AU2007240153A1 - Lotto game - Google Patents
Lotto game Download PDFInfo
- Publication number
- AU2007240153A1 AU2007240153A1 AU2007240153A AU2007240153A AU2007240153A1 AU 2007240153 A1 AU2007240153 A1 AU 2007240153A1 AU 2007240153 A AU2007240153 A AU 2007240153A AU 2007240153 A AU2007240153 A AU 2007240153A AU 2007240153 A1 AU2007240153 A1 AU 2007240153A1
- Authority
- AU
- Australia
- Prior art keywords
- prize
- jackpot
- jurisdiction
- subordinate
- game
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
S&F Ref: 654924D1
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT Name and Address of Applicants: Iowa Lottery, of 2015 Grand Avenue, Des Moines, Iowa, 50312-4999, United States of America Multi-State Lottery Association, of 1701 48th Street, Suite 210, West Des Moines, Iowa, 50266-6723, United States of America Actual Inventor(s): Address for Service: Invention Title: Edward J. Stanek Spruson Ferguson St Martins Tower Level 31 Market Street Sydney NSW 2000 (CCN 3710000177) Lotto game The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5845c(1053021 1)
IN
LOTTO GAME Field of the Invention The invention relates generally to lottery games and, more specifically, to lotto games that are adapted to be played in a number of political jurisdictions which may have different currencies and lottery pay-out rules.
Background of the Prior Art Many different types of lottery games have been sold over the course of history in various jurisdictions. The "traditional" game has been sold for several hundred years. This game is based on the concept of a raffle. Generally, tickets are sold with unique numbers. Thie drawing mechanism is developed, often using balls, sometimes thousands of them, each with a unique number corresponding to a ticket. Other times individual digits for winning numbers are drawn from a series of machines. The drawings are held so that a large prize and subordinate prizes are paid according to the unique numbers drawn and delegated to a particular prize level. Sometimes subordinate prizes are paid for matching part but not all of the numbers as long as the digits being matched are a subset of the digits on the balls drawn in exact order.
Instant lottery tickets, also called scratch tickets, were invented in the second half of the 20th century. They utilize a secure printing medium with numbers or symbols covered by latex or some other material. The covering is scratched and players win prizes by adding up, lining up, or matching covered symbols. Various patents have been issued relative to the substrate, security precautions, symbol coverings, and play styles for these types of games. They now account for roughly half of lottery sales in North America.
Another type of lottery ticket is the pull-tab ticket. It utilizes layers of cardboard glued together, with one layer having a series of perforations to form tabs. As the tabs are pulled away from the ticket they reveal symbols underneath and matching various combinations of symbols leads to the winning of prizes.
The last category of lottery type games are generally referred to as lotto games and are based on the concept of picking numbers. These games usually involve players picking their own numbers or using a computer or some other mechanism to chose the numbers, in an attempt to match the numbers against those drawn by the lottery. The lotto concept was originally developed in Italy about 1580. It evolved from bets being placed on which candidates were chosen at random to serve in the senate. The betting was so popular among the citizenry that the incidence of the drawings was increased and the names of senators changed to numbers.
One of the most successful lotto type games in modem times is commonly known as pick 3. Players choose three digits from zero to nine. The lottery chooses three digits from zero to nine, If the player's numbers match the lottery's numbers in exact order, a top prize is won.
Other betting variations can be made where a player chooses to mach the two front digits, the two back digits, the first and last digit, or some combination of the above. The game was typically run manually and illegally by crime networks for generations in large cities in the United States. State lotteries began to offer the game and computerized it so that it could be played efficiently on a daily basis. A similar game has been developed for matching four digits Another typical lotto game in the United States and much of the rest of the world involves establishing a field of numbers from one to X. A player chooses, say, six of these numbers. The lottery then draws six numbers and a top prize is won if a numbers match in any order. The odds of winning the top prize can be altered by making X a larger number. In doing so there will be fewer winners of the top prize, which allows lottery sellers to offer a large jackpot prize. The prize can further be enhanced if no winner is chosen in a particular drawing.
The lottery is then able to bank part or all of the non-won prize money from a previous drawing and offer it as an incentive for sales in a subsequent drawing, by increasing the size of the jackpot. In typical lotto games of this-nature, subordinate prizes are also awarded for the matching of five, four, or even three of the six numbers drawn in any order. A typical prize structure for a pick 6 out of 30 game is to pay the jackpot prize if all 6 matches are correct the approximate average odds of which are 1:593,775; pay 100 if there are 5 matches, the approximate average odds of which are 1:4,124; pay $10 if there are 4 matches, the approximate average odds of which are 1: 144; and provide a free play if there are 3 matches, the approximate average odds of which are 1: 15. Of course, the allocation of prize money to be divided is subject to selection or design for each ticket sold.
Keno is a lottery game in which the house draws a number of balls, say, from a group or IND field of balls that is larger than the-number of balls selected by a player, but any match between the balls selected by the player to the balls drawn by the house counts. Lotto games are actually a subset of keno games; in lotto games, the number of balls drawn by the house or lottery equals the number of balls picked by the player.
In contrast, higher prizes can be offered by establishing a matrix of different size. If a game is chosen where the goal is to match 6 of 49, then a typical prize structure may be to pay out $2,000,000 if there are 6 matches, having an approximate average number of prizes for each drawing of less than one; $65,816.40 if there are 5 matches and a match with a bonus number, having an approximate average numbers of prizes for each drawing of 8; $1,784.80 if there are matches, having an approximate average numnbers of prizes for each drawing of 236; $68. 10 if there are 4 matches, having an approximate average numbers of prizes for each drawing of 11,857; and $10 if there are 3 matches, having an approximate average numbers of prizes for each drawing of 2 13,760. A variation of this game with smaller top prizes but better odds is a pick 5 game, a game involving matching five numbers by the player's choice in the drawing in any order. There is also a variation with seven numbers.
Another variation on this concept has emerged in the last decade, typically called "roildown" in the United States. In a roildown lotto game everything proceeds as in a typical pick six or pick five lotto game, as above, except that in the event that there is no jackpot winner, prize money that has not been won is allocated to smaller prime rather than being banked to enhance subsequent jackpots. Therefore the lack of a jackpot winner provides money to enhance the size of the prizes for lower tier winners. A typical prize structure and relative occurrences for a pick 5 out of 55 rolldown game may be to pay the jackpot if all 5 numbers are matched, the probability of which is 1:3,478,761; pay $500 if 4 numbers are matched, the probability of which is 1: 13,915; pay 10 if 3 numbers are matched, the probability of which is 1:284; and pay $l1.if 2 numbers are matched, the probability of which is 1: 18.
In some instances a bonus ball can be added to a lotto game to create a prize smaller than the jackpot prize but larger than any of the other prizes. So, for instance, in a pick six lotto game a player matches only five of the six numbers drawn by the lottery; however, the lottery has also drawn a seventh ball, the bonus ball, which if paired with any. five of the six other numbers drawn by the lottery creates a prize intermediate between matching five and matching the six IND original balls drawn.
In the last decade a new high jackpot game was developed called Powerball® (Multi- State Lottery Association, West Des Moines, Iowa). It was emulated by the Big Game in the United States (now Mega Millions), by Powerball in Australia, nd similar gamnes introduced in other countries. Unlike lotto, where the player picks six balls flrom one to N drawn by the lottery, the player instead chooses five numbers from one to X, and one number from one to Y.
The lottery then draws five numbers from one to X and one number from one to Y from separate drawing machines and prizes are awarded according to various matches. The Powerbafll lottery game is a combination of two lotto games in one. Both games must be won to win thejackpot prize. It is also designed so that any player matching the single ball drawn from the one to Y device wins a prize. The concept has been extraordinarily successfuml. Table 1 lays out a prize structure applicable to a typical Powerball®V lottery game.
Table I Prize Structure for a Double Lottery (5149 1/42) Game One Play for $1 Odds Number of Prize Levels Prize Cost Prize Winners of Sales Match 5+1 80,089,128.00 1 $46,762,840 23,381,420 29.1942 Match 5+0 1,953,393.37 41 100,000 4,100,00 5.1193 Match 4+1 364,041.49 220 5,000 1,100,000 1.3735 Match 4+0 8,879.06 9,020 100 902,000 1.1262 Match 3+1 8,466.08 9,460 100 946,000 1.1812 Match 3+0 206.49 387,860 7 2,715,020 3.3900 Match 2+1 604.72 132,440 7 927,080 1.1576 Match 2+0 14.75 5,430,040 0 0.000 Match 1+1 117.99- 678,755 4 2,715,020 3.3900 Match 1+0 2.878 27,828,955 0 0.0000 Match 0+1 73.75 1,086,008 3 3,258,024 4.0680 Match 0+0 180 44,526,328 0 0.0000 Totals 1.00 80,089,128 40,044,564 50.0000 Overall Odds: 34.76 2,303805 Although the player is still only picking six numbers, drawing them from two separate fields can greatly increase the odds of matching all numbers correctly while maintaining relatively good odds of low level matches. The number of different intermediate prize levels that can also be offered is greater than that available for a pick six lotto game because there are more possible INO combinations of matches that can be made by the two separate fields and two drawing mechanisms. For instance, in a pick six game the only possibilities of matches are to ultimately guess six, five, four, three, two, one and zero numbers; a total of seven choices. Therefore only seven prize levels can be offered. However, with the concept of the Powerball@ lottery game, there are eleven possible matches.
ri Because the odds of winning the Powerball® lottery game are so high 80 million to one) the generation of frequent wins to amass cash substantial enough to keep players' interest requires a sizable audience of lottery customers. Therefore games with odds of this magnitude are particularly suited for multi-jurisdictional lotto games. The combined population makes the game possible. A certain fraction of each ticket sold is pooled by each of the participating partners for purposes of establishing ajackpot prize pool. The size of the top prize and the odds of winning it go hand in hand. The ability to make the game dynamic depends on per capita spending over a large player base. However, as time progresses lottery players can become jaded to the size of the- prize so the. matrix must be changed to make the odds of wining a jackpot stiffer, sacrificing the frequency ofjackpot winners. In other words, fewer but larger jackpots are won over the course of time. With a fixed population base eventually the number of jackpot winners may decline to the point where players may lose interest. Clearly the size of the jackpot is important in the United States, as has been demonstrated by United States lotteries. After achieving a new record jackpot, sales for lowerjackpots generally are reduced, a phenomenon known in the industry as 'Jackpot fatigue." For example, the Powerball® lottery game must now achieve a jackpot of $50 million to have the same sales that once occurred for a jackcpot of million.
So there exists a dilemma. Expanding the odds to increase the size of the jackpot works in the short term but causes players to become jaded and sales to decline over time. Meanwhile, raising the odds further reduces the number ofjackpot winners as jackpot fatigue sets in and players lose interest in infrequent jackpots and sales decline. The solution is to expand the player population base while expanding the size of the matrix and increasing the odds for the top prize.
Doing so increases jackpot size without adversely affecting frequency of wins. Doing so also has certain limitations, usually characterized by political boundaries. The multi-jurisdictional PowerballO lottery game has achieved its success by assimilating the cooperation of multiple United States jurisdictions. All of-these jurisdictions operate under a common national flag with a common language and a common currency. For political reasons expansion appears to be limited within the United States and therefore it is desirable to partner with lotteries outside of United States borders. However, the expectations of players outside the United States, the regulatory systems under which they operate, and limitations on the size ofjackpot prizes pose an impediment to this matrix expansion. Furthermore, currency differences suggest that the size of prizes based on a fixed prize pool can vary from day to day from one jurisdiction to another, depending on the foreign exchange rates for the currencies in respective countries. Therefore, the challenge is to find a way to accommodate jackpot limitations, regulatory systems, and currency differences in such a way as to offer a game with enhanced value compared to existing games in all jurisdictions.
Summary of the Invention The present invention is a lotto game that is played in a plurality of lottery jurisdictions or countries which may have different currencies and different ticket prices, and which may have a variety of rules regarding the size and payment of prizes. A game where the odds of winning a jackpot prize are the same for each participating lottery is adopted. Subordinate prize structures can vary from lottery to lottery. The lotteries sell tickets to customers in each of the countries or jurisdictions that collaborate to administer the game. A fixed amount of money in a standard or reference currency is allocated to a common pool (called the "Super Pool" in this specification) for each chance sold. Each lottery then sells its chances. After the drawing, if there is no j ackpot winner, the subordinate prize winners in each jurisdiction or country receive their proportionate amount for each prize level as determined by the lottery selling the ticket. The Super Pool consists of prize funds not awarded since the Last jackpot was won. The Super Pool will increase until there is a jackpot winner in at least one of the jurisdictions or countries or until a ceiling is reached for the jackpot prize as determined by that jurisdiction or country. When one or more jackpot winners are identified, the amount in the Super Pool is shared evenly among the countries of the jackpot winner(s). Subordinate prize winners in countries without jackpot winners are paid as for all other drawings where there was not a jackpot winner. In countries where there is ajackpot winner, the prize is paid to the winner(s) up to the jackpot limit set by that country, and any remaining money in the Super Pool is used to supplement subordinate Sprizes in that country or lottery according to a formula determined by that country or lottery.
An object of the present invention is to provide a lotto game that is suitable for play in a plurality of countries with different currencies or a plurality of lotteries which choose to offer varying rules for winning non-jackpot lotto prizes.
Another object of the present invention is to provide a lotto game that is suitable for play among lottery jurisdictions or countries that have rules on the size and allocation of prizes that 0 are different from those rules in other jurisdictions or countries that also participate in the game.
Another object of the present invention is to allow varying prices for chances sold in a single game among various jurisdictions.
A further object of the present invention is to provide a lotto game that has a population base larger than is available if the game was limited to only a single country.
These and other objects of the invention will be appreciated by those skilled in the art upon a review and understanding of this specification and the appended claims.
Brief Description of the Figures Figure 1 is a diagram of the reporting of ticket sales in each of five jurisdictions in their own currencies to the game administrator at the close of sales for a particular drawing.
Figure 2 is a diagram of the reporting of the number of winners at each prize level in each jurisdiction of Fig. 1 to the game administrator after the drawing.
Figure 3 is a diagram of the reporting by the game administrator to each of the jurisdictions of the authorized payouts in each jurisdiction.
Figure 4 is a diagram of the payments to subordinate prize winners and to the Super Pool fund in four jurisdictions if there was no jackpot prize winner.
Figure 5 is a diagram of the flow of monies if the drawing resulted in a single jackpot winner in Jurisdiction B.
-7 Detailed Description Multi-jurisdictional lotto games have ventured beyond international borders, as exemplified by a game called Vikting Lotto offered in Scandinavia. For all jackpot related lotto games to date, the pooled prize money relates solely to the jackpot level. Therefore, a new game design is hereby proposed which would pool a fixed amount from each ticket sold in all partner countries/jurisdictions to a super prize pool (referred to herein as the "Super Pool') that will be split by some winners in more than one prize level. Furthermore, the amount of the jackpot prize and the subordinate prizes can be different in each participating jurisdiction. These subordinate prizes may be made pari-mutuel and are gauged relative to a referenced currency. A determination made of each prize level for each jurisdiction as per the rules set by that jurisdiction is made in the referenced currency, adjustments are made to normalize the prize back to a local currency, and prizes are awarded on a pari-mutuel basis for each prize level.
With reference to Figure 1, upon the close of ticket sales prior to a drawing, each lottery jurisdiction Lottery A E) reports to the game administrator its total sales for that drawing in its own currency and the number of chances for the jackpot that are sold. That currency is converted to a reference currency. Totals are made in the reference currency from all jurisdictions and allocated to the various prize levels in the common game. After the drawing, each lottery jurisdiction reports to the game administrator the number of winners at each prize level (Fig. and a determination is made of whether or not the grand prize jackpot has been won. Each lottery is notified if there is ajackpot and thus a Super Pool winner for that drawing (Fig. If no jackpot prize is won all subordinate prize winners in each jurisdiction or country receive payment as per the rules of each respective lottery. The funds allocated to the jackpot prize are not awarded because there is no'winner, and are held in trust or in escrow after being converted to the reference currency to form the Super Pool (Fig. Note that it is anticipated that one or more financial institutions in each country will receive money from ticket sales in that jurisdiction or country and payout or retain money, according to the game rules.
As subsequent drawings progress, the jackpot pool continues to increase until there is a jackpot winner in one of the jurisdictions. Each jurisdiction according to its game rules is allowed to set ajackpot ceiling.
When a jackpot win occurs, another mechanism comes into play. Of course, there is the possibility of having more than one jackpot winner. The amount in the Super Pool in the IND reference currency at the time of the drawing is divided by the number of lotteries selling jackpot winners and distributed to the jurisdictions where the jackpot winning tickets were sold in equal shares. The amounts in the reference currency are reported to all participating jurisdictions.
Each jurisdiction that does not have a jackpot winner pays the prizes for each prize level in the local currency as normal.
I> However, the jurisdictions that have one or more jackpot winners follow a different procedure. Each jackpot winner is paid in local currency up to the jackpot ceiling as determined by the rules for that particular jurisdiction. Any share of the Super Pool remainin g after the jackpot winning amounts are determined is used to supplement all subordinate prizes for that jurisdiction according to rules for that jurisdiction. The prizes are paid in local currency utilizing the official exchange rate at the time the prizes are paid. Fig. 5 illustrates the process where there is a single jackpot winner in Jurisdiction B.
The jurisdictions that have lower jackpot ceilings will have inflated, possibly greatly, their subordinate prizes for drawings when a jackpot winning ticket was purchased in their jurisdiction. Jurisdictions that have no jackpot ceiling forego the gain in subordinate prizes but capitalize on sales related to a high jackpot.
Table 2 is prize structure for a hypothetical lotto game'similar to the Powerball® lottery game but with two numbers drawn from the second bin instead of one,. The matrix is a 5/60 1/2/40, which is a combination of a lotto game wherein 5 numbers out of 50 are chosen and a game, in the nature of what is sometimes in the industry called a keno game, in which the player may choose either I or 2 numbers out of 40. Given a sellout of the game where each chance purchased is unique, the prizes paid are illustrated according to rules where the percentage of sales allocated to that prize is specified in the right hand column.
Prize Structure #2 International Game 5/60 1/2/40; One Play for $2 Number of Odds Winners Table 2 Prize Levels Cash Prize Cost Match 5+1 Match 5 Match 4+1 Match 4 Match 3+1 Match 3 Match 2+1 Match 2 Match 1+1 Match 1 Match 0+1 Match 0 109,230,240.00 5,748,960.00 397,200.87 20,905.31 7,355.57 387.14 416.35 21.91 64.05 3.37 31.40 1.65 1.00 19.00 275.00 5,225.00 14,850.00 282,150.00 262,350.00 4,984,650.00 1,705,275.00 32,400,225.00 3,478,761.00 66,096,459.00 $65,817,661 $65,817,661 250,000 4,750,000 5,000 1,375,000 1,000 5,225,000 40 594,000 10 2,821,500 7 1,836,450 5 8,526,375 4 13,915,044 Prize OfSales 30.1279% 2.1743% 0.6294% 2.3917% 0.2719% 1.2915% 0.8406% 0.0000% 3.9029% 0.0000% 6.3696% 0.0000% Totals 1.00 109,230,240.00 Total Prize Cost: $104,861,030 48.0000% Prize Reserve $4,369,210 2.0000% Overall Odds: 19.00 5,748,906.00 Return to Lottery: $109,230,240 50.0000% Table 3 is a spreadsheet from a 10-year simulation of one drawing per week that illustrates the impact on the subordinate prizes for jackpot winning hypothetical jurisdictions with jackpot ceilings of $2 million, $20 million, $50 million, and $100 million. The reference currency is United States dollars.
(5/60 +1//2/40) International Game Simulation Table 3 Jurisdictlon Country A Averago Maximum Maximum Grand Prize aIn U.S.
dollars) 20,000,000 Number of Grand Prize Winners In Ton Year Period Number of times supoi'pooI exceeds Ceiling Prize In Ton Year Period country B 20,000,000 Average Maximum Country 0 20,000,000 Aveage MaXlIMUM Country D 100.000,000 Average Maximum Country E 2,000,000 Average Maximum 36.0 48.00 43.00 10.00 24.00 35.00 14.00 19.0D Exc"s Super Pool 448,107.089.23 $70,771,701.96 $165,009,760.70 477,312,463.72 4295,245,820.34 6 0,728,271.02 S 215,245,626.34 $75,118,160.23 $155,622,813.17 Match 5 prize OR 35,885,766.16 62,077,170.61 A$ 21,98,637.62 43,713,696.71 15,209,8)442 Z9,884,850.00 7,168,W62 1; 661,=2.94 68,279,721.71 06,026,800.10 104,143.4"470 292,398.638.92 Country F Average Maxinm 60,000,000 66.614.&31&57 1$ 135,009,760.70 Totals Per Year Average Average Non-celing Grand Prize Awarded Maximum Non-ceiling Grand Prize Awarded Annual Sales In U.S. Dollars Country A 433,475,809.60 Country 8 1,070,171,327.80 Country C 2,323,300.53 Country D 1,074,98,304.38 Country E 130,847,526.63 Country F 29,721.670.58 169.00 15.90 80,318,075.74 3%6,M4626.34 Annual Per Capila Sales In U.S. Dollars 114.15 42.81 410.13 53.75 18.69 0.39 0 0 0 Table 3 (cont.) $260,000 $5,000 1,000 $40 $10 $7 $5 $4 0 SMatch 5 Match 4+1 Match 4 Match 3+1 Match 3 Match 2+1 Match 1+ Match 0O+ 0 c$3 4,585,432.34 91,708.00 18,341.73 703.07 103.42 128.39 01,71 73.37 S$ 7771,867.80 165,437.38 31,087.47 1,243.50 310.87 217.61 165.44 $124.35 0 l 2,893,496.98 67,869.94 11,673.99 482.96 115.74 81.02 57.87 46.30 6,637,776.23 110,755.50 22,151.10 888.04 221.61 165.06 110.78 88.60 2,070,003.56 41,400.07 8,280.01 331.20 68280 57.06 41.40 33.12 3,831,032.31 76,620.65 15,324.13 5 512.97 103.24 10727 70.02 01.30 1,091,721.69 21,834.43 4 4,388.89 174.68 43.67 30.67 21.83 17.47 1,881,688.95 37.633.78 7,628.78 S 301.07 75.27 62.69 37.63 30.11 8,526,487.59 170.629.35 34,105.87 1,364.23 341.06 238.74 170.63 $136.42 $11,780,508.00 235,610.12 47,122.02 1,884.88 471.22 329.85 235.61 188.49 6 12.880,839,28 857,702.70 81,888.56 2,06234 615.69 380.91 267.79 20623 $35,792,681.65 715,853.63 $143,170.73 5,726,83 1,431.71 1,002.20 715.85 572.68 Tables 4 and 5 are similar displays for a 3/40 3/40 matrix.
Prize Structure #1 International Game 3/40 3/40; One Play for $2 Odds Match 3+3 97,614,400.000000 Match 3+2 879,409.009009 Match 2+3 879,409.009009 Match 3+1 48,856.056056 Match 1+3 48,856.056056 Match 2+2 7,922.603685 Match 3+0 12,562.985843 Match 0+3 12,562.985843 Match 2+1 440.144649 Match 1+2 440.144649 Match 2+0 113.180053 Match 0+2 113.180053 Match 1+1 24.452481 Match 1+0 6.287781 Match 0+1 6.287781 Match 0+0 1.616858 Table 4 Number of Pize Levels Winners Cash 1,998 1,998 12,321 7,770 7,770 221,778 221,778 862,470 862,470 3,992,004 15,524,460 15,524,460 60,372,900 $47,458,344 40,000 40,000 2,000 2,000 600 400 400 20 20 4 4 Pr ize cost $47,458,344 4,440,000 4,440,000 3,996,000 3,996,000 7,392,600 3,108,000 3,10D8,000 4,435,560 4,435,560 3,449,880 3,449,880 0 0 0 0 Prize Of Sales 24.3091% 2.2743% 2.2743% 2.0468% 2.0468% 3.7866% 1.5920% 1.5920% 2.2720% 2.2720% 1.7671% 1.7671% 0.0000% *0.0000% 0.0000% .0.0000% Totals 1.000000 97,614,400 Total Prize Cost: $93,709,824 48.0000% Prize Reserve $3,904,576 2.0000% Return to Lottery: $97,614,400 50.0000% IOverall Odds: .356 2,057 2,200,576 (3/40 3/40) International Game Simulation Table Maximum Grand pIze (7n U.8.
Jurisdict ion dollars) Country A 20,000,000 Average Maximum Country B 10,000,000 Average Maximum Country C 20,000,000 Average Maximum Country D 100,W0o,000 Average Maximum Country E 2,000,000 Number of Grand PiA Winner. In ran Year Perio Number of times Super Pool exceeds Ceiling PH"z in Tan Year Period, UEX0a. suipa, P401 S3,2 and -*a Pike 48.00 40.00 24.00 31.00 5.00 41,745,622.17 122,012.136.08 34,563.678.23 132,012.136.8 34.613.926M 122,012,136.98 37,747.320.39 S 42.012.136.98 40.804,212.16 79,455,911.74 32,700,885.29 66,423,237A2 227,476.71 S4,959,054.67 1.24Z.251.41 2,699,515.44 802570.49 1,634.910.47 386,245.09 S 434.910-SO S 3,549,768.78 8,028,095.20 S 5.113.751.40 7,849,151.79 15.00 Average Maximum country IF Average, Maximum 50,000.000 Totals Per Year Average Average Mon-caling Grand Prize Awarded Maximum Non-coiling Grand Prime Awarded 150.00 15.00 A8204,001.84 14201Z13.913 Country A Country B Country C Country D Country E Annual Sales In U.S. Dollara $428,878.722.10 809,789,639.57 323,764,073.61 1,011,984,140.31 129,821,340.25 Annual Per Capita Sales In U.S. Dollars 112.42 32.39 39.112 50.60 18.5 Table 5 (cont.) $40,000 $40,000 $2,00 $2,000 $600 OR Match 3+2 Match 2+3 465,741.91 465.741.91 884,543.45 984,543.45 270,824.88 270,824.88 550,610.63 550,610.63 186,410.00 185,410.00 345,213.01 345,213.01 106,475.93 105,476.93 116,820Ma 115,820.39 713,853.65 713,8W3.65 1,189,677.49 1,189,877.49 1,014,129.10 1,014,129,10 .$1539,309.17 1,539,309.17 match 3.1 23,287.10 49,227.17 13,541.24 27,530.53 9,320.50 17,310.65 5,32&86 5,791.02 35,692.8 89,483.87 50,706.45 76,966.46 Match 1+3 23,287.10 49,227.17 13.641.24 27,630.63 ,205 17,310.65 5,323.85 5,791.02 35,692.68 59,483.87 Match 2+2 $14,768.15 4,062-37 2,796.18 5,193.20 1,597.15 1,737.31 $10,707.80 $17,a4&.16 match 3+0 4.657.42 9,845.43 Z708.25 5.506.1 I 1,864.)D 3,452.13 1,084.77 1,158.20 7,13&54 $11,896.77 10,.141.29 $16.393.09 Match 0#3 4,657.42 0,845.43 A708.26 5,506.11 1.8m4.10 3,462.13 1,064.77 1,158.20 7,138.54 $11,896.77 $10,141.29 $16.393.09 50,708.45 $15,211.94 76,966.48 23,089.64 Table 5 (cont.) $20 $4 $4 Match 2+1 Match 1+2 match 2+0 match o+2 232.87 232.87 46.57 46.57 492.27 49227 08.46 98.45 135.41 135.41 27.00 27.08 275.21 S 276.31 66.06 65.08 93.21 93.21 19.97 19.97 173.11 173.11 34.62 34.62 53.24 53.24 10.65 $10.65 57.91 897.91 11.58 511.8 35W.93 S 356.93 71.39 71.39 594.84 594.84 118.97 118.97 507.06 507.08 101.41 101.41 769.66 789.65 153.93 153.93 Currency fluctuations may. affect both price point of the ticket and the amount to be paid in prizes. The price point may be affected because the tickets are sold across jurisdictions that have different currencies and the relative values of those currencies change from time to time. In a lottery game, it is important that each chance sold have the same price so as not to reward unfairly players who might buy chances that would have effective discounts. In other words, if a customer buys a chance far 1, it would be unfair to sell a similar chance to someone else for cents.
To handle this issue, each lottery deposits with the Super Pool the same amount in a single currency for each chance sold. For example, regardless of the price in, say, pesos, shillings, or kroner, 30 cents US would be deposited for each chance sold. The Super Pool is the only instrument of the game that is a collective asset, so it is important that the price of a chance to win the Super Pool be uniform among participants.
The values of various currencies may move up and down relative to each other and have an impact on the value of subordinate prizes paid in a local currency, but not on the common value of the Super Pool. Extraordinary currency revaluations may require a price change periodically in a jurisdiction so that subordinate prizes can be paid a nd profits realized, but the contribution to the Super Pool is unaffected. There is a risk that the reference currency the US dollar) might move up and down but the players assume the risk just like they assume the risk for interest rates moving up and down for a lotto game where the prizes are paid in annuities.
The impact and perception of currency fluctuations is also managedby paying subordinate prizes on a pari-mutuel basis. Since these prizes vary from drawing to drawing based on the number of winners at each prize level, they will be different for each drawing..
Adjustments are made up or down to the subordinate prizes for currency fluctuations to insure that a constant contribution for each Super Pool portion of the ticket is made in the reference currency.
Therefore the price of tickets can also vary from jurisdiction to jurisdiction to achieve different percentage paybacks to players. All differences among jurisdictions in this regard are made by adjusting the number of categories of subordinate prizes and the proportions of non- Super Pool prize money allocated to each subordinate prize level.
The amount of money available in the Super Pool also depends on relative currency values at some point in time. It is possible for money to be collected over a period of weeks as no jackpot winners are drawn and therefore no awards of the Super Pool are made. Currencies can change measurably during this time frame. Choosing the most stable reference currency can ameliorate this affect. By making deposits to the Super Pool in the reference currency, it is always possible to determine the value in local currency once a jackpot winner is sold.
It is important, also, that the size of the Super Pool to be paid not be determined at !he time a ticket is sold, or at the time money is deposited in a Super Pool escrow account. The size of the pool can be estimated at any time, but the size of the pool and therefore the size of the prizes resulting from the Super Pool, is determined at the time that winning tickets require Super Pool awards to be paid to players. Immediately following a drawing in which at least one jackpot winner has been determined, the Super Pool is divided equally among jurisdictions according to how many jackpot winning tickets were sold by that jurisdiction. It is then converted back to local currencies and each jurisdiction can announce the size of its jackpot prizes and the size of its subordinate prizes.
The risk of currencyfluctuations; is here again borne by the players. Should a currency collapse during draw 3 in a run that requires 5 drawings before a jackpot is Won, the size of the jackpot is determined by the money on deposit in the reference currency after the collapse at the time of the win. Likewise, for the non-jackpot portions of the Super Pool. Of course, the opposite of a collapse could occur. In this case the currency risk bome by the players results in their additional reward.
There also can be fluctuations in currencies after a drawing has been won and before a prize is collected. It is not uncommon for a player to wait months before coming forward with a winning ticket to claim a prize. Since the amount of all prizes is determined in local currency after each drawing, the lotteries bare no currency risk in this regard. Funds are on deposit with the local jurisdiction for paying the prize. The value of this money could go either up or down relative to other currencies because of a delay in claiming a prize. The player bares this risk also.
The roildown occurs only when there is ajackpot winner in a particular jurisdiction and the roildown is in effect only forjackpot winning jurisdictions. Accordingly, a new and unique lottery dynamic is expected to take place. Whereas most players buy tickets in anticipation of winning the jackpot prize, those same players care little about who wins a jackpot prize if it is not themselves. However, with this game dynamic, each player from a jurisdiction with a O jackpot ceiling has a vested interest in a jackpot winner coming from their jurisdiction even if they do not win the jackpot because they also stand to benefit personally. The dynamic would have little benefit for a game that is not multi-jurisdictional. Because of limitations on Spopulation bases in most countries, the game is of optimal benefit when it is played across Sinternational borders. The specter of currency differences and fluctuating exchange rates are dealt with effectively, and the cultural or legal differences among countries that created jackpot Slimitations is used to advantage instead of disadvantage in a flexible manner so as to accommodate any jackpot limitation.
For a given size jackpot and jackpot ceiling, the size of the individual subordinate prizes paid from the Super Pool will be a function of the number of subordinate prize winners. Smaller jurisdictions will arguably have fewer winners to split the Super Pool and will have the largest prize inflation.
The foregoing descriptions comprise illustrative embodiments of the present inventions.
The foregoing embodiments and the methods described herein may vary based on the ability, experience, and preference of those skilled in the art. Merely listing the steps of the method in a certain order does not necessarily constitute any limitation on the order of the steps of the method. The foregoing description and drawings merely explain and illustrate the invention, and the invention is not limited thereto, except insofar as the claims are so limited. Those skilled in the art who have the disclosure before them will be able to make modifications and variations therein without departing from the scope of the invention.
Claims (24)
1. A lotto game having a jackpot prize and at least one subordinate prize, comprising a pool that accumulates monies for subordinate prizes in addition to the jackpot prize.
2. A lotto game having a jackpot prize and at least one subordinate prize, comprising a pool of accumulated funds that is used to inflate subordinate prizes forjurisdictions selling jackpot winning tickets.
3. A lotto game, comprising: a plurality of member lotteries, at least two of which are from diverse jurisdictions; a system of prize levels including ajackpot prize and at least one subordinate prize level; a pool of accumulated funds that is used to inflate subordinate prizes; and wherein, in a drawing having a jackpot prize winner in at least one jurisdiction, a member lottery in a jurisdiction without a jackpot prize winner contributes money to the jackpot winner and subordinate prize winners in each jurisdiction having a jackpot winner.
4. A lotto game as defined in claim 3, wherein the system of prize levels has subordinate prize levels that are different in at least two jurisdictions. A lotto game, comprising: a plurality of member lotteries, at least two of which are from diverse jurisdictions; and a system of prize levels including a jackpot prize that is subject to a maximum limit that is different in one jurisdiction from at least one other jurisdiction.
O
6. A lotto game, comprising: a plurality of member lotteries, at least two of which are from diverse N jurisdictions; and a currency in one jurisdiction that is different from a currency in at least one other r€ 5 jurisdiction. in
7. A lotto game as defined in claim 6, wherein the currency of one jurisdiction fluctuates relative to the currency of at least one other jurisdiction. O
8. A lotto game having a jackpot prize and at least one subordinate prize, comprising a lotto game in which x numbers out ofy must match in combination with a keno game in which at least one out of two or more numbers out of z numbers must match in order to win the jackpot prize.
9. A lotto game as defined in claim 8, wherein subordinate prizes are awarded to players that match either zero, one, or more of the numbers drawn in the keno game.
A lotto game where the price of a chance can vary by jurisdiction by holding constant among two or more jurisdictions the portion of the ticket price contributed to a common pool and adjusting the balance of the price and subordinate prize payouts accordingly. -22- c1
11. A lotto game having a jackpot prize and at least one subordinate prize, U Scomprising a pool of funds used to inflate one or more prizes subordinate to a jackpot prize for ajurisdiction selling one or more jackpot winning tickets. \O
12. A lotto game, comprising: a plurality of member lotteries, at least two of which are from diverse jurisdictions; a system of prize levels including a jackpot prize and at least one subordinate prize level; S a pool of accumulated funds that is used to inflate subordinate prizes; and wherein, in a drawing having a jackpot prize winner in at least one jurisdiction, a member lottery in a jurisdiction without a jackpot prize winner contributes money to the jackpot winner and subordinate prize winners in each jurisdiction having a jackpot winner.
13. A lotto game as defined in claim 12, wherein the system of prize levels has subordinate prize levels that are different in at least two jurisdictions.
14. A lotto game, comprising: a plurality of member lotteries, at least two of which are from diverse jurisdictions; and a system of prize levels including a jackpot prize that is subject to a maximum limit that is different in one jurisdictions from at least one other jurisdiction.
A lotto game, comprising: a plurality of member lotteries, at least two of which are from diverse jurisdictions; and a currency in one jurisdiction that is different from a currency in at least one other jurisdiction.
16. A lotto game as defined in claim 15, wherein the currency of one jurisdiction fluctuates relative to the currency of at least one other jurisdiction. 1052815 I.DOC -23- O N1
17. A lotto game having a jackpot prize and at least one subordinate prize, U Scomprising a lotto game in which x numbers out of y must match in combination with a Skeno game in which at least one out of two or more numbers out of z numbers must match in order to win the jackpot prize. tn
18. A lotto game as defined in claim 17, wherein subordinate prizes are awarded to players that match either zero, one, or more of the numbers drawn in the keno game.
19. A lotto game where the price of a chance can vary by jurisdiction by holding constant among two or more jurisdictions the portion of the ticket price contributed to a common pool and adjusting the balance of the price and subordinate prize payouts accordingly.
20. A pool of funds in a lotto game used to inflate subordinate prizes in a jackpot winning jurisdiction comprising monies accumulated as a result of limiting a jackpot when sales would otherwise justify a higher jackpot.
21. A pool of funds in a lotto game used to inflate subordinate prizes in a jackpot winning jurisdiction comprising monies accumulated from non-jackpot winning jurisdictions.
22. A pool of funds in a lotto game used to inflate subordinate prizes in a jackpot winning jurisdiction comprising monies accumulated as a result of limiting a jackpot when sales would otherwise justify a higher jackpot and from non-jackpot winning jurisdictions.
23. A lotto game substantially as described herein with reference to the accompanying drawings. 1052815 I.DOC
-24- U S24. A pool of funds in a lotto game, said pool of funds being substantially as described herein with reference to the accompanying drawings. DATED this Sixth Day of December, 2007 Iowa Lottery Multi-State Lottery Association Patent Attorneys for the Applicants SPRUSON FERGUSON
10528151.DOC
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US60/293,406 | 2001-05-24 | ||
AU2002305717A AU2002305717A1 (en) | 2001-05-24 | 2002-05-24 | Lotto game |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002305717A Division AU2002305717A1 (en) | 2001-05-24 | 2002-05-24 | Lotto game |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2007240153A1 true AU2007240153A1 (en) | 2008-01-03 |
Family
ID=38903073
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2007240155A Abandoned AU2007240155A1 (en) | 2001-05-24 | 2007-12-06 | Lotto game |
AU2007240153A Ceased AU2007240153A1 (en) | 2001-05-24 | 2007-12-06 | Lotto game |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2007240155A Abandoned AU2007240155A1 (en) | 2001-05-24 | 2007-12-06 | Lotto game |
Country Status (1)
Country | Link |
---|---|
AU (2) | AU2007240155A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2008359856B2 (en) * | 2008-07-25 | 2015-04-09 | Roboreus Limited | Systems and methods for lottery-style games |
-
2007
- 2007-12-06 AU AU2007240155A patent/AU2007240155A1/en not_active Abandoned
- 2007-12-06 AU AU2007240153A patent/AU2007240153A1/en not_active Ceased
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2008359856B2 (en) * | 2008-07-25 | 2015-04-09 | Roboreus Limited | Systems and methods for lottery-style games |
Also Published As
Publication number | Publication date |
---|---|
AU2007240155A1 (en) | 2008-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6887152B2 (en) | Lotto game | |
US11090550B2 (en) | Card game | |
CA2562921A1 (en) | Lottery game with pari-mutuel payout | |
AU2005313994B2 (en) | Lottery game | |
US7204756B2 (en) | Lottery system with method for paying multiple progressive jackpots | |
US7442122B2 (en) | Variable lottery game allowing participation in several different lottery games within a single drawing | |
US20050096130A1 (en) | Gaming system for players of different games to compete for the same progressive jackpots in various gameplay settings | |
US20040173965A1 (en) | Lottery game | |
US20190333314A1 (en) | Raffle tournament game design | |
US6475085B2 (en) | Numerical total high/low lottery game | |
US20060287055A1 (en) | Multi-level simple lotto | |
SE523051C2 (en) | Game systems for sub-denominations in, for example, a random number game | |
US20070077989A1 (en) | System and method for implementing a lottery game having enhanced winnings with predefined threshold | |
CA2977147C (en) | Method and system for wagering on sporting events | |
AU2007240153A1 (en) | Lotto game | |
US20020077171A1 (en) | Gaming machine | |
AU2002305717A1 (en) | Lotto game | |
AU770083B2 (en) | Gaming machine | |
Ciecka et al. | State lotteries and externalities to their participants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NB | Applications allowed - extensions of time section 223(2) |
Free format text: THE TIME IN WHICH TO PAY AN EXAMINATION RESPONSE FEE HAS BEEN EXTENDED TO 19 SEP 2010. |
|
ON | Decision of a delegate or deputy of the commissioner of patents (result of patent office hearing) |
Free format text: EXAMINER'S OBJECTION; APPLICATION REFUSED Effective date: 20101021 |
|
MK16 | Application refused |