 EPEEPPAHR 4.500 f404[ ELEMHSLAL 4.500 1298 TAEPGPMEE 4.500 781 LPEEENHK 4.500 866 RTEVGRAGH 4.500 46_ FTEGEHPET 4.500 70 RIEQGSLRt4 4.500 534 VVENQQLFS 4.500 L 577 DVEWAVLKC 4.500 809 DISPFLPEK 4.000 421 WSDEKNLMQ 3.750 696 RQEWERQKM[ 2.700 1150 YSESAWARS 2.700 PLSPDDLKY 2 I500 L200 j EPCPTELLK ]L2.001 TABLE V 185P2C9 V3 HLA Al 9- I HERS STT1SUBSEQUECE SCORE SE. I 335 GPDLQSRLK .01 6 I LADSHiSLVM 11 J2 J[KHEAQRLER ]j2. 250J_ 1 4~EEEAELLRR __2.250 391 [EMEEEHILYA _12.250 fTHELSKPKF 2.0 600 11EEETLGFTR 12.50 33,I STELRRHLQ I2.250 631 KTENKLGEL j2.2S0[____ r10611 QTEALRGSG 1 2.250r 43Tj VEEEAELLR 2.250w 504~ VGEHSPHSR 1 2.2501_____ [27[LTENqAI 11 2.2501_____ TADROQH 12.0001 [T~fAIEKVQA.KF 1.800 LLEDFRAEL 1.800 [34F DSPIGNLGK 111.50o70 [1089 IfVSSPSRSLR I ol __~[LQEELKA 1.51 [107 [ISELSGKVL ]1.350] GQETGTNSR DSEEMFEKT I 1211GSEMCREEG 11.301 .354~ ROD RESLR 1.250 [879f EPPS 11 [1701 11 1.2501 159 1 DGEESRLPQ [1.1251 RVDSITAAG [1.000 1 _333_ ELGPDLQSR F863 FWADRTEVGR [18011 IIDHSPVVQ 1lL.00 EEEEHLYALR 10.9001 291 FLEQVNRI__ 1 .900 10041 SLEMSKNLS J[0.900 46 1EAELLRRSI 110.901_____ 7762 DDEPEEPPA Fo~ 00 7 QLEWQLO3PA 1o-901 78-3I YIEEFNKSW 0.00 56 1.90 38 L1SLEMBEEE1L 10.9001l_____ 1980 YVEGARRPL 10.90011 027 CSGPGELQV 10.7501 798 VSSMSEFQR 157 ESDGEESRJ 1 0.7501_____ TABLE V 185P2C9 V3 lLA Al 9-
MERS
START]MUBSEQUENCE
1 SOE] SEQ. ID 150 11 ESDAGKKES 101171~ LSDDMKEVA ][0.750j___1 -146 I1 DSDAESDAGj 0[.750 117 VQDPFQKGL 429 ]QQELRSL;KQ 8017 MSEFPLMD T] 1121 1YGSPKU.QRK 1IOIQ 0__,_500 121HALLSNIQR 1861 KTSGFGSGK ]1 0. 500 817FKQLPSTSSK 11-0.500 11 113 37j[KAQPNNRT 0, 50 688 1[ LLDRLDRDR 3 7j[1 RADGDTGSH II0.0 101271[ SDDMIKVF7 0.500 10861 ATPVSSPSR 10.5001 488_] QADGPDHDS 10 .50 0 TABLE VI 185P2C9 V3 lILA Al
MERS
7SATSUBSEQUENCEI SCORE j SQ. ID 33 1 STELRRHLQF 112.5001______ 642_ SAESKGALKK 190. 000If_____ 177 SDEEFEK [75.000 ISELSGKVLK 154. .00 0 2 .SLESSTELRR 145. 0 0 0If____ 389_ ]45. 000 42 IfjFVEEAELLR 14.0 *Ti6 DSDAESDAGK J[30.0001I____ 877 STEPFPDSSW 22.500 I -74S: IQLEWQLGPAR 18i.000I 308 IfLTESSSFL-ST 1 11250 468 ][EGEHPETLSR ~[11.5f 1257 I1LTENVARILNl111.250f_____ i2.98][TAEPGPMEELj 9.000If_____ 12691[LLEHALKEERI 9.00 57ILLEDFRAELR 11 r01 577 11DVEWAVLKCR 900 TABLE VI 185P2C9 V3 HLA Al 10- I MERS ISTART ISUB3SEQUENCE"' SCORE SEQ. I [1246 ]KQDLSAPPGY 1j 7.500 [18 1VQDPFQKGLR 00~ I~~hDSEYLVTLKQH 6.7.50Jj____j 601 IMSEFQRLMDI]I.70 728 IDADSIPFEDR]I500I F SAEPRPEIIGPI .0 fVVENQQLFSA j4.500 [~WSDEL Q j3.7507_____ 1027[CSGGELQVKj3.0 1676 IfHSE1QNWNREKf 2.700 130T [RCDLAAMIJGLI[ .0 895 ]TTDTMTSPEH [250] 17 T rJ[GESDSEEMF if2.25 [~T]IEETLGFRJ[2.250[_____ 2250 []vEEEALLRR 2.250 63 IKTENIQLG F2.250 [46IFTEGEHPETLI 2.250 [i~l[IEEFNKSWDY] [TTIQTEALRGGv 2.250 I ~TI .16CCSPYGSPK1I200_____ 108 1 APSPR2.00 54 ][ISEIEDHNRQ I1.5 179 [DSEEMFEKTS I .5 1231 ]GSEMCREEGG IFl 1350 26 1QQEPQLLGIM 1150IYSESAWARSTJ 1.350 LTHEL___F 1.250 19IGGPPEPMLSR 1.250 I]jDTDSFLiA][1.250 [T jAWDVEWAVLK][~ I fl~7J QLGPARGDER Jr1.000 [TT]QTADRGQPHI100J____ [TIRVDSITAGG]I 1.000 I [WJGEESRLPQPKj0.0 J]EAELLRRSISII090 DDEPEEPPAHII 0.900 72L ][KFEPPREPGW [.90 1r___ 392 MEEELYAJR I0.900 J [I I ELEEKTENCL I1 0. 90 TABLE VI 185P2C9 V3 HLA Al 10-1 I MERS START SUBSEQUENCE I SCORE S .I 56 1EIEDHNRQLTI 0.0 62_ RLELEEKTMNI__ [S98NEE T 1T] 0.900 1089 ][VSSPSRSLRS 11 0.750Jf_ 1141T][SPGMQKYI 0.750JS 989 ]DSPLCTSLOFII 0.750 1 12 89 IfHSDSHSLG;DT 0[.750 1170 INDGLSSLFN [0.625 r234 IITDTDSFLHD IsiS IIIGDHSLRLQT If0.1525- I3 4] RGDERESLR~L 0[.625 298 jfIGDGLSPLPH 0.625I 61SSAESKGALKJ 0-600 1133 I iPa.N:1 0.600 977_ SRDYVEGARR 85i 7 fGGGPDLWADR1I_0.500 797fVSM FQRJ 0.500 998 IfFASPLHSLEM If0.500 [372R GTGSHG 0.500 323 IRDSPIGNLGK 0 .50 22.171FLEQVNRIGDJ[0.450 i 36I[LEI.GSSAESf 0.450JI 1555 1 LIREDERARLR][ 0.450 E~fQMEEEGEEFT 0.450 I rTINAKMKAFK i0.400I____ 49-DSDRGCGFPV 0 .375 211ZJSSPHKCLTPKI 0.300 I [F 97LQEELKSARL~f020I [TABLE VII 185P2C9 V3 LA A02011 9- MERS SUBSQUECE SORE SEQ. ID
INUM.
86 RLMDISqPFL 11782.37211____1 [1010 IINLSDDMKEV [655.87511____ LLADSHSLV [8.7 6S8_ IaJLADSHSL [7.41 1AAWDVEWAV] E= =l47- TABLE VII 185P2C9 V3 HLA A0201 SATSUBSE .QUENCEI SCORtE
NSEQ.ID
666 1LVMDLRWQI q 176.5651____ 1591QLFSAFKAL 11150.178 f23-3 LITDTDSFL ][a12.6o3 ___TLTENVARI 98.381 887 YLTTSVTMT j78.842If____ 116 KLQHENHAL][74.768 I 635 KJGELGSSA 1E7.91 753 NLYLDALSL 68.360 l 438 NIFLFYVKL 61.948 861 DLWADRTEV 43.296 13 ALLSNIQRC 42.27 S47L LLEDFRAEL 36.211 RIGDGLSPL 2769 116.9 IfTINDGLSSL 2.9 [215l YLVTLIGHEA II22.853 27 ELQAFLjEQV__ O18 LHSDSHSL 1.3462____ 1601SLQLQRLEL]f236 LOHENHALL 14 QIGDHSLRL 12.043 800 )[SNSEFQRLN 11.180 58 QQLFSAFKA =080 273 LLGTINAKM If8.446 113]cLSSLFNII If8.127 I32 KQVVENQQL 7.581 j__ GLSPLPHLTI7.452 I 201KMKAFKXEL 7. 182 ___TQTVQTS C1 11100I QVAPAIEKv 6.591___ 811LSPDDLKYI 6.005I __VQDPFQKGLJ[ 7j 107TNGTQTVQT][538 54Sj KALLEDFRAf513 F40-3 ELMHSLA )1 5.129 I T1lQISELSGKV[ 5.097 I !ELRRHLQFV[ 5.015 I 603 ]TLGFTRLPA[ 4.9687I f884 SSWYLTTSV ][3.768If____ (109 I ELSGKVLKL j3.685If____ iTiiKAGGOATPV 1 3.381 I fTT1DMKEVApSV 3.136[I js j-fKQPLRSHVL E3__ TABLE VII -18P29V HLA A0201 ISATSUBS EQUENCE SCORE ISEQ. ID [49i] LRRSISEI Jr3.100 706_ FLWRIEQQS F2.845 E4331 RSLKQNIFL 2.838:] 4 19 RTWSDEKQNh 2.463 35. VENQQLFSA] 2.191 J 1107i KVQAKFERTI 2.125 52 RLRLQQQYA I 2.077][_ I114871 KGYSESW 1.9981 __9947 TSLGFASPL __1.963._ F38471 QQTCFSLEM IR 102TVQTISVGL If1. 8 RVQIGDHSL 1.869_ 338 IfLQSRLKEQL If 1.804 734 FEDRPLSKL II1.758 N [802~ SEFQRLMDI Jr1.726 790 IfGNLQRAVSV[ 1.680 I [567~ QQYASDKAA[ 1.612 I 25 RLERTVERL[ 1.541__ ~FKAAWDVEWA 1.5417 240 z HDGLR 1.4975 r 8131 FLPEKGLPS 1.405S WLGEGASPG 1.405 382 JrLGQQTCFSL 570 rASDKAAWDV 1.375I62 GENSHS 1 1.362 AEGPFPTII I F[PLQEELKSA 1.31 I99 S SMSEFQRL IF0.980 34T] IGPDLQSRL 097 1057[ SVGLQTEAL] 096 294 QVNRIGDGLI 0.11 KAFKKELQA 0.894 208] KAREDSEYL 0.872 1 lT AhA1[ TTT 0.859 TEGEH~2PETLI 0.834 1.268 JrKLLEALKE] 0.791) 74 [CSASELYL 0.7 4 1 PbMMhSRWPCT f045I 1TABLE VII 18P2V3 L A02011 START I SUBSEQTJENCE[ SCORE jSEQ. ID RPLDSPLCT 11 0.73K] 647 II] GALKKEREV TABLE VIII 185P2C9 V3 HLA A0201
-MERS
START[{USEQUNCEE1 SEQ. ID 511ALLEDFRAEL][2147[____ 94VLTEQSGLRV3484.777 13JFLPEKGLPST 1323.2 ~IQFSAALL' 3.55 569 ~YASDKAWV 113p6.641 381 LGGQc~sL1133.902 I 232J1ITDTflSFL [1.9 ji3WLGEAspGA-9.9 ITT3SLVMDLR.WQI i 286W ]KELQAFLEQV3 75.004 I~ KLQHENHALL][ 74.768[ 474 9 TLSRLGELGV11_6.9.552 34 TELRRHLQFV][ 6319 E 1186j VVDFKGL[ 49.508 1 1 43 5K IFFYV 45#.786[J 1125 KLQ1cPL KA][39.992 I461 NLMQQELRSL 3635 4 11 rLLSIQRCDL 1 36.316 TIYLTSVTMTT L429____ I ~AAWEWAVfj I ~RLKEQLEWQL J2291 I 1 EEM 22.0551_ ~NLGKELGPDL 21.362 ~QLLGTINAXMIf 18. 32 F1047 [TMGTQTVQTI [17.330.
3 3QQLFSAFKAL[ 15.226 DHSV _L14-197 [W3LQFVEEALI 3.624T]_ [109][NQLSDDRKEV[ 13.52 3] -30971~TESSSFLSTV][ 11.-8203 [TL26]J ELNL HA 1F9.518 -97JRQ7VPAIEKV]11 7.947 6 0 8 RLPAGSTVKT 11_7.452 TABLE VIII 185P2C9 V3 HLA A02012 10 -MERS STARTf SUJBSEQUENCEj SCORE Jj SEQ. ID NUMl.' 11 1256]ITLTENVARIL[ 7.182j____ 57 ]AAWDVEWAVLJ[ 7.037 KET1lSDGEESRL-1[ 5.961 IJVEWAVJKCR 1 5.861 [1255 IYTLTENVARI[ 5.672 J106QISELSGKVJ [4.93833 [T I][NLSDDMKEVA 4.0921 '[6797 RKVEL[ 4.0513[____ 396 LYALRWKEL [3.951 312 ]SSFLSTVVsI 3.864 458 3QMEEEGEEFT]I___ 3.806_ F51371 VQIGDHSLRuJ 3.682 41 QTLHRT 3.6511 I 8 ]ISELSGKVLKL! 3.535 I537]INQQLFSAFKA 112.921 J 183171IPLSPDDLKYI 1 2.903 I 742. SRCAI 2.495 11 RQKKEFLWRI3[ 2.4273[____ 129JRQAAHGPPGL][ 2.166 IJLGFASPLHSL][_2.017 FTI~GVTSSPHKLI [1.869J____ 3NVARILNKK.1 1.869 J 7- ][v'LKEQR]I 1.866 11268 ][KLL I.KEEI 1.820 76-19 1 1KSLGIJQRLEL 1( 1.806 617 TSLQLI 1.720 J 333 ELGPDLQSR 1.602 1248 1I DLSAPPGYTLJ 1.602 879 IjEPFPDSSWYL 3[ 1.596 105j LQISELS13KV 1.558 737IFEPPREPGWL_ 1.366 806 RLMDISPFLP 11 1.311 1 053j VQTISVGLQT31 -i.iT[ 103LQVKDMACQT][1.284_]____ 289 jQAFLEQVNRI3[ 1.233 972 11TSPRHSRflYVI3._1.224 398 YALRWKELEM3 1.174 117KVQAKFERTC[156[ 99 T L F S 1.127 I E KSALIEL 1.123
I
12j 08 KAREDSEYLV I .51 [TABLE VIII 18SP2C9 V3 HLA A0201~ ~SATJSUBSEQUENCE SCORE _SEQ.~ ID [469 IGEHPETLSRL] 0.955 0 jEMHSLALQNT] 0.92 8 [1095 ISLRSRvPf 0.868 i 13.08~] 11VAFRC 0.856Jf_____I [1781FNIIDHSPVV I 0.856 1 ]QNIFLFYVYL 10.795 I DLQSRLKQLI, 0.785 13026 ]~ISPGELQVI fIRCSASENLYI 0.767 4301 0.751__ E12 73 1 ALKERRQAA] 0.713] 47jRILG QGGI 0.103 9 f1I TIVGQTEAI1 0.683 J TABLE IX 185P2C9 V3 HILA A3 9-
MERS
1211KLQRKPLPK [120.0001[ 1QLLGTINAK 167.5001 [T I IL1GWRQGK 60. 000~ F081 RLPAOSTVI( Jf20.000 1(I 186 1TGGSKI 1350I_____1 62 IELEEKTENK 9.000 I44 SLKQNIFLF If9.000 I I115I71ITLISLGLQR][8.000]1 411 1ALQNTLRER [6.000] [38 L ELGSSAESK 6.000 ___VLHSPPAVR [6.000 i .753 J NLYLDALSL)[600 113GLSSLFN:I 12601 NVARILNKK 4500 i 182 EMPEKTSOF If4.500 539~1 QLFSAPKALIf400f_____ 89 DISPF'LPEKIf400[_____ 43 YVKLRWLL(] 4.000 29 SLESSTELR If4.000 5-~1 SL LQTADR I .0 f586 RLEQNCCGY ][4.000.
[1011 PLLMSK 4. -0 00 1 1~ TABLE IX 18SP2C9 V3 HLA A3 9-
HERS
START ISUBSEQUENCE [COR SQU. I QMEEEGEEF I.0 232~ RLITDTDSFIf300 FLFYVKLRWIf300I 67 QLTHELSKP F300 [1099 rRQVAPAIEK ]f2.700 [658 If KJLADSHSL If2.700 72803 I~KPFKKEL 2.700 1 TLTEN A 2.700 333_ ELGPDLQSRi [1140 1 RTSPGM-QK I 2.250 ,721RQLTHELS 80 94 VLTEQSGLR_ If180 547 ~[LLEDFRAEL 1 .8o00 225j RLERTvERL It1800o 565 If 537_ LQQQSADK If1.800 109 ELSGKVLKL, 1.620 8.99 HTSPEHCQK I i 00 15 LQISELSGK If 1.350 RLMDISPFL SLG3LQRLEL If120 81 PLSPDDLKY If1.200 I 1194)1 GLRAGSRSR If1.200 307 LTESSSFL D-5900 9iiLLRRSISEI If 0.900 71 iRMPRPVAMW ][0.900D 4387 NIFLFYVKL [0.900 428_1 MQQELRSLK If0.900 IF 623_ LQRLELEEK I 0.900 -63511 KLGELGSSA If0.900 I 845 1[KSWDYTPNR~ 0.900( 115- VQPQ 0.900 64 LTHELSKFK 0. S 701_ RQKKEFLWR 0.720I_____ 218 TLKHEAQRL 0.60 389 SLEMEEEL __96 RQEWERQKK 10. 6001 58 NIEBETLPF 0.600 APIJQEEIJK 0.600 [~fQNIFLFYVK 1f 0.540 L122_If DLAAHLjGLR 11I0.540-[ Z TABLE IX 185P2C9 V3 HLA A3 9-
MERS
STTSBSQEC SCORE 1SEQ. ID 3 11GLSPLPHLT Ii 0.450 KLRWLLKHWj[. 116SLFNIIDHSj_________ F123[ ALLSNIQRC l[ 0.45011_____ 53 QVVENQQLF [I.5 1014 DMKEVAFSV I[0.405 39ALRWKELEM ~[0.400 688i] LLDRLDRDR 0.400 63 TLGFTRLPA j[0.400 I99 ]-ELKSARLQI ][0.360 123GQETGTNSR]0.6 4 ELEMHSLAL 10.360 706 ]I~EQGS~ 0.300 YTTNA 0.300:]J 23LLG.TIW~ 0.3007]j 17811 LPEEEENEK 110.3003 1741SLRNPRV J[ .300 861 JjDLWADRTEV LYALR EJr030 __YLTLKHA L0.300 8371 LYEFNK J .0 [7T[YL'rrSVTMT JFO.300J_____ 1073SPHKLTP[0.300._____ 117(CSPKYGSP 1.01 114~HLQFVEEEA'030 ___AIEKVQAKF030 ELQAFLEQV J .7 ___LVMDLRWQI VQIGDHSLR 0F.270 I f[1281 KLLEHALKE0.7[ FTABLE X 185P2C9 V3 HLA A3 10.- I MERS STR USEUNES SEQ. ID 622 ~IGLQRLELEEK 9.0L 564 JrRLQQQYASDK6000E Z 4~34 JFQIFLFY 3 LOOE EEH 30.000 EZZ 04T] -ESK 3.00 E1 898 1 TMTSEHCQK 1120. 000I TABLE X 18SP2C9 V3 lLA A3
HERS
START SUBSEQUENCE SCOR EQ.I 427 1[ LMQQELRSLKJ20.0001_____ 436 [KQNIFLFYVK]IiTr, 63QLTRELS~KPI ]Iio, oolo F 2737 LLGTINAKM~K 10iT. 00 NILYVI 9.000 10oLFSAFKALIL19.0001 38 IGLGGQTCFSL 18. 1001 132IRLRAARELHR L[ T 0 [2irSLESSTELRR j8___000 r QLGPARGDERj[__
K
2 ]VLHSPPAVRR ]DMKEvAFSVR 51__400_ [T]ALLEDFRAEL 114.050______ [iiI LLEHALKEER [4.000 I [314]j FLSTVTSVSR I[4.00011_____ Fl36][HLGLRAPSPRJ 4.0001_ 38.9 SLEMEEEHLY114. 000 F2 0 6- [LLKAREDSEY]4.OO 0 11 4 jj LEWQLGPAR_ 665 1 SLVMDLRWQI 34T~~ 1 LcEQLEWQL] 2.700 j 685[ KvEILDRLDRW 2400 [2E76 If T INAK 1]2-000 116_ __KTLKSLGLQR 1104.7TMGTQTVQTI 11.800 F3 9 6HLYALRWKEL]150[ 1_ 39 EMEESHLYAL 1.21511 667~~w~lI II 111_20 V797 SVSSMSEFQ R 11.200 i 42 LlLQf r VWQTADRGQPHK1I~h I 141SPVVQDPFQK 922 IRVLHSPPAV 10.900 J 11116 J[ CCSaPKYSK10901_____ 232[ RLITDTDSFLj~~o[__ 7IFLWES __00 741 j KLKESDRCSA 0.900 1A58KLASSII 0.900 1617~TLKSGLQRL [915? 70 1 iJDLSAPPGYT-L, TABLE X lBSP2C9 V3 HLA A3 10-i I I4~ERS SQ.I js~~ SUBEQUENCE SCNOR.
[272 lQLLGTINAKM][O671- 1095 SLRSRQVAP~tu1 0.600 hPLQEELKSAR11.6 1000oj SPLHSLEMSKI[0.60011_____ [329J NLGKELG3PDL]I 0.60011_____ I431. 1EJRIKKQNQIPI 0.600 53I SISEIEDHNRO0.6001 6I GQQEREQPGR) 0. 440 IFLFYVKLRWL[04 99RARGSPGD'TK 0401_____ 64 1 LTRELSKFKF] 10..45011 ___KQMEEEGEEF I.01 [37 11 GELGSSAESK](0. 40 5 738 PLSKLKESDR 0.400 i LLADSHSLVMJ LTLKI~EQR] J TLSRLGELGV 10.40011 1057] SVGLQTEALR 0.40 iTi 642_ SAESKGALKK ][0.400 512 RVQIGDHSLR [0.400! 126KQDLSAPPGY 0.360____ 1173 GLSSLFNIID[06 1037 rI DMACQTNGSR 110 3 6o0 I jGTINAKMKAF .3 72 NPCADADS 0.3001 [~1ILNKKLLEH) 0.300 1273 IALKEERRQAAJ[0 .30011 532 KQVVENQQLFI 0.270__ 301j GLSPLPBLTE 1__0.270 554 ELREDERARL][0.2701 627i1 ELEEKTENKL )0.2 333f ELGPDLQSRL 0.270] 703. RQKFILWRI -1 FLP -PS =j 2 TABLE X 85P2C9 V3 HLA A3
MERS
TABL XI 185P2C9 V3! 3 lILA A1101 TABLEXI 9-MERS SATSUBSEQUENCE fSCORE SEQ. ID 62 ]RQLTHELSK .40[0 1099) RQVAPAIEK E~g 1 43 YVKLRWLLK 4.000 110RTSPGMAQK 0 0 12 L0 aQKLPK 1 ~Z 11260 1 qVARILNKK 2 00 6.96_1 RQEWERQKK 180 ZZ 608 1[ RLPAGSTVK 1.2001J 899 M~fQK 0 111-l 85 if PVVQDPFQK i]I LQISELSGK 1428 11 ?4QQEIJRSL 10. 272 OLOIAK060 Z IZ __NAKMKAFKK 10.6001E Z Z 623 1 LQRLELEEK 0.600 777 15651I LQQQYASDK '10.6001 153 INQQLFSAFK 10-6001 93 APLQEELK 'Jo. 6001 64 _LTHELSKPK 10.5001 1 11201 KYGSPU.QRJ]O0. 4801E Z 1149I GYSESAWAR10.81 I449 LLHQK 040IIIlZ
I
121 GQT S. 0360 11255 YTLEAR 0.300[ 52 1TADRGQPHK 0. 00r 178111 LPEEEENH(o 2oK 16421 SASKAL 0 201 18 FATPVSSPSR 0.2001 I 10731 SPHLTPK 0.200 51 QDHSLR0.8j 617 LSGQ .6 431TI QNIFLFYV(01OIZ 83 7 LKYIEEFNK I I20 EPCPTELLY(1L.20 TABLE XI 185P2C9 V3 -HLA A1101 9-MERS STR SUBSEQUE1C sI.D IT~ RAELREDER 0.120~Z ELEEKTENK0.0] 122 IfHALLSNIQR 01 0 1 [643 IfAESKGALKKI010iZ
I
967I LQEELI(SAR0. 0f Fso9J-7 E 2PLPEKj0.2 I-638 ELGSSAESK 10.1201 17 QQ[RPGR0.2 112671KKLLEHALK 000[ 1 817 J KGLPSTSSK0.9 1922 If RVLHSPPAV 00 0~ fGTINARMKA 0.090 1 0080EL0[I] ___LVMDLRWQI0.0 j VLThQSGLR. 0.080 M 10.0801 1011PLHSLEMSK 1 1o] [923 VL 0.AV sII 729 i IfSLESSTELR 10.0801_____ SGEHPETLSR 10. 072 SREKVELLR001[_____ 588j EQNCCGYPR 10.0[21 7E1 1 EQGSLRMPR 10.72F] 3350 KKRVQ0. 060 671. WIf SEK0.6 I7] SDSEEMFEK 10.0601 'Ti71I FERTCCSPK 0 0 0 ___SFLHDAGLR,0O OZ fDABSDAGKK0.0 zn 1277I 110.04011_______ 1038 MACQTNGSR
W
[42 5 If LMQQELR. 110 0361 [I1] GEGPFPTSR 10.0361 38 1 QTCFSLEM 0.0361j______ [~IENVARILNK 0.06J_ (1I56 11 KEDES 10.0361 TABLE XI 185P2C9 V3 HLA A119l 9 -MERS START SUSENCE] EID [1103~ PAIEKQAC 10.030j [576 WDVEWAVLK 0.3F 830_ PPLSPDDLK 0.030I 234 0.030 E Z 533 QVVENOQLF j0.03J~ 439 IFLFYVKLR 16311 KTENKLGEL i0.030J_____ I913 HVLTEQSGL 419__ RTWSDEINL 866 [RTEVGRAGH 10. 0301 532 fKQVVENQQL 0.027I1 538 I[QQLFSAFKA 10.027 1 545 KALLEDFRA r l1--i41[ GLRAGSRSR 0.0241 220 I[KHEAQRLER 0L. 0241L TABLE XII 185P2C9 V3 HLA A1101I [STAS1 S~EQ.ID1 4 I ]KONIFLFYVK 3.600 Z 685 ]KVELLDRLDR 12.0~ 61-61 KTLKSLGLQR.1801 922 RVIMSPPV 11.800;1 11201 YSPLQK1.2001E Z 62 GLTRLEEK 1.20011 512I[y~HSLRJ 1.2001 14IfRLQISELSGK, 1.2001 1701RLPEEEENHK 154 RLQQQYASDK 1.200 1 j53QTADRGQPHK 100 fhTfSPVVQDPFQ( 0.90011 ViIFVEEEAELLR 1 0. aool 13.[PFERPLSK]I0.800 ___[WLLKHWRQGK 10.600o~ [1111 1 YFERTCCSPK]I0.600~ [iIfRARGSPGDTK 0.600 []HVLTEQSGLR I0.600 [3i6 IfRLRAAELHR 10.480 1 1 [TL 7[SVGLQTEAr- 10 4001.ZZ
I
00 00 [TABLE XII 185P2C9 V3 HI±A A1101] [s~JSUBSEQUENCEI SCORE SEQZ ID] WM16I1VTKEAQR 0.-400E ll ~6421I SAESKGALYK ]4011 2761TINAKMKAFK0.0 I [427 j LQQLRSLKJ 40 898 TMSECQ .0 86 fLYEEW 0.6 63[1GISE _.20 1254 GYTLTEN VAR 0.240 445 [KLWuLLKH040I 13.02 1APAIEKVQAK 10. 200 F2 273 LLGTINAC4K 10 2 00:z 63 HELKFK0.2001: 116 fCCSPKYGSPK :zz [jTPPLSPDDLK
[TI[GEESPLPQPK
12 SLESSTELRRI 1. 6 277 IN~AlaMKAFK K]2.j 105 ATPVSSPSR JQ1~Zh 1991 ISEPCPTELLK 0.120Ol_____ I51 T ENVAR ILNK, 0.120 tAQRLERTVER VQDPFQKGLR.]~i rl111FQKGLRAGSR 110. 1 1 "271]1 PQLIJGTINAK ]iO.osl 09011 11- ICQE4 [5][SISEIEDHNR0.8 [~ISAWARSTTTR 0.080 SPP Z 10.0801 16[HLGLRAPSPR F7080 E1 [TL]LEALKEER 0~.08~ [349[QLPARGDER 0~.8n z:1z [92 GGAPLQEELK ]0.060 [067GSGVSSPHK 0.060 57DVEWAVLKCR 000 4=10] LALQNTLHER0.6 :i TABLE XII 185P2C9 V3 HLA Allol1 10 -MERS SATjSUBSEQUENCE SCORE SEQ.ID~ IIGTPVCQDLSA 0.060 332_ KLDQR0.054 j~ 10_8 SRQVAPAI[EK004 IZT 110881 PVSSPSRSLR, 040 1 670]ILRWQIHHSEK ]0.04011 614I TVKTLKsLGL jjO.04of[ [J31j LPKADQPNNR 10,040 I E9691 WPCTSPRHSRI0 1543 AFKALLEDFR 1LLP0401IEIIII 1@6H LVMDLRWQIH 1I0.040101 NTF[mQL'raELSK 0o.0401 50S3 PVGEMSPHSR T iil 92.91 AVRRVDSITA' YVKLRWLLIi0.4 1[381 1 GLGGQTCFSL 003 701 RQmKFLWRI 0.3 147KQMEEEGEEF 006111 I ~RILNKKLLE]7003 1105SI IEKVQAK.FER 10.0 36 [59[IEEETLQFTR .36LIhLI iIRESLRLRAAR0031 Z1 607 TRPAGSTVNK 000 MDISFLPEK 0 03 [1069 II HKCLj 0.0301 62JRLTHELSKFF ,00 1IIFEDRPLSKLK 0.030 [iIfRQVAPAIEKV]007 L [532 KQVVENQQLP 0.2 II 59IfGPPEPM4LSR 0 0 4~ TABL XII -185P2C9 V3 lLA A24 TABL XII -9 -MERS jSTART SUBSEQUENCE S E Q.I I NUM.
442_1 FYVICLRWL 1360.00011 1TT~ LYAIJRWKEL '2.00I I 39.6001j_____ wm'rsvm a17.5001_____ _838_ KYIEEFI(S 12.11 1T F1lR.MDISPFL -1 2 0 1 6 0 19 JGFASPLHSL FJ20.0001I 5401 LFSAFKALL 12 n 0n TABLE XIII 185P2C9 V3 lILA A24 9-MERS 00 00 START] SUBSEQUENCE SCORE ]SNQJM.I 44 ILFYVKLRWL 20.000 53 jKQVVENQQL 631.] KTENKLGEL1 1.3.200][ 225 IIRLERTVERL 12.0001[____ *433 ]RSLKQNIFL 0 116 ][KLQHENHAL 12 12.000L____ 907 ~[KQPLRSHVL12.0] T7[F AI L D 112.00011 658 IaLADSHSL 1 2. 000 512k RVQIGDHSL 11.001_ 56 RINI.EEETL 1112.00011 f283 [AFKKELQAF -112.o 0 290 jEAFLEQVNRI 110.800[_____ 1202 RSAEPRPEL L277 RI LSPIJ 9.600 208I KAREDSEYL _q .6001 9S =K W ~P13PML. 9.600 8. 80 ___SSMSEFQRL jf8. 640 L 408_ HSLALiQNTL 8.640 I I334 LGPDLQSRL If 8.640 10523i TVQTISVGL I[8.400 112571 LTENVARIL If8.400 12941 QVNRIGDGL ]f 0 1l241~ EGTPVKQDL 8.064 i 419 RTWJSDE1L]_.0 1547l LLEDFRAEL .2
IIE
TINVGLSSL ]7.2001 56 EIDHNQL jj7.200 42 FVEEE.AELL 7.200__ 680W1 NWNREKVEL 16.600] _47 ETLSRLGEL 6.60_ 921 I.GGAPLQEEL 6.33611 249_ GAPLPGPGL 6.000 1~ DLSPPHL 6.000[ _848 DYTPNRGHN 6.000 [38-9 SLEMEEEHL 6.000 107f ISELSG3KVL 6. 000_j HVLTEQSGL [6.00 994_ TSLGFASPL [6~000 244 )fALGAL 6.000 1254 IfGYTITENVA] f 4 EPPREPGWL I_ E7__ 7 TABLE XIII 18SP2C9 V3 -HLA A241 I ~~9-MERS fSTARTISBSEQUENCE~ SCORE SEQ. ID r980] YVEGARRPL )[6.000 f829 "f TPPLSPDDL 6.000 I [427 IILMQQELRSL 6.000f_____ [404 IfELEMHSLAJf .0 f731 ~[SI PFEDRPL Jf6.000]f_____ 15_LSNIQRCDL 32[SSTELRRHL 5f .760 330Th LGKELGPDL ]f5.760 I1261] 5.000 I539 J[QLFSAFKAL 4I.800 J 33 fLQSRLKEQL 307 ][HLTESSSFL 4800 1249 LSAPPGYTL II4.800 62 DSHSLVMDL 4.800I 61 WNREKVELL 4.800 11187I VQDPFQKGL 4.800 QIGDHSLRL Jj4.800 J f 28 IGAQRL I 4.800 I 4.800 I 17 LQHENHALL L4.800 [641I LSASK 4. 800 f~[AIEKVQAKF If4.620 E [11:2 ESARLQISEL I .0 620__ SLGLQRLEL .0 102 i AICSGPG3EL ___fNIFLFYVKaL 4.400 4.400 E516 I ENQQLFSAF .2 533q_ QVVENQQLF Jj4.320 1183 HSPVVQDPF 14.200 37 DGTGH. 14.00011_______ 28 DSFLRDAGLI 4.0001 55 AWDVEWAVL 748 7M CASENLYL II4.000 382] LGGQTCFSL 4.000 11231[ SPKLQRI@L 17 ESDGEESRL 4.000 1057[ SVGIJQTEAL F lT0aS7H KCi 4 0 0 0 _LEKLL*.0 TABLE XIV 185P2C9 V3 -HLA A24 SATSUBSEQUENCE SCORE 11SEQ. ID 979 [DYVEGARRPL i NN 41 JQFVEEEAELLJ[600____ 441 LFYVKLRWLL 12.0 283 JfAFKKELQAFLII2.0]____ 838 KYIEEFNKSWI1.0 772 1[RPEREFRNRL I 440 619 IKSLGLQRLEL 1.0 11 0 1 12. 0001 RLKEQLEWQL Ill 520 214 9.9 0 354 1RGERSLR[9.0 627: JEIEEKTENXL 9[.504I 101 IKSARu.QISEL I .0 VELU 8.800 23]EQVNRIGDL T TVQTISVGLI( F.0 ___RGHmCGGGPDL][ B. 0 0 8.000 ___RCSASENLY 8.0 0 1298 [TAEPGPMEEL[ 7.92 0j 47J[KQMEEEGEEF][ 7.20 _jj 325 JSPIGNLGKEL][790j 546 11 ALLEDFRAEL]11 7.920 86WYLTTSVrMTj[ 7.50j FhISLEMEEEHJ 7 .200j___ 391 IEMEEEHYAL 7.200 7.200 jj_ 7.200 J 96 1 LQEELKSARL][720 901 JjSPEIICQKQPL][7.0 828 IVTPPLSPDDL[ F7.200 ASEPCPTELL[ F7.200 TLTENvARIL][ 117CSPKYGSPKLJ 6.600r TABLE XIV 185P2C9 V3 -HLA A241 START [SUBSEQUENCE ISCORE S"Q. I' 1024 l[NAICSGPEI .0 -4377QNIFLFYVKLI6.0 62 IQLTHELSKF1 6.600 1122 GSPKIJQRKPL ~[6.000 466 ]1FTEQEHPETL] j. 000[ 10561 ISVGLQTEAL, 6.000 =IS j LTEQSGLRVL[ 6.000 1 18 TTINDGLSSL 6.000 426 I[NLM§QELRSL 6.000 7.50 11LASENLYLDAL 16.000][ 698 IIEWERQKKEFL [6.000 1067J[TPVSSPSRSL 6.0 433 ][RSLKQNIFLF] 6. 000 114 [1GYSESARSAS6]00 513 VQIDHSLRL[_600 752 ENLYLDALSL][600 810 [ISPLPEKGL][ 6.000 A IVSSSEFQRL 5.760 33 ]ELO;PDLQSRLK 5.6 161 IrEARIENMT 11 5.2801 197_ 5.280 L 91 ][GGAPLQEEL~~____ T12cIct.KLEHAL]4.o I 3211 VSRDSPiIL 4.800 554 ELREDERARL[480 16 QISELSGKVL] 4.8001 879 4.800SWY 265 ifEGDQQEPQLL 4.800 329 INLGKELGPDL II4.800 3.28IIQRCDAAHLh] 4.8001 983_ GARRPLDSPL 4.800 248 riGGAB7pLPGPaL 4.800 31 JESSTELRRHLa~ 4.800 57 ]IAAWDVXEWAVL] 4.8001 61.7 )TLKSLGLQRI 4[.800 282 KAKKELA 4.800 360_ SLRLRAAREL IT~ M1LYALRWKEL][ 4.40 4 0 11LQFVEEEAEL 1f 4.4001 13.6 if TINDGLSSLF 4.320t_____ 225IRETVEI 4.2 00 9.96 LGFASPLHiSL 4[.000 539 ]1 QLFSAFKALLJ 4.000 609 [LPAGSTVKTL[ 4. 000 44=0 [FLFYVKaJRWL[ 4.000 1 TABLE XIV 185P2C9 V3 -HLA A24 I__l 1-MERS_ START SUBSEQI;NCEI SCORE SU. I V2±, 9 II GVTsspHKc-LI 4.0001] 1 DLSAPPGYTLI 400 I640 ]~GSEKGALJ400 I63.4]TVMTKSLGL71 4.000 J~ 612 IGSTVKTLKSLI 4.000 243 DAGLRGGAPL~I 4.000 1261 VARILNKKLLJ 4.000 706 FTLWRIEQGSLI 4.000 993 CTSLGFASPL 4.000 381 GGTCFSL J~4.000 21 I PTSPFGDSL[ 4.000 87![SPAGGGAPL IF.0[ [TABLE XV.- 185P2C9 V3 lLA B7 9- SARTSUB EE SE.ID] 12613 VARILNKKL1200 81 SPFLPEKGL 112.ooZ SARLQISEL I120.000) SPKLQRKPL )2.00 1 20811 KAREDSEYL :1 00 0r 11]_SPKYGSPKL 180.0 o[ 82I] TPPLSPDDL 1180.o00011____ I 4 EPPREPGWL110001____ 1931SPHSRDYV I 0001____ F--o7 QLTHEL 114 0.0 0011 68 WNREKVELL ]14 0.-0 0 0 F399] ALRWKELEM 1 30.000 1 913 HVLTEQSGL 12000 '294 QVNRIGDGL 120o00 11057 SVGLQL 120.000 1 51 1RVQIGDHSL20001 102FTVQTISVGL110001____ 1226 SPIGVGSEM12000 2493 GAPLPGPGL Ii~ol 1_929_1 AVRRVDSIT 11iS.0 r9 84][ARRPLDSPL 12O lr 244 1 AGLRGGAPL ~0 [1025] AICSGPGEL]i.ooJ] QAAHGPPbL J12.000] 1 SSSFW 12.oooJ 121 11 9.000 r TABLE XV 185P2C9 V3 lILA B7 9-
MERS
[START ISUBSEQUE1NCE SCOREI YVEGARRPL 1Vr 9 [_0_0_0_1 1724 1 WPCADADSI .0 620 SLGLQRLEL ~o] 00125 LSNIQRCDL 600
I
M DGLSPLPHL 6.0 F1070 VTSSPHKCL 6.0 I 24 9[ .00 82~ KGGPPEPML1600 __102 APAIEKVQA 16.000 i [32j SSTELRRHL 6.0.00 I ___SVTMTTDTM 15.0001 11169J TINDGLSSL 400 14 fSPRDSDAES J .0 [63.3 STVKTLKSL 4.000 [121 ETK [753 NLYLDALSL .0 LLRRSISEI IF_.0 [TjLITDTDSFL F4 .000 [438 NIFLFYVKL Fr =0 o HSLALQNTL]~ .0 10031 HSLEMSKNL 4.000[ 3071 HLTESSSFL 4.000 _51_1 KEREVHQIKJ 238_ DSFLHDAGL400 92[ GGAPLQEELJ[400]_ 532 QVVEINQQL 4.000 53[ QLFSAFKAL 433 RSLKQNIFL 69 fWERQKKEFL f4olI_____ 662_ DSHSLVMDL 400 994_ 7_71 QIGDHSLRL 114.000 7371SIPFEDRPL, 1E i 4.000 641 11SSAESKGAL 13.7[ LQHENHALL if4.00 907_ KQPLRSHVrL L I 3347[ LGPDLQSRL7 Ff400 431 EjSKN .0 297_ RIGDGLSPL 400] 330 LGKELG=DL 43 ETLSRLGEL J .01 (TABLE XV 18SP2C9 V3 HLA B7 9-1 I MERS rSATSUBSEQUENCE jSCORE SEQ. ID [211GLHSDSHSL ~f4.000 28 DSLESSTEL 4.000 1097 4 [.000_ 382~ IJGGQTCFSL 4.000 47 LMQQELRSL 4.00 [338 JLQSRLKEQL r4.000_____ j218 jTLKHEAQRL 4.000 [7 CSASENLYL 4.0 i 707~ LWRQSL[ 4.000 419 RTWSDEU 4.000_____I 658 JLADSHSLi #[400 596 RINIEEETL if4.00 El 109~ EzLSGKVLKL 4[.000 4.0001 18 ASEPCPTEL 3.600 108_ SSSS 3.000 I999 ][ASPLESLEM J[3.000 j 949 RARGSPGDT 300 1714 SLRMPRPVA _225 14 KPSEASHPC j .0 1243 TPVKQDLSA[200 1189 DFQK(LR.[ 2.000 j77[ MPRPVAMWP [2.000 1079 TPKAGGGATJ( 2.00 78 ][EPGWLGEGA .0 TABLE XVI 185P2C9 Vi HLA B7 10- MERS STARTISUBSEQUENCE SCORE SE.ID VARILKKLL120.000 IT087][T;Vs-sPsRs 120.000[ 1983 GARRPLDSPL 1120. 000 325 H SPIONKLGKEL]180.000[ T~]LpAos'v~cI~] 8.000 J 21 IPTSPFGDSL 80.000 I 87 SPGAGGOAPL ii80.000 89 EPFPDSSWYL Jj80.000 1 ]VSRDSPIGNL 160.000 554: J ELREDERARL 6 0. 0 0 0If____ 360~J SLRLRAARELJ40.000J =281 IQRCDL=AAML_ STABLE XVI 18SP2C9 V3 HLA B7 I
MERS
START SUBSEQUENCE SCORE SEQ. ID 1IRPRFRRL[ 3 6. 00 0__ F-5971 GvTSSPiKCL 30OO[ 00 SPECQ__L 24.00 o0 71 IMPRPVAMWPC][12 0. 0 00 3 1 9 YPRINIEEET] 20.000 I_ __260 NVARILNKXII 20.000] [iQPNNTSPGM] [352[PARGDERSLEI18.000][ fl ARRVDSIETA~l1.0 [26 NLMQQELRSL 12.000 F [197 ]ASEPCPTEL1112.000_____ [7141 SLRMPRPVAM 0fi.000 [792 ILLQRAVSVSSM 1.0 12 PGRDEAPSI if8.000 i 124 ]LLSNIQRCDL 6.1000 248IGGAPLPGPGL 1-6.000_ [102]GPMEELPCSA 16.000 i 7-3_ PLSC 6.000 99 147 DLSAPPGYTL 112211GSPKLQRKPLJ[ 6.000if 94 IAPLQEELKSA 6.000 8101 ISPLPEL 6000 198 ASEPCPTELL 72 9 TAB PGPMEEL 5.400I 31-1 ELGPDLQSRLif 4.000 11 1256 ~[TLTENVARILJ( 4.000 11 1168 jTTINDGLSSL[ 4.0001 T1 ISVOLQTEAL[ 4.000 1 106 [QISELSGKVL 1[4.00 0 91r GGGAPLQEEL 4.0 1._1 538 ifQQLFSAPKAL][ 4.0 828f VTPPLSPDDL] 4.000 11 LHEHL 4.000 i s7_ RGHNGGGPDL If4.000_i 1 23IfEQvNRiGDG.L 00 00 TABLE XVI -185P2C9 V3 HLA B7 I ~MERS J START SUBS EQUEN'CE ISCOREl SEQ. ID 640 GSSAESKGALI11 4. 000 [329 NTJGKELGPDL 4.000 [612 -IGSTVKTLKSLI, 4.000 4.0001 798JVSMEFR 4.000 L[341 1[ RUEQLEWQL[ 11 400[ 74 JSDRCSASENL 4.000 I CSPKYGSPlajI 4.000 if LQMVEEAELJ4.000[j 33[DLQSRLKEQL 4.000o[ 67 IKWRKE]4.000 I j~VTrIKHiAQRL1I 4.000 11 I43771 QNIFLFYvKaL] 4.00= Ic~vH~ L~j 4.000 [381 ]GLGGQTCFSLj 4.0 706 FLWRIEQGSL 773]I LSAKALL 4.00TI_____ 51 VQIGDHSLRLiJ 4.000 [TJSSKEDVTPPL[ 4.000 4. 000 [93ICTSLGFASPLJ 4.0001 4.000* 819 JLPSTSSKElV 4.00[ 617]TL~LGLQL J4.000 IT[QTVQTISVGLJ 4.000 1TT1NSRGRSPSPI1 4.000 RLI4.000L T~LPQPKWEGPV[ 4.000 fTJENLYLDALSL[ 4.000 1279]IQA.HGPGLJ 4.000jj_____ r81FSLEMEEEHJ. 4.000 3.600[ ___ACQTNGSRTM j [~FASPLHSLEM1[ 3.000 799 1[SSMSEFQRJM F3.000 1 I YALRWKELEM ]3.000 107!EVAFSVRNAI ]3.000
I
IEPRPELGPGQl ]ih-! ITABLE XVIZE 185P2C9 V3 HLA B3501 STARTl SUSQUENCE SCOR SEQ. ID
NUM.
879m.I EPFPDSSwY 60.0001] 1123; SPKLQRKPL 60.000 Z Z 1118. SPKYGSPKL j60.000 122 SPIGVGSEM 140.000Z I74 )[EPPREPGWL 107MSKNLSDDM 130.000 E~ 829 PPLPDDL 20.000 J 122RSAEPRPEL 20.000 990 SPLCTSLGF 120.0001~ 811 PFLIIG 20.000 18 ASPSF20. 0001_____ 17241 WPCADAflSI 143Tl SPRDSDAES 112.0001F 973_ SPRHSRDYV 17.0001 1097J RSRQVAPAI 28~ DSLESSTEI 110.00011_____ [1003 jfHSLEM.SIQNh 641 jjSSABSKGAL 3i.0.0001 972 110.0001r zz 433_ RSLKQNIFL ioof 102 SARQ__E 1261 VARILNaK 1941 KPSEASEPC j_ 799_ SSMSEFQRL 7.500 162[ 17-QKW~ ~I 748 SSNY 39 ALRWKELEM 1079[ TPKAGGGAT 61 WNREKVELL 1[j oI 30 LGKELGPDL 6.0001 72 IPFEDRPLS 16.0001_____ 1302 GPMEELPCS][6.000I[_____ 280 ][KMKAFKKEL 6.000_ 125_ LSNIQRCDL ]j.000] 408 1HSLALQNTL 662_1 DSHSLVMDL IT.0001 796]1 VSVSSMSEF J1 5. 000] 99411 TSLGFASPL TABLE XVII 185P2C9 V3 H LA B35011 9-MERS STRTSUBSEQUENCE SCORE SEQU.
ID
2381 DSFLHDAGL 15-00011 1131HSPVVQDPF 5 .000 128kTLJO{EAQRL 4.50 1801SMSEFQL 1_4. 000 11 29 1RIGDGLSPL 4.00:0]l 1861RLMDSF 114.0001 77 RPLSKLKES 14.000 =74 1 1*EN Y j .0 7.19 ]RPVAMWPCA 114.00011_____ 44S K 3.00011_____ ___GPGRDHAPS 13. 001 161 HNRQLTHEL -13. 0001_____ (TW1RINIEEETL 3001_____1 1 94 1APLQEELKS .001 1 12111 GPGQETGTN I13.000 1681KLLADSHSL i 1111APAIEVA]*T 1491RTWSDE1KIL1300I 1 321 11 VSRDSPIGN J113. 000I 122~1 KVVEQQL 1I.00I 24 SPFGD SLES 113.00011_____ 1961HSRDYVEGA 13.000__ 1-3' SLKQNIFLF 3[ 300011_____ 1232 RITDTDSF 1[T 0 01 113 TAAGGEGPF 1.O~ 1280 #QAAHGPPGL 113.00 11 IQJQHENAL 3001 664 HSLVMDLRW 2.5001_____1 Fr1 ESDGEESRL 12.250 1 10871 IrTPVSSPSRS 12.0001 94 FPTSRARGS 1 200 01 116.911 TINDGLSSL 12.000 iI1 319_1 TSVSRDSPI F512 I RVQIGDHSL oooI0 78 11EPGWLGEGA1 0 F233 ]ILITDTDSFL_ ]2.000 11o10r]I SPLHSLEMS 2.00011_____ [3E3 SPLPHLTES 2.000
I
307 609II LPAGSTVKT 19691 WPCTSPRHS 27 EPQLLGTIN 12. 000 124 SPSPIGVGS F2 2.0 0011] 12 0L TABLE XVII 1P29V3 HLA B3502 1 SUBSEQUENCE ISCORE SEQ. ID 11IKGGPPEPML]20I_____ 50 H~ISPHSRVQI]f 2.000 90 QPLRSHVLT] I.0 I KQPLRSHVL 112431H TPVKQDLSAJ12.0[_____ LGPDLQSRL]~~1_____ 18 i MlEKT F TBEXVIII 185P2C9 V3- L TLE B3501
SSEI.
10211GPGELQVKDM] o0~ 116 JQPNNRTSPGM 1 5I6I RARLRLQQQY 36000 051LPHLTESSSF ljj3O jjjjjjjjj3 IS23J1 PPL000Zl F9601 LJ1W20. 000 171VSPSS 110_01 325SPIGNLGKEL 2.00]ZII 87I1EPFIPDSSWYLJI20-00 609 1 ILPAG3STVKTL 20.0001 F 11IPTSPFGDSL' 1i:i R38FSLEMEEEH L]115.0001L 341E1RLKEQLEWQL 112~.000[ 772RPEREFRNRL JI 2.~ [1 39 QSRLKEQLEW111L250~~ 89-0 ITSVTMTTDTM 110.000 [1411 TSPGMAQKGY Io 143.31 17991 SSMSEFQRLM4i. o~ 101_ KSARLQISELIF -o ooo 206 IILLI(AREDSEYJ[.01 554 1261][VARILNKKLL 9OOj 983 GARRPLDSL][900[____ 282 ][IrMEjLQ I574 ]AAWDVEWAVL][.OI____ 19 3_jgIRDHSP~cT 1007FI E TA13LE XVIII 185P2C9 V3 HLA 00 00 iiSCRE SEQ. ID START SUBSEQUENCE] SCORE 11730~ IDSIPFEDRPL 17.500]j_____ F78 VSSMSEFQRL FE1 NSRGRSPSPI 9~ YALRWKELEM 6.0 0 .956 DTKGGPPEPM 6.000~ 4 457 KQMEEEGEEF J[6.00011_____ [7TI LQRAVSVSSM 6.000I____ E 594 IjYPRINIEEET] ~pjF F901 JSPEHCQKQPL] 6.000 1 I' RTWSDE1t-LM 1 6. 000) 71[SLRNPPVJ 6.000 14 I1SLKQNIFLIF06 l IVGESDSEEM IF01 I3.97 EASEPCPTEL F6 6. 998 FASP SLEM 1 02] 83IPPLSPDDLKY][
II
[117J ICSPKYGSPKLI ]GSTVKLKSLrI [TT]DSPLCTSLGF I5.000[ [T640]1GSSAESKG1ITIS._______ 81071ISPFLPEKGL 1ITf_____ ISVGLQTEAII S.__I_000__ [122]GsPKLQR KPL [1J ESSTELRRHLf.OO[__I ___FQRLMD ISPF [T J~LLADSBSLVM 14001 1302I GPLPCSAj[401.oI_____ 819i LPSTSSKEDVJ[.00l_____ rfJ91KPLPKAQN[4001_____ 4f .000 597_1 INIlEEETLGF 3.000 360sLRLRAAREL 3. 000 Ii GPARGDERES] FT h TKTKLGL 113. 0 _0_0 I KOMKELg. 1024 jAICSGPGEL][.0 23DAGLRGGAPL i 6T717 ]TLKSLGLQRL]1300[____ RQLTHELS1 .0 I ~IT[SAFKALLEDF 13.0 TI LSDM KEVAF 113. 0 0 0 10441 ]GrIGTQTVF3.00~ -1265fiLLEHAL[ 00= 1 TABLE XVIII 185P2C9 V3 HLA B3501.10-MERS______ F TART [SUBSEQUENCE ]SCO SE. ID F-17IfHAPS IPTS PF 3. 00O oo_ F1300] EPGPMEELPC 4 3 1 ELRSLKQNIFI3. 0 0 0]I__ I7RQKKEFLWRI 2.4 0 011_ F7391 LSKLKESDRC 2__5__0 F169I TINDGLSSLF F1061I QISELSGV F2.000l______ F12561 TLTENVARILI2 926_ SPPAVRRVDS 12.000 If__1 1502 11 FPVGEHSPHS 0 ISPLCTSLGFAII.00[______ j KLQHEN*ALL120O_____ 53 KQVVENQQLFIVOOO[_____ [PPAHRPEREP
___EPMLSRWPCT________
SPGMAQKGY_ 2i .000~] 1 [SPFGDSLESS 12.000J [TIG [PGQETGNS 12.00011 I [CTSPRHSRD 12.0001 r JAGHEDSTEPF 2.0 TABLE V 18SP3C3 HLA Al 9-MERS TATSUBSEQUENCE]I SCORE ~SQ. I 1 I81 GREPLPAPY J1 45. 0 0 23 RAEQRNFLR 45.oo 0 0 4882J VCEPEALFS 45. 0 0 0 327 KQEQTDFAY 1( 33.750j[____ 2931 KQEYHDPLY 113-.500 HSENLAF.SI6.750l________ L~ 1VSEEDTVPL 2. 700[ I~ 1LSEPCPPYP 2.700__ VT1IKQEGVGAFR 2.700 Hq I TEbFSGPS 2.250
I
F508 KAEFDRPVS J1.800I 32 LAEAQVPDS 11.800If_____ Ii6IHSPTTRIKK [TI -SEDLFQDL7 1 35 LMDPGSLPP 120I IL47711 KVAGERYVY .00 TABLE V 185P3C3 HLA Al 9-MERS START ISIJBSEQUENCESOE] SEQ. ID 52 HLDESPAYL .00[ 279 QLECPPY [ioo f 308 AVDQCGVNG 1.00__ 76 YLDQQVPYT 1.000 97 EALIGPLGK -i6 FREGPPYQR I 140 SDEQFVPDF if0.900 -763[ KKPSPRT 0.900 I 36[DSDVTGCAS 0.750 QSPLQPFPR 0.750 35611 SPGDGAMGY 0.625 38 DVTGASMY 0.SO00 TiF1LLDDP TNAH 050] 2451 LGEHSSVFQ FO 18771 HGQLYJ 53 LPELsAGPAQ jfAGERYVYKF 478[ VAGERYVYK) 0.0 3601 GAMGYGYEK E:0.0 SCSVPPAAPA] 0.300 _127 FQTLE 0.270 219 11QPFPRAEQR 25 2 fl YHDPLYEQA[025 456_1 AMNYDKEJSR 10.250 11 1PLDSEDLFQ j0.5 49 1FDNRPL 196I AYDPPRI j .5 433__ GMEFKLIEP9022 490~] EPEALFSLA[ 0.225 440] F8 VA 0.225 371SPAAA 0.200 mllNCLLRP~qK i 0.2 487_ FVCEPEALF 0.200jf______ QV 1[r. 0.200 1 52][ SAPAWGPGR 0.200 LAGPAQPFG 0.200I____ VSAPAWGPG 3S2_ FSGPsPQDG 0L. T3DSDEQFVPD 0.150 SPGNG3SLR 0.150 235 71 TSQPHPGHG 10.150 3 3011 QTDFAYDSD 0.125 [TABLE V 7 l8SP3C3 HLA Al 9-MERS F TR SUBSEQUENEJCE SCORE SE.I [1457 IIVPDFHSENLI J 1 13 7]l VPDSDEQFV 015J [207 [SPAPGALGO 0.125 F40 DKLSRSLRY 012 III_ EEDTVPLSI{ 0.125 f_41 QPFGPKGGY 0.125 [385 EDQGV 0.125 f311~j QGGVN(GHRY 0.125 __RPSPAALGA 125 [5359 ELAGPAQPFI YLGEHSSVF I-1 44[VARLWGIQKF- if 0100 I*~][YPGAGVVIK] 0.10
PAAPAQ
T
PR jO.l00 46 SLAFPDNQj 0.100 I~ 136 IfQVPDSDEQF ji o.100I 1 ___AWGPGRAAR] 0.100 T~~[FHSPTTRIK][ 0.100 __LIGPLGMJ 0.100 13 LAFHSPTTR 0.100 F- 97DLFQDLSHF 0.100 51 ISEEDTVPLS 0.090 Vh19 EQCLYSSAY J .7 ___QQVPYTFSS '252 FPDIH 12361 SQPHPGHGY 0.075 44 RSLY YYEK 0.060 397 1 REGPPYQRR.J 0.050 S8 GPAQPFGPK 110.050] 2I DPALSCSRK 0.050L][ 1358 iiGDG;AMGYGY 005 I 1F2341 GTSq0PHPGH ]Il 0 TAB3LE VI 185P3C3 HLA STUBEQUECE SCOR[ SEQ. ID 170~W 1 RTDPALSCSRf12S.000[ 48VCEPEALFSL 45.0001 f280 ILSEPCPPYPQ ]I 2 T7 0 0] j438 ILIEPEEVARL]118.000][____ [T DSDEQFVPDF i1.5.000i_____ 1T5]E EASLAF =11.250 i 00 00 TABLE VI 185P3C3 HLA Al 10-MERS [SATjSUBSEQUENC EII SCORE
SEQ.
[417 If LLDDPTNAHF 11 10.0001______ F7 67 IYLDQQVPYTF I 10T~ [2 3 51 TSQPHPG3HGY 7.500]-i F 4 9 9 I FPDNQRPALK -*If LMDPGSLPPL 5.000 51 IVSAPAWGPGR[ 3.000If_ 515 VEEDTVPLS]I 2 ___700_ 52 ILSHLDESPAYI 1. 500 1 DSEDLFQDLSJ 1. 350 [357 IPGDGA4GYGY.i .250r [T961 AYDPPRQIAI I 120I [330 QTFAYSDV~f120I 440 1f EPEEVARLWG] 1. 125 J [4 F LGEHSSVFQQ If1. 125 28IfGREPIJPAPYQj0.0 21 IGQSPLQPFR[07 38 AVD QGGVGH f050I_____ 155[FHSPTT'RIKKcI 0.500 7347J[HTEGFSGPSP![ 0.450 47 ]KVAGEPYVYK[ 0.0 QVtFS 0.300 SCSRKPPLPY 0.250 297 HDAYG[ 0.250 ]PICHSFTS][020] 741 ]AGYLDQQVPY][020] 3 93 [VGAFREc3PPY I 0.250 48]LDDPTNAHFI[ 0.250 187 ]HGEQCLYSSA 0 0.225 516 ISEDTVPLSH 47781 [VAGRVK 0.200 197 ifYDPPRQIAIK][0.200]_____ 437__ KIEPEEVAR J0.200 37]SVPPAAPAQ] .0 -5087 i5 KEFDRPVSEIO.1BO][___ -260 ]1 HSFTSQGGGR]F1 0.1.50 1357] AQVPDSDEQFII 0.150[ 495]IFSLAFPDNQR] 0.150 278 I1 HQLSEPCPYI015 352 11 FSGPSPGDGA 11 0. 150 I I TABLE VI -185P3C3 HLA Al [START SUBSEQUENCE SOE[ SEQ. ID I NUM.
'13 3 ASMYLHTEGF]J01011 '11497 IHSENLAFHSPji 0.135 IIF7 FQETWLAEAQ]I lVPDFHSELa]( .2 I RP A EDR] 0.125 28 IYPQQSFKQEYII 0.125 [17 ISEDLFQDLSH 0.12 5 136IIKQEQTDFAY JJ0 1 [14 1 GoPGAGAILLRI1_0. 12 5 385 JiEGDIKQEGVGI 0.125 I
I~]DTVPLSHLDE]_____
'[-374[PDDVCVVPEK 0.2 452_ 0.100 15~ 2[ _NLAFHS PTTRJ010 212 1[ALGQSPLQPF 0 .100 IF [r -111SLPPLDSElL 010 1[473 GIMQKVAGER1 0.100 ]LLRPKKSVRu1010 ]LAFPDNRPA[010I____ T jT[IUSRSLRYYYJ[010I 359~ ]DGAMGYGYEK][010 f__ 1525 ifHLDESPAYLP oFio NAHFIAWTGRJI 0. 100 F-47I EVARLWIQK][ 1 2831 IPCPPYPQQSF 132 f LAAQVPSD][090 I gsII.REALIGPw][ 0.090 1 300]ILYEQAGQPAV J[0.090 14]AQPFG3PKGGY[0.7 J fKSPAPGALGQ r075 F-249 I SSVFQQPLDI 0.075 111IFQDLSHFQET][ 7 F-310 I DQGGGHRY 29 KQEYHDPLYE] 542 f PFGPKGGYSY 0.050 427JIAWTGRGMEF 10.050 I L[ 0.050 377 338 jfDVGCASIL[oo [83 1iYTFSSKSPGN]11 0. 050 455 JPAMNYDKLSRJF 23 fQPHPGHGYLG]11 0. 050 TI[SKSPGNr.SLR][000I____ 407 11 ALQLWQFLvA] 0.050-o- TABLE VI 185P3C3 liLA Al 10-MERS START jSUBSEQUENCE~[SOE] J I 33 jiVTGCASMYLHI000J_____ 4_68 TABLE VII 185P3C3 liLA A0201 9-
MERS
START SUBSEQUENCE1 SCR sc SE. I QI.MQFLVAL 1[15 4 9.6 7 1 407 1ALQLWQFLV] 403.72 76 1f YLDQQVPYT]11173.453Jj____ 4-16 ]1 AIALDDPTNAJ[7.6 48- CEPEALFSL J[22.719 I [ALLRPSPAA I[183 43 7 j POIEPEEVA- 14.322 521YLPELAGPA[ 12.181 40671 GALQLWQFL 1r 10.26 1J LLRPKI7KSV] 8.8 1521 .NLAFHSPTTJ 7.452 I 439 iiIEPEEVARL J[6.659 IE 525 HLDESPAYLJ[ 6.551 9 ALFIGPLGIU.J J6 3187 3011 YEQAGQPAV IF 6.221 7371 KAGYLDQQV I[ 3.81 F SVFQQPLDI j[338 339 VTGCASMYL Jr2.774 21 LLRPSPAAL 2.760 4087 LQLWQFLVA II2.468 42[TNAHFIAWT 2.33 3461 YLHTEGFSG 1.8 1371 VP.DSDEQFV J[1.698 37~1] RPFPDDVCV r 1.680 124T SHFOETWL J .0 991 LIGPLGKLM 1 1. 11 276 YQHQLSEPC Jr 1.1357 2641 SQGGGREPL]J .6 28[ ALGAGSRAC 0r .99 4 =0GAGSRACSV J(0.966 480 GERYVYKFV_) 0.84811 4361 FKLIEPEEV Jr0. 806 105] KLI4DPGSLP 0.791 362] MGYGYEKPL J[0.759 21] YQRRGALQL 0.7.57 447 GIQQNRPAM 0.683 46111 KSRSLRYY J[0. 60 wGPGAGAAL Jr0.641 AhBLE VII 185P3C3 liLA A0201 9-
MERS
SUBSEQUSENCE SCORE SEQ._I 12 [ETWLAEAQV Jf0.601 YLGEHsVF- 0.7 41 rLVALLDDPT] 0.543 IAEFDRPV 0.512 F211RQIAICSPA 110.504[ 40 YEKGIMQKV 0.o501 J 1 Jf 0.380 F2551PLDICHSFT II0.361 IL ElTDFAYDSDVII0.357 3.7 FQETWLAEA II0.341 4.93[ALSLAFPD 0.320 F323 IL VVIY(QEQT 0.20 279_ QLSEPCPPY 0.306 131JrWLAEAQVPDif021I C1RPQXS 0.7 FKQEYIIDPL If0.274 F442J[EgpnaRllG 0.262 7499]1[PRPAL 0.2S F :II I_ 27FALGAGSRA 0 255 71-91 AALLRPSPA 7175711 LSCSRKPPL:J] .3 272_ LPQQ J[ 0.237 216 SPLQPFPRA J[ .228 j ~~R.PVSEEDTV Jr0.222 PLRPFPDDV 0.27 __LLDDPTNAH Jr.208 227 RNFL.RSSGT r o-i~o 483~] YKFCEP7JI.6 881 GEQCLiYSSA J i17 QSPRTDPAL 0 0139 14f GPGAGAALL iF0.139 I 326 flIKQEQTDFA H0.130 44 fRLWQIQKNR J[0.124 47 FVCEPEALF Jr0.123 _A 0.117 1121 LPPLDSEDLj 1 0.1 107 MDPGSLPPLJf i j 9 71KSVRWGPGA Jr0.114 46 QKVAGERYV J.0.106 454 RPAMNYDKL l[ 0.102 7237 QPHPGHG;YL 0f~.100 IL~ 125 SHFQETWLA If0.096 =A 18] LPYhHGEQC IL008 SMYLHTE;Fj '0.0 84 ]j [TABLE VII 185P3C3 HLA A0201 9- 00) 1 MERS 8 START SUBSEQUENCE SCORE SEQ. ID 314~VNGHRYPGA 10081 ct f I VPPAAPAQT f 0.083 Ti~jFLVALLDDP '.n134]IGCASMYLHT 003 12211QDLSHFQET I~03 77FQTPRPQVSA 09.0691I _34_I RACSVPPAAj 0 .__16:P 9 ][GNGSLREAL 0619;8e)_____ 2 NGSLREALI 0.068 17 YDPPRQIAI 0.067 333~] FAYDSDVTG 0.2 00 15s VSEEDTVPL ItV.062 [T~][TGRGMEFKL 0.06_ [3TJ[QPAVDQGG5 .09 ___LSHLDESPA 005 ___ENLAFHSPT 1I 051771 TALr VI 185P3C3 HLA A0201 9- TABL VII ERS (SAT USEQENC SOR SEQ. I 40.011 12 IALLRPSPAALI[79.041 I 06T1 LMDPGSLPPL 12 4.130 I [141A.LSCSRKPPL 121.362 F IGALQLWQFLV 2I 0. 73 011____ F-1-44 J17.274 1 IFLVALLDDPT 16. 7971 1AMGYGYEKPL 115.428_ [:~Ll1FEGDIKQEGV if12.49811____ [T58~ I KPLRPFPDDV][______1 [iISLPPLDSEDL 11.61 [3IFAYDSDVTGC ~7 8 123Wi DLSHFQETWL .12 429 WTGRGMEFKL1 7.916 [98 IALIGPLGKLMI 4.968 254 Q1PLDICHSFTf4.91 [407 ALQLWQFLVA[ 3.87011____ 131 WtAEAQVPt)S ~[3.233 1 79]VVPEKFEGDI [3.143 121 FQDLSHFQZE 2.641 I TABLE VIII 18SP3C3 1{LA A0201 9-
MERS
FSTART SUBSEQUENCE CR SEQ. ID IISLREALIGPL1I1.9 JThALKAEFDRPV1I180I [31jRPFPDDVCVVjIF.584 236 1 SQPHPGHGYL 11±4 24 IYLGEHSSVFQ]j V461lKLSRSLRYYY1[TTl F29971PLYEQAGOPA 11 1.4 I128 QETWLAEAQV 1.352 I405 ~fRGALQLWQFL1.30 1524 IfSHIJDESPAYL F1.238 41 ALLDDPTNAH]J 1.130 0 305 11GQPAVDQ153VI 0 0.917 153 ILAHSPTRI1091 465--71SLRYYYEKGI10.9 13 8 DVTGCASMYL11071 V JTLPYHHGEQCI 489 1CEPALFSLA10.3_____ IF25-0 SVFQQPLDI~j .41 F43 ILEEVRJ .3 [TT1FvCEPE1 I 3T13 GVNGHRYPGA (0.652 3 TISVPAAPAQTIf062I 13 ~WGPGAAAjLL1061____ 457 ]MNYDKI.SRSL[ 0.6227____ 1 150 ]SENLAFHSPTI .5 49=3 ALFSLAFPDN 0.524 r 44 1AQTPRPQVSA [rPLPAYQHQLI1 040 1 F4751 MQKVAGERy~vL 0.6 315 ]NGHRYGAGVl 0.454____ 415 IVA'LDDPTNAI 0.434 LSHQETL10.4131 LDEDLFQDL 0.393 I I151SAYDPPRQIA!LP0.371 2791 [QLSEPCPPYP 0.336T[ 532 ]YJPELAGPAQ 0[.281k] 22T1 FPRAEQRNFL:?wII A~ALLRPSPAA1:0.255 41 [LLDD LTNARFI 0.208 00 00 TABLE VIII L85P3C3 HILA A0201 9- HERS START SUBSEQUENCE SCORE SEQ. ID 488 IVCEPEALFSL][ .0 7S 11GYLDQQVPYT][0.7199 1 2 IIALGQSPLQPFI[011I 51 4 IfPVSEEDTVPL[ 0.6 72[FiaGYLDQQV][:.164 jf_ 448 WGIQKNRPAM][019 2 09 IfAPGALGQSPL)(019I 76 j[YLDQQVPYTF][017 346 IfYLHTEGFSGP 0 1 0 1 56 0. 124 446 IRLWGIQKRRP[ 0.124I 344 IfSIYLHTEGFS][ 0. 12 3 I 203 I AIKSPAPGA][017I 325 fVIKQEQTFAIr0.1 421 II TNAHFIAWT[0.9 522 II PLSHLDESPA o1o 2S721 FQQPLDICHS 28 [ALAGSRACS][ I -iS FSPSPDGA 0.073ZLIf__ 527 fDESPAYLPELf 0.,073 .263 I1 TSQr.GGREPL][008I 97GUGSLREALIJ[____ 25IfQSPLQPFPRA[002I 49 [A.FPDNQRPAL]11 0. 061.I7 41[WQFLVALLDD]0.5 41 fLDDPTNAHFI][004I 18 2 IPLPYHHGEQC If 0.,0 ITABLE IX 185P3C3 HLA M3 9-HERS ISTART [SUBSEQUENI SCRj SEQ. ID
NUM.
S1_7 DLFQDLSHF If TI 244_1 YLGEHSSVF _47 KLIEPHEVA _02 1461[ KLSRSLRYY 1.8001 474i IMQKVAGE IF___0 Z A L Q L W Q F L V I 1] RSLRYYYEK 1.5 I F-3sl ELAGPAQPF]iT F44 VAP.LWGIQK 37KQEQTDFAY LLRPSPAAL 1[ 0. 900I KQEGVGAFR J10.810 GPAQPFGPC if080____ 1391YPGAGWIK f000_____ LIEPEEVAR I201 SVFQQPLDI_ 341 ARGP 10.60011 20 1IALLRPSPAA ir 471FVCEPEALF ji 0.450 1f__ fKQEYHDPLY10361 EI1ALLDDPTNAI IFIo:1I [T fQPFPRAEQR 10. 3 0 YLflQQVPY10301 [lI VAGERYVYK i: 193. 11 CLYSSAYDP_____ FiFILLDDPTNAR f030 f__ QVPDSDEQF If VIKQEhT] 10.200rz z 23T~ DLSHFQETW] _433_ GMEFKLIEP [~ISQPEPG;HG3Y__ 1381DVTCASMY 1 81__ 1971 ]EALIGPLGK 0.1801 1 r IfNCLLRPKNK -I0.101 105 I KLMDPGSLP 10.135 541 JjQPFGPKGGY 10.135 5 fSAPAWGPGR] .2 TABLE IX 185P3C3 HLA A3 9-HERS1 STARTISUBSEQUENCE] SCORE SEQm. ID1 44 Ij RLWGIQIQn7R 1 p2 oo0 409 1 QLWQFLVAL 13.5001 GAMGYGYEK 12.15011 3441 SMYLHTEGF][001f_____ R_279 QLSEPCPPY _1_9.0001 456 fAMNYDKLSR 8[.0
QVPYTFSSK][
4 SLAFPDNQR _4 EVAGERYVY W~0I ITABLE IX 185P3C3 HLA A3 9-MERS 00 00 STAR SUBS EQUENC ElSOE[ U.I .475 [MQKVAGERY II0.1201 19EQCLYSSAY 10.1081 I2] CLLRP1KKS 0.090
SLREIG]ITI_____
____DVCVVPEKF IT]J ___K-SPGNGSLR 10. 090j[_~ 1153 YLPELAGPA 090 1369 11 PLRPFPDDV 10.0901I r19811 DPPRQIAIKI 356 ]1 SPGDGAMGY 110.080 11 1431NRPANNYDK]kW1____ 1721 DPAXJSCSRK 1.61 193_ YSSAYDPPR 10061 339~1 VTCASY 2151 EQSPLQPFPR I oo~I[ [17[CSRKPPLPY][~~J [TT[ALKAEFDRP [10. 01 346_ YIJHTEGFSG ILMDPGSLPP LSRSLRYYYj 0.06 SLRYYYK1 0[.060 J 7~AGERY 0.054 ][T~1 408 ][LQLWQFLVA .51
I
34_1 GTSQP GH I .41 3231 -GVVIKQEQT10041 43_FLVALLDDP 10041 1375 LfDDVCVVPEK J1 0. 0 413.1 22ALGQSPLQP 0V,040I 7 PQQFKQY 10.0361 3S8jj_ GDGAMGYGY I1.36 142 IYQRRGALQL 110. 036 1 E fSLPPLDSED] 10.030 1 1 AIKSPAPGA 11.3j S1.31 qf WLAEAQVPD 10001_____ S284 FCPPYPQQSP 1.3 [331GVNGHRYPG 7 TI1__ [f1FRBGPPYRI00~1____ r4061 GALQLWQFL 27_ [27211 7Fo LPPQHL[ -o'I TABLE X 185P3C3 !HLA A3 START SUBS EQUE NCEI SCUEMI.I 41[KLSRSLRYY16.0] W__KAGERYVK 11 9 00] ___YLDQQVPYTF If .0 [T409[ QLWQFLVALL 1f__ __9.000_ ___LLRPKNKSVR I 600] [22ALGQSPLQPF, [7 9q[QQVPYTFSSK 14. 050[ [Th KVGERY=~]_ [TTINLAFHSPTTR11.01 4171 LLDDPTNAHF][ 2. 0001 GQSPLQPFPR[160_____ 3011LMDPGSLPPL][ 1.3501_____ [407 1 ALjQLWQFLVA] 11.2 00 1T~ 46SLaRYYYEKGII[09Ij i11 SLPPLDSEDL ][TI F20 JAILRPSPAAL][ 0.900[ VTrIAMGYOYEKPL] I_478JI VAGERYVYKFJIf 0. 8 10 1 jMQKVAGEF~~ .1] RI[ EPQSPR-lI 0.E__600_ []IKRPAMNYDK1 I.4] 46 ]YYYEKGIMQK1I.5] 4161 JALLDDPTNAH 1U IF -1 __94 SLREALIGPL 1045I IQNRPAMNY 1IRTDPALSCSRZ 10.3001 1_ 7324l IVVIKQEQTD)F]0.300I 27871f HQLSEPCPPY I~~'I 481LIEPEEVARL 10.2701 3.4 GPGAGAALLR 10.2401 ___ALIGPLGKLM g02251_____1 SVFQQPLDIC 10.225 38IVPEKFEGDIKj 0. 24IC)PPYPQQSFKIO0.200 I 499 FPNRAK [0.2001 427 1 IAWTGRGMEF 0.2 463 SRSLRYYYEK 0.180_____1 123 jDLSHFQETWLI 180 105f ULMPGSLPP I~~ 271_[ PLPAPYQHQLI[08 TABLE X 185P3C3 lILA A3 10-MERS] SAR SUBSEQUENCE ISOEfSEQ.
ID
F446 1RLiWGIQKNRPII.5 ~]PLYEAQAI0101_____ 143IFLVALLDDPT] I.5j 2I~CLLRPKNKSV I.51 13 ]AQVPDSDEQFI0.135_____ 52S_
I:
1J LQLWQFLVAL I~01 1W AARGSGRMER 02 54RPALKAEPDR 0.120_IF- 196 IREALIGPLGK 0.120 1 218 L 0 .12 011____ I [YPQQSFKQEY: 0I __3.2_0 188GEOCLYS SAY 0.0I1 191 LYSSAYDPP~j.0~ 3 18 11RYPGAGVVIK I0001_____ F31371f GVNGHRYPGA 0.0 9 0 1429 WTGRGMEFKUL 7 1 RMKAGYLDQQ Jj 0. 0 9 502NQPALKAER 10. 09 0 1 F2537 1 [QPLDICHSF =GALQ][ QFLv'~0011_____ I~]vvp:KFEGDI II.0T87J[_____ I_ FSPTTRIKK 1F0,0 14 1I 0VDHEN 1361YLHTEG;FSOP 110.06 3 0 E1AVDQGGVNGH 10001_____ SMY1HTEFS F46 AMJNYDKLSRSI [006] 1381DVTGCASMYL [.51 IT fDGANGYGYEK004 L±.AQPFGPKGGY 0.054] 30DQG3GVNGHRY005 I 8]DIKQEG3VGAP f 004I 197YDPPRQJKI fAWTG3RGME-FK 10. 04i] Ii]1I SPTTRITi]_ 371 RPFPDDVCVV 369 PLRPFPDDVC j0.045]s_____ 21_ LLRPSPAALG 0.0451 FSL[FNQR 1.451i 1339 =VTGCAS YLH 1~T 09 4S F 235 1TSQPHPGHGY] 0451 FTABLE X 185P3C3 lILA A-3 ISATSUBSEQUENCE SCR UItSE.I 1T]VCEPEAFSLITl E T 1 1DSDEQFVPDF1I 0 0 1 1 289 ALGAGSRACS ]I0. 04 0 2 3 1NAFIAWraR f 0.-04 01 611GSGRMERRMK I FTABLE XI 185P3C3 HLA A1101 9-MERS~ SE SEQ. ID
NUM.
F360] GAI4GYGYEK 240 429 1 WGEFK 1.000I 49YYEKGIMQK 0.800RO 538~] GPAQPFGPK 0O.600LIIIIII I ]1 VARLWGIQK'E 22 ~RAEQRNFLR0.6 13891 FKQEGVGAFR 030 14461 RLWGIQKNR h 4~ 1331GYGYEKPLR o2 E 1 l~lVAGERYVYK L0. 00j 1291YPGAGVVIK~. 0~ 464] RSLRYYYEK 0 8 I 977][EAIGP LGK0.18E I1 456 ][AMNYD1ISR 0 6 3. [NCLLRPIKK].51 L250 11 SVFQQPLDI F. 0 8 0] 43I] LIEPEEVAR]~. 8~ 219 ]fQPFPRAEQR j 153 LAFHSPTTR 08 1474j FIMQKCVAGER t10.0801 1181DPPRQIAIK 0.060 DPALSCSRK-1 0 ___KQEQTDFAY0 05 NPAMNYK0.4 HSPTTRIEKK 004 SAPAWGPOR 4~ REGPPYQRR .0 6 QGGVNGHRJL 003 6 ITABLE XI 185P3C3 HLA A1101 9-MERS] 1TRSUBSEQUENOESQ.ID'~ (~T[GTSQPHPH]00 0 201 1 RQIAIKSPA ]007~ 467_1 RYYYEKGIM I]o024 487_1 FVCEPEALF .0201 F 339 11 VTGECAMYL 1100201 1i 3 6 j QVPDSDEQF 10.0201 ___PALKAEFDR 008 481LQLWQFLVA 0.0181 GYLDQQVPY 0081_____ 437 K IEPEEVA 0 0 8~ 'F23GYLGEHSSV0.1[] 293 QE0PL .0 63 1. RGSGRMERR JI0. 012 IIZI [21511 QSPLQPFPR 0.1 18 81 KS PGNSLR0.1 GRAARGSGR 0. 0132 407TJ ALQ WQFLV0011 449 J GIQKNRPAM J001I I ___GAFREGPPY l.1 3_3_1 GVNGHRYPG ji 0. 0 2 2- ___FQQPLDICH F001 1~ 3~i 18RYPGAGVVI- ]0.0121 F4027 YQRRGALQL FO,0012P 111QTPR-PQSA]o ij) 13781 C VVPEKFEG 11.0r 13231 GvviK=QEQT jo 0.009 [~fGALQLIWQFL 10.0 486 KFVCEPEAL1000 [-513j1 RPVSEEDTV ]I.009E Z 375 iiDDVCVVPEK ]0.009EI 39IfFREGPPYQR 0.008IZZZ 62IARGSGRMER -I [44I AHIWTGR 10008 fl QLWQFLVAL 110-08ZZ ~I SQPHPGHG 10 .006--6 ALLRPSPAA 0.O0061 RPKKSVRW 0.0I F4 I5[ IQKVA.ERY 0.00 ___ETWLAEAQV 0.006 12][FQETWLAEA 0.0061 ___RACSVPPAA 0.0 061 [33 a]MYDV1GCA06 [36[ DVCVVPEKF_006 ITABLE XI 185P3C3 HLA A1101 9-MERS] STUBEQUNCE SOEJ EQ~. ID 48 RPQVSAPAW7 I.06 30 GSRACSV 0.006 73 GAGY 0 .006 I3.92 ][GVGAFREGP 00 6 z 416 ][ALLDDPTNA 0.006q 264 )[SQGGGREPL]0. 006 f 1 198[ AL IGPLGKL 0.0061 60 j] RAARGSGRM 110.0061 454 [RPAMNYEa 1 10.0061 354 GPSPGDGAM 10.00611 14T~ GPGAGAALL 0.006 ___QQSFKQEY 3811PEKFEGDIK 10.0061L 49 YDKLSRSLR 10.0041 26 PAALGAGSR J0.004J 13YSSAYDPPR I 0 f 532_ MYLPELAGPA 10.00411 _-920_ TVPLSHLD:E710.0041I I 2 HLDESPAYL I004 1541. 1 QPFGPKGGY 0 0 4 j 162_1 IKKEPQSPR0 0 4 TABE XI -185P3C3 lILA Allol TABLEXII MERSI I 7 [KVAGERYK6.01 468 YYYEGIMQK 1.600 443 If1EVARLWGIQK 120 318___ RYPGAGVVIK120 E 1 14]IGQSPLQPFPR'l.80 179][QVPYTFSSK_ I 110IRTDPALSCSR 0.600 F473 11GIMQKVAG ER 10.4801 R~1PALucAEFDR]0.360 I K] IIEPEEVAR10.360[ []REALIGPLGK 030ZZ1 14 IiGPGAGAALLR F-i401 0.240111 J284I CPPYPQQSFK l0.200EI Z I0.200PAI 1218 ]Qp PAQR 10. 1201EZZI =E ]IPPYQR 0.080 i:::il STABLE XII -185P3C3 HLA A1101 10-] STATISUBSEQUENCEI gumE. I S152 NLFSPTTR 000EIIIIX 3 LLRP1CMXVR 10.-0 92LYSSAYDPPR o.oaof1 [458 1IDLSSLR 008 F-6171 AARGSGRMER 0 431NAHPIAWTGR]i2.41 ~LIFHSPTTR:KK] 10. 0401 46 ISRSLR YYYEK]I0.0401J [2][SPAALGAGSR]I0.040 IfWRGMEFKL 0.030 324 VVIKQEQTDFI0030 [T406 (ALLWQFV l.2 KLSRSLRYYY 10.024
J
0jSVRWGPGAGA0.2P1 19 fYDPPRQIAIK, jo [TFjQVPDSDEQFVI I.2EZ T7 [VVPEK.FEGDI 000L I I I [rI[ 7AWTGRGMEFIK 0.02011] IAGPAQPFGPK 0. 0201 5 IAFHSPTTRIK
I
1 308 AVDQQGVNQH 0O.020 E~ ____0.0201 H VF1 0. 018rzz z E 0_1GQPAVDQGQV 10.oi18 '0.016 ___IQKURPA4NY0011 ___DGAZ4GYGYEK]0.12j_ 3[1 3-CSY]0. 012] n3 QTDFAYDSDV K.i olE .ASVDsEQF 00m I jj] KFVCEPE.ALF 11.001 278 HQLSEPCPPY 1 36I[KPLRPFPDDV .10.0091 I 32 [GVVIKQEQTD [0.0091 40j[LQLWQFLVA0 J '1427 [IAWTGRGMEF 0L. 08 I54 ][PAWGPGRAAR 10. 008 407 ]ALQLWQFLVA [p~I 362 [MG0YGYEKPLR 000 YLDQQ YT 0 00 2601 HSPTSQGGGR 008J[1 TABLE XII 185P3C3 HLA A1101 I MERS START] SUBSEQUENCE SICORE SEQ. ID [T]QLWQFLVALjL Il.O8i-i~~l 1[4.95[FSLAFPDNQR]~.0~l 23-]SQPHPGHGYL]~I I 54 31 I[Q2FGKJ7 0.00 416 JJLDPNH0.006 E Z 488 VCEEAFSL 0.0IZZ] 402 ]j RGQLW 10.006F 3I GVj RPP 0.06 II F50-2 INRA E 10. 00611 12ALLRPSA000 25 IQQPLDICHSF] 0.0 531 ]IAYLPELA .0 1811 GALLPA 0. 006 J 38 KQEGVGAFRE]F 005] r~ j1 RYYP 0MOJ. 0051 F417 I LDDPTAHFI 00041111 Il SLPSED W 0.004 325 0.004lTD! 14 If ~PG0.0 4 47 IMQKVAGERY 000 183 LPYHHGEQCL I 94 ISLREALIGPL 0.O4IIil 39 [PPAAPAQTPR 004 [09VDQGGVNGKR 10.00411IZI 106 ILMDPGSLPPL I0.004 Z 62IARGSGRMERR I0.004~ 34 Y SD T C AH] 0. 004 l _[12 LG[SLPFr 004 E Zl [TABLE XIII 185P3C3 HLA A24.9-MERS] STRSBSQUENCE SCORE SEQ. ID] 458 NYDKLSRSL ]20.0 [~1GYEKPLR.PF 150000 [461KFVCEPEALj 0I-1o H 1471RYYYEKGIM I.o TALE XIII 185P3C3 HLPA A24 9-MERS] SUB SSEQUENCE jSCORE ][SEQ- I,, [184 IIPYHHGEQCL 124.000If_ [1161 DSEDL FQDL- 1112.442]i:____ [147 ~[DFHSENLAF jooo____ GYIJDQQVPY[_.0 3001 LYEQAGQPA[9.0 454 ]RPAMNYDKL f8.0 406 ][GALQLWQFL jf 8.640 P3SMYUITEGFS]i .0 IT] GYLGEHSSVI 7.500 196~* AYDPPRQIA[ 7.200 Ioi__ ___ESPAYLPEL .0 [9 ][ALIGPL(GKLJ .0 [12FLPPLDSEDL .0 rf 1171QSPRTDPAL][.00____ 254 ]IQPIJDICHSF50411 154I AFHSPTTRI][500___] I 1AYDSDVTOC IT~1HLDESP AYL 480___ ___HSSVPQQPL480 Ti 91 GNGSLREAL J[ LLRPSPAAL 114.80o 2 3 7 Q P H PG H G Y L j[ 4 8 0 2 LPAPYQHQL .0 TGRGEFL[440 VPDFHSENLjj400 14FI QPGAGAALLJ[4.0 [409 ][QLWQFLVAL]____ 42YQRRGALQL 400I 362] MGYGYEKPL][4.00I SQGGGREPL][400 ___LSCFQEPL 114.000 E499 FPDbIORPAL i .0 136_ QVPDSDEQF I .0 2 1 LGQSPLQPFj ]~3.600 I2841 CPPYPQQSF I 479 AGERYVYKF]J3001 !375 f DVCVVPEKF 300~ FVCEPEALFI 2.400 L_ I55JELAGPAQPF2.0j____ 124-411 YLGEHS=SVF240 TABLE XIII 185P3C3 HLA A24 9-MERS [START [SUBSEQUENCE SOEI E.I AWTGRGMEF F2.200r VIKQEQTDF I .0 F54 11i SMYLHTEG3F .0 F1191 DLFQDLSHF J .0 221 ifFPRAEQRNF J .0 ___RYVYKFVCEJ[180____ 1; SAYDPPRQI 250 ifSVFQQPLDI I[1.000j 92_ NGSLREALI 1.000 AFPDNQRPA[_.0 AYLPELaGP7 0.900~f F228 ][NFIRSSGTS f070_____ 251_ VFQQPLDIC 149[YYEKGIMQK if0.750____ F449AMII 0.750 439J IEPEEVARL R _489 CEPEALFSL 0. 2 f95[ LRAIPL JF0.720 [22 FKQEYRDPL 0.720 LIGPLGKL.M l 0.720 1- [484[1 VYKFVCEE 0700 1 295_1 EYHDPLYEQ 11 0.6601 F3,04[ GKLMDPGSL GPSPGDGAM 1 0.600 4,9 IE LFSLAFPDN 1[ 0.600 48YYYEKGIMQ 060 '107 GPPL 0.600 'r_127,1 0.500 363_1 GYr.YEKP.R_ oF-.soo 'F4261 FIAWTGRGMl 0.500i_____ 1 I KSPAPGAL 0U.480 1 7 LDQQVPYTF [0.420J .I ___RQIAIKSPA 0.420 EXTVPLSH. [0.400[ 21.0 PGLGSPL 69ERRI4KAGYL 400] PPYQRRGAL i 0.400I 13J[ DSEDLFIO.360_____I 8 1IKQEGVGAF I 00 00 TABLE XIII 185P3C3 HLA A24 9-MERSI i START SUBSEQUENCE ISCORE SEQ. ID FS
NUM.
43-7[ KIEPEEVA43 22 F327 IKQEQTDFAY 0.30 191KSVRWGPGA j0.300 TABLE XIV 185P3C3 1{LA A24 10-ME~ START SUBSEQUJENCEj SCORE SEQ. ID I24GFGEHSSVF1'jis.50.0 60.0001 486 IKFVCEPEALF1I3 0. 0 0 0 I41 PYQRRGALiQL I10001 E -4T79[YYEKGIMQKV 13.89011I 40 I(RGALQLWQFL 11.5201 [3J[AYLPELAGPRII 10.80011____ 7 JRWGPGAGAAIJ.0 QGYLDQQVPYT 3001 LYEQAGQPAV 1_7.500____I 1 1[EYHDPLYEQA 7.0 [14471FVPD)FHSENL 7.200[ 11i VCEPEALFSLZ [F4T 8JLIEPEEVAR I1 11 SLPPLDSEDL __3347AYDSDVTGCA 7.000 .97 EALIEGPLGKa. 16.600I] 236 SQPHPGRGYLI 6.000 399_ .00 0 [T408 LQLWQFLVALi 6.000 ALLRPSPAAL 6.000 13 IWPAGAALLII16.[0 [263 ITSQGGGREPLI 6.000 I 4SLREAIGPL 5.760_ __-DKLSR- S.7_ 484 J(VYKFVCEPBA 221 FPP.AEQRNFL 4.800 409 QLWO~FLVALLI 4.800 106 LMDPGSLPPL 11 4.800 [13 LPYHIHGEQCLJ[ 4.800 429 WTGRGKEF1KJ 4.400 253 iJPLDICHSF 4.200 [2AIKSPAPGAL f[4.000~[ LGKLMDPGSL 4.0 .9 1i 1PAGSL1400[ TABLE. XIV 18SP3C3 HLA A24 "START SUBSEQUENCE SCORE IISEQl. ID 861[SSKSPGNGSLI400 38[DVTGCASMYL .000 361 IAMGYGYEKPL]I400 123 1IDLSHFQETWL II400 425 i[FIAWTGRGMII370 ~jAQVPDSDEQFI F3.60 0 50 E(QRPALKA-Ef~j 318J 4 1EKLSA 3,000 343 IfASMYLHTEGF ii3.000 11 324 If VVIKQEQTDF I 3.000 112 11LPPLDSEDLF 3.000 761YLDQQVPYTIF(_2.80 0 VAGERYVYKF 264 f_ 212 HfALGQSPLQPF IF0 E 3 427]1 I1AWTGRGMEFI1.0 Fi 37 1VVPEKFEGDI 1.0 318 ][YPGAGVVIK][150I 220_1 PFPRAEQRNF 1.00I 24.9 1[SSVFQQPLDII 1.500 43011 TGRGMEFKLI 1 1.2[0 63 -]RGSORMERRMIF[ 1.oo 000 91_ IGNGSLR.EALI 467 1IRYYYEKGIMQH j[ .000f 46S5. ISYYEG 1.000 -74 SSAYDPPRQI 1.o000 1 LAPHiSPTTI[ 1.000[ 126 ]1 HFQETWLAEAI 0. 990 1437] QFVPDFHSENf090 36 GYEKPLRPFP 98 ]IALIGPLOKLIJI 0.900 I 275 PYQHQLSEPC 0.900~J LDSEDLF L 0.829 153 ISGDSDLQD GAM 0.750_ 448] WGIQItTRPAM 0.750 34S ]MYLHTEGFSG 0.750 907l PGNGSLREAL 0.720 453I NRPMN2YDKL [0.660 2__1 PLPAPYQIIQLI 0.600__ 48IIYYYEKGiIMQKI[0.0 43 EFIEPEEVJ 0.550sEo TABLE XIV 185P3C3 lILA A24 10-MERS] STARTJ{SUBSEQUENCE SCO SEQ..ID ITTDESPAYLPLI[ 0.528 I~iPYHHGEQCLY~i 0.500 F 1336 IDSDVTGCASMI[ 0 5 00: lj2ILYSAYPPR 0.0 1~o] 458 ff YDKLSRSLR 363 ]GYGYEKPLRPO050] 247 (EHSSVFQQPL[040_____ [514][PVSEEDTVPL][ 0.8 [T j]PQSPRTDPAL][040____J 375 1[DDVCVVPEKF][l 0.4627 _2 83 1[PCPPYPQQSF]F042f_____ I IEEDTVPLSHL040_____ 404 ]iRRGALQLWQFl 0.400 0.400 2 23 11 RAEQRNFLRS 0O. 3 6 0H___ [TABLE XV 185P3C3 lILA B7 9-MERS [STARTE ][_SEQ.ID LPIf YQEDL J80. 00i1 r44f RPANYKL [180.0001 ___QPHPGHGYLE .00 401[TGRGM4EFKL f40.00 o] F ___LLRPSPAAL 140.000 I~ [499J FPDNQRPAL 36.0001 [4S VPDFHS7EN7 24. 00 ___GPSPGDGAN 0 00 1 ___ALIGPLGKaL aooj ___PPYQRRGALJ1.00 1 406 IIGALQLWQFL jii~ol [53 jfAPAWGLPGRA If 6.000 I [91 [GNGSLREALI .0 [264 IISQGGGREPL j[16.000 4 HfISSVFQQPL 14.000 513 ]fRPVSEEDTV LSCSRKPPL] 4.000 58 ESPAYLPEL IT fQPAVDQGGV] 4.0 13 WGP rAAJ4.000 QSPRTDPALj ]4.000 I [DTU][RPFPDVV]i~~I TABLE XV 185P3C3 lILA B7 9-MERS START SUB SEQUENCE;J ESCOREjSEQ ID] 22 [FPRAEQRNFlITI_____] 13391 VTGCASMYL I:2jiI____ Q~J LWQPLVAL 4. __000_ 11681 SPRTDPALS 4.000 1691 ERRMKAGYL 216~f SPLQPFPRA13.01 [399f GPPYQRRGA [3.o000[ 60 J RAARGSGRM 380 VPEKFEGDI___ _38_ VPPAAPAQT _40 DPTNAHFIA 2.000 23 SPALG[2. 000 183 ][LPYHflGEOC 5LISPAYLPELA___ [31 L LR P KNKSV 1I2.000 TiRPQVSAP 2.000[ 195 1 SAYDPPRQI]F jj 800[ 44971[ GIQKRPAMJ 1.I 525__ HIJDESPAYL ~i201____ 11 D S E D L FQD L 137 JfVPDSDEQFV 1L.200If______ 99_1 LIGPLGKLM 1[.000 426_ FIAWTGRGM 64_r GSGRMERRM ][i1o 0001 19][ AALLRPSPA J09Of 27_ AALGAGSRA 1[W0. 61 1 AARGSGRMEJo~oj 42]1 APAQTPRPQ I T] 284 ]f CPPYPQQSFJIos][_____ 490 EPEALFSLA 10.600 209__ APGALGQSP 1FT lJ 407'1ALQLWOFLV 0.600I ?3I KAGYLjDQQV 10.600] 54171 QPFGPKGGY7J06o[____ 30j GAGSRACSV1 2747I APYQIHQLSE Th 1 -GVVIKQEQT Fo- -s-o 7 1J[SVRWGPGAG 0.500 E 414 LVALLDDPTI 0.500*~ 2 0 4 f Al KSPAPGA ATLLRPSP AA TABLE XV 185P3C3 HLA B7 9-MERS SATSUBSEQUENCE SCORE SEQ. ID "][EPQSPRD]] 0. T]FPGALGQP 10.40011_____ ___RPQVS APAW 0~.4001I 5 SPAALGAGS 10.4 01 __GPGRAARGS] 0.4001 ___PPRQIAIKS 10.-4 [SPGDGAMGY 10.4001_____ ___QPLDICHSF 10.4001_____ CEPEALFSL 10.40011 IKSPAPGALIY~ 1 7-71VPLSHLDES KrVCEPEAi ___VPYTFSSKS 0. 400 i~T[LWQFLVALL i 0.400 11 ___NGSLREALI 0.400I IEPE9:] EVARL1040]____ 292 IFKQEYHDPL F10,400]_____ ___RP1QNKSVRW 040 ___MDPQSLPPL 0F0m F0. 401 7)[SKSPGNS 1.01 368_ KPLRPFPDD 110.30011 EPCPPYPQQ 10.3001, ___GPAQPFGPKIIO0.300 1 [i~VAR 1 WGIQK fO30 ___GIRYPGAGV 10.3001 ___CSRKPPLPY 28_ AL SRAC 1 0.300j [iso] KPPLPYHHG TABLE XVI 185P3C3 HLA B7 10-MERS [SATSUBSEQUENCEI SCORE SEO. ID [221 FPRAEQRNFLJ[20.0] 209 jAPGAILGQSPL][4.0 183i LPYHRGEQCL[8.01 94_ SLREALIGPL 4.0 168 30.000 Jj_ 42 IfAPAQTPRPQV[ 27.000 338 DVTGCASMYL [20.000 [144 FVPDFHSENL I20.000 [T[TPRPQVSAPA [20.000 [FIEALIGPLGKL18.00 [iTIAIKSPAPGALJ 12. 000 .TABLE XVI 185P3C3 HLA B7 START SUBSEQUENCE SOE _SEQ.
ID
E: 7 4I[SCSRKPPL][ 1200 1 :20 Il LRPSPAAL 1 32.000 361 tAMGYGYEKPL111.0 53 J APAWGPGRAA3 9.000 E 10 IFSVRWG;PGAGAI1 7.500 f_ 263 1[ TSQGGGREPL][ 6.0007 11___ I68~ KrtLRPFPDDV][ 4.000 [57 [WMKL][S 4.000 [N WGPGAGAALL 14.000 371 H{RPFPDDVCVV] 1 4h- If F236I~SQPHPGo][~:____ L!!ItLGKLMDPGSLIT:It_____ I 45ISLRYYrYEKGII[400jf____ F11311SLPPLDSEDL][400II____ 4000 [40-8 LLQLWQFLVAL][_4.000 f 12371 DLSFQETWL[ 4I 0 S2 F WTG3RGMEFKL][ .0 436 11 [TGRGMEFKJ]L 0 I 86 [SSKSPGNGSL][400[____ [98 I[ALIGPLGKLM][ o L 1 PVSEEDTVPL][200J___ TQPLDICHSFT][ .0 [ISPGNGSLREA[200If____ 165 EPQSPRTDPAI 2.000II1 F 3799I VVPEKFEGDI] 2.000 I [498 [APPDNQRPAL 1.soo 48I1WGIQ'JPAM 11.500_____ 1 1.3507I F JAtRGSaGR[ 1.350 F48ItLIEPEEVARL] 1.200It____ 10 JLMDPGSLPPL 1.0 18 [CEELSI 1.200 32 JIGSRACSVPPAI 1.000 3531 ISGPSPGDG;AMf 1.000]____I [~JRGSGRMERRM 1.000 F136IIQVPDSDEQFV[ 1.000 25 SFQQlD 1 0.900 1 9 57 S A Y D P P R Q I A 0 6 5 444 1 VARLWGIQNIt 0.6007 -1451 VP15FHSENLA ]I060I [TABLE XVI 185P3C3 HLA B7 10-MERSI FTART SUBSQEC SCORE SEQ. ID ]DPGSLPPLDSI 0.600 [T IGALQLWQV 0.600 194 11SSAYDPPRQI] 0.600 Z±APYQHQLSEP.~ 0.600 137 SVPPAAPAQT]I 0.500 F313 3[GVNGHRYPGAJ.2 F4 ATROSI 0.450 l-29 SSVFQQPLDIJI 0.400 12 IRWGPAGAA,] .0 F-217PLPAPYHLI040 I45 ]RPAI4NYKLSII040 154ISHLDESPLI 0.400 ITT]LPPLDSEDLFI 0.400 ITY QPFGPKGG3YS]I040] [T]DPPRQIAIKS]I.O [9]GNGSLRALI 040 frI SFKQE PL 0.0 219_ 1 QPFPRAEQRNI040 [45FY-d1FVCEPEALJ10.0 42 IDPTNAi{FIAW 040[ 27ILPAPYQHQLS 040 1TT1DESPAIPL1___ I2EPCPPYS! 0.400
I
271EHSSVFQQPL" 0.400 TI~LDSEDLFODL 0.402 J]AGVVIKQEQT [0.300]f 18s [GAALLRPSPA( 0.300 i 52 SAPAWGPIGRAJ[ 0.300 8]VPPAAPAQTP j0.300 i F1407 IIALQLWQFLVA[ 0.0H 1~IEPLPAPYQHQI!0301____ ,[T21 SPAYLPELAG~ 0I0 TAL JXI lS5P3C3 HtLA B3501. 9-
MBRS
[STRTSINCJICORE
ISEQ._ID
___FPRAEQRNF 90.000 1 SPGDGAMGY[ 0o.o ll] Vh[RPKNKSVRW7~ [2454 II D 4 .000F '_357 PPDA 40.000 EZL I _K G Y 4 0 0 0 0 1 [TF-1 13GY 0.0001_____ 462[~~D 30.000 SRSPLYY 3 o 14FI GPGAGAALL [237J QPHPGHGYL 20.0001 1 22 LPAPYQHQL 120.000 QQSF 20.000 E~ RPVS"A 1(20.0001 F4 GSGRM4ERRM ioo or r311GAFREGPP 18 SPRTDPALS ___FPDNQRPAL 475_1 MQKVAGERY 6.0001_____ ___QPAVDQGGV 160o_____ ITTTVPDFHSENI, 6.000I j4fEPEEVARLW JI7 KVGRV 16.00011____ 161QSPRTPAL. fs.000j______ 12481 HSSVFQQPL JI 5.000~I 124 _LSHFQETWL1 5.000If [528] ESPAYLPEL 15.00011 VSEEDTVPL 351VIKQEQTDF [41!KLSRSLRYY 4001 11 ~PPLDSEDLF]Li~~ LziIQLSEPCPPY 4001 23_ RPSPAAGAJ[00 430 TGRGMEFKL300 406 GALQLWQFL 1 [402] YQRRGALQL][~0 2~1l LLRPSPAAL 113.0001 380 VPEKFEGDI 2.4001 SAYDPPRQI 11 2.400J 487T FVCEPEALF 112.00 [81 VPYTFSSKS TL-ooo 00 00 TABLE XVII 185P3C3 HLA B3501 9-] I ~~MERS ~E.I START SUBSEQUENC
IESCORE
54[FGPKGGYSY] .1 M GPGRAARGS 1(2.000 11 529 SPAYLPELA 42 IAWTGRGM]3~~ 15211 VPLSHLDES 2.oo 0i 0 0 31 QGGViNaimY 1 3 [LPYHMEQC IET!: ___QVPDSDEQF R241YLGEHSSVF F2.00701_____
I
405 RGALQLQ (.01 4 49 GII PAM 12. 000 1 89 1[ EQCLYSSAY I2_.0001I F4207 1 DPTnA H F IA 11.0 II 12.0001 I 19 LIO3PLGUJM 2. Io] 39 GPPYQERGA 12.0 00[ 11 r1216 11 SPLQPFPRA 112.00 38 VppAAPQ 11 i PWPGRA 12.0 0 1TTIVPDSDEQFV 11.800 86i1 SSKSPGNGS 11.500 119_ DLFQDLSHFj ji.sno[____ KQBYHDPLY ___LQQ 2131 LGQSPLQPF 11001.
32MGYGYEKPL I1I[_ 98_ ALIO3PLGKE.1 1.0001[ E535~l ELAGPAQPF] I1000 I i 1WGPGAGAAL 1.000 [p911 KSVRWGPGAl 1.00011_____ Tj[SMYLHTEGF 1.000 f 39 VTGCAMYL- f1.ooo]l1 0 [QLWQFLVAL Ifl~I____ F~~1SQGGGREPL .00ool [91 ][GNGSLREAL 1100_____ 376_ DVCVVPEKF 1 f523 ftLSHLDESPA 0.750 r68 I[MERRMKAGY 3 0.600 GASACV0. 600 1 490 1 EPEAFSLA][?i_____ 199[ LPRQIAIKs IL J TABLE XVII 185P3C3 HLA B3501 9- I MERS S TART ISUBSEQUENCE 1 SCORE ISEQ.
ID
s I ii 1 NUM.
FI341 RACSVPPAA 467 JRYYYKGIM-Io 1is o.0] HiLDESPAYL ___SHLDESPAY [TfTPRPQVSAP- 10.6001 V36] CSVPPAAPA]F 1231 _DLSHFQETWI[T[] TABL XVI I -185P3C3 lILA B3501 1 [TABE XVII -MERS 1~ r SEQ. ID ST221 SUBSREQUENCE] 60.00 [~T1YPQQSFKQEY I4000~ 399; f GPPYQRRGA.0Ol 183 LPYHGECi2.0 Z~ 11 T1LPPLDSEDLF o oo 1 86 [27]LSHIDESPAYIsoo I I GGREPLPAPY I1 371 RPPDV1.00011 I TTSQPHPGHGY I-T[KPLRPFPDDV .00[ 168] SPRTDPALSCI 6._0 __I 1911SLREALIGPLJ[600]I F263 ITSQGGGREPL, I1s00[_____ V JT1ASMYun'EGF 1 soo 1 03LGKLMDPGSL I 4.5001__ 14541 R AMWDKLS 4.000 461i KLSRSLRYYYj 14.000 1 254 QPLDICTI 4.000 14 JAPAQTPRPQV 4.0001[ [3871 "DIKQEGVGAFH 3. 000___ I 19IDSDEQFVPDF 336_1 DSDVTGCASM________ [4,2711 IAWTGRGMEF 2304 11[AIKSPAPGAL TABLE XVIII l85P3C3 HLA B3502 10-1 SATSUBSEQUENdEj SEQ. NJID I NU. J I ]EALIGPILl.0] I 2781 jHQLSEPCPPY 1T~ I[ 14741 IMQKIVAGERY]I2 0 0 L3641 YGYEKPLRPFI 2.000 448 1 WG3IQKNRPANJ200] 541 QPFGPKGGYS I T] 89 IISPGNQ3SLREA]I 2.OO]0 1207 1[SPAPGALGQS I2.0 145 IkINYKLSRSL]I I.0] __272_ LPAPYQI{QLS ]IT 1
I
1141FVPDFHiSENJ200_____ 17Z61SCSRKPPLPYi200[____
I
3 06JQPAVDQG GVX] r2.000_____ hillDQGGVNGHRY 12001 282JI EPCPPYPQQS 13j p' l jlQPFPRQ12.0 f4sfRGALQLWQFL1200 1331SGPSPGDGAM120011 [29 SSVFQQPLDI 112001____ f1ALICGPLGKLM] 1(.0 1 1l AAWPGR.AJ200 (7 [AGYLDQQVPY 1 .01 [FjJDPGSLPPLDS 12001____ F1DPPRQIAIKS 112. 0001 ___EPQSPRTDPA 11 2._000 194 J SSAYDPPRQI11200] [430 jTGRGMEFMLl180 402 JYQRRGALQLW11.01 Ill ][SLPPLDSEDL 1150 1 32 ]IVLKQEQTDFIF1. 50ooq 32 GSRACSVPPA 1.500 I 153 ]LAFHSPTTRI I :0 IRPKIZKSVRWGl11:201_____ 408~ LQLWQFLVAL1.01 123T [LSHFoE'rWL 1.000 1 212 [ALGQSPLQPF IT1 253T QQPLDICHSFi .000 3 WGPAGAALL]I I.001 38 ID111.00011 [TABLE XVIII 185P3C3 HLA B3,50110 I. MERS (START SUBSEQUENCE SCO EQ ID [T I[WTGRGMEFKL1[.00I_____ 13 [AQVP-DSDEQF] 1.00011_____ 1T ALLRPSPAL 1.000 131 AMGYGYEPL 1.000 F-571 PSPGDGAM'GY ~j19001_____ r 3 SQPHPGHGYL 1.000~ 333 1 FAYDSDVTGCj 10,9001 379 VVPEKFEGDI 0[ .800 [TT Q[SPRTDPAJ.7S T41 ILLDDPTNAHF0.0] L506 ALKAEFDRPV IF1, 600]I i513I[RPVSEEDTVPI1 [I MQKVAGERYV 00 1 1161QVPDSDEQFV[0001 I 1 GaLQLWQFLV J [4[YIMSRSLRY7[Ti_____ JT]ESPAYPELAJ~ooI [1T QSPLQPFPRA]0.01_____ TAB1LE V 186P1H9 HLA Al 9 -MERS] SUBSEQUEC COEF5
ID]
92 RCEGLIAGGKJ[8o]1____ 367 ELERQLLRK 22 [VSLPLR.TNY_______ '241] TKTLPELYAF_______ WVDNNVDVF [TP[ 14221 TCEtEALLDL 1336 rNLA wPII4.00l__ -196]1 1TESTLNIAL 208_ VTELERGNS r 287 PIELLINDK 369 ][VGELSQFNII 275 AN lLIEW 1.1i25l 210_ ELERGNSAF 0.900 176 ALDK 1o~o 136_ RLESLEHQL 0.9001 280 1 178[ ELEDEKSLL 110.9001 SLEHLA 9 j 0 900 TABLE V 186P1H9 liLA Al 9-MERS] SATISUBSEQUENCE SCORE IfSEQ. ID1 122_1 VVEQLSRSL 0.900 r_ EQD'rVGGRF 10. 750 303_ VSDGKWHHI ___AQEIVNIAN J067] 48!NVDVFGGaAS 110501 TGELAPWH-10. O KETLASAR 0.450] 3251 FQDQEKIJGTl 0.3511_ r 22 0 SPDAFKVSL 1020___ 317 J 50 iiI[HNETSAHRQ If0. SPEEELRAA J[0.225)[__I_ IjfLGELERQLL TAIIPPEAVH IW~] 31fALPPEAVHA 761TLASARAIR [0.200 17511 ALEEK [0.200 ___LSQFNIWDR 0. 15 0 52 AQSPEEELR 10.150[____ 259 IIASPGIGTPF 128 RSLQTLKDR AQDSPAPGS7joio_____ 36If DTVGGRFDA 29[FTICLWLRS 1015ir___ ___MGDLPRDPG][~i LEDEKSLLH 0.12591 1 284_1 GNNPIELLI 310_] HICVTWTR [0,10 NAGLPGDFR WT.10ii 400][ NIIPWVDNN J~ 101 E 56 EEELRAAVL ][0.0901 419 IfPVETCEEAL F-o~~ 138] ESLEHQLRAJ](0 07 51 531QSPEEELRA 10._ 7 1.98 IfESTLNALLQ 0.0751 27 SSASPGIGT]L0.0751____ 332 _GTGENLAPW 005 18 QDSPAPGSR 0. 0__ 375 _FNIWDRVLR fLPLFVDGK ooi GCPLPAMPM1 1[ sII___ 9 K]VAQLPLFV] 0. 0 0 FTABLE V 186P1119 liLA Al 9-MERS] [SATSBSEQUENCE][ SCORE SEQ II []IVAQLPLFVS 0.050I 4 ~YAFTICLWL)005I____I __QAFVGELSQ ]ooo] [TlLAASVALAV S24.5 ]ELYAFTICL JFoos]050 I ICPLPAMPMQ 1[0.0501~ F 233_NYLYGKIKK][.5] E4 7 NVSNAGLPG ]iJ ___TNYLYGKIK 0.050____ 12631 IGTPFSYAV 31 RFDATQ.AV 0.00 J I33 PPEAVHAG;C0.4 __IRELTGILA 0 45 w 157 JfPREVLQQRL ]0.045 I 1 2 LSRSLQTLK jO 0 0
_I
1711ASVALAVAA.1030 f__94 EGLAGGR 0.025 1491 SNAGLPGDF 110.025I 2~f18 FK 110.02 I 1DTMGDLPR j0.025[___ r_166_ GELERQLLTR I1.21 ___CTALPPEAV 1f0.025 J[ [BIIRELTGIQJAR_]005I___ F31 ATFGLj00][__ fs[ETVVQQKET j1 0021 75 ETLASARIJ 154 DFREVLQ 11 0.021____1 396 NMPGN7IIPW 1 0.0251 12311 RTNYLYGKI 1I0. 025 [28IPLRTNLY [0.0251 18 IETSAHRQKT II0. 0251____ ___STN?4PGNII 120 SPAPGSRFV 10051___ [TABLE VI 186PIH9 liLA Al START QUNCE SCOR SEQ. ID 1 11 11 NUM.
I NVVFi;SY 1 K 2 0. 0 00 1165 ILIGELERQLLR11.250If____ 1 1[ RESLQLR 0[ 1 17 ELEDEKSLLH]I4. 5 f__06_ [T [HNETSAHiRQKf 4.500____ [F[Kr1 9IJ ___ELERGNSAFK1I360 [TABLE VI 186PlH9 HLA Al 10-MERS] STABSSEQUNEISCR SEQ. ID] J2~[VTELEISA[220[_____ ITTJ SLEHQLRAN-V [.00 [352 IIGQEQDTVGGRI[.51 [TIjGKDTMGDLPR 11.25011 404J[WV2DNNVDVFIG 1.000f 227 ISLPLRTNYLY[ 1.00011____ 321 jMWEAQDGEK1~I ~1IVEOLSRSLQ 10.9oI____ [[RCEG GAoi.1.o 7 VAELEDEKSL 33[VSDGWHICII.51 [91ESTLNZALQR!07 J]ADSPAPGSRj .s L]SPGIGTPFSY 065If____ I~]RTNYLYGKIK[05J[____1 Fi[KTLPELYAF][.0] 11 IT [AQEIVNIaNCIF020 IITMGDLPRDPGHi]I .5 1221 TYYGKIKK] ___VGELSQFNIWI][ .2 V 1251ANEILLIEWG]I 0.2251 F 23LPELYAFTIC02211 LLHNETSAHR 3020I 13TALPEAVRA]I0.2 0 011 .1 298 QPLFVDGY]I0201____ ___LIEWGNNPIE 10. 18011____ ___PVETCEEALL][010____ 1~TINSAFKSPDAF]!0101____ 14 [VSNAGLPDIf0501____ [T1VSLPLTNYL.0.5! 41FJ CPLPAMPMQG J 21 421_ ETCEEALLDL1112 I 284 lGWNPIELLIN11.2! ISPAPGSRFVC 110151____ 361 IRFDATQAFVG 10. 12 5 179 LEEKSLIMN 12sI 5 39~ ]AGCPLPAMrP4~.21 [I51 G1(AQSPEEELR 1[ .0 I TABLE VI 186P1H9 lILA Al lO-MERS ISTART ISUBSEQUENCE ISCRJrSEQ. ID
NUM.
I 366 I[QAFVGELSQFIT][____ I335 j[ ENLAPWHPIK] 1 247 11 YAFTICLWLRI~Th]___ I 31 1 ALPPEAVHIAG 110.10 lo F2691YAVPGQANEI W 6 i[ EEELRAAVLQJ D. 167 ]ELERQLLRKV 0. 090][ 3T QKETLASARA 0.090J_____ F2871 [PIELLIN1KV 1.9 F25] RSSASPGIGT 0.075] F32571 FQDGEKLGTG_ 100751 1 F]AQSPEEELRA[TT]____ Vi15T47 PGDFR'EVLQQ I _22INDKVAQLPLJ[.2 [4[L svzvj 1l~J NLAPWRPI p][lT ]KvAQLPLF'VS].s 1 242* I TLPELYAFTTIF- I 1vvQQKETLAs I =286 1[NPIELLnMDK I sj 36 [AVHAGCPLPAlT~I____ 3~i '5 jFVGELSQFNI 10.050 390 jfIANcsTNmPa 10.050 18[QDSPAPGSRF 29I CTALPPEAVH 383_ IRAEILLE Ik0s E 264[GTFSYAVPG 110.050o] 33 [GTGENLAPWH 110oo] 204 [LLQRVT ELER 110.050[ T~1FRVLQQLO 10.045[____ 216_][SAFKSPDAFK 0._040_1 71 SVALAVAAG 219[KS PDAFKVSLJ j0. 03 2.5 9 1 ASPFGIGTPFS 11 0. 0 30 199_ STLNALLQRV 0.0251] 364 IfATQAFVGELSj[ 0.02511_____ ETVQEL jj0.0 149 r[SNAGLPGDFRJ I10. 0 25 s __L 356= 1 DTVGGRFDAT ~f 0.-0 2 5 151 ][AGLPGDFREV 31 TT'rRnGWAF 2_49 11TCLLs I~I TLE VI 186P1H9 HLA Al 10-MERS] START ISUBSEQUENCE SCORZE
SQ
g JTGENLAPWHP 002 1 TABL VII 186P1H9 HIAA A0201 9- TABLEVII MERS STARTI SUBSEQUENCEI SCORE jSEQ. ID 234I YLYGKIKKT j9 I242I TLaPELYAFT22.6 11 QLLRKVAEL18.9 12031 ALLQRVTEL 8.91 ITINALLQRV 15.701 ___MLALLAASV 11.31 12271 SLPLRTNYL11.431____I 12951 KVAQLPLFV j1.5 3_ ALIJAASVAL 1± 350 11IGEQDTV 1s.31 NIWDRVLRA J 125 Jr LSRSLQTL j4.3] [63T Jf 'Q'LRETVI 48.478] 211LINDKVAQL j14 a f__ YFTICLWIJ 1127.774 123.52 11LPGDFREV7 2 26. 4 3 373J SQPNIWDRV If21.734I_ I f245 fEACL If 19.483 r LLAASVALA ii9 184 Jf SLLIKETSA 18.382_ 164Th RLGELERQL [17.517 330f KLUTGENLA 17-388I 401~h IIPWVDNNV ]16.258 [MIE FGGASKWPV 15.664 [62 IfAVLQLRETV ]f11-034]] 160 IfVLQQRLGEL 102..859][___ KDR 10.468]
GIG
T
PFSYA E7.1381 ___LILGQEQDT- 6.445 [17[AELEDEKSL 28 ISLLINDKV 4_6 GMWEAFQDG 132 ][TLKDRLESL If3.455 23 IGTPFSYAV If2.933 I 21 [FKSPDAFIKV 12.577 1 273 GQANEILLI 2.433 11 TABLE VII 186PlH9 ElLA A0201 9- I MERS SRT SUBSEQUENCEISCR SEQ. ID 1 11KLARCEGLA j220 2 0 91 TELERGNSA hf 1.465 1 32 7 FQDGEKLGT ]f1.390 I 16 RLESLEHQL If1.367 J FVDKWH 0.922 20I AVGAN 0.91.3 Jf 1.43 If SX 0.868__ KIKKTLPEL j0.828 J F15-3 Ir LPGDFREVL]0.4 L7 11VVQQKETLA 0.739l____ 281~ WGNNPIELL 0.723J 42_1 VETCEEALL 10.706 114T~ DLPRDPGHMM 067 368f FVGEIJSQFK Jr066If____ 298 QLPLFVSDG- Jr0.651 I CLWLRSSAS Jr0.619 I _357_ TVGGRDTI 0.607 289_ ELjLINDKVA J .6 SPAPGSRFV 10.4991 33 VTWTTRDQM If0.477 L E D E K S I I 0 4 3 4 IfL 0.420 197][TETLAL If A.415 316___ GWE 0.371 3641] ATQAFVGEL 0.337__ 30.8 j WHHICVTWT O31 418_ WPVETCEEA If0.300 581ELRAAVLQL ]f 0.280 *383] PAQEIVNIA II0.267
J
38 fQEIVNIANC ]f0.222 124J EQLSRSLQT 0.210 251*f ICLWLRSSA 10.2041I 21 LALLAASVA 0.~1 7 IfQQKETLASA If0.166 20 LIEWGNNPIj [0.3.561 16 KTESTLNAL, If0153r ITABLE VII 186P1H9 lILA A0201 9
MERS
ISTARTJJSUBS-EQUENE SCORE SEQ. ID FFIGAQSPEL 0.4 1!QSPEEELRA F0.1-3.3 [F-41 KKTLPELYA 013 IF LLHNETSAH 017 [139611 NMPGNIIPW7014 21 AIRELTGKL 011 36 RFDATQAFV I~016if___ 1 2-79 0.104 2 L7IEWGNN 0.104 GASKWPVET 0.104 (131GAGATGKDT 014 [151LPRDPGHVV 110.099 ___APGSRVTJ009 2 [TCEEALLDL 008 DAFKVSLPL 0.8 TABLE VIII 186PlH9 liLA A0201 10-1
HERS
EQUENCE
SEQ.ID
16I[NMPGNIIPWV63451_____ ITYJYLGKIIr 1.51 I.41TLPELYAFT1I 24 E91 F-4 1LLAASVALAV IF118 238j____ I3_68 1 FVGELSQFN3I.857 I 164 I[ RIGELER QLL Ij8.8 1290 ILLIND)KVAQLI 83.527 279 f LIEWGNNPI I 72.71711____ 12621 GIG;TPFSYAV36411____ 1349 ILlLGQEQDTV 1129.45;____ I302 JFVSDGKWHHI)[9.6 -170 [RQLLRKVAEL [1.42 ~152][OLPGDFREVL[1.0 1241f KTLPELYAFT 11.058 1 400_ NIIPWVDNNV[ 9.563 62 1AVLQLRETVV I402 [IPWVDN4VDV]I .01 1 [IEWGNNPIE~ 5.801 WTTR]GMWEA.J 5.47 ~TABLE VIII 186P1H9 liLA A0201 1- H ERS 1~ START SUBSEQUENCEIF[C®1 SEQ. ID] [226 vSRTNYL][ 24I [139)[SLEHQLV[4.5 25 1 T~WLRSSASPGI)[ 3.647 1 (MLALLAASVA][ 3.463____ 1 jVLRQEIvNYE 310 [~INALLQRVTEL[ 2.2F 731 VQQKETLASAJ[199 2__1 L[AIAAsvAL I]I 1.8 6 12:4[:Q]SSLQTL)[132____ 418 ]WPVETCEEI] .8 I SL[127) 3 2 _TjWEAFQDGEK] 84 T1RELTGKLARC F 0.822J____ [-W]GRFDATQAFV](086 IWTICLWLRSSA][0.8 r1 30GMEQDGE10.8[ E29 YAVPGQANEI067____ E~ILSQFIWDRvI__ I rllAGLPGDFREV]I063 IIVFGASKWPV]I066 120ITLNALLQRVrj .61) SAQSPEEELRA .541[ I6AAVLQLRETV 0 0473 16IAVHAGCPLPA jI 0.435 181SVALAVAAGAI043 I6ITVVQQKETLAIl045___ 18 IKSLLHNETSAlI040] VIIVCTAJPPEAV 038]___ 27011AVPGQAEIL j0.376 I1GENLAPWHPIJ0351
FNIWDRVLRA
1 0.343r____ 0.313 22APGSRFVCTA 0.283.
195 IQKTESTLNAL ]j0.280 IT1SLLHNETSAHlI 57 I EELRAAVI.QL026 -897 KrARCEGLAG 02 30T1 TALPPEAVHA] .5 128 ]RSLQTLIWRL].023 Ii1IILL'~vA]I0.2491____ ITr1(VEQLSRSLQT 1 0.246 F297 IAQLPL VDG 1 0.244 ~TABLE VIII -186P1H9 HLA A0201 10-i I MERS SUBSEQUEN6E ISCORE
SEQ.M.I
0.237 1~ILASARAIREL 1~2[_ [i]LPPAVRAG:cJf.26]_____ 82 1I:ERLTGIA IL 0. 213 [iT1ETCEEALLDL][ 0.210____ [13 I L8LHQLRA)E I.6 ViIEVLQQRLG3EL][015 [TF]ELERLLRKV][014I 1427' HQLRANVSNAr 0.146 ESHRK 0.1451 2441 PELYAFTICL 2IIVALPLFVS I 0.2 F ICLWLRSSASPIf 0.1.24 11= 13_ 'VAAGAQDSPA 0.117 ILAASVA l T1,I TMGDLPRDPG] 0.10 304 11 SDGKHHIcV] 0.09711 292 11 INDKVAQLPI 0r. 0957j -278[ILIE.IWGNNPIj_0.0947J 6 ATGKDTmGD)L] 0.089 41j[ASMIPVETC0.078f Jj SPAPGSRE VC 0.077 f TABLE IX 186P1H.9 ELA A3 5-MERSJ 33 [NLAPWRPIK ~9.0l _1 KVAELEDEK 9. 00 '__475 ELYA.FTICL 15.4001 I76 IFTLASARAIR 4.000 21 KTLPELYAF 3.038I _03ALLQRVTEL 2.700 j[ iQLLRKVAEL f 27 0 0 3201 1.3501 ELRAA-VLQL ~i.os~ 080 1 TABLE IX 186P1H9 HLA A3 9-MERS SATSUBSEQUEN~CE SCORE SEQ. ID 11 1 NUM.
___STLNALLQR10901 39 [NNPGNIIPW 1 0.9001 ___QLSRSLQTL ]Ioj_ 132_ TLKWRLESL] __00_ ALAsvAL ]0.900~__ IRLESLEHQL IFO.6oj__11 WVDNNVDVF 10601______ 227]1[ SLPLRTNYL LLAASVALA 1=2 SLQTLKDRL 10.600 143 jj QLR.ANVSNA 1j0.600 21 [ELERONSAF jj0.600 ___NIWDRVLRA L.9 1 330 KLGTGENLA 1106-00 I ___YLYGKIKKT 052I 821RAIRELTGK 0.450 SLPLFVSDGK] 184_ SLLHNETSA 28 PIELLINDK[030 31 ALPPEAVHA][.0]___ 200_ TLALQRV 0.300 232If TNYLYGKIK__ _75T] VLQQRLGEL 230j LRTNYLYGI( 238I1 KIKKTLPEL, 262 GIGTPFSYA IFO.2][ 1527 GLPGDFREV] ~]I 162__ 7OLELER [024 2051 LQRVTELER 0.240 Ifl 10.200 350 [ILGQEQDTV 63h VLQLRETvv 0~.00 15 LLHNETSAH 10.2001 252 IICLWLRS SAS 10 -2 0 0 9_228 LPLRTNYLY 0[.ii 180 ELEDEKSLL 180 298 f QLPLFVSDC J 0. 18il0 52_11 AQS PEEELR 0.138 011___ 8971 KLARCEGLA 1[ TT ]I 0 293-__ LINDKVAQL 166_ 11GELERQLLR 0.162 273 GQANEILLI Ji0.162 22 TLPELYAFT_ 0.1 279__ LLIEWGNNP 1351I____ ELGKLARC ITABLE IX 186PlH9 HLA A3 9-MERS 00 00 I TRISUBSEQUEN~CE SCORE IISEQ. ID
NUM.
[TTJ KTSTIML 10.13511E SAFKSDAF 10- 10 2 [LSRSLQTLK 010J ___LRETVVQQK lY oof____ ___YAFTICLWL1109I [9[TVVQQK ETL ]0090~__ 72 1J[ LSQFNIWDR 10.090 16]~ RLGELERQL I QLRETVVQQ J0.090 j T[RCEGLAGGK 0. 090[ F21171 LERGNSAFK GTGENLAPW i008[ ___NYLYGKIKC 060 __r 507[ NAGLPGDFR ___LIEWGNNPI D_ LPELYAFTI J[0.os411____ [3131 VTWTTRDGM 1226. VSLPLRTNY [T"TVGGRFDAT][~ [2T8- TTRDGMWEA 1[0.04511____ 9 [STNMPII045f [TTfSQFNlW'DRV1004 ___DVFGGASKW10.41 110.04111 I31VLRAQEVN 1040[__ 1 GHVVEQLSR7 I[006] 1311ELSQFNW 10.036]____ __RELTGKLAR 0.0361 1 360 J[_GRFDATQAF 1f0.03 [4091 VDVFGGASKJ03NE 217 ][AFKSPDAFK 10.030 1 348 FVLILGQEQD 1 0030 1 [380]1 RVLRAQEIV 11 0.03[ __290_ LLINDKVAQ ][0T0T0]1 [~LLQRVTELE' 0.030 LLRRVEE TABLE X 186P1H9 HLA A3 lO-MERS7 START SUBSEQUENCE SOE SEQ. ID [s5l QLRETWVQQKII3.0] L_ -J 28QLSRSLQTLK 30.000]____ 12 QSRLQLK20.000][____ 227 ISLPLRTNYLY fl 12.000]0 1 3.52J GLPDFREVJ L4il TLELYAFTI 204 1LLQRVTELER 8~_.000 1Ij ELERGNSAFC] 6.000 71.5:400 185 ILLHNETSAHR 11 36 IRELEQLR 4.000 L 23 !YLYGKIKZFLI 3.375__ 158 1[ELRAAVLQLR] 2.700 1290~ LLInMKVAQL][27 21RTNYLYGKIKI 1.00 [TW]SAFKSPDAFKI 1.500
F
3 TGMWEAFQDGEI 1.350] If 79JILLIEWGNNP7 1.30] [1666 11GELERQLLRK 1[_1.215 238 IKIKTLPELY][120] 225 F KVSLPLRTNYII1 1.200 jp[KARGAGATGKf 0.[00 1 381 ]IVIRAQEIVNI][090II____ r 3. 74iRLGELERQLL] 0-.900 2471YA'TCLWLR11_0.900 r286INPIELLINDK 0.675 39 INMPGNIIPW[_________ 254 LLSAPI[060 4 I[LIAAiVALA 0.600 262_ GICTPFSYAV][0.54AJ I 2451 ELYAFTICL W 101450 232 [TNYLYGKIKK if0.400 __DTGG 0.324_ J 368 IFVGELSQFNI 0.270____ 16 LQQRLGELER 0.240f____ 0.200 i ~SLEHQLRAVl 0.200 J 7 Q0.80L[ 366QAFVGELSQF] 0.150 348 J[VLILGQEQDT 015JJ____ LGDFREVLQQR1 IS 0.120 r TABLE X 186P1R9 HLA A3 10-MERS START SUBSEQUENCE SCORE 1 SEQ. ID 330[KLGTGENLAPI010J 51 GAQSPEEELR 0.120 f178 ELEDEKSLLH[ 19 I T[cI GwMsAPI 0.100 [IAVPGQAITL][ 0.00 -Oil_ 19_ TSTNL 0.090 [222[DAKVSLPLR if0.0.90 1~ [7 ILLIEWGNNP]I 0.090 k..1ETLASARAIRI 0.090 JGI~LAGIARGAI_0.090 E114 IfDLPRDPGHWV11 0.o090 17 RQIJLRKVAEL3 0.08i F ITh KvAoLPLFVs][0.81w 0.068 W336 NLAPWHPIKP 0.6 342 1[ IL 0.054 r335 ELPHI,0.04 300 PLVSDK_ 0.050 J F203 [ALLQRVT~IEi004 3 1 5 f WTTRDGMWEA 0.045 34 IIGEQDT[ 0.045 13321 IGTGENLAPWH1 0.045 171F ItQLLRKVAELE 0. 045 421- IETC_ _LD 0.0 41 36 1 AVAGCPLPP 0.040 JAMMQGA 040 RP 11 LLRKVAELED[004 76ITASARAIRE 0.4 1 AQOSPAPGSR.[0033 I21IKTLPELYAFT[ 0.034 SRKVAELEDEK]( 0.030 I 0 ARAIRELTGK 1o.030 111lJ TMGDLPRDPG 1 0. 03 0 [143 jQLR.AIVSNAG 0.030 (62 ~[AVLQLRETV 0.030~__ [69 TVQKTA 0.030 [281 j[IEWGNNPIEL][ 0.027 1 33 I SFNIDRV][0.027 [12 IHQLRANVSNA[o 0.027 TABLE X 186P1R9 HLA A3 ISATISUBSEQUENCE1 SOE 1SE. I,) 20]KKLPELYAF] .07 414 ]1 GAKPVTJ 0.027_ 1202 11i _VEJ0.2 [08 11 GKTMGDLPRJ[004[ 1199 II STLNALLQRV] 0.2 25 j~TICLWLRSSA][ .2 1 ~VLQQRLGELE~ TAL I -186P1H9 HLA A1101 9- F77 MERS S SABTEUENCESESE.IDI 17I] KVAELEDEK 6.0001 1T] NYLYGKIKK 11.20011Z TT 1 RAIRELTGK 10. 90011~ T TTJjSTLjNALLQR 060 VI LPL-FVSDG 10. 3001 Ts I QQR~jGELER 205 1 LQRVTELER 0. 2401 1TT1 ELERQLLRK, O.4Ol T AFKSPDAFK10.01 AQSPEEELR]I 1295 1 110.120 1" Vi11RELTGKLA oiolMi 16I] GELERQLLR7E0.108 301RVLRAQEIV 0.09 211KTLPELYAF ]10.090[ TLASARAIR 1.81 310 HICVTWTTR 0. 08011 '248][ AFTICLWLR 10.0801 10.060 322 ]j WEAFQDGEK-M II.6 _230__ LRTNYLYGK- m 0.040 110!NAGLPGDFn-Rn Ap.0071 22 ~AFKVSLPLRj Ib I00I T VT]PIELLINDKC 10 .0401 F302 FVSDGKWHH 0.0401L I Z 1201 GHVVEQLSR 0.036E T 2731 OQANEILLI 0.03i6E ___VDVFGGASK003I 6 IIAVLQLRETV POO01 TABLE XI 186P1H9 HLA A1101 9-
MERS
[SISUBSEQUEN
EIINUMID
32 GTGENLAPW 0.00r :zi 191TVVQQKETL0. 0I [FT-9 671 KTESTLNAI .3 zi~ [23111 RTNYLYGKI0. 0] KDTMGDLPR 0 2 T]WVDNNVDVF [0.020[ [161LSRSLQTLK 10.0201 ___VTWTTRDGM0.2E 1 [XILRETVVQQK0.01 I 376 RLR ~~0.016[ __FNIWDRVLR 10.012EZ Z [11KLLARCEG LA0. 2] [YI[RLESLEHQL 01 KLGTGENLA 002IZ I~TfDVFGGASKW 002~ 137 [LESLERQR 12621 FSYA 0.012lX IDFREVLQR0i2 Z] 111GCPLPA MPM0. 2] 23 [KIKKTLPEL 002 ISQFNIWDRVJ 0 1 2 29I CTALPPEaV 0L, [394 STNMPGNII 0.EIZIZ 128_ RSLQTLKDR ]I.09F Z ___GVLILGQEQ 0 0 0 9 I ___LSQFNI:WDR I.oEZ NMPGNIIPW 008 YAFTICLWL 109P.2008Z~ VI AILLAASVAIL 0I.s 1_ QQKETLASA 1000611l [~[ALLQRVTEL 0.006l RAIWSNAGL10 06 [24-3[ _LPELYAFTI 1Ji.06p11 [s]lGAQSPEEEL 0.006~1II I 8 NBTSAHRQK 0.0061 :Z [T18471 SLLHNETSA 0.006I 1 3 QLLRKAL006:z RFDATQAFV 0 00~ j~ LPLRTNYLY0.6 TABE X -186P1H9 HLA A1101 9-
MERS
I" STRTSUBSEQUENCESOE
SE.I
SRAQEIVNIA F.76 25 ELYAFTICL_995j jLRAAVLQLR I10.04jII F321TLKDRLESL ]l0o4 '4 71IIPWVDNNV 10.00 '[-1291 SLQTLKDRL 100J 230 L~D 0.0041[~ .F-4[LLAASVALA ]0.004 F12,IrQLSRSLQTL 1,01 F280 216 1[ SA.FKSPDAF 0O.00411 82 FAIRELTGKL 0.0041 ZZ 143T) QLRAN'VSNA 0.004 LiihI 186_ FTHETSAHR J0.004 J F--1LAAsVALAV ~0.004E INVSNAGLPG i RO 1EZZ ILLHNETSAH 0.04j I___QKETLASAR]0 0 1631 VLQLRETVV 00Q] TABLE XII 186P1H9 lILA A1101 10-1
MERS
S 9E ECRE N.ID I TTINVDVFGAK200L Z I 23 IRTNYLYGKIK so I KARGAGATGK 0.600I 166 GELERQLLRK 050 125 QLSRSLQTLK 110. 4 I00 298 QLPLFVSDGK 16 ISAFKSPDAFK 65JIQLRETVVQQK 'L 352 jGQEQDTVGGR j j~ [286 JjNPIELLINDK 0.3001_____ 1 ILQQRLGELER 1 13 1I RLESLEHQLR 10. 24 01I 247 1YAFTICLWL -R 016 0 [204 [LLQRVTELER 016 1232j TNYLYG KIKKI0 6 [2 QQKETLASAR 10.12011 [TFI GAQSPEEEEL 01201 TABLE XII 1861P1R9 HLA A1101 ia0
MERS
!START11SUBSEQUENCEI SCORE NUME. I L2OIELERGNSAFK0121_____ KTThAQDSPAPGSR1 0.120 14RKVAELEDEK 009 11 ETASIR 000 PRYK 10.00~ [h ILIJHNETSAHR 008 225 PRTNY0.0601 368 I[GELSFI 0.0601 31ELSQFN'IWDR 008 iiiii 7367[AVAC LPA 0.04011J 194_ 1RKTESTLNA 1033 ~i~T 3[0.030 170 0VAEJF.027 155 IGDFREVLQQR 10.-0 24 ~GKDTMGDLPR 0.O 024 S]GIGTPPSYAV 10. 0241 Z 58IELRAAVLQLR 10. 024 22 [DAFKVSLPLRO02 91ARCEGLAGGK 10.2 1AVPQANEIL 10.0201 __WTTRDGMWEA F.2 123CVTWTTRDG3Ml 0~1 I ]I21 MT[WEAFQDGEK 10. 0 01 1 27 FVCTALP-PEA 10. 0201 8 qSVALAVAAGA 10.0201 38 1RVLRAQEIVN 10.01I I VQLLVS10. 018 Z I 3351[ENLAPWHPIK 10. 018 199 ]STLNALLQRV 005~Z Z 131 1[QTLIDRLESL 0.015 164 IRLEEfL .01 41 ]TLPELYAFTI 0.0W 12 2 ~0.0121 5238 KIKKTLPELY 106 GDL 000I Z 29--[TEEGS 0.010izi TABLE XII 186P1H9 HLA A1101 SATSUBSEQUENCE SCORE SEQ.J ITT1HQLRANVSN 009ZZ I~EVQQRLaEL0 0 9 I LLAASVALAV-0.008 I-iELRQLL 0.0081 IT]ISNAGLPGDFR]00 227 IISLPLRTNYLY] 0.008 F091 HHICVTWTrR F3011 LFVSDGKWH] 000 rFI AFKSPDAFKV] 0[.0061 26 SPGIGTPFSY 006 ii==LRGN .006 27 ILLIEWGP I.06~ 13GAGATGKDTM 10.006 1_2 9 011 LLINDKCVAQL 11.0 j) 1931 CELGGA 1 42 111ETCPAL. 0 0 6 FITLILGQEQDTV0OO ZZj IT IIALLAASAL 0. 0061I I 71VQQKETLASAo 0.0 o o I- 40INIIPWVD)NNvjo 0.00 241 TLLY~T 0.05T I 1ETVVQQKETL 005 IT HNtJ~ETSAERQKJ0 0 ~~z I MLALLAASVA 0.004 E Z 2 4]WLRSSASPGI I0.0041 271 1 VPGQANEILL 10.004lZZ [25[TICLWLRSSA 1 0. 004 IZ I 411 j VFGGASKWPV10.4 39NMPGNIIW 004 1 ITABLE XIII 18ERSH HLA A24 9- ~ST BSQUNT SCOR SEQ. ID I II LYGYIKT 1280.000 jjQFNIWDRVL :]30O.00 00 00 TABLE XIII -186P1H9 HLA A24 9- I MERS [STARTI SUBSEQUEN6EI SCORE Ij SEQU. ID 3T j 67 GESQ [15.000If____ 16 KTESTLN.AL [1.40II____ 136 IRLESLEHQL F114.4001 [14 5 RNVSNAGL 112. 000 IL 164_ RILGELERQL 11.21 238 8.800 I 291_ 7.20 11291 SLQTLKDRL if7.2001 11221 VVEQLSRSL 7.200 1_241_ KTLPELYAF 1( 7.200 1227 11 SLPLRTNYL 11 7.200J 142211 TCEEAIJLDL jf 7.2007 1 81ELEDEKSLLIf720[____ 16 lLGELERQLL ][7.2001 VhT1ALLQRVTEL 6f .6001f___ 1 Jf QLLRKVAELJ[ 364Tl ATQAVE J[6.600 51 Ir GAQSPEEEL 6.0 ___VLQQRLGEL If6.600_II JfAIRELTGKL If6.33611 [TTfHPIKPGGVL 16.00071f____ 283 IfWNPELJ6.ooo I _69 TVQKETL 6.000 1_268_ SYAVPGQAN J[ 6.000 EAvHAGCPL]I 6.000 A LL~sASVAL 6.000 [1JDPGHVVEQL If5.600 I _222 DAFKVSLPL f. .600 jf 7_ 7 11 YAFTICLWL j f 2461 LYAFTICLW]I ~o 1531 LPGDFREVL I .00 107_1 TG1KDTMGDL' If 4.800 125 IIQLSRSLQTL 114.800 1321 TLKDRLESL7I 78 IfASARAIREL7If4.400 If- 282 ~WGNNPIEL[4oo___ EAPQDGEKL J 4.400 2.59 I1 ASPGIGTPF J[4.200 245 I1 ELYAFTICL ]4.o000E Z 5871f ELRAAVLQL If1o 271 IfVPGQANEIL 4. ]f0 220 SPDAFKVSL 400 231 RTNYLYGKI If3.960 21 ELERGNSAF]J300I 191DSPAPGSRF 30o TABLE XIII 186PlH9 HLA A24 9- I MERS START SUBSEQENCE SCOR SEQ. ID 354 IfEQDVGRF 2. 284 GNNPIELLI f2521 ____SNAGLPGDF f240I____ 1A61 SKSPDAF IT1I__]_ [404 IfWVDNNVDVF- 2.000 270 1AVPGQANEI] 1.980____ F72 7801 LIEWGNNP 1 800 34 STNMPGNII I .0 335__1 ENLAPWHPI I .so f ___ETLASARAI .0 r369I VGELSQFNI Ef150J[____ 243[ LPELYAFTI 1l1 1.50I____ 303~ VSDGKWHHI Z73~ GQANEILLI 1.000 ___CSTNMPGNI I ~o [TT[FREVLQQRL if0.864 40i GCPLPAMPM If0.750 J 177LJ AELEDEKSL_ 0.720 I ___EEELRAAVLII 0.600____ 272-1 0.600 I41 PVETCEEAL]~.O 1 10411 AGATGKDTM]I [.3897[ NI NSTNMIf050[____1 __313 VTTRDGM 0.0 197_ TESTLNALL 2139 [KSPDAFKVS 043 4209[ VETCEEALL 040 [23[NDKVAQLPL(040 [ifDKVAQLPL F 0.300I____ 380 111 RVLRAQEIVl 0.3[00 [183][_KSLLHNETS If0.300 I [360 JrGRFDATQAF]I 207 JrVE G 11 0.288 [307 KIC 0.28 [330~ 1 KGGNA[0.252I40___ TABLE XIII l86P1H9 HLA A24 9-
MERS
ISTART SUBSEQUENCE tEJ SEQ. I 2__95 KVAQLPLFV IL0. 240 226 IIVSLPLRTNY]021 12421 TLPELYAFT 0. 2136 1~T[TLNALLQRV [0.216 S VALAVAAGA J[ AQE IVNIAN 210 TABLE XIV 186P1H9 HLA A24 10- MERS START [SUB NCE CO EQ.I 246 LYAFTICLWL 11280. 0001I_____ 5 IDFREVLQQRLj[450I____ ___RAIRELTGKL 1 15. 84 01 1291 PDAFIVSL !14.4070 ____RSLQTLKDRL 11.0 196 1KTESTLNALL 144 17 RQLLRKVAEL 11 13. 2 0 011__ ___RLGELERQLL r2ljlVSLPLRTNYL 11 8.640 23INYLYGKIKKTI820 r 124QLSRLQTL 17.200 418 WPVETCEEAL 159_ EVLQQRLGEL J .0 202 ~iNALLQR.VTELII 6.600 2 IALAASVALII 6.000 1 1QT KRLESLI1 6.000 1~ILLINDVAQL1 6.000 170'I AVPQAEILI 6.000= 176 VAELEDEKSL 600 P 1TI2 GLPQ3DFREVL ]F.000__ 234!1 YLYGKIEKKTL] 5.600 4 2 I E T C E EA L LD L 4 .8 0 0 F3637 DATQAFVGEL 4.400 I LAI~SARAIREL]1 4.400 I IGGAQSPEEELI 4.400 I]I SQFNI:WDRVL4.000] 12IVPGQANEILLl 4.00o____ 18 ITGKLARCEGL' 4.0 10]IATGKDTMO15L 1 2 921 INKAQLPL F4.000
EWGNNPIELL____
TABLE XIV 186P1H9 HLA A24
MERE
START [USEUEC SEQ. ID 148 VUSAGLPCDF 3co.00 28IASPGIGTPF 3.360j 359 ]FGGRFDATQAll240 31671 TTRDGMWEAF][240 269 IYAVPGQANEI (23611____ 279ILLIEWGNNPI][216 283 J[WQNNIELLI][ 2.100 36"76 QAFVGELSQF 2. S215 ]NSAFKSPDAF] 2.000 24 ITLPELYAFTI][ 1.800 117 IRDPGHVVEQLJ 1.68 341 1 PTKPGGVLI]171.00 I 393 I CSTNM.PGNII]( 1.20011 302 il FVSDGKWHHI3[ 1.2001____ 368 IIFVGELSQFNI[ 36 AFvGEL~SQFN(100 39 NNPGII[100 38 1 IRINIJI 1.000 254 IWLRSSASPGI]If 1.000 324 1 AFQDGrEKLG.T][ 0.90 _7 135 IDRLESLEHQL] 0.864 I =8 1 0. 7507 177 J[AELEDEKSLL- 0 163 1[QRLGELERQL iF0.720 237 GKIKKTLPEL 0.660] 9j[ AGCPLPAMPM] 0.600 ]I AFKVSPLRT][oI o 419 1[ VEEALI 0.60 0 I 57 II EE~IARAVLQL] 0.600 340 IIWHPIKPGGVL]0.0 248 IAFTICLWLRS[0.0 1f QPGSFVCAL j056I 3 0.560 217 IIAFKSPDAFKV]1 0.55011____1 353 ]IQEQDTVGGRF][1 0.504 L 3831RAQEIVNIAN][1 0.504 1 411IVFGGASKWPV F .oo 7103 (AGATG1DTM 1I 0.500 [2351 LYGKKKTLPI[ 0.500 268 SYAVPGoQANEl 0.500 342 iPIKPGGVLILI 0.480 281 iiIEWGNNPIEL II0.440 322 WE AFQDGEKL 10.440 [E241 LELATI .42I K1 20KK.L PELYAF 0:4001 ITABLE XIV 186P1H9 HLA A24 10-1
MERS
jISTART 1SUSEQUNE]k. SCORE fSEQ.ID] 144 LRANVSNAGL 1 0.400 'F3 87GEKLGTGENL][ 0.400 [-192IAHROKTESTLI040 [209 ITELERG&SAF[ 0.360 f_ F-403_ 0.360 0.330 [92 1 RCEGLAGGKA 0.330 E 1 40 iIIPWViDi 0.302 I 38[ RVRAQEIV 0. 302___ 0.3 00 I F175 I VLEDEK7S 0.2 1 f G~GA1 1 0.252 I 0.24052__ F~RVELERGNS]l 0.240 j 18 [Q-DSPAPGSRFI0.4 274 QoANILLIEW l028 11]AGLPGDFEVII028] 10IRAAVLQTRETI[0.2 VT j VGELSQFiR1W 0.1 [*TABLE XV 186P1H9 HI±A B7 9-MERS SAT9USEQNI SEQ. ID 82 ARLG l120.000[____ S341 I[HPIKPGGVL S118 DPGHVVEQL 1[80.000 271[VPQAN9IL~s~o[___ 24 GSRFVCTAL 14.01 __ELRAA.VLQL 140.00011 SPDAFKVSL 24.000 ___TVVQQKETL 120.000 1 IT1] GAQSPEEEL18001 1 203 ][ALLQRVTELI 12.000 I 222_ DAFKVSLPL 3.12.000 364i] ATQAFVGEL 12.000Jf______ r~rALLAASVAL I 323 JEAFQDGEKL1!100[____ LS EAVHAGCPL J12 J!1I RANVSNAGL j12.0001____ 14 YAFTICLWLf100] ITABLE XV 186P1H9 HLA B.7 9-MERS ISATSUBSEQUENCE SCOE j S NUM.ID] 78 1112.00011 22TJ APGSRFVCT 169000 11 283 fWGN'NPIELL II6.0001 122 VVEQLSRSL 6.000_ 270h~1 AVPGQANEI If6.000 1791 SARAIRELT If 4. 500 62 AVLQLRETV HAGCPLPAM 171 QLLRKVAEL[ 4.000 17 TGKDTNGDL 4.[00 [291 [LINDKVAQLa] 4.000 132J TLKDRLESL 000[___ 28 KIKKTLPEL 4.000 22 SLPLRTNYL )1 4.000 39 MPNII___ 1S QLSRSLQTL 4.000E h 160_ VQQRLGEL 0~ 40 00 14 RLGELERQLJj.oo[____ 129_ SLQThKDRLf 14 000or1 1TTIAGATGKDTM 1 .0 243 FLPELYAFTI I .0 r41811 WPVETCEEA I .00I 165 LGELERQLL II1.800- 40 GCPLPAPM ~f1.500 178 ~iELEDEKSLLj[120J____1 17 AELEDBKSL jf1.200 fTjTCEEALLD)L]( .0 196 1.200 16 MPMQGGAQS 1.200If_ [25 KVAQLPLFV 1.000 [389 fNIAN~CSTNM 1[ .000~ QLRANVSNA J[1.000 [30 RVLRAQEIV ][1.000 [5~fGGRFDATQA 1.000f_____ fih[AAGAQDSPA 0.900 [3381 APWHPIKPG [6 AAVLQLRET __AASVALAVA 0[.900 419_ PVETCEEALj] .0 I rTABLE XV 186P1R9 lILA B7 9-MERS START SUJBSEQUENCE SCORE SEQ. ID] LAASVALVf 0.600 S 4 ][SPEEELRAA 0.600 ]jVVQQKETLA~ 0.500 387 ]IVNIANCST j0.500 357 TVGGRFDAT 3[T.5n 415!i ASICWPVETC 0 .450 [272] POANEILL if0.400 374 QFNIWDRVL[ 0. .o00J [282 Jj GNPIEL f 0.400 2__3 NDKVAQLPL 0.400 19 ]j TESTL L[ 0.400 27 IGQANILLI]~ 0.400 F23S][ LYGKIKKTLJ 0.400I 2m 311 RTNYYI 0f.400 22 FLPL1ZTNYLY f0.400 __01 VETCEEALL 0*400j GNNPIELLI f0.400 ]jETLASARAIJf 0.400 260 Spa SIGTPFSf040 ___EKLGTGENL .0 f [IKPGGVLIL[040 ___GILARCEGLIf040J 12~] AVAAGAQDS [030~ F71VALiAVAAGAf0.0 2] 1 1ASV 0.300 29j CTALPPEAV If0.30 AGATGKDT[0.0 192' JAHRQKTEST1[ 0.300 f43 ][LPAMPMQGG II0.300 41 [GASKWPVET If0.300 383_ RAQEIVNIA If0.300 I F-3-iJ( ALPPEAVHA If030 STABLE XVI 186PIH9 lILA B7 10-MERS] ISTARTIISUBSEQUENCE SCORE SEQ. ID [271J VPGQANEILL I180.001 [418 WPVETCEEAL 18~0000i 270 AVPGQANEIL 60.000 11 HVVEQLSRSL I [EVLQQRLGEL 2.00Z] 12 j AHRQKTESTL 1.001ZZ TABLE XVI 186P1H9 lILA B7 [STAT ~SEQ. ID
KUM
ILAS-RIfELI12. 0001 36 DATQAFVGEL 12. 0o0o11 TIfATGKDTMGDL 10 I l I NALLQRVTEL 1.ooj
F
2 LALLAASVAL (12.000 :-IHPIK(PGGVLI IT1 31 fCVTWTTRflGM [15T GLPGDFREVL- 116. 0001j 16 fRLGELERQLL 50 6.O 0 0 3 9 1 AGCPLPAMPM] 4. 5 0f 128][ RSLQTLIKDRL] 4. 0001 87 TG1QARCEGL](.0 131 IfQTLKDRLES~l 400I 1701QLLRKVAEL 14. 000 TTfDFREVLQQR~L 4.OOj 0 402_ IPWVD)NNVD'VF 68 11ETVVQQKMEL j[.0 221VSLPLRTNYLI( "T 124EQLSRSLQTL 4.000[ 254 j WLRSSASPGI 4.000 LLINDKVAQLI 21 IfKSPDAFKVSL 4.0001____ 234_jfYLYGKImITL 1 ]4oo[_ 17 VAEILEDEKSL 3.600 I_ 13] ]GAGATGKDTM][.o] 20 ][SPAPGSRFVC][_o] 62 AVLQLRETVV .0] 61 If AAVLQLRETV[ 2.700 11 ]LPRDPGHVVE200____ SLPAMPMQGGAI ]2 fFVSDGKWHHI 2.000 32_ LPPEAVHAGC ](2.0001I 368 Jf FVGELSQFNI 12.00511 F 54 ifSEELRAAV~f~I1___ 36 ][AVHAGCPLPAI( 1.0 196 I1TESTLNALL ir1.2001F 177 I AE:LEDEICSLL 1.200 I ~292 I NDVAQLPLi 1. 200___ 269 .IYAVPG3QPNEII 00 TABLE XVI 186P1H9 HLA B7 10-MERS SUBSEQUENCE SEQ. ID
NUM.
[3aJVNIANCSTN Ioo [TfLPELYAFTIC 0.600I_____ 340~ WHPIKPGGIJjf J 419 PVETCEEALL] 52itoo I02 F AiIlWHPIKPGi 0.600I 282_ EWGNNPIELL 111 0. I____00 E331CSTNMPGNII 0~.600j____ 151 [AGLPGDFREVJ[ 0.600 [4 MPMQGAQSP [0 8T SVALAVAAGA 10. 5 00 27[VCTAPE 0.500 41 IGASKWPVETC0 .4 5 0[ 78~ ASARAIRELT I _135[ DRLES LEHQL 118~] DPGHVVQL~s 4o0[ _ol I11][RPGHVVEQ[040____ TLEYAT 101 342 [PIKPGGVLlJI0.400____ [~LPLFVSDGKW WTf__ [2601 SGIGPFSY 10.400ol____ LYAFTICLI 0.400 ~PGSRFVCA j0.400J 195_ QKTESTLNAL [38]WDRVLRAQEI Io~l [iTILRANVSNAGL J[40 JF [~GKIGCTPEL 0.4000II I3WEAFQDGEKLI[0.400I1___ I328I GEKLGTGENL- 2-7 1LLIEWGNNPI][Th 2 VCTALPPEAV] 0.300[ [DLPRDPGHVV] 0.300 9I JAGO3KARG.AGA IF 0.0 ]TALPPEAVHA ]0.300 5 ]AQS PEEELRAj[ TABLE XVI 186P.H.9 HLA B7 ISTA.RT SUSQE NCEJ SCORE JrSEQ. ID ~AAGAQDSPA] [TABLE XVII 186P1H9 RLA B3501 9-1 I. MERS STAR SUSEQENCEI SORE SEQ. ID 153J LPGDFR.EVLI 40. 000 228 LPLRTNYLY 4000 15 LPRDP GV 24.000 HPIPGGVL 271] VPGQANEIL 20.000 F1-51[ DPGHVVEQL 20.000 1241 GSRFVCTAL F5 0 2 j~ VSLPLRTNY 10.000 SPA1VS E 8 HAG-CPLPAM 14111ANVSNAGL 00:0:] V~T11AIELTGKL Fo]J [T~Tjf TLRLES [T TI1 TGDL][.01 [281KIKKTLPEL f6.000I 19FJ DSPAPGSRF ][.000 [259[ ASPGIGTPF 5.0001_____ 78_ ASARAIREL I[.000 [323 ][EAF'QroEia J SPAPGSRFV J 397_ MPGNIIPWV 4.000 418 irWPVETCEEA 164 j[RLGELERQL1400 16 SAFKSPDAF Jj3.000 22 DAFKVSLPL 3.0001WJ 1581 ELaAVLQL 13.000____ KThPELYAF 13.000 ___GAQSPEEELj ]3.000 V31EAVHAGCPL 13.000 1271YAFTICLWL 13.000 F243 LPELYAFTI 2.400 FTTIAGATGKDTM 2. 00 0 I::l I219J KSPDAFKVS 1AGSRFVCT 2001[__ [CPLPAMPM 12.0001[1___ SPGIGTPFS 12.000____ F 4 QG6Q 0[7001][7___ TABLE XVII -186P1H9 HLA B3501 9- MERS [TART SUBSEQUENCE SEQ. ID 129111 L.INDKVAI 1[2.oo 0[ 0 38I] NIAc' 1 csTNmpoI 2.0001____ ___SPEEELRAA][ao[ [41.9 [ASICPVETC IQSPEEELRAj _00 1384 RAQEIVNIA 11Th.2 149 SNAGLPODF 203 ALLQRVTEIJ __1.00 [rELYAFTICL 1-000 r332i1 GTGENLAPWJ 1.0o[ WFNIIELL [1,00 [34ATQAPVGEL 3.25 QLSRSLQTL ][i1.000 131KSLLHNETS 1[11.000] 160o] VLQQRLGEL 111 3_ 11 ALLAASVAL 22 SLPLRTNYL I1.000 jELEDEKSLL
SRQKTESTLN___
LmlSAP.AIRELT __0.90 2~3T1 RT.NYLYG;KI 1[0.800] 273h 11 NILLI IF.600~1 [1 KTESTLNAL 0_ 136I RLESLEHQL 0l.so65 LASVAt.AV __0_600 33VSDGKWIff0. BM9] IIUCTLPELY 0.600 1wi: DVFGG3ASIW FOY_ []FSYAVPG3QA 110.50011____ 396 NM.P NIIPwW?1f___ 711 ASVALAVA SSASPGIGT [T~~LGELERQLL 104 0[ [TjGG;RFDATQA ___450 LPPEAVKAG 1.01 34 IKPGGVLILGIO 11_ TAbLE XVII 1B6P1H9 HLA B3501 9- I MERS START ISUBSEQUENCE FCOR ISQ
ID
ENLAWP ]0 .4 001 [x 757 ETILASARAI 10 1_30_1 RVLRAQEIV jIT1____ 207~ RVTELERGN [27 1AVGQN 1110.4001 29 KVAQLPLFV 10.400 VVEQLSRSL I030011____ fVALAVAA QAW ]I ASKWPVET]~.0~ 14 ]AAAQDSPA ]i~TI 210 ][ELERGNSAF 10.3001 96 LAQGKARGA LO0.30011____ 98 GGKARGAGA0. 001_ FTABLE XVIII 186P1H9 HLA B3501 10 -MERS START SUBSEQUENCE OR 1 SEQ. ID [60 1[SPGIGTPFY4.00I [418 [219 JKSPDAFKVSL 120.OO~ 000 [71 [VPGANEILL 120. 0001 [238 J[ ~LPELY1200 28IRSLQTLKDRL 1 1 io.000j______ _41HPIKPGGVLI 8.0001 [13GAGATGDnTM] :TII 14 a] SA LPGF 1 .00 o]I 81T 1 TAREGL I1.01 1428 VSALPGITF1300 32.. 1LPPAVAG 14. 000II 00 00 TABLE XVIII 186P1H9 HLA B3501 10-MERS STARTj SUBSEQUENCEjSCR SEQ. ID F202 1NALLQRVTEL 13001 F 1 UDATQAFVGEL 13001 274 1 QANEILLIEW 1300j_____ GRFDATQAF] 3.000 54 jSPEEELkAAV]12401____ W22 ISLPLRTNYLY 12.00011____ 4 3 1LPAMP4QGGA J2.00 121 JjHVVEQLSRSL 12.00011 [201 jSPAPGSRFVC]IT~j 118 1IDPGHVVELSII2Oo i IT~ jRQLLRKVAEL, 12. 00 011 JIAGCPLPAMP7N 1200 I1JCSTNMP 'II 12.000 1 Tj[APGSRPVCTA 1200 r 3 ljVLRAQEIVN II 1.0J J~1QSPEEELRAA 1.0JI____ KIVAELEDEKSL II135] IfLPRflPGVE 24I[WLRSSASPGI ___RAOEIVNA 120) 26][YAVPGQ=ANEI [EVLQQRLGEL[ioo]_____ 23 [YLYGKIKKTLjioo]____ ___]ATGDMGDL1[1.0001[ ij[LSQFNIWDRV [j 13 ]QTLKDRLESL][ioo] 12 [EQLSRSLQTL 0001____ 187 KBLLHNETSA] 1. 000 GGASPEBLJ1.000] 152T][GLPGDFREVL 11.000 .256 ][RSPGG [11.0001 T J1ETWQQKETL[ 1.00 1381 ESLEHQ LR1.00 0 0[ 3 ISFN[DV 1.0 ___LLINDKVAQL .000 0[ 270AVPGQANEIL [1.000 27911 LLIrEWGNNPI 302I FVSDGKWHHI[0. 80 011__ 368 iiFVGELSQFNI [0.80011____ 2427TLPELYAFTI [0.8001 16 jGAQDSPAPGS 1106 0 0 ALE XVIII 186PlH9 HLA B3501 STARI FSBSEQENCESEQ.
ID
[1SSEQNCI SCR NUM.
[75IKVAEEDEKcS j060[ [196~ KTESTLNALJI~~l____ [~IRAAVLQLRET J[TO 156_ DFREVLQQRL 1Wj F243] LPELYFICJ__ 0. __00 194 11RQKTESTLNA[ 00] 259 JASPGIGT; 0S][ 0 [245 ELYAFTICLW]0.500][_F [F 7lSYAVPGQA][ Fi 331 iiLGTGENIAAPW][.0 i I~lTALPPEAVHIiF0T45I
J
I ~jNPIELLINDKj 283_ IW ~uIELLI 153lILPGDFPEVILQ1T F3927IfNCSTNMPGNII 0.400[ 14IIKPGGVLILGQI f jINDKVALPL .0 98 [GGKA.RGAGAT]0.0 198 AHRQKTESTL 1I0.300f_____ I[&NDVALPLFll0.300I____ ]LILGQEQDTV 12401 _KKTLPELYAF 1030 I 1I 1GASKPVETCW070__ TABLE V 187P3F2 HLA Al 9-MERS START]ISUBSEQUENCE SCORE] SEQ. *ID ___LADSLQLE( 1[50.6[0f [31[DLEQFAKQF 1[900] 214i] QPPPQSLLY 6.250 420 ]ALESHFLKC [4.500 391_ TGSPTSIDK 2.500 [64][j RGDPSSVO .00J 319_ SDDLEQFAK 1.011 362_ RFEALQLSF j2.250ll 15AVEASSPilS 11 00TJT][ IHSDEDTPTS oo[1 LHSDAAGAGGiiso V lA7P1~F2 HLA Al 9-M~flg START [SUBSEQUENCE]1 SC sQ- ID [37[QLSFKNCK 111.00 01 [*485[ SADTPPPHH JL1.000oE____ 1T~1GALESHFLK 1. 0090 [TT[SIEVSVKGA7 0.900 446 EKEVVRVWF]IT~[__ 383 WLEEADSST F0.900 1 [318J TSDDLEQFA J0. 50( 74 QSDFMQGA4 0.750 ___YSQPGGFTV ]P~ SAAVTSGAY i: j SLVHPGLVR ]j F l J1 MATAASNPY 050 [410] RTSIEVSVK 0. SOO ASNPYLPGN 030 234_ LSAPPGPGG 0.300 42 SHLKCPK [464J ITPPGIQQ 02 487 1DTPPPHHGL 020I F 463[ RMTPPGI1QQ]020I 264 TPELAEHH 0.225T] 1991 TAPRAAAA 0.200 24 LVHPGLVRG7 0.200j 400 IAQG3RKRK IIO.20o]I F-401] AAQGRKRKK [020 AAVTSGAYR1 I444 QLEKEVVRV 0.180 118 J ASSPWSGSA 110. 15 01 355 FSQTTICRF 0.5 16 GPDVKWGOA 0.1.25 357 I QTTICRPEA 0.125 228_ FTVNGMLSA ~f0.125 34 VGLALGTLY 0.125j[____ 473 TPDDVYSQV FI93I1 [220 LLYSQPGGF 0.100_ F159 HAGTALHHR 0[T*j __100 3-9. KIEAAQG;RKR J .100~ 300_ GAGPGLNSH 0.100 l 396o GMQPGSAAV 36 SIDKIAAQG .0 470 ftQQQTPDDVY 0.075 84 ASNGGHiJ S 0.075-9 261 RGDTPELAE 06 TABLE V 187P3F2 HLA Al 9-MERS (SAT SUBSEQUENCE( SCORE J[SEQ. ID] 17FGPPPPPPHQ 0.05 V HI PHPPHPHiH] 0.050 1[ 130~ AGSPQQPPQ 0tTT2L][ I I 4 jTLYGNVFSQ 01 0-5 2 IIATAASNPYL -4 AASNPYLPG 0.050J_____ 1200 AAAHPS 0 172 ftMVQSDFMQG 1154 ftGRDDL;5AGTr 98 ftVTALPHAAA .05 I.S 'F 20371 AA.HIPSMAG [r.00 172f LGPPPPPPH [~~IEADSSTGSP I050iI 1~I QTPDDrVYSQ j[0.050 10.0501 ___EALQLSF1rK 0.0 1 tLLAAGSIVH J[ 0.050 1 4 tGLALGTLYG ][0.050 GTLYGNVFS J .5 9 tYLPGNTSLLAJ[oo f 8 [LEEADSSTG 0.045 ~T~1LQLEKEVVR J0.030[] E V484 DTPPPH II0.030[____] 88DSSTGSPTS _000____p GSAVGMAGS 000f____ TT[TSIEVSVKG J .3 ____TSIDKIAAQ11.01 YSQVGTVSA 11 Ji I0 ___QQTPDVYS 0.030J F38 ]1 GSGGGGAGG II 0.301 ___RDDLHAGTAJf 0.025][ [iT[LGTLYGNF' Ft0.025 ___SHDPHSDED 0I ___QGPPHHGGG I 6.025 3541 VFSQTTICR 10.025 1 263J DTPELAEHH_: 0.025 -Tl KVQSDFMQ ]0.025F_ PTSDDLEQF TPPPHGLQ 0.025.1____ 43 ITNLAD]L ITTICRFEAL 0.0[2S 33 tFTQAflVGLA f .2] TABLE VI 187P3F2 HLA Al lO-MERS STRlUS~ sTcE SCO EQ 5
.ID]
I38J TSDDLEQFAK 7.5. 0 0 0 DLEQFAKQFK l1la. 213_ QQPPPQSLLY 3. 750 146 [GPDVKGGAG3R [2.500I____ 39 STGSPTSIDKI2.5001_____ 34 IQDGAGT .0 74 ][QDFMQGliT 1 l1.500_ [64][RGDSSVKMV[11. 250 1 438 INLADSLOLEK 1[.oo 000 [383] WLEEADSSTG][ _1_ 2 r6 LEMniH10 9 00 1412 ]1ISIEVSVKGAL 11 0.
9 0 0 j[ F3621 RFEALQLSFK][0. 900 j[ 115 IIAVEASSPWSG]I 0.900u I[ [252 ]1 QSLVHPGLVR][.50I F-23]I1HSDAAGAGGG T I 'F-547 GSAAVTSGY F396J ISIDKIAAQGR ]NVFSQTICR j0. 50 0] 3861 EADSSTGSPT 0. __00 485 SADTPPPHHG 0.500 342I[DVGLALGTLY 500 433 AQEITNLADS [0.2701 464i MTPPGQQ I 418 KGALESHFLK k .25011l 487J DTPPPHHGLQ ijOT II 307 SHDPHSDEDT][ 1 [MIT RGDTPELAEHI 1 TPELAEHHHH] 0. 22 51 V~~[IAAQGRKRK j 0.200 SAAVTSGYR 0. 2 442 SLQLEKEVVR r[0.200 TALPHAAAAA 17 IHIGPPPPPPHi 366 JLQLSFKNMCK ]0.150 fs [ASNPYLPGNS 0.15 22I]YSQPGGFTVN 10.150 1ILSAPPGPGGG]I0.150 1 [i ]ASSPWSGSAV 0.150 488 [TPPPHHGLQT 10.125 [473I TPDDVYSQVG ~[0.125s] [14[QPPPQSLLYS [315 DTPTSDDLEQ [0.125 [3 ITLDSQ 0.125nr~~fT~ [348 1 GTLYGNVFSQj 10.1251____ [w FQAVLAL 110. 125]_ START__ SUSQEC SCORE SEQ.ID_ 4011 AAQGRKRKKR 12191 SIJLYSQPGG3F] 0.100] 251_SPPGPGGG 0.10011____ 346 ]1ALGTLYGNVF][ .100 37~3 ]MCKLKPLLNK 100~hJ 50 IGMQPGSAAVT 100T~ 44 O LEKEVVRV 0 ___090 4201 ALESHFLKCP][0.090 11 SDEDTPTSD 10.0751 319 J[DLQAQ0.05 83 ]AASNGGHMLS________ 4~39]LADSLQLEKE I T1 463 JRMTPPGIQQQJ 0.050 3 58 172 ]LGPPPPPPHQ ][WOh.l0 9 LY.IPGSLLAA][0.o00____ I4JPPPPQGPDVK LO. 050__ 117 JIDLHAGTALHH Io00[____ I~jRTSIEVSVK 0.5 I19IAAAAAAHLPS 384 LEAssTGs O.4].I 368_ LSFINMC~KI[10.0301_____ F41IQQTPDDVYSQ_ 0.030 SHAHQWVTA 10030 [2187 ][sILYSQPG 10.035] 48 I[VSADTPPPHH'0.030 316 ]TPTSDDLEQF] 28 rQGPPHHGGGG[ 0.025 J 313DEDTPTSDDL]002 357QTTICRFEAL] TABLE VI 187P3F2 HLA Al 10-MERS] START SUBSEQUENCE SCORE ISEQ. ID 11 NUM I31]CRFEALQLSF 10.021 129]HP1PP=HPHH .2 263 DTPELAEHHM jO.2j GRDDLaGTA 5 TABLE VII 187P3F2 ELLA A0201 9-1
MERS____
START SUBSEQUENCE SCORE SEQ. ID MLSHfAHQWV 16031[____ 335 1 KLGFTQADV (243.4323____ 24 11SLLAAGSIV- 1105.51 GMQPGSAAV 150.2 32 73_11 VQSDFMQQAl 130.684[ 9 1YLPGNSLLA 31 2.85 372 NMCKLKPLL ii15.428] 42 SLOLEKEWV 366 12._ 44 QLEKEVVRV 39 LINRqLEEA( 9.518 365 ]ALQLSFKNM 1 9.439 I383 WLEEADSST J1 8.995 339i~ TQADVGLAL 469~I IQQQTPDDV)1584 1101ALPHAAAAA1496 371 KMCKLKPL 3( 4.1537 48 KGALESHFL 264 21 QSGVHPPGL 2.166 2 AOLHG 2.166F 21.3 QQPPPQSLL 2.166 3 368 LSFIOIMCKL J(2.017 1 97 1WVTALPHAA 2.00[ 2 ATAASNPYL ](1.632 43 TPDDVYSQV 1.117 108p=~ AAAAAAAAV] 0.966 351 YGNVFSQTT 0.85 425_ FLKCPKPSA ](0.800 IlL IIVSDAAGA .3 228 FTGLS ](0.3 TABLE VII 187P3F2 HLA A0202. 9-
MERS
SATSU13SEQUENCEr SC EQE I ID NVFSQTTIC 069 QVGTVSAflT ji0.652 P39TLYGNVFSQ 0F.636 42]ALESHFLKC ]10.604 77 FMQGAMAAS'] 0.569 ][mQPGSAAvT 3[0.527 4 37) TNLADSLQL 0.516 F11 SSPWSGSAV 0.454 AGGO;AQSLV 0.454 7T[N PGNSL 046[___ ___GLALGTLYG 3 .1 357l QTTICRFEA]I040[____ (198 iFAAAAAAAHL 029][_ __I 83 AASNGGHML 30.297 38 TSDDLEQFA 0.293 **T31LKPLLNI(WL 027 TTICRFEAL 276] 21 SLLYSQPGG Jj 0.276 185_1 GGWGAAAAA 1H 5.26;]I 931. LSHAHQWVT 181_ QGHPGGWGA ](0.243 ji 1259) LVRGDTPEL 024 101KGGAGRDDL 11 65 GDPSSVKM4V 0 2 1 IKMVQSDFMQ ]j0.219 252_ QSLVHPGL.V 181 203_ AAAAHLPSM L0.159 3 WGAAAAAAAl 0.149 478 )jYSQVGTVSA Jj0.149 48 NLADSLQLE ~(0.141 297 GGGGAGPGL 0.139 1101 LPGNSLLAA J .2 411 DSLQLEKEV (0.126 GOMQPGSAA_ _0.120 70__ II 0.117 EITNLADSL 1( 412_ SIEVSVKGA 0 .101 338[ FTQADVGLA 0.0953 IEVSVKGAL 3(0. 092 GSPTSIDKI 0.077J_____ NGGHMLSHA 00 00 ITABLE VII 187P3F2 HLA A0201 9-
MERS
ISTART}[SUBSEQUENCE SCOEf SEQ. ID] 163 ALHRRGPPH 0.075J] 192 AAAAAAAAA 189 1 AAAAAAAAAJ 0.0691 1924 AAAAAAAAA 0j.069 ~jAAAAAA][O.06.
9 E1_4 IER IAAAA .6 .202[ ALPSMAI5.s1I 106 ][LSKCLf 49.134AA iF 113 11.LmmGPQmI 0.068I____ TABL[ KLKII 1.393 472R IITPDSEQV]NI SCOR411 E.I 438 1 GIQQTPDV 141.27611 36 [TCFQLSF I 2.937 JTABLE VIII 187P3F2 EHiA A0201 Iii I -S
SRT
1 SUBSEQUENCE SCORE SEQ. I 1 356 ISQTTICRFEAI 2.921 1 MATAASNPYL 2. 7 74 IIGMQPGSAAVTI[- 2.207 212 1GQQPPPQSLL[266
V-
97__1 WVTALP{AAA[ 2.000 1419 IGAILESHFLKCJ[19 [371[ IW.ThCKLKPLL][ 1.806[J 49 IGMQPGSAAV F1.680 338 FTQADVGLAL [iiT][LALGTLYGNV LisI 430 [PSAQEITNL 1.1T23] 1107 096 246 JGAGGGAQSLV- 0.966 251 -[AQSLVHPGLV 10.9171 336__ LGFTQADVGL 0.877L F-402IAQRKc1KRTI 0.756 J 479 1 SQVGTVSAflT] 0.756] I13 NSLLAAGSIVI ____I89 134IIaJLGFTQADV 82 I[ MAASNGGRML 0r.04F~ 46IITJ DSQ 0.504___ 81 0MANG F.4 66 J 73 VQSDFMQGAM [0.456 1 378 [PLJNKWLEEA ~[0.456 118][ASSPWSGSAVI T7 NPLPGNSLLJ [10461 64i RGDPSSVKNVI[V 0.418 171] KMVQSDFMQG[ 0.38 130]KQRRIK(LOFT][ RQWVTALPI{A][ 0. 327 [370IFKNMCKLKPL][034]___ [351 jYGNVFSQTTI[ 0.313J[____ 411 ITSIEVSVKGAI 0.306 AAAAAAAAHL 0.297f J ~JLLAAGSIVHS 0.291 iiVKGALESHFLII027i____ V357QTTICRFEALI0.7 J[0.269____ I 99 ]TALPHAAAAA J[0.255 77i... PMQGAMAASNj 0.248 F-427 [KCPKPSAQEI 1 0.23811 434 QEITLD] 0.204 I: PGo 07F.1767J____ ITABLE VIII 187P3F2 ELA A0201 10 MERS o STUB SEQUENCE SCR [SEQ. I IGLALTLYGN]1_0.171 [1 I T]SLVHPLVRG] 0.1T71 1AAAAAHLPSM][ 0.159 IT]wG 1 0.149 I SNPYLGNSL7[ 0.139( 2961 GGGGG;AGPGLI 0.139 IF___ 245 JGQAGQGAQSLj 0.3.39 211 GGQQPPPQSL 180 H[FQGI{PGGWG3A Jr0.128 1233 ][MLSAPPGPGG][ i1____I 198 IVTALPHAAAA][O0.17][11 14 SLAASIV 110.113[ ~440[ADSLQLEKrVi'.9 221 [LYSQPGGFTV 91][LSHAHQWVTA 0.094 383 WLEEADSSTG[ 0.090 391 ]T~sPSIDKII[ 0.0;77 1 Q24JPGGFTVNGM) _7 SNGG.HMLSHA r 0.075I____ [T]TQADVIJALGj.7 1 120*1 AAAAHLPSMAII1 0.069 R 16AAAAAAAAA AAA0.06_ 109_ *AAAAAAAVEA 1 0.06911____ [T i IAAAAAAAAAA]I 0 0o9 AAAAAAAAAAJ 0.069[ 191 [AAAAAAAAAA]j009 1988 GAAAAAAA]I_009____ J AA][AAAAA.AAJ I AAKVSDAI 0.0691 NLAD1~ISLQLEK .6 TABLE IX 187P3F2 HIJA A3 9-MERS START SUBSEQUENCEl SCR SEQ. ID
NUM.
367_ QLSFIKMCK 140.000 ___SLVHPGLVR 178oo 0 __001 GALESHFLK 400 449R[VWF CNR 01 TABLE IX 187P3F2 lILA A3 9-MERS ISTART ISUBSEQUENCE~IOEI SEQ. ID S1 F RTSIPVSVKjf [220 IfLLYSQPGGF 13. 00 011 349_ TLYGNVFSQ 1.350 75KLPLLNKW 5 o ALESLKC _.27 379f LIJNKWLEEA (FO.907 327~ KQFKQRRIK J0.900 G-mQPGSAAv [.o [311DLEQFAKQF 1090 99J YLPQNSLLA 06 0 f 372 I NM'CKLKPLL 10.600 l_ 44_ 1[QLEKEVVRV f1Ti____ r330_ KQRRIKLGF LADSLQLEK ]o40[ LLAAGSIVH 1__0 __400_ [T4251 FLKCPKPSA m SLLAAGSIV 10.3__0 ___ALQLSFKNM ]W7 16.9 SVKKVQSDF Hf 0.300 LQLEKEVVR 11j 71 7 ~jKMVQSDFMQ 10201_____I r 6'jALHHRGPPH 0.2001I r 0I LSHAHQWV 10.2001_____ 100 ALPHAAAAA 00fI 14421 QTPDDVY .180~I I3IWLEEADSST 0.15011[ 21 GQQ PPPQT. 30 I399] KAQGRKR 0.120 I__ 124JQPPPQSLLY IL012 32 [FAKQFKQRR. 0[120[ I 4 fGLALGTLYG 0.120 1[1 I 5 fNVFSQTTIC 0[o.100 F45471f F400 ]1 IAAQGRGRK ___10_0 128JGLVRGDTPE]1 126[ELAXHHHHfH 10.0901!_____ ___GMLSAPPGP 0.090I_____ IiT[RMTPPGIQQ 10-090t_____ I FMQGAMAAS .9 291LVRGDTPEL 10.090 TABLE IX 187P3F2 liLA A3 9-MERS jSAR UB QU7ENCE SCREI EQ ID 112811 GMAGSPQQP 1_0.090 363_ FEALQLSFK 391_ TGSPTSIDK0.6 ViTTf SDLEQFK ]o.o6o][ ~T[ALGTLYGNV ___RIKLGFTQA 159 ILHAGTALHHR 110. 060 1.57 DLHAGTALH [0 0 6 0 1 I14021 AQGRKRKKR 0.0T60 [56j AAVTSGAYR0.0 E_32_1 LEQFAKQFKo 0.60( 81_ AMAASNGGH jTJ 1 IF 3- I iQWVTAL TQADVGLAL 10051 r_ NPYLPGNSL___ ___FTVNGMLSA 1041____ [i[QQPPPQSLL10.41____ [i[ATASNPYj1hT[___ 1411AAQGRKRKK 0.030]_ ___SLLYSQFGG ___ATAASNPYL]J TT] r357 1 QTTICRFEA 11~ 422 ESHFLKCPK)00o]____ __SIEVSVKGA 0[.030][I AQSLvHPG.L [0.027]I___ [3[VQSDFMQGA]0.2 366 I227J____ 476_ DVYSQVGTV10.711 246_ GAGGGAQSL 10071 ___KEVVRVWFC][T11____ r 3 68 LSFKNICKL 0.022~1 I 47DTPPPHHGL 0.0201____ VHSDAAGA 97_ W 0.00 P 142Ti fPPPQGPDVK 0.0201 RWCR O.1 435 EITNLADSL 0.0181 __PTSDDLEQF- FSQTTICRF 10._ QVGTVSADT 10.0 TABLE IX -187P3F2 HLA A3 9-t4ERS_ SUBSEQUENCE SOE SEQ. ID
NUM.
[98 JjVTALPHAAA 1I 0 0151 ___GAGPGLNSH7 1.0131L [392f GSPTSIDKI7 10.01311_____ 36o 1[ CRFEA~nLQL 0. 012]3 LTABLE X 187P3F2 HLA A310-MERS START SUB. S~ ID_ 43 ]NLADSLQLEKJ 14.00 346_ [ALGTLYGNVFI 35 1[NVFSQTTICR][1 4: 0 00[ 11 44 ISLQLEKEVVR 14.00011_____ 1391TLYGNVFSQT 390] STGSPTSIDK]1.00I 366 JLQLSFKNMCK 1f .800~ 448 EVVRVWFCNR 1 1. 62i [1RVWFCMRQK l. 00011 ____36771 LSKML10. 90011____ L117- YLPGNSLLmaAJ T7[ V5T]MCKLKPL LN0. 90 1T PS L9~ Q p QPGGF ]0.900]1 I __SLLAAGSIVH 163 J ALHHRGPPHL 0.600 V327 [KQFKQRRIUJ 0.540 11 71 [IIVQSDFMQG _[0.5401[ 171 ][PPPPP] 396L SIDKIAAQGR J 21 [QQPPPQSLLY 3 9[MLSHAHQWVT 1 __89 HLSI{AHQWV 0.__00 IiISVKGALESHF 0.300]____I 1 ITSDDLEQFAKI 0.300~] i34]GALGTLYGN~j.7]____ 323 IIEQFAKQFKQR I 3 8J LSFKQNMCKLK 220_ LLYSQPGGFT 10251 100 1AI~p!7A1AA:Ai:] ITABLE X 187P3F2 ELA AS 10-MERS SATSUBSEQUENCE[ SCORE SEQ. ID 41 [K ALESHFLK 0__180_NM 409 ][1RTSIEVSVK 469J[ QQQTP D 10.180 1 38 PLLNKWLEEA][ 0~2 ][13 I18JGMAGSPQQPP 212 GQPPQSL 10.12111 I "IGPDVKGGAGR](01 71 [DLHATALHH 0 120]__ 342_ DVGLALGTLY[010 252 [QSLVHPGLVR I__ 338 IFTQADVGLAL][0.090[J 37J[QTTICRFEALIO0.0901[ 2661J ELAEHHHHHH][0.090[____ 419 i GALESMFLKC jO.oai] L J.AMAASNGGHM[ 0.0601 I304I D I 468 GIQoQ'rPDDVIf.~I___ LLAAGSIVHS][. 436 ITNLADSLQLr 1000 ___FAYRG;DPSSVK 0.045j[ 045 23[SLVHPGLVRG J[005 420[ALESHFLKCP 0 463[RMTPPGIQQQI 0.0451____ 443'~ I LQLEKEVVRVJ[0.041I G (TLYGVFS Q[04]1 132INMCKLCPLLNI.040 I_ 1454 01cRQE~j.040 I 141. iPPPPQGPDVK J[0.030 362 [RFEQLsFK[0.030] 61 F[GAYRGD PSSVJ(0.030 I 17JFMOGAMAASN[ 0.030 97 WVTAWVIAA 0.030 EIZI SMAGGQQPPP 0.030 361 J[CRFEA LQLSFIO0.0301] ]0.030 I 259 LVRODTPELA J[0.030 I36 TPTSDDLEQF I0. 0 3 0 TA13LE X -187P3F2 lILA A3 jTART SU13SEQLENCE SCORE[ SEQ. ID [7JNPYLPGN~SLL [0.030~] 1430 J[KPSAQEITNLI GAQSLVPGL 11_0.027J[_____ SSVKMVQSDFjr I0.2 2 J 1 LLNKCWLEEAD]000____ S425 J[FLKCPKPSAQ0.ORjIl~[____ F483J I TVSADTPPPH____ SVKKVQSDFM' 400 1[ IAAQGRKRKK 10.020[ 180 11 EQGHPGGWGA] 11.o018][ [T2T[K-CPKPSAQEI 1008[____ 3_56__ SQTTI CRFEA ITTJ____ __11 LREVV-RWp IL[ 0 33 TABLE XI 187P3F2 lILA A1101 9-
MERS
4191 GALESHFLK 270 [36711 QLSFKNNCK J1'o F~I VVRVWF&NR0.0 253_ SLVHPGLVR 0.240 J 44_ LQLEKEVVR 10.180 EZ [T1FCNRRQKEK o i o~ [401IAAQGRIMK 0.1o-00 319EJ SDDLEQFAC0 06X 'AII CKLKPLLNK 0 6 S322 JjLEQFAKQFK 10. 060--- 4=02i AQGRKR .O OLZR 56 AAVTGAYJ 0.601~lZ 391r: TGPDK 0.040~~ 32 [FAKQFKQR 0 04 J [HAGTALHiR0.4LI Z [3o[KQRRIKGP0.36 IZ TAB3LE X1 187P3F2 HLA A1101 9-
MERS
STAR SUSEQUNCEF 11 SEQ. ID F____UNE SC~ NUM.
I281 FTVZNGMLSA 10.0301 IlW KIAAQGRKR 110.02411J [WtHQWVTALPH 0~.0241F~ SV 0.0201 VKGAESH 0.020I] (i[WVTALPHAA 100011 LVRGDTPELI l0.20l SVKMVQSDF 110.0201 ZZ [41fAAQGRKRC I002 ___QFAKQFKQR 1.2 FTT1PPPQGPDVK_ [22IGQQPPPQSL ___TTICREAlooiLIIIIi __KLGFTQADV I002~ r_39 TQADVGLALII0o1 F1[GMQPGSAA j0.012f~ __RIKLGF TQA I I02~ r_46_ DVYSQVGTV 10.01j:~ 1 KPLLNKW 1 152 J[GAGRDDLHA001EZ 1 ___RFEALQLSF-IO2EZ 198 11VTALPRAAA 10 12rATAASNPYL 33 [FTQDVG .1 191DKIAAQ GRK0.0 1201LLYSQPGGF 0.0081 LLAAGSIVH 0.008 151CNRRQKEKR 0.008~ Z 9 'jYLPGNSLLA 0I.008 Z 14501 VRWCR 0.006ETL 1 2511 AoLHG .0 j246 GAG GAQSL 0 0 6 74 GAGGGGGGM000 1371GFTQDG 0.006 1231QQPPPQSLL7 0.006 I IQQQTPDDV 0.006 E 14 SLLAAGSIV 0.0 I~ I I ~0.006 FTTlGAGPGAjNSH 0.006 QQQTPDDVY 11 .0 61 1421ESHFLKCPK1006 ___DVGLALGTL o.O6Z TABLE XI -187P3F2 HLA A1101 9- STA UE14CE EQ.
ID
___VQSDFMQGA 0.006 F 71_ KMVQSDFMQ O.0TO5 I 48_ GTVSADTPP000 I ___GTLYGNVF S 0. 0 0 [iT[VWFCNRRQK]0.004 81-1AMAASNGGH 0.004 10 LPGNSLLAA 10.004 m NPYLPGNSL.004 36ALGTLYGNV 0.004EZZ I353 NVF'SQTTIC 0.004 zz 214 1QPPPQSLLY 0.004 1F37911 LLNKWLEEA 0.004 4L 11001 ALHAA 1004 2~1 SLQLEKEVV 0.004 90 ImsHIQv000izz go oE ZZ 360 1i ICRFEALQL I10.004 Z~ 328 QFKQRRIKE.lonl 397 IDKIAAQGR Ioo4~ _444 QLEXEVVRV 0004 J 16 fALHHRGPPH 6I .004 __MVQSDFMQG i0.004 1L ___AYRGDPSSV0.4 458] RQEMP 10.0041 487 FTPPPHGL00311 r48 EVVRVWFCFN ___GLALGTLYG000~ TALr I 18.7P3F2 HLA A110 1l 1 TALE XI MERS 1- ISFUBSQUECE OE NUM.
390~ STGSPTSIDK 2.0001 36LQLSFIMCK 1.800 3S3[NVSQTTT C 1.-6 00 1 fliW[NLQLFK: 17 [~]KAAQGRKRK0.0 [TABE XI -187P3F2 HLA A1101 ia-i MERS START ISUSEQUENC EIC 07 IE SEQ. ID 373 IMCKLKPLLNK r6 (AYRGDPSSVKII0. 4 0 f 1 jKOALESHFLK 0. f4 481 1EVVRVWFCTR 10 .18 0 [14 6 GPDVKGGAGR J0 .12 0j [321 ~jDLEQFAKQFK E010 43WFCNRRQKEK Io. 100' F42 1SLQEKEVVRt 8OF___ [327 KQFKQRRIKL ~.7I 31 T-SDDLEQFA( -j00I 421 0.0601CPK I 5 fSAAVTSGAYR 000J I 24L I!QFAXQFKQRR 000 rI2371 EOFKQCR 006:~ 141 1 1!PPPQGPDVK0.20 400 QGKK ~IL_ 0= 436 ][ITNLAI)SLQL 31Jjjffi1 368 1[ LSFIQMIa I. 2 I 6.9 11(SVKMVQSDFM 10 20 7 SVKALSH0. 02 0 1 338 ][FTQADVGLAL 0. 02 0 E 483 [TVStADTPPPH 0.0201 72 IMVQSDFMQGA 0.0201 97 WV Y.IPHAAA002 259.02 _VGTEL] 401 AAQGRKRXR 002 ZZ 212GQPPQSL 0. 018 E Z Z j258 JGLVRODTPEL 0.08 IZ~ 1356 I CFEA 0.018 348%.-~jYNFQI.1 I [QSLVRPGLVR001jfl l 22[LYSQPGGFTV 10.012izzi S rizzzPHA 14 SLAASIVH b01 GIQTPDDV 10 01 _213 IQQPPPQSLLY -10.01 )[QGHGGWGA]002 I~ JGAYRGDPSSV .0 2 I AASNGGH 0.01 227 GI GF GMLSA 0.1 47] QTPDDVYSQV 0.010LI-iIII TLE XII -187P3F2 lILA A1101 MERS [STRTSUBSEQUEE SCR- SEQ. ID fT]QTICRFEA.I 0. 010 tiILQLEKEVVRV 0. .o91 911YLPGNSLLAA] F3591 0.008AQL 24IIGAG3OAQSLV 0.006 I I81 HMLSHAHQWV o10.o 0Z6 F3 7II1KLKPLLNKWL 10 -0 0 6E _jLNHPH0. 00 6 J KCPKPSAQEI~o06 ISLLYSQPGGF0006 I3 IGFTQAPVGLA jo 006I Ii IQQPDY0.0061E ZZ I1251 [AQSLVHPGLV 0.0 F20 SIVHSDARGA 0.06EZZ F 1- II1 5A AAA10. 006 1 GIfVSAP 10. 004 I STIfD KIAAj 10.-004 36IfALGTLYGNVF]004 [TFIAMAASNGGHM 0. 004~ i IT~JHLGPPPPPPH .0 100 ALPH AAAAAA 0 0 115 ][AVEASSP1WSG 0.004LZ 1 6 ALHHRGPPHL 10.004 1Z L7INYLONLL0.004 1 1 367 [QLSFKNMCKJ 0.004 F120 I SPWSGSAVGM' 0.004I;j 1ILKAG 0.0041 11K V S F Q 0. 00 341 I DTPLAM[ 0 .0031 T~ I GTALHHRGPP 0 .0 0 3 (T]RTSIEVSVKG 0. 003 [TfKNMCCKLKPli 0. 002 GLA][LYGMJ 0.002~~ '715] DLHGAH AKQFKQRRI] 10.0021 00 00 TABLE XII 187P3F2 ELA A1101 10-1 [START StBEUN E Q.S ID 72241 QPG M0.OO2 I TABLE XIII 187P3F2 HLA A24 9-MERS START SUBSQUECE S1IE SEQ. ID I_ NUM.
F. RELSF 136.0001 F 8 PYLPGNSLLJ 136.0001 328_ QFKQRRIKL ]122.000 3 3 7 GFTQADVGL J120.000 ZZ r 3 7171 K CKLKPL J1 12. 0001 F 7 GQQPPQL11.41 150 LYGNVFSQT 11 8.4001 141 KGALESHFL ]1l8.o l 0__0_0_j lsII KGGAGRDDL If 18.00011______ [2 13]1 QQPPPQSLL 11 7.200! 1358-]I TTICRFEAL] 7.200I1 71487]I DTPPPHHGL ]j 7.200[ 47IVYSQVGTVS 117.00071 fTINLADSLQL 6. 000 ]1i 330 1! KQRRlKLGFJ 15.600]1 251_ AQSLVHPGL 111 7 6070 226 GGFTVNGML 727[ AYR DPSSV LYSQPGG3FT FGAGGGAQSL 14801 NMCKLKPLL 14.8001_____ ITNASL 14.8001_____ ___LVRGDTPEL14401 368_ LSFI'NCKL 14.400I!____ ___DVGLALGTL 14.000 I 93 4.00 83 AASNGGHML___ 360] ICRPEALQL v ri 27I AtAASNPL 114.000j[ 198 IfAAAAAAABL I 29 GGGGAC;PGL7F 114.000) 321 DLEQFAXQF 3.00[ FSQTTICRF1300 69 SVKMVQSDF i LGTLYGNVF [2.400 1 LLYSQPGGF 392_E GSPTSIDKI 1..5 1 TABLE XIII 187P3F2 HLA A24 9-MERS STARTJ SUBSEQUENCE SEQ. ID f428EICPKPSAQEI 31 1.584 1352] GNVFSQTTI_ 11.500_____ 13 1NSLLAAGSI 1.500 [64 RGDPSSVKM 39 SSTGSPTSI 7, 365f ALQLSFTNM 413_ IEVSVKGAIJ I0.840J1_____ [424 HiFLKCPKPS jjT.] 7611f DFlMQGAMAA- 0.750 361LKPLLNWL 0.720 156 I DDLHAGTAL -1 0.6500] 74i j QSDFMQGAM j Ti] 43FJ GAGGGGGGMJoso 82T3 MASGHM 0.500 f_ 12271 GFTVNGMLS 0.500I _0 AAAAHLPSM 0.500 1 l_ 3_14] EDTPTSDDL 10.480 I 446*~ EIKEVV 9 0A20If 164 LHHRGPPHL J0.400!_____1 1431 PSAQEITNL 0.400~! I 375 I KLKPLLNKW 10.38011[ 382_j1 KWIIERADSS 0.301 [4 32!1 SAQ13ITNLA 0.3 I2 14_ QGPDVKGGA 0.2 TPPGIQQQT 0.~22 F~T[VKGALESHF __2_4_0 ___RIKLGFTQA [0.2403 31 PTSDDLEQF JoT2i 3 1_448_ EVVRVWFCN .21071L__ S430 KPSAQEITN 0[.2001 405~1 RKRKKRTSI 1.0] 335_ KGFTQAflV11T1J f441 I -DSLQLEKEIV 3ois1 I ALSFKC N .1 14201 ALS F 01 99 iiTALPHAAAA 101801 23 SQPGGFTVN 0.1ejj___0_ 366] LQLSFIMC 0.180lI~~ 351if YGNvFSQTT 2141 QPPPQSLLTY I 1343 IfVGLALG3TLY 141 YASQGFT7I 0.1801I_____ WLEE.ADSSTj 0.Ti~1801 ASNPYLPGN ]!0.180 I SNPYLPGNS ]I 0.350 00 00 TABLE XIII 187P3F2 HLA A24 9-MERS] [START SUBSEQUENCE[CORE SEQ. I' GMQPGSAAV 1[1i~ 0. 1] SDDLEQFA][0. 1731 7 [TPDDVYSQV 0.1681_____ [TT[VSVKGALES 0.3.6511 379__ LLNKWLEEA F38 FTQADVGLA- 0.1501____ .0.150 [FMQGAMAAS 10.1_oi [304] GLNSHDPHS J[ .150 _4 QLEKEVVRV I0-Ol501 119 T SSPWSQSAV 348 11GTLYGVS]W 4701 [QQQTPDDVY 0[ .150j 1 AVEASSPWS 0. is 0j[__1 [326)[ AKQFKQRRI ois[ [TABLE XIV -187P3F2 lILA A24 START11SSCOREUjf SEQ. I [371 1IKNMCKLKPLL 1.0] KLKPLLNKWL l50[1 VFSQTTICR.F 10o.000______ 137]KQPKQRRIKL I8.8001 13381 FTQAnVGLAL 8.4001 1 250 JIG AQSLVHPGL ]8.400 1 1 4301 EKPSAQEITNL] 18.000 21 GQQPPPQSLL ]7.2001LI 211 1 GGQQPPPQSL ?1.200 11 JIGLVRGDTPELJ 6.6001 350 ILYGNVFSQTTJ 16.0001 436 JITNLADSLQL II6.000 477 I VYSQVGTVSA 221 11 LYSQPGOPTV[ 5.020J 13571 JQTTICRFEAL 4.8001~ 24S~ ]IGGAGGGAQSL 4.8001 1 3671 IQLSFNCKL 14.4001 68 II KVQD 4.2001 336_ LGFTQADVGLI4.000I l 29 GGGGGAGPGL [4.000 359i TICRFEALQL f4.000I_____ 16~3 ALEURPPHLI1.0[________ NPYLPGNSLLI I4;0 00 ~TABLE XIV 187P3F2 HLA A24 lo-MERS] [SATSUBSEQUECF J SEQ. ID =1 MATAASNPYL 4 000 1__ 182 J MA.ASNGGHML 4.00 1 427 IfKCPKPSAQEI 21,97 ISLLYSQPGGFII3.00011_____ 1416 ISVKGALESHF 112.4001! *IFZLGLYGVFIIF I J TPTSDDLEQF 112. 0 0 0 1 351l ]YGNVlSQTrI 11 1. 50 39 ][TGSPTSIDKI 11T320~1_____ I12 J[GNSLLAAGSI 388 DSSTGSPTSI 1.000 [325 J]FAXFKQRRI 1.000 18) IPYLPGNSLLA 0.900 36 [EALQLSFKIQh .0jI V IRDDLRAGTAL 124]QPGGFTVNGMI 0.600____1 37]jFIQMCLaKPLj[0.600[_____ 341 11 ADVGLALGTL]0.600][____ I G J 0.600 25]PGGFTVNGM [0.56[11 81 AMAASNGGHM[ 0.[00 1271GFTVNGMLSA 0[.50 [120 IISPWSGSAVGM 0.500[ *3371 GFTQADVGLAI[0.500]I 69 SVVQSDFM ][0-00 0]j GGAGGGGGGM] 0.50011 F--2 1486 ADTPPPHHGL] 0.480___ 32.9 FKQRRIKcLGF 0[ 0420j V3T1 DEDTPTSDDL 0.400J_____ 417 VG LESHL___0 14 IKrAR)LI0401 S92 ISHAHQWVTALIF0.400]I 20.. DDLEQFAKQF][0.3601I 1382 KWLEEADSST)[0.3601I_____ [445..1 LEKEVVRVWF] 0.3361 4641MTPPGIQQQT1[0.32II__ [1 CRFEAJL SF]0.288I [472 IIQTPDDVYSQV] 0.2521 L..5=ji1RGDPssvIK]M0201 r 419 J[GALESHFL.KC 1[ 0. 238]A ITABLE XIV 187P3F2 HIJA A24 10-MERS START SUBSEQUENCE F jIrSEQ. ID 1_ 1 NUM.
W JASNPYLPGNS 0.216
J
I QVGTVSADT [0.210 F3-21GS PTS IDKIA[02[____ 444 QLEEVVRVWJ[T[__ 330 ][KQR.RIKLGFT] J II I1 214 Jr -QPPPQSLLYS 1[ o.1 4B8 TPPPHHGLQTr 0. 1.0 7§2 JrMVQSDFMQGAI0.180J_____ A.LQLSFKNMCJr.i-I 1213 jjQQPPPQSLLY [10. 180] __LALGTLYGNV F411. TSIEVSVKGA 11.101 44 iLQLEKEVVRVII.8
J
fa9I WA I HA7wvl. 180] GMQPGSAAVT0.8 [391T'LYG&FSQTII.6 F- 433 AQEITNLADsJ o 71575 _1MGMAS~ s7 ____GGMQPGSAAV 10101 F49; QQQTDDVYI0.as]50 51[mQPGs AVTS MIAAAA[ i [32]GNVFSQTTICIo10_____ TABLE XV 187P3F2 HLA B7 9-MERS! START SUSQUN SCR SEQ. ID 12591 LVGDTPEL 200.0001 17NPYLPGNSL 1[120.00011_____ ICRFEALQL ]4~o I 3jAAS1NGGHML ]36.000 AAAAAAAHL ]6.000 32 DVGLALGTL [20.000 ___HAHQWVTAL :12.000 261GAGGGAQSL 12.0001 1211AQSLVHPGL 12.000 1T~ 371j JKNMCKLKPL 1i12.0oo!E 12 JIATAASNPYL 12.000 F428 11 CPKPSAQEI ABLE XV 187P3F2 HLA B7 9-MERS F 7ASUBSEQUENCEI SCORE SEQ. ID 23QQP PQSLL600- F_150_ KGGAGRDDL 6.000 F212 GQQPPPQSL7600_____ '4B7-1[ DTPPPHH4GL]600J 372TI NMCKLKPLL 400____ 26GGFTVNGML400 V368l LSFKNMCKL 4.000 435h EITNLADSL 4.000 29I7 GGGGAGPGL 4.000 __TQADVGLAL [4.000_ [TT[KGALESHFLJ[400J_____ 365 JrAIQLSFKNM fl3[GAGGGGGGM Jr3.000 101T] LPHAAAAAAJ[___ 183_ HPGG;WGAAA J .0 10571 LPGNSLLAA:][200 1_239_i GPGGGGGGA I[200____ I 39371[ SPTSIDKIA1 J2.000 TPPGIQQQT l 2.000 14-73 TPDDVYSQV120 _456 NRRQKEKRm .o 461DVYSQVGTVJ[..o F[ 0 3 QGRKRIKKRT 1.00 0 IFAAAAAAVEA ~[0.900 19 rAAA AAAA[0.0 189AAAAA AAAAAAAAA] 0.900][ 3.0AAAAAAAAA 1090_____ f107 JrAAAAAAAAA[_.0 19 rAAAAAAA 0.900 J AAAAA 0.900 105 r AAA0.900 AY[RiDSSV1 r~QFKQRRIKL 0.60 0 [271AGGGAQSLV 0.00I ITABLE XV 187P3F2 HLA B7 9-ME~ START SUBSEQUENCE SCORE] SEQ. ID I405 RKRKKcRTSI 'O.60oo 346 ALGTLYGNVl 10.600 1 14491 VVRVWFCNRJ 0.50 I97 E AV LPI{AA 11o.soo IF 11 IVHSAAGA 0.500 14801 QVGTVSADT I 0.500 1 353J )VFSQTrIC Jf0.500 I- m 1 IGGMQPGSAA 0.45 164 fLHHRGPPHL 0.400 i 41 1SKGL 0.400J____ 1389 ifSSTGSPTSI 0.400 I 1392 ifGSPTSIDKI 11I 0.400 1 11NSLLAAGSI 0f-.400 VTh1EDTPTSDDL 0 0 ~*;~-KPSAQEITN 040 [m fLKPLLNKWL[ 0.400 i 352 f ~STTI 0.400 46 fEKRMTPPGI T If QPGSAAVTS]040 214 [QPPPQSLLY][40[_____I PSAQEITNIJL .0 33 fGFTQADVGL 0.40071f ALPHAAAAA ]0.400 18 GAAAAAAAA 0.0 99 TALPRAAAA f030i [I QPPQPPPP 0 3 0I QPPPPPPQG if0.300if____ ___GAGRDDLHA 0.30 ___ASSPWSGSA ___SPQQPPQPP 0.30 1 _281 0.3001_____ AGRDDLAHAG if0.300] 74 SDFMQGAM 0.300 i 17 GPPPPQ 0.300 64_ RGDPSSVKM 0.300 E~ FHPHPPHPRH 0.300 0J~o.300 [TABLE XVZ1 187P3F2 liLA B7 10-MERSI ITABLE XVI 187P3172 HLA B7 START SUSQEC SQ. ID 140]KPSAQEiTNL 180.000[ I N~PLPGNSLL 8 .0 Ii1 9[ AAA M.AHL 136.0001EZ 110]SPWSGSAVGM] 20. 000 F2241 QPGGFTVG F71 MATAASNPYL 1[7: 000 F250 GAQSLVHPGL 12. 000 MAASNGGHML 12. 000 j 1163 371 KNMCIU.KPLL11.0 6 [SNPYLPQNSL I 9 000 jfKQFKQRRIKL QQPPPQSLL 16._00_ 211 '[EQQ~PQP(SL 116. 000 1 J2LVRGDTPELAif5.00i 69 SVKMvQSDFM 115.0001_____ SKILKPLLNKWL F4.0O 1 fLGFTQADVGL] 4.000 if F2451 (3GAGCOQLi400 13591 ITICRPEALQL if4.00011____ [3 871 FTQADVGLAL 000 5 8.11GLVRGDTPEL E14. 0 0 011__ [TIfGGGGGAGPGLi T. I I IIFKMKL1 4. 0 0 011__ 57QTTICRFEALj400 367 EALQLSKN 3.000I___ F-817 MA ANGGHM 0 0 15s3 11IAGRDDLHAGT 113. 00 r4 2 8-j[CPKPSAQEIT 112. 0 0 011__ 29HHPHHA 18 3 1IHPGGWGAAAAII2.OOi 0 [393 SPTSIDKIAAlf200_____ 48 iTPPPRRGLQT [12.000 j rJJ PHSDEDTPTJ[TTl [TT1LPAAAAAAA 1 2.__0_0 46IfADTPPPHHGLITT
I
107 AAAAAAAAAV fi o J 341 ADVGLALGTLIi L120 1 [42]SIEVSVKGAL 73 f QSFMQAM i.00] [33 :IKQRRIKLGFT100 42 GGAGGGGGGM 1.01 00 00 _TABE XVI 187P3F2 lILA B7 10-MERS] ISTART SUBSEQUENCE SCORE SEQ. ID F NUM.
11o~ 14EAAAAAAAA .0o1_ 191 AAAAAAAAA [i AAAAAAVA 10.90011____ F 1941 [AAkAAAAAAA [0.-900 f 'F-201 ]~AAPSMA [0.900 11 I __4AAAAA0T [195 1 AAAAAIA10-.900f_____ F18 AA AAAAAA 0. 900'1 r171AASIVHSDA00 1][f 105 11 AAA AAAAAA 110 90 r[197GGMQPGSAkAV 10.90011_____1 VTF]GAYGDPSVI0.6001____ 251 rAoAQSVPLV 0.600
GFGMLA
2 5 P PQVHGDVI 0.4 60 345 L[YGVLsQGrII 0.6001[ 728 t4[DSSTGSPSA 0.00] 2 ]J PPPSLLYSI 10.400 49011 PPMCQJL SI 0.40011____ 434i1 VKGASL 110.4 0 0 225T~ TPGPTSIDI 10.400 I 0.400 [3881 ESSPWGSA] 030 F419 If GALESHFLC1 ITABLE XVI 1.87P3F2 HI±A B7 lo-ERS ~START SUBSEQUENCE RE SEQ. NID 402 fAQGRKRKKRT~ ]I0.300f i[HAA.AAAATA 173 ]GPPPPPPHQG 0.300[ 138 JQPPPPPPQGPJ[0.300J[____ T][HMLSRAHQWV 110 2 YIHPPHPHHAQG If 0. 2 n TABLE XVII 187P3F2 HLA B3501 9 HERS STR SUBSEQUENCE SEQ. ID 214 J1 QPPPQSLLY 140.OOO0f 42 1CPKPSAQEI J24.00011 NPYLPGNSL 120.000[ 21 AAAAHLIPSM 82 MAASNGGHM 6.000 43-11 GAGGGGGGM 'I16.0001___ 171I MATAASNPY IIT][ 33011 KQRRIKLGF II16.0[00 355 FSTI F 5.0001 V I1LSFKMCKa ITiI____ 15 iLVRGDTPEL 14.500 I 360 [ICRFEALQL 4.__500 jfKPSAQEITN 24_lGAGGGAQSLj ]3.000j __SVIa4KVQSDF KLKPLLNKW ][3.000jf____j 83] AASNGGHML 3.000 7 T]QSDFMQGAM_]3.000 193 ]i HAHQWVTAL 3.000~[ 1181AAAAAAAHL ]3.000[ 14181 KGALESHFL 1431TPDDVYSQV 12.400I 11011 LPGNSLLAA 14701 QQQTPDDVY 12.000 392 jGSPTSIDKI J2.000[ ___VGLALGTLY I2.000____ SSTGSPTSI 12.0001 1 j TPGIQQQT 112.000 111 183 I{PGGWGAAA 112.000111 [TABLE XVII 187P3F2 HLA B3501 9 (SATSUBSEQUENCEI SCOR SEQ. ID] [365 IfALQLSFKM]j200[____ 239 IfGPOGGGGGA]2.0j] 39TQAflVGLAL. 2[.T0i00 150o I KGGAGRDDL][00I 101lj LPHAAAAAA 2.000 [52 IfQPGSAAVTS1[.0II f256 11 PGLVRGDT2.011 [371 jKNMCKLKPL200If____ 1 3 2.000Jf_ I 11.5001[ S4If RGDPSSVKM l.20011 12! ATAASNPYL 11.000 I [212[1 GQQPPPQSL I. S29? 1 OGGGAGPG3L o 32If NMCKLKPLL j~~o f 2 fYSQPGGFTVJ~.0] 119_ SSPWSGSAV1.0 _N3 _Z GGFTVNGML 1~ Z1Z LGTLYGNVF 1.0001]F____ 41 I1 DSLQLEKEV .o0o00J1 435_ EITNLADSL 1T 251I AQSLVHPGL ]I F ITfQQPPPQSLL I ~I DVGLALGTL Ii.0001[ 3I TI'ICRFEAL1.011 H S2J SHGLV 1.0001 22 LLYSQPGGF J .0 I211 PSAQEITNL 110 .750 I.3. .SAQEITNLA 110.6001I____ VTfRIKLGFTQA 0.600 456NrRQKEKMI10. 00[ 21081 AAAAAAAAV 10.600[___ 415 VSVKQALES FO ,5oso[ 0 1241GSAVMAS _o.0J ITfYSQVGTVSA I1O 5070 388 If DSSTOSPTS j 122I WSGSAVGMA [040oj_____ GSIVHSDAA oI_ 1 89 f HMLHAHOW10.50011 54] GSAAVTSGA 0.0 [0.so45____0 TABLE XVII -187P3F2 HLA B3501 9- I ~MERS
ISAT
1 SUBSEQUENCE SCORE IISEQ. ID I JI iiNUM.
15 fGAGRDDHII040____ 33 KLPGFTQADV 1l0.400 141~i PPPPQGPDV 110 .4001 I377 IKPLWLE oF T- 352 ]IGNFSQIII 112 IfAAAAVEASS 11 0.300 1195I AAAA.AAAAA J1Wh-300 [20 1 AAA IPS, 10 442JI SLLKEVVIw 1 A AAAAAA 0f L i1AAAAAAAAA If300 309i DHEDTP f 0 f A.AAAVEA- 107 I IAMj030I [31 8 ITSDDLEQFA I[FTO II 3.0 0_ 16I LAAGS IVHS- 0.3001 1361TPTSDDLEQ F181GAAAAAAAA ____EALQLSFKN n[.0 Ann TABLE XVIII 187P3F2 ElLA B3501
STR
1 SUBSEQUENCE SCORE 11SEQU.
ID
j[I KSQEL 60.000 F 120 SPWSSAVGMj 4 0.0001 [224 IQP(fVGM 40.000 [3167[TPTSDDLEQFJ3.0 [7 IN YLPGvSLLMI 6.000 I v K1M]I 6.0001I____ F364 EALQLSFKTh!] 16. 000 f 7428 6.000__ [68 SSVI4VQSDF [TII 325 ]fFAIQFKQRRI][.0j T9 SPTSIDKIAA'j~20I
I-MTASP
TABLE XVIII 187P3F2 HLA B3501 SATISUBSEQUNCE CR SEQ. ID 309 ]DPHSDEDTPT 3.000 1416 IISVKGALESIIF]3.000 I 82I MAASN~GGHML] 3.0 197 L]AA.AAAAAAHL[3.00 250 GAQSLVHPGL] 213 QQPPPQSLLY ]f2.000] 11LPAkAAA 42 GGAGGGGGGM" f 1!AMAASNGGM 1 66[DPSSVlcMVQS]JT] 2.000_ 1279 IHPHPPHPHHiAI 2.000]I 327 JKQFKQRRIKL 2.000o] 21 QPPPQSLLYS 2.0001~] 37 KKLKPLLj 183 J HPGG WGAAAA j TW 388 ]DSSTGSPTSI][TJ 342 JDVGLALGTLY)2.000 14881 TPPPHHGL QT]2.000 00 [441 fDSLQLEKEVV 1. 500 258 [GLVRGDTPEI] 6~ [SNPYLPGNSL 11.000]1 1T jSLLYSQPGGF 1.000I 17 PPHOGHPGGW' [1.000 I [iALGTYGNVF 1~.oo]00 r 21271GQQPPPQSLL-j 1.000 [296 IGGGGGAGPGLI1.000l____I '367 IQLSFKNMCIUJiT1.000 118~] ASSPWSGSAV]1.000I] 245 GGAGGGAQSL~rioo[____ JQTTICRFEAL 1.000 E411 [TSIEVSVKGA 1.000 I r1[EGFTQADVGL 1.000 FT1[NSLLAAGSIV 1.000 13J[AIJHHRGPPHL 1.000 rm2[GGQQPPPQSL1.0-00 61F1, GAYRGDPSSV 0.900 [[KCPKPSAQEI 0.800 1511AGRDDLHAGT 0.600] 3JKQRRI LF!0.600][___ 6)1 GAGGGAQSLV 110 6 TABLE XVIII 187P3F2 HLA B3501 I lO1-MERS START 'SUBSEQUENCE scUM.
D
345 ILALGTLYG rI0. 00 I_ 445 ]LEKEVVRVWFI 10.6001I 44 ]LQLEKEVnVRVI0.600]I___ 4191 IGALESHF==LKKC F[.T00 392 IGSPTSIDKIA 0.500 2221 YSQPGGFTVN 0[.s J[0 E91 LSH nVAHQ0. TA__ 59 TSG;AYRGDPS 0.500 fl I ASNPYLPGNS- '1 0.500 [380 [LNKWLEEADS_], 0.450 49 HGLQSV 6T]YRGDPSSVKM 4 00_ 351j YGNVFSOTTII0.4001____ 12[GbSLILAAGSI 0.400 472 i QTPDDVYSQV 0.400 140 iiPPPPPQGPDV 110.4001____ 391_ TGSPTSIDKI [0.400 190~ A AAAAAAAA 0[.300 412i [SIEVSVKGAL]~WI____ ~~ICRFEALQLS 0.300J7 A AAA 43[QGRiKxKuRT7s] 17[AAGSIVHSDA 0.300[ 10589 AAAAAAAAAA 0.3_ i][zu AAAAA 10301_____ 259][LVRGDTPELAJ030J____ 83IrAASNGGHMLS 0.300 1__ 1916] AAAAAAAAAA.I 0. 3001____ 21 11 AAAAAAAVEA' 0. o300 I TABLE V 192P2G7 HLA Al 9-MERS START]SUB SEQUENCEI [SC'KRE SEQ. ID 71GADPDEIGL 239 1N1AEALPVGR ~800 I TAI~T.~ V 192P207 MLA Al 9-MRR~ START1SUBSEQUEN~CE~ SCORE
SEQ.___ID
E261 11 MNEKFDLVY 115. 62 511 I 1881 DSNVLFLKY I .51 I3 ]1 ESEAETPST I'T 122611[ LTEHCI{QLV] E[.5 14 1[ EFESKYFEF7I~~]____ F26 jRLPPFCRGK_1.01 F8 4 VLEYPQPGL 1.800 250 LTSPRLIKS J120 fELTSPRLIK 11.0001 [MVEQLARFL 10.900]1____ 1EAETPSTPG 0.T 900 222W QLEALTE.HC 0 .9 0 I 61 I LQEVVYLVS 10.675 I 123-I NGDSKVIYM I065I I 73 DPDEIGJMN 110.625r F13971 VVSYYQFHR 0.500I I 641 KFDLVYKQK10.01 S10 GFESK 1fo.500 I7 ][ETPSTPGEF f[ 0.250 :E RISPY FO.
2 150 RTM4SYRGTF It0.25011 F1221 HNGDSKVIY 02501____ 1 27 1 SCDKAQLEA V25o] 1 1VTYPKSGTS ~[0.250_ 1 TFQEFCRR 11O.250 1I 12571 PrVSMNEK IFO. 1 MEEIANFPV E0t 2 2 1 11PGEFESKYF10.22511____ VQEFWEHRM 0P.135____ r135711 PKDLVVSYY' 0.12S____ F146 HRSLRTMSY [0.125 1 I 5 5It RGTFQEFCR [0.125 L 71 TPGEFESKY 10.1251!____ F164 1[ RFMNDKLGY ]r0.
1 25j r83 i EQLEY 0.151 267 1 LVYKQKMGK 10~.0 1 I 1HVQEFWEHR ]L.00)900i TABLE V 192P2G7 MLA Al 9-MERS 7START SUB SEQUENCEI SCORE [i SEQ. ID 2 05 1 TM.VEQLARP 10. 249 [RVGLWKDIF 01001[____ 99 IKELTSPRL 0.090~ 19 YFEFHGVRL 0.090 118 It PSDLMNGDS II0.075 I 9__1 PSTPGEFES J110. 07S I 125[ DSKVIYfMAR 110.,07! 29 VSMMEKFDL II0.075q 11,It HLPYRFLPS 1000I 187T]f DSNVLFLK]I 0.050] f_ 23 LVDQCCNAE 10.050 253_ WIDIFTVSM FLKYEDMHR 24_ [GVLPPffCR SIt IaEEIANFP Jt1 T 1_ KYEDMHRDL'0 t. 0 4 5 1 175 1 FHQ It 0. 0451 182-I1 FWEHRMDSN-10051 1I DVWIVTYPK 11I I15 RFLPSDLUHIW
I
14 NPKDLVVSY 11T 0 I02 7 IFYPQPGLDII It 0. 025 272C;4KCDLTFJ 0. 0 2__ 16IF YEDMHRDLVj 10.02511_ 274 IFGKCDLTFDF ]f~~I 166 1 MNDKLGYGS 0. 74PDEIGLMI 2151 GVSCDKAQL 107. I LIKSHLPYR J110.0201 857 QLPVLEYPQ 110.0201 14 RSLRTMSYR I10.015 1401!r VSYYQMRS I1-0.0151!____ 109~ IIKH RFL 11 0.015 I_ 921 PQPGLD)IIK I1 0. 01.I 44 1I RPSDVWIVT I1 T0i 0131 80 l MNIDEQLPV 0-0~131____ 170_ LOYGSWFEH:] 0 __.013 20011 HRDLVTMVE 3 I_ 250I VGLWDIFT 10.033 18 IKSHLPYRF 11.010 I_ TABLE V 192P2G7 HLA Al 9-MERS START SUBSEQUENCEI SCORE] SEQ.ID 0 10 22 RFLGVSCDK Jo.oio][___ F 81IANFPVPS 0[=0T I___fl_ F 1HRMDsNvLr ITABLE VI 192P2G7 HLA Al 10-MERS] S START ISUBSEQUENCE SCOE 1 SEQ. ID 186 JRNDSNVLFLK 25.000g1 82_ IDEQLPVLEY j1.250 1!GADPDEIGLM 5.000I1 126IMVEQLARFLG 14.50011 [1T9[ YPQPGLDIIKj2.500j[_1 [27SJ KCDLTFDFYL]2.500] .9 [GLDIIKEITS][2.500 ___PSDLHNGDSK j[1.500J 260 SMEKFDLVY 1 1.250]__ STPGEFESKY 1.250W[ 22611 LTEHCHQLVD 1.125j_____ 266 IDLVYKQKMGK 11.0001 233 ILVDQCCNAEA 1I.0001____ ___MNEKFDLVYK 090jj___ 7_71 QLEALTEHCH 09011 239 1AAPRG10001____1 i I MAESEAETPSI 10.900 158 FQEFCRRFMN 10. 675 1 204 MVEQLARF][0. SOO][__ LVVSYYQFHR J0 5 0 0 9]1 PSTPGEFES 0.3 0o]0 617 ]LQEVVYLVSQI 27 0J 44 J[ RPSDVWIVTY 11 0.2501____ 51]VTYPKSGTSL 0.250][ 1567 JGTFQEFCRRF 0.2501____ 102 IJTSPRLIKSH 10.250 127 IC'JIYMARNPK j0.200 255_ DIFTVSMNEK 0.200 I 11EAETPSTPGE 110.180 1 IESEAETPSTP 135 I -187J [MDSNVLFLKY II TT.[ fTABLE VI 192P2G7 HLA Al fSTARTSUBSEQUENCE SCR SEQ. ]D 196_ YEDMHRDLVT 0.125J 163 RFMNGY ThII [25 1VRLPPFCRGKI[0.100 [26 IRLPPFCRGKMt.01I____ 241_ EAIJPVGRGRV 0.100~]~ 81 NIDEQLPVLEJ[0.1001____ 88i [VscrncQLD j0.090I____ 60 LLQEVVYLVS 121 LHNGDSKVIY 0o.o50 169 [KLGYGSWFEH 1200_]HRDLVTMVEQ l~ 100 ]KELTqPRIIK 11O. 050____ 217 0.050 [258 ITVSMNEKFDLTf IT 182 J FWEHRMDSNV][w-*J[_______ EFESKYFEFH 58 TSLLQEVVYL] 0.030J 84iJ[EQLPVLEYPQ F00 1507J RTMSYRGTFQ005]_ 39]rANFPVRPSDVI005[____ 27 QKMGKCDLTF 002 274j GKCDLTFDFY]j F 11o SHLPYRFLPS_1 0.025[ 133]IRPKDLVVSYl10.0251[.
253 ]Fw(DIFT VSMN I 79 I LMIDEQLPV 1 0.025 131JTPGEFESKYF 0O.0251I 3.54YRGTFQEFCR .0 155 IRGTFQEFCRR 0.0251 89 ILEYPQPGLDI J ~~1 24IFDLVYKQM][T l_ 245 J[VGRGRVGLWJ .2J 15JWFEHVQEFWE 3[0.0221_____ 59 J SLLQEVVYLV [0.020 FI 107 I T]1 RLIKSH~i njP T 237ccfICCAAPVG][j~ ITABLE VI 192P2G7 HLA Al 10-MERS START SUBSEQUENCE NUM fSE.
112)MSYRGTQEFIoos FTIGSWFEHVQEF ~0011 14 07 IVSYYQFHRSL 005f____ I ]VSQGADPDE:ii 0.IolT1I____ f__71[VSNE KFDLVI 0.015 F5571KSGTSLLQEV 110.0151 179[ VQEFWEHRMD,1001] 5 PRLIKS NLPY 1I 0. 0131 145 IFRSLRTMSY 10.01311____ 1134 NPIMLVVSYY 1 116 [MNDKLGYGSW1013 IZZTPSTPGREE I 0.0131 23I[MGKCDLTFDFI 12 fIHNDSKVIY ]I 0.013 I[HGVRLPPFCR] .1 [TABLE V11 192P2G7 HLA A0201 9- I ~MERS [SATSUBSEQUENCE SOE
E.I
2F 1 NUM.
FS 9]1 SLLQEVVYL 267 SMnEKFLV 11,.411___ __22-5 ALTEHCHQL ]87.586 I f1386 RMDSNVLFL F-8 il 130 70 __971_F ~78 GLM.NnEQL1I 38 .730 E_ r3:r QLVDQCCNA 20.369 ['143~ YQFRRSLRT ]j 12.85.9 [213) FLGVSCDKA 11.198 242~] APVGRO;RV 9.042 E WEHMMSNV 6.1 DLHNODSKV .1 E259 ]1VSMNEKFDL 5.087 81 NIDEQLPVL 4.4 S208 rRGP[
FR=I-__
][MNIDEQLPV 3.165 64 VVLV SQGA 112.3651 88 VLEYPQPGL ]I232 1_KLGYGSWJFE] 215 EZ TABLE VII 192P2G7 HLA A0201 9-
MERS____
7STARTISUBSEQUElNCE SCR [SEQ. ID .215I GVSCDKAQL[ 1.8_69 NM 22 DLVTMVEQL ][1.806 250_ VGLWKDIFT 11.683_ 165 FMNDKLGYGI[166 ____GLDIIKELT 141 ___YEDMHRDLV 1.219 1.0 447[ 351MEEIAiNFPV 0.853 10 KSHLPYRFL 0.805 11 LPSDLHNG 0.788][_ 19 I MHRDLVTM 0.619 1711 SYFGv 100 11KELTSPRLI 0.2 69 11 SQGADPDEI .1 8 205_1 TMVEQLARF 110.508 27 I CCNAEALPV L~ 0.454 270 11 KQKMGKCDL J .6 AQLEALTEH .6 206 jjMVEQLARFL7 0.224 If 57_1 GTSLLQEVV I_.9 27_ RMGKCDLTF 0.188 __23 NGDSICVIYM 0.164 15_ FQEFCRRFm 0.163 2227 QLEALTEHC ]0.156 F_ .1 YPQPGLD11I I0.1451 441RPSDVWIVT I1.31 71_11 GADPDEIGL ]F 0.1197[ 43 IIVRPSDVWIV 0. 116 94 PGLDIIKELT 0.-o10 I [21 LTEHCHQKV]_0.105 138 LVVSYYQFH ]i 0.091 2T IIDQCAEAL 11 0.080 106I1 RLIKSHLP Y 0075 I 661YLVSQGADP II0.069 131 11 MARNPKDLV 0.6 F 15]TMSYRQ3TFQ 0.059 1997I1 MHRDLVTMV I1 0.059 VQEFWEHRN I 0 5 341KMEEIANFP 0 .054 40 NFPVRPSDVr 01 4 253 IIWKDIFTVSM4 0.048 I ~6IWIVTYPKSG 007if___ FEHVQEFWE i1: 0.043 ITABLE VII -192P2G7 HLA A0201 9- I ~MERS__ SRT ISUBSEQUENCE SCREfs.
I
1241PVGRGRVGL 0.4
QLARFI
4 GVS 035 ___FESKYFEFH 0.0 34 lTT[YRGTFQEFC]J F1.591 QEFCRRFMN JfooI.___ 30_1 FCRGKMEEIJ[027___ 1 GEFESKYFE~j 0.024 s3 rIiYPKsGTSLL f .2 271.I1 QK@1GRCDLT [0.019= ITT[LNNIDEQLP [0.018 VTT1GDSKVIYMA[001 QLPVLEYPQ F 0. 015] SVEQLARFLG f004___ 1271SCDKAQLE .1 IT~1VVSYYQFRJ 0,013 123411 N EA 1 0.012 111RLaPPFCRGKjf.01( 8~~h _VIYMARNPKl 0f.o0 l 1141SPRLIKSHL V7Tf___ 171 11GYGSWFEHV11.091 -571 AflPDEIGLM ]fj II1PVRPSDvwi f0.0 J DLVVSYYQF J .0 V IITPGEFESY[0.8 I1S'YQ'HRSL_[007 258_ 0.00 267 1 LVYKQKM~GK Jr 010077J___ Ii T] HGVRLPP-FCJ_.0 ITABLE VIII 192P2G7 HLA A0201 10-
I.____MERS
START SBEQECE I SEQ. ID I NUM.
I59 SLLQEVVYLV 151881____ 72 5 ALTEHCI{QLV]185161 34 1 v KMEAV1267.572 7l 9[1LMNIDEQLPV] L205 J TIVEQLiARFLJI69.582 I I IVGLWK~FTrV][eo6i I 272.LKCDLTDFYL] 2L3.666, jTABLE VIII 192P2G7 HLA A0201 j77 MERS FTRJ SUBSEQUENCE
SCOEQ.I
_2_587 TVSMNEKFDL]11.4]____ 58 J[TSLLOEVVYL ]6.527 209 IIQLARFLGVSC 49 JJWIVTYPKSGTJ 4.713 If I27VEQLARFLG.V II4.368][___ 143 IYQFHRSLRTM 3(.944[ L3iAQIJEALTEHCI 3.74 r 5 KSGTSLLQEV 3.65 F25971VSMNEKFLVII 2.659 169KLGYGSWFEH 252JI___ 170 1LGYGswFEHVI[ 2 E29 F-41 FPVRPSDVWI I173 1f ANFPVRPSDV [1.680 V FVTYPKSGTpLI 1.614] FT90o INVLFLKYEDM]~ 1.182 989 1 LEYPQPGI 1.0 i1675FNDKLGYGSJ[ .1 80 Th1NIDEQLPVLI[097 183 j[WEHRMDSNVL f073____ P2 1LPJFLP~SDL 1 0. 7 5 9 ~IIKELTSPRL I[ 0. 717E f LVYKQKMGKCJ[ .0 f 6]RLPPFCRGKMJ[ F 877[PVLEYPQPGLf0.2 VSYYQFHRSI 1 0.577 rf70 QGADPEIGLJ[ 0.572 f iI GLWDIFTVSJ.8 IJKMGKCDLTFD[ 0.477 I 36J QCCNAEALPV 10.4541 f 2
J[L
T
NVEQLi 0.430_ F22 LTMEQA0.373_____ [11-9[SDLHNDScvJ 0-.357 260 JSYEKFDLVY] 0.344_____I 120R ]DiLmNoDSKVI 032 93 i QPGLDIIKEL 0.321 1233 1LVDQCCNAEAl 0.296 21 GVCKQL 0.237____ I243H LPVGRGRVGLI 0.237 I1 191 VLFIJIYEDMH j~0.230J l 216 VSCDKAOLEA 0.226 1[ F 1.9- STABLE VIII 192P2G7 HIAA A0201 I HERS START SUB SEQUENCEI SNRE UM.Q~I 1181SLRTI4SYRGT0.0 18i IKYFEFRGVRLJI 0.158 1] FEBKYFEFHGI1 0.147 103TSPRLIKSHL 10.139 269YQMKD 0.136 F 916 YM_ RLV' 0 .109 I 1137611 FEVQFWEII 0.095 F-s-6 S(3TSLQEW 0.08.
jF1 EALTEHCHQL 10.082 42(IPVRPSDVWI 0.0 721____ 116 jFLPSDLNGDj 0.069 213 11 LGVr)cA 0.063 217 11SCDKALEAL]J003I ~~TMSYRGTFE1 0.0 232 IIQLVDQCCNAE O.061 0.057 j [12T2I3[vHNDIllJ 0.057 0.057 13 1 71-MARNPKDLVV 0.slj1 13 7 ]DLVVSYYQFH 7 70 1KQKMGKCDLTf004[ 21IEALPVGRGRV 003 66 31YLVSQGADPDJ[0.3 6~31 EVVmVSQGA[ 0,033 [123 NGDSKVIYMA~o00[___
GLDIIKEL
T
S 0.3 ___FCRRFMNDKL0.2 [i13 VVSYYQFHRS1 0.01 18 ]Mn.SNVLFL 0.19 204]jVTMVEQLARF 0.01 158 HIFQEFCRRFMN 13871 LVVSYYOFHR[ 0.013 1i ELTSPLS 013~J 128 ~JVIYMARNPKD]L'[ 11 TABLE IX 192P2G7 HLA A3 9-MERS STARSUBSEQUENCE SCORE SEQ. ID I 7 NUM.] f267 LVYKQKZ4GK 100oL 101 ]ELTSPRLIK18.01 f21JGLWKDIFTV 147 DVWIVTYPC 11350 16 RL IKSHLPY 1 12. 0 0 0 F 2727 KMGKCDLTF 12. 000F f18jVIYMARNPK_~00 o F j Fis-6 1 GTFQEFCRR ]9.-00 01 If RLPPFCRGK 19.000 Ii 11 20_ TMVEQLARP ][6.750 24_ GVRLPPFCR 35 ISTPGEFESK 41.50P 1 60I LLQEVVYLV 405 0 I 78[ GLMNIDEQL 1.51 3.86 PVSVF 36001Lf_ 137 i SLLQEVVYL 112.700If____ L17_1DLVVSYYQF IT2.70 II J [3TI[ 8 HVQRFWEHR o [T IF- I 1[191 H VLFLKYDM 1. 0007~ r225ALTHCHQL 0200oI[1 rVLEYPQPGL 11 FCRRFMNDK 10.9003 1 SIMqEKFDLV 10.900I r 2071DLVTVQL 0.81 249[ RVGLWKDIF ]Ti] I107 ifLIKSHLPYR 10.60011][ 98 I:IKELTSPR I~ 0.6001 GLIK11L j I~1KCDL TPDFY II0.4503 23 [QLVDQCCNA j0.3001_____ 1 31YMARNPK0DL 0I.300[ I i [ILPYRFLPS 0.4 2133 PLGVSCDKA 020 222 ][QLEALTEHC II0.2001[_____ 2461 GR.GRVGLWK ]0.1801F3[ 1[9 K2GYWFE1 0.18011_____ 215 G VSCDKAQL .83 11i TPGEFESKY 10.1801_____ 257 FTSMNEKP 0 153[0 rV -V YL VSA 0. 7- o150 7o TABLE IX 192P2G7 HLA A3 9-MERS 00 00 ISTART SUBSEQUECE[SEQ.SID ___NIDEQLPVL 1015j 1101RTMSYRGTF )o.35E 187 IfMDSNV.FLK10.3 1 341 KMEEIANFP 0 3 I 1141NPKDLV VSY 1281LVVSYYQFH j9[DMHRDLVTM f~fNEKFDLVYK 0l.090 VTT[KYFEFHGVR 10.08 VW1RFLGVSCDK 0.068 [Ti[SLRTMSYRG J10-060][____ 242_ ALPVGRGRV 1T7[DLHNGDSKV 110.06011 ]LPVLEYPQ 110.060 10. 054 270 [KKMGKCDL 0[.054 I~ 6 EKFDLVY [10.0481 __KFDLVYfKQK If ?I I T[SWFEHVQEF If1~~"I RSLRTMSYR 10.045 I 23 &AEALPVGR j040I ___DSNVLFLKY ]006I fiJ[DEQLPVLEY 0.032J ___IFTVSMNEK___ SDLHNGDSI( [6IfYLVSQGAlP 10.0301_____ FTT[YQFHRSLRT 10.03011____ 10.030 [LVTMVEQLA 10.030 1 116f FLPSDLING ]0001 33_ GEIN 0.020 22__ AQLEALTEH 110. 0201 _79l LMNiD)EQLP 151 TMSYRGTFQ 1000]____ DSKVIYMAR] 1fTT 179_ VQEFWER [0.01811 SQGADPDEI 10.0181 EEIANFPVR 1006 1 jW EQLARFLGV 10.01611 I 5 I VYPSGT 10.01511i ___vsMN.EKFDL 10031~ __FCRGKM~EEI_ (0.01311 ~i YPQPGLDII 0.013 ITABLE IX 192P2G7 HLA A3 9-MERS FtTART SUBSEQUENCE SCOR SEQ. ID __RFMDKLGY ff012Il RGTFQEFC R ]1 ~0 .012 l 261LTEHCHQLV 10.0~T1____ 45 PSDVWIVTY 0.009 I_ 104TJ SPRLIKnSHL I 0.00911____ 190_ NVLFLKYED 110.0091 T15 FMNhDKLGYG ___009 I~~ILTSPRLIKS 0.009 L11PVRPSDWI TABLE X 192P2G7 HLA A3 lO-MERS7 ~START SUSEUNCE SEQ. ID I186 JRMDSNVLFL j135.000,f____ 26 LKKG 18.000____ [106 11 12_7 [IYMRPK f900____ [138[LVVSYYQFHR[5.0 1255J[ DIFTVSMNEK[ 4.500 19 IVFLKYEDMHI[ .0 [51IGLWKIFTrvs][270____ [34 ANEIFPV][270 [T6751KLGYG;SWFEH[ 1.0 if___ [T]STPGEFESKcYl090 1V771 [10]KELTSPRL.IK 0.810 L I.LIKSHLPYRFI 0. 600 11 I I 7GTSLLQEVV f0.0 ri1YPQPGLDIIKI060( IiGTFQEFCRF] 0.450f 13]GSWFEHVQEF jT W f.
1T 3 _j[EFKY-FEFI 0.405] 179 _JILMN'IDEQLPVJ[ .0 1 ~ATEiCHiQLVl10301 IT IfYMARNPKDLV030____] 137 DLVVSYYQFHI1 .7 Is GLDIIKELTSI0.4 1[VTYPKSGTSL J .2 20 fQLARFLGVSC' 0.2 00 TABLE X 192P2137 HLA A3 10-.ME~s START [SUBSEQUENCE I sccR EQ.I [LLQEVVYLvsIl 0.8 [.2I DIIKELTSPR0.8Jf____I FjRPSDVWIVTY f0.1.80 I 19 fDMMRDLVTMVIl 0.180 r 13 T][PKLVSYYI ~KCDLTFDFYLJ, 0.162 21 IARFLGVSCDKI .5 [152 IMSRGTFQEF1[010I 46fSDWIVTYPK~f015J IDLVTKVEQLA]0.3s[ 205 I TMVEQLARFL[ 0.135 1i6571 FMNDKLGYG3S][ 0.120 I VGRGRVGLWK[ 0.0O90 72I[a#GKCD)LTFD[ 0.0oI DLHNGDSKVI 0.090 I HVQEFWEMZI[oM TTI HLPYRFLPSD] 0.090 78~GLMNI[DEQLP] 0. I 90 6 LPPFCRG3KM )f0.090f____ [GIMNEKFDLVK .060 jf 15 1 [TMSYRGTFOEI[ 0.06 If___ IfPSTPGEFESKJ[00 F2671 LVYKQKMGKC[ 0.045] 28I[GRVGLWKDIF] 0.041 L!JLEYPPGLDII[ 0.041 T MJ RF?,LgYj 0.040 F IET]GKCDLTFDFY] 0.036 70 031 IF-8 IDEQLPVLEY] 13 12][GDSKVIYMR][ 0.36 35]MEEIANFPVR[0.3 f ITT fELTSPRLIKS][ 0. 036 J1___ T~]FLKcYEDMHRI 0~f.030] I~.0 HNViFLKYEDM[ 0.030 ~232 If LVDQCCNAEI030 f ~F11_LPYRLPSDL] 0.030 I lF~YLVSQGADPD 0.030 I I fEFCRRFMNDK ][0.027 136 KDLSYYQF Jf0.027[] 1 42I1PVRPSDVWIV]I 0.027 23 HGVRLPPFCR i I 241[GVRIPPFCRG]f02 18 ~1MDSNVLFLKY f .2 133] RNPKDLVVsY]f02: F i I 9 WIVTYPKSGT L263 [EFLVYKQKII0.2 [TABLE X 192P2G7 liLA A3 START SUSEQUENCE SCR 0. SID [PVLEYPQPGL][ 0.020 1f __I [2491 RV[LWIFT[000I 233 ][LVDQCCNAEAI 0.02If I7 FLPSDLLE-GD il0.020 11 141_ 0.020 I_ 17 1[ SKYFEFHGVR][ 0.01.8 L..1 TPGEFESKYFI 0.015 1181 KYFEFH13VRL 11004____ 632Z L7IVSQGAIl003 IT 21[LPPFCRGKI003j 58 EV]Y 0 01 f 3 221 1AQLEALTErCI .13f____I 24 [LPVG3RGRVGLIF 0.013]i 3.LGYGSWFE V ,013min YRGTFQEFCR IfI I 23..FLKYLDMIl 0. 012 I 155 IRG.TFOEFCRR 0.0[12 23 ICNAEALPVGR 012.J 139IF v-vsyyQFHRS 0.012 10 fLTSPRLKsHF- 0.011 I 1.28 VIYMARNPKD 1 0.010 I =s I PSDLHNGDSKj[ .00_F TABE X -192P2G7 liLA A1101 9- (T1 L MI ERS1 jS
T
AR
T QCE SEQ. ID 267 _LVYKQKI4GK 8i.000 13.9 If VVSYQFHR 120 156 IL GTFQEFCRR 1. 20 0 1 212 IIG~ncDK~~J 1 12811 VIMRPK .0 1~I VTMVEQLAR ]080 3.8_ 1 YEH 0 .4801 178fl HVQEFWMH 0 .400 KF0.300 EZZ 101 E0T240fIK IT~I IFTVSMNBK710.200 fl 1 161 FCRRFHNDK 020~Z I ~fFLKYEDMHR 0.6 1261;RGRVGIJWK0.2 'TABLE XI 192P2G7 HLA A1101 9-
MERS
I[START[SUBSEQUENCE SCR SEQ. ID 1_ NUM.
F_26_ RLPPFCRGK FO. 120I 92q PQPGLDIIK_ 0. 20 'iTF17 LIKSHLPYR 10.080 j [98 1IIKESPRJ000~ 142 I1 YYQFI{RSLR 0O. 0801 1[251I JGLWKDIFTV10.711 0.O6OEZ0I06 [~~[RVGLWKDIF 110.60f~ ___RTMSYRGTF .6 215TJ GVSCDKAQL 000 Z 239 NAEALPVGR 000 64 VVYLVSQGA 0.040Fh 155_ RGTFQEFCR 0o.036] 106_ RLIKSHLPY 1.3 119T) SDLHNGDSK joo LVSYYQFH10.3EIi I'IFRFMNflK<LGY ~004TTI 17811 EL F 7524j 1221_MGKCDLFloo4~ RSLRTMSRIoo8TT 27 KQKMGKCDL7 11.iE I 11GYGSWFEHV 0. 226 IfLTEHCHQLV 001 22 fAQLEALTE- .09[ FT~[LLQEVVYLV 1.01 fTF[VLFLKYEDM 10.008 69 1~ SQGADPDEI F 0006I 59I SLLQEVVYL _10.006 P2_ 3 2QVQCA10. 006inii ___VQEFWEHRM ]oo6T 190 VLFLYE 0.0061l IKE6~ I 3 EAFV oF.oosl 28EQLARFLGV 0.051 88VLEYPQPGL 0o.004 260 ][SMNEKFDLV 0O4TT 23FLGVSCDKA 10.0041ET 13SYRGTF'QEF O1. 004 0.OO4ITIZZ TABLE XI 192P2G7 HLA A1101 9- 1 MERS START SUBSEQUENCEOEjSE.
ID
[IT237 CC APV 0.00 rIT __ALPVGRGRV0O4EZ 0. 004 fAITEHCHQL0.4 52Tj TYPKSGTSL0.4 137 QF 0 .0041 [7 [PSTPEF 10.003 EP: .;FLK M 1 0.003 KLGYGSWFE 0. 003j 131YQFHRSLRT 002E I F-9 0.1002P(3§D TPGEFE~s-C10.02 [~W[IVTYPKSGT 00 2 'F421 PVRPSDVWI 0.002j F 197[ YFEFHGVRL _0.0021 126~ MVEQLARFL 0021IIZ 40 NFPVSD 0.02 ITTjMARNPDLV 0. 002 110JYMARNPKDL JQ00 LVSQGADPD 10 0 02I 53]J1 YPKSGTSLL _10.002 l 51_ VTYPKSGTS 0.0021I_ 11021 LTSPRLIKS 0.0021____ [134 IfNPKDLVSYooOTZ 3TI FCRGKM~EEI 10.002~ [9 fYPQPGLDII ].0IT 175_ 1FEHVQEW 002 [2441 I PGRRVG 0 00 271 If PFCRGKM 0.02 I [274 GKCDLTFDF 0.002rzii [1 RFLPSDLHN 002 fDLVT mlQLI MEEIANFPV j0. 002 TABLE XII 192P2G7 HLA A1101 10 -MERS START ISUBSEQUENCE SCR E.ID 17IKVIYMARNPK 19.000 IZZI
RMDSNV
1 FLK 3.00EZT TABLE XII 192P2G7 ELLA A1101
-KERS
START~ SUBSEQUENCE sCORE SEQ. ID] 2138 1 LV SYYFR 1.O]0 ___LVTI4VEQLAR_ I~T~ T J [KELTSPRLIK 0.5401I____ 91 ][YPQPGLDIIK 0.400I_____ 106][RLIKSHIPYR j0.360 26[DLVYKQKMGK 10.3 6 0] 25[DIFTVSMNEK.20]l____ 14 FHSL 0.1601I 261 ]MNEKFDL 0.To1_060 IMNE][ VK 0. 0401 1 211 1[ ARFLGVS CDK 0. 04 0 34)[KNEEIANFPV Jo 3 Z Z 1.IYGSWFEH 006 DII3[METSP 110036 I)GTSLLQEVVY 000E Z 12 [GDSKVIYMARJ0.024 ___KYFEFHGVR .2 Z Z ___HVQEFWER 0.2 2 33 )1 LVDQCCNAEA0.2 24 VTMVEQLARF 0.020 1 1SG 0.0201 023 I[HGVRI 1 PPFCR0.1 27M I KCDLTFDFYJ 0.0181 1 ___RGTFQEFCRJ~ 1 I T]YRGTFQEFCR_ 0o. 0121 195] KYErDMHRDLV 001 261 0LPCGa 012 [SLLQEVVYLV 0.012EIIIZ W3s MEEIANFPVR0012j__ RVGLWKDIFT 1_0_01 1 !ST.PGEFESKY 010 21 jRFLGVSCDVA O.07 23 HQLVDQCCNAj 0.0 0 9 L VTIEVVYLVSQGA 00 0 9 _SMEKFDLVY] 0.0 0 81 [1SCYFEFHGVR] 0. 008 [TilCNAEALPVGR 0.-00 8 [~ILMNIDEQLPVI 0. 0 08j 1 I VLFLKYE;DMH] 008L [T j LIKSHLPYRF [0.0 08 TABLE XII 192P2G7 HLA A1101 TI 10 -MERS 0.06j [23EKFDLVYKQ!C [TT 1RTMSYRGTF 10.001 [II2i1[-GVSCDKAQLE] 0. 006w 156 1[GTFQEFCRRFI. 00jJjj6f MVEQLARFLG0.6 S220 JKAQLEALTEH 0.00611 71 IGADPDEIGLM 0.0061 [44 PSDVWIVTY 0. 006 M GVRLPFCRG j0. 006 1iLTSPRLIKSH 0.0051 Ti lMRPKDLVV lto 0041 1:2251 AL.HLVI 0.0041 IIKELTSPRL 000j F12911I YA KL] 0. 004 421 IP 0.004VI [j ~LVYKQKMGKC] 0. 0041 ITT] YMARNPKDLV 10. 0041 1i: VVYLVSQQAD0.04 ZZ [T CCI EDL F004 RPFCr7 0.004 E 2511 ~~GK0. 003EZ I [41 FPVRPSDVWIi IKEL] 0.002EZ 78 I1GLMNIDEQLPDO 002 PSTPGEFES1(K0.0 40 NFPVRPSDVW 0 0 30 )FCRGKMEEIA 10. 002I [i16 FCRMNK 0.002 217T ]SCDKAQLEAL 002 134 kNPKDLVVSYY 0.002Z 67 LVSGAIPDE 0.002 j [191VVSYYQFRRS 0.002E~ I~f[LTEHCHQLVD: 0. 002 Es 011IVTYPKCGTS- 0.0izz 00 00 TABLE XII 192P2G7 HLA A110l I 10 -MERS START ISBEQEC SCORE SEQ.I 13 KDVQYYF0.002] 2 I KQKMGKCDLT 10 0 1,58 FEC.F 0.2 .177 EFE 0.002 137 DWYYQFH .OEZ F2021 DLVTMVEQLAJF0.002] TABL XII -192P2G7 ELA A24 9- T1L X II. M E R S [START SIJBSEQUENCE SCORE SEQ. ID 1151KYEDMHRDL 17 20. 000 1 11TYPKSGTSL -'200.00
ZZZ
11i SYYQFHRSL j0 00Z1 153T 158.401 1901 EYPQPGLDI if 75.000! 1191 YFEFHGVRL 130.0001 113T PYFPSDLI[24.0001____ 157 11f TFQEFCRRF 1118.0001____ 14T] EFESKYFEF 1116.500 j 7JfGLMNIDEQL 8.400 ~[RMDSNVLFL 0[_ 8.000 f19 KSHLPYRFL 8.000f 101MVEQLARFL 7.200 fiO[RTMSYRGTF [~ISLLQEVVYL 6.000 [29 VSMNEKFDL .0 [3 [171 GYGSWFEI{Vj[600I____ ___VLEYPQPGL 6.000o 041SPRILIKSHnL [S-f__00 VYKQKMGKC 5.500 Ir-T1 NIDEQLPVL If4.800 1251ALTEHCHQL Jf4.800 1 1711 GADPDEIGL If4.800 272LJ IKGKCDLTF ]f4.000____ 235 ifDQCCNAEAL I .0 215 J[GVSCDKAQL I .0 53T YPKSGTSLL]f400 249 [RVG w~rWIF 4.000 130 [WYARNPL f400 2051 TMVEQLAF 13.6001 2 57 J[FTVSMNEgF I .300 TABLE XIII 192P2G7 HLA A24 9- MERS fSTART ISUBSEQUENCEI SCORE SEQ. ID 7 ETPSTPGEF 330J 174i -SWFEHVQEF 316 1a37J DLVVSYYQF 3.000 144_ QFHRSLRTM _2.500J3 115~] RFLPSD)LHN f1.800 91 YPQPGLDII [T i ao 164 IfRFMNDKLGY 1.500___ KYFEFHJ[ 1.200 94__ 1.1091 SQGADPDEI ]1 30_ FCRGKMEE11110 1751! WFEHVQEFW f100I1 27_ LPPFCRGKM 10 &.825 129 ]jIYMARNPKD If0.825 179__ VQFER 0.750 142TJ YYQFHRSqLR ]F 0.750____ I40 jfNFPVRPSDV 075 T~1VYLVSQGADW 070 FQEFCRRFM F .750 I EFWEHRNDS II 0.600 3 9 1IKELTSPRL il~ 0.60 I-- 26 CDLTFDFYL 1j__ O 191TJ VLFLKYEDM 050I 198_ DMHRDLVTM If0.500 123W~ NGDSKVIYM f050 1627] CRRFMNDKL L 4 [24 11 PVGRGRVGL IL 0. 4 0 0 2 18 LI CDKAQLEAL 1 .0 1.85I HRNDSNVLF 0.6] U 1IGKMEEIANF 0.360 f11RPSDVWIVT 0.336]00 F72 PGEFESKYF J I___RLIKSHLPY 0.300~! 18JDKLGYGSWF [0.300I 133 v RN1LV .300 l1KELTSPRLI 0.300i GKCLTFDF 0.288 6 fLJQEVVYLV 0.252 11011 KSHPYRF ]0.240 2751 KCDTFDFY 0.240 fofSI4NEKFDLV 0.216 1 212 ~fRFLGVSCDK 0.210i 61f LQEVVYLVS II R ___LWKDIFTV 10.202! [TABLE XIII -192P2G7 HLA A24 9- 7
MERS____
START SUBSEQUENCE SCORE
SE.I
[32] RGKM~EEIAN F22 11 FHGVRLPPF]020____ ___GR)VGLWKDI 0.8Fi~ RLPYRFLPS 010____ ~i[EQLARFLGVJ 0.180 E232] Q~jvDQCcNAJ018 2 1 LTEHCHQLV ]0.180 23 HGVRIJPPFC 0.1-80 222_ QLEALTEHC 0.1.80 MIDEQLPV 0.180 LVTHVEQLA 0.1681 73 IfDPDEGLMN 0.168 64 VVYLVSQGA ][016i i 4 48 VWVYM1 0.165 ___SGTSLLQEV 0. 158 1 23][HQLVQC Ef 015 0 PVRPS_ 0.150 [TT[FWEHRMDSN][ 0.150 ___TSLLQEVVY 0r.150____ F261 I[ LVY If .5 2371 CCNAEALPV 01 0] [TABLE XIV 192P2G7 liLA A24 10- STARTENE~ SCR SEQ. IDq IJ K1IFEFHVL_] I [12 9 IIYMARNPKL 0. 0 S52 11 TYPKSGTSLL 11300 00011____ 1j EYPQPGLDI I][7 5. 00 0[ 1195I KYEDMHRDLV]1[ 18. 0 00[ 111EFHGVRLPPF1[1.0][___ 205 ]JTMVEQLARFL .4 77 T]IIGLMNIDEQL)[8.0 103 ]TSPRLIKSHLII840] j275 1?KCDLTFDFYL800][_ 142 IIYYQFHRSLRT[ F7.5007] 1801 MNIDEQLjPVLIf [I 26 jKFDLVYKQKMj[660I 93 QPGLDIIKEL 6[ a160 TSLLQEVVYLI 6. 00 0 24 =~LPVGRGRVGLF 6.0 007I 1~1IALTHCHL=6.0001! TABLE XIV 192P2G7 lILA A24 IMERS 1 SUBTISsEQUENCE SCORE SE[ -r ID 14fLGVSCDKAQLI600If____ [13ISYRGTFQEFC]I lIILTSPRL]I [iJfVTYPKSGTSLJJ I 4. 8 0 0 [r701 IIQGADPD;EIGL]I 80I 112 ILPYRPLPSDLI 4.B00 157 jjTFQEFCRRFM 4.500 [-1617 [FCRRPNDKL~2 4.0 I 25 VMN I 4.000 I 140 IVYYF H 4.000 11 J S312 I[RGKMEEIANF]I 400I F1171TPEFESKYFI_2.4007I Flo7771LIKSHJPYRF.J 2.4 00 TI[MGKCDLTFDF1 2. 400[___ I 47~ RGRVGLWKDIj 2.40 T~~IGTFEFCRF]I2.000_____ P216 RL 1 PPPCRGKM]l1.8 IRFLGVCK] 68 1 VSQGADPDEIll 1.650____ IFPVRPSDVWI ]150 [1 lG201III 1.200 )L1 1IDLHN(DSlcVIII .0 17 [HVQEFWEHRI r_40_ NFPVRPSDVWJ070I ___VYLVSQGADPI070____ P[190 I.NVLFIIKYEDMiI 0.750 If PVLEYPQPGL] 0.720I____ [18Sjj 5RDSVFL[01I_ 141QFHRSLRTMS][060]____ 23 D__NEA 0.600 13IIKDLVVSYYQF 1221LWK1:IFTVSM [0.6070[1f____ 126.9 YKQlO4GKCDL 0.600 .6 0 181 0.600 _2 HN3SVM .0 29 )jPFCRGra4EEIII 0.550 _1141_1 SYYQFHRSLR oso 143 ]YQFRSLRTMI0.0 268ll VYKQKMKDI050~ F1111GYGSWFEHVQ TABLE XIV 192P2G7 HLA A24 10- MERS ISA~ISUBSEQUENtE SCORE iFSEQ. ID Ii NUM.
1194][LKYEDMHRDL] 0.480 13]WEHRMNiVDsLJ[ 0.480 [iIKSHLPYRFLJ[ 0.4001 34IF KEEI'NFPVF 0.360 [TTIRNPKDLVVSY 0.360]f____ 1KsTSLLQEVJI 0.3 17:]r 248 GRVGIJWKDIFI 0.300_I 271 _KGCDT 0.300 13 JjGEFESKYFEFI 0.264 [631EVVYLVSQGAI 0.252 j~ JLLQEVVYLVSI 0.252 202DLVTVEQLAII0.252____ 165 ][FMNDKLGYGSI 0.216 221 ]AQLEALTEHC[ 0.216] 59][SLLQEVVYLV f 167 ]NDKLGYGSWF)(020J 249T RVGLWKDIFT][020] 149 [LRTMSYRGTF]( 0.200 J QKMGK LT0.200 FT184 MUSNVVLFF 0.200I____ RFPDHG 0.8 F 259_ I I 260 SMNEKFLVY0.8 [241 EFALPVGRGRVII010J7___ 251 ~xDFTVSl 0.168 j134 J[NPKDLVVSYY] 0.168 I174 [SWFEHVQEFW .6 1229 1 IHCHQLVDQCC f0.168
LSTPGEESY_______
F1 iIL QDCCA I[ .5 F16471 RFMNDKLGYG[ 150 I F7JLMIDEQLPV o. Is IlMAESEAETPS][ 0.150 182 11FWEHRMDSNV] 150 TABLE XV 192P2G7 HLA B7 9-MERS [STARTJJSUb SEQUENCE SCORE SEQ. ID FTI 10.oI NUM.J 53T YPKSGTSLL JJ80.000____ 1251 dVFSCDKAQL Il o~o TABLE XV 192P2G7 HLA B7 9-MERS START SUBSEQUENCE SOE SEQ. ID 29 VSMNEKFDL 112.0 0 225 AIJTEHCHQL f12.000]j____ 78l GLMNIDEQL l[12.000 11311 MARNPKDLV j[9.000 91 YPQPGLDII J8.000 206_ MVEQLARFL J[6.000If___ 1091 KSHLjPYRFL 6[ [162 [CRRF1.fDIQL 130[ YMARNPKDL 4.000 22 DLVTI4VEQL ]j4.00-0 1 235 DQCCNAEAL] 4.000J 20 KQKMGKCDL ]j4.000 J 2 84 11EHRMDSNVL 14.0001 159 SLjLQEVVYL jf4.000 71 GADPDEIGL 24 PVGRGRVGL ~[3.000 I 210_ LARFLGVSC 3.000 1 142 PVRPSDVWI 12.000I 144 RPSDVWIVT rI [88 ]VLEYPQPGL 180 186 I RNDSNVL.FL j~1.200 NIDEQLPVL J .0 19,DMHRDLVTM 11.00 191_ VLFLKYEDM 1.000 242_ ALPVGRGRV J0.900 41 FPVRPSDVW 11 00:]1 203_ LVTM~VELA Jj0 -5 07 64L VVYLVSQGA 0.500 I Fr 137 PYRFLPSDL f .001 l 14 NPKDLVVSY if0.400 26[CDLTFDFYL 0.400it SYYQFHRSL ITYPKSGTSL VT[PGLDIIKEL J0.400JJ [179 0.3Q00HMI 8 [TPSTPGEFE 2 tNGDSKVIYM] 10.30011____ [72 [ADPDEIGL.M1030II____ [571 GTSLLQEVVW .0 TABLE XV 192P2G7 MLA B7 9-MERS START SUBSEQUENC.EI SCORE SEQ. ID N[ MNIDEQLPV 0.200 I 27 CNAEALPV 0.200 j 12 LPYRPLPSD J0.200 56 SGTSLLQEV_ 0.200 7199 MHRDLVTMV I0.200 60 LLQEVVYLV ]0.200I____ P_243 IJPVG;RGRVG J 0.200 117~ LPSDLHNOD 10.200 [TIVGRQ;RVGLW _0.200 OLKDFT Ii0.00 [TWjDLHNGDSKV j0.200 I IEQLARFLGV 0.200 93 QPGLDIIKE 0.200 7867 LPVLEYPQP 0.200 1I 73 j=ID~lG: 0.120 I F19 i1 YFEFHGVRL_010( KYEDMHRDL_010I [i.]IYQFRRSLRT 010I____ VGLWKDIFT J[0.100 I QLVDQOCCNAEO:0.100 24 FRVGLWKWIF ]0.100 [~TIRGRVGLWKD[ 0.100_ 18 SLRTMSYRGJ] 0.100If____ 23 HGVRLPPFC_ F[010 21 ]jFLGVSCDKA[ 10 16 FCRRFMNDK][ .0 HCHQLVDQCj 0.100 I 144] QFHSLRTM 0f .1a [-265[FDLVYKoiMf~ 3 fIANFPVRPS]I .9 150If TMYRGTF I .9 EYPQPGLDI 0.060 132 IfARNPDLVVf0.060j 226[ LTEHCHQLV][ 1901 ~FLKED If 0.050 4771 D DVIVTYPK If 0.050 I [18[HVQEFWEHR 0.0 __0 fTVSMNEKFD 0. 050If____ [7IfLVSQGADPD 0.050 13 [VVSYYQFHR 0.050 [7fEVVYLVSQG 0.050 [38 1 LVVSYYQFH_ L 0. LV YKQKMVGK J .5 [T VIYMARNPf0051 TABLE X 192P2G7 lILA B7 9-MERS] L ST R] UBSEQUENCE] SCOQ. f
_ID]
I~jANFPVRPSD[ 0O.045 I _1 12 fLHNGDSKVI 1[ 0.040 jfTel7 I KELTSPRLI I .]O.0off IGRVGLWKDI TABLE XVI 192P2G7 HLA B7lMRS ISTART11SUBSEQUENCE ISCORE 11SEQu..
ID
1243 ]ILPVGRGRVGLJL2.Oi I ]QPCGLD.IIKEL 1180. 000 I 1361 If FCRRFMNDKLI[0OO[ I25 1TVSEKDI2 0If_ 22 fEALjTEHCHQL]71. o~ 41 IFPVRPSDVWII[ .0 1 331 IMARNPKDLVVJ If___JF F178 1IH/QEFWEHr 1 5.000____ F1.90 JIfNVLFLKYEDM][ .0 3 1ITSPRLIKSHL][400I 24 RGRVGLWKDI 14.000 If 7M 4.000If I 'LGVSCDKAQL][400IJ___ i-i-IVTYPKSGTSL][ 4.000 If1 1 1 ]IGLMNIDEQL][400 pa 5ITMVEQLARFL]F400I 98i IIKELTSPRL [4.000 I 8 fMNIDEQLPVL[ .0 1 11QGADPDEGL[4.000l 87]PVLEYPQPL[300I 13IDPDEIGL'QI F2 .4 0-0If___ 114ISPRLIKSHLPI[ 2.000If_ __I L2]RLPPFCRGKMIf150 SCKQELJ1.200 3 KCDLDF_ 1.200 30_ FCGM~A11.000 [ISLRTMSYRCT 1 1.000____ 42 IPvRPSDvwIVIf 1.000____ Th ]YQFHRSLRTM If1.000 I fT7 [NGDSKVIYM 1.000IF____ ~GADPDEIGLMJI 0.90011___ 41i I [EALPVGRGRV I[ 0.900 4T I GVRLPPFCRG I .5 TABLE XVI 192P2G7 HLA B7 10-MERSI ITABE XV 92P27 HL B710-MRS~TABLE XVI 192P2G7 HLA B7 00 00 1START SUBSEQUENCE SCORE [SEQ. ID f~AJTEHCHQLVI_0.600 []ANFPVRPSDVIl 0.600 8 IIKSHLPYRFLI] 0.6 00 [259 ]VSMNEKFD)LV]I 0.6500jj____ 63 0.500 267 JLVYKQKMGKC J 0.500 11___ [117 JLPSDLHNGDSl 0.400 1 I811 TPSTPGEFESI 0.400 1 14 LKYEDMHIRDL r11831 WEHRMDSNVLj 0.400 RDLVTMVEQL 0.400 168 If VSQG;ADPDE-I If0.40 134 ]NPKDLVVSYYI[ 0.400 269 ]fYKQKMGKCDL If0.400 18KYFEFHGVR7j 0.400 MEND ~DSlcVIf 0.400 I J IRPSDVWV I 0.-4-007 TITPGEFESKYF 1[_0.400 1 KTITYPKSGTSLLI 0.400 19IIEDMHRflLVTM ]0.300 [~AQLEALTEHCI1 0.300 J[E ~IYPKSGTSLLQ1 .0 7-571SGTSLQEW 0.200 11 2 36I1QCCNAEALPV [0.200 I 86 ILPVLEYPQPG 5T7fKSGTSLLQEV _.0 JLMeNIDEoLPVj0.0 1IESKYFEFHGVI0.0 1 YPQPGLDIIKj0.0 LDMHRDLTM[0.0Jf____ 170 11[GYGWFEHV][ 0.200 T~hLPPFCRGKMEE .1 0.20 T -7JTFQEF RFM 0.150 233LVDQCCNAEA ]I0.150 229 HrEHQLVor 0.100 252_ LWKDIFTVSM 0[o00 soi IVTYPKSGTS ]oi o[ 2 9IQJARFLGVSC1 26 VSCDKAQLEAf0.0 START SUBSEQUENCE IISCORE ISEQ. ID [139 IVVSYYQFHRS 100~irNN 20KQKMGKCDLT 0.100I____ 153 0.100i____ [245 VGRGRVGIJWK 0.100__ 202 ]DLVTMVEQLAI 0.100 231 ][HQLVDQCCNA J[0.100 127 KVIYMARNPK [0.075[ 189 IILEYPQPGLDI 0.0_ 1204]VTMVEQLARF[ 0.060 I34 KMEEIANFPV I0.060 1203ILVTMVEQLAR ]T~J 64 V1VYLVSQGAD .05 67zi LVSQGAflPDE 0.0501 i IGVSCDKQLE 000f IANPVPSDJf0.045 I TABLE XVII 192P2G7 FILA B3501 9-
MERS
S"~~UE~cEI SEQ. ID 134_ NPKDLVVSY 120001 11 TPGEFESKY 80a.000I____ 58 fSLLQEVVy 109_ KSHPYFL 41] FPVRPSDVW 11.0 188~l DSNVLFLKY] 1Io oo 76~ 44__ RPSDVWIVT 8.000 91_ I.YPQPGLDII 8.000 25 If- VSMNEKFDL J7.5o f 270 IfKQKMGKCDL 11:6.000 I 16 RLIKSHLaPY 4.000Jf T18 RDVT I 3.000 F~YD 1 2 00 150j1 RTMSYRGTF f200[I 225][ALTEHCHQLIf2.000] 249~ RVGLKKDIF If2.000 I 20S1I TMVEQLARF 11 2.000 221KMG3KCDLFI_.0 133:I] MARNPDLV] 1 E0 430- TABLE XVII 192P2G7 HLA B3501 9-
MERS
START SUBSEQUENCE SCOR E FSEQ.- ID ___SLLQEV VYL j .0 245_ VGRGRVGLW 1.0 2~1 GVSCDKAQL F1.500 [71] GADPDEIQL 1.0 7 DPDEIGLMl 1.200 301 FCRGIG2EI 1.200 27 KCDLTFDFY 1.200 78~GLMN~IDEQL 100 DQCCNAEAL F SDLVTMVEQL 1.000] [TFIDLVVSYYQF 100I [101YMARNPKDL] F.01 7 11ETPSTPGEFJ 1.000 [~IRGKMEEIAN 0.900 210~I LARFLGVSC 0.900 i [ilNIDEQLPVL 0f 1 1581 FQEFCRRFM]j .0 16 Ri4DSNVF .0 164 RFMNDKLGYI 0.600 MNIDEQLPV 110.6001 261 MNEKF DLVY 0.0 ADPDEIGLM 060 69_ SQ GAPDEI .0 17.9 VQEFWEHRM4 0.600 VSYYQFHRS .0 EHRMSNVL 040 [61LLQEVVYLV 0.400 L.iILPSDLKNGD jj0.400 SMEKFLV 040 VTT[RNPKDLVVS 030 ___MVEQLsARFL F[030 ___GIKEEIANF F .0 12 CRRFMNDKL jj0.0 88T~ VLEYPQPGL _0301 251I GLWKip-IFTV .300 F 1.5 37 SYRGTFQEF 10.300 1 237] CCNAEALPV 10 38[IANFPVRPS 0.300 1 218 CDKALEALir 0.300 11 .93 QPGLDIIKE 0.2 86 LPVLEYPQPJI 0.300I____ __ESEAETPST 11_022= FDVKK 1j0.0 TABLE XVII 19227 HLA B3501 9-
MERS
[STARTJ[SUBSEQUENCE SCORE NUS.*I 24 ALPVG3RGRVf 0.20 73 DEQLPVLEY][020 TFQEFCRRF][020I KCDLTFDF 0.00 IEQLARFLGV 0.0 94_ PGLDIIKEL 0.2001____ L146J HRSLRTMS 0.200 1201 DLHNGDSKV 020 TPSTPGEFE 020 LPYRFLPSD 020j ~TfGTSLLQEVV j 020 174[ SWE 7QF7I .0 j A 56 IfSGTSLLQEV 0 232 QLVDQCCNA 0.0jf____ 243 LVRGV f QFHRSLRTM 0.0 185 HRNDSNVLF 0.0 16 ESKYFEFHG 0.5 I 125[DSKVIYMAR 231_ HQLVDQCCN 42 PVR.PSDVWI 01 A l MRDLVTMJ11.2 1.95 KYEDMHRDL 209 IfQLARPLGVS 0.100 22 jjFHGVRLPPF- 0.100= 3_08 IKSHLPYRF 010 EHLPYRFL PS 0.100_ 27 DLTFDFYL]010I____ 203_ LVTMVEQLA 1Zi] STSLLQE O Of_ TABLE XVIII 192207 HLA B3501 10 -MERS ST ]SBSEUECE [CR SEQ. ID 134INPKDLVVSYY [240 .000l -44 ][RPSDVWI.ITY J[160 .000 T]TPGEFES KYF][16 0.oo 0 0 ~IW LPVGRGRVOL][20.o000[___ TILPYRFLPSDL 10 93 ]QPG;LDIIKEL~l 20. 007 32 JfRGKJ4EE IANF ][T 417]1FPVRPSDVWI] .0 00 00 jTABLE XVIII 19q2P2G;7 MLA B35011 [START1 SUBS EQUENdE EQ. ID 58 [ITSLLQEVVYLf[ 7.500J 98 IIKELTSPRLj[ .00 152_ IMSYRGTFQEFI [5.00011 173 [1GSWFEHVQEFJ[ 1.0 1 03 [TSPRLIKSHL][5.0 14=[1VSYYQFHRSLI] 5. 000_ I *16 ESKEHV 1 4.800 8HVQEFWEWR4I 4.00 122 IHNGDSKVIYM][ 4.000 26 IsmNEIcFDLvy[ L4.000 QGADPDEIGL][ 3.000 ]LIJ(SRHPYRFj300 I2737 [MGKCDLTFDF I300 I 8 VSQGADPDEI]J300JI___ i4]RRVGLWIKDIl 2.400 [10]NVLFLKYEDMII200J___ [~GTSLLQEVVYII200I___ 205 ITMVEQLA.RF1 2.000 []TPSTPGEFESI 200 f_ __I 143 [[YQFRRSLRTM[200 f_ [[MNIDEQLPVL[ 2.000 1f1___ 11-KSGTSLLQEV [i[STPGEFE-SKY 000I____ TT[MR1PKDL w[ 1._00 125j DSKVIYMARNj 150i [258 ITVSMNEKFDL[150)____ [214 1LGVSCDKAQL[1.0_____ 252 ILWKDIFTVSM] 1.200 204 ~[VTMVEQLARF[ 1.000If____ 77 [IGLMNIDEQLI 1 .o j 156 [GTFQEFCRRF 51 (VTYPKSGTSLI 1.000 [VSMNEKFDLV IL1.000 IVSDKQ I. 000 11 r TI[RFMNDKaYf 0.600 120 DLHNG ks:CVI[ 0.600]j____ 241)[EALPVGRGRV[_0.600_] 11 145 ]FHRSLRTMSY I_.00 104 ][SPRLIKSHLP J: 0600 TABLE XVIII 192P2G7 HLA B3501 START SUBSEQUENCE SEQ. IDI [53IYPKSGTSLLQI0.0____1 275 KCDLTFDFYLI I0.600 157 TFQEFCRRFMI 0.0 77 GKCDLTFDFY o:o] [IS KYFEFHGVRL ~'0,400 184 EHRMDSNVLFI [236 QCNAALVI 0.300 197_ EDMHRDLVTM 0.300 2 0.300 167 ~[NDKLGYGSWF[ 0.300 [3148 [SLRTMSYRGT j0.300 CRGKEEIA[0. 300 [250 VGLWKDIFTVJ[ 0.300 I 7.9 ILMNIDEQLPV1-, 0.30 EKNEEIAFPI 0.240____ RDVT4 0.200If_ 0.200If____ ITIAQLEATEHC:[020I J I]PVJEYPQPGL[020____ 56]SGTSLLQEVVW ITRfMuSNVIFLIf .0 170[LGYGSWFHTV F020] 13 I[ KYFEF 0.200[ j 130YMRNKDV 0.200 IZI JAFVPD 0.2 0011 91 IYPQPGLDIIK i .0 i1-21 LHNGDSKVIY___ 27~ ILPPFCRGKMEI 0.200____1 201 0.0 ____RDLVTMVEQL ]0.200[ I ~KDLVVSYYQF 0.200____ 86 ILPVEYPPGI 0.200 1165 IFtKGYGS 0.20 194 iLKYEDMHDLI 0.200____ [166 IIMNDKLGYGSW ]j0.150 183WEHF.NDSNVL 0. 150j[___ [64 JKFDLVYKQKM1 0.120 [6 AETPSTPGEF 0.100 231 I(HQLVDQCCNA( 0.1001 ~IFTVSMNEKPI010[ 1JEFHGVRLPPFI 0___100 Table XIX, continued: Frequently Occurring Motifs avrg.% Name Description Potential Function identity Nucleic acid-binding protein functions as transcription factor, nuclear location zf-C2H2 4% Zinc finger, C2H2 type robable Cytochrome b(N- membrane bound oxidase, generate cytochrome b N 68% terinal)/b6/petB uperoxide domains are one hundred amino acids long and include a conserved intradomain g 19% mmunoglobulin domain disulfide bond.
tandem repeats of about 40 residues, each containing a Trp-Asp motif. Function in 18% WD domain, G-beta repeat signal transduction and protein interaction may function in targeting signaling PDZ 23% PDZ domain molecules to sub-membranous sites LRR 28% Leucine Rich Repeat short sequence motifs involved in proteinprotein interactions conserved catalytic core common to both serine/threonine and tyrosine protein kinases containing an ATP binding site and pkinase 23% Protein kinase domain a catalytic site pleckstrin homology involved in intracellular signaling or as constituents of PH 16% PH domain the cytoskeleton 30-40 amino-acid long found in the xtracellular domain of membrane-bound EF 34% EGF-like domain proteins or in secreted proteins Reverse transcriptase RNA-dependent DNA rvt 49% polymerase) ytoplasmic protein, associates integral ank 25% Ank repeat membrane proteins to the cytoskeleton Table XIX, continued: Frequently Occurring Motifs Name ar.%Description Potential Function Identity
NADH-
Uiquinonelplastoquinone menmbrane associated. Involved in proton oxidored g1 32% rcomplex various chains trnslocation across the membrane calcium-binding domain, consists of a12 residue loop flanked on both sides by a 12 eand 24% EF hand residue alpha-helical domain Apartyl or acid proteases, centered on a 79% Retroviral aspartyl protease ctalytic aspartyl residue exiracellular structural proteins involved in formnation of connective tissue. The Collagen triple helix repeat sequence consists of the G-X-Y and the Collage 42% 20 copies) polypeptide chains forms a triple helix.
'Lcated in the extracellular ligand-binding egion of receptors and is about 200 amino cid residues long with two pairs of 2n30% ibronectin type mI domain ysteines involved in disulfide bonds seven hydrophobic transmembrane regions, with the N-terminus located extracellularly 7transmembrane receptor while the C-terminus is cytoplasmic.
7tm 1 19% rhodopsin family) Fignal through 0 proteins 00 TABLE XX: Motif-bearinp-Subseuuences of a Protein of Figure 2 74P3B3 var.J.
Tyrosinie sulfation site tn 91 105 fqseneaYppaeris Protein kinase C phosphorylation site 127 129 TdK 166 168 SsR 176 178 SgR Casein kinase IL pbosphorylation site 93-96 SenE 105 -108 *SaeE 119 -122 SeeD C1136 -139 SfeE 00 N-myristoylation site 2 -7 GQsICSK 23 -28 GIIkaST 115 -120 GGedSE 172 -177 GlirSG 74P3B3 var.2 Protein kinase C phosphorylation site 4 6 TkK 116 118 SfK Casein kinase H phosphorylation site 151 154 TpcD N-myristoylation site 106 Ill GAhqAV 204 209 GGqwGT 205 210 GQwgTV 208 213 GTvnNH 83P4E8 N-glycosylation site 580 583 NETF 740 743 NISA 757 760 NFSI 798 801 NKTS 1218 1221 NXSK 1224 1227 NYTG Tyrosine sulfatian site 692 706 eeeeeafYedlddil cAMP- and cGMP-dependent protein kinase phosphorylation site 614 617 RRnS 779 782 KI(1S Protein kinase C phosphorylation site 23 -25 TIR 62 64 T1R 139 141 TICK 166 168 SgR 221 223 SsK 225 227 SrK 337 339 SfK 429 431 TfK 478 480 SsK 00 C1512 514 SrnR 590 592 S).R Ct710 712 TnP.
806 808 SinK 895 897 SgK 937 939 TdK 952 -954 TqR 1010 -1012 TsK 1038 -1040 SyK 1268 -1270 SkK 1283 -1285 TsR __Casein kinase II phosphorylation site 23-26 TIrE 139 -142 TkkE r-1152 -155 SgeE 00 187 -190 TaeE 228 -231 Sv1E 238 -241 SaiD 249 -252 SgdE 337 -340 SfkD 512 -515 SmrD 653 -656 TqgD 659 662 SiqE 716 719 SelE 824 827 ShqE 834 837 SsnE 860 863 SgpD 890 893 TsvE 891 894 SveE 937 940 TdkE 971 974 SsqE 972 975 SqeE 1018 1021 SreD 1090 1093 SqaE 1114 1117 TinE 1157 1160 ScvD 1283 1286 TerD 1310 1313 TasE Tyrosine kinase phosphorylation site 480 487 Kvt.EafdY 833 841 RssnEfinrY N-myristoylation site 53 -58 GSpcSE 119 -124 GS1vNG 149 -154 GV1sGE 224 -229 GSrkSV 551 56 GS1BSS 736 -741 GIknNI 1139 1144 GT11TF 1189 1194 GIpkNM Amidation site 895 898 sGKK Bipartite nuclear targeting sequence 779 795 KKlsdilnekagkaktk ATP/GTP-binding site motif A (P-loop) 119 126 GslvnGKS 896 903 GkkekGKS 00 Leucine zipper pattern 130 151 LpiiltaLatkkenLaygkgvL 109PlD4 N-glycosylation site tn27 -30 NYTI 48 -51 NLSL 54 -57 NKSL 145 -148 NISI 303 -306 NATT 344 -347 NVTD 365 -368 NDTV 447 450 NQSA 553 556 NVTV rl628 631 NISF 00 679 682 NCSY 703 706 NDTG 732 735 NITL cI773 776 NESV 1018-- 1021 NTTF Tyrosine sulfatiou site 416 430 flletaaYldyestk 419 433 etaayldYeetkeya 592 606 itvtdpdYgdnsav't cAMP- and cGMP-dependent protein Inase phosphorylation site 787 790 RKsT 874 877 KKhS Protein kinase C phosphorylation site 29-31 TiR 310 -312 TiK 386 -388 TdK 428 -430 StK 656 -658 SaK 877 -879 SpK 927 -929 TfK Casein kinase II phosphorylation site 29 -32 TirE 147 -150 SipE 238 -241 SvtD 252 -255 TeiE 257 -260 SipE 274 -277 TdaD 310 -313 TikE 384 -387 TvtD 386 389 TdkD 400 403 TdhE 428 431 StkE 474 477 SipE 489 492 SarnD 559 562 SiiD 571 574 ThnE 593 596 TvtD 595 598 TdpD 608 611 SilD 734 737 TImE 887 890 TieE 891 894 TkaD 984 987 SssD 990 993 SvBD 999 1002 TtfE Tyrosine kinase phosphorylation site 530 536 Rek.Edk.Y N-myristoylation site 265 270 333 338 482 487 648 653 757 762 900 905 1013 1018 GTsvTQ GLmpAR GIqlTK GGrvSR GQpdSL GNrvTL GIqvSN Cadherin domain signature 237 -247 VsVtDtNDNhP 343 -353 VnVtDvNDNvP 454 -464 IkVkDeNDNaP 558 -568 VaIiDqNDNsP 661 -671 IniVvDvNDNkP Cadherins domain 140 249 PATVINISIPENSAINSKY. .TLPAAVDPDVGINGVQNYLIKSQ---. .NIFGLDVIEt pegdkmPQLIVQKELDRE EKDTYV?4KVKVEDGC. FPQRSSTAILQVSV'rDT
HP'.'
26 139 IerTIREE PENLIGDLLkdLSPNKSLTAQFKLVYITGV. .PLIRIEEDTg EIF1TTGARIDREklcagiprdBHCFyEVEVAILPDE.- -IFRLVKIRFLIEDI
APLF
35S KaTHIEVSIPENAPvGTSV. .TQLHATAfIGENAUHFSFSNLVSNIarRLFH1NATT.
GLITIKEPLDRE ETPNHKLLVLASDGG. -LMPARAMVTNVTDV
VPSI
362 466 NPVNDTVVLSENIPLN'rKI. .ALITVDKADHNGRVTCFTDHEI- PFRLRPVFS qPLLETAAYLDYE STKaYAIKLLAADAG .KPPMQSAMFIKVKCDE
APVP
467 570 TQSFVTVSIPENNSPGIQL. .TKVSAMDADSGPNAINYLLGPDAPP-.. -EFSLDCRT.
GMLIT.vVKKLRE KEDKYiLFTILAKDNG. VPPLTSIV7rVVSIIDQ SPVI7 571 673 THNENF'YVPENLPRHGTV. .GLITVTDPDYGDNSAVTLSXLDEND--.,.-DFTIDSQT.
GVIRPNISFDRE KQESYTFYVKAZDG.G .RVSRSSSAKVTINVVDV
KPVF
685 795----------VLPSTNPGTVV. QVIAVDNflTG?.nAEVCYSIVGGNTRD. LFAIDQST.
GN'ITLKEKCDVT DLGLaHRVLVKA IDLGqPDSLF$VVIVNLFVNES VTNatlinelvrkteAPVT lS1P1C7A N-glycosylation site 256 259 NSSR cAMP- and cGMP-dependent protein kinase phosphorylation site 170 173 RRtT 225 228 RKgS Protein kinase C phosphorylation site 169 171 SrR 175 177 SsK 244 246 ScR 257 259 SsR Casein kInase H phosphorylation site 153 156 TitE 163 166 StiD N-myristoylation site 10 GAagAT 00 28 33 GVsaTL 55 GGaaGH ct 57 62 GSavSA 103 108 GGdaGV 107 112 GVqiCL In136 141 GIcvSS 159 164 GNdhST 183 188 GQegSV 198 203 GLccAR 217 222 GQvcTK 151P4Ell N-glycosylation site 1 -4 NSSR cI55-58 NASE 00 168 -171 NASE 0284 -287 NASE 0 cAMP- and cGMP-dependent protein kinase phosphorylation site C1 131 134 RRtT 135 138 RKgS 246 249 RRsS Protein kixiase C phosphorylation site 2 -4 SsR -47 TpR 81 -83 TeR -97 TeR 133 135 TtR 134 136 TrK 144 146 SpI( 195 197 TeR 209 211 TeR 245 247 SrR 248 250 SsK 251 253 ScR 254 256 SsR 262 264 ScK 312 314 TeR 326 328 TeR 406 408 TeR 420 422 TeR Casein kinase HI phosphorylation site 3 6 SrpD 22 25. SitE 74 77 SitE 155 158 SitE 188 191 SitE 255 258 SrpD 272 275 SitE 305 308 SitE 362 365 TitE 366 369 StiD 399 402 SitE 497 -500 SgnD 503 -506 TgqE N-myristoylation site 456 461 GAagAT 462 467 GVsaTL 468 473 GGaaGH 480 485 GGdaGV 486 491 GVqiCL r 492 497 GIcvSS 498 -503 GNdILST 504 -509 GQegSV 510 -515 GLccAR 516 521 GQvcTK 154P2A8 N-glycosylation site 00 4-7 NLTL -28 NRSD 33-36 NTTL C172 -75 NKTS 251 -254 NQSI Protein kinase C phosphorylation site 236 238 SaP.
244 246 SsR 245 247 SrK 253 255 SiR 322 324 SrR 337 339 SiR 343 345 SvR Casein kinase 11 phosphorylation site 278 281 ShiD 333 336 TrsE Tyrosine kinase phosphorylation site 145 153 KpfgDsriY 345 352 Rrs.EvriY N-myristoylation site 224 229 GCyiAI G-protein coupled receptors family I signature 127 143 TSIvfLg1ISIDRY~kV G-protein coupled receptors family 1 59 314 LNGLAVWIFFMIRN- KTSFI FYLIJXADLIMTLTFPFRIVHDAGFGPWYFKFILCRY'r SVFAMTIFGIIRLVKF3StYIFKLVVVMLLN I -LTNGQPTEDNIIWCSiaac -SPLGVKWI{TAVTyVrNSCIFVAVLVILIGCYIAISRYI HKSSRF ISQSSRKRKtNQSIRVVAVFFTCFLPYMLCTRIPFTFShldrILDESA QKILYYCKEITLFLSACNVCLDPI IY 156P1D4 N-glycosylation site 76 79 NVTQ 93 -96 N'HTL Tyrosine sulfation site 41 55 awdtnreeYlfkamva Protein kinase C phosphorylation site 32 SiR 57 59 SmR 78 80 TqR Casein kinase 11 phosphorylation site 44 47 TneE 00 (KI177 180 SevD ;--4214 217 TedE ctN-myristoylation site -25 GAenAF 148 -153 GVifCI tn205 -210 GGhiNl 156P5C12 Protein kinase C phosphorylation site 12 -14 SdR 32 34 TfR 103 105 SeR 131 133 TiR (N2 221 223 SsK 00 Cascim kinase 11 phosphorylation site 131 134 TlrE N-myristoylation site 48 S 3 G~plAL 120 -125 GMvgAL 152 -157 GIakAL 159P2B5 cAM(P- and cGNIP-dependent protein kinase phosphorylation site 168 171 RRhT N-niyristoylation site 27 32 GNppTG 38 43* GSppGG 43 48 GGf1GS 64 69 GQdvSR 122 127 GAtlSA 149 154 GI~gGV 158 163 GSraCT 161P2B7A N-glycosylation site 17 20 NFTL 171 -174 NSSI Tyrosine sulfation site 28 42 rlfdethYpdafmre Protein kinase C phosphorylation site -47 SqR 168 -170 TsK Casein kinase II phosphorylation site 83 -86 SqfE 173 -176 SiaD Tyrosine kinase phosphorylation site 28 35 RlfdEth.Y N-myristoylation site.
49 54 GLseAR 76 81 GV~iGA 142 147 GLp).AT 'Homeobox' domain signature 44 67 LSqrLgLsearvovwFqNrrakcR 'Homeobox' domain 9 69 IKQRRSRTNFTLEQLNELERLFDETHYPDAFREELSQRLGLSEARVQVWFQNRACRK 00 c-Q S OAR domain 172 185 SSIADLRLKAKA 179P307 N-glycosylation site 257 260 NTTG 306 309 NIJTD Protein kinase C phosphorylation site 54 -56 SkR 104 -106 Sv.K 201 -203 TpK 230 -232 SeI( 264 -266 TaK cI267 -269 SgR 00 308 -310 TdR 0 Casein kinase HI phosphorylation site 11 -14 SyaE c-K135 38 SgsD 54 57 SkrD 174 77 SqlD 78 81 SwgD 104 107 SvkE 122 125 SgpE 156 159 SaiD 197 200 SfpE 210 213 SpnE 226 229 SpsE 228 231 SesE 230 233 SekE 240 243 SspD 245 248 SdxiE Tyrosine kInase phosphorylation site 121 12.9 KsgpEaalY N-myristoylation site 36 41 GSdfNC 42 47 GVMrGC 48 53 GLapSL 59 64 GSspSL 193 198 GGJCvSF 260 265 GNwiTA Amidation site 267 270 sGRK 'Homeobox' domain signature 301 324 ISktInLtdrqVKIWFqNrrmklK 'Homeobox' domain 266 326 KSGRKCPYT1K{QTLELEKEFLFNYLTLES1RRLIINLTDRQVKIWFQNRKK
M
I 84P3C lOB N-glycosylation site 13 NATL 64 67 NTSM 184 187 NLTL 202 205 NASF 362 365 NLTC 367 370 NQTQ 00 ~K1 Protein kcinese C phosphorylation site 33 -35 TcK Ct186 -188 TiK Casein kinase Il phosphorylation site 69 -72 ThpD 169 -172 ThgD 259 -262 TqnE 330 -333 SsfD N-myristoylation site 308 313 GLkpAS 316 321 GirtSG Bipartite nuclear targeting sequence 122 138 RRellrrtwgrerkvrg TonB-dependent receptor proteins signature I (N~1 -32 rkyrhrrpnatIilaigaftlll...................
184P3G10 N-glycosylation site 440 443 NLSS 678 681 NFTI Tyrosine sulfation site 336 350 gravqavYedmdark Protein kinase C phosphorylation. site 63 -65 SsR 105 -107 SgK 188 -190 StR 648 -650 ThK 663 -665 SrR Casein kinase H phosphorylation site 13 16 TkyD 46'- 49 SpgE 84 87 Tf1E 301 304 SeeE 373 376 Sg1E 422 425 MfE 540 543 SaeE 553 556 TdgD 570 573 SgaD 737 740 SaqE N-myristoylation site 59 -64 QLpfSS 104 -109 GSgkST 413 -418 GScICL 493 -498 GVi1SE 571 -576 GAdeAW 581 -586 GLnwAA 614 -619 GSeqNR 725 -730 GMadST 732 -737 QSksSS ATP/GTP-binding site motif A (P-loop) 101 108 GepgsGKS Prenyl group binding site (CAAX box) 745 748 CVLq 00 185P2C9 var I N-glycosylation site 834 -837 NKSW 1000 1003 NISD 1033 1036 NGSR 1129 1132 NRTS 1296 -1299 NQTV Tyrosine sulfation site 822 836 lspddlkYieefnks cAvP- and cGMP-dependent protein kinase phosphorylation site 155 158 KKeS CK1 Protein kinase C phosphorylation site 00 102 104 SaR 111 113 SgK 143 145 SpR 192 194 SgK 218 220 TlK 360 362 SIR 434 436 51K 496 498 SdR 519 521 SIR 571 573 SdK 639 641 SeK 680 682 SpR 704 706 SIR 735 737 SdR 813 815 SsK 937 939 TsR 963 965 SpR 1011 1013 SvR 1069 1071 TpK 1085 1087 SIR 1108 1110 SpK 1113 1115 SpK 1150 1152 TtR Casein kinase II phosphorylation site 32 35 SstE 53 56 SisE 58 SeiE 143 146 SprD 147 150- SdaE 158 161 SdgE 178 181 SdsE 235 238 TdtD 415 418 TlhE 420 423 TwsD 467 470 TegE 603 606 SsaE 739 742 SasE 750 753 SldD 790 -'793 SmsE 813 -816 SskE 814 817 SkeD 823 -826 SpdD 00 (KI890 893 TspE 943 946 SpgD ct 1150 1153 TtrE 1159 1162 TinD Tyrosie i3ase:phshorzation site 208 215 KareDse.Y 90 GAspGA 89 94 GAggGA 245 250 GLrgGA 275 280 GTinAK 383 388 G3GqtCF 482 487 GVqgGH 00 485 490 GGhqAD 685 690 GSf1CD 808 813 GLpsTS 1057 1062 GSgvTS 1184 1189 GLraGS 1203 1208 G~etGT 1221 1226 GSemCR Amidation site 153 156 aGKK Cell attachment sequence 354 356 RGD 185P2A9 var 2 N-glycosylation site 834 -837 NKSW 1000 -1003 NLSD 1033 -1036 NGSR Tyrosine sulfation site 822 836 lspddlkYieefnks cAMIP- and cGMP-dependent protein kinase phospharylation site 155 158 K~eS Protein kinase C phosphorylation site 102 104 SaR Il1 113 SgK 143 145 SpR 192 194 SgK 218 220 TIK 360 362 SIR 434 436 SiK 496 498 SdR 519 521 SIR 571 573 SdK 639 641 SeK 680 682 SpR 704 706 SIR 735 737 SdR 813 815 SsK 937 939 TsR 963 965 SpR 1011 1013 SVR 00 C11069 1071 TpK 1085 1087 SIR ct 1108 1110 SpK 213- 1115 SpK Casein kInase 11 phosphorylation site tn32 35 SstE 53 56 SisE 58 SejE 143 146 SprD 147 150 SdaE 158 161 SdgE 178 181 SdsE 235 238 TdtD 415 418 TIME 00420 423 TwsD 00 467 470 TegE 603 606 SsaE 739 742 SasE 750 753 S1dD 790 793 SmsE 813 816 SskE 814 817 SkeD 823 826 Spdl 890 893 TapE 943 946 SpgD Tyrosine kinase phosphrylation site 208 215 KareDse.Y N-myristoylation site 90 GAspGA 89 94 GAggGA 245 250 GLrgGA 275 280 GTinAK 383 388 GGqtCF 482 487 GVqgGH 485 490 GGhqAD 685 690 GSf1CD 808 813 GLpsTS- 1057 1062 GSgvTS Amidation site.* 153 1S6 aGK( 185P2A9 var 3 N-glycosylation site 844 -847 NKSW 1010 -1013 NISD 1043 -1046 NGSR 1139 -1142 NRTS Tyrosine sulfation site 832 846 lspddlkYieefnka cAM1P- and cGMP-dependent protein kinase phosphorylation site 155 158 KKeS Protein kinase C phosphorylation site 102 104 SaR Ill 113 SgK 143 145 SpR 00 192 194 SgK 218 220 TlK ct 360 362 SIR 434 436 S1K 496 498 SdR tn519 521 SIR 571 573 SdK 614 616 TVK 617 619 TlK 677 679 SeK.
714 716 SIR 745 747 SdR 823 825 947 949 TsR 973 975 SpR 00 1021 1023 SvR 1079 1081 TpK 1095 1097 SIR rl1118 1120 SpK 1123. 1125 SpK 1160.- 1162 TtR Casein kinase f1 phosphorylation site 32 35 SstE 53 56 SisE 58 SeiE 143 146 SprD 147 150 SdaE 158 161 SdgE 178 181 SdsE 235 238 TdtD 415 418 TihE 420 423 TwsD 467 470 TegE 641 644 SsaE 749 752 SasE 760 763 SldD 800 803 SmsE 823 826 SskE 824 827 SkeD 833 836 SpdD 900 903 TspE 953 956 SpgD 1160 1163 TtrE 1169 1172 TinD 1256 1259 TitE 1294 1297 SlgD Tyrosine kinase phosphorylation site 208 215 KareDse.Y N-myristoylation site 90 GAspGA 89 94 c3AggGA 245 250 GLrgGA 275 280 GTinAK 383 388 GGqtCF 482 487 GVqgGH 485 490 GhqAD 818 823 GLpsTS 00 CK11067 1072 GSgVTS ;--41194 1199 GLraGS ct 1213 1218 GQetGT 1231 1236 GSernCR Amnidation site 153 156 aGKK Cell attachmecnt sequence 354 356 RGD 185P3C2 N-glycosylation site 8 -11 NKSV 00 92 -95 NGSL Tyrosine sulfation site 328 342 qeqtdfaYdsdvtgc Protein kinase C phosphorylation site 12 SvR 46 48 TpR 67 SgR 86 88 SsK 94 96 SiR 159 161 TtR 168 170 SpR 178 180 SrK 291 293 SfK 430 432 TgR 465 467 SiR Casein kinase II phosphorylation site 94 -97 SirE 195 -198 SayD 356 -359 Sg 516 -519 SpgD 524 -527 ShID Tyrosine kinase phosphorylation site 477 485 KvagEryvY N-myristoylation site 16 21 GAgaAL 32 37 GSraCS 312 317 GGvnGH 449 454 GIqkNR Ets-domin signature 1.
410 418 LWQFLVaLL Ets-domain signature 2 454 -469 RpaMnYDkLSRSLRyY Ets-domain 408 -488 LQWFVLDPNHIWGZMFKIPEALGQUPMMLRL
YYYEKGIMQKVAGERYVYKEV
I 86P1H9 N-glycosylation site 147 150 NVSN.
188 191 NETS 392 395 NCST C1 Protein kinase C phosphorylation site 79 81 SaR ct 87 -89 TgK 107 109 TgI( 132 134 TIK 54 57Se 107 11- Tk Ill 11- Tg 132 -135 TlkD 209 -212 TelE 242 -245 TIpE 316 -319 TtrD 422 -425 TceE 00 N-myristoylation site 100 GLagGK *103 108 GAgaTG rl264 269 GTpfSY 320 325 GMweAF 332 337 GTgeNL Leucine zipper pattern 165 186 LgelerqLlrkvaeLedeks1L Pentain family signature 310 317 HiCvTWtT 187P3F2 cAMEP- and cGMP-dependent protein kinase phosphorylation site 408 411 KKrT 409 412 KtS 462 465 KRtnT Protein kinase C phosphorylation site 69-71 SvK 369 -371 SfK 416 -418 SVK Casein kinase HI phosphorylation site 312 315 SdeD 318 321 TsdD 339 342 TqaD 395 398 TsiD 411 414 TsiE 432 435* SaqE 473 476 TpdD N-myristoylation site 28 33 GAqgGG 35 GGggGG 31 36 GGggGG 32 37 GGggGG 31 38 GGggGG 34 39 GGggGS 40 GGggSG 36 41 GGqsGG 37 42 GGSgGG 38 43 GSggGG 45 GGggAG 00 C 41 46 GGgaGG 42 47 GGagGG ct 43 -48 GAggGG~ 50 GGggGG 46 51 GGggGM 55 GMqpGS 61 66 GAyrOD 85 GAnaAS 124 129 GSavGR4 185 190 GGwgAA 188 193 GAaaAA 241 246 GGggGG 242 247 GGggGA 243 248 GOggAG 244 249 GGgaGG 245 250 GGagGG 246 251 GAggGA 249 254 GGaqSL 258 263 GLvrGD 295 300 GGggGG 296 301 GGggGA 297 302 GGggAG 300 305 GAgpGL 344 349 GLa1GT 348 353 GT1yGN 352 357 GIvfSQ 392 397 GSptSI 419 424 GAleSH 482 487 GTvsA 494 499 GLqtSV Amidation site 403 406 qGRK Cell attachment sequence 64 -66 RGD 261- 263 RGD rHomeobox' domain signature 439 462 LAdaLqLekevVRVWFcNrrqkeK 'Homeoboxe domain 404 464 GRKRKKRTSIEVSVKGALESHFLKCPKPSAQEITNLADSLQLEKEVVRVWFCRRKER
M
'POU' domain signature 1 332 344 RRIkLGFtQaDVG 'POU' domain signature 2 356 369 SQTTICRFEaLqLS 192P2G7 Protein kinase C phosphorylation site 104 106 SpR 148 150 S1R 153 155 SyR Casein kinase II phosphorylation site 4 7 SeaE 11 i4 TpgE 157 160 TfqE 174 177 SwfE 00 c-i 205 208 TMVE 260 263 SmnE ct Tyrosine kinase phosphorylation site 164 172 RfrnnDklgY 00 00 00 TABLE XXI: Properties of Gene/Protein of Figure 2 70P3B3 var.lI A Bioinformatic URL on World Wide Web Outcome Program ORF ORF finder bp289-83 I (includes stop) Protein length I S0aa Transmembrane TM Pred ch.embnet.org/ no TM region HMMTop .enzim.hu/hmmtop/ no TM, intracellular Sosui .genome.ad.jp/SOSuV/ no TMV, soluble protein TMHMM .cbs.dtu.dk/servicew'TMHMM no TM Signal Peptide Signal P .cbs.dtu.dk/servicestSignatP/ no pI p1/MW tool cexpasy.ch/tools/ p 15 Molecular weight p1/MW tool .expasy.ch/tools/ 20.2kDa Localization PSORT psort.nibb.ac.jp/ 46% peroxisome, cytoplasmic PSORT 11 psort.nibb.ac.jp/ 39% nuclear, 22% mnitochondrial, 22% cytoplasm Motifs Pfam .sanger.ac.uk/Pfam/ retroviral GAG pl10 protein Prints .biochemi.ucl.ac.uk/ none Blocks .blocks. fhcrc:.orgl RNA polymerases K/14 to l~kD subunits 74P3B3 var. I B Bioinformatic IJRL on World Wide Web Outcome Program ORE ORE finder bp756-1442 (includes stop) Protein length 228aa Transmembrane TM Pred .ch.embnet.org/ ITM I 89-208aa, N terminus region intracellular H-MMTop .enzimrhu/hmuntop/ no TM, extracellular Sosui .genome.adjp/sOSuiI no TM, soluble protein TMHMM .cbs.dtu.dk/servicesqiTfHMM no TM Signal Peptide Signal P .cbs.dtu.dktserviccs/SignaIP/ no p1 p1/MW tool .expasy.ch/tools/ p17.0 Molecular weight p1/MW tool .expasy.ch/tools/ 25.8kDa Localization PSORT psort.nibb.acjp/ 74% peroxisome, 24% lysome (lumen) PSORT 1t psort.nibb.ac.jp/ 56.5%/cytoplasm, 26% nuclear Motifs Pfam .sanger.ac.uk/Pfam/ none Prints .biochem.ucl.ac.uk/ none Blocks .blocks. thcrc.org/ Omptin serine protease family 83P4B8 var.l Bioinformatic URL on World Wide Web Outcome Program ORE ORE finder bp25-401 I (includes stop) Protein length Transmenibrane region TM Pred .ch.embnet.orgi HMMTop .enzim.hu/hmuntop/ 1328aa 2 TM helices (452-474aa, 739.
763aa), N terminus intracelluar no TM, N terminus extracellular 83P4B8 var.lI Signal Peptide p 1 Molecular weight Localization Motifs Bioinformatic Program Sosui
TMHMM
Signal P p1/MW tool p1/MW tool
PSORT
PSORT 11 Pfani Prints Blocks UPI. on World Wide Web .gcnome.adjfrSOSuiI .Cbs.dtu.dklservicesflMHMM .cbs.dtu.dk/services/SignaIP/ .expasy.ch/tools/ .expasy.ch/tools psort.nibb.acjp/ psort.nibb.ac.jpl .sanger.ac.ukIPfam/ .biochemucl.ac.ukl .blocks.flicrc.orgl Outcome no TM, soluble protein no TM, N terminus extracellular no p16.3 149.3kDa 96% nuclear, 30% peroxisome 52%/ cytoplasmic, 22% nuclear 13% mitochondrial none none aspartate-semi aldehyde dehydro genase, dihydrodipicolinate reductase, hydroxymethylglutaryl-coenzyme A synthase, sigma 54 factor family, ribosomal prot-.
ei S516 109P I EX var. I Biojoformatic URL on World Wide Web Outcome Program ORE ORE finder bp846-391 I (includes stop) Protein length 102 laa Transmembrane TM Pred .ch.embnet.org/ 3TM helices (3-23aa, 756-776aa, region 816-834aa), N terminus intracellular HMMvTop .enzinr~huftumntop/ no TM, N terminus extracellular Sosui .genomie.adjp/SosuiI 3TM helices (2-24aa, 756-778aa, 810-832aa), N terminus extracellular TMHMM .cbs.dtu.dktservices&TMHMM ITM helix (813-835aa), N terminus extracellular Signal Peptide Signal P .cbs.dtu.dk/servides/SignalP/ yes p 1 p1/MW tool .expasy.ch/tooWs p14.8 Molecular weight p1/MW tool .expasy.ch/tools/ II 2.7kDa Localization PSORT psort.nibb.acjp/ 40% plasma membrane PSORT 11 psortnibb.ac.jp/ 67% endoplasrnic reticulum Motifs Pfan .sanger.ac.uk/?fam/ Cadherin domain Prints .biochem.ucJ.ac.uk/ Cadherin domain Blocks .blocks.Tfhcrc.oTgl Cadherin domain, ribosomal protein L I E, ribulose biphosphate carboxylase (large chain), omnithine decarboxylase antizyme protein phosphatase 2C subfamily 151IP IC7A var.lI Bioinformatic URL on World Wide Web Outcome Program OR.F ORF finder bo 103-903 (includes ston) Protein length Transmembrane 266aa 2TM helices (8-29, 52-7 1) TM Pred TM Pred .ch.embnetorgl region Bioinformatic Program UKL on World Wide Web HMMTop .enzirmhu/hnntop/ Signal Peptidc P1 Molecular weight Localization Motifs Sosui
TMHMM
Signal P p11MW tool pt/MW tool
PSORT
PSORT 11 Pfam Prints Blocks .genome.ad.jp/SOSui/ .cbs.dtu.dklserviceslMMM .cbs.dtu.dk/services/SignaIP/ .expasy.chltools/ .expasychltools/ psort-nibb.acjp/ psort.nibb.acjp/ .sanger.ac.uk/Pfam/ .biochermucl.ac.ukl .blocks.fhcrc.orgi Outcome N terminus intracellular I TM helix (Il2-36aa), N terminus intracellular no TM, soluble protein no TM yes p18.8 2S.7kDa 5 1% outside 52% nuclear, 17% cytoplasmic, 17% cytoskeletal none none fungal traniscriptional regulatory protein N terminus, transketolase granulin, chitin binding domain, WAP-type four disulphide core, serine protease inhibitor (squash family, adenosine and AMP deanunase 151PNE I I var. I Bioinformatic URL on World Wide Web Outcome Program ORF ORP finder bp3-374 (includes stop) Protein length 1 23aa Transmembrane TM Pred .ch.embnet.org/ I TM helix (6-24aa) region N terminus intracellular HMMTop .enzirrLhulhmmtop/ ITM helix (6-26aa), N termiinus extracellular Sosui .genome.ad.jp/SOSuil I TM helix 3-24aa), TMHMM .cbs.dtu.dk/servicestqMHMM I TM helix (7-26aa) N terminus intracellular Signal Peptide Signal P .cbs.dtu.dktservices/SignaIP/ yes p 1 p1/MW tool .expasy.ch/tools/ p1 6 8 Molecular weight p1/MV. tool .expasy.ch/tools/ 13.3kDa Localization PSORT psortnibb.ac.jp/ 82% outside PSORT If psort.nibb.acjp/ 56% extracellular including cell wall, 22% nuclear Motifs Pfam .sanger.ac.uk/Pfam/ galanin Prints .biocherrucLac.uk/ galanin signature, ILA8 signature Blocks .blocks. fhcrc.org/ galanin famnily, methyl malonyl- CoA mutase 154P2A8 var.lI Bioinformatic LJRL on World Wide Web Outcome Program ORF ORF finder bp250-1326 (includes stop) Protein length 358aa 154P2A8 var. I Transmembrane region Bioinformatic Program TM Prod URL on World Wide Web .ch.embnetorgl HMMTop .enzim.hu/hmmtop/ Sosui .genome.ad.jp/SOSui/ TMHMM cbs.dtu.dk/service'TMHMM Signal Peptide
PI
Molecular weight Localization Signal P p1/MW tool p1/MW tool
PSORT
.cbs.dtu.dk/services/SignalP/ .expasy.chltools/ .expasy.ch/tools/ psort.nibb.acjp/ Outcome 7TM helices (47-68, 79-99, 119- 137,160-180, 206-229, 253-271, 298-31 7aa) N terminus extracellular 7TM helices (43-67, 74-92, 119- 137, 160-179,206-230, 253-271, 298-31 7aa) N terminus extracellular 6TM helices (43-65, 76-98, [27- 149, 157-179, 210-232, 296- 31 8aa) 7TM helices (47-69, 79-98, 118- 137, 157-179, 207-229, 256-278, 298-31 7aa) N terminus extracellular no p19.55 41 .4kDa 60% plasma membrane, *Golgi, 30%/ endoplasmic reticulum peroxisome 56.5% plasma membrane, 13% vacuolar, 13% endoplasmic reticulum 7TM receptor (rhodopsin family) P2Y purinoceptor signature, rhodopsin like GPCR superfamily signature rhodopsin like GPCR superfamily, proton/sugar symporter (Lacy famnily), amino acid permcase, xanthine/uracil permease family PSORT 11 psort.nibb.ac.jp/ Motifs Pfhni Prints Blocks .sanger.ac.ukfPfani' .biochem~ucl.ac.uk/ .blocks. fhcrc.org/ 1 56P I D4 var. I Bioinforrnatic URL on World Wide Web Outcome Program ORF ORE finder Protein length Transtuembrane region TM Pred .Ch.embnet.org/ HMMTop .enzim.hu/hmmtop/ Sosui Sgenome.ad.jp/sosui/ TMHMM .cbs.dtu.dk/servicesrrMHMM Signal P .Cbs.dtu.dk/services/SignalP/ p1/MW tool .expasy.ch/tools/ bp24-692 (includes stop) 222aa 2TM helices 17, 142-167aa) N terminus extracellular ITM helix (140-164aa), N terminus extracellular 2TM (1-23, 142-164aa) I TM helix (I 42-164aa) N terminus extracellular yes p's.
4 Signal Peptide pi 00 00 156P ID4 var.lI MoleculJar weight Localization Motifs Bioinformatic Program p1/MW too)
PSORT
PSORT II Pfam Prints Blocks URL on World Wide Web .expasy.ch/tools/ psort.nibb-acjpl psort.nibb~acjp/ .sanger.ac.uk/Pfam/ .biochem.ucl.ac.uk/ .blocks. fhcrc.org/ Outcome ZS.2kDa 46% plasma membrane 44% endoplasmic reticulum, 33% Golgi, 22% plasma membrane cytochrome B6-F complex subbacterial chemnotaxis sensory transducer signature nucleoside diphosphate kinase, integrins alpha chain, large conductance meclianosensitive channel mscL 156P5C12 var.I Bioinformatic URL on World Wide Web Outcome Program ORE ORE finder bp 178-861 (includes stop) Protein length 227aa Transmembrane TM Pred .ch.emnbnct.orgl 3TM helices (60-78, 173-193, region 196-2l6aa) N terminus extracellular HMMTop .enzirnhuhmmzop/ ITM helix (44-68aa), N terminus intracellular Sosui .genome.ad.jp/SOSui/ I TM helix (57-78aa) TMHMM .cbs.dtu.dk/servicesvTMHMM ITM helix (43-65aa) N terminus intracellular Signal Peptide Signal P .cbs.dtu.dklservices/SignaIP/ yes p1 pllMW tool .expasy.ch/tools/ p19.1 Molecular weight pL/MW tool .expasy.ch/tools/ 25.6kDa Localization PSORT psort.nibb.ac.jp/ 60% plasma membrane, Golgi, 30% endoplasmic reticulum (membrane) PSORT 11 psort'nibb.ac.jp/ 78% endoplasmic reticulum Motifs. Pfan .sanger.ac.uk/Pfam/ acetyltransferase (GNAT) family Prints .biochern.ucLac.uk/ none Blocks .blocks. fhcrc.org/ glycosylhydrolases family 16, elongation factor P (EF-P) I 59P2BS var. I Bioinformatic URL on World Wide Web Outcome Program ORE ORE finder bn1517-2191 (includes stn Protein length Transmembrane region TM Pred .ch.embnet.org/ 224aa 2TM helices (90-109, 140-159aa) N terminus extracellular no TM, N terminus intracellular soluble protein 1 TM helix (140-lS9aa), N terminus extracellular HMMTop Sosui ThIHMM .enzimbhu/hmmtop/ .genome.ad.jp/SOSuiI .cbs.dtu.dkservices/TMHMM 159P2B5 var.lI Signal Peptide p1 Molecular weight Localization Bioinformatic Program Signal P p1/MW tool p1/MW tool
PSORT
UR.L on World Wide Web .cbs.dtu.dk/services/SignalP/ .expasy.ch/tools/ .expasy.ch/tools/ psort.nibb.ac.jpt Outcome no pll.6 23.7kDa 70% plasma membrane, 5 peroxisome, 20% endoplasn*i reticulum 70% nuclear, 13% plasma mnembrane none none prion protein, ribosomal protein LIOE, amninotranisferase class-V PSORT 11 psort.nibb.ac.jp/ Motifs Pfbni Prints Blocks .sanger.ac.uk/Ptbn,/ .biochem.ucl.ac.uk/ .blocks. Thcrc.org/ 16 1P2137 var. I Bioinformatic UIRL on World Wide Web Outcome Program ORF OR? finder bp198-770 (includes stop) Protein length I Transmenibrane T7M Pred .ch.embnet.org/ ITM helix (145-165aa) region N terminus intracellular HMMTop .enzim.hu/hnuntop/ ITM helix (141-165aa), N termninus extracellular Sosui .genomie.adjp/SOSui/ no TM, soluble protein TMHMM .cbs.dtu.dk/services/TMHMM no TIM Signal Peptide Signal P .cbs.dtu.dk/services/SignaIP/ no p1 p1/MW tool .expasy.ch/tooWs p19.55 Molecular weight p1/MW tool .expasy.ch/tools/ 2lkDa Localization PSORT psort~nibb.ac.jpt 65% cytoplasmic, 26% lyscsome (lumen) PSORT 11 psortnibb.acjp/ 43.5% nuclear, 30% cytoplasmic Motifs Pfam .sanger.ac.uk/PfarrV Homeobox domain Prints .biochenffcl.ac.uk/ lambda-repressor HTH- signature, POU domain signature Blocks .blocks.fhcre.org/ Homeobox antennapedia-type protein, Homeobox domain, POU domain, involucrin, ribosomal protein Ll3e 1 79P3 G7 var. I Bioinformatic URL on World Wide Web Outcome Program OE ORF finder bp72-1 100O (includes stop) Protein length Transmembrane region TIM Pred .Ch.embnet.org/ HMMTop Sosui
TMHMIM
Signal P p1/MW tool .enzim.hu/hmmtop/ .Senome.ad.jp/SOSuiI .cbs.dtu.dk/servicesITMHMM .Cbs.dtu.dk/services/SignalP/ .expasy.ch/tooWs 342aa noTIM no TIM, N terminus intracellular no TM, soluble protein no TM no p18.3 Signal Peptide
PI
179P3G7 var.lI .Molecular weight Localization Motifs Bioinformatic Program p1/MW tool
PSORT
PSORT I! Pfamn Prints Blocks URL on World Wide Web .expasy.ch/tools/ psort.nibb.ac.jp/ psort.nibb.ac.jp/ -sangerac.uk/Pfani/ .biochem.ucl.ac~ukl .blocks. fhcrc.org/ Outicome 38kDa 30% nuclear 83% nuclear, 17% rnitochondrial Homeobox domain H-omeobox antennapedia-type protein, Homeobox domain, lambda-repressor HTh signature, POU domain signature Homeobox antennapedia-type protein, Homeolbox domain, POU domain, adenylate cyclases class I 184P3CI0 var. I Bioinforrnatic URL on World Wide Web Outcome Program ORF ORF finder bp 1]18-1236 (includes stop) Protein length 372aa Transmembrane TM Pred ch.embnet.org/ 2TM helices (13-29, 264-282aa) region N terminus intracellular HMMTop .enzim.huftamtop/ ITM helix (I 1-29aa), N terminus intracellular Sosui .genome.ad.jp/SOSui/ I TM helix (I12.32aa) TMHMM .cbs.dtu.dk/servicesfTMHMM ITM helix (13-3Oaa) Signal Peptide Signal P .cbs.dtu.dk/services/SignaIP/ yes p1 p1/MW tool .expasy.ch/tools/ p18.9 Molecular weight p/M W tool .expasy.ch/tools/ 42.5kBa Localization PSORT psortnibb.acjp/ 86.5% lysosynie (lumen), 82% outside, 18% nuclear PSORT 11 psort.nibb.acjp/ 67% extracellular including cell wall Motifs Pfam .sanger.ac.Alf~airit galactosyltransferase Prints .biochern.ucl.ac.uk/ none Blocks .blocks.fhcrc.org/ CTFINF-l family, tyrosinase I 84P3G 10 var. I Bioinformatic URL on World Wide Web Outcome Program ORF ORE finder bpl4-2260 (includes stool Protein length Transmembrane region TM Pred HMMTop Sosui
TMHMM
Signal P p1/MW tool p1/MW tool
PSORT
.ch-embnetorg/ .enzim.hu/hmmtop/ .genome.ad.jp/SOSui/ .Cbs.dtu~dkdservices/TMHMM .cbs.dtu.dlc/services/SignalP/ .expasy.ch/tools/ .expasy.ch/tools/ psort.nibb.acjp/ 748aa I TM helix (35 l.371aa) N termdius; intracellular no TM, N terminus intracellular soluble protein no TM, N term-inus extracellular no p 15 0 82.8kDa 65% plasma membrane, Signal Peptide
PI
Molecular weight Localization 184P3G 10 var.1 Bioinfonnatic Program URL on World Wide Web PSORT Il psort.nibb.ac.jp/ Motifs 00 Pfam Prints Blocks .sanger.ac.uk/Pfamn/ .biochem.ucl.ac.ukf .1blocks. fficrc.org/ Outcome cytoplasmic, 22% nuclear, 22% plasma membrane, 17% mitochondrial, 13% vesicles of secretory system luminal portion of cytochrome b559, alpha (gene psbE) subunit none bacterial type 11 secretion system protein E, ribulose biphosphate carboxylase (large chain), uncharacterized protein fam-ily LJPF 0038, ATP-dependent helicase (DEAH-box subfamily), adenyllate kinase, Tub family, GTPbinding elongation factor, AAA protein, legumne lectin alpha domain, thymidylate kinase, Sigma-54 transcription factor family, RNA 3'-terminal phosphatase cyclase I 85P2C9 var. I Bioinformatic URL on World Wide Web Outcome Program.
ORF ORF finder bp 140-4063 (includes stop) Protein length 1307aa Transmembrane TM Pred .ch.embnet.orgl no TM region HMMTop .enzim.hullimmitop/ no TM, N terminus intracellular Sosui .genome.ad.jp/SOSuit soluble protein TMHMM .cbs.dtu.dk/servicesfrMHMM no TM, N terminus extracellular Signal Peptide Signal P .cbs.dtu.dktservices/Signa]P/ no p1 p1/MW tool .expasy.ch/tooWs p15.7 Molecular weight p1/MW tool .expasy.ch/toolst 145.4kDa Localization PSORT psort.nibb.acjp/ 45% cytoplasmic, 30% peroxisome PSORT 11 psort.nibb.ac.jp/ 70% nuclear, 22% cytoplasmic Motifs Pfam .sanger.ac.uk/Pfamn/ GLTT repeat (6 copies) Prints .biochem.ucl.ac.ukI cadherin signature Blocks .blocks. fhcrc.orgl transketolase, glypican, sigma 54 factor family, receptor tyrosine kinase class V, DNA topoisomerase UI family, 3'S-cyclic nucleotide phosphodiesterase I 85P2C9 var.2 Bloinformatic URL on World Wide Web Outcome Program ORF ORE finder bp 140-3568 (includes-stop) Protein length Transmembrane region I t42aa no TM TM Pred TM Pred .ch.embnetorgl I 85P2C9 var.2 Signal Peptide p1 Molecular weight Localization Motifs Bioinformnatic Program HMMTop Sosui
TMHMM
Signal P plfMW tool p11MW tool
PSORT
PSORT 11 Pfani Prints Blocks URL on World Wide Web .enzim.hu/hmimtop/ .genome.ad.jp/SOSui/ .cbs.dtu.dklservicesrTMHMM .cbs.dtu.dklservices/SignalP/ .expasy.ch/tooWs .expasy.ch/tool6/ psort.nibb.acjp/ psort.nibb.acjp/ .sanger.ac.ukfPfami/ .biochem. ucl.ac.uk/ .blocks.flicrc.org/ Outcome no TM, N terminus intracellular soluble protein no TM, N terminus extracellular no plS. 7 I27.9kDa 45% cytoplasmic, 30% peroxisoffe 70% nuclear, 22% cytoplasmidc OU'T repeat (6 copies) cadherin signature trarisketolase, glypican, sigma 54 factor family, DNA topoisomnerase 11 family, 3'5*-cyclic nucleofide phosphodiesterasc I 85P2C9 var.3 Bioinforrnatic URL on World Wide Web Outcome Programr ORF ORE finder bp 140-4080 (includes stop) Protein length 1313aa Transmembrane TM Pred .ch.embnet.org/ no TM region HMMTop .enzim.huthmmtopi no TM, N termtinus intracellular Sosui .genome.ad.jp/SOSuiI soluble protein TMHMM .Cbs.dtu.dk/servicesnTMHMM no TM, N termninus extracellular Signal Peptide Signal P .cbs.dtu.dk/scrviccs/SignaIP/ no P1 p1/MW tool .expasy.ch/tools/ p15.6 Molecular weight p1/MW tool .expasy.ch/tools/ 145 .9kDa Localization PSORT psort.nibb.ac.jp/ 45% cytoplasmic, 30% peroxisome PSORT HI psort.nibb.acjpl 70% nuclear, 22% cytoplasmic Motifs Pfam .sanger.ac.uk/Pfaml GLTI' repeat (6 copies) Prints .biochem.uci.ac.uk/ cadherin signature Blocks .blocks. flcrc. orgl transketolase, glypican, sigma 54 factor famnily, receptor tyrosine kinase class V, DNA topoisomerase 11 family, 3'5'-cyclic nucleotide phosphodiesterase I 85P3C2 var. I Bioinformnatic URL on World Wide Web Outcome Program ORF ORF finder bp3-1658 (includes stop) Protein length Transmembrane region Signal Peptide TM Pred .ch-embnet.org/ HMMTop Sosui
TMHMM
Signal P .enzimrhu/hmrntop/ .genome.adjp/SOSui/ .Cbs.dtu.dk/servicesrrMH-MM .cbs.dtu.dk/services/SignaIP/ 551 aa no TM no TM, N terminus intracellular soluble protein no TM, N terminus extracellular no 185P3C2 var.l p1 Molecular weight Localization Bioinformatic Program p11MW tool p11MW tool
PSORT
PSORT If P fain Prints Blocks URL on World Wide Web .expasy.ch/tools .expasy.chltools/ psort.nibb-ac.jpl psort.nibb.acjp/ .sanger.ac.uk/PfanV .biochem.ucl.ac.uk/ .blocksfhcrc.orgi Motifs Outcome p16.0 60.6kDa 48%peroxisome, 48% cytoplasmic, 18% lysosome(lumen) 52% mitochondrial, 39% nuclear Ets-domain Ets-domain signature Ets-domain, uncharacterized protein family bacterial regulatory proteins MerR family, cereal trypsin/ alpha amylase inhibitors family, purine and other phosphorylases family 2 1 86P I H9 var. I Bioinformatic URL on World Wide Web Outcome Program ORF ORF finder bp170-1462 (includes stop) Protein length 430aa Transmembrane TM Pred .ch.embnct.org/ 2TM helices (1-17, 246-265aa) region N terminus extracellular HMMTop .enzin~hulbhimtop/ ITM helix (246-265aa) N terminus intracellular Sosui .genome.ad.jp1SOSuV ITM helix (I -l6aa) TMHMM .cbs.dtu.dk/servicesw7MHMM no TM, N terminus extracellular Signal Peptide Signal P .cbs.dtu.dk/services/SignalPI no p1 p1/MW tool .expasy.chttools/ p15.4 Molecular weight p1/MW tool .expasy.ch/tooist 46.8kDa Localization PSORT psort.nibb.ac.jp/ 68% outside, 48% lysosome (lumen) PSORT If psort.nibb.ac.jp/ 56.5%cytoplasmic, 22% nuclear 1~ 17% mitochondnial Motifs Pfam .sanger.ac.uk/Pfan-j/ pentaxin family Prints .biochern.ucl.ac.uk/ pentaxin signature Blocks .blocks. thcrc.orgf pentaxin family, interleukin-4 and- 13, amyloidogenic glycoprotein (amyloid A4) 1 87P3F2 var. I Bioinfominatic URL on World Wide Web Outcome Program ORF ORF finder bp,6O-1562 (includes stn) Protein length Transmembrane region TM Pred .Ch.embnetorg/ 500aa 4TM helices (26.51, 100-1 22, 185-204, 336-355aa) N terius extracellular ITM helix (33 6-355aa) N terminus intracellular HMMTop .enzim.hu/hmmntop/ I 87P3F2 var. I Bioinformatic URL on World Wide Web Outcome Program Signal Peptide p1 Molecular weight Localization Motifs bosul
TMHMM
Signal P p1/MW tool p1/MW tool
PSORT
PSORT 11 Pfam Prints Blocks .genome.ad-jp/SOSui/ .cbs.dtu.dk/servicesrTMHMM .cbs.dtu.dk/services/SignalP/ .expasy.ch/tooWs .expasy.ch/toolst psort.nibb.ac.jp/ psort.nibb.acjp/ .sanger.ac.uk/Pfam/ .biochem. ucl.ac.ukj .blocks.thcrc.org/ soluble protein no TM, N terminus extracellular no p17.5 50.4 kDa 70% nuclear, 54% peroxisome, 33% lysosome(lumen) 100% nuclear POE) domain N terminal to homeobox domain, homeobox domain POE) domain POU domain, homeobox domain, homecobox antennapedia-type protein, synapsin, prion protein, glycosyl hydrolases; fam-ily glycoprotease M22 metalloprotease family, histone H4, ribulose biphosphate carbaxylase large chain, galactokinase, 'paired box' domain, hemolysin type calcium binding region, complement ClI q protein, iron containing alcohol dehydrogenases, GHMP kinases putative ATP binding domain, phosphoglucose isomerase, pyridoxaldependent decarboxylase family, acyl-coA dehydrogenase, ribosomal protein 00 0
O
SMISSING AT THE TIME OF PUBLICATION 00 o 00 I 92P2G7 var. I Bioinforniatjc URL on World Wide Web Outcome Program ORF ORF finder bp 84-93 8 (includes ston Protein length Transmembrane region Signal Peptide p1 Molecular weight Localization Motifs 284aa no TM TM Pred HMMTop Sosui
TMHMM
Signal P p1/MW tool p1/MW tool
PSORT
PSORT 11 Pfam Prints Blocks .ch-embnetorgf .enzim.hu/hmnitop/ .genome.ad.jp/SOSui/ .cbs.dtu.dkservjcesr'MHMM .cbs.dtu.dki'services/SignaIP/ .expasy.chltoolst .expasy.chltools/ psort.nibb.ac.jp/ psort~nibb.acjpl .sanger.ac. ukfPfam/ .biochemn.ucl.ac.uk/ .blocks. fhcrc.org/ no TM, IN terminus extracellular soluble protein no TM, N terminus extracellular no p 15 4 33.lkDa 66% peroxisome, 10% mitochondrial space, 10% lysosorne(lumen) 65% cytoplasmnic, 17% nuclear sulfotransferase protein none Tub fam-ily, ribulose biphosphate carboxylase~large chain), serum albumidn family, GPCR family 3 TABLE XXII: Chromosomal localization of Genes of Figure 2.
00 00 074P3B33 8 p 2 1.3-p22 083P4B8 15q25.1 109PID4 Xq21.3 15IP1C7A 10qII.2 151P4EII l1ql3.3-ql3.5 154P2A8 3q24 156P1D4 Xp22.3 156P5C12 2 pl 3 .1-pl 2 159P2B5 7p 15.1 161P2B7a 3q25-q26 179P3G7 12q12-ql3 184P3C10B 1 9 p13.1 184P3GI0 2p12 185P2C9 18pll.
22 185P3C2 l7q21 186P1H9 7q2l.3-q22.1 187P3F2 3I.
192P2G7 22q13.27q13.31 http:/www.bnmi-heidelberg.comsyfpeithij 00 TABLE XXIII 74P3B3 Clone B (Frame 1) HLA-DRBl*01J. 15 mers ctPos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I IK LL L KRA GI K AS TE 27 134 L IS F EE H VGP SA A PK 26 32 1ITL FPT V EQ YC P WFP 42 C P WF P E HGTM DF KDW NW AIV KA A SE PF Q SE 101 AER I SA E E GD A AEG 138 EE HV G PS A A PKIE KP 00155 PR CL KQ RR A L R SSRL 00158 L KQ R R XLRSS R LL IG 24 28 T E NLIIT LF PT V E QYC 23 K A STE NL ITL FP T VE 22 F PT V EQY CP WF PEtHG 22 TMD F KD W EQV GI A LK 22 52 DF KD W EQ VGI AL K QV 22 135 1IS F EE HV GP SAA PK1 21 132 DE LIS F EE HV G PS AA 12 LHF I KL LL KR A GI KA 19 13 H FIK LL L KRA GI KA S 19 16 KL L LKR AG I K AS TEN 19 41 YC PW FP E HGT MD F KD 19 62 AL KQ VCK E GK FI P LT 19 63 L KQ VCKE G K FI PL TA 19 LT A WSN WA IV KA A SE 19 NE AY PP AE RI SA E EG 19 152 P Y MPRCL K QR RA L RS 19 164 L RS SRL LI GI IR S GR 19 8 HS A YLHF I KL L L KRA *18 88 SE P FQS EN E A YPPAE 18 144 SA AP K IE K PYM P RCL 18 6 SK HS AYL HFI KL L LK 17 14 F I KLL L KRA GI-K A ST 17 2.1 RA G IKA ST E NLI T LF 17 48 HG TM DF K DW E QVG IA 17 53 F KD WEQ VG I ALK Q VC 17 GIA L KQ VC KEG K FI P 17 68 KE G K FI PLTA WS N WA 17 72 FI PL TA W SNW A I VKA 17 89 E PF QS E NE AY PP AER 17 102 ERI S AE E GGD A AE GG 17 108 EG GDA A EG GE D SE ED 17 123 F EE NTD K PG DEL I SF 17 143 PSA A PK IE KP YM P RC 17 KRA G I KAS T ENL I TL 16 29 E NLI T LFPT V EQ Y CP 16 38 V EQ YCP WFP E HG T MD 16 DW EQ V GIA L KQ V CKE 16 66 V CK E GKF IP LT A WSN 16 79 S NW AI VK A AS EP FQS 16 93 SE NEA Y P PAE RI S AE 16 147 PK IEK PY M PR CL K QR 16 159 KQ RR AL RS SR LL IG 1 16 TABLE XXIII 74P3B3 Clone B (Frame 1) HLA-DRB1*0101 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score 16 16 14 14 14 14 14 14 Seq. ID Num.
TABLE XXIV 74P3B3, clone B (Frame 1) HLA-DRB1*0301 (DR17) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 112 12 21 72 126 131 8 31 42 46 56 81 116 151 49 63 61 87 88 153 32 142 29 9 14 16 161 24 58 132 138 155
GE
K L
KA
TA
VK
P G
IS
L H F P
PE
T.M
G I
KA
E E
PR
F K K D
KQ
C K
Q
FQ
Q S
CL
PT
AP
TL
H F L L L K
KR
RS
TE
A-L
PL
SF
G P
KQ
FEEN
GI KA
ITLF
IVKA
FQSE
FE EH
GPSA
LKRA
CPWF
FKDW
EQVG
CKEG
QSEN
TD KP
RALR
GIAL
IALK
KF I P
PLTA
F I PL
YPPA
PPAE
LRSS
PWFP
YMPR
QYCP
KRAG
KAST
ASTE
STEN
GI IR
FPTV
EGKF
WAIV
PSAA
I E KP S S RL score 26 19 19 19 19 19 18 18 18 18 18 18 18 18 17 17 17 17 16 16 16 16 14 13 13 13 13 13 12 12 12 12 12 12 Seq. ID Num.
TABLE XXIV 74P3B3, clone B (Frame HLA-DRB1*0301 (DRl7) 15 mers 1 234 5 678 9 012 34 5 S SR L L1GIIR SG RL Q TABLE XXV 74P3B3, clone B (frame 1) HLA-DRB1*0401 (DR4Dw4) 15 mers 12 34 56 78 9 012 34 5 score 12 Seq. ID Num.
29 8 11 32 so 53 69 9 16 72 81 101 132 13 57 71 118 152 158 41 42 78 88 134 12 21 28 56 63 131 138
N
E
H
y
I
T
F
E
S
K
a
F
N
w
A
D
H
K
E
K
D
P
L
y
C
L
w
S
L
L2
R.
L.
E p P T L L H I K P T K D E Q
I'P
H F K R K Q T A V K K A S A S F L L I1K I A L T D F R C R A F P P E S N A I Q S E El K L K A I T~ C K]I G P E E G yc p K R A G IK W F P A LK Q vC W A I R AG TE N F Ip V K A Q SE S EN AE G S A A K A S I T L E GK I V K P GD L RS L I G F K D KD W A S E P F Q P AE AP K I K A T LF QY C K EG L T A P SA E K P score 28 26 22 22 22 22 22 22 18 18 18 18 18 18 18 16 16 16 16 16 16 14 14 14 14 14 14 14 Seq. ID Num.
TABLE XXVI 74P3B3, clone B (frame 1) HLA-DRBI*1101 15 mers 12 34 5 678 9 012 34 5 score Seq. ID Num.
TABLE XXVI 74P3B3,'clone B 00 (frame 1) HLA-DRB1*1101 15 O mers Pome35 78 0 23 5 scr Seq. ID PO5 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Ne. I ~Num.
8 HSAYLHFI KLLLKRA 19 Ct 134 L I S F E E H V G P S A A P K 18 53 F K D W E Q V G I A L K Q V C 17 L T A W S N W A I V K A A S E 17 38 V E Q Y C P W F P E H G T M D 16 69 E G K F I P L T A W S N W A I 16 78 W S N W A I V K A A S E P F Q 16 88 S E P F Q S E N E A Y P P A E 16 120 E E D F E E N T D K P G D E L 16 151 K P Y M P R C L K Q R R A L R 16 56 W E Q V G I A L K Q V C K E G 148 K I E K P Y M P R C L K Q R R 152 P Y M P R C L K Q R R A L R S 13 H F'I K L L L K R A G I K A S 14 00 143 P S A A P K I E K P Y M P R C 14 155 P R C L K Q R R A L R S S R L 14 165 R S S R L L I G I I R S G R L 14 9 SAYLHF I KLLLKRAG 13 I K L L L K R A G I K A S T E 13 28 T E N L I T L F P T V E Q Y C 13 131 G D E L I S F E E H V G P S A 13 161 R R A L R S S R L L I G I I R 13 166 S S R L L I G I I R S G RLQ 13 http://www.bi-heidelberg.com/syfpeithi TABLE XXIII 74P3B3, clone B (frame 3) HLA-DRB1*0101 15 mers Seq. ID Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Se.
Num.
42 V S R M N E L W P Q E P Q A H 31 P L Q F I I R Q A R L A G D L 114 P F S F K L L K D L K A A V G 29 152 P C D W E I L T K V T L S P S 29 194 A I T F E Q L L G I G G Q W G 28 134 S P F I R S L L Q S V A Q N K 26 213 H Q D F E M M P L N K F A I A 26 117 F K L L K D L K A A V G Q Y G 155 W E I L T K V T L S P S Q F L 168 F L Q F K T W W T D E A Q N Q 58 V A P V Q R K A A t P S N V N 24 83 A R L A G D L D A W Q F A V V 24 158 L T K V T L S P S Q F L Q F K 24 24 PI K Q C S L E P W R S E S Q 23 A H G V A P V Q H K A A L P S 23 93 Q F A V V L Q P P R Q Q O G A 23 108 H Q A V W E P F S F K L L K D 23 123 L K A A V G Q Y G P N S P F I 23 124 K A A V G Q Y G P N S P F I R 23 138 R S L L Q S V A Q N K L L T P 23 157 I L T K V T L S P S Q F L Q F 23 197 F E Q L L G I G G Q W G T V N 23 200 L L G I G G Q W G T V N N H Q 23 KKGLEEQSAPHWDH P 22 21 W P P P I K Q C S L E P W R*S 22 39 I C P V S R M N E L W P Q E P 22 TABLE XXIII 74P3B3, clone B (frame 3) HLA-DRBI*0101 15 mers 12 3 4 5 67 8 90 12 3 4 5.
Pos 87 154 112 180 192 13 89 109 171 190 2 18 47 116 133 57 68 74 98 99 120 121 143 147 181 186 207 49 64 78 79 86 91 127 137 141 144 146 160 165 183 184 204 67 73 92 106 135 G D L D A W Q I GDLDAWQJ D WE IL T K
I
M N E L W P Q I
LEPWRSE
L E P W R S E .1 WE P F S F K]
QNQDRKNI
AIAITFE(
Q N Q D R K N I A I A I T F E A P H W D H P I L D A W Q F A I Q A V W E P F E F K T W W T D I N P A I A I T I F K T K K G L I H P E W P P P I E L W P QE P S F K LL KD I N S P F I RS I
APHWDHPI
LDAWQFA
QAVWEPFf
FKTWWTD!
NPAIAITI
FKTKKGL
HPEWPPP]
ELWPQEP(
SFKLLKDI
NSPFIRSI
GVAPVQHF
P S N V N E S I S P L Q F I I F LQ PP R Q QC
QPPRQQGG
L KDLKAAV
KDLKAAVG
S VAQNKLL
NKLLTPCD
NQDRKNRA
NRAANPAI
WGTVNNHQ
WPQEPQAH
KAALPSNV
F I IRQARL I IRQARLA
AGDLDAWQ
AWQFAVVL
VGQYGPNS
IRSLLQSV
LQSVAQNK
VAQNKLLT
QNKLLTPC
KVTLSPSQ
PSQFLQFK
DRKNRAAN
RKNRAANP
GGQWGTVN
PVQHKAAL
LPSNVNES
E S P L.Q F I I
WQFAVVLQ
GAHQAVWE
PFIRSLLQ
GTVNNHQD
VL
,S P
SAH
C P .D L N NP G I P P
QP
t L N Q L L S A C S
GV
A V S V L P F I R L
HQ
QA
YG
G P:
CD'
I L
PA;
TF
EMI
A P S P 1 DL I LD J VV I P R( I R
NKI
TP(
D W I E I I Q F I W T I I-A I AlI I QD I N V QF A R I
RQ
S F
AQ
M M I score 22 22 21 19 19 19 19 19 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Seq. ID Num.
TABLE XXIV 74P3B3, clone B (frame 3) HLA-DRB1*0301 (DR17) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
GQ Y LT P GI G F A V
QFPK
G AH L K D T K V K T W A IA L WP D L. D O N K L AG A HQ QE P LQ0 F K AA K VT A N P V NN E PW P SN QS V LN K AG D Q Q I RS T P C sS TABLE XXV 74P3B3, clone B (frame 3) HLA-DRBI*0401 (DR4Dw4) 15 mers 1 2 34 5 67 890 12 345 score Seq. ID Num.
165 134 138 46 91 109 114 152 168 171 172 204 2'7 36 73 82 108 116 155 158 192 198 19 W TD AA L V AQ K L L C pv H GV P RO L L K KA A T L S EA Q N QD QD R Q D F
SO'
N E L A R L W Q F K L L A VG P 0 F L G IG G T V S L E TABLE XXV 74P3B3, clone B (frame 3) HLA-DRB1*0401 (DR4Dw4) 15 mers 1 234 56 7 89 012 34 5 74 130 131 135 139 151 162 182 188 18 89 133 194 42 64 68 76 77 86 93 94 117 120 137 146 147 190 197 200 207 VQ H KA AL S PL QFI I L A G D L D A Y GP NS P F G P N S P FlI P F IR S L L S L LQ SV A T P CD WEI T L SP SQ F QD'R KNRA A A NPA I A H P EW P P P L D A W Q F A N S PF IRS A ITF E QL V SR M NEL K A AL P S N PS NV NE S LQ FI IR Q Q F I I R Q A A G DL DAW Q F A V V L Q F AV V LQ P A V V LQPP F K LL KD L L K DL XA A I RS L L Q S 9 K L L T P C 9 P A I A I T F E QL LG I bL LG I G GOQ G TV NN H N VN ,A RL IF A V .S L L L L Q V AQ K KL L K VT F K T P AI F EQ Q C s L QP Q sV I G G QE p ES P QF I Li A G AG D AV V RQ Q Q QG QG G A VG Q YG Q NK W E I E IL Q LL QW G T VN F E M~ score Seq. ID Numn.
18 18 18 18 18 18 18 18 18 18 18 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 TABLE XXVI 74P3B3, clone B (frame 3) HLA-DRB1*11O1 'mers A H G V A P V O H K A A L P S H PE W ppp I KQ0C SLE P P CDW E IL TK VTL SP S P F S F KL LKD LK A AV G A ITFE QL L GI G GOQWG E SQI C PVSR M NE LW P ES PLQF II R QA RL A G L QF I IR Q ARL AG D LD F A VV LQP P RQ QG GAH W E IL T KVT LS P SQFL FKL L K DL KA AV GQY G SP F IR SL LOQSVA QN K I CPVSR M NE LW PQE P V S R M N-E L W P Q E P Q A H P LOQFI I ROQA RLA G DL L DAW QF A VVLOQP PR Q F E Q L L G.I G G Q W G T V N A WQ FA V V L 0P P R G score Seq. ID Num.
TABLE XXVI 74P3B3, clone B (frame 3) HLA-DRB1*1101 15 00 mers Seq. ID Pos 12 34 5 67 890 1 23 45 Score Num 213 HQ D FEmMMP L NKF A IA 17 L E P WRSE S Q IC PVSR 16 46 NE L W PQ EP Q AHG V AP 16 113 E PF SFK L L KDL K AAV 16 tn168 F LQ FK TW W TD E AQNQ 16 177 DEA Q NQ DR K NRA A NP 16 204 G GQW G TVN N HQD FE M. 16 48 L W PQE PQ A HGV A PVQ DA WQF A VV LQP P RQOQ 24 P I KQCS LE PW R SE SQ 14 26 KQ CSL E PW RS E S QIC 14 64 KAA L PS NV NE SP L QF 14 116 SF KL L KD LKA A VGQ0Y 14 00120 L KDLK A AV GQ YG P NS 14 .154 D WEI LT K VTL SP S QF 14 138 R SL LQ SV AQ0NKL L TP 13 2 F KTK KG LE EQ SA P HW 12 58 V A PVQHK AA L PS N VN 12 AV V LQP PR QQ GG A HQ 12 105 GGA H Q AV WE PF SF KL 12 121 K DL K AAV GQY G P NSP 12 124 KA A VGQ YG P NSP F IR 12 141 LQ S VAQ NK LL TP C DW 12 172 K T W WTDEA QNQ0D R KN 12 http://www.bmi-heidelberg.com/syfpeithi TABLE XXIII 83P4B8NHLA- DRB1*0101 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
1100 D WL I TKL KG Q VSQ0ET 1194 ME KL V KL S G SHL TPL 89 1I1G LL ML E AH HFP GP 34 170 DQ QY V IQ 4T SM FK DV 34 261 S GELR H VE GT I ILHI1 34 270 TII L HIV F AI K LD YE 34 338 FKCD LQL LQ GS K FL QN 34 544 LK N F K V L0S LS SS QC 34 214 V YQ LLV LS SK G SR KS 33 384 BL GFI L MD S YGP K KV 33 456 1SH F LD L LSNI V M YA 32 1026 KS LM N LLPS L HV S YK 32 1131 EK A II MQL GT L LT FF 32 127 L ELL P II LT AL AT KK 31 324 D QVL DL L KT SV V KSF 31 410 LS R MPNQ HA C KL G AN 31 1000 S PQ F VQ0ML SW TS KIC 31 1071 HF A IVN LR T AAP TV C 31 TC CI QL VE SG D LQ KE 83 XEI V SE I IGL L ML EA 227 K SV L EGI IA F FSA LD- 347 S K FLQN LV P HRSY V S 442 E QVL NR VV TR AS SP 1 765 KN R FE D ILS LFM C YK 807 M KF VS SLL T AL F RDS TABLE XXIII 83P4B8 HLA- DRB1*0101 15 mers 00Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 SCOre Seq. ID Num.
253 LL DV VT V P SGEL R HV 29 982 AL L VT VL TS LS K LL 29 1260 YE K FLI H LS K KS KVN 29 ct250 G DE LLD VV TV PS G EL 28 974 EE DF N S KE AL LL VTV 28 1069 TNH F AI V NLR T AA PT 28 190 E VE FV VEK AL S mF sK 27 415 NQ H AC KL G A NIL L ET 27 494 QT V QR LL KA VQ PL LK 27 524 AMF A NQ L DAR KS A VA 27 598 Q AD VRL M LY EG FY DV 27 901 GK SI SL L CLE GL QKI1 27 __1084 VC LL V LS Q A EK V LEE 27 1142 L TFF HE LV QT AL P SG 27 1167 C KMYT T LT AL VR Y YL 27 00199 LS MF SK MN L QE IP P L 26 379 TQ G LV EILGF I LM D SY 26 393 Y G P KKCVL DGK T IE TS 26 482 T E AFD Y LS FL PL Q TV 26 516 CL IL V LR KA MF A NQL 26 538 AG FL L LL K NFK V LGS 26 641 LLP P LK L DA C IL TQG 26 726 SA DF SQ S TSIG I K NN 26 753 LI EYNXF SI SS F SK NR 26 989 L TS L SK LLE P SS PQF 26 1030 N LL FS L HV SY KS Pv1 26 1212 F IS Y VQN K S KS L NYT 26 2 DQ KI LS LA AE KT A DK 26 EG D LTN L LQ NQA V KG N QA VK GK V AG AL LRA 102 GP LL VEL A NE FI S AV 131 PI IL T ALA TK K E NLA 180 MF K DVPL T AE E VE FV 202 FSK M NL QE IP PL V YQ 217 LL VL S SK G SR KS VLE 224 GS R KSV L EG II AF FS 278 AI K LDY -EL G REL V KH 323 Q DQ0VLJDL L KT S V VKS 387 FIL M DS YG PK K VLD G 421 LG A NI L LE TF KI HEM 457 S HFL DL L SNI VM Y AP 485 FD YL SF L PLQ T VQ RL 572 H SH Y NSV A NET F CLE 606 YEG FYD V LR R NS Q LA 718 LED F EL DK S AD F SQS 741 1IS AFL VM G VC E VLIE 781 LS DI L N EKA G KA KTK 811 S SL LT ALJF RDS IQ S H 903 S ISL LC LE GL Q K IFS 925 P K IQQ FL R AILD VT DK 948 D VS V TQ RT AF QI RQF 990 T SLJS KL L EP SS PQ FV 1081 AP T VC L LV L SQ AE KV 1170 YTT LT AL V RY YL Q VC 1176 LV R YYL Q VCQ SS GGI1 1202 G S HL T PLC YSFPI SYV 1233 P AA VA TA MA R V LR ET 1270 KS KV N LMQ0H M KLS TS TABLE XXIII 83P4E8 HLA- 00 DRB31*0101 15 mersSe.I OPos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I ci1276 MOQH MKL ST SR DF KIK 18 Q EF LQ TL RE GD L TNL 24 Ct36 QA VK GK VA GA LL RAI1 24 44 GA LLJR A IF KG SP C SE 24 62 TLR RR K I YtC CI Q LV 24 In86 VS E II GLJL ML EA HMHF 24 o 01 P GPL LV EL A NEFPI SA 24 116 V R E GS LVN GK SL E LL 24 141 KE NL A YG K GV LS GEE 24 177 H TS MF KD VPILJTA E EV 24 188 AE EV EF V VEK AL S MF 24 192 EF VV EK AL SM FS K MN 24 207 LQ E IPP LV YQ L LV LS 24 o211 PP LV YQ LL VL SS K GS 24 Cl319 1Q RF QD QV LD LL K TS 24 00 372 VH SW DH VT QG LV E LG 24 o463 L SN IV MY AP LVWLQ SC 24 o487 Y L SFL PL QT VQ R LILK 24 Soo 50 LKAVQ0P LL KV S MS MR 24 514 RD CL IL VL R KA M FAN 24 515 DC L ILV LR KA M F ANQ 24 543 L L KNF KVILJGS L S SSQ 24 585 LE IM DS LR RC LS Q QA 24 588 MD SL RR CL SQ QA D VR 24 631 LK QF Y EPK PD LL P PL 24 636 EP KP DL LP PL KL D AC 24 648 DA C ILT Q GDK I SL QE 24 856 TG HV S GP DGQ0NP EKI1 24 906 LILJCL EG LQ KI FS A VQ 24 964 RS L LNL LS SQ EE D FN 24 1146 HE LV QT AL PS GS C VD 24 1180 YL QV CQ S SG GIP K NM 24 1283 TS R D FKI KGN IL D MV 24 32 LL QN QA VK G KVA G AL 23 118 E GSL VN G KS.L E.LLPI1 23 126 SLJE LL PI ILJT AL A TK 23 158 KQ L INT LC SG RW D QQ 23 210 1P PL VY QL LV L S SKG 23 299 GD SN N NLS P FS IA LL 23 307 PF S IAL LL SV TR I QR 23 339 KD LQ LL QG S KFL Q NL 23 350 LQ N LV PHIR SY VST MI1 23 438 QE IL EQ VL NR VV T RA 23 445 LN RV VT R AS SP-I SH F 23 446 NR VV T RAS S PI SEHFL 23 470 AP LV LQ SC SS KV T EA 23 488 LS FL PL QT VQ RL L KA 23 519 LV LR KA MF AN QL D AR 23 582 TF C LE IMD S LRR C LS 23 612 VL R R NSOL AN SV M QT 23 680 N TV IP LOQQG EE E EEE 23 703 DD IL ES IT NR M IK SE 23 734 S I G I1K N N I SA F L V M G 23 735 1IGIKN NI SA F LV M GV 23 778* YK K LSD IL N E KA GKA 23 798 NIKCTS DS LL S MKF vS s 23 842 A V NVA LQ KVOQQ L KET 23.
882 L LW RY T SIPTS V EE SG 23 TABLE XXIII 83P4B8 HLA- 00 DRBI*0101 15 mers Pos. 12 34 56 7 890 1 23 45 score Seq. ID 980 KE A LL LV T VL TS LSK 23 Nm 983 LL L V TVL TSL S K LLE 23 Ct985 L V TVLT S LS K LLEP S 23 1085 CL LV LS QA E KV LE EV 23 1096 LE EV D WL ITK LK G QV 23 1122 Q ATLP NQ PV E KA I IM 23 1132 KA I IMQ0L G TL LT FFH 23 1163 L KD LCK MY T TL T ALV 23 1179 Y YL QVC QS S GGI P KN 23 110 N EFI SA VR EG SL V NG 22 123 N GK SLJE tLP I IL T AL 22 242 K QH NE EQ S GD EL LDV 22 __357 RS Y VS TM IL E VV KNS 22 361 ST MI L EV VK NSV H SW 22 398 VLD G KT I ET S PS LSR 22 00407 SP SL tRM P NQ H ACK L 22 429 T FK IH EMI RQ E IL EQ 22 437 RQ E I LEQV L NR V VTR 22 C1460 LD L LSNI V MY A PL VL 22 462 LL S NI V MY APLV L QS 22 468 MY A PL VLQ sC SS K VT 22 527 ANQ L DA RK SA VA G FL 22 531 D ARK S AVA G FLL L LK 22 547 F KV LG S LS SS QcsQ s 22 592 R R CL S QQ AD VRL MLY 22 609 F YDV LR R NSQ L A NSV 22 621 NS V MQT LL S QL KQ FY 22 655 G D KISLQ E PL D YL LC 22 665 D YL LCC IQ HC L AW YK 22 702 LDD I LE SI T NRM IK S 22 743 AFL VM GV C E VLI E YN 22.
751 EVL I EY N FSI SS F SK 22 793 KT K MAN K T SDS L LSM 22 801 SD S LLS MK FV 8SL LT 22 804 L LS M KF VS S LLT ALF 22 826 Q E SLSV LR SS N EF MR 22 871 FQ N LCD I T RVL LW RY 22 878 TR V LLW'RY TS I PT SV 22 909 L E GLQK IF SA VQ Q FY 22 963 QR S LL NLL SS QE E DF 22 992 LS K LLE P SSP QF V QM 22 993 SK LL E PS SP Q FVQ ML 22 1034 S L HV S YK S PV IL LRD 22 1042 PVI LL RD L SQ D I HGH 22 1061 D QD V E VE KTN H F AIV 22 1112 QE TL SE E ASS QA T LP 22 1135 1IMQL GT L L T F H ELV 22 1144 FFH EL V QT AL PS G SC 22 1166 LC K MY TT LTA L VR YY 22 1252 NLIIF AI E QY E K FLI H 22 1273 V N LMQH M KLS TS R DF 22 79 GD LQ0KE IV SE I I GLL 21 139. TKK E NL AY G KGV L SG 21 155 EC KK QL I NT L C SGRW 21 274 HI V FA IK LDY E LG RE 21 305 L S P F S I A L La L S V T R I 21 497 Q RLL K AVQ P LL KV SM 21 513 MR DC LI LV LR KA M FA 21 TABLE XXIII 83P4B8 HLA- 00 D)RB1*0101 15 mers Seq. ID Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Num 775 FM CY KK LSD I LN E KA 21 820 DS IQ S HQES L S VL RS 21 Ct859 VS GP D GQ NP E KI FQN 21 954 R T AFQ IR QF QR S LLN 21 1103 1ITKL KG Q V SQE TL SE 21 t 1143 TF F HE LV Q TAL P S.GS 21 109 A N EF IS A VR E S LVN 204 K MN LQ EI PP L VY QLL 354 V PHR S YVS TM IL E VV 551 GS LS SS Q CS QSL S VS 618 QLA N SV MQ TL L SQ LK 674 CL A W Y N T VI P L QG 760 1S SF SKN R'FE D I LSL 806 MK F VS S LL TA L FRD C1880 VLL W R YT SI P TS VE E 00 893 E ES G KKE K GK SIS LL 1021 D ALF C KSL MN LL F SL 1039 YK SP VI LL RDL S QDI1 1222 S LN Y TGEK KE KP A AV 1230 K EK PA AV AT AMA R VL 1238 T AM ARV L RE T KPI PN 1257 1IEQ YE KF LIH L SK KS 21 LQ T LRE G DL TN L LQN 19 43 AGA LL R AI F KG S PCS 19 128 E L LPI IL TA L A TK KE 19 212 P L V YQ LL VLS S K GSR 19 267 VEG TI I L HIV FA I KL 19 326 VLD L LK TSV V KS F KD 19 335 V K SF KDL QL LQG S KF 19 356 H RS YVS T MIL EV V KN 19 537 VA GF LL LLK NF K V LG 19 541 L LL L K NFKV LG S LSS 19 580 NE TF CL EI M DSL R RC 19 710 T NR MI KS E LE DF ELD 19 732 ST S IG I K N I S AFLV 19 749 V CEV LI EY N F SIS SF 19 847 L Q KV QQL KE TG H V SG 19 904 1ISLL C LE G LQ0KIFPSA 19 928 QQ F LR AL D VT D K EE 19 1187 S G GIPK N ME KL V KLS 19 1209 C Y SFI SY VQ N KSK S L 19 3 Q KI LSLA A EK T A DKL 18 27 0 D LTN L LQ0NQ A VK GK 18 57 SE EA GT L RR R KI YTC 18 78 S GD LQ0KEI VS EI I GL 18 84 EI VS EI I GL LM LE AH l8 92 LL ML E A H H FP PL LV 18 97 A H HFP G P LIV EL A NE 18 121 L VN G K SLEL L PII LT 18 130 LP II LT A LAT K KE NL 18 178 TS MF KD VP LT AE E VE 18, 183 DVP LT A REV E FV V EK 18 234 1IAF FSAL D KQ H NE EQ 18 256 VV TV P S GE LR H VE GT 18 266 HV EG T IIL HI V F AIK 18 308 F SI A L LL SVT RI Q RF 18 327 L D LLK T SV V KS FK DL 18 344 L Q GS KF LQ NLV P HRS 18 TABLE XXIII 83P4B8 HLA- DRB1*0101 15 mers 123456789012345 Pos 360 376 399 433 461 466 496 510 536 539 600 607 628 632 647 695 696 700 715 738 742 771 782 790 799 835 836 838 849 868 876 877 919 920 922 933 956 959 960 978 1001 1043 1063 1072 1127 1141 1191 1192 1239 1262 1264 1301 6 29 39 41 52 VS T
HV
DG
{EM
L L
VM
TQR
MS
VA
IFL
VR
G F
'SQ
.Q F
DA
EA
AF
DL
SE
NN
A F
LS
D I
KA
TS
NE
E F
MR
V Q
KI
I T T R' Q Q
QF
YQ
LD'
FQ
RQ]
Q F
SKI
Q FI I L]
VEI
AI I Q P I
LTI
KN D NM I MA F FL 3
IHI
GEE
S LA
TNI
NL I G K V
VAG
GS F
VKN
E LG S PS
SEQ
AP
QS
P L
LV
KN
KV
FY
NS
PK
LL
DK
PD I
SIL
IT
DK
MG
EV
KL
KA
KT
KF'
NV
VA2 L Q
HV
ITI
YT
TS
QO
Q F I
LR)
EEF
SLI
NL I
LL
TVI
TS I D I E FA I AP I MQ I
QTA
LS C
SGS
KP I SKy VN L TA S D KL V KG KG K RA I I F K
GTL
S VH F I L SS R
VLN
L VL
CSS
L KV
LRK
P KV
LGS
VL
Q LA
DL
P PL S L E S SS I r R M
AD
!CE
SIE
D I :T K
DS
*SS
.L Q
QK
vQ,
GP:
VL
I P
PT:
L R
RAI
LD
EDI
NL I
SS(
SQI
TS I
ICI
GHI
VN I
VCI
GT I
LP
SH I
HLI
PN I NL Do
MQE
EHG
QE F
KVA
V A G
FKG
GS P RR R score Seq.
ID
Num.
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 TABLE XXIII 83P4B8 HLA- DRB1*O101 15 mers 00 Seq. ID Poe. 12 34 5 678 90 12234 5 score Num.
82 QK E IVS EI IG L LM LE 17 87 S E II G LL ML EA H HFP 17 1IG LLM LE AH H FP GP L 17 Ct103 P LLVE LA NE F IS AV R 17 ill EFI S A VR EG S L V NK 17 115 A VR E S LV N GKS L EL 17 tn119 G S L VN GKS LE L LPI1 17 124 GIK(SL E LL P IIL T ALA 17 153 E E C K KQL I NT LCSG 17 191 V EFV V E KAILS MF S KM 17 196 EK AL SMF SK MN L QEI1 17 228 S VL E GIIA FF S AL D K 17 231 EGI 1A F FSA L DK Q HN 17 248 QS GD EL L DVV T VPS G 17 254 L D. V VTV PS GHL R HVE 17 00268 E G TII L HI V FAI KLD' 17 279 IKL D YE L GRE LV K HL 17 282 D YE LG0R EL VK H L KVG 17 287 R EL VK HLK V GQ QG DS- 17 290 VK HL KV GQ QG D SN NN 17 303 N NLS P FSI AL LL S VT 17 332 TSV V KS FK D LQ LL QG 17 336 KS F K 1)LQ LL QG S KFL 17 353 L V PHR SY V ST MI LEV 17 386 G FI LM D S YG PK KV LD 17 441 L EQ0VL NR VV TRA S SP 17 444 VL NR V VT R AS SP ISH 17 478 SS K VT EA FD Y LS FLP 17 501 K A VQP LL K.VS MS M RD 17 506 L LK VS M SM RD CL ILV 17 508 K VSM S MR D CLI L V LR 17 530 L D AR KSAV A GF L LLL 17 579 AN E TFC LEI M DS L RR 17 584 C LEI MD SL R RC LS QQ 17 601 V RL M LY EG FY D VLR R 17 649 AC I LTQ GD KI SL QE p 17 672 Q HCL A WY KN TV I PLQ 17 712 RM I KSE L ED FE L DKS 17 748 G VC EVL I EYN FS I SS 17 770 DI LS L FMC Y KK LSDI1 17 786 NE KA GK A KT K MAN KT 17 802 DS LL S MK F VSS LL TA 17 808 KF VS S LLT AL FR DS 1 17 810 V S S L L T A L. F R D S I Q S 17 817 L FRD S IQS HQ ES L SV 17 834 SS NE F MRYA V NV A LQ 17 844 NVA LQK VQ Q LKE TG H 17 916 F S AV QQF YQ PK I QQF 17 946 D ADV S VTQ RT A FQ IR 17 961 QF Q RS LL N LLS SQ EE 17 981 EA LL L VTV LT S LS KL 17 986 V TV L TS LSK LL E pSS 17 1010 TS KI C KE N SR ED ALF 17 1017 NS RE DA LF C KS L MNL 17 1022 AL FC KSL M NL L FS LH 17 1040 KS PV IL LR D LS Q DIH 17 1074 1IVN LR TAA P TV C LL.V 17 1115 L S EE ASS Q AT L P NQP 17 Pos 1130 1133 1148 1160 1195 1197 1207 1225 1226 1229 1243 1254 1261 1278 1286 TABLE XXIII 83P4B8 HLA- DRBI*0101 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 VE KA II M Q L G T L L T F AI IMQLGTLLTFFHE L V Q T A L P S G S C V D.T L
DTLLKDLCKMYTTLT
EKLVKLSGSHLTPLC
LVKL S GSHLTPLCYS PLCYS FI SYVQNKS K
YTGEKKEKPAAVATA
TG E K K E K P AAVATAM K K E K P AAVATAMARV VLRETKPI PNLI FAI I FA I EQYEKFLIHLS
EKFLIHLSKKSKVNL
HMKLSTSRDFKIKGN
DFKIKGNI LDMVLRE TABLE XXIV 83P4B8 HLA- DRB1*0301 (DR17) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq.
ID
Num.
1159 276 624 718 1295 564 695 1046 196 294 496 515 757 836 966 1057 1085 1264 272 664 871 912 956 188 506 584 594 649 946 1170 18 110 385 1042 1142 642 89 101
VD
V F
MQ
L E
DM
VS
E E
LR
E K K V V Q D C N F N E L L
LG
C L L I I L
LD
FQ
LQ
A F A E L L
CL
C L A C D A Y T
QE
NE
LG
P V L T L P: I II P G 1 D L D y
SQL
D K
DG
SDV
SDL
'D I F FS D S A AV L R F S
AV
S Q D V
QA
KS
A I
CI
I T AVi F Q VV1
SMJ
SL]
DV]
GD
TQ]
LV
LR
VR I
DS
DL
LV(
DA
L,E I E L I KMY ;M y s GR
SFY
D F
SEN
H Y SI L
SHL
I N L N NL L L M F R RF A AL D F E K
VL
NL
D Y
CL
L L
FY
L L:
A'L
CL
CL,
ML
S Li A Fi YLi
DL'
S L' P K.I D I]
AL
LT
H F] E F score 31 29 29 29 29 28 28 28 27 27 27 27 27 27 27 27 27 27 26 26 26 26 26 24 24 24 24 24 23 22- 22 Seq. ID Num.
TABLE XXIV 83P4B8 HLA- 00 DRB1*0301 (DR17) 15 mersSe.I Pos 12 34 56 78 90 12 34 5 score Num.
126 S L EL L P IIL T A LATK 22 226 RK SV LE G II A FF SAL 22 Ct302 NN N LS PFS I AL L LSV 22 332 TSV V KS FK DL QL LQGC 22 807 MK FV S SL LT A LF RDS 22 814 LTA L FR DS IQ S H QES 22 985 LV T VLTS L SK LL E PS 22 992 LSK L LE PS S PQ F VQM 22 1028 LM NL L FSL HV SY K SP 22 1131 EK A II MQ L GT LJTFFP 22 9 AA EK T ADK LQ E FL QT 21 21 L Q TL RE GDL T NL LQN 21 _22 Q TL R E GD LTN L LQ NQ 21 82 QK EI VS EI I GL LM LE 21 118 EGS L VNG KS L EL LPI1 21 00 147 GK G VL SG EEC K KQLI1 21 177 H TSM FK DV PL T AE EV 21 204 KM N LQ EI PP L V YQLL 21 207 LQ EI PP LV Y QL L VLS 21 463 L S NIV M YA P LV LQ SC 21 510 SMS MR DC L IL VL R KA 21 538 A GF LLLL K N FKV LG S 21 539 GF LL L LKN FK VL G SL 21 598 Q ADVR L ML YE GF Y DV 21 634 F YE P KPDL LP PL K LD 21 638 KP D LLP P LK LD AC IL 21 655 GD KIS L QE PL DY L LC 21 657 KIS L QEP L D YLL CCI1 21 842 A VN V ALQ KVQ Q LK ET 21 986 VTV LT S LS KL LE P SS 21 NQ AV KG KV AG AL L RA TC CIQ L VE S GDL Q KE 119 G SL V NGK SL E L L PI1 191 VE FVV E KAL S MF S KM 202 FS K MN LQ EI P PLV YQ 253 LLDV VT V PS GE L R HV 338 F. KDL QL L QGS K F LQN 340 D LQLL Q GS KF LQ N LV 361 S T MIL E VV KN S VH SW 486 LS FL PL QTV Q R LL KA 508 KV S MSM R DCL I LV LR 514 R DCL IL V LRK A M FAN 540 FILL L KN FK V LGS L 610 YD V LRR NS QL A NS VM 710 T NR MIK S EL ED F ELD 714 1IKS EL ED FE LD K-SAD1 734 SIG I KN NI SA F LV MG 742 S A FLV MGCV CEV L IEY 764 S K NR F ED IL S LF MCY 806 SM KF V SS LLT A LF RD 870 1F Q NLC D IT RVL L WR 874 LC DI TR V LL WRY TSI1 974. E EDFPN S KEA L LL VTV 981 EAL L LV TV L TS L SKL 1020 ED A LF C KSL M NL LFS 1034 SL HV SY K SPV IL L RD 1061 DQ D VE VE KT N HF AIV 1083 TVC LL V LS Q AEK V LE TABLE XXIV 83P4B8 HLA- DRB1*0301 (DR17) 15 mers 12 34 56 7 890 12 34 5 Pos 1133 1194 1270 1276 14 26 134 215 235 270 278 282 286 310 311 316 318 323 327 334 *382 *394 410 423 500 537 592 602 616 620 631 711 802 828 857 901 924 959 1021 1086 1174 1262 97 102 133 135 182 198 331 407 429 457 480 482 490 493 585 628 score Seq. ID Num.
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 L S V R I H F P L V A L A T P L M F V V L S I H L, D E A F D L Q V Q m D L K TABLE XXIV 83P4B8 HLA- DRB1*0301 (DM17) 15 mers 00 Seq. ID Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Num.
679 KN TVI P LQ Q GE E EEE 18 743 AF LV MG VC E VL I EYN 18 749 V CE V LIE Y NFSI S SF 18 Ct771 1L SL FM CY KK L SD IL 18 778 YK KL SD IL NE KA G KA 18 793 KT KM A NK TS DS L LSM 18 tn819 RDS IQ S HQ ES LS V LR 18 829 LS VL R S SNEF MR Y AV 18 844 NV A LQ K VQQ L K ET GH 18 889 PT S VEE SG K KE KG KS 18 905 S LLC LE G LQK I FS AV 18 919 V 0QQF Y Q PKI1QFL RA 18 __932 RA LD VT DK EG E ER ED 18 967 LNL L SS Q E EDFN S KE 18 970 L SSQ E EDF NS K E ALL 18 00 1022 A LFC KS L MN LL FS LH 18 .1043 V IL LR DL S QD I HG HL 18 1099 V D WLI TK L KG QV SQE 18 rl1127 N Q PVEK AI I MQL G TL 18 1139 GT LL T FF HEL VQ T AL 18 1156 GS CV D TL LK DL C KMY 18 1197 LV KL SG SH LT PL C YS 18 1209 C YS F I SY VQN KS KSL 18 1213 1IS YV Q NK SKSL N YTG 18 1220 S KS LU Y T GEK KE K PA 18 1233 P AA VA TA M AR VLR E T 18 1240 M AR V LR ETK PI P NLI 18 1244 L RE TK PIP NL I FA IE 18 1250 1P N LI F AI EQ Y EKFL 18 1254 1F A IE Q YEK FL I HLS 18 1261 E K PLI H LS KKS KV NL 18 1291 GNIL DM V LR E D GE DE 18 1298 LRR D G 2DE N E RGT AS 18 3 QK IL S LA AE KT ADKL 17 17 L QEF L Q T LRE GD L TN 17 44 G ALL RA IF K GS PC SE 17 74 Q LVE SGD L QK E IV SE 17 103 P LL V ELA N-E FIS A VR 17 140 X KE NL A YG KGV L S GE 17 164 L CS GR WDQ Q YV IQ HT 17 181 F K DV PL 7AEE V EF VV 17 274 HI V FAI KL D YE L GRE 17 2.90 VK HL KV GQ QG DS N NN 17 313 L L SVT R I QR Q DQ VL 17 319 1IQRF Q DQV L DL LK TS 17 362 TMI LE V VK N SVH S WD 17 416 QHA C KLG A NI LL E TF 17 434 E MI RQ0E ILEQ VL N RV 17 438 QE IL EQ V LN RVV T RA 17 489 SFL PL Q TV Q RL LK AV 17 525 MPA NQ L DA R KSA V AG 17 568 H VD V HS H YN SV ANET 17 580 N ET FC LE I MDS L RRC 17 599 A DV RL ML Y EG FY DVL 17 625 Q TL LSQ L KQ FY E PKP 17 672 H C LA WYK N TV I PLQ 17 682 VI PL QQ G E E EE EE E 17 687 QG EE EE EE EE AF Y ED 17 TABLE XXIV 83P4B8 HLA- 00 DRB1*0301 (DR17) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID 688 GEE EE EE E E AFY E DL 17 Nm 699 YE DL DD I LES I TN RM 17 Ct703 DD I L ESI T NR M IKSE 17 811 SS LL TA L FR DS IQ SH 17 840 R Y AV NVAL Q KVQ Q LK 17 847 LQ KV QQ LK ET GH V SG 17 916 FS A VQ QFY Q P KIQ QF 17 973 QE ED F NSK EA L LL VT 17 989 L TS LS K LLE PS S PQF 17 1004 VQ ML S W TS KICK E NS 17 1160 DT LL K DLC K MY TT LT 17 1187 SG GI PK N ME KLV K LS 17 1191 PK NM E KLV KL S GS HL 17 1237 AT AM AR VL RE T KPI p 17 cI1251 PNL IF A IE QY E KFL 1 17 00 1252 N L IF AI EQ YEK FL IMH 17 1272 K VN L MQ HM KLST S RD 17 1280 KL ST S RDF KI K GN IL 17 cI1284 S R DF KI KGN I LDM VL' 17 G KVA G AL LRA IF K GS 16 58 EE AG T LR RRK I YT CC 16 109 ANEBF IS A VRE GS L VN 16 237 FSA L DKQ H NE E QS GD 16 606 Y E FY DV L RR NS Q LA 16 608 G F YDV LR R NSQIJLA NS 16 617 S QL A N S V MQT LLSOQL 16 653 TQ GD K ISL QE PL D YL 16 732 ST SI GI K N NI18A FILV 16 772 LSL F MC YK KL S DI LN 16 885 Y TSI PTS VE E S G KKE 16 906 LLC L EGL QK I FS A VQ 16 920 QQ FY Q PKI QQ FL R AL 16 931 L RA L DVT D KEG E ERE 16 972 SQ EE D FNSK E A LL LV 16 1032 LFS L HV SY KS PV I LL 16 1054 H G HL G DI DQD VE V EK 16 1114 TL SE E AS SQ ATL P NQ 16 1210 y SFI S YV Q N KS KS LN 16 1253 LI FA IE QY EK FL I HL 16 A EKT AD K LQE F LQ TL 113 IS A VRE GSL V NG KS L 149 GV LS GE EC KK Q L INT 219 VLS S KG SR KS V LEGI1 234 IAF FS AL D KQ RN EE Q 326 VL DLL K TS VV KS F KD 376 D HV TQ GL VE L GF ILM 1s 388 1IL MD SYG P K KVL DGK 1s 430 FK I HEM I RQ E IL EQV 572 HS HY NS VA NE TF C LE 630 QL KQ FY E PKP D LL PP 747 M GV C EV LI EYN F SI 761 SS FS K NR FE DI LS LF 801 S DS LL SM K FV S SLLT 815 T AL FR DSI Q SH QE SL 818 FR D SIQ SH Q ES LS VL 860 SG P DGQ NP E K IFQ NL 955 TA FQ I R Q F QR SL L .L 1012 K IC KEN S RE D AL FCK TABLE XXIV 83P4BO HLA- 00 DRB1*0301 (DR17) is mers Pos 1 23 45 678 90 1 234 5 score Seq. ID Num.
1104 TKL K GQ VS Q ET L SEE Ct TABLE XXV 83P4B8 HLA- DRB1*0401 (DR4Dw4) 15 mersSe.I Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I 109 ANE FI SA VR E GS L VN 28 372 VH S WD HV TQG LV E LG .28 456 1 SH FL DL LS N IV M YA 28 544 L K NFK VL GS L SSS QC 28 606 YEG F YD V LR R NS QLA 28 607 E GFYD V LR R NS QL AN 28 765 K NR FE D IL S LF MC YK 28 913 QK I FS AV Q QF Y QPK1 28 (11142 LT FF H ELV QT AL P SG 28 00 5 TL SLA A EK TA DK L QE 26 26 EGD LT NL L QN QA V KG 26 TC C IQL V ES GD LQ KE 26 (1102 G PLL V ELA NE F IS AV 26 127 LE L LPI IL T ALA T KK 26 192 EF VV E KA LS MF S KMN 26 214 VY QL L VLS SK G SR KS 26 250 G DEL L D VVT VP S GEL 26 253 LL D VVT V PSG E LR HV 26 324 DQ VL DL L KTS V V KSF 26 438 Q EI L EQ V L NRV V TRA 26 442 EQV L NR VV TR A SSPI1 26 446 NR V VT RA SS PI S HFL 26 4S7 S HFL DL L SNI V MY AP 26 490 FL P LQ TVQ0RL L K AVQ 26 496 VQ RL L KAV QP L LK VS 26 514 RD C L ILVL RK A M FAN 26 538 AG F LL LL K NFKV L GS 26 585 L E I MD SL R RC L SQA 26 621 N SV M QT L L SQ LKQFY 26 665 DY L LC CIQ HC LA W YK 26 703 D D ILES I T NR MI KSE 26 749 VCE VL IE YN F SI S SF 26 778 YK KL SD IL NE KA G KA 26 804 LLS M KF V SSL LT A LF 26 811 S S LL T AL FR D SI0SH 26 836 N EFM RY AV NV A LQ KV 26 840 RY A VNV AL QK V QQ LK 26 871 FQ NL CD IT RV L*LW RY 26 909 L E GLQ KIFS A VQ Q FY 26 916 FS A VQ Q F YQP K IQQF 26 956 A FQ IR QF Q RSL L NLL 26 982 AL LL V TVL TS LS K LL 26 983 LL L VT VL TS L SK LLE 26 1026 K SLM N LL FS L HVS YK 26 1042 PV I LLR D LSQ DI H GH 26 1046 LR DL SQ DIH GH L GDI1 26 1083 TV C LL V LSQ A EK. VLE 26 1096 L E 9VDW L IT KL KG QV 26 1112 Q ET LSE EA SS Q AT LP 26 1132 KAI I MQ LGT L L TF FH 26 1138 L GTL L TF FHE LV Q TA 26.
1170 YT TL TA L VRY YL Q VC 26 TABLE XXV 83P4B8 HLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 1210 1237 1251 190 212 234 305 482 484 487 537 572 580 695 718 726 753 775 815 882 1000 1030 1069 1141 1177 1207 1209 1212 1257 1260 2 3 14 18 39 43 78 82 83 86 91 103 105 110 118 124 126 130 131 148 158 171.
177 183 188 196 207 score Seq. ID Num.
26 26 26 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 TABLE XXV 83P4B8 HLA- 00 DRBI*0401 (DR4DW4) 15 mersSe.I Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Num.
211 PPL V YQ LL V LSS K GS 227 K SV LE G IIA F FS ALD Ct230 LEG II A FF SA L D KQH 231 E G I I A F F S A L D K Q H N 237 F SA LDK QH NE EQ S GD 261 SGE LR H V EGT I ILHI1 269 GT I ILH I VF AI K LDY 270 TI I L HI VF AIK LD YE 278 AI K LD YE L GRE LV KH 282 D YE L GRE L VK HL K VG 287 R EL VK HL KV GQ Q GDS 290 VK H LKV GQQ0G D S NNN _302 NN N LS P F SIA L L LSV 307 PF S IA LL LSV TR I QR 309 SI AL L LSV TR IQ R FQ 00 310 1A L LL SV T RI Q R FD 313 LLS VT RI QR F QD Q VL 316 V TRI QR F QDQ V LD LL C1323 QDQ V LD LL K TS V VKS 332 T SV V KS FK DL Q LL Q 347 S K FL QNLV PH RS Y VS 350 LQ N LV PHR SY VS TMI1 360 V ST M ILE VVK NS V HS 361 ST M IL EV VK NS V HSW 362 TMI LE VV K NS V HS WD 369 KNSV H SW D HV TQ G LV 379 T Q G LVE LG F I LMD SY 385 LG FI L MDS YG PK K VL 395 PKK V LD G KT IET S PS 407 S PS LS RM P NQ HA C KL 424 NI LL E TFK I HE MI RQ 429 TF K IH E MI RQ E ILEQ 433 HEM IR Q EI L EQV L NR 453 S S PIS HF LDL L SN IV 464 SN I VM YAPL V LQ S CS 470 A PLJV LQ SC SS KV T EA 471 P LVL Q SC SSK VT E AF 478 S SK V T SAFD Y LS FLP 485 FD YL S FL PL QT VQ RL 493 LQT V QR L L KAVQ P LL 497 QR L LK AVQ0P L LKV SM 500 LK AV Q PLL K V SMS MR 506 L L KV SM S MRD C LILV 518 1ILVL RKA M F A NQL DA 534 KS AV A G FLL L LXN FK 541 LL LLJK N FKV L GS L SS 546 NF K VL GS L SS S QC SQ 547 F KV LG S L SSsC S QS 564 VS QV H VDVH SH YN S V 566 Q VHV DV HS HY NS V AN 568 H VDV H S HYNS VA N ET 584 C LE I MD SL RR CL SQ 588 M DSL RR CL SQ Q AD VR 601 V RLM L-YEG F YD V LRR 610 YDV LR R NS Q LAN S VM 625 QT LL SQ L KQF YE P KP 642 LP P LK LDA CI LT Q GD 661 QE P LDY LL CC I Q HCL TABLE XXV 83P4B8 HLA- DRBI*0401 (DR4Dw4) 15 mers 123456789012345 Pos 664 672 679 699 702 715 734 73B 743 746 751 768 769 781 807 810 826 828 844 879 901 903 904 906 912 924 928 963 964 980 985 989 1001 1010 i029 1040 1043 1054 1057 1061 1063 1071 1081 1092 1093 1100 1103.
1127 1135 1139 1146 1160 1163 1166 1174 1194 1195 1202
LDY
QHC
KN T YE D LD D KS E S I G
KNN
AFL
VMG
EV L
FED
ED I
LSD
M KF VS S Q E S
SLS
NVA
RVL
G KS S I S
ISL
LL C LQ K QP K QQ F.
QR S RS L;
KEA
LVT'
LTS
PQ F' TS K: MN L KS P'
VILI
HG H I
LGD:
DQD
DV E
HFA
APT I AE KI E KV I DWL I I TKI NQ P A I MQ I GTL I
HELI
DT L I L KD I LC Ku TA LI MEKi E KL I
GSHI
CI Q f KN LQ Q I LE
SIT
!EL
I I S
?LV
ICE
t L I iFS
FM
?M C
KA
LT
L L F
RS
SN
TS
CL
E G G L Q K VQq
LR,
DV
LS
SS4
TVJ
LSJ
LE]
SW'
NS I
RDI
So'
DQI
VEt
KT?
NH 1 R T;
VLE
VD I D WI
KGC
VS C IlI
LTP
HEL
LPS
C KN
YT
L TI
LQV
SGCS
KG C
GS
C KY score Seq.
ID
Num.
TABLE XXV 83P4B8 HLA- 00 DRB1*0401 (DR4Dw4) 15 mersSe.I Pos. 12 34 56 789 0 12 34 5 score Num.
1233 PA AV AT AM AR VL R ET 1261 E KF LIH LS KK SK V NL Ct1270 KS K VNL MQ HM KL S TS 1291 GN I LD MVL RE D GE DE 1295 DM VL RE DG E DE N EEG 22 Q T LRE GD L TN L LQ NQ 18 23 TLR E G DL T NL LQ NQA 18 27 GD LT N LL Q NQ AV K GK 18 57 SEE A GT LR RR K IY TC 18 62 TL RR RK IY TC C IQ LV 18 74 QL V ES GD LQ KEI V SE 18 79 G DL QKEI V SE I I GLL 18 _112 F IS AV RE GSL V NG KS 18 115 AVR E GS LV MG KS L EL 18 155 EC K KQ LI NT LC SG RW 18 00 164 L CS GR W DQQ Y VIQ HT' 18 168 RW DQ QY V IQ HTS M FK 18 169 WD QQ YV I Q HTS MF KD 18 C1208 QE IP PL V Y QLLV L SS 18 262 G ELR HVE G TI I L HIV 18 279 1IKL D YEL GR EL V KH L 18 284 ELG R EL VK HL KV G QQ 18 294 KV GQ QGD S NN NL S PF 18 334 V V KS FK DLQ L Q G SK 18 337 SPFK DLQ LL QG SK F LQ 18 343 LL QG S KF LQN L VP HR 18 354 V PH RSY VS TM IL E VV 18 398 V L DGK T IE TS PS LSR 18 399 L D GKTIE T S PSL S RM 18 404 1E TS PS LS RM PN Q HA 18 421 L GA NII L ET F KI HEM 18 430 F K IHE MIR QE IL E QV 18 435 M I RQE IILE Q VL NR VV 18 439 E I LEQVL N R VVT R AS 18 443 V LN R VVT R AS S PIS 18 467 V MY A PL VLQS C SSK V 18 468 MY APL V LQ SC SS K VT 18 521 LR K AM F ANQL D AR KS 18 525 M F ANQL D A RK S AV AG 18 558 C SQS LS VS QV H VD VH 18 565 SQ0VH VD VH S HY N SVA 18 594 C LS Q 0A DV RL ML YEG 18 613 LR RN SQ L A NSV MQ TL 18 614. R RN SQ0L A NS V MQTLL 18 617 SQ LA NS VM Q TL L SQL 18 622 SV MQ TL LS Q LK Q FYE 18 646 k LD A CIL TQ GD K ISIL 18 700 ED LD D ILE SI T NRMI1 18 722 ELD KS AD F SQ ST SI G 18 723 LDK SA D PS QS TS IGI1 18 731 Q STS IG IK NN I SA FL 18 754 1IE YN FSI SS F SK NRF 18 786 N EKA GK AK T KM A NKT 18 803 SL LS M KF VS SLL T AL 18 825 HMQE S L SVLR S S NEFM 18 832 LR SS N EF MR Y AV NVA -18 870 1IFQ NL CDI T R VLLW. R 18 876 DI T RVLL WR Y TS I PT 18 TAB3LE XXV B3P4B8 liLA- 00 DRB1*0401 (DR4DW4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
887 SI P TS VEES G K.KE K G 18 936 V TDKE G EE RE D AD VS 18 Ct942 EE RE D AD VS VT Q RTA 18 945 ED AD VS VT Q RTA FQI1 18 950 SV T QRT A FQI RQ F QR 18 t 960 RQ FQ RS LL NL LS S QE 18 -71 S SQE ED F NS KE A LLL 18 979 S KE ALLL V TV L TS LS 18 991 SL SK L LEP SSsPQ F VQ 18 997 E PS S PQ FVQM LSW T S 18 1039 YKS PV I LLR D LS QDI1 18 1068 KT NHF AI V NL RT AA P 18 1075 VN LR T AA PT VC L LVL 18 1104 T K L KGQ VSQ E TL S EE 18 1113 E TLS EE AS SQ A TL PN 18 00 1119 A SS Q ATLP NQ P VE KA 18 1129 P VE KA I IMOLG-T LL T 18 1153 L PS GS CV D TL LK DLC 18 1206 TP LC YS F IS Y VQ NKS 18 1230 KE KP A AV AT AM A RVL 18 1258 E Q YE KF L IHLJS K KSK 18 1269 K KSKV NL M QH M KL ST 18 920 Q QFY Q PK IQQ F LR AL 17 17 L Q EFL QT L RE GD LTN 16 66 R KIY TC C IQLV E S GD 16 97 A H H F P GP L VEL A NE 16 170 DQ QY VI QH TS MF KD V 16 178 TSM F KDV P LT AE E VE 16 199 LS M FSKM N LQ EI P PL 16 233 11A FF S AL DK Q HN EE 16 280 KL D YEL GR EL VK H LK 16 319 1IQRF QD QV L DLL K TS 16 335 VK S FK DLQ L LQ G SKF 16 356 HRS Y VS TM I LE VV KN 16 384 EL G FI L MD S.YGP KKV 16 427 LE T F KIH E M IRQ EIL 16 466 1 VMY A PLV LQ S C SSK 16 523 KA M FAN Q LDA RK S AV 16 603 LM L YE GF YD V LR R NS 16 631 LKQ F YEP K PD LLpP PL 16 674 CL A WYK NT VI P LQ QG 16 675 LA W YK NTV IP LQ Q GE 16 696 EA FY ED LD D ILE S IT 16 741 1ISA F LV M GV C E-VLIE 16 755 E Y NF SIS SF S KN RFE 16 760 1ISS FS KN RF E DI LSL 16 806 SMK FV S SL LT A LF RD 16 835 S NE FM R YAVN V A LQK 16 838 F MRY-AV NV A LQ K VQQ 16 868 E KIF Q NL C DIT R VLL 16 880 V LL W RYT S IPT S VEE 16 927 1IQQ F LR AL DV T DKEG 16 959 1IR QF QRS L LNL L SSQ 16 1021 DAL F C KS LMN LL F SL 16 1098 E VD W LI T kL K G QV S 16 1167 C KM YTT L TA L VR YYL 16 1176 LV RY Y LQVC Q SS GGI1 16.
1222 SL N YTG EK KE K PA AV 16 TABLE XXV 83P4B8 HLA- 00 ~DRB1*0401 (DR4DW4) 15 merese.I Poe 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Num.
1252 NLI FA IE Q YE KF L IH 16 217 L L VL S S G S R K SVLE 445 LN RV VT R AS S PIS HF 527 A NQ LDAR K SA VA G FL 609 FY DV L RR NS QL A NSV 732 S TSI GI K NN IS AF LV tn793 K T KMA NK T SD SL LSM 21 L QTL R EG DL TNILJL QN 14 T NL LQN Q AV K GKV AG 14 44 GA L LRAI F KG S P CSE 14 R R KIY TCC IQ LV E SG 14 72 C IQL V ESG DL Q K EIV 14 87 S EI IG LL M LEA H HFP 14 89 11G LL M LEA HH F PG P 14 101 PG PL LV EL A NE F ISA 14 00 129 L LP II L TA L AT K KEN 14 141 K E NLA. Y GK G VL SGEE 14 147 G KGVL S GE EC K KQLI1 14 161 1INTL CS GR WD QQ YVI1 14 202 FS KM N LQE IP P LV YQ 14 204 K M NLQ EI PP L VY QLL 14 210 1IP PLVY QL LV L S SKG 14 216 QLL V LS SK GS RK S VL 14 251 D ELL DVV T VP S GE L R 14 256 VV TV PS GE LR HV E GT 14 264 LR HV EGT I IL HI V FA 14 268 EG TI IL HI VF A IK LD 14 272 1L H IV FA I KL D YELG 14 273 L H I V F A IK D YE LGR 14 276 VF AI KL DY EL GR E LV 14 286 G RE L V KHL K V G QGD 14 292 HL KV GQ Q GD SN NN LS 14 326 VL DL L KTS V VK S FKD 14 331 K TS V VKSF KD LQ L LQ 14 338 F K DLQ LL QG S K FLJQN 14 340 DLQ0L L QGS K FLQ N LV 14 341 LQ L LQG SK F LQ NL VP 14 357 RS YV ST MI LE V V KNS 14 365 L EV VK NS V HS W DH VT 14 382 LV EL G FIL MD SY G PK 14 386 G FIL MD SY G PK KV LD 14 387 F IL M DS Y GP KKV L DG 14 401 GK TI E TS PS LS RM PN 14 410 LS RM PNQ H AC KL G AN 14 418 AC KL GA NI L LET FKI1 14.
422 GAN I LL E TFK I HEMI1 14 432 1IHEM IR Q EI L EQV LN 14 437 R QEI L EQV L NRV V TR 14 459 FL DL L SN IV MY A PLV 14 460 L DLJL S NIV MY A P LVL 14 463 L SNI V MYA PL V LQ SC 14 465 N I VMY A PL VL Q SCSS 14 469 YA P LV LQS CsS SKV TE 14 488 LS FL PL Q TVQ R LL KA 14 503 V QP LL KV SM SM R DCL 14 504 QP L LKV SM S MRD CLI1 14 510 SM S MRD CL IL V LR KA 14 515 DC LI LVL R KA MF A NQ 14 TABLE XXV 83P4B8 lILA- 00 DRB1*0401 (DR4DW4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
550 LGS L SS S QCS Q SL SV 14 561 SL SV S QV HVD VH S HY 14 Ct575 YNS V A NE TF C LE IMD 14 582 T FCLE IM DS LR R C LS 14 592 R RC LS QQ AD V R LMLY 14 602 RLM L YE G FYD VL R RN 14 616 NS Q L ANS V MQ0TLL SQ *14 620 A NS VMQ T LL S QL KQF 14 628 LS QL KQ FY EP K PD LL 14 638 KP DL L PPL KL DA C IL 14 639 P DL L PP LK L D AC ILT 14 648 DA C IL TQG D KI SL QE 14 649 A C IL TQG D KIS LQ EP 14 657 KI S LQE P LD Y LLCC 1 14 C1668 L CC IQ HC L AWY K NTV 14 00 711 NRM I KS E LE DF E LDK 14 720 D F EL D.KSAD FS Q S TS 14 742 S AF LV M GVC E VL IEY 14 750 C E VL IE YN FS I SS FS 14 757 NF S ISS FS KN R FEDI1 14 771 L SL FM CY K KL S DIL 14 801 SDS LL S MK FV S S LLT 14 814 L T ALFR DS IQ S HQ ES 14 819 RDS I QS H QESILJS VL R 14 842 AV NV A LQK VQ Q LK ET 14 847 LQK V QQ LK E TG HVSGC 14 850 V 0QQLK ET G HV SG P DG 14 867 PE KI FQ N LCD IT R VL 14 874 LC DI TR VLL W RY TSI1 14 877 1T R VL LW RY TS IP TS 14 889 P TSV EE SG K KE K GKS 14 946 DA D VSV TQ R T AFOQIR 14 967 LNL LS S QE ED F NS KE 14 981 E A LL L VT VILT SL SKL 14 986 VT VL TS LS K LLE P SS 14 992 L SKILJL EPS SP QF V QM 14 993 SKL L E PS SP QF V QML 14 1003 F VQ MLSW T SK IC KE N 14 1004 VQ ML SW TS KI CK E NS 14 1025 CK SL M NL LFS LH V SY 14 1028 L MN LLF S LH V SY KSP 14 1032 L FSLH V SY KS PV I LL 14 1074 1V NL RT AA P TV C LLV 14 1084 V CLJL V LS QA EK V LEE 14 1085 CL LV LS Q A EKV LEE V 14 1086 LL V LSQ AE K VL EE VD 14 1107 K GOV S Q ET LSE E ASS 14 1122 QA T LPN Q PV EK A IIM 14 1131 EK A IIM Q LGT L LT FF 14 1150 TA L PS G SC V DT LLK 14 1156 G SC V DT LJKD LC KM Y 14 1159 V D TLL.KDL C K MY T TL 14 117a RY YL Q VCQ SS G GI PK 14 1187 S GG I PK NM EK L VKLS 14 1191 PK N ME KLV K LS G SHL 14 1197 L VK LSGS HL T PL C YS 14 1205 LT PLC YS FI S Y VQ NK 14 1240 M ARIV L RE TKP IP NLI1 14 TABLE XXV 83P4B8 HLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 1241 1247 1250 1254 1262 1272 1273 1276 1278 1286 1294 score 14 14 14 14 14 14 14 14 14 14 14 Seq. ID Num.
TABLE XXVI 83P4B8 HLA- DRB1*1101 15 mers 606 1191 585 665 1222 44 109 906 1291 607 234 537 1170 174 189 544 986 1069 313 335 347 361 384 771 811 1000 1177 442 443 490 493 515 540 566 871 1039 1097 1100 115'6 1240 1270 26 1 2 3 4 5 6 .7 8 9 0 1 2 3 4 5
YEGFYDVLRRNSQLA
PKNMEKLVKLSGSHL
LEIMDSLRRCLSQQA
DYLLCCIQHCLAWYK
SLNYTGEKKEKPAAV
GALLRAIFKGS PCSE ANEF ISAVREGS LVN LLCLEGLQKI FSAVQ
GNILDMVLREDGEDE
EGFYDVLRRNSQLAN
IAFFSALDKQHNEEQ
VAGFLLLLKNFKVLG
YTTLTAL VR Y Y L Q VC
VIQHTSMFKDVPLTA
EEVEFVVEKALSMFS
LKNFKVLGSLS SSQC
VTVLTSLSKLLEPSS
TNHFAIVNLRTAAPT
LLSVTRIQRFQDQVL
VKSFKDLQLLQGSKF
SKFLQNLVPHRSYVS
STMILEVVKNSVHSW
ELGF ILMDSYGPKKV
ILSLFMCYKKLSDIL
SSLLTALFRDS IQSH
SPQFVQMLSWTSKIC
VRYYLQVCQSSGGIP
EQVLNRVVTRASSPI
QVLNRVVTRASSPIS
FLPLQTVQRLLKAVQ
LQTVQRLLKAVQPLL
DCLILVLRKAMPANQ
FLLLLKNFKVLGSLS
QVHVDVHSHYNSVAN
FQNLCDITRVLLWRY
YKSPVILLRDLSQDI
EEV DWL I TKLK GQVS DWL ITK L KG Q VSQET
GSCVDTLLKDLCKMY
MARVLRETKPIPNLI
KSKVNLMQHMKLSTS
EGDLTNLLONOAVKG
score 31 28 27 27 27 26 26 26 26 24 24 24 23 23 23 23 23 22 22 22 22 22 22 22 22 22 21 21 21 21 21 21 21 21 21 21 21 21 21 21 Seq. ID Num.
TABLE XXVI 83P4B8 HLA- 00 DRB1*1101 15 mr POS. 123 45 67 89 0 12 34 5 score Seq. ID Num.
1GL L ML E AH H FPG PL 91 GL L M LEA H HF PG PLL Ct250 G DE LLD V VTV P SG EL 258 TV PS GEL RH V EG TII1 310 1IA LL LSV TRPI Q RF QD tn323 Q DQ0VL D LLJK TSV V KS 429 T FK IH E MIR QE I LEQ 460 LD L LS NIV MY A P LVL 500 L K AVQ PLL KV S MS MR 514 R D C LILJVLR K AM FAWN 638 KP DL LP PL K LD AC IL 850 V0QQL KE TG HV SG P DG 876 DI TR VL L WRY TS I PT 1007 L SW TS KI C KE NS RED 1081 A PT VC L L VILSQ AE KV 00 1160 DT L L KDLC KM Y T TLT 1237 A T AMA RV L RETK P IP 1261 E KFL I HL SK KSK V NL C1127 L ELJL PI IL TA L AT KK 19 214 VY Q LLV LS SK G SR KS 19 251 D EL LD V VTV P SG E LR 19 778 YKK L SD IL NE KA G KA 19 882 L WR YT S IP TS VE E SG 19 -982 A LLLJV T VL TS LS K LL 19 1030 NL LF S L HVSYK S PVI1 19 1167 C K MYT TL TA L VR YYL 19 1209 CY SF IS Y VQ N KS KSL 19 17 LQ EF LQ TL RE GD L TN 18 86 V SEI I GL L M L EAHHF 18 211 PPL V YQL L VL S $K GS 2.8 212 P L VYQL V L SS K GSR 18 227 KSV L EG II AF FS A LD 18 328 D LLK TS VV K SF K DLQ 18* 407 S P S LSRM P NQ H AC KL 18 466 1V MY AP L VLQ SC S SK 18 772 LS L FMC YK K LS D ILN 18 801 S DSLL S MK F VSS L LT 18 954 RTAFQIRQ*FQRSLLN 18 980 K EA L LL VT VL T SL SK 18 989 L TSILJSK L L EPS S PQF 18 1071 HF AIV N LR TA A PT VC 18 1142 L T F FHEL V QT A LPSG 18 1176 LV R YY LQV CQ S SGGI1 18 1273 V NLM Q HM KLS TS R DF 18 266 H VE GT II LH IV F AIK 17 283 Y E LG R EL VKNHLK V GQ 17 372 V HSW D HV TQ GLV E LG 17 456 1S HFL D LL SN I V MYA 17 564 V SQ V H VD VH S HY NSV 17 632 KQ F YEBPK PDL L P PLK 17 696 EA FY E DLDD I LE S IT 17 741 1IS AFLV MG VC E VL IE 17 775 F MCYK KILS D ILJN E KA 17 835 SN EF MR YA VN V AL QK 17 1141 LL TF F HE LVQ T A LPS 17 1234 AA V AT AMA RV LR E TK 17 1257 1IEQ YE KFL IH L SKK S 17 1260 Y E KFLIIH L S KKS K VN 17 TABLE XXVI 83P4B8 HLA- DRB1*1101 15 mers 00Pos 1 234 56 78 9 012 34 5 score Seq. I 57 SBEEA GT L RR R KI YTC 16 178 TS MF KD VP L TA EE VE 16 199 L SM F SKM N LQ EI P PL 16 Ct365 L E VV KN SV HS WD H VT 16 390 MD S Y GPKK VL DG KTI1 16 439 EI LE QV L N RV VT R AS 16 tn441 LRQ V LN RV VT RA S SP 16 482 T EA F DYL SFL P L Q TV 16 487 YLS F LP LQ T VQ RL LK 16 513 MR DC LI L VL RK A MFA 16 572 HS HY NS V A E T FC LE 16 649 A C IL TQ0G D K IS LQP 16 753 LI EY N FSIS S FS K NR 16 757 N FS ISS FS K NRF EDI1 16 765 KNRF ED I LSL FM C YK 16 00868 E KIIF QN LC DI T RV LL 16 00874 LCD IT RV LL W RY TSI1 16 880 VLL WR Y TS I PT SV EE 16 913 QK I FSAV QQ F YQ PKI1 16 1207 PL C YS FIS Y VQ NK SK 16 1211 S FIS Y VQ NKS KS L NY 16 33 L QN Q AV G KV AG A LL G KV A GALL R AIF K GS is LV E S D LQ KE IV S EI is 115 AV R EGS L VN GKS L EL 131 PI IL T ALA TK K EN LA 169 W DQ Q YV I Q HTS M KD 177 H TS MF KD VPILJTA E EV 207 L Q E IP PL VYQ L L VLS 269 G T I IL HI VF A IKL DY 279 1KL DY EL GR E LV K HL 284 EL GR EL VK H LK V GQQ 331 K TS V VK SF K DLQ LLQ 340 D LQ LL Q GS KFL Q NLV 348 K FL Q NLVP H RS Y VS T 375 WDH V TQ GL VE L G FIL 446 N RV VT A.A SS PI S HFL 450 T R ASS PI S HFL D LLS 478 SS KV TE A FDY L SF LP 584 C L EI MD SL RR CL S QQ 677 WY K NT V IP LQ Q GEEE is 717 EL ED FE LD K SAD F SQ 800 T SD S LLS M K FV SS LL 890 TS V EE SG K KE KG KSI1 892 VE ES GK K E KGK S ISL 894 ESG K KE KG KS IS L LC 924 QP K IQQ F LR A LD VTD 931 LRA LD V TD KE GE E RE 946 D ADV S VTQ RT A FQ IR 956 AF Q I RQ Q R SL L NLL 983 LL LV TV L TSL S K LLE 1032 L FSLH V S Y KS PV I LL 1070 N HF AI V NLRT AA P TV 1086 LL V LS QA EK VL E E VD 1124 TL P NQP V E XAII M QL 1s 1138 LGT LL TF F HE LV Q TA 1188 G GI P KNM EK LV K LSG 1213 1S YV QNK S KS L NY TG TABLE XXVI 83P4B8 HLA- 00 DRBI*1101 15 rners Pos 1 2 3 4 S 6 7 8 9 0 1 2 3 4 5 score Seq. ID 1262 K F L IH{LS KKS KV N LM 1280 K LS TSR D FKI KG N IL 1290 K GN I LD M VL RE D GED Shttp://www.bn i-he idelberg.com/syfeiti TABLE XXIII 109PlD4 HLA-DRB1*0101 15 me rs __Pos 1 2 3456 7 89 01 2 345 score Seq. ID Num.
808 SD YV KIL VA A VA GT 1 36 C17 TYI FA VL L AC VV F HS 34 00 265 G TSV TQ L HA TD A DIG 34 482 GI Q LT KVSA M DA D SG 33 498 N A KI NYL.LG P DA P PE 33 285 H FSF S NL VSN IA R RL 32 173 VQ NY E LI KS Q NI FGL 31 405 PF RL RP V FS NQ FL LE 117 DE I FRL V KIR F L IED 28 155 N SK Y TL PA AVDP D VG 28 297 R RL FH L NA TT,GL ITI1 28 710 EV CY SIV G GN T RD LF 28 797 NT E IA D VS SP T SDYV 28 882 LL NF VT I EET K AD DV 28 945 QP AF QI Q PET PL N SK 28 109 EV EV A IL PD EI F RLV 27 413 S NQ FL LE TA AY L DYE 27 807 T SDY V KIL V AAV A GT 27 R ID RE KLC AG I PR DE 26 105 H C FY EV EV AI L PDE1 26 141 AT VI N IS IP EN S AIN 26 187 L D VI ET PEG.D KM P QL 26 288 F SN L VSIA R R L FHL 26 430 KE Y AI K;LA A DA G KP 26 431 EYA I KL LAA D A GK PP 26 S38 F TIILJA KD NG VP P LTS 26 572 H NE Y NFY VP E NL PRH 26 596 D PD Y GDNS A VT LS IL 26 738 XC DV T DLG LH R VL VK 26 823 TVV V VI FI TA V V RCR 26 831 TA V VR CR QA P HL KAA 26 33 EM P E NVLI GD L LK DL 41 GDL L KD L NLS LI P NK 62 Q F KLV YK T GDV P LIR 104 E HCF Y EVE VA IL P DE 176 Y EL I'KS QN IF GL DVI1 216 VM KV K VEDG G F PQR S 223 DG GF PQ R SST AI L QV 296 ARR L FH L NA TT G LIT 325 LLV L A SDG GL M RA RA 337 AR A MVL VN VT D VN DN 433 A IK LLJA A D AGK P PLN 434 1K L LAA D AG KP PL NQ 580 'PE NLPR HGT V G LI TV 613 ND DFT I DSQ0T G V IRP TABLE XXIII 109P1D4 HLA-DRB1*01O1 15 00 mere Seq. ID (NlPos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Num.
640 TF YV K AE DG GR V SRS Ct730 TGN I TL ME KCODV T DL 764 S VVI VN LF V NE S VTN 811 VKI LV AA V AG TI T VV tn925 PT TF K PD SP DL AR HY 936 A RH Y KS AS PQ P AFQI1 27 NY TI RE E MP EN V LI1 24 46 D L NLS LI P NKS L T TA 24 74 L I RIEE'DT G EIF TT G 24 116 P DE I FRL VK I RF LIE 24 145 N ISIP EN S AI NS K YT 24 322 N H K L LVL ASD G G LMP 24 324 K LL VLA SD GG LM P AR 24 00329 AS DG GLM P AR AM V LV 24 331 D G GLMP AR AM VL V NV 24 358 RY IV NP V NDT V VL SE 24 472 TV SI PE N NS PG I QLT 24 478 NN SP GI Q LT K VS AMD 24 488 VS AMD A DS GP N AK IN 24 499 A KI NY L LG PDA P PEF 24 586 HGT VG LI T VT D PD YG 24 660 TI NV VD V ND NKP VFI1 24 670 K PV F IVP PS NC S YEL 24 698 V I AVDN D TG MNA E VC 24 712 C YS I VGGNT R DL FAI1 24 745 GL HR VL VK A NDL G QP 24 760 DS L FSV V IVN LF V NE 24 822 1T VV V VI FIT AV V RC 24 885 F VT IE ETK AD D VD SD 24 900 GN RVT L DL P IDL EEQ 24 919 YNW VT T PTT F KP D SP 24 975 CD SI S KCS SS SS D PY 24 3 LL SG TY I F AV LL ACV 23 XKDL NLS LI PN K S LTT 23 78 EE DT GEI F TT G ARI D 23 129 IE DI N DN AP L FP ATV 23 151 NS AI N SKY T L P'AAVD 23 167 D V 1N G VQ NY EL I KS 23 281 N A K I H F S F S N L V S N 1 .23 289 SN L VSN IA RR L F HLN 23 342 L VN V T D V ND NV P S1 23 349 NDN V PS ID I RYI V NP 23 370 LS E NIP LN T KIA L IT 23 379 K I ALI TV T DKDA D HN 23 531 EK ED K YL FTI L AK DN 23 534 DK YLF T IL AK DN G VP 23 547 VP P LTS NVT VF V SII1 23 630 SFD RE K QE SY T FY VK 23 648 GG R V SRS SSA K VT IN 23 663 V VDV ND NKP V FI V PP 23 669. NKP VF IV P PS NC S YE 23 679 N C SY E LVL PS TN P GT 23 680 C SY EL VL P STN P GTV 23 782 IN E LVR KS T EA P VTP 23 812 KI LV A AV AGT I T VVV 23 819 A AGTI TV V V I F IT AV 23 TABLE XXIII 00 109P1D4 HLA-DRB1*0101 15 mer s Pos 1. 2 3 4 5 6 7 8 9 0 1. 2 3 4 5 score Seq. ID Num.
Ct821 T IT V VV VI FI T AVVR 23 824 V VV V IFI TA V VR CRQ 23 844 AA Q K NKQN SE WA T PN 23 tn916 MG KY N WV TTP TT F KP 23 963 1QE L PL DN TF V AC DS 23 6 GT YIF AV L LA C V VFH 22 126 R FL IED I ND NA P LFP 22 132 1INDNA P LF P ATVI NI1 22 178 L IK S Q NIFGL DV I ET 22 251 ET EI E VS IPE N AP VG 22 328 L ASD GG LM PA RA M VL 22 402 H EI PFR LR P VF SN Q F 22 442 GKP P L NQS A MLF IK V 22 00 462 NAP VF T'QS FV TV S IP 22 485 LT K VSA MD AD SG P NA 22 502 NY L LG PDA PP E FS LD 22 510 P PE FS LDC R TG ML TV 22 535 KYL F TI L AKD NG V PP 22 544 DN G VPP L TS NV T VFV 22 557 FV S IIDQ N D NS PV FT 22 615 DF TI DSQ T GV IR PNI1 22 683 EL V LPS TN PG TV V FQ 22 692 GTV V FQ VI A VD ND TG 22 753 A ND LGQ P DS LFS VVI1 22 756 L CQPD S LF SV V IV NL 22 759 PD SL F SVV IV NL F VN 22 S00 I AD VS SP T SD Y VKIL 22 815 VA AV AG T ITV VV V IF 22 939 YK SA SP Q PA FQ I QPE 22 947 A FQ I QPETP L NS K HH 22 1001 F EV PV SV HT R PV GIQ 22 A MQFK LV Y KT G D VPL 21 108 Y E VE VAI LPD-EI F RL' 21 184 1IFG LJD VI ET PE G DKM 21 363 PV N DTV V LS EN I PLN 21 541 L AKD NIG V PPL TS N VT 21 722 DLF A ID QE TG NI T LM 21 143 VI NI SI PE NS AI N SK 215 YV M KV KVE DG GF P QR 222 ED GG F PQR S STA I LQ 246 HP VF KET EI E VS I PE 253 EI EV SI P ENA PV G TS 323 HK LL VL AS D GGL M PA 346 TD VND N V PSI D I RY1 425 D YES TK EY AI KL L AA 459 EN D NAP VF TQ SPV T V 463 AP VF T QS FVT V SI PE 470 FV TV SI PE N NSP G IQ 522 LT VVK K LD R EKE DK Y 619 DSQ T GV I R PNI S FDR 768 V NL FV NE SVTN A TLI1 783 NE LV RK S TEA PV T.PN 883 LNF VT I EE TK AD D VD 944 PQ P A FQ IQP ET PLN S 992 S DC'G Y PV TT FE V PVS 63 FK LV YK TG DV P LIRI1 19 TABLE XXIII 1OSP1D4 NLA-DRB1*0101 15 mers 1 2 34 5 678 90 1 2345 score Seq. ID Num.
TABLE XXIV 109P1D4 HLA-DRB1*0301 CDR17) mers 1 234 5 6789 0 12 34 5 score Seq. ID Numn.
TABLE XXIV 109P1D4 HLA-DRB1*0301 (DR17) mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 ci 00 0 0 (N 00 Pos 605 671 904 46 54 371 525 613 626 204 275 289 401 510 566 662 713 116 167 395 721 325 628 945 161 488 925 970 165 323 405 538 698 759 963 63 128 176 288 413 434 580 696 803 861 908 928 104 109 117 182 186 190 198 238 305
TL
V F
LD
LN
KS
EN
KK
DD
PN
K E
AD
NL
H E
PE
SP
VV
SI
DE
V G
VT
DL
L V
IS
PA
AA
SA
TT
T F
PD
K L
FR
TI
IA
DS
Q E K L I E
EL
SN
N Q
KL
EN
Q
S s R Q
ID
KP
HC
V E E I
NI
LD
ET
P Q
VT
TG
ND
NC
EE
NK
Q F K I
ED
Q T E K
KD
K I
RR
RP
RT
E Y
KP
RD
K I
NY
E I E T
GL
Q E
ET
G I G P
PD
IS
V
DG
SN
G V
GM
IV
TF
DV
AP
IF'
AR
AA
G.K
TV
DT
VK
K K
MG
AR
VA
DE
IR
IE
EGI
MP
EL]
HP
EP
ID
LV
G K
TA
Y K
TV
FT
RP
Y T M K F S L N N Q
TV
VP
VP
ID
I E
KS
L R
TL
RA
FY
S K Q N
IN
H Y S S
LI
PA
LE
TS
VC
VN
DS
RI
AT
VI
H L
YE
N Q
TV
A E A A K K
WV
SA
DE
LV
ED
GD
P Q V Q E K
ET
E E score Seq. ID Num.
27 27 27 26 26 26 26 26 26 24 24 24 24 23 23 23 22 22 22 22 21 21 21 21 21 21 21 19 19 19 19 19 19 '19 19 19 TABLE XXIV 109P1D4 HLA-DRB1*0301 (DR17) is mers 1 2 34 56 78 90 1 2345 score Seq. ID Num.
D
Q
A
L
R
T
S
T
y
C
T
L
E
T
A
R
m TABLE XXV 109P1D4 HLA-DRB1*Q 401 (DR4DW4) mers 1 23 45 67 89 0 12 34 5 Pos 173 285 510 613 916 46 54 125 167 354 544 555 765 779 797 823 827 893 963 7 16 104 117 124 297 413 467 628 670 679 721 score Seq. ID Num.
V
H
p
N
M
I
D
N
I
D
S
D
T
V
A
N
T
V
A
I
T
C
E
D
K
R
S
T
N
K
N
R
Y EL F S N F SL FT I Y NW L LK L SL L TT LI E I N G
TRPY
Vp p V S I V NL I N E T AD V VI I T A V D S L P L F A V FH S F-Y E F RL F LI F H I F LL F V T FD R F I V Y EL FA I TABLE XXV 109P1D4 HLA-DRB1*0401 (DR4DW4) mers 12 3 4567 8 90 1 234 5 Pos 768 807 882 918 925 936 969 998 6 27 36 37 41 48 97 ill 112 122 135 140 143 157 181 184 231 232 234 245 253 265 281 289 312 322 323 331 337 338 349 357 358 36S 366 377 379 393 405 421 472 482 488 498 522 534 547 551 558 'N L S D L N
.YN
T T R H N T T T T Y Y T N V V L D L L S A G V A AlI V K A P A T I N Y T O N F G T A A I
LOQ
H P I E T S A K N L E P H K K L G G R A A M D N R Y Y I D T T V T K I A G R F R A Y V s I Q S A A K T V K Y P P S N S I F V NES I Y VKI L I F VT IE I W VT TP I F K PD S I Y K SAS I F VA CD S F E V PVS I FA VL L I R E E M P L I G D LIL I GD LL K L KD LN L L IP NK S I PR DE H I L P D ElI L PD EI F I R F L I E L F PAT V V I NI S I I S I p ENK L PA AV D I F GLD V L D VI E T I LQV S V L QV SV T V S V TD T V F KE TE V S IPE N V T Q L H A I H FS F S V SN IA R L D RE E T L LV LA S L V LA SD L M P A R A M V LV NV V L V N. V T V PS I DI I V NPV N V N P VN D V V LS EN V LS EN I I A L I T V L I TVT D V TC FT D L RP VF S L DY E ST I P E NN S L T K V S A I N YL L G L F T I L A L T S N V T V T V F V S I DOQND N T K A Q P A V H T E N V K KD L ~D L N S LTT L T T
CFRL
FRL
S AlI I E T PE G TD T DT N N DN IE V AP V T DA
DGG
GOL
M V L T D V D VN: R Y I D T V I P L K D A] H E I: P G I M D A]I P NA I P DA I I I D S pV I score 22 22 22 22 22 22 22 22 Seq. ID Num.
TABLE XXV 109P1D4 HLA-DRB1*O401 (DR4DW4) 00 15 mers Pos 2. 2 3 4 5 6 7 8 9 0 2. 2 3 4 5 score Seq. I C1580 PE NL PR H GTV GL I TV 606 TL S ILD EN DD F T IDS Ct640 T F YV K A DG G RV SRS 648 G GRV SR S SS AK V TIN 658 K VT IN VVD V NDN K PV 661 1NV V D VND NK PV F IV 682 YE LV L PST N PGT V VF 692 GT VV FQ VI A VD N DTG 695 V FQV IAV D ND TG M NA 696 FQ V IA VD NDT GM N AE 698 VI A VD ND TGM NA E VC 704 D T M NA E VC YSI V GG 712 C YSIV G G NTR DL FAI1 720 TRD LF AI D QE TG N IT 723 L FA I DQ-E TGNI T L ME 00 738 KC DV T DLG L HR V L V 743 DLG L H RVL VK A ND LG 747 H RV LV KA ND L GQ PDS 753 AND LG QP DS L FS VV 1 759 PDS LF SV VI V NL F VN 762 L FS V VIV N LFV N E SV 764 SVV I VN LF V NE SV TN 767 1V NLF V NE SV T NA TL 769 N LFV N ES VT NA T LIN 778 NA TL IN EL V RK S TEA 800 1IA DV SS PTSD Y VK IL 808 SDY V K ILV AA VA GT 1 810 Y V KIL VA AVA GT I TV 811 VK ILV A AV AG TI T VV 812 KIL VA AV A GT I TV VV 815 V AA V A GT ITV V VV I 819 A GT IT VVV VI F IT AV 821 TI T VV VV IFI T AV VR 822 1ITV VV VI FI T-AVV R C 839 A PHRLKA AQ K N KQN SE 879 K NL LLN FV TI E BT KA 880 N L LLN'F VT IE ET KA P 883 LN F VTI E ET KAD D VD 900 N RV T LD L PID L E EQ 904 TLD LP I DLE E QT M GK 906 D L P I D L E E Q T M G K Y N 947 A FQIQ0P ETP L NS K HH 959 K H II Q EL PLD N TFV 960 HH II QE LP LD NT F'VA 975 CD S ISK C SS S SS DPY 995 G YP VT TF EV P VS VHT 2.2 V L LA C VV FH S GAQEK 18 13 LL AC VV F HSG AQ0E KN 18 19 F HSG AQ E KNY TI R EE 18 52. LIP N KS LT T AM Q FKL 18 73 P LI R IE E D TE IF TT 18 78 EE DT G EI FTT G AR ID 18 F TT G A.RIDR EK L C AG 18 113. A IL P DE I R L VK I R 18 137 P LFP A TV INIIS I P EN 18 144 1IN IS I P E NSA I NS K Y 18 148 1P E NS AI NSK YT L PA 18 TABLE XXV 00 109P1D4 HLA-DRB1*0401 (DR4DW4) 15 mersSe.I Pos 12 34 5 67 890 12 34 5 score Num.
196 D K MPQL I VQK E LD RE 18 Ct201 LI VQ KE L DR EE K DTY 18 220 K VED G GFP Q R SSTA 1 18 228 QR SS T AIL Q VS VT DT 18 tn258 1IPENA P VG TS VT Q LH 18 262 APV G TS V TQ LH AT DA 18 282 AKI H FSF S NL VS N IA 18 293 S NI AR RL FHL N AT TG 18 298 RL FH LN A TT G LI TIK 18 309 1ITI KEP LD RE ET P NH 18 3 41 V LVN V T DV ND NV PS 1 18 346 TD VN DN VP S IDI RYI1 18 350 DN V PSID I R Y IV NPV 18 363 PV ND T V VLS E NI PLN 18 00 370 LS E NIP LN TK I AL IT 18 .385 VT DK DA DH NG R VT CF 18 406 F RL RP V FS NQF L L ET 18 440 DA G KPP LN Q SA MLFI1 18 452 LF IK V KD EN D NA PVF 18 460 NDN AP V FT Q SFV T VS 18 464 P V F TQ FVT V SI P EN 18 487 KV S AM D ADS G P NAKI 18 531 EK ED K YL FT IL A KDN 18 556 VF V SI IDQ N D NSP VF 18 568 P VFT H NE YN F YV P EN 18 577 FY VP EN L PR HG TV GL 18 595 TD P DY GDN SA VT LSI1 18 598 DY G DNS A VTL S IL DE 18 609 1IL DRN DD FTI DS Q TG 18 618 1D S QT G VIR P NIS FD 18 625 1 RP NIIS F DR EKQ E SY 18 645 AE D GGRV S RS SS A KV 18 659 VT I NVV DV ND N KP VF 18 689 T NP GT VV F QVI A VDN 18 740 D V TDLG LH RV L VK AN 18 750 L V K AND LGQ P D SLFS 18 756 LG Q PDS LF S VV I VNL 18 761 S L FSV VI V NL FV NES 18 770 L F V NESV TN A TL I NE 18 775 SV T NAT LI NE LV R KS 18 796 P NT EIAD V SS P TS DY 18 813 1ILVAAVAG TI TV V VV 18 833 VV RCR QA P HL KA A QK 18 838 QA P HL KAA Q KNK Q NS 18 854 WA TP NP E NRQ M I MMK 18 876 H SP K NL LLNPFV T IE E 18 890 ET KA DD V DSD G NR VT 18 907 L PI DLE EQ T MG KY NW 18 929 KPD S PD L AR HY KS AS 18 930 P DSP D*LAR H YK S ASP 18 962 1I1QE L P LD NT F V ACD 18 992 S DCG Y PV TTF E VP VS 18 1001 FE V PV S VHTR P VG IQ 18 223 DG G FPQ RS S T AI LQV 17 S GTY IFA VL L AC V VF 16 A MQF K LV Y KT GD V PL 16 64 KL V YK T GD V PLI RIE 16 TABLE XXV 00 109P1D4 HLA-DRB1*0401 (DR4Dw4) mers Seq. ID OPoe 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Num.
82 G EI FTT GA RI DR E KL 16 Ct105 H CF YE VE VA ILJP DEI1 16 136 A PLF PA TV I NI SI PE 16 182 ON IF GL DV IE TP E GD 16 I)246 HP VF KE TE IE VS I PE 16 o283 KI HF SF SN LV SN I AR 16 356 DI RY IV N PVN DT V VL 16 409 RP V FS NQ0FLL ET A AY 16 420 TA A YLDY ES TK E YAI1 16 423 YL DY ES TK EY AI K LL 16 450 AM LF IK VK DE ND N AP 16 0463 AP VF TQ S FVT VS I PE 16 o535 KYL FT I LA KD NG V PP 16 ci554 VT VF VS II DQ ND N SP 16 00572 H N EY NFY VP E NLP R I 16 o574 EY NF YV P ENL PR HOGT 16 o -575 YNFPY VP E NLP RMHG TV 16 ci596 D P DY GD N SA VTLS IL' 16 639 YT FY VK AE DG GR V SR 16 693 TV V FQV IA VD ND T GM 16 710 EV CY SI VG GN TR D LF 16 760 D SLF SV VI VN LF V NE 16 826 VV I FIT AV VR CR Q AP 16 945 Q PA FQ IQ PE TP LN SK 16 151 N SA IN SK YTILJPA A VD 953 E TP LN SK H HII Q ELP 1 MD LL SG T YI FA VJL LA 14 9 I FA V LLA CV VFIH{S GA 14 FA VL LA CV VF H SG AQ 14 11 AV LL AC VV F HSG A QE 14 AC V VFH S GAQ E K NYT 14 44 L K DLN LS LI P NK SLT 14 63 FK LV YK TG DV PL IRI1 14 69 TG DV PL IR IE ED T GE 14 71 DV PL IR IE ED TG E IF 14 72 VP LI RI EE DT GE I FT 14 74 LI RI EE DT GE IF T TG 14 88 GA RIPDR E KLC AG I PR 14 107 FY EV EV AI LP DE I FR 14 109 EV EV AI LP DE IF RL V 14 116 PD EI FR LV KI R F LIE 14 119 1IFR L V KIRFL I E DIN 14 126 RF LIERD IN DN A PLF P 14 141 AT VI NI SI PE NS A IN 14 145 NI SI PE NS AI NS K YT 14 161 PAA VD PD V GI N GV QN 14 170 INOGV QN Y ELI KS QNI1 14 175 NY EL IK SQ0NI FG L DV 14 176 YE LI K SQ NIF GL DVI1 14 186 GL D VIE TP EG D K MPQ 14 187 LD VI ET PERGD KM P QL 14 195 GD KM PQ LI VQ KE L DR 14 20.0 Q LIV QKCE L DR E EK DT 14 204 QK EL DR EE KD TY V MK 14 213 DT YV MK VK VE DG G FP -14 216 V MKCV KV ED GG FP Q RS 14 251 ET EI E VSI PE N AP VG 14 TABLE XXV 00 109P1D4 HLA-DRB1*0401 (DR4DW4) mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
255 EV SI PE N AP V GT SVT 14 Ct261 NA PV GT S V TQL H ATD 14 288 F SN LV SN I AR R LFHL 14 296 AR RL FHL NA T TG L IT 14 tl299 L F HL NAT T GLI T IKE 14 5 TT GL IT I KEP L DR EE 14 324 KILJL V LASD GG LM P AR 14 325 LLV L AS D GGL MP A RA 14 339 A MVL VN V TD V N DNV P 14 340 MV LV N VT DVN D NV PS 14 342 LV NV TD VN DN VP S ID 14 367 TV VL SE NI P L NT KIA 14 371 SENI P LN T KI A LI TV 14 415 Q F LLET AA YL D YE ST 14 00 431 E YAI KL LA AD AG K PP 14 433 A I KLL AA DA GK.P PL N 14 434 1K LL A ADA G KPP L NQ 14 443 K P PL NQSA ML FI K VK 14 448 Q SA M LF IK V KD EN DN 14 453 FI KV K DEN D NA PVFPT 14 462 N A PV FT QS FV T VS IP 14 468 S F VT V SI P E1N NSPG 14 470 FV TV SI P E NNS PG IQ 14 480 SPG IQ L T KVS AM D AD 14 502 NYL L GPD A PP E F SLD 14 518 RT GM LT VV K KL DR EK 14 519 T GM LT V V KK LDR E KE 14 525 VK KL D REK ED K YL FT 14 538 FT I LA KD NGV P PLT S 14 553 NV TV F VS II DQ NDN S 14 586 HG TV GL IT VT DP D YG 14 588 TV GL I TVT DP DY G DN 14 591 LI T VTD PD YG D NS AV 14 602 NS AV T L SIL.D EN D DF 14 604 AVT LS I LDE ND D FTI1 14 607 LSI L DE ND DF TI DSOQ 14 622 TG V IR PN ISF DR E KQ 14 626 RP NI S FDR E KQE S YT 14 656 SA KV T INV VD V ND NK 14 660 T I NVV DV N D NK P VF1 14 663 V VD VN D NK PV FI V PP 14 669 NK PV FI VP P S NCS YE 14 671 P VF IV PP S NCSY EL V 14 681 SY E LV L PS T NPG TVV 14 683 EL V LP STN P GT V V Q 14 708 NA EV CY SI V GG N TRD 14 713 Y S IVGGNT R DL F A ID 14 730 T GN I.TL M EKC DV T DL 14 733 1IT LM E KC DV TD LGLH 14 741 V T DL GILH R VLVK A ND 14 773 NZS VT N ATL I NE L VR 14 783 N ELV R KS TEA P VT PN 14 824 V VV V I FI T A V V CR 14 830 1ITA VV R C RQA P HL KA 14 861 NR Q M IMM K KK KK KKK '14 885 F VTI E ET KA D DV DSD 14 913 E Q TM GK YN W VTT P TT 14 TABLE XXV 109P1D4 HLA-DRB1*0401 (DR4Dw4) mers 1 2 34 5 67 890 12 345 score Seq. ID Numn.
919 932 970 988 1000 1002 14 14 14 14 14 14 TABLE XXVI 109PID4 HLA-DRB1*1101 15 mere 12 34 5 678690 12 34 5 score Seq. ID Num.
535 827 116 285 1000 518 519 882 289 636 730 7.79 1002 12 37 342 522 808 861 11 82 105 212 265 293 479 482 645 932 972 136 184 296 322 463 660 720 821 7 71 126 155 182 213 K Y v I P D H F T F A M R T T G L L S N Q E T G A T E V V L N V L V L T S D N R A V G E H C K D G T S N N S G I A E s p F V A P A R N H A P T I T R T I T Y D V R F N S Q N D T K D R C K I S N K T K K K L E T R R K A K C R K R P H S K D D N R E A A K K F H R I A I K V A T H L K V A M R S K S K C I N T P A T S D V T D N Q E F I A C E D D N A V I E V E TABLE XXVI 109P1D4 HLA-DRB1*1101 me rs 12 34 56 78 9 012 34 5 score Seq. ID Num.
00 379 431 485 498 510 586 695 760 764 797 993 104 117 210 246 380 449 638 670 *693 *744 819 925 986 138 173 399 450 467 500 554 618 679 689 710 738 768 807 916 936 K I E Y L T N A P P H G V F D S S V N T D C E H D E E E H P I A S A S y K P T V A G P T S D L F V Q F T A M
TOQ
K I V T I D N C T N E V K C V N T S MGa A R T V L L A M Y L L D L I A V N L D V V T E V L V Y V E T V T I K V K V I V L P D V S V I L I I P K V T V S I G V L V V V I V D L IN E K I W V S A H N P P N A P E T V Y G N A N E T N Y V S V D E E D
DOG
P E
NOG
N A V S E L G M
GOQ
A V H Y T T N S G L F S A P s p F S S p P D G T D N L F V K L I G T xKP 0I1 http://www.bmi-heidelberg.com/syfp~eiti TABLE XXIII 15lP1C7A DICKOPF-1 HLA-DRB1*0101 15 mer s 12 34 56 78 9 012 34 5 T RV FVA MV AA A LGG H M MAL GA A GAT RV FV A R HF WS KI C K PV LKEG AM V AAA L GGH PL LG V V A M V A A A LOGG H P L L G A L 0 .0 H P L L 0 V S A T L N I KN LP P PLG G AA G HP G N K QT ID NY Q PYP C score Seq.
ID
scoreNum.
33 26 26 24 24 24 24 TABLE XXIII 151PlC7A DICKOPF-1 H.LADRB1*0101 15 mer s 1 23 456 78 90 1 23 45 23 39 185 24 31 147 129 176 143 232 247 61 93 105 202 220 .7 18 34 63 188 194 244 33 43 151 155 167 222 8 9 26 38 46 49 51 S7 99 128 159 168 175 178 196 208 246 Pos L D R V G H S A S N EQa H P A T R G P G S K
QN
I0Q S A T D D A A R C T A G A A N S H p A P V C D C S C L N K N E E T E G Y K H G A A T L L N S L P p P L G G A G S E Y s p C P G N y S s s M Y A S K I R I T T A A S A L N S S A T N S I T G I G Q I E
CQG
A S Y P P T L A I C G S V A P L A I
A.A
C A C A H H N A G G F G
HMS
L S H G A M M V L N A A A G p G S A P G R G A G N G D G S S KG0
EQG
R H
KXE
Q A K M
GMH
S V I K G A SQa V L K N G N S D V C T E S C R L K Y D A R R
LXK
ElI A A S A P P L Y Q T C C w S N S L P H P S T G Y Y H F Q A L L G
NBS
GQG
GBS
S A S A A P pG0 G V C L
S
R T
HMT
S V L R K I C T S R score Seq. ID score Numn.
24 23 23 23 23 23 22 22 22 21 21 19 19 19 19 19 18 18 18 18 18 18 18 18 17 17 .17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 score Seq. ID TABLE XXIV 151P1C7A DICKOPF-1 HLA-DRB1*0301 (DR2.7) mers 1 2345 6 78 9 01 234 5 Num.
136 26 63 244 34 57 72 210 147 155 188 64 82 109 107 123 135 162 216 227 228 240 143 23 101 163 203 11 33 39 42 134 151 160 187 Pos 196 210 244 71 143 155 203 1 9 23 24 26 64.
107 123 136 162 TABLE XXV 1S1P1C7A DICKOPF-1 HLA-DRB1*0401 (DR4Dw4) 15 mers 1 2 34 5678 9 012 34 5 S A T LNSVL N SN A IKN A S G L C C A R H F W S KI C C K P V L K E G Q .V C T K H R SC R IQ KDH HQ AS NS S G N K YQTID NY QP YP C QN HF RG EI E ETI TE S T ESFG XD H ST L D Y S R HF WSK I CK PVL K E G M M AL GAAGA T RV FV A A T RV FV A MVA AA LGG G HPL L GV SATL NS V L HPL LG V SA T L NSVL N L L GVS A TL N SVL NS N PG IL YP GG NK YQ TI D G V Q ICLA C R KR RKRC R H A M C C P G N Y C K N G I G I C V S S D Q N H F R G E.I H ST LDG YS RR TT LS S score Seq. ID score Num.
26 26 26 26 22 22 22 22 00 00 00
CA
Pos 228 3 27 31 47 1"33 152 179 165 176 93 129 235 185 11 13 14 18 33 34 39 42 46 57 105 119 147 211 6 7 8 16 21 22 32 36 53 56 61 68 82 88 99 101 102 115 132 139 144 145 TABLE XXV 151P1C7A DICKOPF-1 HLA-DRBI*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5.
SHGLEI FQRCYCGEG
ALGAAGATRVFVAMV
LGVSATLNS VLNS NA ATLNSVLNSNAI KNL
PPLGGAAGHPGSAVS
C KN G IC VS SD QN H FR E TI T ES F G ND H ST LD
YHTKGQEGSVCLRSS
LDGYSRRTTLSSKMY
S KMYHTKGQEGSVCL T RV FVAMVAAA L GGH
GILYPGGNKYQTIDN
YQPYPCAEDEECGTD
TDEYCAS PTRGGDAG PGNYCKNG ICVS SDQ Q R C YC G E G LS C R I QK EGSVCLRS SDCASGL
RVFVAMVAAALGGHP
FVAMVAAALGGHPLL
VAMVAAALGGHPLjLG AAALGGHP LLGVSAT LNSVLNSNA IKNIJPP N S V L N SNA KN L p p SNAIKNLP PPLGGAA I KNL Pp p L G AA G H P P P PLGGAAGPG S AV GSAVSAAPG I LYPGG DAGVQ I CLACRKRRK
KRCMRHAMCCPGNYC
RGE I EET I TES FGND
KPVLKEGQVCTKHRR
AAGATRVF VAM VAAA AG AT RVF VAM VAAAL G A T R V F V A M.V A A A L AM VAAAL G G H P L L G V
MVAAALGGHPLLGVS
ALGGHPLLGVSATLN
LGGHPLLGVSATLNS
GO H LG VSTP L L G V S A V
PLLGVSATLNSVLNS
TLNSVLNSNAIKNLP
LNSV L N S NA I KN L P P LG GGAAGHPG SASAAP AGHPGSAVSAAPG IL
PGSAVSAAPGILYPG
S AA PG I APGYL Y P G
YPGGNKYQTIDNYQP
PYPCAEDEECGTDEY
DEECGTDEYCAS PTR S PTRGGDAGVQI CLA TRGGDAGVQ I CLACR RGGDAGVQ ICLACRK
RKRRKRCMRHAMCCP
YCKNGICVS SDQNHF VSSDQNHFRGE IEET NHFRGEI EETITESF HFRG l E E TI T ES FG score Seq. ID Num.
18 18 18 18 18 18 18 17 17 16 16 16 16 16 16 is 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12.
12 TABLE XXV 1S1P1C7A DICKOPF-1 HLA-DRB1*0401 (DR4Dw4) 15 mers 12 34 5 67 890 12 34 5 score 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Seq. ID Num.
TABLE XXVI 151P1C7A DICKOPF-1 HLA-DRB1*1101 15 me rs 12 34 5 678 9 012 34 5 score Seq. ID score Num.
203 71 216 172 196 244 11 39 93 129 107 109 137 165 176 217 231 162 9 47 116 V LK E Qp PYP K G S H K G Q E W S K I A S N S L GG H L GG A A L G G N A IK Q T ID G GD A V S S D R RK R K R C M R GE I S SK M G S VC G S H G E G LS L PP P T TL S A A LG G S A V M CC P 00 00 TABLE XXVI 15lP1C7A DICKOPF-. HLA-DRB1*110l 15 me rs 1 2 34 56 78 90 12 345 score Seq. ID Num.
http:/www.bnii-heidetherg.con/syfpeithi TABLE XXIII 151P4E11 HLA- DRB1*0O101 15 mers Pos 12 3 4 5 78 90 1 234 5 L L W T F L F S L S L H S A A S S L L L I E L D L A L S A G G Y M R L D A L L A E D L R R T .D R L L L K AA S G.Y L AG A L T S K EA G AL S LL AA L AL S L SA L HL A S S A AA L WS
PEHA
H AV F L S L PA LL L A S A G SF M K P L S F P AA VG N L DR score 32 28 28 26 26 26 24 24 24 24 24 24 23 22 19 19 19 is 18 Seq. ID Num.
TABLE XXIII 151P4E1l liLA- DRB1*010. 15 rners 1 234 56 7 89 012 345S score 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 Seq. ID N~um.
TABLE XXIV 1S1P4E11 HLA- DRB1*0301 (DR17) 15 mers 1 23 4 56 78 90 12 345 K E L S D R D K K R P A T I I I L K A S T S D M D L S L
.SD
L P L L A A A G
F'L
F L A G L A A A P H E D G S L L A L H A L L P A DR L KE A P A A S K R ED D G WT S F L F LH LD R A AL R PE FD R S S E A L S T S K S E D L S A SA G P H A L K E AG A L L D AA A A G L H RS G SF I P E S A S G LW R S F AA S E D I score Seq. ID Nqum.
21 19 19 18 18 18 18 16 16 16 16 14 14 14 14 14 14 13 13 13 13 13 12 12 12 12 Poe 2 1s 31 32 64 78 1 13 56 72 82 91 98 108 TABLE XXIV 1S1P4E11 HLA-
DRBI
t O3O1 (DR17) 15 mers 1 2 34 56 78 90 1 2345 A RG SA L LLA S LL L AA A AA L SA SA GL WS PA K K R GWT L NSA GYL L GP RGW TL NS A GY LL G PH R EL RP E DD MK P GSFD G SF D R S IP E N N INM R T DR SI PE NN IM R T IIE N I M RT I IE F L S F L HL M A ROGSALL LA SL LL A LL A AALS A SA GL WS P W S PAK EK R GWTILJN SA PHA VOGN HRS F SD KN G DK NOGLTS K RE LR PE D M KPG S FD RS IP EN NI PE NN IM RT I IE FL SF I E FL S FL HL KEAGA L H L KEA GA LDR L LD LP LL DL PA AA S SE D IER TABLE XXV 1S1P4E11 liLA- DRBL*0401 (DR4Dw4) 15 mere 12 34 56 78 90 1 2345S S L LL AA AL SA SA GLW I IE FL S FL HL KE AGA F L S FL HL KEA GA LDR GOSA LLL A SL LLA A AL A LL L AS L L L A AA L S A L AS L L LA AALS A SA G A S L L LA A AL S AS AOGL N N I M R T I I E F L S F L H M R TI IE FL SF LH LKE R TI I E FLS FLH L KE A I EFL S FL HLIKE A GA L A GA LD RL L DL PA AAS L D R L L D L P A A A S S E D L L D L P A A A S S E D I E R RGS A LLL A S LLL A AA L SA SAGL W SP A KE KR L W SP AKEK ROGW TLN S LL G PH AV G NHR SF SD N H R S FS D K N G L T S K R S I P E N N I M R.T I I E F L L D L P AA AS S E D I ER S A GL W SPA KEK RG WT L K R GOW T L N S AG Y L LOGP S A G Y L L C P H A V G N H R P G5 F D RS I P E NN IM R S A LL LAS L LL A AAL S AA AL SA SACGL WS P AK GOW T L N SACG Y L LOGP H A A G Y LL GPHA VGN HR S P H AV G NHRS F S DKNCG K RE LR PE DD MK POS F ED D MK PG SF DR S IPE D R SI PE NN IM RT IIE E N N I M R T I I E F L S F. L F LH L KE A GA LDR LLD score Seq. ID Num.
Seq. ID Nlum.
score 26 22 22 18 18 18 18 18 18 18 16 16 16 16 14 14 14 14 14 14 14 '14 14 14 TABLE XXV 151P4E2. HLA- DRB1*0401 (DR4Dw4) 15 mers 12 34 5 678 90 12 34 5 R L A R RG0 L L L A L A A K K R N S S A P H V G S D L T L R M K K P S F F D D R M R L K K E E A A L L D L D L G SA SA L A S L SL L A A L B K R G W T A G Y GY L AV G N H R K NG S K R P ED P G S G S F D R S R S I S IP T I I
EBAG
AG A GA L D RL R L L A SS ED I A S LLL A S L L L A A A AL. S A S A L SAS A AOGL W S P L NS AG Y A G YL LG P HA VG N H AV G NH SFPS D K N D K N G L T K RE L R P P ED DM K P G SF DR S I PEN N IPE N NI N N IMR T NI TM RT I I M RT I I S FL HL K R LL DL P L LD LP A L D L P A A P AA AS S A A AS SBE score 14 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Seq. ID Num.
TABLE XXVI 1S1P4E11 ELA- DRB1*1101 15 mers 1 234 5 678 90 12 34 5 S A G YLL G PHA VG NHR FL SF LH LKE A GA L DR N NI M RT I IEF LS FLH I IE F LSPL H.LK EA GA L L LA SL LL AAA LS A A GL W SPAK EK RG WT L IE F LS F L HLK E AGAL A GAL DR LL DL PA AA S L DRL L DLP AA A SS ED H R S FS D K N G L T S K R E K N GLTS KR EL RP E DD S A GL W SPA K EK RGWT D M K P G S F D R S I P E N N S I PE NN IMR T I IEFL E F L SFL HL KE A GALD L K B AG A L D R L L D L P A L L G PHA VG NH RSF SD G P H A-V G N H R S F S D K N E L RP ED D MK PG SFDR E D DM KPG S FD RS IPE G SA LL L AS LL LA A AL L L AS L L L A A A L S. A S A G WTL N SAGY L LG PH A K R EL R PRDD MKP G SF S AL L L AS L L L A A A L S L A SL LL AA AL SA SAG A S LL L A AAL SA SAGL score 22 19 19 18 18 18 18 18 16 16 14 14 14 14 13 13 13 13 12 12 12 Seq. ID Num.
Pos TABLE XXVI 15lP4Ell HLA- DRB1*1101 15 mers 12.234 5 67 89 01 2 345 S L L L A A A L S A S AG L W L LL AA AL SA S AGL WS A A AL S ASA GL WS PAK K RG WTL N SAG YL LG P L N SA GY L LGPH A VGN R T II EFL SF L HL KEA G AL D RL LDLP AA AS S D RLLD L PA AA S SED I score Seq.
ID
score Num.
12 12 12 12 12 12 12 12 TABLE XXIII 154P2AO HLA- DRB1*0101 15 mers 12 3 456 7 890 12 34 5 Poe 216 154 251 93 119 162 12 48 204 150 163 46 47 123 126 4 78 9 53 56 64 212 229 259 280 37 42 44 51 67 74 87 128 149 166 168 217 237 254 277 V A S I N Q T F V L s V N N L Y H T S R V C V L p F A N Y T N L F Y K L F v S I V, w S c I S A V -L D H N T I V L I I A S F F D L S I I M A V S R I R F S L P V.I L T K V R VV R IV A NM W V I H G Q I F V TY V SI T V Im LI I I IF V HD T S V F L A KL N IV N E L IL L N G L FE HI VA V IH K TC F L D E D T I P VL LY L A S I LN G R N K F YL TL T L GL Y S I A V L LES L I LI
ISQ
V AV DR L Y L I score Seq. ID Num.
36 33 32 31 29 29 29 28 28 27 27 27 27 27 26 26 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 23 TABLE XXIII 154P2A8 HLA- 00 DRB1*0101 15 mers Pos 2 4 56 78 9 1 3 45 sore Seq. ID Pos.123 5678 012 45 sore Num.
77 1FY L KN IV VA DL I MT 23 V ADL IM T LTF PF RI V 23 Ct138 D RYL KVV K PF GD S RM 23 267 P Y HLC RI PF T FS HLD 23 41 D TIV LP VL YL I I FVA 22 W IFF HI RN K TS F IFy 22 109 FKF IL CR YT S VL F YA 22 110 KF IL C RY TSV LF YA N 22 157 FT KV LS VC VW VI MA V 22 255 RVV VA VF F TC F LP YH 22 83 1IVVA DL I MTL T FP FR 21 108 YF KF IL CR YT SV LF Y 132 LG LI SID R YL KV VK P 146 P F GDSR M YSI T FTK V C1165 VW V IMA V LSL P NI IL 00 272 RIP F T FSH L DRL L DE 290 KIL Y YC KE I TL FL SA 52 1IFV A SIL LN G LA VWI1 19 73 K TS F I F YL K NIVVAD 19 SF IF YL KN IV VA DLI1 19 91 TL TF P FR IV HDA G FG 19 101 DA GF G PW YFK FI L CR 19 106 PWY F K FIL CR YT S VL 19 107 W Y F KFIL CR YT S VLF 19 118 SV LF YA N M YTSI V FL 19 135 1S ID RY LK VV KP F GD 19 140 YL KV VK PF G DS R MYS 19 173 S LP NI IL T N GQ PTED 19 206 AV TYV N SC L FVA VL V 19 218 VL V ILI G CYI A IS RY 19 FD T IVL PV LY L I IFV 18 84 VV AD L IMT LT F PFRI1 18 137 1IDR Y LKV V KPF G DSR 18 141 LK VV KP F GDS R M YS1 18 144 VK PF GD S RM YSI T FT 18 152 MY SI TF T KVL S V CVW 18 172 L SLPN II LT N GQ P TE 18 190 H DCS KLK S PL G VKW H 18 192 CSK LK S PL GV K WH TA 18 222 LI GC YI A ISR YI H KS 18 230 SRY IH K SS RQ FI S QS 18 262 F TC FL PY HL C RI PFT 18 274 PF T FS H LDR LJD E SA 18 33 NTT L HN RF D T IV LPV 17 81 K NIV VA DL I MT L TFP 17 82 N IVV AD LI MT LT F PF 17 113 LC RY TS V L FYA NM YT 17 124 NM YT S IV FL GL I SID 17 164 CV WVI M AV L SL P NI1 17 174 LP N IIL T NGQ PT ED N 17 186 ED N I HDC S K LKSP LG 17 196 KS P LG VKW HT A VT YV 17 198 PL GV K WHT A VT Y VNS 17 207 VT YV NSCL FV A VLVI1 17 209 YV N S CL V A VLV ILI1 17 226 YI A IS R Y I H K SRQF 17 263 TC FL P Y HLCR I PF TF 17 281 D RL LD E SAQ KI L Y YC 17 TABLE XXIV 154P2A8 lILA- Poe DRB1*0301 (DR17) 15 mere Pe12 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I 81 K NI V VAD LI M4T LT FP 168 1IM AVLS LP NI I LT NG 28 Ct4 NL TL A KLP NN E L HGQ 26 281 DR LL DE SA QK I LYY C. 289 Q KI LYY C KE IT L FLS W IFFHIIR N KT S FI FY 22 132 L GLI SI DR Y LIKV V KP 22 51 IIF V AS IL L NGL A VW 21 VA DL I M TLT F PF RIV 21 P F RIV HD A GF GP WYF 21 215 FV AV L VILI G CY IAI1 21 048 L YL II FV AS IL LN G L 77 I F YL KNIV V ADL I MT 109 FK FI LC RY TS V LF YA 00110 KCF IL C RYT S VLF Y AN o0 .129 1IVFL GL I SID RY L KV o198 PL GV KW HT AV TY V NS ci204 HT AV T YVN SC L FV AV 251 NQ S I RVV V A VPFT CF 47 VL YLI IIF V AS IL L NG 19 67 FF HI R&NKT S FI FY LK 19 131 F L G LI SI D RY L KVV 19 175 PNI I LT NG QP T EDNI1 19 186 E DN IH DC SK L KS PLG 19 211 NSC L FVA VL V IL I GC 19 254 1IR VVV AV F F T CFLJPY 19 257 V VAV F FT CF LP Y HLC 19 42 TI V LPV L YLI I FV AS 18 56 SI LL N GLA VW I FF HI 18 63 A VW IFF HI R NK T SFI 18 93 T FPF RI V H DAOGF GPW 18 116 YT SV L FYA NM YT S IV 18 134 LI SI D RYL KV V KP FG 18 230 S RYI HK SS R QF IS QS 18 255 R VVV AV F FTC FL P YH 18 259 A VF FT CFILJPY HL C RI 18 288 AOQKI LY Y C'KEIT L FL 18 73 KT S FIFY L K NIV V AD 17 74 T S FI FYL K NIV V ADL 17 89 IM TL TFPPF R IVH D AG 17 143 VV KP F GDS RNMY SI TF 17 238 RQ FI SQ S SR K RK HNQ 17 272 RI P FT FS HLD RL L DE 17 N R SDGP G KN TT L H NE 16 37 H NE FDT IV LP V LYLI1 16 188 N I HD C SKL KS PL GVK 16 274 P FTF SHL D RL LD E SA 16 282 R LL DE SA Q ILY Y CK 16 41 DT IV L PV LY LI I FVA 54 V AS ILL NG LA V WI FF 192 C S KLIKCS PL GVK WMHTA 1s 203 W HTA VT Y V N SCL FVA 279 H LDR L LD ES AQ.K IL Y is 280 LDR L LD E SA Q KI Ly 2 G FNL TL AK LP N NE LH 14 22 NS G NR SDG PG K NT TL 14 A SI LL N G LAV WI F FH 14 TABLE XXIV 154P2A8 RLA- 00 DRBI*0301 (DR17) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
64 VW I FF HI R NKTS F IF 14 102 AG FG PW Y FK FI LC RY 14 Ct207 VTY V NS CL FV AV LV 1 14 264 C FL P YHL C RI PF TFS 14 TABLE XXV 154P2AS HLA- DRB1*0401 (DR4Dw4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
64 V W IFF HI R NK TS FIF 28 154 S IT FT KV LS VCV WVI1 28 200 GV KW HT A VTYV NS C L 28 4 NL TL A KLP NN E LH GQ 26 48 L YL I IFV AS IL LN GL 26 C161 GLAV WI FF HI RN K TS 26 00 74 T S FIF YL K NIV V AD L 26 131 FL GLI S ID R YLK V VK 26 165 VWV IM A VL S LPN I IL 26 168 1IMA VL SL P NII LT NG' 26 255 R VV V AVFFT C FL PY H 26 37 HN EF DT IV L PVL YL 1 22 46 PV LY LI I FV A SIL LN 22 62 L AV WI F FHI RN K TSF 22 106 P WYF KF ILC R YT S VL 22 113 L CR YTS V LFY A NM YT 22 119 VLF Y AN M YT SIV F LG 22 123 AN M YTS IV FL GL ISI1 22 128 SI V FLGL I SI DR Y LK 22 150 S RM YSI T FTK V LS VC 22 212 SC L FV AV L VlL IG CY 22 223 1IGC YI AI.S RYI H KS S 22 259 A VF F TCF L PYH L CR 1 22 274 PF T FS HL DRL L DE SA 22 2 GF N LT LA KLP N NE LH 12 NNE L H G E S HN S GNR 33 N TT L HN EFD T IV LPV 41 D TI VLPRVL YL II F VA 44 VL PV L YLI I FV AS IL LP V LYL II FV AS I LL 47 VLY LI I FV AS I L LNG 49 YLI IIF V AS ILL N GL A 51 11F VA S ILL NG L AV W 63 AV WI FF H IRN K TSF 1 77 1F YL K NIV VA DL I MT so LK NI VV A DLI MT L TF 81 K NIV V AD LI M TL TFP 82 NI VV AD L IMT LT F PF 116 Y TS VLF Y AN MY TS IV 117 TS VLF YA N MY TS I VF 126 YT SI V FL G LIS ID RY 132 LG LIS ID R YL KV V KP 141 L KVV KP FG DS R MYSI1 149 D S RM YS IT FT K VLSV 157 FT KV LS VC VW VI M AV 162 SV CV WVI M AV LS L PN 166 WV IM A VLSL P NI I LT 204 HT AV T YV NSC LF V AN 211 NS CL F V AVL V IL IGC TABLE XXV 154P2A8 HLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos
VA
AV
YI
SR
RQ
PY
F S
LD
DR
TT
IF
WY
VV
LS
TE
LI
HK
HL
KT
TF
DA
GP
YF
SV
ID
VK
VC
AV
SR
FT
FL
RI
FK
KS
LA
FD
TI
AS
SI
LN
VA
AD
DL
IM
P F
FR
KF
IV
LI
DR
MY
TK
VL
CV
MA
VL
LP
PN
IA
A I
SR
IS
K H S H
AQ
IL
L Y
LP
AV
S V
SI
Q P
KS
I H 'S R K I
VV
F G
IL
Y T
VL
IV
G D
IT
LP
AV
RK
IP
T F L L L F
VT
Q E I I F V
IF
F F
IR
FR
RI
IV
H D
PW
W Y F Y Y L
KP
DS
VC
MA
VL
PN
TN
G Q
TE
ED
Seq. ID score Num.
18 18 18 18 18 18 18 18 18 16 16 16 16 16 16 16 16 16 16 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Poe 186 207 213 215 218 219 224 251 253 254 270 288 289 TABLE XXV 154P2A8 HLA- DRB1*0401 (DR4Dw4) 15 mers 12 34 5 678 90 12 34 5 E D N IHDC SKL KS PL G V TY V NS CL FV AVL VI C LF VAV LV I LI G CY I FV AV LV ILI GC Y IA I V LVIL I GC YI AI SR Y L V IL I GC YI A ISRYI G C Y IA ISR YI H KSSR NQ S IR V VV AV FF TCF S IR VV V AV FF TC FLP I R V VVA VF FT CF LPY L CRI P FTF S HLDR L L A Q KILY YC KE IT LF L QKI L YY C KEI T LFL S TABLE XXVI 154P2A8 HLA- DRB1*1101 15 mers 1 2 34 5 67 89 012 345 score Seq. ID Numn.
00 Pos 137 223 274 64 92 213 107 131 186 123 162 226 37 44 73 217 113 154 171 2 611 277 89 106 119 206 212 46 61 63 91 93 128 163 238 134 143 I D I G P F v W L T C L W Y F L E D A N S v Y I H N V L K T A V L P W I
L.C
S I V L P Y F S S F I M P
W.
V L A V S C P v L I G L A V T L T F S I V C R Q L I v v L K I A S H F H F R A V F I I S H D T S W V S R D T L Y I F I L Y L H I T S T K P N C R D R Y L T F K F
AN]
V N V A L I V A w I F FJ P FJ R I L G V II S Q~ D R F GI1 score* Seq. ID Numn.
32 23 23 22 21 21 21 19 19 19 19 18 18 18 18 18 18 18 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 TABLE XXVI 154P2A8 lILA- DRB1*1101 15 mers 12 34 56 78 90 12 34 5 Poe score Seq. ID score Num.
TABLE XXIII 156P1D4 lILA- DRB1*01O1 15 mers 12 34 5 67 8 9012 34 5 score Seq. ID Num.
Pos 104 153 1 23 46 51 82 117 198 16 22 44 112 .120 142 146 200 Pos 139 42 91 190 43 so 51 129 170 34 36 44 122 171 177 22 33 53 87 204 59 74 155 159 182 63 108 128 TABLE XXIII 1SEPt04 HLA- DRB1*0101 15 mers 1 2 345 67 8 901 2 345 F KAM VA F SMR K VPN R A I RM NK NR I NN AFFL I I IV A IAL LIL S GIW M LW LL FF LV TA I HAE T A IHA E LC Q PG AENA N AF KV RL S I RTA LGD E E YL FK AM V AFS MRK K A MV AF SM R KVP NRE S F W'F V V T D P S K N H T L F L ND QT L EF LKI PST S DP L DM K GGRI NDA F L FF LV TA I HAEL CQ P LCQ P GA E NAF K VRL S E NAF KV R LSI R TAL G T N E EYL F KA MV AFSM I N NA FF LN D QT LEFL D Q TLEFILJKI PS T LA P I W III F GV IF CI IIv I FOGV I F CI I I VA IA L P L DM KOGGHI ND AF MT TABLE XXIV 1S6P5C12 liLA- DRBI*0301 (DM17) 15 mers 12 34 56 78 90 12 34 5 L FH L SV D SEH RR QGI TLIJIL L LG G PLA LL LV C TD MS D ITK SYL SE R S M GF K KT G QSFF CVW L II L LL GOG P L AL L L V S P L ALL LV S GS WL LAL L A LL LV S G SWL LALV D P TL RE K RLQL F HLS Y SE VI LD TG T IQ LSA ROQL LKL PR T LIL LL G L L K L 'P R T L I L L L GOGP P RTL IL L L qGP LAL L I L LLGG PL AL L LVS G VFPS I SLJF PA LW F LA K V G A L P VD D P T L R E K R S E V I L D TOGT I Q L SA M T G TIQ0L SAM ALY Q SM S R GM AE HA PAT F RQL FR QL L KLP RT L ILL L L LLV S GS W LL A LVFS DMT L CTD M SD IT KS Y W A R LVA LH TV HF IYH S WLL AL V FS IS L FPA L WFLA KK P WT EY VD M L C T D M S D I T'K S Y L S E K A LV RT VLQ F ARDQ G R T VLQ F ARD QGY SE V LSA MA LY QS M GF K KT Q W VVGL L S R GM AEHA A LVF S IS L FPAL W FL C F WV AE S E EK VV G MV DDP T LR EK RLQ0L FH L score 27 24 24 24 23 22 22 22 22 21 21 21 21 21 21 21 21 19 19 19 19 19 19 18 18 18 18 score Seq. ID Num.
19 19 19 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 Seq. ID Num.
TABLE XXIV 156P5C12 HIA- DRB1*0301 (DR17) 15 mers 1 23 4 56 78 9 012 345 Pos 158 161 3 .7 141 26 71 164 17 41 52 151 198 126 67 115 116 118 123 200 score Seq. ID Num.- TABLE XXV 156P5C12 MLA- DRB1*0401 (DR4Dw4) 15 mers 12 34 56 78 9 01 234 5 score 28 26 26 26 26 26 26 26 22 22 22 22 22 22 22 22 Seq. ID Num.
00 00 TABLE Xxv 156P5C12 HLA- DRB1*0401 (DR4Dw4) 15 mers 1 234 5 67 890 12 3 45 Pos 171 204 7 27 81 128 133 151 152 169 63 79 98 161 167 185 190 212 188 18 36 42 43 44 52 S3 61 71 83 108 118 119 122 124 134 136 139 154 159 172 179 182 184 205 207 E V A R K Y L S H A W T y V D P E K G I I A Y S A T L V K P K S L Q Q G A L M G V H Q s G L L K L I I L L L L L L L L A F S P A E Y F w V G G M G A L P K R L Q F H K A T V V I I Q S A
MA'
R L V A D TG T A L H T S D RQ M A EH T F R Q V DM T T L C T R E K R Q L F H A LV R L V RT I L DT Q LL K I SL F E YV D S ER G R D QG E VI L S M G F K TG Q Y HL P F KK T R GM A R TL I L GG P G G PL G P L A S GS W G S W L F S I S L F P A F LA K M TL C E S EE G A LP A L PV V D D P D PT L L FH L H L S V V D S E R TV L F AR D T GT I A MA L L YQ S Q SM G L HT V T VH F
QOL
H F V V P A L K C T M S Q L S V V L L Q T I P R A L T L C F S -E T G K T F F S K Q s H A L L A L L L L L L A A L F p W F P w D M V v D D D P L R E K V D S E R R F A G Y L -S Q S G F K K F I score 18 18 18 18 18 18 18 18 18 18 16 16 16 16 16 16 16 16 16 is 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Seq. ID Num.
Seq. ID Num.
TABLE XXIV 156P1D4 HLA- DRB1*0301 (DR17) 15 mers 1 23 4 56 7 8 9 01 234 5 Pos 114 24 37 N A F F L A F K V R D K AY A E FL K AL G D E YL F score 29 27.
24 TABLE XXIV 156P1D4 liLA- DRB1*0301 (DRl7) 15 mers 12 34 5 67 890 12 34 5 Pos score 23 22 21 19 19 19 18 18 18 18 18 17 17 17 17 16 16 16 16 16 16 1s 14 14 14 14 14 Seq. ID Numn.
Seq. ID Num.
TABLE XXV 156P1D4 liLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 345 67 89 0 12 345
R
T
L
A
H
A
W
D
V
N
I
G
M
L
A
R
E
F
A
S
F
V S L E F F F S V L V E L L K A S F A F I I V I L W W L F K L S K A T E H v W F S K N AP P LC Q AT E S F W KN R A E L Y LF K N H F LK I V A A LL I H A
HNAE
LOGD
AY A S M R VP N V TQ VS F H TL score 28 28 26 26 26 26 22 22 22 22 22 22 TABLE XXV 156P1D4 HLA- DRBI*0401 (DR4Dw4) 15 mers 12 34 5 678 90 12 34 5 Pos 93 102 120 139 143 147 150 151 152 153 155 157 160 186 187 193 49 59 62 63 68 94 ill 131 190 22 47 82 113 140 163 6 9 13 51 84 96 104 109 115 123 125 129 133 141 142 146 176 200 205 score 18 18 18 18 18 1s 18 18 18 18 18 17 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Seq. ID Num.
Seq. ID Num.
TABLE XXVI 156P1D4 HLA- DRB1*1101 15 mers 1 2 3.4 5 6 7 8 9 0 1 2 3 4 5 RV SF W FVVT D PS KN H score TABLE XXVI 156P1D4 lILA- DRB1*1101 15 mers 1.2 3 456 78 9 0 1234 5 Pos score Seq. ID Num.
23 23 23 21 19 19 19 18 18 18 18 17 17 16 16 1s is is is is 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 TABLE XXVI 156P1D4 HLA- DRB1*1101 15 mers 12 34 5 678 90 12 34 5 G0I P S P L DM L LF F A Y AW L IL S KG G N DA
HMAE
Y LF RR K H I N F MT L C Q K A M N KE score 12 12 11 11 11 Seq. ID Num.
TABLE XXIII lSSP5C12 HLA- DRB1*0101 15 mers 12 3 456 78 90 12 34 5 score Seq. ID Num.
14 41 197 116 115 204 213 59 33 48 98 169 201 182 18 34 42 44 58 61 119 175 176 51 171 188 210 11 22 62 84 91 179 190 39 63 107 57 79 96 146 Q w T L R T Q S
K*V
L A E K A R H F W L R Q O P K S C V F S S A G L L I L L V S S w L A G M D T
TOQ
A L E V Q S
HMT
S D R G A L Y v TD1 I Q
MOG
P R L V A T C F
GOS
K P I T E H
QOC
S R O P
OGG
A R A L G S G A T V S S S I R T V S G S
TOG
A L R G A L S M A E T L P L A L A L F S S L V D S A A M S W T I
TOG
H L G L P A L F T D K S L Y 0 S F P
XKL
E E V F D M E R A K VyR E H L L L L L H D P A L D D
YRH
S L P A L L L L V A L S H F H A A K K T A T
LOG
L V
SOG
I S F P L W L R Y Q
QS
L V A M F C K V G M Q L w F I T E R O F v W A L F L L I G M L F T D F W R .T Q F Poe TABLE XXIII 156PSC12 HLA- DRB1*0101 15 mers 1 2 345 6 789 0 12 345 M A L Y Q S M G F K K T G Q S' I R K YQES D RQ WV VGL I SL F PA L WFLAK KP W L F PA L WFLA KK P.WTE F P AL WFL A KKPW T EY T E YV D MTL CT DM SDI C FW V AE SE E KVV GMV E SE E KVV GMV G AL PV D PT L REK R LQ LF H LS D SEH R RQG I AKA LV R G I AKA L V R TVL Q FA V L Q F AR DQ GYS EVIL Y SEVI L DTG T IQ LS A QS MG FK KT GQ S FF CV Q S FFC V WA R LVA L HT A L L L VS GS WLL ALVF V S G S W L L A L V F-S I S L W F LA KKP WTE YV D MT W TE Y VD MT LC T DMSD TD M SD ITXS Y L SER G G S C FW V AES E EK VV G P V DD PT LR EK RLQL F TLR EK R LQL F HL SV D L R E K R L Q L F R L S V D S A KA LV RTV L QFA R DQ L VR TVL Q F A R DGY S LQ F ARDQ G YS EV IL D A M A L Y Q S M G F K K T G Q C V W A RL V AL HT V HF I A R LVA L HT V HFI YHL Y Q ES D RQ0WV V GLL S R G LLS RG MA E HAP AT F T FR QL L KL PRTL IL L L L KL PR T LI LL LGGP L I L L L G G P L A L L L V S L LL G GP LA L LLV SGS La LL V S G S W L L AL V FS SIS L FP AL WF LA K KP A L W F L A K K P W T E Y V D A E S E E K V V G M V G AL P R EKR LQ L FH L SV DSE R L QL FH LSVD SE H RR K AL V RT V LQ FA RDQG D Q G Y S E V I L D T G T I Q E V IL D TO0 TI 1Q L S A M A T V H F IY H La P S S K V O S TABLE XXVI 156P5C12 HLA- DRB.1*1101 15 mr 1 234 5 678 90 12 34 5 Q WVVG L LS RG MA E HA QS F FC V WA RL VA LHT LHT V HF IY HL PS .S KV P A T FR QLLK LP R TLI D QG YS E V IL DTG TIQ F RQ L LKL P RT L ILL L GS W LL AL VFS IS LF P score Seq.
ID
score Num.
19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 score 26 26 26 24 22 21 21 Seq. ID Num.
TABLE XXVI 156PSC12 HLA- 00 DRB1*1101 15 tners Pos 1. 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID 115 EE KV VG MV G AL P VDD 21 Nm 141 HL SV DS E HRR QG I AK 21 Ct71 FP AL WF LA KK P WT EY 91 C TD MSD IT KS YL S ER 158 VR T VLQ FA R DQ GY SE tn13 DRQ W VV G LLS RG M AE 19 41 R T L I L L L G G P L A L L L 19 62 LAL VF S IS LF PA L WF 19 72 PAL WF L AK K PW T gYV 19 197 GQ S FFC VWA R L V ALH 19 6 1RK Y Q E SD RQW V VGL 18 48 G G PLA LLLJV S G SW LL 18 _119 VG MV GA L PVD DP T LR 18 179 TI Q LSA M AL YQS M GF 18 201 FC VW AR L VAL H TV HF 18 00 151 QG I AK ALV R TV LQ FA 17 185 M A LYQ.SM GF KK T GQ S 17.
68 1S LF PA LW F LA K KPW 16 C182 W TEY VD MT L CT D MSD 16 11 ES D RQ WVV GL L SR GM is 109 FW V AES E EK V VG MVG 112 AE SEE K VV GM VG A LP 1s 147 EH R RQ GIA KA LV R TV L LSR G MAEH A PA T FR 14 38 KL PR TL IL L LG G PLA 14 67 SIS LF P AL WF LA KK P 14 79 KK P WT EY VDM T LC TD 14 133 RE KR L QLF HL SV D SE 14 154 A KAL V RT V LQ FA R DQ 14 186 AL YQ SM GF KK TG Q SF 14 14 RQW V VG L LS RG MA EH 13 37 LK LP RT L IL L L G PL 13 52 A LL LV S GS W LLA LVF 13 96 DI T KSYL S ER GS CF W 13 113 ES EE KV V GM VG A LPV 13 136 R LQL F HLS V D SE HRR 13 172 E VILD T GT IQ LS A MA 13 213 V HFI YHL PS S KV G SL 13 18 VGL LS RG M AE H AP AT 12 19 GL LS R GM AE H APA TF 12 39 L PRT LIL LL G G PL AL 12 PR T LIL L LGG PL A LL 12 47 LG GP L ALL L V SGS WL 12 P LA L LL VSG SW L LAL 12 56 VS GS W LL AL VFS I SL 12 59 S WLLA L VF SI SL F PA 12 61 L LA LVF SI SLF P A LW 12 84 EY V DM TLC TD M SD IT 12 116 EK V VGM VG A L PVDD P 12 127 VD DP TL RE KR LQ L FH 12 137 LQL F HL S VDS E H RRQ 12 155 KA LV R TV LQ FA R DQG 12 181. QL SA MA LY QS MG FKXK 12 188 Y QS MG FK K TG QS FFC 12 204 WA RL V AL HTV H FI YH 12 207 LV AL H TV H FI YH LPS 12 TABLE XXIII 159P2B5 HLA- DRB1*0101 15 mers 12 34 5 67 890 12 34 5 Pos 145 94 144 68 71 13 72 97 151 175 11 56 91 102 119 148 174 177 100 135 88 127 48 179 112 115 141 34 79 103 107 139 143 150 153 164 187 P LF S C T W PL S RS VL A R PT F WG P P G LA M LV A
LOGG
A A L PT F E KE QD V LP H S L G TP A W G I AA A LL R R A I L L S S P S FP P AS S S TS RL L R AP A T K LL S GE R P PS S V H LG L D P L S L L s wP I L G G VF R TQ R PG
OGG
L S L G R A L P A A P A
GOS
G L G S F P A T R G L A V A L G S A F F L F A P L S D P L S C T C s G E R R T P G A P G V H P H G C P A L F I L L G R A
TOG
A G G S D P
LOG
S L K S V s P G R R aGC R T P G S A R S L P G L A T R P A C R P A R F P A P W G L S L L W E S R L S S 5 V F
CGS
P H V A T K P A T R Q A L L a S score Seq. ID bNum.
38 33 32 27 26 24 24 24 24 24 24 24 24 24 23 23 23 22 22 19 19 19 18 18 18 18 18 18 18 18 18 18 18 TABLE XXIV 159P2BS lILA- DRB1*0301 (DR17) 15 mere 1 234 5 678 90 1 234 5 V ALL S LG L Q DPL GCR S TS F QR RGEK EL LW E S CTL VAL LS L GL QD P VL AMR A I LPP SL SK S K EL L WER GQ DV SR SV L RLL F PA PR R PGAR S P A P V SA PG NP PT G E T S FQR R GEXE L LWE R V SR SVL A MR A IL PPS W P L*F W G I L G G V F F L 0 GGV FF L GSR AC T RT Q score Seq. ID Num.
26 23 21 18 18 17 17 17 17 17 Pos.
171 185 2 61 74 97 137 138 174 179 204 43 56 68 101 136 147 175 69 100 151 177 TABLE XXIV 159P2B5 HLA- DRB1*0301. (DR17) 15 mere 1 23 4 56 78 9 012 345 T G P A A A LL R L L F PA P P R R P G A R S R AG Y AS P VK R E HG QER PTF W GW W ERG Q DVS RS V LA MR M R A I L P P S L S K S VH F L VA LL SLG LQ DP LG C S A SL LL SW PL FW GIL A SL LL SW PL FWG IL G AA A LLR LL F P APRR P R LLFP A PR R PG AR SR R RS PGT AHK GS L PW P G GF L GST S FQR R GEK E KE L LW ER GQ DV SRS S R S VLA MR AI LP PSL C T LV A LL SL G LQDPL L SL GL Q DPL GC R APA P SA8L LL SW P LF WG I F WG I LG GV F FLGS RA A AL LRL LF P AP RR PG R SVLA M RA IL PP SL S RA IL P PSL S KSV H FP L LS L GLQD PL GC R AP L GG V FFLGS R AC TR T L LR L LFP A P RRP GAR TABLE XXV 159P2B5 I{LA- DRB1*0401 (DR4Dw4) 15 mere 12 34 56 78 90 12 34 5 score 17 16 14 14 14 14 14 13 13 13 13 13 13 13 13 12 12 12 12 12 Seq. ID Num.
Poe 94 11 152 179 56 71 88 98 127 148 151 178 61 67 124 135 155 13 42 141 144 145 193 S V S c P T G G R L P A E K V L R A F P C T V A A S W G L G L R L W W E V S T L S p F F R P F W G G L L w P P L R A L P L L A A G S P R P G E R I L S L S c L S .G L P C V F L G A P D V V S A M L P L L A C W A T P S T F w I L P ~G score 28 26 22 22 22 18 18 18 18 18 18 16 16 16 16 16 16 16 Seq. ID Num.
TABLE XXV 159P2B-5 HLA- DRB1*0401 (DR4DW4) 15 mers 1 2 34 56 7 890 12 345 POE soe Seq.
ID
score Numn.
TABLE XXVI 159P2B5 HLA- DRB1*1101 15 mers 1 2.3 4 5 6 7 8 9 0 1 2 3 4 5 S V HF PPL PHS C T LVA R L L F P.A P R R P G A R S R P PS LS KSV HF PP LP H L R LLFP AP R RP G ARS T LSAS SL PR P CS PS A SR SV LAM R A ILP PS L G GVF FL GSR A CT RT Q L V AL LS L GLQ DP LGC W GI L G GVF F L GSRAC A A AL L R LLFP A PRRP F W G W A A T P AP V S A P G L L SWP LFWG I LGG V F W PL FW GI L GG VF FLG R PTF WG WA AT PA PV S P T F W G W A A T P A P V S A P LFWG I LG GV FF LG S AC TR TQ0AR R HT GP AA P AP RRP GA R SR A GYA W E R GQDVS R S VLA MR A IL P PSL S KS V HFP P LP H SC T LVA LL S LGL F W G I LGGV FF L GS RA T GP A AA LL RL LF PA P L LR L LF P APR RP GAR Y A SP GSPER R SP GT A N P PTG E GE RQ GS PPG R RG E KE LL WE R GQDV Q DV S RSV LAMR A IL P S L G L Q D P L G C R A PA T G LQ DP L GCR A PA TKP L'G C RA PA T KP TP AGA G A TL SA SS LP RP CSP L G G V F F L G S R A CT R T F L G S R A C T R T Q AR R H CTR TQ A RR HT GP AA A A S P G S P E R RI S P G T A H E R RS PGTA H KGS LP W K EL L WE RGQ DV S RSV LA MR A IL PPS LS K SV M RAI L PPS9L S KS V HF FPP L P HSC TL VA LL S C TL VA L LS L GL QD P.I A LL S LG LQ DP L GCRA score 24 24 22 22 19 19 18 18 18 17 17 17 16 16 16 16 16 1s 1s 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 Seq. ID Num.
Pos TABLE XXVI 159P2B5.HLA- DRB1*11O1 15 mers 1 23 4 567 89 0 1 2345 L G L Q D P L G C R AP A T K TA HK G SLP W PLA L RL RS VL AM R AIL P PSL S V LA MRA IL P PSL S KS S KSV H FP PL PH SCT L S CT L VALL S LGL QD P AS SLPR P CS P SA SL L CS P SA SL LLSW P LF W A SL LLS W PLF WG IL G G P AA AL L RL LFP APR AA L LR L LFP A PRR PG FL G STSF QR R GE KE L TABLE XXIII 161P2B7a HLA- DRB1*0101 15 mers 1 2 34 56 7 8901 2 345 score Seq. ID Numn.
142 138 74 130 37 72 100 120 121 132 145 103 106 117 124 139 152 153 129 174 56 3 27 87 91 133 173 42 66 67 68 73 79 107 154 v N A T G L L I M M R E G V Q Q H p P H F P A A Q A L Q H H A A L P A S T L H K R L G L Q N T K N E D E A P N V P A L R E N N Q Q L V L S Q Q L v v V G L A P L G A
FP
E L L I V Q H L L A A P D S
QOL
L D L H H A L A V V V A M F E Q G V K A S H R R I K L E T H y v G A P P L K L G Q L L R H K I G F E D S A A A LR M AUDS A A T L A A S Q F A PP F S QR L G AA S A QL Q A A HA A HA P P F G L A S A A Q LD S S A VA P H LA P ym m TL LAA A AA A A AA A P AP P L NE L L I GA K KMH A A RV Q A K C R Q R R'S R LF D Y P DA N VG A L R MP F GL P A K KH L SE A H KG0 V K G V L* G VL I A A S Q A CR V A VA H A A AA ~score Seq. ID Num.
34 32 28 27 27 24 24 24 24 24 24 24 22 22 22 22 22 22 22 21 19 19 18 18 18 18 18 18 18 17 17 17 17 17 17 17 TABLE XXIII l61P2B7a HLA- DRBI*0101 15 mers 1 2 34 56 7 89 01 2345 Pos A AA A A AA K T S K N R L K A K H A A R S R T N E LE F D E T E TH Y L G L S S EA R N RR A S Q FE V A P Y R MP F Q LD S V A HA HRAP Y F GL P P LA T L AA D S AA S A A S V T T T S S I K H L G F T L F y P D A A R Q V C R C R N V Q V V A
RH
M F A T A A A S V A A A score 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Seq. ID Num.
TAB3LE XXIV 161P2B7a HLA- DRB1*0301 (DR17) 15 mers 12 34 5 67 89 01 234 5 score 24 22 22 19 19 19 18 18 18 18 17 17 17 17 17 16 16 16 16 16 1s 14 14 14 Seq. ID Num.
TABLE XXIV 161P2B7a HLA- 00 DRB1*0301 (DR17) 15 mers Pos 1 234 5 67 890 12 3 45 score Seq. ID Num.
EL ER LF DE TH Y PD AF 13 120 H HH LH PH LA AH A PYM 13 Ct140 PFG L P LAT LA A DS AS 13 .155 A AS VV AA AA AA K TTS 13 41 RE EL S QRL GL SE AR V 12 SQ RL GL SE A RVQ V WF 12 47 RLG LS EA R VQ V wF QN 12 K GV LI GA A SQF E ACR 12 98 A LR M PFQ Q VQ AQ LQL 12 109 Q LQL DS AV A HAH H HL 12 156 A S VVAAAAAA K T TSK 12 6 QT KI KQ RR SR T NF TL 11 16 TNF T L EQ LNE LE R LF 11 31 DE T HYP D AF MRE E LS 11 113 DS AV AH A HHH LH P HL 11 00 138 AP P FG LPL A TL A ADS 11 166 K TTS KN S SIA DL R LK 11 171 NS SIA D LR LK AK K HA 11 TABLE XXV 16lP2B7a HLA- DRB1*0401 (DR4Dw4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
37 DA FM RE E LSQ RL G LS 26 76 GV L IGA AS Q FEA CR V 26 1s RT NF T LEQ LN E LE RL 22 V AP YVN V GAL R MP FQ 22 100 R MP FQQ VQ AQ LQ LD S 22 LE QLN EL E RL FD E TH 26 LE RL F DE TH YP D AFM 54 RV QV WF Q NR RA KC RK K GV LIG A ASQ F E ACR 87 A C RVA P YVN V G ALRM 93 YV NV G ALRM P FQ Q VQ 96 V GA L RMP FQ QV Q AQL' 103 F QQV QA Q LQL DS A VA 113 DS AVA HA H HH L HP HL 132 PY MM F'P AP P FG L PLA 142 G LP L ATLA A D S AS AA 145 LA TLA AD S AS AA S VV 155 AA SV VA AA AA AK T TS 156 AS VV AA A A AAK T TSK 171 NS SI A DLR LK AK K HA 3 DE GQT KI KQ R RS R TN 18 33 THY P DA FM RE E LS QR 18 46. QR LG LS E AR VQ V WFQ 18 53 AR VQ V WFQ NR R AK CR 18 64 A K CR K QENQL H K GVL 18 97 G ALR M PFQ QV Q AQ LQ 18 106 V Q AQLJQ LD S AV A HAH 18 139 P P FG L PL ATL A ADSA 18 144 P L ATL A ADS AS A ASV 18 149 AAD SA S AA SV VA A AA 18 159 VA A AAA AK TT S KNS S 18 170 K NSSI A DL RL KA KK H 18 27 E RLF DE T*HY PD AF MR 16 32 E T HYIPDA F MR EE LSQ 16 36 PD AF MR E ELS QR L GL 16 TABLE XXV 161P2B7a HLA- 00 ~DRB1*0401 .(DR4Dw4) 15 mersSe.I Pos. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Num.
VQ VW F Q NRR A KC RKQ 16 130 HA PY MM FP AP P F GLP 16 138 A PP F GL PLA T LA ADS 16 Ct6 QT KI KQ R RSR T N FTL 176 DL RL KA KK HA AA L GL 17 N FT L EQ L N EL ER LD 14 23 LN EL ER LF DE TNHY PD 14 SQ R LGL SE AR VQ V WF 14 47 RL GL SE AR V Q V WFQN 14 52 EA R VQV WF Q NRR A KC 14 E NQLH K GV LI G A ASQ 14 98 A LR M PFQ Q VQ AQ L QL 14 107 QAQ L Q LD S AVA H AHH 14 109 Q L QL DS AV A H AMHHL 14 120 H H HLH P HL A AH A PYM 14 O)124 H PHL A AH A P Y MMF PA 14 00140 PFG LP L AT LA A DS AS 14 GQ T KIK Q RRS R T NFT 12 8 K IK QR R SR TN F TLEQ 12 11 QR RS RT NFT L EQ L NE 12 12 R RSR T NF T LEQL NEL 12 14 SR TN F TLE Q LNE LER 12 EL E R LFDE TH Y PD AF 12 38 A F MRE ELS QR LG L SE 12 39 F MR EE LS Q RL G L EA 12 42 EE L SQR L GL SE AR VQ 12 44 L SQR LG LSEA R VQ VW 12 49 GL SE AR VQVW FQ N RR 12 58 WF Q NRR AK C RK Q ENQ 12 66 CRK Q EN QL H KG VL IG 12 67 R KQ E NQL HK GV L I GA 12 71 N QLH KG VL IG A AS QF 12 72 Q L HKGV LI GA AS Q FE 12 73 L HK GV L 10A AS QFPEA 12 79 1G A ASQF E AC RV AP Y 12 G A AS F E ACR VA P YV 12 81 A A SQFE A CRV A P YVN 12 84 QF EA C RVA PY V N VGA 12 FE AC RV AP Y V NVG AL 12 88 CRV A PY VN V GAL R MP 12 92 PY VN VGA L RM P FQQ V 12 995 IR M PF QQ VQ AQ LQ LD 12 101 MP FQ QVQ0A Q LQ LD SA 12 104 QQ VQ AQ L QL DSA V AH 12 110 LQ L DS AV A HAH H HLH 12 112 LD S AVA HA HH HL H PH 12 116 VA HA HH HL HP H LA AH 12 117 AH AH H HL HP H LA AHA 12 118 HAH H HL HP HL A A HAP 12 122 H L HPH L AA H AP YM MF 12 123 LH PH L A AH AP Y M MFP 12 135 MFP A PP F GL PL AT LA 12 137 PA PPP GL P L AT L AAD 12 143 LP LA T LA ADS AS A AS 12 146 AT LA AD SA SA A S VVA 12 147 TLA A DS AS A ASV V AA 12 150 AD S ASA AS VV AA A AA 12 152 S ASA A SVV AA AA A AK 12 TABLE XXV 161P2B7a HLA- DRB1*0401 (DR4DW4) 15 mere 1 234 5 678 9 01 234 5 A SAAS V VA AA AA A KT Pos 153 154 7 158 161 163 168 169 175 score Seq. ID Num.
TABLE XXVI 161P2B7a RLA- DRB1*1101 15 mers 12 34 56 78 90 12 345S Pos 174 176 142 3 100 133 138 27 26 54 67 81 113 170 38 87 91 110 114 118 152 158 162 175 34 72 106 117 153 17 23 42 71 76 93 103 104 120 121 L E V Q I A D L V A G L D E
RNM
Y M A P E R L E R V R K A A D S K N A F E N A C A P LQ0 S A H A S A V V A A A D H Y Q L V Q
ARH
A S R T
NFP
L N E E N Q G V y V F Q Q Q
HRH
HH
L E N R K A K K V. G L A I K V Q P L T* H E T Q N L H A C
ARH
D L L S G V y V G A V A H H A A T S A K M R L I L D
LRH
V A E Q L N L F L G V L A S L R Q L L Q H L L A K Q A L G L F Q A A T N D S A T D S M R F M R K G A V N
HRL
K R S E S Q
RNM
Q Q
LR
L A A P A K N S A D L G R L F E
ARH
H A K T R L F D P D V Q Q F R V V Q V A
ARH
Y. M M M score 18 18 17 17 17 17 16 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 Seq ID Num.
Pos.
128 129 131 139 145 171 32 2 36 56 57 82 130 4 52 53 164 172 Pos 28 272 22 146 186 193 38 145 171 217 63 181 185 43 89 122 83 208 107 41 ill 152 215 227 260 9 so TABLE XXVI 161P2B7a ELA- DR-B1*1101 15 mers 1 2 34 56 789 0 12 345 A A HA P YMM F PA PP F A HAP Y MM FPA P PF GL A P Y M M F P A P P F G L P L P P F GLP LAT LA A DS A L A TL A AD SA SAA SVV NS S IAD LR L KA KK HA E T HYP DA FM RE EL S Q E D EG Q T XIKQ R RSRT G QTK I KQR RS R TNF T P DA FM RE E LSQ RLG L Q V W FQ NRR A KC RKQE V WFQN R RA KC R KQE N ASQ FE A CR VA PY V NV H A P Y M M P P A PP F G L P EG Q T KI KQRR S RT NF EAR VQ V WF Q NRR AK C A R VQVW FQ0NR RA XC R A A K TTS K NS SIA DLR SS IA D LR L KA KKH AA TABLE XXIII 179P3G7 HLA- DRB1*0101 15 mers 1 23 45 6 78 90 12 345 S AG M Y M Q S G S D F N C G R C PY K H Q T LEL E KE GE RY SRS A GM YM QS G P SY Y RAS PS Y SA LDK H L E S P Q L 0 G K V S F P E A YR LE Q PVG RPL SS C G G KVS FPET P KS DS Q D FNC GV MR G CG LA PS N CGV M R GCG LAP SL S PS YL SQ L D SWG DP KA V P S Y Y R AS PS Y S AL D E AP FE Q RAS L NP RAE E Q S LAGP KG SP S ESE S LAL N TY PS Y LSQL D N P RAE HL E SPQL G GK E H L E S P QLO GGK V S F P VMR GC G LA P SL SKR D S SPS LA L NTY PS YL S E Q P V G R P L S S C-S Y P P S G P EAA LY SH P LPES K A A Y R L E 0 P V G R P L S T P SP NE IK TE QS LAG E EN V CCM YS AE N RAK C G V M R G C G L A P S L S K C CMY SAE N RAK S GP E S P SBY SA LD K T PH C S G K TEQ S LA GP KGS P SE P S E S E KE R A K A A D S S GN WL T AKSG RK K RC P P N S Y A E P L A A P G G G E N SY A EPL A A P GGGER G GGE RY SRPSA GM YM Q A P S L S K R D E G S9 P S L score 12 12 12 12 12 12 11 9 9 .9 9 9 score Seq. ID score Num.
31 27 26 26 26 24 24 24 24 24 24 23 23 23 22 22 22 22 21 21 19 19 19 19 19 19 18 18 18 18 Seq. ID Num.
TABLE XXIII 179P3G7 HLA- DRB1*0101 15 mers 1 2 34 5 678 90 12 345 Pos 51 73 76 115 167 195 230 250 257 280 4 13 29 52 102 116 132 135 159 212 214 277 278 282 42 66 67 69 77 93 119 125 126 127 140 142 143 176 198 219 229 252 259 7 18 46 74 86 174 191 211.
256 P S LSK L S QLD L D S W G S A E NR AN DF E K VS F P S B KE R KB E E K N TTG N T L ELE PR NV T A E PLA AG M YM S L S K R P P S V K AE NR A P L PES.
E S C LG DK TP H N ElI K T IK TE Q K HQT L HQT L E E L EK E R N VTP G V MRG LN TY P NT Y PS YP SY L DS WG D QP VG R GR PL S RA KS G EA AL Y A AL Y S A L Y S H E ,H E V P Ev pv p V PV P S Q R AS L F PET P S L AG P E S EK E E I K AE TG NW L VT P NS A P GGG G CG LA S Q LD S Y R LEQ F EQR A QOL GG K P NE 1 K EN T TG L A Y R E Q L Y L N T P D T L T K K L T A A S R G V A L S A Y s V P Y Y A P G S P S N M M Y R E A P K R W G G D P K Q p P S K E P L L G G E
BEH
P S Y s S A S p P N
KBE
p b A K R C G G M Y G S R L C S L E S D K G R K score Seq. ID score Num.
18 18 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 1s TABLE XXIV 179P3G7 HLA- DRB1*0301 (DRi?) 15 mers 12 34 5 678 9 01 234 5 Pos score ,Seq.
ID
Num.
Q LDS WGD P KA AY R LE 27 00 278 H Q T LEL E KEPL PN M Y 27 163 HC SG A ND FEA PF E QR 28 SA GM YM Q SG S DF NCG 240 SSP D TS DN EAK E E IK 61 S PSLA L NT Y PS Y LSQ 19 Ct110 VC CM YSA E NR A KS GP 19 117 ENR A KS G PE A ALY SH 19 199 PET P KS DS QT PS P NE 19 as AYR LE QP VG R PL SSC 18 142 EVP V PS YY RA S PS YS 18 177 RA SL N PRA E HLE S PQ 18 277 KH Q TLE L EK EFL F NM 18 32 YM QS GS DF NC GV M RG 17 187 LE S PQLG G KV SF P ET 17 276 T K H0T L EL E XE FL FN 17 A P SLSKR D EG S S PSL 16 127 A L YS H PL PE SC L GEH 16 O)195 KV SF P ET PKS D SQ0TP 16 00167 AND FE A PF E QRA S LN 1s 169 DF E APF EQ RA S LN PR 209 PS P NEI K TEQ S LA GP 1s 264 T A KS GRK KR CP Y TKH' 4 PR NV TP NS Y A EPL AA 14 282 EL E KEFILJF NM Y LTR E 14 G M YM S GSD F NC G VM 13 41 CG VM R GCG L AP SL SK 13 73 LS QLD SW GD P KA A YR 13 211 P NEI K T EQSL AG P KG 13 260 G NW LTA KS G RK KR CP 13 TABLE XXV 179P3G7 HLA- DRB1*0401 (DR4Dw4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I ill CC M YSA EN R AK SG PE 28 259 TG NW L TA KS GR KK RC 28 110 VC C MY SA E NRA K SGP 26 250 KEE IK A EN TT G NW LT 26 29 AG MY MQ S GSD FN C GV 22 145 V P SYY XA S PS YS ALD 22 146 PS Y YR ASP S YS A LDK 22 272 R C P YT KHQTL EL E KE 22 63 SL A LNT YP S YL SQ0LD P SY LS QL D S WGD P KA 89 E Q PV GR P LS SC S YPP 102 P PSV KE E NV CCM Y SA 107 EE N VCC MY S AE NR AK 193 G GK VSF PE TP K SD SQ 211 P NE I K TEQS LA G PKG 280 TLE L EK EF LF N MY LT 32 Y MQS GS DF N CG V MRG 18 44 MR GC GL A PSL S KR DE 18 52 SL SK RD E GSS PS L AL 18 S S PS L ALNT Y PS YLS 18 67 NT.YPS YL S QL DS W GD 18 79 W GD P KA AYRL EQ0P VG 18 86. YR L EQP V GRP LS S CS 18 122 SG PE AA L YSH PL P ES 18 168 N DF E A PPEQR AS L NP 18 169 D FEAP F E QRA S LN PR 18 TABLE XXV 179P3G7 liLA- DRB1*0401 (.DR4Dw4) 15 mers 12 345 67 8 90 12 34 5 00 Pos 178 181 199 208 233 282 22 66 83 98 152 167 195 41 46 73 93 125 140 142 155 184 217 278 A S N P P E T P E R E L G E L N K A S c S P A N K V C G G C L S A Y G R
EBA
EH
E V E Q H Q
LBE
P Q T P E Q P D Q L
EBE
T P Q R S D A P K R P K R P P P
PBE
Y R A S C S
GOG
S p F L Score 18 18 18 18 18 18 16 16 16 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 Seq. ID Num.
TABLE XXVI 179P3G7 liLA- DRB1*1101 15 mers Pos ill 152 195 86 37 98 142 155 167 9 69 145 146 171 224 47 123 133 140 226 263 4 19 48 113 178 216 277 1 23 456 7 89 01 2 C C MY SAE NR A KS S P S Y S AL D K T P H K V S F P ET P K S D S Y RLBEQ PV GR PL S S DF NC GV MR GC G S C SYPP SV K EEN E VPV P SY Y RAS P Y S A Li D K T P H.C S G A ND FE AP FBQ0R A P N SY AE P LA AP G Y P S YL S LD S WG V P SY YRAS P SY S P SY YR A SP SYS A E AP FE Q RAS LN P K G SPSBES E K ER A C G LA PSIsS K RD E G PE A ALY SH P LP L PES C LG EH EV P E HBEV P VPS Y YR A S P SESBEKE R AK A L TA KS GR KK R CP P R NVT P NS YAE P P GG GE RY SR SA G G LAP SL S KR DE G M YS AE NR AK S GP A SLNP R AE H LE S T EQS LA G PK G SP K HQ TL E LE KE FL 3 4 O P C S Q T S c L A V c S Y A N S L G G D P A L L D R A K A G S E S V P S P A D Y T L A M Y s S
EBA
p Q S E F N score 24 24 21 18 16 16 16 16 16 16 14 14 14 14 14 14 14 Seq. ID mum.
TABLE XXVI 179P3G7 HLA- DRB1*1101 15 mers 1 2 34 5 67 890 12 345 00 00 Pos score Seq. ID Num.
TABLE XXIII 184P3C10B HLA- DRB1*0101 15 mlers 1 234 5 67689 0 1 2345 Q L RLL F LVGT AS N PH AT L IL AI GA FT L LLF V LFL Q WQE TR CA NA S I Q NV G PI RA WS KY Y G Q LI Q NV GPI RA FWS I GAFPTL LL FS LL VS P T CK VQ EQ PPA I PEA L QP V FLL LVI KS S PSNX V F LLL VI KSS PS NY V C R H F P L L Q D .V P P S K C E R KVR G LQ LRLLjF L V H DSPFFN L T LKQV L FL Y P PYC GG GG FL L SRF R P N A T L I L A I G A F T L A Q PV FL LL V IKSSP S W GR ER KV RGILJQ LR LL R L LFLVGT A S NP HE A L L L F S L L V S P P T C K V A L A WPT P PTR PA PAP A RKV NR LL EL E AQT H V NR L LEL E AQ T HGDI R H LFV G QL IQN V G P I T LL L FSL LV S PP TCK F S L L V S P P T C K V Q E.Q D N MV FY LQD HDP GR H score Seq. ID scoreNum.
34 31 29 28 28 28 28 27 27 27 27 26 26 26 26 24 24 24 TABLE XXIII 184P3C10B HLA- DRB1*0101 15 mers 1 23 4 5678 9 0123 4 5 Pos 254 272 18 106 110 141 162 271 92 138 202 12 83 148 180 246 251 261 270 275 3 9 123 262 108 182 192 195 211 227 255 19 66 81 136 173 187 204 219 222 228 233 234 242 263 269 278 1 4 14 16 31 41 42 P E F L A F V F L V R L L E G F P L L Q A S L I L L T A S F A F y y E R G G S R L R N A E L R Y L L F N L Q Q E D V D P E V A T F T T L m V N F R G K Q F V Y L P G F V V G G P Y P G G T A~ K Y
RH]I
L A I Gp P TI PA A I]
IP]I
VT
S R L L L L K S F L E A L S
Q.-D
R L V L AlI R H N P N L S K
PBE
P P L L T A R R L I R R p y V I T L Q E R C A H R H TQ0 I L L L L F H P L Y Q L D F L F N G Y L D H H L Q L L I R A Y C F L -A L R H R P G A F T C K' K V P R E A A L N E T A F S I K P S G T T H F T P P F L G D A F R H E A L K Y V V T C G R F A L N A A I W G G G S s Q V R C N A D N F V E R
IG.
S L L L
FA'
H C L L D S QW w D D D H P G V G Q N N V w S G G S R R A RP I
AT]I
TL I L LI
QE
EQ
L AI A WI W p Y p A L L V s p Y v S N D I A A K C G T D V L L P L K V V L E V
WE
G G A A R A L I A F E R G F S N F L N A F V V F Q L P P F T V S S p Q P H F L V F N E T F A P G H L L I
G-P
P I y Y
FL:
T A H V
AT:
I L L F S L p p
PA:
P TI T P PP score Seq. ID Num.
24 24 23 23 23 22 22 22 21 21 21 19 19 19 19 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 TABLE XXIII 184P3C10B HLA- DRB1*0101 15 mers 1 2 3456 7 8 90 1 2345 Pos score 16 16 26 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Seq. ID Num.
TABLE XXIV 184P3C10B HLA- DRBI*0301 (DR17) 15 mers 1 23 4 56 789 01 234 5 score Seq. ID Num.
TABLE XXIV 184P3C10B lILA- DRB1*0301 (DR17) 15 mers Pos 254 2 82 176 189 194 223 19 73 74 115 152 159 167 253 271 97 110 114 1 24 33 64 104 107 136 138 140 141 184 187 251 280 1 2345 6 78 90 12 34 5 V PE V V TQ N ER YPPYC K YLR HR RP N ATL I LA N FL LY R H CR HFP L LQ W DFH D SFF NL T LK QV Q V LFLQ W QE T RC ANA Q W QET R CA N AS FVLN Y L QDH D PG R HLF VGQ AF TL LLF S LLV S PP T H PD F A TQ PQH VQ NFL F AT Q PQ HVQN F LL YR A T Q PQ H VQNF LLYR H S S PSNYV R RE LL RR T NP H EAR KV NR LL EL E V N RL L EL EAQTH GD I AQ THG D IL QW D F HDS Y V P E V V T Q NE R Y P P Y G G F LL S RFPT AA ALR R F TL L L FS LLV S PPT C F S L L V S P P T C K V Q E Q D VPPpS KC A QPVF LL L L LVI KS S PS NYV R RE K S SP SNY V R REL LRR M K YL R HR RP NATL IL N ATL I LA I GA F TLLL L F S L L V S P P T C K V Q E T C K V Q E Q P P AI P EA L N TS MVT HP D FATQ P Q L Q DV P PSK C A QPVFL A Q PV F LL LV IK SSPS V FL LLV I KS S PSN YV V R GCL Q L R L L F L V 0 T A G LQ L RL L FLV GT ASN L RL LF L VG TAS NP H L R L L F L V G T A S N PHE N LT LK Q VL F LQWQ ET L KQ V L FLQW Q ET RCA KY Y VP EV VT QN ERY P A A A L R A A A H V L D I F P TABLE XXV 184P3C10B lILA- DRB1*0401 (DR4DW4) 15 mers 1 2 34 5 678 90 12 345 score 17 16 16 16 16 16 16 is 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 Seq. ID N'um.
Pos 22 107 141 17 46 83 105 173 179 250 275 score Seq. ID Num.
TABLE XXV 184P3C10B lILA- DRBI*0401 (DR4Dw4) 15 mers 00Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
FSL L VS P PTC K VQ EQ P P AI PEA L AW PT PPT 91 HF P LL QDV P PS KC AQ Ct104 AQP V FL L LV IK SS PS 110 L LV I KSS PS NY V RRE 118 S N YV RR ELLR R TW GR tn133 ER KVR G LQ LR L LF LV 138 GL QL RL LF L V GT ASN 140 QL RL LF LV GT AS N PH 144 LJF LV GTA SN P HE A RK 156 AR KV N RLL EL E AQ TH 160 N R LLE LE AQ T HGD IL 162 LLE LE A QT H G DIL QW 171 G DI LQW D FHD S FF NL 187 L KQ VL FL Q WQE T RCA 00190 VL FL QW QE TR C ANA S 0 204 S FVL NG DD D VF AMHTD 232 HLF V GQ L IQ NV G PIR 236 GQ LI Q NV G PI R AFWS 239 1IQ NV CP IR A W SK YY 242 VG PI R A FWSK YY V PE 251 KY YVP EIV T Q N ER YP 272 G F LLS RF tA AA L RR A 280 AA AL RR A AH VL D IFP 13 L ILA IG AF TL L L FSL 18 18 GA FT LL L FS LLV S PP 18 57 AP A PCHA NT S M V THP 18 67 M VTHP D FA TQ PQ H VQ 18 74 A TQ PQ HVQ NF L L YRH 18 115 SSP SN YV R RE L LR RT 18 149 T ASN P HE ARK V NR LL 18 176 W DF H DS F F NL TLK QV 18 191 LFL Q WQ ET RC A NA SF 18 208 N GD DDV FA HT D N MVF 18 O9 GD DD V FAHT D N MV FY 18 229 PG RH L FVG QL IQ N VG 18 268 C GG GG FL LSRF T A AA 18 269 G GG GFL L SR FT AA AL 18 276 S RF TA AA L RPA AH VL 18 V QN F LLY R HC R H FPL 16 89 CRH FP L LQ DV PP SK C 16 127 RR T WGRE R KV R GL QL 16 175 QW DF HD SFF N LT L KQ 16 180 DS FF NL TLK Q VL F LQ 16 192 F LQ WQ ETR C A NA SFV 16 202 N ASF V L NGDD DV F AH 16 211 D D VFA H TD NM VF Y LQ 16 219 NMV FY L Q DHD P GR HL 16 220 MVF Y LQ D HD PG R HLF 16 231 R HLF V Q L IQN V GP 1 16 246 R AF WS KYY V PE V VTQ 16 249 WSK YY V PE VV TQ N ER 16 264 Y PP YCG GGG F LL S RF 16 270 GG GF LL SR FT A A ALR 16 108 FLL L V IKS S PS N YVR 271 GGF LL S R FT A AA LRR 12 TL ILA I GA F TLL L FS 14 14 1IL AIG AF TL LL F SLL 14 TABLE XXV 184P3C10B HLA- DRB1*0401 (DR4Dw4) 15 mere 1 23 45 67 89 01 2 345 Pos 21 24 26 64 77 82 92 106 143 159 170 184 188 210 217 218 230 255 score 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Seq. ID Num.
TABLE XXVI 184P3C10B HLA- DRB1*1101 15 mers 12 34 5 678 90 12 34 5 Pos 106 127 105 219 89 255 269 275 82 104 120 140 236 17 21 107 180 218 232 22 83 156 239 46 142 179 47 192 261 270 79 115 119 P L T W V F V F H F v V G G R F N F L L p V R R R L L I A F L L L L P F M V F V L F L Y K V N V A W L F S F w p Q w R Y G F Q N P S V R N y Q L S N H L K C C G A L H V P L L Q P S E R P H W S C K L Q R H I R K V Q D A P E A F L P C F V L L L R F p
R.T
R E score 26 26 24 24 22 22 21 21 19 19 19 19 19 19 18 18 18 18 17 17 17 16 16 16 16 Seq. ID Num.
Pos TABLE XXVI 184P3C10B HLA- DR31*1101 15 mera 1 23 4567 89 01 2 34 5 P HE A RK VNR LL ELE A S RF T AA AL R RAAHV L A A AL R RAAHV LD I FP R PN A TL-1L AI GA FT L HAN TS MV T HP D FAT Q HC RH F PLL QD VP PS K E RK V R GLQLRL L FL V L LE L EA Q TH GDI LQW D I L Q WD FH DS FFN L K Y YV P EV VTQ NE RYP R FT A AALR R AA H VL D R R PNA TL I LA I GA FT A FT L L L P S L L V S P P T T C K V Q E Q P P A I P E AL E 0P P A IP EALA W PT F PL L 0DV P PS KC AQF R G L Q L R L L F L V*G T A S L RL L FLV GT AS NP HE V L F L Q W Q E T R C AN A S V PEV V T NE R YP PY C A T L IL A I G A F T L L L F F TL LL F SL LVSP P TC S P P T C KV Q E Q P P A I P PAI P EA LA WP TP PT R LQ DV PP S KC A QP VFL PS N YVRR E LL RR TW G G L Q L R L L FL VG TA SN V N RL LELJE A QTH GD I N RL L EL EA QT H GDIL H G DI LQ W DF HDS FFN N L TLK Q VL FL Q WQET L K QVLF L Q WQ ET RC A Q V LFL Q WQE T RC ANA S F VL N GDD DV FA HTD L F V G Q L I Q NY GV P I R A SK Y YV PE VV TQ NER Y G G FLL S RFTA AA LR R L R RA AHV LDI FP ID D TABLE XXIII 184P3G10 HLA- DRB1*0101 15 mers 12 34 56 78 90 1 234 5 score Seq. ID Num.
1s 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 score 29 28 27 26 26 26 26 Seq. ID Numn.
TABLE XXIII 184P3G10 HLA- 00 DRB1*0101 15 mers Pos. 12 34 5 678 90 12 3 45 score Se.I Num.
280 CQ AV LE L CR KEL P GD 11 S VT K YDLT GC S AF CR 24 Ct29 RA TM TS Q P LR LAEE Y 24 36 PL RL AE EY G P SP GES 24 66 Y YE LL KQR Q ALP I WA 24 tl82 RF T FL EQ LES N PTG V 24 93 PT GV VL VS GE pG S GK 24 108 STQ IP Q W CAE FA L AR 24 151 D LTL GH EV G YS I PQE 24 252 1IVH I PR E PGER P SP 1 24 6 AG KM VS VT KY DL TG C 23 83 F T FL EQ LES N P TGVV 23 92 NP T GV VLV SG EP G SG 23 126 KG QV T VTQ PY PL A AR 23 C1128 QV TV TQ PY PL AA R SL 23 00 228 D L RVV V VTD PA L E PK 23 34 S Q PLRL A EEY GP S PG 22.
72 Q RQAL PI WA A RF T FL 22 C186 L EQL ES N PTG VV L VS 22 202 EA QE R SV ASD SL Q GL 22 180 R LL Q EV AST R GT GA 21 186 V AST RG TG AW GV L VL 21 227 GD LR VV V VT D PA LEP 21 12 VTK YD L TG CS AF C RS 26 S CQ RA T MTS Q PL RLA 73 RQ AL PI W AA R FT FLE 113 Q WC AEF AL A R GFQ KG 171 NT L LRF C WD RL LL QE 94 TG VV LV S GE PGS G KS 19 *115 C AE F ALA RG F QK GQV 19 *132 TQ P YPL A AR S LAL RV 19 136 PL A AR SL AL R V ADEM 19 159 GY S I P E DCT GP N TL 19 176 FCWD R L LL QE VA S TR 19 195 W GV LV L DE AQ ER SVA 19 A EEY G PSP GE SE L AV 18 49 ESE LA V N PFD GL P FS 18 54 VN P FD L P FS SR Y YE 18 59 G LP F SSR Y YE L*LKQR 1s 63 SSR YY E L LKQ RQ AL P 18 96 V VL VSG EP GS GK S TQ 18 ill IP Q WCA EF A L A RGFQ 18 141 SL AL R V ADE MD LT L 18 205 ER SV AS D SL Q GLL QD 18 237 PA LE PKL R AF WG N PP 18 244 R AFW GN P PI VH IP RE 18 271 IP P DRVE A AC Q A VLE 18 284 L ELCR K EL PG D VL VF 18 14 KyD L TG C S AF CR SC 17 A L PI W AAR FT FL E QL 17 FL E Q LE S NP T GV VLV 17 177 C WDR LL Q EV AS T RG 17 188 S TRG TG AW G V LV L DE 17 197 VLV L DE AQ E RSV A SD 17 211 DS LQ GL LQD A RL E KL 17 214 Q GL LQ D A RLE KL P GD 17 281 Q AV LE LC R KELP G DV 17 R RSCQ RA TM T SQP L RL 16 TABLE XXIII 184P3G10 HLjA- 00 DRB1*0101 15 mersSe.I Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Neq. I PS P GESE L AV NP F DG 16 46 SP G ES EL AV N PFD GL 16 Ct69 LL K Q RQAL PI WA A RF 16 L KQ RQ AL PIW A AR FT 16 76 L PIWA AR FT F L EQ LE 16 87 EQ0L ESN PT GV VL V SG 16 G V V LVS GE PG SG KS T 16 97 VL V SGE P GSG KS TQ 1 16 130 TV TQ P YPL AA RS L AL 16 135 Y PL A ARS L ALR V ADE 16 143 ALR V AD EM DL TL G HE 16 170 PN TL L RFC W DR LL LQ 16 _178 WD RL LL QE V AS TR GT 16 179 D RL LL QEV AS TR G TG 16 ci194 AW G VL V LD E AQ ER SV 16- 00 196 GV L V L DE AQE R SV AS 16 201 DE AQ ER S VA SD SL QG 16 207 SVA SD S LQ GL LQ D AR 16 ci210 S DSL Q GLL Q DA RL EK 16 212 S LQ GL LQ D ARLE K LP 16 *222 LE KL PG D LRV VV V TD 16 *223 E KL PGD L RVV VV TD P 16 233 VV TD P ALEP K LR A FW 16 243 L RA FWG NP P IVH I PR 16 264 SPI Y WD TI PP DR V EA 16 268 WD TIP P DR VE A A CQA 16 273 PD RV E AA CQ AV L ELC 16 VS VT K YDL T GCS A FC is 22 A FC RS CQR A T M T SP is 42 EY GP SP GE SE LA V N 100 S GE P GS G KS TQI 1 P0W i 105 SG KS TQ IP QW C AE PA 119 A L ARGF Q KG Q VT VTQ 123 GF QKG QVT VT Q P YPL 1s 125 QK GQ VT V TQ PY P LAA 1s 127 GQ V T V TP YP LA AR S 152 LT L0H EV GY S I PQ ED 162 1IPQ ED CT 0P NT L LRF is 198 LV LD E AQE R SV A SDS 229 LR V V VVT DP AL E PKL is 248 G NP PI VH I PR E P GR 1s 249 NPPpI V HI PRE P G ERP is 270 TIP P D RV EA AC Q AVL 1s 3 T AFA GK MV SV TK Y DL 14 9 MV SV T KY D LT 3C S AF 14 23 F CR SC QR AT MT SQ PL 14 28 Q R ATM TS QP L RL AEE 14 39 L AE EY GP S PGaES ELA 14 53 A VN PF D GL PFS S RYY 14 101 GE P GSG KS TQ I PQ WC 14 107 KS TQ IPOQWC A EF A LA 14 133 Q P-YPL A AR SL AL R VA 14 155 GHE V GY SI PQ ED C TG 14 199 V LDERA0QE RS VA S DS L 14 218 QD AR LE KL P GD LR VV 14 242 K LRA F WG NP PI VH IP 14 255 1PR E PG ER PS P I YWD 14 260 G E R PS PVY WD T IPPD 14 Pos 262 275 TABLE XXIII 184P3G10 HLA- DRB1*0101 15 mers 12 3 456 7 890123 4 5 R PS PI Y WD TI PP DRV R VE AACQ A V LE LCR K TABLE XXIV 184P3G10 HLA- DRB1*0301 (DR17) 15 mers 1 2 34 5 678 90 1 2345 score Seq. ID Numn.
205 213 222 149 280 6 141 273 195 230 268 51 66 170 171 173 228 263 34 49 82 94 126 143 194 214 236 59 196 210 249 281 57 197 232 41 117 163 172 206 250 74 109 178 Q D P G T D I P G D G C L G L C V A L R Q A S R W A L Q Q E V A P K V E P G F S I w G V K S A R H E S V G D N P Q R
QIL
A S E K R P D V L K P T S D A F V N T V F C E V D A P S T S E Q R G G T score Seq. ID Num.
31 29 28 27 27 26 24 23 22 19 19 19 19 19 19 19 19 19 19 18 18 18 18 is 18 17 17 17 17 16 16 16 16 16 16 TABLE XXV 184P3G10 HLA- DRB1*0401 (DR4Dw4) 15 mers Seq. ID 02 Po 1 23 4 56 7 890 1 23 45 score Num.
64 SR Y YE LL KQ R QALPI1 28 A A RFTF LE QL ES N PT 28 132 T Q PY PLA A RS L ALRV 28 83 FT F LEQ L ES N PT GVV 26 Ct196 GV L VL D EAQ ER SV AS 26 213 LQ GL L Q DAR LEK L PG 26 222 LEK L PG DL RV V VV TD 26 tn273 P DR VEAA C Q AVL E LC 26 280 CQA V LE L CRK E L PGD 26 CS A FC RS CQR AT M TS 22 63 SSR YY EL L KQ RQ A LP 22 115 C AEF A LAR GF Q K GQV 22 173 L LR FC WD RLL LQ E VA 22 175 R FCWD R LL LQ EV A ST 22 __192 TG AW GV LV LD EA Q ER 22 265 P IY WDTI P PD R VE AA 22 6 AG K MV S VT KY D LTGC 00 75 AL P IWA A RFT F L EQL 86 L EQ LES NP T GV V.LV S 96 V VL VSG EP GS GK S TQ C1117 E FA LA R GFQ KG Q VTV 141 SL A LRV AD HM DL T LG 143 A LRV AD E MD L TL G HE 151 DLT LG H EV G YS I PQE 170 P NT L LR FC W DR L LL 180 RL LL QE VA S T R G TA 197 VLV L DE A Q ERS V ASD 205 E RS V AS DSL Q GL LQ D 210 S D SLQ0G LLQ0DA R LEK 214 Q G LL QD A R LE KL PGD 228 D LRVV V VT D PA LE PK 249 NP PI VH I PR E P GERP 268 WDT IP P DR VE AA C QA VS VT K YD LTG CS A FC is 17 LT GCS A FCR S CQ R AT 18 105 SG KS TQ I PQ WCA E FA 18 114 WCA E FA L AR GFQ K GQ 18 133 Q PY PL A ARS LA L RVA 18 160 YSI P Q ED C TG PNT LL 1 176 FC WD RL L LQE V AS TR 18 181 LL LQ E VA STR G TG AW 18 199 V L D EA QERS VA S DS L 18 202 E AQE RS V ASD SL Q GL 18 227 GD LR VV VV TD PA L EP 18 54 V N PFD GL PF S SR. YYE 16 il1 I PQ WCA EFA L A RGF Q 16 121 A R 0FQK GQ V TVT Q PY 16 157 E V G YS I PQEDC TG P N 16 244 R AFViG NP PI VH I PR E 16 7 GK MV SV T K YDL TG CS 14 29 RAT M TS Q PL RLA E EY 14 34 SQ P LRL A EEY G PS PG 14 36 PL R LA E RYG PS PG ES 14 49 E S ELA VN P FD GL PFS 14 51 ELA VN PF D GL PF S SR 14 57 FD G LP FS SRY YEHL LK 14 66 Y Y L L KQ RQ AL P IWA 14 73 RQAL PI W AAR FT F LE 14 93 P TGV VL V SGE P GS GK 14 94 TG VV LV SG E PGS G KS 14 TABLE XXV 184P3G10 HLA- DRB1*0401 CDR4Dw4) 15 mers 12 3456 7 8 90 1 234 5 score Seq. ID Num.
TABLE XXVI 184P3GI0 liLA- Pos 63 249 132 192 64 148 226 281 6 180 216 280 93 265 29 54 82 175 234 246 92 114 198 222 227 57 105 128 136 167 182 196 213 236 DRB1*1101 15 ~45 6 7 89 tYY E LL K I VH I P R Y PL A AR ~WG V L VL F T F LEOQ Y EL LK Q ILD LTL G H L R VVV V L E LCR K 1M V- S V T K L Q E VA S D AR LE K V L E L CR.
V VL VS G W D T IP P M T S Q P L F D G L P F F LEQ L E P T G V V L W DR LL L P A LEPKX N PP IV H G VV LV S E F ALA R D E AQ ER L P G DLR R-V V V V T L P F S S R S TQI1P Q V T Q P Y P A RS LA L PN T L LR E V A STR V L DE AQ L LQ DA R L E P KL R mers 1 2 345 RQ AL P P GER P L A L R V E A Q ERR E S NPT Q ALP I VG YS I D P AL E L P GD V D L TGC R G T G A PCD L R EL P GD P GS G K RV E AA L AEE Y SR YY E N P T V S G EPG EV AS T R A F W G PRE P G EP GS G F Q KGQ V A SDS VV VT D P A LEP Y EL LK C AE F A A A RS L VA D E M C WD RL T G AWG R S V A S E K L P G F WGN P score 26 26 24 23 21 21 21 18 18 16 16 16 16 16 16 16 14 14 14 14 14 14 14 14 14 TABLE XXVI 184P3G10 HLA- DRB1*1101 15 1 2 1'v H I y w y y
TOG
L R L T F C A W D A D L S v T S S Q P L G E L K F T G V S T G F Q K G Y L Q S D R V P A E P W D me rs 12 3 R PS S PI E AA L P I G S a L GH I P Q V A S Q ER LR V A LE SA F Y G p GOP S SP G DOG L AA R P TG SG K F A L QP Y Y PL G PN A S T G AW A R L E PK wOGN P PI A A C score 14 14 14 13 13 13 13 13 13 13 13 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Pos 104 908 478 696 902 181 917 932 39 358 399 794 923 1165 68 472 1065 246.
327 429 711 791 800 TABLE XXIII 185P2C9 vi HLA- DRB1*0101 15 mr 1 23 4 567 89 0 12 345 R LQ IS ELSG KV L KL Q Q S G L R V L H S P P A V R R L GE L GV0G GH QA DG P V R P F P H Q G S L R*M P R P SH V LT E QS GL RV LH S E E M F E K T S G F G S GK P P PA VRR V DSI TA A GG E G PF PTS R AR GS PGD HLQ F VE EE AE LL RR S R E S L R L R A A R R L H R R A LR W KE LE MH8ILA L Q FQ0R L MD I SP F L P E K G V DS IT AAG GE G PFP T SS LF NIITD HS PV VQ D L S KF KFEP PR EP GW L P E T LSR L GE L V QGG H KC LTP KA GG GA TP V L R GGA P LP P G LQ GE I GN LG K EL GP DL QSR Q QE LR S LK N IF LF Y V AM WPC A DAD S IPF E M S EF QRL M DISPFPL P I SP F LP E KG LPS TSS soe Seq.
ID
score Num.
33 32 31 31 31 29 28 28 28 28 28 28 27 27 27 26 26 26 26 26 26 TABLE XXIII 185P2C9 V1 HLA- 00 DRB1*0101 15 mers Po 1 23 4 567 8 9012 3 45 score Seq. ID 09 1 e Num.
1007 E V AF SVRNA I CS G PG 26 1049 G LQ TE AL RG SG V TSS 26 Ct1244 GYT L TE NV AR I LN KK 26 1264 L K EERR QA A HGP P GL 26 136 HL GLR A PS PR DS D AE 394 EE HL YA LR W KE LE MH 517 DHS L RL QT A D-RGQ PH 560 R ARL RL QQ QY A SD KA 702 QG SL R MP R PVA M WPC 873 DS SW YL TT SV T MT TD 956 L SR WP CTS P RH S RDY 1080 SSP S RS L RS RQ V APA 1092 A P AIE KVQ A KF E RTC 79 PG WL GE G ASP GA G GG 24 cI112 G K VL KILQ HE NH AL LS 24 00 130 RC DL A ANL GL R APS P 24 133 LA A HL GL R APS P RDS 24 187 TSG FG S GK PS E AS EP 24 240 FL H DA GL RGG AP L PG 24 268 QQ EPQ LL G TI NA K MK 24 292 LEQV N RI GD G LS P LP 24 302 LSP LP H LT ES SS F LS 24 311 SS S L S TV TS VS R DS 24 424 EK NL MQ Q EL R SL KQN 24 508 S PHS RV QI GD HS L RL 24 658 RQ EW E RQ K KEFL WRI1 24 669 LW RIE Q LQ KE N SP RR 24 ?04 SL RMP RP V AM W PC AD 24 740 A SENL Y LD A LS LD DE 24 777 NH KG N LQR AV S VS SM 24 803 FL P E K G LP ST SS KED 24 920 VR RV D SIT AA G GE GP 24 979 DS PL CT SL GF A SP LH 24 994 S LE M SK NLSD D M KEV 24 1236 KQ D LSA P PGY TL T EN 24 1248 TE NV AR I LNK KL L EH 24 100 L KS ARL QI S ELS G KV 23 271 P 0L L G TIN A K M KA F 23 305 LP HL T E SSS FL 4 S TV T 23 309 T ZSS S FL ST V TSV SR 23 315 L S TV TS VS RD S P IGN 23 339 Q SR LK E QL EWQ L G PA 23 438 N I F LFYV K LR WL L KH 23 595 E NK L GEL G SS AE S KG 23 983 C TS LG FA SP L HS LEM 23 1032 T N G S RT MGTQT VQ T 1 23 1044 Q T ISV G LQ TE AL RGS 23 1157 H TT IN D LSSL F NII1 23 1176 V V Q D PFK G LR AG SR 23 1232 GT PV KQ D LS A PPG YT 23 94 A PL QEE LK S AR LQ IS 22 122 H AL LSNI Q RC DL A AH 22 227 E RT V ER L ITDT D SFL 22 295 V NRI G-DG LSP L PH LT 22 343 K EQL E WQ LG P AR GDE 22 345 QLE WQ L G P ARG DE RE 22 379 S HG LG GQ T CFS LE ME 22 532 KQV VE N QQ LF S AF KA 22 TABLE XXIII 185P2C9 vl HLA- DRB1*0101 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 PoS 562 592 619 685 779 816 894 952 986 1035 1084 1164 1178 1249 57 263 281 293 407 440 830 878 949 312 401 631 693 798 812 839 898 967 1009 1037 1052 1155 78 215 235 291 475 541 552 577 640 721 836 1047 1110 1174 1213 1252 1253 58 77
LRL
KTE
KLL
S FL
GNL
DVT
CQK
E PM G FPA
RTM
S LR S SL
DPF
D P F
NVA
EDH
GEG
KAF
QVN
HSL
L FY
EEF
TTS
G PP
DMA
S FL W KE
LRW
GNV
D IS
SSK
TPN
PLR
RDY
FSV
MGT
EAL
VHT
PGW
LVT
DTD
LEQ
S RL
SAP
AEL
VEW
KNW
I PF
WDY
VGL
YGS
PVV
S PS R I L
ILN
DHN
HEL
PRE
E PG Q Y
LG
S H
QK
AV
L S
LR
R W L H
QT
QV
I I G L
LN
QL
0 E
EL
GD
QN
L R
SW
MT
ML
I P
VT
M H H H F P L P
VT
HN
VL
GA
A I
VQ
S G
ND
EG
HE
LH
RI
L G
LL
DE
L K
EK
R P
NR
EA
LQ
PF
GV
KL
LL
LT
F K
WL
GE
KA
S S
MD
VR
SM
LK
LT
S P
MS
I S I E
PV
SR
LE
LS
LG
LE
PL
ER
KH
PN
MT
PC
FG
RD
LQ
NW
S L L P S P
PD
SG
LD
PG
VG
S P
SL
GA
LE
LR
LS
GH
RA
LR
EQ
LD
L K
GG
S G
LP
LR
MC
AL
L K S K
PR
AS
PG
score Seq. ID Num.
22 22 22 22 22 22 22 22 22 22 22 22 22 22 21 21 21 21 21 21 21 21 21 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 18 TABLE XXIII 185P2C9 vi HLA- DRB1*0101 15 mers 1 23 45 67 8 901 2 345 Pos 83 i1l 123 126 131 162 185 190 201 212 228 237 241 435 439 443 461 481 491 535 538 542 566 573 579 584 599 615 616 625 726 764 881 943 966 980 989 1001 1057 1067 1068 1083 1105 1137 1153 1182 1204 1209 1211 1224 1282 1 2 19 43 44 62 76 A S V L S N
QOR
A A L P S G G K T E Y L E R F L A G N I F Y L R E E 0 G H D Q Q F S K A y A W D V L L E G S H Q Q K L V L S F R M T D T D Y C T L H D M V T P K K A L R S P Y s V H L R G T G R s p E E L G M R R G P T E A A E T H P G L 0 L L H L L R P R G G A S P T E Y R L
LNH
A P G P W L H W G K T L H D
VOG
L E F R L R E W R L E K K L K K L V V M H S S A N H
HNC
L S D S M S S D N A P K S S S P E K R K T T S L E P P I S E M C Q D E N
GOR
R D S s E I I E P. P G A score Seq. ID score Num.
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 .18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 17* 17 17 17 17 17 TABLE XXIII 185P2C9 V1 HLA- DRB1*0101 15 mers 12 34 5 678 90 12 34 5 Pos 84 8s 91 97 152 179 j13 223 229 242 267 270 275 282 288 323 324 355- 371 376 421 448 455 497 523 531 587 611 645 677 708 719 729 792 819 841 856 925 953 975 977 981 1005 1017 1039 1043 1061 1113 1116 1124 1132 1142 1143 1166 1179' 1180 1199 1221
EQG
G A G G Q E D A D S S E A Q T V H D D Q E P G T K A L Q R D D S G D R R D T w S W L D R Q T L E L K R E
KXE
P R A D L S S E T P p N R T S I E P R R P L P L M K C s G T V Q T S S p L Q A D s p E S S A S L D P P F E L G S S p P G A P L K K K E M L V L E R L G L E P L L N A K K F L P I I G R E D G S H E K K H Q m C G D R v V L E E R V E S p V A
I'P
LXK
Q R L S G H V G A A L S L D S p T S V A P G T V I s P H L Q K P P N M A W A A R N I
QOK
K G P G m C A P P L K S I S E S 0 F A Q L I S F L P I N x M K K L E I1G E L L 0 A A G L T C E L Q M E F H S Q v F S
KXL
L L D R F L D A L S S A P F y I D L D S F P S p S L G F P L AlI
D*M
G L E A K A K A Q P G M E S R E E S V V S R R S N S
EQG
L Q Q E A R E L R L O S R L T D L H G P A K K A E L Q V D G G P P D R E G G F S R S E E T E P H V E A F G E A D D R C D D S
KXL
S E L P
MEE
W A T E T S R H G F A S H S C S A C Q T L R G G D Q N N A Q S p Q D S R R S T P score Seq. ID Num.
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 TABLE XXIII 185P2C9 vI HLA-.
00 DRBI*0101 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID ~Num.
1231 E G T P V K Q D L S A P P G Y 17 1261 E H A L K E E R R Q A A H G P 17 Ct 1267 E R R Q A A H G P P G L H S D 17 R E G P G R D H A P S I P T S 16 11 E G P G R D H A P S I P T S p 16 18 A P S I P T S P F G D S L E S 16 P F G D S L E S S T E L R R H 16 37 R R H L Q F V E E E A E L L R 16 46 E A E L L R R S I S E I E D H 16 47 A E L L R RS I S E I E D H N 16 61 N R Q L T H E L S K F K F E P 16 99 E L K S A R L Q I S E L S G K 16 114 VLKLQHENHALLSNI 16 115 LKLQHENHALLSNIQ 16 127 N I Q R C D L A A H L G L R A 16 00 155 K K E S D G E E S R L P Q P K 16 167 Q P K R EG P V G G E S D S E 16 184 F E K T S G F G S G K P S E A 16 230 V E R L I T D T D S P L H D A 16 243 D A G L R G G A P L P G P G L 16 251 P L P G P G L Q G E E E Q G E 16 289 Q A F L E Q V N R I G D G L S 16 299 G D G L S P L P H L T E S S S 16 303 S P L P H L T E S S S F L S T 16 314 F L S T V T S V S R D S P I G 16 318 V T S V S R D S P I G N L G K 16 328 G N L G K E L G P D L Q S R L 16 331 G K E L G P D L Q S R L K E Q 16 335 G P D L Q S R L K E Q L E W Q 16 347 E W Q L G P A R G D E R E S L 16 357 E R E S L R L R A A R E L H R 16 389 S L E M E E E H L Y A L R W K 16 391 E M E E E H L Y A L R W K E L 16 404 E L E M H S L A L Q N T L H E 16 431 E L R S L K Q N I F L F Y V K 16 493 D H D S D R G C G F P V G E H 16 509 P.H S R V Q I G D H S L R LQ 16 514 Q I G D H S L R L Q T A D R G 16 519 S L R L Q T A D R G Q P H K Q 16 537 N Q Q L F S A F K A L L E D F 16 544 FKALLEDFRAELRED 16 545 K A L L E D F R A E L R E D E 16 559 E R A R L R L Q Q Q Y A S D K 16 567 Q Q Y A S D K A A W D V E W A 16 S94 T E N K L G E L G S S A E S K 16 614 E R E V H Q K L L A D S H S L 16 618 H Q K L L A D S H S L V M D L 16 626 H S L V M D L R W Q I H H S E 16 629 V M D L R W Q I H H S E K N W 16 648 V E L L D R L D R D R Q E W E 16 667 E F L W R I E Q L Q K E N S P 16 672 I E Q L Q.K E N S P R R G G S 16 676. Q K E N S P R R G G S F L C D 16 699 F P H Q G S L R M P R P V A M 16 700 P H Q G S L R M P R P V A M W 16 710 P V A M W P C A D A D S I P F 16 733 K E S D R C S A S E N L Y L D 16 738 C S A S E N L Y L D A L S L D 16 00 00 00
CA
POS
742 743 748 752 776 780 783 802 824 846 905 909 911 941 972 990 998 1013 1024 1027 1051 1062 107S 1097 1111 1133 1161 1207 1233 1241 1269 1278 TABLE XXIII 185P2C9 vl HLA- DRB1*0101 15 mers 123456789012345 ENLYLDALSLDDE PE NL Y LDAL S LDD E P EE AL S LDDE PEEP PAHR DD E PEE P PAHRPERE EN H KG N L QR AV S VS S GNLQRAVSVSSMS EF QRAVSVS SMSEFQRL PFLPEKGLPSTSS KE PDDLKY I EEFNKS WD NGGG PDLWADRTEVG LTEQSGLRVLHS P PA SGLRVLHS PPAVRRV LRVLHS P PAVRRVDS RG S PGDTKGGP PE PM EGARR P LD S PL CT S L S P L H S LEMS KN L SD D S KNL S DDMKEVAF S V RNAI CSGPGELQVKD QV KDMACQTNG S R TM DM ACQTNG S RTMG T Q QTEALRGSGVTSS PH S S PHKCLTPKAGGGA GAT P V S S PS R S L R SR KVQAKF E RTCC S P KY YGS PKLQRKPLPKAD PG MAQKGY S ESAWAR ND G L S S L F NI IDH S P G TN SR OR S PS P 10 VG T P V.K Q D L S A P P G Y T L A P P G Y T L T E N V A R I L RQAAHGPPGLHS D SH LHSDSHSLGDTAE PG TABLE XXIV 185P2C9 vi HLA- DRBi*0301 (DR17) 15 mers 123456789012345 score 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Seq. ID Num.
Pos 544 552 331 230 625 429 339 387 537 587 746 53 173 335 350 651 684 998 1248 281 122 score 38 38 36 29 29 28 27 27 27 27 27 26 26 26 26 26 26 26 26 24 Seq. ID Num.
TABLE XXIV 185P2C9 vi liLA- 00 DRBI*0301 -(DR17) 15 mers Pos 1 3 5 7 9 01 23 45 sore Seq. ID 12345 7890 2345 core Num.
C1439 IF LF YVK L RW L L KHW 24 618 HQ KL L AD SHRSLV M DL 24 Ct1153 ES PV HT TI ND GL SS L 24 1173 HS PV VQ D PFQ K G LRA 24 1174 S PV VQD P FQK GL R AG 24 1232 GT PV KQ DL SA P PG YT 23 1275 PP GL HS DS HS L G DTA 23 741 SE NL YL DA L SLD D EP 22 126 SNI Q RC D LAA H LG LR 21 237 TD SF L HD AG LR GG AP 21 318 VT S VS RD SP I GN LGK 21 793 E FQR LM DI S PF LP EK 21 819 TP PL SP D DL KY IE EF 21 881 SVT M TTD T MT S PE HC 21 1057 G SGVT SS P HK CL T PK 21 00 39 H LQ FV EE E AELL R RS .104 R LQI S EL SG KV LK LQ 114 VL K LQ H ENH A L LSN 1 204 T E LL KA R9D SEY L VT 206 L L K ARE DS EY L VT LK 270 EP QL LG TI N AK MK AF 294 QV NR IG DG LS P LP HL 358 R ES LR L RA AR EL H RR 389 SILJE ME EEHL Y AL R WK 417 HE R T WSD E KN L MQQE 432 LR S L KQN IF L FY VKL 511 SR VQ IG DH SL RL Q TA 579 EW AV L KC R L EQLE EK 580 WA VL KC RL EQ L EE KT 811 S TSS KE D VT P PLS PD 849 GP DLW A DR T EVG R AG 860 GR AG HED S TE P F PDS 867 S TEPF P DS SW YL T TS 975 RRP L DS PL C TS L GFA 1156 V HTT IN D GLS S LFN 1 1157 H TT I ND G LS SL FNI1I 1244 GYT L TEN V AR IL N KK 1261 EH A LKE ER R QA AH GP L QF V EEE AE L L RRSI1 19 93 GAP L QE EL KS AR LQ 1 19 112 G KVL KL QH E N H AL LS 19 121 NHA L L S NIQR C DL AA 19 214 EY L VTL K HE AQR L ER 19 278 NA K MK AFK KE LQ A FL 19 315 L ST V TS VS RDSP I GN 19 327 1IGN L GKE LG P D LQ SR 19 424 EK NL MQ QE L RS L KQN 19 438 NI FL FY V XLR WL LKXH 19 446 LR WL L KHW RQ GK Q ME 19 491 GPD H DS DR G CG F PVG 19 531 H KQV VE NQ QL F SA FK 19 560 RA RL RL QQ QY AS D KA 19 768 R NRL P EERE N HK G NL 1-9 783 QR AV S VSS M SE FQ RL 19 824 PD DL K YI E EF NKS WD 19 992 L HS LE MS K NLS DD M K 19 1045 T IS VGL QT EA L RG SG 19 1076 AT P V SSP S RS L RS R 19 00 00
CA
ci
(N
0q TABLE XXIV 185P2C9 vI HLA- DRBI*0301 (DR17) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 1236 27 33 37 54 113 153 203 216 254 285 324 360 379 386 394 425 443 447 456 472 558 598 608 633 645 665 666 687 721 729 734 785 788 1005 1091 1182
KQ
GD
ST
RR
I S
KV
AG
PT
LV
GP
KK
DS
S L
SH
T C
EE
KN
YV
RW
GK
PE
DE
L G
KG
RW
RE
KK
KE
FL
S I
LS
ES
AV
VS
MK
VA
QK
AP
S S
RH
FV
DH
QH
SD
KA
HE
GE
AF
NL
AA
GQ
EM
AL
QE
W L
HW
E E
RL
LR
S S
KE
HS
LL
WR
RI
KD
DR
ES
SA
SM
EF
FS
EK
AG
score Seq.
ID
Num.
19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 score Seq.
ID
Num.
28 28 28 26 26 26 26 26 26 26 26 26 26 -26 26 26 TABLE XXV 185P2C9 vl HLA- DRBI*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 281 418 1165 61 114 122 213 331 425 544 552 618 625 648 666 693 TABLE XXV 185P2C9 vI HLA- 00 DRB1*0401 (DR4Dw4) 15 mers Pos1 23 45 67 89 012 3 45 score Seq. ID Pos 2 34 5 89 0Num.
C1719 AD SI PF ED R PLS KL X 26 779 KGN L QR A VSV S SM SE 26 Ct856 R TEV GR AG HE DS T EP 26 908 Q S GLR VL HSP P AV RR 26 917 PP AVR R VD SI TA A GG 26 tn1118 RKP L P KAD Q PNN RT S 26 1'248 T E NV AR IL NK KL LEH 26 1261 EH AL K EE RRQ AA HG P 26 39 HL Q F VEEE AE LL RR S 22 311 S S S LS TV TSV S R DS 22 399 A LJR W KE L M HSL A L 22 440 F L FYV K LRW LILK H WR 22 463 G EEFT EG EH P ET L SR 22 548 LE D FR AE LRE DE R AR 22 573 KA A WD VE WA V LK CRL 22 00 631 DL RW Q IHH SE K NW NR 22 640 EKN W NR E KVE L-LD RL 22 684 GGS F LC DQ KD G NVR P 22 696 V R PFPH Q GSL RM P RP 22 711 VA MW PC AD A DSI P PE 22 742 EN LY LD A LSL DD E PE 22 800 1S P FL PEK G LP S TSS 22 826 DL KY IE E FN K SW DYT 22 873 DS SW Y LT TS V TM TTD 22 967 S RD YV EG A RR-PL DS P 22 1178 QD PF Q KGL R AG SR SR 22 54 1ISE IEDH N RQ LT H EL 79 PGW L G EGA S PGA G GG 97 Q EE L KS ARLJQ IS E LS 104 RL Q IS ELS G KVL K LQ III S G KVL KL Q HEN H AL L 216 LV TL K HE AQR LE R TV 227 ER T VE R LIITD TD S FL 230 V E R LITD TD S FL HDA 270 E PQL L GTI N. AK MK AF 271 P QL L GTI NA KM K AFK 278 NA KM KA FK K EL Q AFL 285 K KEL Q AFL EQ V NR IG 289 Q AFL E QV NR 10D GL S 292 L EQ V NRIG D GL SP LP 299 G D GLS PL P H LT E SSS 302 LSP L PH L T ES SS F LS 305 L P HLT ESS S FL S TVT 312 S SFPL STV TS VS-R D SP 315 LS T VTS V SR DS PI GN 318 V TSV SR D SP IGN L GK 327 IGN LG KE LG PD L QS R 389 S LEME E E HLY AL R WK 394 E EHL-YA L R WK E LE MH 404 ELE M H SL ALQ NT L HE 409 SL AL Q NT L HER T WSD 429 Q E L RS LKQN I FL FY 438 N IF LF YV KL RW L L KH 446 LR WL L K HWRQ GK Q ME 447 R W LLK H W RQ0K Q M EE 456 GK Q ME EEG EE F TE GE 472 PET LS R LG E L GVQ GG 519 S LR LQT A DRG Q PH KQ TABLE XXV 185P2C9 vl HLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 531 537 560 595 608 619 645 651 669 672 729 768 788 819 824 849 875 886 901 968 983 989 994 998 1005 1040 1043 1047 1057 1088 1153 1161 1174 1182 1232 1275 12 29 43 44 52 53 58 94 103 118 128 156 205 224 261.
268 304 308 309 321
EN
SA
LQ
EL
KE
DS
LL
RD
QL
KE
ES
EE
EF
PD
YI
AD
TS
S P
TE
GA
FA
SL
KN
DD
FS
TI
VG
TE
S S
PA
TT
SL
DP
AG
QD
SD
HA
LE
TE
EL
EL
LL
IE
ED
QL
EL
SE
AL
LA
EE
RE
TV
GD
LL
TE
S F
FL
P I L F
AL
YA
S A
VH
LV
LD
EW
EN
PR
CS
NH
LM
KY
FN
EV
MT
CQ
GL
PL
LH
SK
DD
EV
NA
GL
TE
RG
KC
KV
DG
I I
KG
SR
AP
SL
I P
TE
RH
HL
RS
SI
NR
RQ
EL
AR
GK
NI
LG
LP
EY
LI
EP
IN
SF
TV
VT
LG
Seq. ID score Num.
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 TABLE XXV 18SP2C9 vi HLA- DRB1*0401 (DR4DW4) 15 niers 1 234 5 67 890 12 34 5 Poe 332 350 362 388 400 405 421 426 444 500 511 529 534 559 586 599 610 611 617 630 663 760 770 776 787 793 803 811 848 867 872 894 898 914 929 986 990 1003 1037 1044 108B0 1097 1110 1140 1150 1158 1166 1189 1225 1229 1245 1254 1260 1289 439 23 68 78 L G P A R A L E W K M H D E
MOQ
L R
FP,
V Q H K E N A R E Q L G K K K E Q K L R K K R P P E H K O R P E s S P D E P S S Q K L R s P G E F A L H m K G T I S P S Q A 0 S E S R E I N S R E E E G L T N K H A P G L F p F K F G W S R L RE S H R R HL Y H SL Q N T Q Q E SL K H WR S P H S L R N QQ S A F Q Q Y TE N S K G H QK Q K L S H S S E RI B RN R H KG R A V R L S P F S T S T P P RT E S W Y TS V S H V TE Q RV D T SR S LBE S K N S V R TI S T EA S R Q TC C R K P S T T T T I S LF S p V R P E T P V QD L R IL H AL R RQ O T V R WL E SS PR E A SP SC~re Seq. ID Score Num.
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 17 16 16 16 TABLE XXV 185P2C9 vi HLA- 00 DRB1*0401 (DR4Dw4) 15 mere e.I Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I 181 EE M FE KTS GF G SG KP 16 187 TS GFG S GK PS E A SEP 16 212 DSE Y LV TL K HE A QRL 16 Ct237 T DSF L HDA GL R GG AP 16 288 LQ AF LE QV NR I GD GL 16 385 Q TCFS LE M EE EH L YA 16 450 LK H WRQ G KQM EE E GE 16 499 G CGF PV GEH S PH S RV 16 S38 Q QLF S AFK AL L E DFR 16 S41 F S A FKAL LE D FR AHL 16 566 QQQ()Y AS DKA A WD VE W 16 577 DV E WA VL KC R LE QLE 16 __656 RQ0E W ERQ0KKE F LW R 1 16 667 E FL WR I EQ LQ K ENSP 16 791 MSE FQ R L MDI SPF L P 16 00 B34 N K SWDYT P NR GH N GG 16 868 TE PF PD SS WY LT TS V 16 874 SS WY LT TS VT MT T DT 16 932 EGP F PT SRA R GS P GD 16 956 L SR WP C TS PR HS RDY 16 985 S LG F ASP L HSL E MSK 16 1099 Q AK FER T CCS P KY GS 16 1108 SP KY GS PK LQ R K PLP 16 1137 QK GY S ESA W ARS T TT 16 1142 ESA WA R ST TT RE SP V 16 1242 P PG Y T LTE NV A RI LN 16 18 A PSI PT S PFG DS L ES 14 33 ST E LRR H LQ FV E EEA 14 37 RR HL QF V EEE AE L LR 14.
LQ FV EE EA EL LR RSI1 14 47 A ELL RR SI SE IE D HN 14 51 R RS I SE IE D H NRQLT 14 T HEL SK F KFE PP R EP 14 .93 GA PL QEE LK S AR LQI1 14 102 S ARL QI SE LS G KV LK 14 112 G KVL KL Q HE NHA LL S 14 121 NHA L LS NI10R C D LAA 14 130 RC DL A A H L0LRA P SP 14 136 H L GLR AP SP RT)S D AE 14 162 E S R LPQ P KR E GPVGG 14 171 E GPV GG ES DS E E MFE 14 203 P TEL L KA RBEDS E YLV 14 223 AQ R L ERTV ER LI T DT 14 231 E RLI TD T DS FL HD AG 14 238 D SFL HD AG L R GA PL 14 254 G PGL QGE EEBQ GE G DQ 14 295 VN R IG DG LS P L PHLT 14 324 DS PI G NL GKE L GP DL 14 339 Q S R K E Q LE WQL G PA 14 347 E WQL GP AR GD ER E SL 14 360 S LRL RA ARE L HR R AD 14 379 SHG L GG Q TC FS L EME 14 387 CFS LE M EE E HL Y ALR 14 402 WK EL EM H SL AL Q NTL 14 407 M HSL AL QNT L HE RT W 14 424 EK N LMQ Q ELR S LK QN 14 436 KQ NI F LFY V KLR W LL 14 443 YV KL R WLL KH WR Q GK 14 TABLE XXV 185P2C9 vl HLA- 00 DRB1*0401 (DR4DW4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
C1475 L S RLG E LG V G G HQ A 14 478 LG EL G VQ GG HQ ADG P 14 Ct480 E LG VQ GG HQ A DG PDH 14 510 H SR V QI GD H SL R LQT 14 512 R VQ IGD HS L RLQ T AD 14 532 KQ VV E NQQ LF SA F KA 14 545 KA LL ED FR AE L RE DE 14 562 RL RL0Q QQY AS DK AA W 14 575 A WD VE WA VL K CR LEQ 14 579 EW AV LK CR L EQL E EK 14 584 KC RL EQ L EEK T E NKL 14 626 HS LV MD L R WQI H HSE 14 629 V MD LR WQ I HH SE KNW 14 633 R WQI H HS EK N W NR EK 14 685 G S F LC DQ KD G NVR PF 14 00 702 Q G SLR MP R PVA M WPC. 14 708 PR PVA M WP C ADA DSI1 14 710 PV AM WP C AD ADS I PF 14 726 D RP LS KL KE SD RC SA* 14 741 SE N LYL DA L SLD DE P 14 743 NLY LD A LS L D DE PEE 14 746 LDA LS L D DEPE E P PA 14 748 AL SL D DEP EE P P AHR 14 794 F QR LM D IS P FL P KG 14 797 LM DI SP F LPE K GL PS 14 806 EKG LP S TS SK ED V TP 14 815 K EDV TP PLS P DD L KY 14 827 L KYI EE FN KS W DY TP 14 879 TT S VT MT T DT MTS PE 14 881 S VTMT T DT MT SP E HC 14 897 KQP LR SH V LT EQ0S GL 14 902 SH V LTE QS G LRV LH S 14 920 VR RV DS IT A AG G EGP 14 923 VDS IT AA G GE GP F PT 14 975 RR PL DS P LC TS LG FA 14 979 DSP L CT SL GF AS P LH 14 992 L HSL EMS K NL S DD MK 14 1002 SD DM KE V AF SVR NA 1 14 1009 AF SV RN A IC S GP GEL 14 1013 R NA I CSG'P GE LQ V KD 14 1022 ELQ V KD M ACQ T NG SR 14 1025 VKD M AC QT N GSR T MG 14 1035 S R T MG T TV.Q T IS VG 14 1052 T E AL RG SGV T SS PHK 14 1076 AT PV S SP S RSL R SRQ 14 1092 AP AI EK VQ AK F ER TC 14 1157 14TT IN D GL S SLF NI 1 14 1164 L SSL F NII D HS P VVQ 14 1167 LF N IID HS pV VQ D PF 14 1173 HSP V VQ DP F QKG L RA 14 1197 R PE LG P GQE TG T NSR 14 1217 PI GV GS EM C REE G GE 14 1221 GSE M CR EE GGE G T PV 14' 12-36 KQ D L SA PP GY TLT EN 14 1244 G YTL TE NV AR IL N KK 14 1257 K KL LEHA LK E ER R QA .14 1291 P GP ME NQ TV L L TA PW 14 00 0t 0 Pos 315 324 669 212 1165 1178 437 648 791 1182 44 58 701 719 776 991 998 1275 i11 122 162 213 288 289 299 439 443 463 519 645 693 729 856 907 914 1089 1218 1261 292 311 3.95 499 577 794 908 967 985 1164 200 237 302 475 548 658 684 836 917 920 TABLE XXVI 185P2C9 vi HLA- DRE1*1101 15 mers 1 234 5 678 9 01 234 5 b STV TS VS R DS PI GN1 D S PI G NL GKELG PD L SW RI E QL QK ENS PR R D SEY L VTL K HEA Q RL S S L F N Ill DM5 P V V Q D D PF QKQGL RA GS RS R NI FL FY V KLR W LL K V EL L D RLD RD R QEWE A S E F Q R L MD I SP F L P DK GLR AG S RSR S AE P SE EA EL L R RSIS EI E E D HN ROQLT HELS K FK R Q GSL RMP R PVA MW P kDS I PF ED R PLS KL K E NH KG NL Q RAV S VS S P LXH S L E MS K N L S D D M K N LS DD MK E V AFS V P PG LH S DS HS L GDTA 3G K V L KLOH EN HAL L SA L LSN I QR CDL AA H ESSR LP Q PK RE GP VGG E Y LV T L KHE A QRL E La Q A F L E Q V.N R I G D G L DA F LEQ VN RI G DG LS 3 D G LS PLPHL T ESS S rIFLF YV K LR WLL KH W t[V KL RW LLK HW R QG K 3 E EF T EGE HP ET LSR SL RL Q TAD RG QP HK Q R E KVE LLD RL D RDR Q D GNV RP FP HQ GS LR M 6 S KL K ESD R CS AS EN R T E V GR AGHEDS T EP EQ S GLR V LH SP PAV R L H S P P A V R R V D S I T A R QV A PA IE KV QAKF E IGV GS ENMCR E EG GE G E HA L KE ER R QAAHG P LUEQV N RI GD GLS PL P S SSFL ST VT S VS RD S BH LY AL R WK EL EMHRS 3C G FP V GEHS PH SR V D V EW AV LK CR LE QLE F QR L M DI S P F L P E K G D2SG L RVLH S PP AVR R S R DY VE GA RR PL DSP SL G FAS PL HS LE MS K b S SL FN II DH SP VV Q E PC P TELL KA R ED SE r DS FLH DAG L RG GA P
L
4 S P L P H L T ES S S F L S LSR L GE L GVQ GG HQ A UED FR AE LR E DERA R R QE WER Q KK EF LWR I 3 C S F L C DOQ K D C N V R P SW DY T PN R GHN0GG P P PA V RR VDS I TA AG G V R RVDS IT AACG GECGP score Seq. ID Numn.
28 27 26 24 24 22 22 22 22 21 21 21 21 21 21 21 21 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 18 is 18 18 TABLE XXVI 185P2C9 vi HLA- 00 DRB1*1101 15 mers Pos. 12 34 567 89 0 12 3 45 score Seq. ID 1137 QK GY SE S A WAR STTT 18 Nm LE SS TE L RR HL Q FVE 17 Ct68 LS KF KFE PP R EP G WL 17 272 QL LG TI NA KM K AF KK 17 362 RL R AAR EL H RR AD GD 17 440 FLF Y VK LR W LLK H WR 17 445 K LR WL LK H WRQG K QM 17 931 GE G PFP TSR A RG S PG 17 932 EGP FP T S R ARQS P GD 17 956 L SR WPC TS P RHS R DY 17 1007 EVA F SV RN A IC SG PG 17 78 EP GW L CEG A S P GA G 16 __181 EE MF E KTS GFG S G KP 16 187 TS G FGS GK PS E ASE p 16 354 RG DE RE S LRL RA A RE 16 00 399 A R W KE LE M HS L ALQ 16 409 SLA L Q NT L HE RT W SD 16 411 A LQ N T LH ERT WS DEK 16 C]444 V KL R WL LK HW R Q.GKQ 16 537 NQ Q LF S AF KA L LEDF 16 541 FS AFK AL L ED FR A EL 16 552 R AE L RE DE RA RL RL 16 576 W DVE W AVL KC R LE QL 16 605 AEHS K GALK KE R EV HQ 16 612 KKE R EVH Q KL L AD SH 16 689 C DQK D GN VR PF PH QG 16 799 D IS PF L.PE KGL P ST S 16 800 1ISP FL P EK GL PS TSS 16 830 1 EEF N KS W DY T PNRG 16 *853 WA DR TE VG R AG HE DS 16 *886 T DT MT S PE HC Q KQ PL 16 933 G PFP TS R AR GS PGD1)T 16 1005 M KEVA F SV R NA IC SG 16 1018 SG PG EL QV KD M AC QT 16 1028 M ACQT N GS R T MG TQT 16 1048 VG L QT EA L RGSG V TS 16 1057 S GV T S SP HKCL T PK 16 1203 GQ ET GtN S R GRS P SP 16 43 V EE E AEL R R S-ISEI 54 1S E IE D HNRQ L TH EL 62 RQ LT HE LS KF K F EPP 6.9 S KFK FE P PRE PG W LG 114 V L KL QHEN HA LL SNIt 161 E ESR LPQ0P KR E G PVG 220 KH EAQ0R LE RT V E RLI 1s 224 QR LER T VE RL IT D TD 278 NAK M K AFK KE LQ A FL 305 LP HL T ESS SF L S TVT 363 L RAA R EILH RR AD G DT 372 R ADG DT GS HG L GG QT 400 LR W KE LEM H SLA L QN 425 KN L M QQEL R S LKQ0NI 510 HS R VQI GD HS LR L QT 618 HQ KL LA DS HS LV M DL 674 Q L Q KE NS PR R G S FL 723 PF E DR PLS KL KE S DR 968 R DY VEG A RRP LD S PL 1076 ATP V SSP S RS L R SRQ TABLE XXVI 185P2C9 vi HLA- DRBi*iioi is niers 00 Pos. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Numn.
1081 SP SR SLR S RQ V AP A is1 rll 11Y G S P KLQR KP L PK AD is 1154 SP V HTT IN DG L SS LF Ct1229 GG E GTP V KQD LS A PP is 1245 Y T LT ENV AR I LN KKL 1249 E N VA RI LN KK L LE HA tl1254 1ILN K KLL E HA L KEER 1260 LEH A L K EE R RQ A AHG is 2 EDM R GQ Q ER E G PGRD 14 7 QQ0ER EG PG R D HA PS1 14 9 ER E G PGR DH A PSI PT 14 64 LT HE L SKF K FE P PRE 14 93. G APL Q EELK S AR LQI1 14 108 S ELS G KV LK LQ HE NH 14 130 RZCD LA AH L GL RA PS P 14 cI132 DLA AH L GL R A PS PRD 14 00 147 SDA E S DAG K KE SD GE 14 178 SD S EE MF EK TS G FGS 14 202 CP TE L LK AR ED SE YL 14 cI234 1IT D TD S FL HD AG LR 14 239 S FL H DAGL R GGCAPL P 14 274 LG TI NA KM K A FRK EL 14 335 GPD L Q S R L KE L EWQ 14 344 E Q LE WQ LG PA R D ER 14 364 RAA RR L HR R A D D TG 14 388 FS LE ME EE HL YA L RW 14 438 NI FL FYV KL R WL L KH 14 446 L RWLL KH W RQ G KQ ME 14 469 G EH P ETL SR LG PL GV 14 490 DG PD HD SD RG CG F PV 14 517 DH SL R LQT AD R GQ PH 14 542 SAF K AL LE D FR AE LR 14 544 F KALL E DF R AE L RED 14 625 SH SL VM D LR WQI HH S 14 629 V MDL R WQCIH HS EK NW' 14 630 M DL R W QI HS EK N WN 14 633 RW QI HH SE KN W NR EK 14 663 R Q KK EIFLW RI E QLQ. K 14 675 L QK ENS PR R GGS FL C 14 699 FP HQ GS LR MP R PV AM 14 704 SL RM PR PV AM W PC AD 14 779 KG NL QR AV SV SS M SE 14 788 VS S MSE F QRL M DI Sp 14 827 LK YI E EFNK S WD YT P 14 837 WD YT PN RG HN G GG PD 14 881 SV T MT T DTMT S PE HC 14 923 V DSI T A AGG EG PF PT 14 940 A RGS PG DT KG G PPE P 14 950 Gp pE P MLS RW PC T SP 14 980 SPL C TS LG F AS PL HS 14 1063 S P HKCL T P KAG GG AT 14 1065 H KCL TP K AG GG A TPV 14 1102 FE R TC CS PKY GS P KL 14 1110 KYGas P KLQ RK PL P KA 14 ills KL QR K PLP K AD Q PNN 14 1122 P KA D Q P NbR TSP G MA 14 1130 RT S*PGM AQ K GY SE SA 14 1144 AW AR ST TT RE S PV HT 14 TABLE XXVI 185P2C9 V1 HLA- DRB1*-1101 15 mere 12 34 5 678 90 1 234 5 00 Pos 1205 1257 1265 1271 1 97 104 127 131 136 180 238 295 340 355 429 478 498 598 626 797 812 849 899 949 976 989 1002 1040 1043 1047 1113 1161 1173 1241 1248 E T K K K E A A M E Q E R L C D H L S E D S V N S R G D Q Q L G M S L M T S G P P L
GOG
R P A S S D T Q V Q S v S p N ID
HMS
A P T E P Sp ER R P P G D S H EG P I S E VL K L G L AP S D S D F GS G G A L P H L GP AA R I F L Q A D S P H K GA I H H K G L L SP V GR S G L w pC
LOGF
K NL V RN LQ T E.A L G0S0 K A D
IDMH
K GL V AR K LL score 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 Seq. ID Num.
TABLE XXIII 185P2C9 v2 MLA- DRB1*0101 15 mere 12 34 56 78 90 12 34 5 104 908 478 696 902 181 917 932 39 358 399 794 923 68 472 1065 246 score Seq. ID Num.
33 32 31 31 31 29 28 28 28 28 28 27 27 27 26 TABLE XXIII 185P2C9 v2 MLA- DRB1*0101 15 mers 12 34 56 7 89 01 234 5 Pos 327 429 711 791 800 1007 1049 136 ~394 517 560 702 873 956 1080 1092 79 112 130 133 187 240 268 292 302 311 424 508 658 669 704 740 777 803 920 979 994 100 271 305 309 315 339 438 595 983 1032 1044 94 122 227 295 343 379 532 562 592 619 I G N QQ E V AM M SE IS P EV A G L Q H L G E E H D H S R AR Q GS DS S LS R SS p A P A P G W G K V R C D L AA T SG F L H Q Q E L QQ0 LS P S S S E K N S P H R Q E L WR S L R A SE NH K F L P VR R D SP S L E L K S P O L L P H T E S L S T QS R N IF E NK CT S T N G T I AP L H AL E R T V N R KE Q S H G K QV RL R E K T Q K L G P Q N A D D I G L AlI G s P R W K A D Q y P V s v P R S R A K s p E N G L A P P S 0 G T I
DOG
E S T S L R G D K E K E A M A L A V S T A A GFp S D S E A K 8SF T V R D E RW L R 8 5 P L T Q T E S A R C T D B p G P C F
L'F
A S E L S L Q SR LF Y P FE FL P T S S G P G T S S D A E E MMH Q P H D K A w PC TT D RD Y A P A RT C G0G0 LL S p SP R D S S EP L P G K M K PL P FL S R D B KQ N L R L W R I P RR CA D DD E S S M K E D
EOGP
P LH K EV G K V AF K T VT V S R I O N GP A L K H S KG LE M Q T I
ROB
QI S AA H S F L HL T G D E EM E FK A AA W S A.E D L-R score Seq. ID Numn.
26 26 26 26 26 26 26 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 23 23 23 23 23 23 23 23 23 23 23 22 22 22 22 22' 22 22 *2 2 22 22 TABLE XXIII 185P2C9 V2 HLA- 00 DRB1*0101 15 mers Pos 1 3 5 67 89 01 2 4 sc re Seq. ID Pos 2 4 56 78 9 1 3 45 sore Num.
C1685 GS F LCD QK D GN VR PF 22 779 KG NL QR AV SSsS M SE 22 ct816 E DVT PP L SP D DLKYI1 22 894 H CQ KQ P LRS H V LT EQ 22 952 PEP M LS R W PC TS PRH 22 986 LGF AS P L HSL E M SKN 22 1035 SR TM GT QT VQ TI S VG 22 1084 RS L RS RQ VAP AI E KV 22 57 1IED HN RQ L TH EL SKF 21 263 Q GE GD QQEP Q L LGTI1 21 281 MK A FK KEL QA F LQQ V 21 293 QQ0V NRI GD GL S PL PH 21 345 QL E WQLG P AQ G DE RE 21 407 MH S L AL Q NTL HE RT W 21 C1440 F LFY VK LR W LLK H WR 21 00830 1 EE FN K S WD Y T PNRG 21 878 L TTS V TM TTD T MT SP 21 949 GGP P EP M LSR WP C TS 21 RD HA PS IP TS P FGD S 312 SSF L S TVT SV SR D SP 401 R WKE LE M HS LAL Q NT 631 DL R WQ I HHS EK N WNR 693 DGN VR P F PHQ GS L RM 798 M DIS P F LPE K GL PST 812 T SS KE DV TP PL S PDD 839 YTP N RG HN GG GP D LW 898 QP LR S HVL TE Q SG LR 967 SR DY VE G ARR P LDS P 1009 AFS V RN AI CS GP G EL 1037 T MG TQT VQ T IS V GLQ 1052 T E AL RGS GV T SS PHK 78 EPG W LGE G AS P GA GG 19 215 Y L V TLK HE AQ R LE RT 19 235 TD T DSF LH D AG L RGG 19 291 L QQV N R 1 .D GL S PL 19 475 L S R L EL G VQ GGH Q A 19 541 F SA FK A L LE DFR AEL 19 552 R AE LRE DER A RL R LQ 19 577 D VEWA V LK CR L EQ LE 19 640 EK N WN RE K VE L LDRL 19 721 S I P F E D R P L S K L K E S 19 836 S WD YT P NRG H NG GGP 19 1047 SV G LQT EA L R GS G VT 19 1110 KYG SP K LQ RK PL P KA 19 58 ED HNR QL T HE LS K FK 18 T HE LS K FKF EP P REP 18 PP RE PG WL G EG AS PG 18 77 RE PG WL G EGAS P G AG 18 83 G EG ASP GA GG G AP L 18 ill S G KV L KLQ HE NH ALL 18 123 AL LS NI Q RCD LA A HL 18 126 S NI QR CD L A AH LG LR 18 131 C DLA AH LG L RA PS PR 18 162 ES RL PQ PK RE GP V GG 18 185* E KT S GF GS GK PS E AS 18 190 F GS GK PSE AS E PC PT 18 201 P C PT EL LK A RED S EY 18 212 D SE YL V TLK H E AQ RL. 18 TABLE XXIII 185P2C9 v2 HLA- 00 ~DRB1*0101 15 inersSe.I Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Neq. I 228 RT VE RL IT D TD S FLH 18 237 TD SF LH D AGL R G GAP 18 241 LH D AG L RGG A PL PGP 18 435 LK QN I F LF YV KL R WL 18 439 1F L FYV KL R WL LK HW 18 tn443 Y VK LRWL L KH WR Q GK 18 461 EEG E E FT EGE H PE TL 18 481 LGV Q G GHQ AD GP D HD 18 491 G P D DSD R GC GF P VG 18 535 VE NQ QL FS AF KA L LE 18 538 QQ LF S AF KA L LE DFR 18 542 S AFK AL L ED FR AE LR 18 _566 QQQY A SDK AA W DV EW 18 573 X AA W DVE W AVLK C RL 18 579 EW AV LKC R LE QL E EK 18 00 584 K CR LERQLE EK TE N KL 18 599 GE LG SS AE SK GA L KK 18 615 R E V HQK LL AD SHS LV 18 616 EV HQK LL A DS HS L VM 18 625 S HS LV MD L R WQI H HS 18 726 DR P LSK L KES D RC SA 18 764 E RE FR NR L PE E RENH i8 881 SV TM T TDT MT S PE HC 18 943 SP GD T K GGP PE PM LS 18 966 HS RDY VE G AR R PL DS 18 980 S PLCT SL GF A SP L HS 18 909 A SP L HSL E M SK N LSD 18 1001 L SDD MK EV A FSV R NA 18 1057 S GV T SSP H KCL T PK 18 *1067 CLIsTP K AG GGA TP V SS 18 *1068 LTP K AG G GA T PV SSP 18 1083 S RSL RS RQ V AP A IEK 18 1105 T CCS PK Y GS PK LQ0RK 18 2 ED T RG Q QEk E GP G RD 17 19 PSI P TS P FG DS L ESS 17 43 VEE E AE LL RRS I SEI1 17 44 EE E AEL LR R SI S SIE 17 62 RQL T HE LS K FKF E PP 17 76 PR EP GWL G RGA'S P GA 17 84 EG ASP G AG G GA PL QE 17 GA SP G AGGG A PL Q EE 17 91 G GGA PL QE EL K SA RL 17 97 QE EL KS AR LQ I S E L 17 152 DA G KK ESD GE ES R LP 17 179 D SEE MF EK TS GF G SG 17 213 SE YL V TLKH E AQ R LE 17 223 AQR L E RTV ER L IT DT 17 229 TV ER LI TD TD S FL HD 17 242 HD A GLRG G AP L PG PG 17 267 DQ QE PQ LL G TI NA KM 17 270 E PQL L GT IN A KM KAF 17 275 G TIN A KMK AF KK E LQ 17 282. KA F KKEL Q A FLQ Q VN 17 288 L QA FL QQ V NR IG D GL 17 323 RD SP IG NLG K EL G PD 17 324 DS P IG NLG K ELG P DL 17 355 G DER ES LR LRA A R EL 17 371 R RA DG DT GS H GL G GQ 17 TABLE XXIII 185P2C9 v2 HLA- 00 DRB1*0101 15 mers Pos 2 4 56 78 9 1 3 45 sare Seq. ID Poe 1 3 5 7 9 01 23 45 sore Num.
C1376 DT G SHG L G GQ TC FSL 17 421 WS DEK N LM QQ EL R SL 17 Ct448 W LL K HWRQ G KQ ME EE 17 455 Q G KQ MEEE GE E FT EG 17 497 D R GC GF PV G EHS PHS 17 523 QT AD RG QP H KQ VV EN 17 531 HKQ VV E NQ Q LFS A FK 17 587 LEQ L EE KT E NKL G EL 17 611 LK KE RE V HQ KL L ADS 17 645 RE K VE LLD RL D RD RQ 17 677 K EN SP RRG GS FL C DQ 17 708 P R PVAM W PC A DA DSI1 17 719 AD SI PF E DRP L S KLK 17 729 LSK L KE S DRC S AS EN 17 IcI792 S EFQ RL MD IS PF L PE 17 00 819 TP P LSP D DLK YI E EF 17 841 P NR GH N0G PD L WA D 17 856 R TE VG RA GHF.D S T EP 17 925 SI TA AG GE G PF PT SR 17 953 E P MLSR W PCT S PR HS 17 975 RR P LD S PLC TS LG FA 17 977 P LDS PL CT S LGF A SP 17 981 P LC TS L GFA S PL HSL 1 7 1005 MKE VA FS VR N AI C SG 17 1017 CSG P GE LQ V K D MACQ 17 1039 GT QT VQ TI SV GL Q TE 17 1043 VQ T ISV GL Q TE AL RG 17 1061 TS SP HK C L TPK AG GG 17 1113 SP KL QR KP LP KA DQ P 17 1116 LQ RK P LP KA DQP N NR 17 R EG PGR D HA PS I PTS 16 12. EG PG RD HA PS I PTS P 16 19 AP SI P TSP FG DS L ES 16 PF GD SL E SST EL RR H 16 37 R R H LQ FVEE EAE L LR' 16 46 E AEL LR RSI S E I EDH 16 47 AE L L RR SIS EI E DHN 16 61 NR Q LT 41EL SK FK F EP 16 99 EL K SA R LQI SE LS G K 16 114 VL K LQRE N HA L LSNI1 16 115 LKL Q H ENH A LL SN IQ 16 127 N1Q0R CD LA A HL GL RA 16 155 K KCES DG E ESR L PQ PK 16 167 Q P KR EGP V GG ESD SE 16 184 FE KT S GF GSG K PS EA 16 230 V ERL I TDT DS F LH DA 16 243 DA GL RG G A P L P GPL 16 251 PL P GP G LQ GE E EQ GE 16 289 Q AFL QQ VN RI GD G LS 16 299 G DG LSPL P HL TE S SS 16 303 SP LP H LTE SS S FL ST 16 314 FL ST VT SV SR DS P IG 16 318 VT S VSR DS PI GN L GK 16 328 G N LG K.EL GP D LQS R L 16 331 GK E LGP DL QS RL K EQ 16 335 G PD LQ SR LK EQ LE WQ 16 347 E WQI G P AQ GD ER E SL 16 357 E R ES LR LRA A RE LHR 16 TABLE XXIII 185P2C9 v2 I{LA- DRE1*0101 15 niers 1 2 34 5 67 890 12 345 Pos 389 391 404 431 493 509 514 519 537 544 545S 559 567 594 614 618 626 629 648 667 672 676 699 700 710 733 738 742 743 748 752 776 780 783 602 824 846 905 909 911 941 972 990 998 1013 1024 1027 1051 1062 1075 1097 1111 score 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Seq. ID Num.
TABLE XXIV 185P2C9 v2 liLA- DRB1*0301 (DR17) 15 mers 12 34 5 678 90 1 23 45 F K A L L ED F R AE L RE D score Seq. ID score Num.
38 TABLE XXIV 185P2C9.v2 HLA- 00 DRB1*0301 (DR17) 15 mers Pos. 12 3 456 7 890 12 34 5 score Seq. ID Num.
C1552 RAE LR E DE RA RL R LQ 38 331 GKE L GP D LQS R LK EQ 36 Ct230 V ERLI TD T DS FL HD A 29 625 S HSL VM DL R WQ I iH S 29 429 QQ EL RSL K QN IF LF Y 28 339 QS RL KE Q LE WQL G PA 27 387 CF S LE MEE E HL Y ALR 27 537 NQ QL FS A FK AL LE DF 27 587 L EQ0LE E KTE NK L GEL 27 746 LD AL SL D DE PEE P PA 27 53 SI S EIE D HNR QL T HE 26 173 P VG GES DS EE M FE KT 26 335 GP DL QS R LKE QL E WQ 26 651 LD RL D RD RQE WE R QK 26 684 G GSF LC DQK D GN VRP 26 oo998 S KN LS DD MK E VAF S V 26 281 MK AF K KE LQ A FL QQV 350 LG PA QG D ER E SLR LR 122 H AL LS NI QR CD L A AH 24 439 IF L FYV KL RW LL KH W 24 618 HQK L LA D SHS LV M DL 24 741 S EN LY LD ALSL D DE P 22 126 S NI Q RCD L AA HL GLR 21 237 TD S FL HD AG LRG G AP 21 318 VTS V SRD S PI GN L GK 21 793 E FQ RLM D IS PF L PEK 21 819 TPP L SP DD LK Y IE EF 21 881 S VTM T TDT M TS PE H C 21 1057 GSG V TS S PH KCL T PK 21 39 HL QF V REE AE L LRR S 104 RL QI SE LS GK VL K LQ 114 VL KL QH EN HA L LSNI1 204 T EL LK ARED S EY L VT 206 LL K ARE D SEY L VT LK 270 EPQ L LG TI NA KM K AF 294 Q VXR I GD GLS PL P HL 358 R ES LRLtR AA R EL H RR 389 S LE M EE EMHLY A LR WK 417 HER T W SDE K NL MQ QE 432 L R SL K QN IF L FY VKL 511 SR VQ I GD HS LR L QTA 579 E WAV L KC RLE QL E EK 580 WAV L KC R LE Q LEE KT 811 STS S KE DV T PPL S PD 849 GPD L W ADR TE V GR AG 860 G R A G E DS TE PF P DS 867 ST RP F PD SS WY L TTS 975 R R P LDS PILC TS LG FA L Q FV E EEA EL L RRS1 19 93 GA PL QE E LKS AR LQI1 19 112 G KVL K LQH EN HA L LS 19 121 N HA LLJS N IQ RCD L AA 19 214 EY LV TL KH EA QR L ER 19 278 N A M K AF KKE L0A F L 19 315 LS TV TS VS RD SP I GN 19 327 1G NL G KE LG PD LQ SR 19 424 E KN LM QQE L RS L KQ.N 19 438 NIF LF Y VKL R WL L KH 19 TABLE XXIV 185P2C9 v2 HLjA- DRB1*0301 (DR17) 15 mers 1 2 34 56 78 90 12 345 00 Po8 446 491 531 560 768 783 624 992 1045 1076 27 33 37 54 113 153 203 216 254 285 324 360 379 386 394 425 443 447 456 472 558 S98 608 633 645 665 666 687 721 ?29 734 785 788 1005 1091 score 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Seq. ID Num.
TABLE XXV 185P2C9 v2 lILA- DRB1*0401 (DR4DW4) 15 mners 1 *2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
Pos 425 544 552 618 625 648 666 693 719 779 856 908 917 1118 39 311 399 440 463 548 573 631 640 684 696 711 742 800 826 873 967 54 79 97 104 ill 216 227 230 270 271 278 289 292 299 302 305 312 315 318 327 389 394.
404 409 429 438 446 TABLE XXV 185P2C9 V2 HLA- DRBI*0401 (DR4DW4) 15 mers 1 2 345 67 89 0 12 345 K N L M Q 0 E.L R S L K Q N I F K AL LE DFR AEL RE D R A EL RE D ERARL RL Q H Q KL L ADS HS LV MDL S H S L V M-D L R W Q I H H S VE LL DR LD RD R QE WE K E F L W R I E Q L Q K E N S D G N V R P F P H Q G S L R M A D SI P F D RP LS KL K K G NL QRA V SVS S MSE RT E VGR A GH EDS TE P Q S GL R VL HS P PA VR R P PAV R RVD S ITA AG G R. K P L P K A D Q P N N R P G H L QF VEE E AE L LRRS S S SFL S TV T SVS RDS A LR WK EL E MH SL AL Q F LFY VK LR WL LK H WR G EEF T EGE HP ET L SR L ED F RAE L RE DE RAR K A A WDV E WAV L KCRL D LR WQ I H HSE KN WNR E K N WN REK V EL LDRL G G S F L CD Q K D G N V R P VR PF P HQ GSL RM PR P VA MW P CAD ADS I PF E E NLY LD AL SL DD EP E I SP F L P E K G L P S T S S DL KYI E EF NK S WDY T D SSW Y LTT S VT MT TD S R D Y V E G AR R P L D S P I SE I ED H NR QLT HEL P GW L GE GA SP GA0GG Q E EL K S A R L Q I S E L S R LQ IS EL S GKVL KL Q S G K V L K L 0QH E N H A L L L V T L K H E A Q R. L E R T V ERT V E RLI TD TD SF L VE RL I TDT DS FL HD A E P QL LGT I NA K MKAF P Q L L G T I N A K M K A F K N AK M KA FK K EL QAFL Q A F L Q Q V N R I G D G L S' L QQ V N R IGDGL S PLP G DG L SPL PH L TE SSS LS P LP HL TE SS SFL S L PH LT E SS SF LS TVT S SFL S TVT SV S RDS P LST V T SVS R DS P IGN VTS V SR DS PI G NL GK I G NILG KEL GPDLJQ S R S L E M E .E E H L Y A L R. W K E E HL YA LR W KEL EMH E L E MH SL ALQ N TLHE S L AL Q NT LHSRT WS D Q QE L R SLK Q NIF LFY N IFL F YV KLR WL LK H L R WL L KH WRQ GKQM E SC~re Seq. ID score Num.
26 26 26 26 26 26 26 26 26 26 26 26 26 26 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 TABLE XXV 185P2C9 v2 HLA- 00 DRB1*0401 (DR4Dw4) 15 mers e.I Poe. 12 34 5 678 90 1 2345S score Seq. I 447 RW LL KH WR QG KQ M EE 456 GK Q MEE EG EERF T E G Ct472 PE TL SR L GEL G VQ GG 519 SL R LQT AD R GQP H KQ 531 H K QVV E NQQ L FS AFK Sn 37 N QQL FS A FK AL LE DF 560 R AR LR LQ QQ0Y AS DKA 595 EN KL GE L GSS AE S KG 608 KG A LKK ER EV HQ K LL 619 QK LL ADS H SL V MD LR 645 R EK VELL D RL DR D RQ 651 L D RLDR DR QE W ER QK _669 L WR I EQLQ0K EN S PRR 672 1 E Q LQKE NS PRR G GS 729 L S KL E S DR CSGAS EN 00768 RNR L PE E EE N HKG NL 788 VS S MSE FQ RL MD I SP 819 TP P LS PDD LK YI E EF C]824 P DDLK YI E EF NK S WD 849 G PD L WA DR TE VGR A G 875 S WY LTT SV T MTT D TM *886 TDT M TSP E HCQ0K Q PL 901 RS H VL T EQ S GLR VLH 968 R DYV EGA R R P LDS PL 983 C TS LGPFA SP LH S LEM 989 A SP L HSL E MSK N LSD 994 SL E MSK NL S DD M KEV 998 S K NLS DD M KE V AFSV 1005 MK EV A FS VRN A IC S 1040 TQ T VQT ISV G LQ T EA 1043 VQT I SV GL QT EA L RG 1047 SV G LQ TEA LR GS G VT 1057 GS G VTS S PH KC L T P 1088 SR QV A PA IE K VQ AKF 12 G PGR D HA PSI P TS PF 18 P FG DSL ES ST E L RRH 18 29 SL ES STE L RR HL Q FV 18 LE SS TE L R R HLQ FVE 18 43 V EEE AE L LR RS ISE 1 18 44 EEE AE L L RRS IS EI Z 18 52 R SI SE I ED H NRQL T H 18 53 SI SE IE DH NR QL T HE 18 58 E DHN RQ LT H EL SK FK 18 94 AP LQ EE L KSA R LQ IS 18 103 AR LQ IS E LSG K VL KL 18 118 QHE N RA LL SN IQ R CD 18 128 1 QRC DL AAH L GL R AP 18 156 K ES D E ES RL PQ0P KR 18 205 ELL K AR EDS E YL V TL 18 224 Q R L E RT E RL IT D TD 18 261 EE Q G 0DQQ0E PQ L L 18I 268 Q Q EP Q LL G TI N AK M 18 304 P L PH LT ESS S FLS TV 18 308 LT ES S-S FL ST VT S VS 18 309 TES S SF LS TV T SV SR 18 321 V SR DS PI G NL G KELG 18 332 K ELG PD L QS RL KE QL 18 350 LG P AQGD E RE SL RL R 18 TABLE XXV 185P2C9 v2 HLA- 00 DRB1*0401 (DR4Dw4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 2. 2 3 4 5 score Seq. ID Num.
C1362 RLR A AR EL H R RAD GD 18 388 F SL E MEE E HL Y ALJRW 18 Ct400 LR WK EL E MHS LA L QN 18 405 LE M HSL AL Q NT L HER 18 421 W SD E K NL MQQE L RSL 18 426 N L MQ QE L RS L KQ NIF 18 444 VK LR WL LK H WRQ G KQ 18 500 CGF P VG E HSP HS R VQ 18 511 SR VQ I GD HSL RL Q TA 18 529 QP H KQ VVE NQ Q L FSA 18 534 VV E NQ Q LFS AFK A LL 18 559 E R AR LR L QQY A SD K 18 586 RL EQ L EE K TE N KLGE 18 599 G EL G SS AE SK GA L KK 18 C1610 A L KK ER EVH Q K LL AD 18 00 611 LK KE RE V HQK LL AD S 18 .617 V RQK LL A DS HS L VMD 18 630 MDL R WQI H HS EK N WN 18 663 RQ KK EF L WR IE Q LQK 18 760 A HR PER EF R NR L PEE 18 770 R L PEE EE NH K GN L QR 18 776 E N HKG NL QR AV S VSS 18 787 S VS S MS EFQ RL M DIS 18 793 EF QR L MDI SP FL P EK 18 803 F L P EK 0LP S TS S KED 18 811 S TSS K E DVT P PLS PD 18 848 GG P DL WAD R TEV G RA 18 867 ST E P FPD SS WY LT TS 18 872 P DSS WY LT TS VT M TT 18 894 H CQ KQPL R SH V LT EQ 18 898 QP LR SH VL T EQS G LR 18 914 LHSP PA V RR VD S I TA 18 929 AG G EG PF P TSR A RGS 18 986 L GF ASP L HSL E MS KN 18 990 SP LH S LEM S KNL S DD 18 1003 DD MK EV AF S VR NA IC 18 1037 TMG TQ T VQ TI S VG LQ 18 1044 Q T ISV GL Q-TE AL RGS 18 1080 SSP S RS LR S RQV A PA 18 1097 K VQ AK FE R TC CS PKY 18 1110 KYG SP K LQ RK PL P KA 18 439 1FL F YV KL R WLL K HW 17 23 TSP F GDS L ES S T ELR 16 68 LS KF K FEP PR EP G WL 16 78 EP GW LGE GA S P GA GG 16 181 EE MF E KTS G FGS G KP 16 187 TS GF GS GKP S EA S EP 16 212 DS EY L VT L KHE AQ RL 16 237 T DSF LH DA G LR G GAP 16 288 LQA F LQQ V NR IG D GL 16 385 QT CF S LE MEE EH L YA 16 450 LK H WR Q G KQ MEE EGE 16 499 G CGF P VGE HS P HS RV 16 538 QQ L FSA FK AL LE D FR 16 541 FS AF K AL LE DF R AEL 16 566 QQ QYA SD KA A WD V EW 16 577 DV EW AV L KCR L EQ LE 16 658 RQ E WE RQKK E FL WR 1 16 TABLE XXV 185P2C9 *v2 HLA- 00 DRB1*0401 (DR4DW4) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID 667 EF L WR I EQ LQK E NSP 16 Nm 791 MS E FQ RL MD IS PPLP 16 Ct834 NK S WDY TP N RG H NGG 16 868 T EP FP DS SW Y LT TSV 16 874 SS WY LTT S VT MT T DT 16 932 EG PF PT S RA R GS PGD 16 956 LSR W PC TS P RHS R DY 16 985 S L GFA SP L HSL E MSK 16 1099 Q A KF ERTC C SP KYG S 16 1108 SP KY GS PK L Q RK PLP 16 18 A PS I PTS P FQD S LE S 14 33 ST EL RR HL Q F VEE EA 14 R R LQ0F VE E EAE L LR 14 LQ F VE EE A E LLR RS1 14 47 A EL LR RSI SE IE D HN 14 00 51 RR SI S EI E D HN RQLT 14 T HE LSK F KF EP P REP 14 93 G AP L QEELK S AR LQI1 14 C1102 SAR LQ I SE LS G KV LK 14 112 GK V LKL Q HEN HA LL S 14 121 NHA LL S NI Q RCD L AA 14 130 R CD LA A HLG LR A PSP 14 136 HL GLRA P SP R DS D AE 14 162 ES RL PQ PK R EG PV GG 14 171 EGP VG G ES DS E EM FE 14 203 PT EL LK AR ED SE Y LV 14 223 AQ RL E RTVE R LI T DT 14 231 E RL I TDT DSF L HD AG 14 238 DS FL HD A GL RG G APL 14 254 GP GL Q GEE EQ G EG DQ 14 295 VNR I G DG LS PLP H LT 14 324 D S PI GNLG KE LG P DL 14 339 QS R LK EQ LE WQL G PA 14 343 K EQ LE W L GP AQ G DE 14 347 EWQ L G PAQ GD ER E SL 14 360 SL RL RA A REL HR R AD 14 379 S HG LGGd.Q TCF SL E ME 14 387 CF S L E MEEE HL YA LR 14 402 W KEL E MHS L AL Q NTL 14 407 MHS L ALQ0N T LHE R TW 14 424 EK NL MQ QE LR S L KQN 14 436 KQ0N IF LF YV K LR WLL 14 443 YV KL R WLL K.HW RQ0GK 14 475 L S R L GE L GV Q GG HA 14 478 LG EL GV Q GG HQ ADG P 14 480 E L GVQG G HQ AD GP D H 14 510 HS RVQ I GD H SL R LQT 14 512 RV QI GD H SLR LQ T AD 14 532 K QV VE N QQL F S AFKA 14 545 K AL LED FR AE LR E DE 14 562 R LRL QQ QY A SDK AA W 14 575 AWD VE W AV LK C R LEQ 14 579 EWA V LK C R LEQ L EEK 14 584 KC RL EQ L EE KTE N KL 14 626 H S LVMDL R WQ I HH SE 14 629 VMD LR WQ IH H SE KN W 14 633 R WQ IH HS EK NWN R E.K 14 685 GS F LCD Q KD GN VR PF 14 00 PoB 702 708 710 726 741 743 746 748 794 797 806 815 827 879 881 897 902 920 923 975 979 992 1002 1009 1013 1022 1025 1035 1052 1076 1092 TABLE XXV 185P2C9 V2 liLA- DRB1*0401 (DR4Dw4) 15 mers 12 3 456 78 90 1 234 5 Q G S L R M P R P V A M W P C P RPV AM WP CA DA DS I P V A MWP C ADA D SIPF D R PL SK L KES D RCSA S ENL Y LDA L SL DDE P NL Y LDA LS LD DE PE E L DA LS L DD EP EE PPA A LS LDD EP EE PP A HR F Q RLMD I SP FL PEK G L M DI S P F L PBE K G L P S E K G L P S T S S K E'D V T P K ED VTP P LSPD D LK Y L K YI EE FNK S WD YTP T TS VT MT T DTM TS PE S V TM T TD TMT SP EHC K QPL R SHV L TE Q SGL S H V L T E Q S G L R V L H S V RR VDS I TA AG GEG P VD SI TA AG GE G PF PT R RPL D SPL CT SL GF A D S PL C TSL G FAS PLH L H S L E MS KMN L S D D M K S D D M K E V A F S V R N A I AFS VR NA I CS G PG EL R NA IC SG P GE LQ VKD E L Q V K D M AC Q T N G S R VK DM A CQ T NGSR TM G S RTM GT Q TVQT I SV G T E AL R GSGVT SS P HK AT PV SS PS R SLR SR Q A P AI E KV QAK F ERTC TABLE XXVI 185P2C9 v2 liLA- DRB1*1101 15 mers 1 2 3 4 5 6 7 8 9-0 1 2 3 4 5 L S TV TSV SRD SP IGMN D SP 1IGN LGK EL G PD L L WR I EQLQK E NS PR R D S E Y L V TL KHE A QR L Q NI FLF YV K LR WLL K V EL L DR L DRD RQ EWE MSE F QR LM D I SPFL P E B B A B L L R R S I-S E I B E D HNR QLT H ELS K FK H Q GS LR MP RP VA MWP ADS I PF E DR PL SK LK E NH K GNL Q RAV SV SS P L H S .L B M S K N L S D D M S K N L S D D M K E VA F S V S GK V L KLQ H ENH ALL H AL L S NI QR CDL AAH E S RL PQP K RE G PVGG S E Y L V T L K H E A Q R L B LQ A FL0QQV N RI GD GL Q A FL Q QVN RI GD GLS G DGL SP LP HL TE SS S IF LF YV KL RW LL KH W score 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Seq. ID Num.
Pos 315 324 669 212 437 648 791 44 58 701 719 776 991 998 i11 122 162 213 288* 289 299 439 score Seq. ID Mum.
TABLE XXVI 185P2C9 V2 HLA- 00 DRB1*1101 15 mers Pos -1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID 443 YV KL R WLL K HW RQ GK 20 Nm 463 G E EFTE GE H PE TL SR Ct519 SL RLQ T AD R GQ P HKQ 645 R E KVEL L D RLD R DRQ 693 DG NV R PF P HQ GSL RM 729 L S KLKE S D RCSA S EN 856 R T EV GRA GH ED ST EP 2 907 EQ SG LR V L HS P PAVR 914 L H SPPpAVR RV DS I TA 1089 ROQV AP AIE KV Q A KFE 292 L QQ V NR'I G D GLS PLP 19 311 SS SF LS TV TS VS RD S 19 _395 EH LY A LRW KE L EM HS 19 499 C G FPV GE H S PH SRV 19 577 DV EW AV LK CR LE Q LE 19 00 794 FQ RL MD IS PF L P EKG 19 908 Q S GLR.VL HS P P A VRR 19 967 SR D YV EGAR R PL D SP 19 985 SL GF AS P L HS L8M SK 19 200 EP C PT EL L K ARRDSE 18 237 TD S FL HDA GL R GG AP 18 302 LS PL P HLT ES S SFL S 18 475 L S RL G E L G VQ GGHA is 548 LE DF R AEL R ED ER AR 18 658 RQE W ER QK KE FL WRI1 18 684 GG SF LC DQK D GN VR P 18 836 SW DY T P NRGH N GG GP 18 917 PP AV RR V DSI TA A GG 18 920 VR RV D SITA A GG EG P 18 LE S ST E LR R HL Q VE 17 68 LS KF KF E P PRE PG WL 17 272 Q L LGTI NA K MKA F KK 17 362 R LRA AR E LH RR A DGD 17 440 FL FY V KLR WL LK H WR 17 445 K LR WLL KH W RQ GK QM 17 931 G EG PP P T SR A R S PG 17 932 E GPF P TSR AR G S PGD 17 956 L AW P CT SPR H SR DY 17 1007 E V AF SVRN A IC S G PG 17 78 E PGW LGE GA S PG A GG 16 181 EEM F EKT S GFG S GK P 16 187 TS GF GSG K PS EA S EP 16 354 QG DE R ESL RL RA AR E 16 399 A L RWK EL E MHS L ALQ 16 409 S L ALQN TL H ERT W SD 16 411 A LQ NT L HE RT WS DEK 16 444 VK LRW LL KH W RQ G KQ 16 537 NQ QL FS A F KALL E DF 16 541 F SA F KAL L ED FR AEL 16 552 R AE L RE D ER ARPLR LQ 16 576 WDV E W AVLK C R LE QL 16 605 A ES K GAL K KE PE VHQ 16 612. K K ER EV HQ K L A D SH 16 689 CD Q K DGN VRP F P HQG 16 799 DI S PFL PE KG L PS TS 16 800 IS P FLP E KGL PS T SS 16 830 1E EF N K SWD YT P NRG 16 853 WA DR TE VG R AG H EDS 16 Pos 886 933 1005 1018 1028 1048 1'057 43 54 62 69 114 161 220 224 278 305 363 372 400 425 510 618 674 723 968 1076 1081 1111 2 7 9 64 93 108 130 132 147 178 202 234 239 274 335 364 388 438 446 469 490 517 542 544 625 629 630 633 663 TABLE XXVI 185P2C9 V2 HLA- DRB1*1101 15 zners 12 3 45 678 90 1 234 5 T DT M TSP E HC QK QPL G PF PT SRA RG SP G DT M K EVA F SV R NA ICSG S G PG EL QV KD M ACQT M ACQT N GS RT M GTQ T VG L QTE AL RG S GVT S G S GV TS SP HK CL TPK V EE EAE L LRRS I SE I I SE IEDH NR QL T HE L R QL TH ELS KF K FEP P S KF K FEP PR E PGWL G V L KL QHEN HA LL S NI E E SR LP QP KRE GPV G KHE A QR L ERT VE RL I Q RL E RT VE RL IT DTD N AK M KA F KKEL Q AFL L P H L T E S S S F L-S T V T L RA AR EL HR RA D GDT RA D GDT GS H GL GGQ0T LR WK E LEM HS LA LQ N K NL MQQ EL RS L KQN I H S R VQ I G DH S L RLQ T H 0K L LA DSUS L V M DL Q L Q K EN S P R R GOG S F L P FEDR P L SKL KE S DR RD Y VE G AR R PLD SPL AT PV S SPS R SLR SR Q S P S R S L R S R Q V A P AlI Y G S P KL QR KP LP KA D E DTRG Q QE RE GP GR D Q QER EG PGR D HA P SI ER E GP GRD HA P SIP T LT HE LS KFK F EP PR E G AP L Q E EL K S A R L Q I SEL SG K VL K.LQ HE NH R CD L AAH LG L RA PSP D LAA HL G LRAP S PR D S DA ES DAG KK ES DG E S DS EE MF EKT SG FG S C P T E L L K A R E DS E Y L I TD TD S FL H DAG LRG S FLH DA G LRG GA PL P L GTI N AK MKAF K K EL G P D L Q S R L K H Q-L E W Q RA A RE L HRRAD G DT G F S L E MNE E E H L Y AL R W N IF LF YV K LR WL LKH LR WL L K HWR QGICKQ ME G E H P .E T L S R L G E L G V D GPDH D S DR GC GF PV DH S LR L QT A DR GQPH S AFK AL LED F R A ELR F KAL LE D FRA E L RE D S H S L V M D L R W Q I H H S V M DL R W Q i H H S E K N W M DLR WQI HH S EK NW N R WQIH HS EK NW N RE K R QK KEF L WR IE Q LQ K score Seq. ID Num.
16 16 16 16 16 16 16 is 1s is 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14.
14 Pos 675 699 704 779 788 827 837 881 923 940 950 980 1063 1065 1102 1110 1115 1127 97 104 127 131 136 180 238 295 340 355 429 478 498 598 626 797 812 849 899 949 976 989 1002 1040 1043 1047 1113 TABLE XXVI 185P2C9 v2 HLA- DRB1*1101 15 mers 12 34 56 7 890 12 34 5 LQ KE NS PR RG GS FL C F P H G SLR MP RP V AM S LR MPR PVA M WP CA D K G N L Q R A V S V S S M S E V SS MS EF QR L MD ISP L K YIEE FN KS WD YT P W D Y T P N R G H N G G G P D S VTM TT DT MT SP EH C V DS I T AA G GE GP F P T A R G S P G D T K G G P P E P G PPE P M L SR W PCTS P S P L CTS L GFA S PLHS SP H KC LTP KA G G GAT H K C L T P K A GO G GA T P V F E RT CC SP KY G SPKL K YG S PKLQ RK PL P KA K L Q R K-P L P K A D Q P N N P N NR PG NR H QFPR K V Q E EL K S A R L Q I S E L S R L QI S ELS G KVL KLQ N IQ R C DLA AH L GLRA C D LA A HL GL RAPS P R H L GL RAP SP R DSDA E S E EM FE KT S GFG SGK D S F L H D A G L R G G A P L V NRIG DG LS PL P HL T S R LKE QLE WQL G PA Q GODE R E S L R L R A AR E L Q Q EL RSL KQ NI FLF Y L G EL G V Q G G H Q A D G P R GC GF PVGE H SP HS R L G ELGS S AE SK GA LK H S LV M DL RWQ IH HSE LM DI S PF L P EKG LPS T S S K E D V T P P L S P D D G PDL WA D RTEV G RA G P LR S HV LT E QSG LRV GG P PE PM L SR WP CTS RP L DS P LCT SLdF A S A SP L H S L E MS K N L S D S DD M KE VA F SVR NAI TQT V QT IS V GLQ T EA V Q TI SVG LQT E ALR G SV GL QT EA LRG S GV T S PK LQ R KP L PK ADQP TABLE XXIII 185P2C9 v3 HLA- DRB1*0101 15 mers 12 34 5 6789 0 12 34 5 score 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 Seq. ID Num.
Pos 104 612 918 478.
912 181 927 942 39 score Seq. ID Nuni 33 33 32 31 31 29 28 TABLE XXIII 185P2C9 V3 HLA- DRB1*0101 is mers Pos 358 399 804 933 1175 68 472 603 1075 167 246 327 429 615 772 1 801 810 1017 1059 1254 1274 136 394 517 560 712 883 966 1090 1102 79 112 130 133 187 240 268 292 302 311 424 508 696 714 750 787 813 930 989 1004 1246 1258 100 271 305 309 315 339 438 2 34 5 E S LR L RW K Q R LM D S IT S L F N S KF K E T L S L G F T K C L T P KW E R GG A G N L G Q EL R K T t K A M W P S E F Q S P FL V A F S L Q TE Y T LT K E E R L GL R E H L Y H S L R A R L R G S L R S S W Y S RW P S PS R P A I E G W L G K VL K C D LA A AH L S G F G L H DA Q E P Q E QV N S P LP S5S F L K N L M P HS R QE W E L RM P S EN L H K G N L P E Ki R R V D S P LC L E MS Q D L S E N V A K S AR: Q.LL G P H L T' E S S S S T VT S R L K; I F LF '8 90o12 345 A AR E L H R R E MH SL AL Q S P F L P E K G G GE GP F P T D H SP VVQ D P PR EP GW L G E L GVQG G P AG S TVK T AG GOGA T P V V G GE S DSE P GP GL QG E L G P DLQ SR K O N I F L F Y G LQ R LE LE D A DS I P F E M D ISP FL P K G LPS TS S N A I C S G P G RG S GV TS S V ARI L NK K A A H G P P G L' S PR DS DA E R W KE LEM H T A DR GQ P H Q Q YASD K A R P VA M WPC T SV TM TT D S PR H SRD Y R S RQ VAP A Q A KFE RT C A SP G AGG G H EN HA LL S L G L RAPS P R AP S PR DS K PS E AS E P R G GAP LP G G TI N AK MK G D GLS PL P T ES SS FL S V T SVS R DS E LR S LK QN I G DHS L RL K KEF L WR I V AM WP CA D D A LSL DD E R AV S VS S M P S T S S KE D T A A G G E G P L GF A SPL H L S DD MK EV P G Y T L TE N L N KK LLE H I SE LS GK V N AK MK AF K S S F L S T V T S TV TS8V SR S R D S PI G N L E W QLG P A K LRW L LK H score Seq. ED Num 28 28 28 28 28 27 27 27 27 26 26 26 26 26 26 26 26 26 26 26 26 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 23 23 23 23 23 23 23 TABLE XXIII 185P2C9 V3 HLA- 00 DRB1*0101 15 mr Pos 1 234 5 67 8 9012 34 5 score Seq.ID Num 633 EN KL G EL GSS A ES KG 23 704 KE FL W RI EQ GSL R MP 23 705 E FL WR IE QG SL RM PR 23 Ct993 CTS L GFA S PL HS L EM 23 1042 T NGSR TM G TQ TV QTI1 23 1054 QT IS V G LQ TE AL R GS 23 1167 HT TIN D GL SS L FNII1 23 1186 V VQD P FQK G LRA G SR 23 1242 T P VKQ DL SA P PG YT 23 94 A PL Q EEL K SA RL Q IS 22 122 H ALL S NI QRC DL A AH 22 227 ER TV E RLI TD T DS FL 22 295 V NRI GD G LS PL PH LT 22 343 XE Q LE WQ LG P AR GDE 22 345 QL E WQ LG PA R GD ERE 22 379 S HG L G GQTC FS L E ME 22 00 532 KQ VV E NQQ LF S A FKA 22 .562 RL RL QQ QY AS DK A AW 22 630 K T E NKL GEL G SS AE 22 C1657 QKL LA D S HSL V MD LR 22 789 K G N LQRAV SV SS M SE 22 826 ED VT PP LS PDD L KYI1 22 904 H C Q KQPL R SHV L TEQ 22 962 PE PM LS RW PC TS P RH 22 996 LG F AS PL HSL E MS KN 22 1045 S RT M GTQT VQ T IS VG 22 1094 RS L RSROQV A PAI EK V 22 1174 LS SL F NI IDH SP V VQ 22 1188 Q D PFQ KGL RA GS R SR 22 1259 EN VA R ILN KK LL E HA 22 57 1E D H NR Q LT H E S KF 21 263 Q GE G DQ E PQ L LGTI1 21 281 MK A F KKEL Q AF LEQ V 21 293 EQ V NRI GD G LS PL PH 21 407 M HSL ALQ N TL H ER TW 21 440 F LF YV KL RWIL LK H WR 21 609 LP A GST VK TL KS L GL 21 706 L WR IE Q GSL RMP R P 21 840 1 E E F KS WD YT PN RG 22 888 LT TS V TMT TD TM TS P 21 959 G GPP EP M LSR W PC TS 21 RD HA P SI PTS PF GD S 312 8SSF L ST VT SV SR DSP 401 RW KEL E MH SL AL Q NT 669 DL R WQI H HS EKN W NR 703 KKE FL WR I EQ G SL RM 808 M DIS PF L PE K GL PST 822 T SS KED VT P PL S PDD 849 Y T PNRG HN G GGP D LW 908 Q PL RS HV L TE QSG LR 977 SR DY VE G AR R PL DSP 1019 AFS V R NA IC S P G EL 1047 TM G TQT VQ T I SVG LQ 1062 TE A LR GSG VT SS P HK 1165 PV HT TIN D GL SS L FN 78 E PG WLG EG AS PG A GG 19 215 YL V T L K HE AQRL ERT 19 235 T DT D SFL HD A GL RGG 19 291 FL EQ V NRI G D GL SPL 19 Pos 475 541 552 577 604 678 731 846 1057 1120 1184 1223 1262 1263 58 77 83 ill 123 126 131.
162 185 190 201 212 228 237 241 435 439 443 461 481 491 535 538 542 566 573 598 637 653 654 663 736 774 891 953 976 990 999 1011 1067 1077 1078 1093 TABLE 20(111 185P2C9 V3 lILA- DRB1*0101 15 niers 12 34 5 678 90 12 34 5 SR L GE L G VQGG HQ A F S A F K A L L ED F R AE L IA EL RE D ERA R LR LQ VE WA VL K CR LE QN C 0 FT RL PA GS TV KT L SKN WN RE K VE LL DR L 3 1P FED R PL SKL KE S SW DY T PNR GH NG GG P V G LQ TE ALR GS GV T KY GS P KLQR K PL P KA P V VQD PF QK G LR AG I S P S P I G VG S E M C R E kR IL NK KL L EHA L KE Z IL NK KLL E HAL KE E E DH NRQ tT HE LS K FK r HRE L S K F K F E P P R E P P RE PG WL GEG AS P G ZEP GW L GE GA S PG AG 3E G ASP G AGG G APL Q 3 GK VL K LQ HEN H AL L k LLS N IQ RCD LA A HL N I QR CDLA AH L GL R DL AA H LG LR AP S PR ES RL PQ PK W EG PVG G ~KTS GF GS G KP SE AS GS G KPS E AS EP CP T ?C PTEL LK A RED SE Y S EYL V T LKHE A QR L ZT VE RL IT DT DS FL H r DSF LH D AG LRG G AP iH D A G LR G GAP LP GP .JK QN IF LF YV KL RW L L FL F YV KLRW LL K HW C V KLR W LLK H W RQ GK E G EEF TEG E HP ET L JGVQG G HQ AD GP D HD PD H DS DR GC GF P VG tE N QQ F SA F KA LL E QL FS AF KA L LE D FR A F K A L L ED F R AE L R ~QQY AS DKA A WD V EW C AA WD VHW A VL KCR L I EE ET L GFT RL PA G ;E L G S S A E S .K G A L K K ZEV HQ KL L AD S HSL V V H QK LL A DS HS LV M H S LV MDL R WQI H HS )R P L S K L K E S D R C S A ~RE FRNR L PE EE E NH ;VT MTT D TMT SP E HC ~P GDT KG G PPE P MLS I SR D YVE G ARRP LD S P LC TS LG F AS PL S L SP LH SLE MS KN LS D S DD M KEV AF SV RN A S GV TS S P HKCL T PK L TP K AGG G ATP V S S T P K A G G G A T P V S S.F R SL R SR0V A PA I EK score Seq. ID Num.
19 19 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 i8 18 18 18 18 18 18 18 18 18 18 18 18 18 18 TABLE XXIII 185P2C9 v3 HLA- DR.B1*0101 15 mers Pos i115 1147 1163 1192 1214 1219 1221 .1234 1292 2 19 43 44 62 76 84 91 97 152 179 213 223 229 242 267 270 275 282 288 323 324 355 371 376 421 448 455 497 523 531 595 599 620 625 649 683 707 718 729 739 802 829 851 866 935 963 985 987 1 2 T C Q K E S Q K Q E N S R G M C S H E D P S V E E E RQ0 P R E G G A
GG
Q E D A D S S E A Q T V H D D Q E P G T K A L Q R D D S G D R R D T w S W L Q G D R Q T H K P R I E S L R L L K R E L W P R A D L S S E T P P N R T S I E P R R P L 34 5 67 C SPK Y G YSE S P V HTT G LRA G TOG T N S R GR S P R S P S P R E EGG S LG DT TR GQ Q I P TS P E E A E L EA EL L L T HE L EP G WL A SPG0A S PGA G GA P LQ E L KS A G K KES EE MF E Y L V T L R L E R T ER LI T A G LROG Q E P QL Q L LGT I NAK M F K K E L A FL EQ S PI ON P I G N L E RE S L AD GD T GOS H G L D E K N L L K HW R K Q MEE GOC GF P A D R G Q QV VE N I N I EE EE TL G G LQ0RL E L EEK K E REV K V E L L R IEQ G P VANM W S I P F E K L KES FQ0RL M P L SPD RGH N G E VOGRA T AAOO M L SR W P-L D S P D S PL C 8 90 12 34 5 score Seq. ID Nuxn 18 18 18 1a 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17.
17 TABLE XXIII 185P2C9 V3 HLA- DRB1*0101 15 mers Pos 991 1015 1027 1049 1053 1071 1123 1126 1134 1142 1152 1153 1176 1189 1190 1209 1231 1241 1271 1277 11 18 37 46 47 61 99 114 115 127 155 184 230 243 251 289 299 303 31*4 318 328 331 335 347 357 389 391 404 431 493 509 514.
519 537 544.
545 559 1 2
PIL
M K C s G T V Q
T-S
L Q A D s p E S S A S L D P P F E L G S E G E R R E E G A P P F R R E A A E N R E L V L L K N I K K F E V E D A P L Q. A G D s P F L V T G N G K G P E W E R S L E M E L E L D H P H Q I S L N Q F K.
K A E R 3 45 6 C T S L E VA F G P GE Q TV Q T IS V S P HK K L QR R K P L Q P NN G MA Q A WA R W AR S F NI I F QK G o K G L O P GQ E M C .R T P V-K 78 90 12 3 45 G FA S P LH S L S VRN AI CS G L QV KD M ACQ T I S V G L Q T E GLQ T EA L RG C L T PKA GGG K P LP KAD Q P P K A D Q P N N R R TS PG M AQK K G Y S E S AW A S T TT R ESPV T T TRE S PV H D HS P VV Q DP L RA GSR SR S R A GS R SRSA ETG T NS RG R EE GG E GT PV Q D L S AP P G Y E RR QAA HG P 9 G PPG L HS D D HA PS I PT S H A P SI P T S P 9 P F G D S L E S ES STE L RR H V E E E A E L L R R S I S ElI E D H 3 I S ElI E D H N E LS K FK F E P L Q I S E L S G K EN HA LL SN I I HAL L SN I10 l A AH L GL R A E E S R L P Q P K F G S G K P S E A )T DSF L HD A 3 A P Li P G P G L Q GE EE QG E /N R IG D GL S P H LTE S SS V E S S S F L S T 3 VS R D S PI G )S P1 OGNLOG K ~G P D L Q S R L )LQ0SR L KEQ ZLK E QL EW Q k R G D E R E S L R A A R E L H R ~H LYA LRW K JYA LR W K E L AL Q NT L HE N I F LF YV K 3C GF PV GE H R L QT A D R G kD R GQP H KQ kF KA L LED F )FRA E LRE D R AE L RED E QQ Q YA SD K score 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 Seq. ID Nuni.
TABLE XXIII 185P2C9 v3 HLA- DRB1*0101 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 567 584 591 602 617 632 652 656 664 667 686 709 710 720 743 748 752 753 758 762 786 790 793 812 834 856 915 919 921 951 982 1000 1008 1023 1034 1037 1061 1072 1085 1107 1121 1143 1171 1217 1243 1251 1279 1288 score Seq. ID Num.
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 TABLE XXIV 185P2C9 v3 HLA- DRB1*0301 (DR17) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Num.
TABLE XXIV 185P2C9 v3 HLA- 00 DRB1*0301 (DR17) 15 mr 0Se.I OPoe 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I 339 Q S R KE QL E WQ L GPA 27 Nm ;-4387 C FSL ENMEE EH LY A LR 27 Ct537 NQQ LF SA FK A LL E DF 27 625 RLE L EE KT EN KL G EL 27 756 LD AL SL DD EP E EP PA 27 oS3 S ISE IE D HNROQL TMHE 26 173 PV GG ES DS EERM FE KT 26 335 G PD LQ SR L K EOQLEWOQ 26 350 L GP AR GD ER ES LJR LR 26 689 LD RL DR DR QE WE R QK 26 1008 SIC NL SD DM KE VA F SV 26 01258 TEN VA RI L N KKL LEMH 26 .0281 M KAF KK EL QAFPL EQ V IcI704 KE FL WR IE QG SL R MP 00 122 H{A LL SN IQ RC DL A AH 24 o439 IF LF YV K LRW LL K HW 24 o.656 HQ KL LA DS HS LV M DL 24 Cl1163 ES PV HT TI ND GL S SL 24 1183 HS PV VQ DP FQ KG L RA 24 1184 SP VVOQD PF QK GL R AG 24 1242 GT PV KOD L SA PP G YT 23 1285 PP GLMHS DS HS L G DTA 23 615 VIKCTL KS LG LQ RL E LE 22 751 SE NL YL DA LS L DDE P 22 126 SNIO R CD LA A HL G LR 21 237 TDS F LHD A GL RG G AP 21 318 VT SV SR DS P IGN L GK 21 612 GST VK TL KS L GL Q RL 21 803 E FQR LM D I SP FL PEK 21 829 TP PL SP DD LK YI E EF 21 891 SV TM TT DT MT SP E HC 21 1067 GSG VT S SPH K CL T PK 21 39 HL QF VE EE A ELL R RS 104 RL QI SE LS GK VL K LQ 114 VL K LQ0HEN RA LL SNI1 204 TE L LKA RE DS EY L VT 206 L LK AR ED SE YL VT LK 270 EP Q LL GTIN A KNMK AF 294 QV NR IG DG LS PL P HL 358 RBES L RL RA A RELMHRR 389 SL E MEE E HLY A LR WK 417 HE RT WS DE KN LM Q QE 432 L RSL KQN I FL FY V KL 511 SR VQ IG DH SL RL Q TA 580 WA VL KC RL EQ NC C GY 821 ST SS K EDV TP PL S PD 859 GPD LW AD R TE VG R AG 870 GR AG HE DS TE PF P DS 877 ST EP FP DS SW YL T TS 985 RR PL DS PL CT SL G FA 1166 VH TT IN DG LS SL FNI1 1167 H TTIN DG LS SL F NII1 1254 GY TL TE NV AR IL N KK 1271 EH AL K EER RQ AA H GP LQ FV EEE A EL LR RSI1 19 93 GA PL Q EEL KS AR LQI1 19 112 G KVLK LQ H EN HA L LS 19 121 NH AL LS NI QR CD L AA 19 TABLE XXIV 185P2C9-v3 HLA- DRB1*0301 (DR17) 15 mers 12 3 4 5 6 7 8 9 0 12 3 4 5 214 278 315 327 424 438 446 491 531 560 778 793 834 1002 1055 1086 1246 27 33 37 54 113 153 203 216 254 285 324 360 379 386 394 425 443 447 456 472 558 594 623 636 646 671 683 731 739 744 795 798 1015 1101 1192 E Y L EYL NA K L S T LST
ION
E K N N I F NIF L R W
GPD
HK Q
RAR
RNR
QRA
PDD
L HS T I' S AT P K Q D KQD
GDS
STE
RRH
ISE
KVL
AG K P TE L VT G P G K K E DS P SL R S HG
TCF
E EH
KNL
YVK
RWL
G KQ
PET
DER
YPR
L Q R
LGE
KGA
RW Q RE K
SIP
LS K ES D AV S VS S M K E
VAP
Q KG
HEA
K K E KKE
SRD
LG P
ELR
KL R WR Q R G C ROC QQ L QQ Y
EEN
SMS
EE F
KNL
TEA
SRS
PG Y
TEL
L Q F EE E
NRQ
EN H
GEE
RED
A Q R AQR E E Q EEQ LE Q
GKE
RE L
TCF
EEE
RWK
LR S L KH R Q G
GEE
GEL
LQQ
EET
E KT
AES
REV
E KN
DRL
PL S
DRC
SEN
SE F Q R L QRL
VRN
VQA
S RS score 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 Seq. ID Num.
TABLE XXV 185P2C9 v3 HLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 M KAF K K ELQAFLEQ V score 28 Seq. ID Num.
TABLE XXV 185P2C9 v3 liLA- 0C) DR33l*0402. (DR4Dw4) 15 rners Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. I 418 E R T W S D E K N L M Q Q E L 28 1175 S SL F NI ID HS PVV QD 28 Ct61 N RQLT H EL S K FK FEP 26 114 V LK LQHE N HA LL SNI1 26 122 HA LLJS N IQ RC D LA AH 26 213 S EYL VT LK HE A QR LE 26 331 GK EL G PD LQS RL K EQ 26 425 K NL MQQ E LRS LK QNI1 26 544 FK ALL ED FR A EL R ED 26 552 R AE LRE D ER ARL R LQ 26 612 GSTVKTLKSLGLQRL 26 _656 H QKL LA D SHS LV M DL 26 663 SH S LV MD LR WQI H HS 26 686 VE LL DR LD R DR QE WE 26 00704 K EFL W RIE Q GSLR M P 26 729 AD SI PF E DR PL S KLK 26 789 K G NLQR AV SV S S MSE 26 866 RT EV G RA G E DS TE P 26 918 QS GL R VL HS PP A VRR 26 927 P PAV RR VD S ITA A GG 26 1128 RK P LPK AD QP NN RT S 26 1258 TE NV AR IL N KK LL EH 26 1271 E H A LKE ER R.Q AA HGP 26 39 H LQ FV E EE A E LLJRRS 22 311 SS SFL ST V TS V SR DS 22 399 AL R W KELE MH S LA LQ 22 440 F LFY V KLR WL LK H WR 22 463 GEE F TE G EHP ET L SR 22 548 L ED FR A E LRE DE R AR 22 573 KA A WDV EW AV L KC RL 22 603 TL GF TR LP A GS T VKT 22 669 DL R WQI H RS E K NWNR 22 678 E K N WNRE K VEL L DRL 22 721 V AM W PC AD AD 1P F E 22 752 EN LY L DAL S LD DE PE 22 810 1ISP FL PE KG L PS T.SS 22 836 DL K Y IE E F NK S KDYT 22 883 D SS WY L T TS VT MT TD 22 977 S RD Y VEG AR R P LD SP 22 1188 QDP F QK GL R AGS R SR 22 54 IS E IE DH NR Q LT HEL 79 PG WL GE G AS PG A GGG 97 QEE L KS AR LQ I S ELS 104 RLQ I SEL S GK V LK LQ ill SGK V L K LQH EN H AL L 216 LV T L KH EAQR LE RT V 227 ER TV ERL I TD TD S FL 230 VE RLI TD T DS FL H DA 270 E PQL L GT IN AK M K A 271 PQL LG T I NA KMK A FK 278 N AKM KA F KK E LQA FL 285 K KE LQ A FLE QV N R IG 289 Q AF LEQ V NR IG D GLS 292 LE QV NR I GDG L S PLP 299 G D G L S P L P H L T E S S S 302 LS PL P HL TE S SS FLS 305 L PH L TESS S F LS TVT 312 SS FL ST VT SV SR D SP TABLE XXV 185P2C9 v3 HLA- DRB1*0401 (DR4Dw4) 15 mers 12 34 5 67 8 9012 34 5 Pos 315 318 327 389 394 404 409 429 438 446 447 456 472 519 531 537 560 596 606 615 620 623 633 646 657 683 689 739 778 79B 829 834 859 885 896 911 978 993 999 1004 1008 1015 1050 1053 1057 1067 1098 1163 1171 1184 1192 1242 1285 12 29 43 T S S R G K E E Y A
HMS
Q N R S F Y L K K H E E S R Q T V E F S R L E E P A K S Q R E L G E K K A D E L D R K E P E S E S p K Y W A T T T S L T E G
GFP
H S S K S D A P Q T S v Q T T S A P H T S S Q D R A K Q
HMS
DRH
S L S T
TER
A E G N G K S R W K
MRH
H E S D F Y
KRH
M E E E G E G G K Q F K D F K A L P .K S L E E N L G K G L L L R R Q Q K E N N L S p E F W D A G T M P L P L E M S D E V S v S G E A R G V T P K K F S L S p A G E P Y T T A P F
RRH
F V V E E I score Seq. ID score Num.
18 18 18 18 18 TABLE XXV 185P2C9 v3 HLA- 00DRJB1*04o1 (DR4Dw4) 15 mersSe.I oPos 12 34 56 78 90 1 23 45 score Seq. I 44 EE E AEL LR R S IS EIE 18 52 RS I SEI ED H NR QL TH 18 Ct53 SI SE I EDHN R QL T HE 18 58 ED H NR QLTMHE L SK FK 18 94 A PLQ EEL KS A RL Q IS 18 103 AR L QISE L SG KV L KL 18 0118 Q HEN HA L LS NI10R CD 18 128 1IQR CDLA AMHL GL R AP 18 156 KE S DG EES RL P QP KW 18 205 E LL KA RE DS EY L VTL 18 224 Q R L ERT VE RL IT DTD 18 0261 EE QG E GDQ QE PQ L LG 18 268 QQ EP QLL G TI NA K MK 18 0304 PLP HL T E SS S FL STV 18 00308 LT ES SS FL S T VT SVS 18 o309 TE S SS FL'S TVT SV SR 18 o321 V SR DS P I GNL GK ELG 18 c'332 KE LG PD LQ S RL KEOQL 18 350 L GPA R GDE R ES L RLR 18 362 RL RA AR EL HR RA D GD 18 388 F SLE ME EE H LY AL RW 18 400 LR W KEL EMRHS LA L QN 18 405 L EMHHS LA L QN T L HER 18 421 W SDE K NL MQ QEL R SL 18 426 NLM Q QEL R SL KQ N IF 18 444 VK L RW LLK HW RQ G KQ 18 500 CG FPV G EH SP H SR VQ 18 511 SR VQI G DH SL RL Q TA 18 529 QP HK QV VE NQ QL F SA 18 534 V VE&NQ QLF SA F KA LL 18 559 E RAR LR LQQ Q YA S DK 18 600 EEE TL G FT R LPA G ST 18 605 GF T RLP A GST V KT LK 18 609 LP AGS TV KT L KS L GL 18 617 TL KS L GL Q RLE.L E EK 18 624 QR L EL E EKCTE NK L GE 18 637 G ELG SS AE SK G AL KK 18 648 A L K KER'EV HQ KL L AD. 18 649 L KK ER EV HQ KL L ADS 18 655 VH QK L LAD S RS LV MD 18 668 MD LR WQ IH H SE KN WN 18 701 RQ KK E FLW RI E QG SL 18 770 AHR P ER E FRN RL P EE 18 780 R LPE EE E NHK G NL QR 18 786 EN HK G NL QR A VS VSS 18 797 S V SSM4S E FQR L MD IS 18 803 E F QRILM4DI SP FL P EK 18 813 F LP EK GL P STS S KED 18 821 S TSS XE DV TP P LS PD 18 858 GGP D LW. A DRT E V GRA 18 877 S T EP FP DS S WY LT TS 18 882 PDS S WY L TT SV T MTT 18 904 HC QK QP LR S H VL T E 18 908 Q PL RS HVL TE QS G LR 18 924 LHS P PAV R RV D SI TA 18 939 AG GE GP F PTS RA R GS 18 996 LG F A-SPL HS LE M SKN 18 1000 SP L HS L EM SKN L SDD 18 00 o 0t 0
CA
Pos 1013 1047 1054 1090 1107 1120 1150 1160 1168 1176 1199 1235 1239 1255 1264 1270 439 23 68 78 167 181 187 212 237 288 385 450 499 538 541 566 577 591 656 705 801 844 878 884 942 966 995 1109 1118 1147 1152 1252 18 33 37 47 51 93 102 112 TABLE XXV 185P2C9 v3 lILA- DRB1*0401 (DR4Dw4) 15 ruers 12 34 5 678 90 12 34 5 D D MKEV A FS VR NAI C TM GT QT VQ TIS V GL Q Q T IS VG L QTEA LRG S SS PS RS L RSRPQ VAP A K V QA KF ER T CCS PKY K Y GS PK L QRKPL PK A Y S ES A WAR ST TT RES T T RE SP VHTT I ND GL T TI ND GLJS SL F NI I D S LF NII DEHS P VV QDP S R S R.S ABE P R P E L G P G C R EE G GEG T PVKQD L G G EGT P VK Q DL SAPP Y T LTENV A R IL NKK L I L NK K LLE HA L KEER LEH A L KE E R R QAA H I F LFYV K L RWLL KH W T S PFGD SL ES S TEL R L S K F K F E P P R E P G W L EP GW L GE GA SP GAG G Q P KW E GP VGGES DS E E E M F E K T S G F C S G K P T S GF GSCGK P SEA SEP D S EY LVT L KEHEAQ0R L T D SFLHRD AGL R GGA P L Q AF LEQ V N RI GDGL Q T CF SL E MEEE HLY A LK HW R QCGK QM EEE GE G CCGFPV GE HS PH SR V o Q L F S A F K A L L E .D F Rt F SA FK AL L ED F RAEL 0QOQ YAS D KAAW D VE W D VE WAV LK C RLE QN C C C GYP R IN I EEE TLG ft Q E W4 E Rt Q K K E F L W ft I E F L WR I E Q C S L R MNP R MS E FQR LNMD ISP FL P N KS WD YT P NR GH NG G TE P FPD SSW Y LT TS V SS WY LT T SVT MT T DT ECGP FPT S RARG S PG D LS R WP CTS PR HS RD Y S L GFA SP L HS LEMS K Q A KF E RTC C SP KYGS S P KY G S P KLQRK PLP Q KG YS ES AWA RS TTT E SA WARS T TT R ESP V P PG Y TL T ENVA kIL N APS I PT S PF G DSL ES S TEILJR RHLJQ FVEE E A RR HL QF VE E EAE LL R L QF V EEE A EL LR RSI A EL LR R SI S EIE DHN R RSI SE IE DH NR QL T T HE L S K F X F E P P RE P G AP L QE EL KS A RLQI S A RL QI S ELSGK VL K G KV LK LO0HE N HA LJS score Seq.
ID
score Num.
Pos 121 130 136 171 203 223 231 238 254 295 324 339 347 360 379 387 402 407 424 436 443 475 478 480 510 512 532 545 562 575 579 594 664 667 671 712 718 720 736 751 753 756 758 804 807 816 825 837 889 891 907 912 930 933 985 989 1002 1012 TABLE XXV 185P2C9 v3 HLA- DRB1*0401 (DR4Dw4) 15 mere 1 2 34 56 789 0 12 345 U H AL LS N IQ RCD L AA R CD LA A HL GLR A PS P H LG L RA P SP RDSDA E E GPV GG ES DS EE MF E P T E L L K AR E D S E Y L V AQR L E R TVE RLI TD T E RLIT D TD S FLH DA G D SF L HD A GL RGG APL G P G L Q G E E E Q G E.G D Q VNR I GD GL S PL PH LT D SP I GNL GXE LG PD L Q S RL K EQL E WQL GPA EWQ L GP A RGD ER ES L S L RL RA A REL H RRAD S HG LGG Q TC FSL E ME C F S L E M E E E H L Y AIL R W K EL EM H SLA L QNTL M H SL AL Q NT LHE RTW E K NLMOQQ EL R SL KQN K QN IF LF YV K LR WLL YV KL R WLL KH WR Q GK LS RL GE LG VQ GG HQ A L GE LG VQ G GH QA DGP E LGV QG G HQA DG PD H H S RV QI GD HS L RLQT R VQ IG D H SLR LQ TAD K QVV E NQQ L FS AFK A K ALL E DF RA EL RE DE R LR LQ0QQY AS D KAA W A WD VE WAV LK CR L EQ E WAV L KCR L EQ NCC G Y PR I N IEE ET LG FTR H SL V MD LR WQ IH HSE V MDL R WQ IHHS E K NW R W QIH H SE KN WN REK QG S L R M P R P V A M W P C P R P V A M W P C A D AD S I P V AM W P C A D A DS I P F D RP L SK L K ESD RCSA S E N L Y L D A L S L D D E P N L Y L D A L S L D DE P EE L DAL S LDD E pE EPP A A L S LDD E PEZP PA RR F Q RL MDI S PF LP EKG L M DI S P F L P E K G L P S EKXG L PS T SSK E DVTP KEtDV T PP L S PDDL KY LK Y IEEF NK S WD Y TP T T SV T M TTDTM T SPE SV TM T TDT M TSP E HC K Q PL R SHVLT EQ S GL S HVLT EQ S GL R VL HS VR RV D S ITAA GG EG P V DS I TA AGGE G PFP T RR P LDS PL CT SL GF A D S PL CTS L GF ASP LH Li H S L E M S K N L S D D M K SD DMK E VA F SVR NA I score Seq. ID Num.
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 TABLE XXV 185P2C9 v3 liLA- DRB1*0401 (DR4Dw4) 15 merB 12 3 456 78 90 12 34 5 score Seq. ID Num.
1019 1023 1032 1035 1045 1062 1086 1102 1167 1174 1177 1183 1207 1227 1231 1246 1254 1267 315 324 212 1175 1188 437 686 801 1192 44 58 711 729 786 1001 1008 1285 ill 122 213 288 289 299 439 443 463 519 683 739 866 917 924 1099 1228 1271 TABLE XXVI 18SP2C9 v3 HLA- DRB1*1101 15 mers 1 2345 6 7 890 1 234 5 L S T V T S V S R D S P IG N D SPI GN L G KEL GP DL DSE YL VT L KH E AQR L SSL F N IID HS P VVQ D Q DP F Q K G L R AG S R S R Q NIFPL FY VK LRWL L K V EL L DR LD R DR QEWE M S EFQ R LMD IS P FLP Q K G L R A GS R S R S A E P E E E A E L L R R S I S ElI E E D HN R0L T HE LS KFK E QG SL RMP RPV AM WP A DS I P F E DRP L S K LK EN HK G NL QR A VSVS S P L HS L RM SKNL SDD M S KN LS D DM K EV A FS V P P G L HSDS H SL GDTA S G K VL K L O H E N H A LL H A LL S N I Q R C DL A A H S E YL V TLK H EAQR LE L Q A F L E Q V N R I G D G L Q A F LE Q VN RID GL S G DG L SPL P H LTEsSS I F L F YVKL R WLL K HW Y V KLRWL L KH WR QG K G E E F T E G E H P E T L S R S LR LQ TAD RG Q PH KQ R E KV EL LD RL DR DRQ L SK LKE SDR CS A SE N R TEVG RA G HED S TE P E Q S G L R V L H S P P A V R LsHS P PAV kRV DS I TA RQ VA P AIE KV Q AKF E I G V.GSE M CRE EG GEG E H AL K E E RR Q A A H G P score Seq. ID Num.
TABLE XXVI 185P2C9 v3 RI.A- 00 DRB*1*1101 15 mers Pos 12 34 5 67 89o01 234 5 score Seq. ID Num.
292 LE Q V NRI GD GL S PL P 19 ;-4311 SSSFLSTVTSVSRDS 19 Ct395 EH LY AL R WK E LE MHS 19 499 GC GF PV GE HS P HS RV 19 S77 DV EW AV LK CR LE QN C 19 804 FQR L MD I S PFL PE KG 19 918 Q SGL RV L HSP PA V RR 19 977 S RD YVE G ARR PL D SP 19 995 S LG FA SP L HSL EM S K 19 1174 L S SL FNI ID H SPV VQ 19 167 QP KW EG PV G GE S DSE 18 200 EP CP T EL LKA RE D SE 18 237 TD SF L HD AG L RG GAP 18 302 LS P LPH L TE SSS FL S 18 C1475 LS RL GE L GVQ G GH QA 18 00 48 LED FRA E LR E DE R AR 18 603 T L GFT R L P AQS T VKT 18 696 R QE WERQ K KE F L WRI 846 S WD YT P NR G HN G GGP 18 927 PP AV RR V DS ITA A GG 18 930 VR RV DS IT A A GGE GP 18 1147 QK G YSE SA WA R ST TT 18 LE S ST ELR R HL QF VE 17 68 LS K F KFEP PR E PG WL 17 272 QL L GT INA KM KA F KK 17 362 RL RA A RE LHR R AD GD 17 440 F L FYV KLR W LL KH WR 17 445 K LRW LL KHW R QG K QM 17 941 GE GP FP TS RA R GS PG 17 942 EGP F PT SR ARG S P GD 17 966 LS RW P CTS PRH S RD Y 17 1017 EV A FS VRN AI C SG PG 17 78 E PG WL GE GA SP G AGG 16 181 EE M FEK TS GF GS G KP 16 187 TS G FGS GK PS E ASE P 16 354 R GD ER E SL R LR A ARE 16 399 ALR W KE L EM H SL ALQ 16 409 SL AL QN'TL HE R T WSD 16 411 A LQ NT L H SR T WSD RX 16 444 VK LR WL LK HW RQ G KQ 16 537 N QQ LFS AF K AL LE DF 16 541 FSA F KA L L ED FR AEL 16 552 RA EL R ED ERA RL RILQ' 1s 576 WD VE W AVL KC R LE QN 16 591 CC GYP R I NIE EE T LG 16 643 AE SK G AL KK ERE V HQ 16 650 K K ER EVH QK L L AD SH 16 703 K KE FL WR IE Q G SL RM 16 809 DI SP FL PE K GLP S TS 16 810 1S PF L PE KG LP S TSS 16 840 1E EF NK S WDY TP N RG 16 863 WA DR T EVG R AG H EDS 16 896. TD TM TS PE H CQ KQ PL 16 943 GP F PTS RA RG SP G DT 16 1015 M KEV AF SV RN AI C SG 16 1028 SG PG E LQ VK DM AC QT 16 1038 M ACQT N GSR T MG T QT 16 1058 VG LQ T EAL R GS G VTS 16 TABLE XXVI 185P209 v3 lILA- DRB1*1101 15 mers 00Pos 1 2 3 4 5 6 7~ 8 9 0 1 2 3 4 5 score Seq. ID N~um.
o1067 G SGV TS SP HK CL T PK 16 Cl1213 GQ0ET GT NS R GR S PSP 16 43 V EE EA EL LRR SI S EI Ct54 ISE I EDH NR Q LT H EL 62 RQ LT HE LS K FKF E PP 114 SK FK FE PP R EPG W LG 114NAKMKFKELQHENHALOAFLN 305 LP H LT ES SS FLS T VT 363 LR AA RE L HRR AD G DT o372 R A DGD TG S H G LQGQT 400 LR WK EL EMEHS L A LQN 0425 K N L M QQEL R S LK QNI oc510 HMS RV QIGDMHS L RL QT o0 611 A GS TV KTILJKS LG L QR o656 HQ K LLA DS HS LV M DL Cl733 PF ED RP LS KL KE S DR 978 R D YVEG AR RP LD S PL' 1086 AT PV SS PS RS LR S RQ 1091 SPS RS LR S RQ VA PAI1 1121 YG SP KL QR K PLP K AD 1164 S PVH TT IN DGL S S LF 1239 GG EG TP VK QD LS APp 1255 YT LT EN VA RI LN K KL 1259 E NV AR IL NK KL L EIHA 1264 L NKKCLL EH ALJK E ER 1270 LE HA LKXEE RR QA A HG 2 ED TR GQ QE RE GP G RD 14 7 QOQE R EGP GR D HA PS1 14 9 ER EG0PG R DHA P SI PT 14 64 LT HE LS KF KF EP P RE 14 93 GA PL QE EL K SA RLQI1 14 108 S ELS GK VL K L QHENH 14 130 RC DL A AH L GL RA PSP 14 132 DL AA H LGL RA PS P RD 14 147 SD AE S DA GK KES D GE 14 161 EE SR LP QP K WE G PVG 14 178 S DS EERMF E KT S G FS 14 202 CP TE LL K ARE DS E YL 14 234 IT DT DS FL H DA G LRG 14 239 SF LH DAG0L-RG GA P LP 14 274 LG TI N AKHMKA F K XEL 14 -335 GP DL Q SRL KE QL E WQ 14 344 EQ LE W QLG PA RG D ER 14 364 RA ARSEL HR RA D GD TG 14 388 F SLE ME EE HL YA L RW 14 438 NI FL PY V KL RWL L KH 14 446 LR WL LK HW RQ GK Q ME 14 469 G EH PE TL S R L GELJGV 14 490 D G PDHID SDR GC G FP V 14 517 DH SL RL QT AD RG Q PH 14 542 SA FK AL L ED FRA E LR 14 544 FKA LL E D FRA EL R ED 14 600 EEEBT LG FT R LP AG ST 14 615 V KT L KSL GL Q RL E LE 14 617 TL KS LG L QRL EL EEHK 14 TABLE XXVI 185P2C9 v3 HLA- 00 DRB1*1101 15 mers Pos. 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq. ID Nqum.
623 LQ RL EL EE K T ENK LG 14 663 S HSLV M DL R WQ IH HS 14 Ct667 V M DL R WQ I RH SERXNW 14 668 M DLR W QIH HS EK N WN 14 671 R WQII H S E KNW NR EK 14 tn701 RQ K KE PL WRI EQ G SL 14 709 RIE QG S LRM P RP V AM 14 714 SLJR M PR PV A MW PC AD 14 789 KG NL Q RA V SVS S MSE 14 798 VS S MS EFQ RL M DI SP 14 837 LK YI E EFN KS WD Y TP 14 847 WD YT P NRG HN GG G PD 14 891 S VTM T TD TMT S PE HC 14 933 V DSIT A AG G EG P FPT 14 950 A R GS PG0D TKGG P PEP 14 00 960 GP PE PM LSR W PC TS P 14 .990 S P LCT SLJG FA SP L HS 14 1073 SPH KC L TP K AGG G AT 14 C11075 HK CL TP K A GGG AT PV 14 1112 FE RT CC SP KY GS P KL 14 1120 KY GS PKL Q RK PL P KA 14 1125 K L QR KPL P K ADQ P NN 14 1132 PK AD Q P NNR TS P GMA 14 1140 R TSP G MAQ KG YS E SA 14 1154 AwA R S TTT RE S P VHT 14 1215 ETG T NS RG RS PS P IG 14 1267 K KLL EH AL K EER R QA 14 1275 KE ER RQ A AHG PP G LH 14 1281 AA HG P PG L HS DS HSL 14 97 Q EE L KS ARL QI S.E LS 13 104 RL Q IS ELS G KV L KLQ 13 127 N I QR C DLA A H LGL RA 13 131 C DLA AH LG LR A PS PR 13 136 HL GL R AP SPR D SD AE 13 180 SEE M FE KT SG F GSG0K 13 238 D S PLHD AG LR GG A PL 13 295 VN R I G DG LS PL P HLT 13 340 SR L KEtQLE-WQ LG P AR 13 355 GD E RE SLR LR A AR EL 13 429 Q QELR S LK QN IF L FY 13 478 L GEL G VQG G HQ A DGP 13 498 R GC GF PV GEH S PH SR 13 594 YP R IN IE EE TLG F TR 13 609 LP A GSTV KT LK S L GL 13 636 LG EL G SSAE S K G ALK 13 664 HS L VM DLR WQ I HHS8E 13 707 LW R IEQ G SL RM PR PV 13 807 L MD ISP FL P EKG L PS 13 822 T SSK E DVT PP L S PDD 13 859 G PDL WA D RTE VG R AG 13 909 P L RS H VL TE Q SGLJRV 13 959 GG P PEPM L SR W PC TS 13 986 R PL DSP LC TS LG F AS 13 999 AS P LH SLE MS K NL SD 13 1012 S D D MKEV A FSV RN AI1 13 1050 T QTV QTI S VG LQ T EA 13 1053 VQ T IS V GLQ TE A LRG 13 1057 S V GLQT EA L R GSG VT 13 TABLE XXVI 185P2C9 v3 HLA- 00 DRB1*11O1 15 mers e.I Pos 12 34 56 7 89 012 34 5 score Num.
1123 S P KLQ R KPL P KA DQP 13 1171 ND GL SS L FNI ID H SP 13 Ct1183 HS PV VQ DP F Q KG LRA 13 1251 A P PGY TL TE NV AR IL 13 1258 TEN V AR I LNK KL L EH 13 tn http://www.bmi-heidelberg.com/syfpeithi TABLE XXIII 185P3C2 HLA- DRB1*0101 15 mere POS1 34 67 901 2 3 4 5 score Seq. ID Poe 2 34 S 7 89 0Num.
109 PG SL PP L DS E DL FQD 8 N K.S VR WG P GAG A ALL 28 74 A GY LD QQ V PYT F SS K 28 00 100 1G PL G KL MD P GSL PP 28 SV R-WGP GA G AA LILR P 26 *259 C HS FT SQ0G GGR E PLP -26 96 R E ALIG PL G KL MD PG 227 RN F LR SSG T SQP HP G 253 QQ P LD I C HS FTS QGG 66 G RM ER RM K AG YL DQQ 24 241 G HG Y LG EHS SVF Q QP 24 16 G AG A AL LR PSP A ALG 23 78 D QQ VP YTF SS KS P GN 23 103 LG KLM D PG SL P PL DS 23 196 AYD P PRQI A IK S P AP 23 202 QI AI KS PA PG AL G QS 23 18 G A A LLR PS P AAL GAG 22 44 A QTP R PQVS A PA W GP 22 101 P L GKL MD P GSL P PL 22 106 LM DP GS LP P LDS E DL 22 122 QD LS HF QE T WL A EAQ 22 142 EQ F V PDF HS EN LA FH 22 247 E HS SV FQ QP L DI CHS 22 273 PA PY Q HQ LSEP C P PY 22 277 Q HQ LS E PC P pypQ QS 22 32 G SR AC SV PP AA P AQT 83 YT FS SK SP GN G S LRE 199 P PR QI AIK S P A PGAL 201 RQ I AI KSP AP GA L GQ 209 APG A LG QS PL Q PF PR 218 LQ P FPR AE Q ANF LR S 47 P R PQV SA PA WG P GRA 19 54 PAW G PG R AAR GS G RM 19 226 QRN F LR S S GTSQ P HP 19 6 PK(N K SV RW G PGA G AA 18 19 AA L LR PSP A ALG A GS 18 A L LR PS P AA L0A GS R 18 22 LRP SP AA LG AG S RA C 18 53 A PA WG P GR AA RG SGR 18 92 N GS L RE A IG PL G KL 18 11 '8 ED LF QD LS H FQE T WL 18 124 LS H FQ ET WL AE AQ VP 18 127 FQ ET WL A EAQ VP D SD 18 194 SSA YD P PRQ I AI K SP 18 224 A E QRN F LR SSG TS Q'P 18 260 HS FT S Q G G RR P LPA 18 607 TABLE XXIII 18SP3C2 HLA- 00 ~DRB1* 101 15 mersSe
I
Pos 12 34 5 678 9 012 34 5 score Nu.I 9 KSV R WG PG AG A AL LR 17 11 VR WG PG A GAA L LR PS 17 23 R PSP A ALG A GSR A CS 17 24 P S PAA L G AG S RAC SV 17 51 VSA P AW GP GR AA R GS 17 97 E AL I GPL GK L MD PGS 17 102 PL GK LM DP GS L PP LD 17 121 F QD LSH F QE T W LA EA 17 126 HRF QET WLJA EA QV P DS 17 152 NL AF HSP T TR IK K EP 17 158 PT TRI KK E PQ SP R TD 17 170 R TD PA LSC SR K P PLP 17 __197 YD P PR QIA I KSP A PG 17 200 P RQI AI K SP AP G ALG 17 207 S PAP GA LG QS P LQ PF 17 00 239 HP GH GY LG E HSS V FQ 17 b284 CPP YP QQ S F KQ E YHD .17 PGA G AA L LR PS P AAL 16 26 PA AL GA GS R ACS V PP 16 27 A ALG AGS R AC SV P PA 16 33 SR AC SV PP AA P AQ TP 16 36 C SV PP AA PA QT P RPQ 16 71 RM KA GY L DQQ VP Y TF 16 73 K A Y L DQQ V PY T FSS 16 82 P YT F SSK S PGN G SLR 16 89 S PGN G SL RE AL IG PL 16 93 GS L R E A LIG PL GK LM 16 94 S LREA L IG PL G KL MD 16 104 G K L MDP GS L P PL DSE 16 114 PL DS ED L FQ D LS HFQ 16 129 ET WLJA E AQ VP DS D EQ 16 134 E AQ V PDSD EQ FV P DF 16 146 PD F HS E NL AF H SPTT 16 147 D F HSE NLA FH S PT TR 16 150 S E NLA F HS P.TT R IKK 16 172 DP A LSC S RKP PL P YH 16 180 K PP LP YH HG E QC LYS 16 188 GE QC L YS SA Y DP PRQ 16 189 E QCL YS SA YD PP RQI1 16 206 KS PA PG A LG QS PL QP 16 210 PG A LGQ S P LQP F PRA 16 238 PH PG H GY LGE HS S VF 16 250 SVF Q Q PLDI CMHS F TS 16 266 G G GR EPL PA P Y*QHQL 16 269 RE PLP A PY Q HQTJ S EP 16 274 APY Q HQ LS E PC P PYP 16 275 P yQH Q LSE PC PP Y PQ 16 17 A G AAILLJR PS PA AL GA is so Q VSA P AW G PG R A ARG 1s 57 G PG R AARG S GR ME RR is GY L DQQ V PY TFS S KS 79 Q Q V PY T SS KSP G NG is 116 DS ED LF Q D L S F.Q ET 139 DS DE Q FVP DFHRS E NL 151' E NIA F HS T T RIK KE 1 192 L YS S AY D PP RQ1A IK 213 L GQ S PLQP F PR A EQR 225 EQR NF L RSS G TS Q PH TABLE XXIII 185P3C2 HLA- DRB1*0101 15 mers 1 2 34 5 67 890 12 345 score 00 Seq. ID Num.
Seq. ID Num.
TABLE XXIV 1B5P3C2 HLA- DRB1*0301 (DR17) 15 mers 12 34 567 B 90 12 34 5 P08 110 72 121 172 218 269 i8 92 113 117 133 202 104 141 210 97 109 142 215 251 1 26 74 135 159 84 134 144 281 88 181 score TABLE XXIV 185P3C2 lILA- DRB1*0301 (DR17) 15 mers 12 34 567 8 90 12 34 5 Pos score Seq. ID Num.
Pos 141 109 117 *142 *215 118 128 152 194 218 241 26 78 92 100 121 129 159 242 253 269 63 114 148 149 207 219 224 245 252 73 124 145 182 190 226 273 8 18 Table XXV 185P3C2 lILA- DRB31*0401 (DR4Dw4) 15 mers 12 34 56 78 9 012 34 5 DE QF VP D FH SE N LAF PG S LPP LD SE DL F QD S E D L F Q D L S H F Q E T W' E Q FVP D FH SENL A FH Q S PLP FP R AE Q RNF E DL FQDLS HF QE T WL Q ET WL A EA QV P DSDE N LAF H SPT T RIK K EP S S AY DP PR QI A IKSP L Q PF PR AE QRNF LR S G HGY LG E HS SVFQ Q P P AA L GA GS R AC SVPP A C S V P P A A P A Q T P R P D QQ VP Y TF SS KSP G N N G SL R EAL I GPL GKL I GP L 0KL MD PG S LPP F Q D LSRFQ ET W LAE A ET W LA EA QVP D SD EQ T TRI KK E PQ S PR TDP HGY L G E HSSV F QQ PL Q Q PL DI C HS F T SQG RE P L PAPY Q HQL SE P R G S GRM E RR MK AGYL P L DS E DLFQ D LS H F H SE NL AF H SPT TR I H S E N L A F H'S P T T R I K S P AP GAL G Q S P LQPF Q P FP RA EQ RN F LRSS A E QR NF LR SS G TSQP L G EHS S VF Q QP L D I C F QQ PL D IC H SPT SQG S V R WGP GA GA AL LRP K AG Y L D Q Q V P Y T F S S.
LS HF QET WL A EA QV P VPD FH S EN L AF HSP T P L.P Y H H G E Q C L Y S S A Q C L Y S S AY D P P R Q I A Q R N F L R S5S G T S Q P H P P AP Y Q HQ LS EPC PPY NKS VR WG P GA GA AL L G A A LLRP SPA AL GA G score Seq. ID score Num.
28 26 26 26 26 22 22 22 22 22 22 18 18 18 18 18 18 18 18 18 16 16 16 16 16 16 16 16 14 14
I
Pos.
Table XXV 185P3C2 HLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 34 5 678 90 12 345 E RR M K A G Y L D Q Q V P Y R E ALI G PL GK L MDPG EAL I GP LGK L MD PG S LG0K L MDPG SL P PLD S G K LM D PGSLpPPL D SE L PP L DS ED L FQD LSH EA QV PD S DEQ F VPD F DP AL SC SR KPP L PY H QIA I KSP A PG AL GQ S RNF L RS SG TS QP HP G PFL D I C H S F T S Q 0 G R TABLE XXVI 185P3C2 HLA- DRB1*1101 15 mers 12 34 56 78 90 12 34 5 score Seq. ID score Num.
score 26 24 18 18 18 16 16 16 16 16 is 1s 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13 12 12 12 12 12 12 12 12 12 Seq. ID Num.
TABLE XXVI 185P3C2 HLA- DRB1*1101 15 mers 12 34 5 678 90 1 234 5 E T W LAE AQ VP DS DE Q D SDE QF V PD F HSEN L DF HS EN L AF HS PTT R N LA FH SPT T RIK KE P C SRKP P LP YH HG EQ C EQ CLY S SA YD P PR QI Y D PP RQ I AIKS PA PG P P R QIA I KS PA PGAL PR Q IA I KS PA P GALG R NF L RSS GT SQP H PG HP G HG Y LGEH SS VF Q S V FQQ0PLD IC HS FT S Q Q PL D IC HS F T SQG P L D I C H S F T S Q-G G G R A P-Y Q H Q L S E P C P P Y P Q H QL S E PCPP Y PQQS TABLE XXIII 186P1H9 HLA- DR.BI*0101 15 mers 12 34 5 678 9 01 234 5 score Seq. ID Num.
00 Pos 43 240 119 215 6 93 233 276 154 173 205 252 162 2 37 53 67 112 138 165 264 22 26 68 250 31 34 71 13.7 157 224 246 249 R A P A K T G H S A A S E G Y L ElI G D R K Q R L W A A
ARI
Q R A L H A s p E T G D S L G E T P P G F V T V I C R F L P E A Q Q E S R E K V Y A T I TG K G G A YA F L SR D A F V AA K AR K K T W GN L QQ ED E ER G AS P R ET A G G ER Q V AL P AM RA A K E T P G H RA N LL R v PG C T A PP E ET L S S A LP P H AG C P L A SA L R A R L G RT N L W L R S S C E E E L W T L L P D S A T L Y E L E L L H F K T P Q K G A
K.V
AG0 G G L R A R A G E L E I E A A G R A I G H A P A P M R E N A R Q G K A .S G I score 32 32 28 27 27 27 27 26 26 26 26 24 24 24 24 24 24 24 24 23 23 23 23 22 22 22 22 22 22 22 22 22 Seq. ID NUMi.
Pos TABLE XXIII 186P1H9 HLA- DRBI*0101 15 mers 123456789012345 S PG I G T P F S Y AV P GQ S YAVPGQANE ILL I E
SSASPGIGTPFSYAV
AVAAGAQD S P APG S R
GLAGGKARGAGATGK
QQKETLASARAI RE L GEL ER Q L L R K VA EL E T EL E RGNS A F KS P D A PELYAFTI CLWLRS S VALAVAAGAQ D S PA P
AAGAQDSPAPGSRFV
IRELTGKLARCEGLA
ROLL R K VA EL ED EK S E STLNALLQRVTELE PLRTNYLYGKI KKTL I CLWLRSSAS PGIGT L I E W G N N P I E L'L I N D
VCTALPPEAVHAGCP
PAM P MQ GSA QS PEE E
TGKLARCEGLAGGKA
GATGKDTMGDLPRDP
EQLSRSLQTLKDRLE
S R SLQT L KD R LES L E K DR LES L EH Q L RAN V QLRANVSNAGLPGD F EDEKSLL HNETSAHR
QRVTELERGNSAFKS
PD A F KV S L P L R TN Y L
TNYLYGKIKKTLPEL
YGKIKKTLPELYAFT
GKIKKTLPELYAFT I YAFTICLWLRSSAS P AFTICLWLRS SASPG
RSSASPGIGTPFSYA
FSYAVPGQANE ILL I EILLIEWGNNP I ELL TABLE XXIV 186PlH9 HLA- DRB1*0301 (DR17) 15 mers 123456789012345 score Seq. ID Num.
22 22 21 19 19 19 19 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 Pos 150 175 162 223 154 225 232 268 112 119 236 129 157 205' 277 67 130 score 34 29 28 27 26 26 24 24 21 21 21 19- 19 Seq. ID Num.
TABLE XXIV 186P1H9 HLA- DRB1*0301 (DR17) 15 mers 123456789012345 score 19 19 18 18 18 18 18 18 18 18 17 17 17 17 17 16 16 16 16 Seq. ID Num.
TABLE XXV 186P1H9 HLA- DRB1*0401 (DR4Dw4) 15 mers 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 Pos 154 120 150 162 198 205 264 1 6 109 112 119 123 134 137 173 176 183 208 240 248 252 260 268 275 277.
52 71 76 79
PG
GH
NA
QQ
ES
LQ
GT
ML
AA
SR
RA
AR
KD
MG
PG
VE
KD
LE
LR
VA
KS
VT
KK
AF
CL
SP
SY
AN
E I
AQ
QL
VQ
TL
SA
QQ
RS
RE
R Q
QR
RG
PG
VA
AA
PP
ET
GK
RD
GH
SR
QT
HQ
RA
DE
S L
SA
SA
AF
RS
S P
SY
NE
WG
NN
RA
QK
SA
RE
TG
LGEL
QTLK
LQQR
LRKV
TELE
SAFK
ANEI
AVAA
AQDS
AVHA
VQQK
ARCE
GHVV
VEQL
LQTL
KDRL
RANV
VSNA
SLLI
HNET
RQKT
KS PD
ICLW
AS PG
IGTP
VPGQ
LL IE NP IE IE LL
VLQL
TLAS
AIRE
TGKL
LARC
score Seq. ID score H Num.
28 26 26 26 26 26 22 18 18 18 18 18 TABLE XXV 186P1H9 liLA- DRBlO4Ol (DR4Dw4) 15 mere 12 34 5 678 9 012 34 5 Poe.- score Seq. ID Num TABLE XXVI 186P1N9 liLA- DRB1*1101 15 mere 1 2 34 567 8 90 12 345 233 205 109 120 134 162 score 31 28 26 21 21 21 Seq. ID Num.
Pos 166 84 246 248 173 TABLE XXVI 186P1H9 HLA- DRBI*1101 15 mers 1 2 34 56 78 9 01 2 34 G E LE RQ LL R KV AE L E R EL TG K LA RC EG LA G L YAF TI CL WL RS SA S AFT IC L WL RS SA S PG A RA IR EL T GKLA R CE L RK VAEL E DE KS LL H G C PL PAM P MQ GG AQS P GD F RE V LQR L GE L G T P FS YA V PG QA NE I R C E G L AG G K A R G AG A R SL0T L KD R LE S LEH I CL WLR S SAS P GIG T P R D PGHV VEQ0LS R SL N AG L P G D F R EV L Q Q R G DFR E VLQ R L G EL E Score Seq. ID Num.
http://www.bri-heidelberg.com/syfpeithi TABLE XXIII 187P3F2 (500a.a.) HLA-DRB1*0101 mers Pos 67 227 9 18 219 184 94 .4 6 73 79 98 152 217 257 16 46 72 110 161 166 254 256 203 218 224 299 249 128 129 132 12 34 56 78 9 012 34 5 P S G F Y L A G S L P G L P A H H Q A A S N v Q Q G V T G A .P 0 P G L A G G M V A A G T H R L V H P A A Q S Q P G G G G G G
GMK
M A S p D F MQ A P P G A G S I A GA G F TV N A AA A G SI V H A AA A AA A N S L L L L'A A M AA S G HM L A AA A G T A L G G F T E LA E D AA G S AA V A MA A S S p W P HL G P Pp p D TP E P E L A G QQ P G F T V M L S A H D P H G LV R G SA A P Q P P Q P P P pP p p score 29 27 27 27 26 24 24 24 24 24 24 24 24 23 23 23 23 23 23 23 23 22 22 22 22 21 Seq. ID Numu.
TABLE XXIII 187P3F2 00 (500a.a.) HLA-DRBI*0101 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Seq.
CNum.
158 L H A G T A L H H R G P P H L Ct 208 S M A G G Q Q P P P Q S L L Y 225 P G G F T V N G M L S A P P G 28 G A G G G G G G G G G S G G G 19 33 G G G G G G S G G G G A G G G 19 G G G G A G G G G G G M Q P G 19 178 P P H Q G H P G G W G A A A A 19 236 A P P G P G G G G G G A G G G 19 290 G P P H H G 0 G G G G A G P G 19 292 P H H G G G G G G A G P G L N 19 S G A Y R G D P S S V K M V Q 18 V K M V Q S D F M Q G A M A A 18 74 Q S D F M Q G A M A A S N G G 18 118 A S'S P W S G S A V G M A G S 18 00 119 S S P W S G S A V G M A G S P 18 146 G P D V K G G A G R D D L H A 18 153 A G R D D L H A G T A L R H R 18 204 A H L P S M A G G Q Q P P P Q 18 231 N G M L S A P P G P G G G G G 18 240 P G G G G G G A G G G A Q S L 18 248 G G G A Q S L V H P G L V R G 18 280 P H P P H P H H A Q G P P HH 18 294 H G G G G G G A G P G L N S H 18 11 P G N S L L A A G S I V H S D 17 42 G G A G G G G G G M Q P G S A 17 66 D P S S V K M V Q S D F M Q G 17 G A M A A S N G G H M L S H A 17 96 QWVTALPHAAAAAAA 17 121 P W S G S A V G M A G S P Q Q 17 181 Q G H P G G W G A A A A A A A 17 228 F T V N G M L S A P P G P G G 17 229 T V N G M L S A P P G P G G G 17 242 G G G G G A G G G A Q S L V H 17 243 G G G G A G G G A Q S L V H P 17 7 NPYL PGNS LLAAGS I 16 13 N S L L A AG S I V H S D A A 16 19 G S I V H S D A A G A G G G G 16 48 G G G M Q P G S A A V T S G A 16 49 G G M Q P G S A A V T S G A Y 16 51 M Q P G S A A V T S G A Y R G 16 57 A V T S G A Y R G D P S S V K 16 S D F M Q G A M A A S N G G H 16 87 G G H M L S H A H Q WV T A L 16 97 W V T A L P H A A A A A A A A 16 99 T A L P H A A A A A A A A A A 16 100 A L P H A A A A A A A A A A A 16 101 L P H A A A A A A A A A A A A 16 102 P H A A A A A A A A A A A A V 16 103 H A A A A AAAAAAAA V E 16 104 A A A A A A A A A A A A V E A 16 105 A A A A A A A A A A A V E A S 16 107 A A A A A A A A A V E A S S P 16 116 V E A S S P W S G S A V G M A 16 122 W S G S A V G M A G S P Q Q P 16 124 G S A V G M A G S P Q Q P P Q 16 126 A V G M A G S P Q Q P P Q PP 16 136 P P Q P P P P P P Q G P D V K 16 TABLE XXIII 187P3F2 (500a.a.) HLA-DRB1*0101 15 mers 123456789012345 138 155 165 180 182 183 185 186 187 188 189 190 191 192 193 195 196 206 214 296 3 12 47 61 112 123 167 215 302 59 64 76 91 92 113 115 125 131 133 143 168 169 199 200 209 212 230 246 272 274 277 308 311 Q P R D H H
HQ
G H
HP
G G G W
WG
GA
AA
AA
AA
AA
AA
AA
AA
L P Q P G G
TA
GN
GG
GA
M L
AA
S G
RG
P P G P L L
TS
RG
D F L S S H
AA
AV
S A G S
PQ
P P G P P P
AA
AA
MA
G Q
VN
GA
H H
HH
HA
H D
HS
P P D L R G G H P G
GG
W G G A
AA
AA
AA
AA
AA
AA
AA
AA
AA
S M pP G G
AS
S L G G Y R S H
AA
S A P P P Q G L
AA
GA
D P
MQ
HA
AH
AV
E A
VG
PQ
QP
QG
P H
HL
AA
AA
GG
Q P G M G G H H
HH
HP
P H D E
HAG
P PH PG G GW G
WGA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AG G QS L
GAG
NPY
LAA
MQP
GD P
AHQ
VEA
VGM
HLG
SLL
NSH
GS I
YRG
SSV
GAM
HQW
QWV
EAS
SSP
MAG
QPP
PQP
PDV
LG P
GPP
AAH
AHL
QQ P .PP Q
LSA
GAQ
HHA
AMP
HPP
SDE
DTP
A A A D T P Q G
TA
L G W G
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
QQ
L Y
PG
L P
GS
G S S S
WV
S S
AG
PP
Y S D P
VH
D P
KM
AA
VT
TA
S P
WS
S P
QP
PP
KG
PP
PP
LP
PSI
PP
SL
PP(
S L'
HP]
HP:
HP]
b T I T S I
DV
H H P P
AA
.AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
H-L
L P P P Q P N S N S
VH
AV
KM
A L W S
PQ
P P P G S D
DA
S V
QS
NG
L P P H S G S A
QP
P P P P
AG
P-P
P H
MA
AG
S L Y S P G H P pP H P
HA,
T S D L score Seq.
ID
Num.
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 TABLE XXIV 187P3F2 HLA-DRB1*0301 00 (DR17) 15 mers e.I Pos- 1 23 4 56 78 9 0 1 3 45 score Num.
19 G S IVHS DA A GA GG GG 22 V KM VQ S DFM Q GA MAA 22 Ct257 P GLV RGCDT P ELA E HH 22 217 PQ SL L YSQ P GG F TVN 314 E DT P TSDD L EQF A KQ tl161 GT AL HH RG P PHL G PP 19 256 H PG L VRG DT P E LAEH 19 126 AV GM AG S PQQ PP Q PP 1B ASNP YL P G NS LL A AG 17 142 PP PQ GPD V KG G A GRD 17 210 A0GGQ Q P PPQS L L YSQ 17 88 GH M LS HA H Q WV TA LP 16 206 LP S MA G GQ Q P P PSL 16 66 DP SS V K MVQ S D F MG rN ~147 PD VK G GA GR DD L HAG 00 87 GG H MLS HA HQ WV T AL 14 HQ W VT-AL P HAA A AA A 14 223 S QPG G PT V NG M LS AP 14 C1230 V NG M LS APP GP G GGG 14 7 NP YL PG NSL L AA GSI1 13 12 GN SL L AA GS IV H SDA 13 48 G GGMQ0P GS A'AV TS GA 13 151 G GA GR DD LH A GT ALH 13 251 A Q L V HP GL VR GD TP 13 13 N SLJLA A GS I VH S DAA 12 18 A GSI VH S DA AGA G GG 12 S A AVT S GAY R GD PSS 12 S GA YRG D PSS V KM VQ 12 67 PS SVK M VQ S DF M QGA 12 *98 V TALP H AA A A AA AAA 12 *124 GS AV G MAG SP QQ P PQ 12 169 PP HL GP PP PP PH Q GH 12 218 Q SL L Y SQ0PGG F TV NG 12 227 G FT V NGM L SA PP GPG 12 252 Q SL VHP GL VR G DT PE 12 307 SH DP HS D EDTP T S DD 12 69 S VK MV QSD F MQ GA MA 11 SD F MQ GAM AA S NG GH 11 113 A A A VEA SS P WS S AV 11 14,6 G PD V K GGA GR DD LHA 11 150 KG GA GR DD L HAG T AL 11 155 RDD L HA G TAL HH RG P 11 203 A AH LP SMA G GQ Q PP P 11 211 G G QQ PP PQS L LYS QP 11 225 PG GF TV N GML S AP PG 11 231 NGM L SAP PG P GG G GG 11 264 TP E LA EHH H HHH H HA 11 302 GP G LNS HD P HS D EDT 11 303 P GL.N SH DP HS DE D TP 11 309 DPH S DE DT P TS DD LE 11 4 A AS NP YL PG NS L LAA 74 QS D M Q GA M AAS N GG 79 Q G A M A A S N G G, M L S H G A MA AS NG G HM L HA 153 AGR DD L HA G TAL H HR 209 M AGGQQ0P P PQ SL L YS 216 P PQ SLL YS Q PG GFT V 243 G G G GA G GAQ SL VH P TABLE XXV 187P3F2 (500a.a.) HLA-.DPB1*0401 (DR4Dw4) 15 mer s 1 234 5 6789 0 12 34 5 Pos 67 88 124 6 94 184 12 87 98 256 257 16 51 71 112 147 151 197 248 253 308 74 119 219 225 7 13 18 19 48 79 126 203 206 218 227 230 264 A Y S V M L W V A V p Y Q w G W S L M V F M
HM
A L G L L V A A A G P G V Q G G A A V K A G A A G A V H
PMH
D F p W L Y G F Y L L L S I I v G M A M G M H L S M L L T V G M
EL.
D P V Q
AMH
L P A G G N A L A A A G D F A M M A A A 0 D D T I V A V F M L S A S A G D L A A L V L V E D G A S A P G N G N S 0 S S D D A
GES
S N s p M A G Q Q p M L A P H H S V K M D FM Q W V TA A A A A P QQ P L L A A H AA A A AA A I V HS QOGA M A S N G Q W V T A A AA P E L A E LA E S DA A D AA G S GA Y G A MA A HQ0W P WS G D D L H A GT A L PS M P G L V G D T P P T SD A AS N G M A G F T V N LESA P L AA G V HS D A GA G G A GG A V T S G HM L Q P P Q G0Q P: P P PQ G FTV I A P P G I G P G G H H H M score 28 26 26 26 26 22 22 22 18 18 18 18 18 18 18 18 18 18 18 18 16 16 16 16 14 14 14 14 Seq. ID Num.
TABLE XXVI 187P3F2 (SO0a.a.) IiLA-DRB1*1101 15 mers 12 34 56 7 890 1 234 5 H Q.W V T A L P H A A A A A A L HAG T-AL HHR GPP H L L LAA GSI VH S DA A GA PG GF T V N G M L S AP P G G FT V NGML SA PP GP G S NP YL PG NS L LA AGS score 28 Seq. ID Num.
TABLE XXVI 187P3F2 (500a.a.) HLA-DRB1*1101 15 mlers 1 234 56 7 890 12 34 5 74 94 119 142 157 184 248 253 81 56 87 159 163 175 197 224 251 264 267 269 271 279 285 286 257 score 16 16 16 16 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 Seq. ID Num.
TABLE XXIII 192P2G7.HLA- DRB1*0101 15 mers 12 3 456 7 890 12 34 5 score 33 32 31 31 27 27 27 26 26 26 26 24 24 24 23 23 23 23 23 22 Seq. ID Kum.
TABLE XXIII 192P2G7 HLA- 0C) DRB1*0101 15 rners Seq. ID Pos 1 2 3 4 5 6 7 8 9 0 2. 2 3 4 5 score Num.
58 TS LL Q EV VY L V SQGA 22 76 E IGL MN I DEQ L PV LE 22 Ct87 P VLE YP Q PGL DI I KE 22 17 S KY FE F HGV RL P P FC 21 n'7 7 1G LM NI D EQ L PV LEY 21 124 GD SK VI Y MAR NP K DL 21 37 EI A NF PV RP SD V WIV 79 LM NI DE Q LP VLE Y PQ 181 EF W EHR MD S NV LF LK 254 K D IFT V S MNE KF DLV 266 DL VY KQ K MGK C D LTF __88 VL EY P Q PGL DII K EL 19 142 YY Q FHR S LR T MS YRG 19 146 HR SL R TMS YR GT F QE 19 00 155 R GT FQ EF CR R FM NDK 19 249 R VGL W KD IF T VS MNE 19 27 LP PF CR GK ME EI A NF 18 NF PV R PSD V WI V TYP 18 QL P VLE YP QP G LD II 18 99 1IK ELTS PRL I KS H LP 18 165 FMN DK LG Y GS WF E HV 18 QE F WEH R MDS NV L FL 18 256 1IFT VS MN2K F D L V YK 18 24 GV RL PP FC RG K MEEI1 17 M EE I A NF PVR PS DVW 17 46 SD V WI VT YPK SG T SL 17 49 WI VT YP KS G T SL LQE 17 54 P KS G TS L LQ EVVYL V 17 106 RL I KSH LP YR F L PSD 17 140 VSY YQ F HR SL RT MS Y 17 196 YED M HR D LV T M V EL 17 201 RD LVT MV EQ L AR F LG 17 217 SC DK A QL EA LT E HCH 17 223 L E ALTE HC H Q L VDQC 17 234 VD QC CN AE AL P VG RG 17 240 A EAL P VGRG R V G LWK 17 246 G R GR V LW K DI FT VS 17 265 F D LV Y KQ KM GKC DLT 17 267 L VY KQ KMG KC DL T FD 17 9 PS T PG EFE SK YF EF H 16 31 CR GK M EEI A NF PVR P 16 38 1IA NF PV R PSD VW IVT 16 56 SG TS LL QE V VYL V SQ 16 57 G TSL LQ EV VY L VS QG 16 G L DII K EL TS PR LIK 16 97 D IIK EL T S PRL I KSH 16 101 ELT SP RL I KS HL P YR 16 115 RF L PSD L HNG DS KVI1 16 128 VI YMA RN PK D LV VS Y 16 137 DL VV SY Y QF H RSL RT 16 143 Y QFH RS LR T MSY R GT 16 173 GS WF EH V Q EF WE HRM 16 1'76 F E V QE FW E HRM D SN 16 19.7 EDMH R D LV TM V EQ LA 16 204 VT MV E QL AR F LG VSC 16 207 VE QL AR F LG VSC D KA 16 213 F L GV S CD KA Q LEAL-T 16 220 KA QL EA L TEH CH QL V 16 TABLE XXIII 192P2G7 HLA- 00 DRB1*0101 15 mers Pos. 1 234 56 7 89 012 34 5 score Seq. ID Num.
ci231 H QL VD Q CC NAE AL PV' 16 ;-4232 QLV DQCC N AE A L P V 16 TABLE XXIV 192P2G7 lILA- DRBI*0301 (DR17) 15 mers Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score Se.I 182 FW EHR MD S NV LF LK y 29 77 1IGLM NID E QL P VL EY 28 Q LP VL EY PQ P GL DI1 28 119 S D LHNG DS K VI Y MAR 26 256 1IFT VS M N E KF DL VYK 26 254 XKD)IFT VS M N EK PD LV 24 114 YR FL PS D LHN G DS KV 23 cI213 F LGV SC D K AQL E ALT 23 00 105 P RLI KS HL PY RF L PS 21 196 YE D MH RD L VT MVEQL 21 201 R DLV T MVE Q L AR FLG 21 ci203 L VT MV EQ L AR F LGVS 21 96 L DI I KEL TS P RL IKS 131 MAR N P KD L V VSY YQF 249 RVG0L WKD I FT VS M NE 258 T VS MN E KF DL VY KQK 62 QE V VY L V SQG AD PDE 19 91 YPQ PG L DI IK EL T SP 19 162 CR R F MND K LGY G SWF 19 192 LF L KYE DMH R D LV TM 19 200 H RD LVT MV EQ LA R FL 19 24 GVRL P PF C RGK M EEI1 18 47 DV W IVT Y PKSQGT S LL 18 76 E I GLMN ID E Q L PVLE 18 93 QP GLD I IKE L TS P RL 18 125 DS KV IY M AR NP K DLV 18 126 SK VI YMA R N PK DL VV 18 128 VI Y MA R NPK DL VV SY 18 136 KD L VVS YY QF HR S LR 18 32 RG K MEE IA N F PVR PS 17 176 F EH VQE F WEH R M DSN 17 189 S NV LFL KY E D M HRDL 17 204 V TM V EQ0L AR FLGV SC 17 212 RF LGV S CD K AQL E AL 17 231 H QL V DQ C.CN AE A LPV 17 241 E ALP VG RG R VG L WKD 17 262 NE K FD L VY KQ K-MGKC 17 264 KFD L V YKQ K MG K CDL 17 19 YF EF HG VR L P PF C R 16 K SG TS L LQ EV VYL VS 16 147 RSLR T MS Y R GTF Q EF 16 159 QE F CR RF MN D KL GY G 16 161 F CR RF MN D KL GY GSW 16 220 KAQ L E AL TE HC H QLV 16 8 T PST PG EF ES K Y FEF 142 YYQ F HR SL RT M S YRG 155 RGT F Q EFC R R FM NDK 246 GR GR V GLX D IF T VS 267 LVY KQK MG K CD L T FD 68 V SQGA D PD EI GL MN 1 14.
79 LM NI D EQL PV LERY PQ 14 TABLE XXIV 192P2G7 H-LA- DRB1*0301 (DR17) 15 mers 1 2 34 5 6789 0 1234 5 Pos 101 173 223 E L T G SW L EA R L I K H V Q E E HC H P Y R HR M DQ C score 14 14 Seq. ID Num.- TABLE XXV 192P2G7 HLA- DRB1*0401 (DR4Dw4) 15 mere 12 34 5 67 890 12 34 5 Poe 155 250 24 32 61 77 96 16 ill 139 140 142 193 210 262 48 57 58 62 93 114 118 125 126 176 188 1 9r6 201 204 223 231 249 253 44 54 115 133 159 178 1.92.
228 239 19 27 88 score Seq. ID Num.
TABLE XXV 192P2G7 HLA- DRB1*04D1 (DR4DW4) 15 mers 12 34 5 678 90 12 34 5 Pos 151 162 169 172 173 179 254 47 74 76 83 99 128 136 137 146 184 191 200 *203 *207 211 213 220 247 256 score 16 16 16 16 16 16 16 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 Seq. ID Num.
TABLE XXVI 192P2G7 HLA- DRB1*1101 15 mers 12 34 56 7 890 1 234 5 Pos 204 193 262 142 210 58 200 61 125 76 83 139 155 17 93 18 46 63 il1 223 19 113 162 173 239 score Seq. ID Num.
N AE AL P V TABLE XXVI 192P2G7 HLA- 00 DRB1*12.O1 15 mers Pos. 1 23 45 67 89 01 2 345 score Seq. ID Num.
250 V GLW KD I FT VSM N EK 16 ;-424 GV R LPPF CR G KM EE I is Ct92 PQ P GLD I IK ELT S PR 1s 99 1K E LTS PR L IK SH LP 107 LI KS HL PY R F LPS DL 2f 28 V IYM A RNPK D LV VS y 178 H VQ EFW EH RM D SN VL 240 AEA L PV G RGR V GL WK 246 GR GR V GLWK D IF T VS 22 FHG V RL PP F CRG K ME 14 47 DV W IVT YP KS G TS LL 14 48 VW IV TY P KS GT SL LQ 14 96 LD I IK ELT S PRL I KS 14 101 ELT SP R L IKS HL P YR 14 C]114 YR FL PS DL H NGD S KV 14 00137 DL V VSY YQ F HR SL RT 14 .201 R DL V TM V EQL AR F LG 14 237 C CN AE AL PVG R GR VG 14 254 K D IFTV SM N E KF D LV 14 256 1IFTV S MNE KF DL V YK 14 264 KFD LV Y KQ K M GKC DL 14 267 LV Y KQKM G KC DL T FD 14 16 ES KYF E FH GV RL P PF 13 ME EI ANF PV R PS D VW 13 102 L TS PRL I KS HLP Y RF 13 146 HR SLJR T MSY R GT FQ E 13 160 E FCR RF M ND KL G YGS 13 172 YGSW F EH VQ E FW E HR 13 249 RVG L WK DI FT VS M NE 13 253 WKD I FT VS MN E KF DL 13

Claims (19)

1. An isolated polynucleotide that encodes a protein comprising the amino acid sequence of SEQ ID NO: 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 52, 54, 56, 58, or
2. The polynucleotide according to claim 1, wherein the polynucleotide is selected from the group consisting of SEQ ID NO: 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, or the open reading frame thereof.
3. A recombinant expression vector comprising a polynucleotide of claims 1 or 2.
4. A host cell that contains an expression vector of claim 3. An isolated protein comprising the amino acid sequence of SEQ ID NO: 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, or
6. A process for producing the protein according to claim 5, comprising culturing a host cell according to claim 4 under conditions sufficient for the production of the protein.
7. An antibody or fragment thereof that immunospecifically binds to an epitope on the protein according to claim
8. monoclonal. The antibody or fragment thereof according to claim 7, which is
9. The antibody or fragment thereof according to claim 7 or claim 8, which is conjugated with a cytotoxic agent. A hybridoma that produces an antibody according to claim 8. 00 S11. A method for detecting the presence of a protein or a polynucleotide in a ttest sample comprising: Scontacting the sample with an antibody or a probe, respectively, that specifically binds to the protein according to claim 5 or the polynucleotide according to claim 1, respectively; and detecting binding of protein or polynucleotide, respectively, in the sample thereto. 00
12. The method according to claim 11, wherein the detecting step comprises comparing an amount of binding of the antibody or the probe that specifically binds to the protein or the polynucleotide to the presence of the protein or the polynucleotide in a corresponding normal sample.
13. The method according to claim 12, wherein the presence of elevated polynucleotide or protein in the test sample relative to the normal tissue sample provides an indication of the presence of cancer.
14. The method according to claim 13, wherein the cancer is selected from the group consisting of prostate cancer, bladder cancer, kidney, colon, lung, ovary, breast, pancreas, testis, rectum, cervix, stomach and uterus. A method of inhibiting growth of a cell expressing the protein according to claim 5, comprising providing an effective amount of an antibody or fragment thereof according to any one of claims 7 to 9 to the cell, whereby the growth of the cell is inhibited.
16. A method of delivering a cytotoxic agent to a cell expressing the protein according to claim 5, comprising providing an effective amount of an antibody according to any one of claims 7 to 9 to the cell. 628 00
17. A method of inducing an immune response to the protein according to ri claim 5, the method comprising: Sproviding a protein epitope; and contacting the epitope with an immune system T cell or B cell, O whereby the immune system T cell or B cell is induced.
18. Use of an epitope from the protein according to claim 5 for the preparation of a medicament to induce a T cell or B cell immune response in a subject. S19. A method of inhibiting growth of a cancer cell expressing the protein Scomprising the amino acid sequence of SEQ ID NO:34, comprising providing an effective amount of an antibody or fragment thereof that immunospecifically binds to an epitope on the protein to the cell, whereby the growth of the cell is inhibited. The method of claim 19, wherein the antibody or fragment thereof is conjugated with a cytotoxic agent.
21. The method of claim 20, wherein the cytotoxic agent is selected from the group consisting of radioactive isotopes, chemotherapeutic agents and toxins.
22. The method of claim 21, wherein the radioactive isotope is selected from the group consisting of 2 11 At, 131I, 125, 90 Y, 186Re, 8Re, 53 Sm, 2 1 2 Bi, 32 P and radioactive isotopes of Lu.
23. The method of claim 21, wherein the chemotherapeutic agent is selected from the group consisting of taxol, actinomycin, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, gelonin, and calicheamicin.
24. The method of claim 21, wherein the toxin is selected from the group consisting of diphtheria toxin, enomycin, phenomycin, Pseudomonas exotoxin (PE) A, abrin, abrin A chain, mitogellin, modeccin A chain, and alpha-sarcin. 629 00 0 25. An isolated polynucleotide or recombinant expression vector or host cell cr or protein, substantially as herein described with reference to any one or more of the cExamples and/or accompanying Figures.
26. A method for detecting the presence of a protein or polynucleotide according to the invention substantially as herein described with reference to any one or more of the Examples and/or accompanying Figures. 00 t",I 0", 630
AU2008201044A 2001-04-10 2008-03-05 Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers Ceased AU2008201044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2008201044A AU2008201044B2 (en) 2001-04-10 2008-03-05 Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US60/283,112 2001-04-10
US60/282,739 2001-04-10
US60/286,630 2001-04-25
AU2002318112A AU2002318112B2 (en) 2001-04-10 2002-04-10 Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers
PCT/US2002/011654 WO2002083921A2 (en) 2001-04-10 2002-04-10 Nuleic acids and corresponding proteins useful in the detection and treatment of various cancers
AU2008201044A AU2008201044B2 (en) 2001-04-10 2008-03-05 Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002318112A Division AU2002318112B2 (en) 2001-04-10 2002-04-10 Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers

Publications (2)

Publication Number Publication Date
AU2008201044A1 true AU2008201044A1 (en) 2008-04-03
AU2008201044B2 AU2008201044B2 (en) 2011-07-28

Family

ID=39294276

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2008201044A Ceased AU2008201044B2 (en) 2001-04-10 2008-03-05 Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers

Country Status (1)

Country Link
AU (1) AU2008201044B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801646A (en) * 2019-01-31 2019-05-24 北京嘉楠捷思信息技术有限公司 Voice endpoint detection method and device based on fusion features

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998032853A2 (en) * 1997-01-24 1998-07-30 Genetics Institute, Inc. Secreted proteins and polynucleotides encoding them
WO1999058660A1 (en) * 1998-05-12 1999-11-18 Human Genome Sciences, Inc. 97 human secreted proteins
IL139686A0 (en) * 1998-06-02 2002-02-10 Genentech Inc Secreted and transmembrane polypeptides and nucleic acids encoding the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109801646A (en) * 2019-01-31 2019-05-24 北京嘉楠捷思信息技术有限公司 Voice endpoint detection method and device based on fusion features

Also Published As

Publication number Publication date
AU2008201044B2 (en) 2011-07-28

Similar Documents

Publication Publication Date Title
AU2004263823B2 (en) Prostate stem cell antigen (PSCA) variants and subsequences thereof
AU2003228717B2 (en) Nucleic acids and corresponding proteins entitled 191P4D12(b) useful in treatment and detection of cancer
AU2008212020B2 (en) Nucleic acids and corresponding proteins entitled 109P1D4 useful in treatment and detection of cancer
US8460881B2 (en) Nucleic acids and corresponding proteins entitled 254P1D6B useful in treatment and detection of cancer
AU2008202540A1 (en) Nucleic acid and corresponding protein entitled STEAP-1 useful in treatment and detection of cancer
US6863892B2 (en) Nucleic acid and corresponding protein named 158P1D7 useful in the treatment and detection of bladder and other cancers
AU2007201445A1 (en) Nucleic acid and corresponding protein entitled 158P3D2 useful in treatment and detection of cancer
AU2008200363A8 (en) Nucleic acids and corresponding proteins entitled 101P3A11 or PHOR-1 useful in treatment and detection of cancer
AU2008202217B2 (en) Nucleic acids and corresponding proteins entitled 191PAD12(b) useful in treatment and detection of cancer
AU2007202977A1 (en) Nucleic acid and corresponding protein entitled 85P1B3 useful in treatment and detection of cancer
CA2515699C (en) Nucleic acid and corresponding protein named 158p1d7 useful in the treatment and detection of bladder and other cancers
AU2002258689B8 (en) Nucleic acid and corresponding protein entitled 213P1F11 useful in treatment and detection of cancer
AU2008201044A1 (en) Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers
AU2010201755B2 (en) Nucleic acid and corresponding protein entitled 121P2A3 useful in treatment and detection of cancer
AU2002258688B2 (en) Nucleic acid and corresponding protein entitled 238P1B2 useful in treatment and detection of cancer
AU2007231823B2 (en) Nucleic acids and corresponding proteins entitled 254P1D6B useful in treatment and detection of cancer
AU2003245477A1 (en) Nucleic acid and corresponding protein entitled 98p4b6 useful in treatment and detection of cancer
AU2007237184B2 (en) Nucleic acids and corresponding proteins entitled 202P5A5 useful in treatment and detection of cancer
AU2007237282A1 (en) Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired