AU2007237282B2 - Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer - Google Patents

Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer Download PDF

Info

Publication number
AU2007237282B2
AU2007237282B2 AU2007237282A AU2007237282A AU2007237282B2 AU 2007237282 B2 AU2007237282 B2 AU 2007237282B2 AU 2007237282 A AU2007237282 A AU 2007237282A AU 2007237282 A AU2007237282 A AU 2007237282A AU 2007237282 B2 AU2007237282 B2 AU 2007237282B2
Authority
AU
Australia
Prior art keywords
protein
expression
amino acid
cancer
prostate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2007237282A
Other versions
AU2007237282A1 (en
Inventor
Pia M. Challita-Eid
Mary Faris
Wangmao Ge
Rene S. Hubert
Aya Jakobovits
Karen Morrison
Robert Kendall Morrison
Arthur B. Raitano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agensys Inc
Original Assignee
Agensys Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002305169A external-priority patent/AU2002305169C1/en
Application filed by Agensys Inc filed Critical Agensys Inc
Priority to AU2007237282A priority Critical patent/AU2007237282B2/en
Publication of AU2007237282A1 publication Critical patent/AU2007237282A1/en
Application granted granted Critical
Publication of AU2007237282B2 publication Critical patent/AU2007237282B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

A novel gene (designated 162PlE6) and its encoded protein, and variants thereof, are described wherein 162P1E6 exhibits tissue specific expression in normal adult tissue, and is aberrantly expressed in the cancers listed in Table I. Consequently, 162P1E6 provides a diagnostic, prognostic, prophylactic and/or therapeutic target for cancer. The 162P1E6 gene or fragment thereof, or its encoded protein, or variants thereof, or a fragment thereof, can be used to elicit a humoral or cellular immune response; antibodies or T cells reactive with 162P1E6 can be used in active or passive immunization.

Description

AUSTRALIA FB RICE & CO Patent and Trade Mark Attorneys Patents Act 1990 AGENSYS, INC. COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer The following statement is a full description of this invention including the best method of performing it known to us:- 1A NUCLEIC ACID AND CORRESPONDING PROTEIN ENTITLED162PIE6 USEFUL IN TREATMENT AND DETECTION OF CANCER This is a divisional of AU 2002305169, the entire contents of which are incorporated 5 herein by reference. CROSS-REFERENCE TO RELATED APPLICATIONS This application claims priority from United States Serial No. 60/283,112 filed April 10,2001, and United States Serial No. 60/286,630, filed April 25,2001. The contents of these 10 applications are hereby incorporated by reference herein in their entirety. STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED RESEARCH Not applicable. 15 FIELD OF THE INVENTION The invention described herein relates to a gene and its encoded protein, termed 162PIE6, expressed in certain cancers, and to diagnostic and therapeutic methods and compositions useful in the management of cancers that expressl62Pl E6. 20 BACKGROUND OF THE INVENTION Cancer is the second leading cause of human death next to coronary disease. Worldwide, millions of people die from cancer every year. In the United States alone, as reported by the American Cancer Society, cancer causes the death of well over a half-million 25 people annually, with over 1.2 million new cases diagnosed per year. While deaths from heart disease have been declining significantly, those resulting from cancer generally are on the rise. In the early part of the next century, cancer is predicted to become the leading cause of death. Worldwide, several cancers stand out as the leading killers. In particular, carcinomas of the lung, prostate, breast, colon, pancreas, and ovary represent the primary causes of cancer 30 death. These and virtually all other carcinomas share a common lethal feature. With very few exceptions, metastatic disease from a carcinoma is fatal. Moreover, even for those cancer patients who initially survive their primary cancers, common experience has shown that their lives are dramatically altered. Many cancer patients experience strong anxieties driven by the awareness of the potential for recurrence or treatment failure. Many cancer patients experience 35 physical debilitations following treatment. Furthermore, many cancer patients experience a recurrence.
IB Worldwide, prostate cancer is the fourth most prevalent cancer in men. In North America and Northern Europe, it is by far the most common cancer in males and is the second leading cause of cancer death in men. In the United States alone, well over 30,000 men die annually of this disease-second only to lung cancer. Despite the magnitude of these figures, 5 there is still no effective treatment for metastatic prostate cancer. Surgical prostatectomy, radiation therapy, hormone ablation therapy, surgical castration and chemotherapy continue to be the main treatment modalities. Unfortunately, these treatments are ineffective for many and are often associated with undesirable consequences.
On the diagnostic front, the lack of a prostate tumor marker that can accurately detect early-stage, localized tumors remains a significant limitation in the diagnosis and management of this disease. Although the senum prostate specific antigen (PSA) assay has been a very useful tool, however its specificity and general utility is widely regarded as lacking in several important respects. Progress in identifying additional specific markers for prostate cancer has been improved by the generation of prostate cancer xenografts that can recapitulate different stages of the disease in mice. The LAPC (Los Angeles Prostate Cancer) xenografts are prostate cancer xenografts that have survived passage in severe combined immune deficient (SCID) mice and have exhibited the capacity to mimic the transition from androgen dependence to androgen independence (Klein et al., 1997, Nat. Med. 3:402). More recently identified prostate cancer markers include PCTA-l (Su et al., 1996, Proc. Natl. Acad. Sci. USA 93: 7252), prostate-specific membrane (PSM) antigen (Pinto et al., Clin Cancer Res 1996 Sep 2 (9): 1445-51), STEAP (Hubert, et al., Proc Nat Acad Sci U S A. 1999 Dec 7; 96(25): 14523-8) and prostate stem cell antigen (PSCA) (Reiter et al., 1998, Proc. Natl. Acad. Sci. USA 95: 1735). While previously identified markers such as PSA, PSM, PCTA and PSCA have facilitated efforts to diagnose and treat prostate cancer, there is need for the identification of additional markers and therapeutic targets for prostate and related cancers in order to further improve diagnosis and therapy. Renal cell carcinoma (RCC) accounts for approximately 3 percent of adult malignancies. Once adenomas reach a diameter of 2 to 3 cm, malignant potential exists. In the adult, the two principal malignant renal tumors are renal cell adenocarcinoma and transitional cell carcinoma of the renal pelvis or ureter. The incidence of renal cell adenocarcinoma is estimated at more than 29,000 cases in the United States, and more than 11,600 patients died of this disease in 1998. Transitional cell carcinoma is less frequent, with an incidence of approximately 500 cases per year in the United States. Surgery has been the primary therapy for renal cell adenocarcinoma for many decades. Until recently, metastatic disease has been refractory to any systemic therapy. With recent developments in systemic therapies, particularly immunotherapies, metastatic renal cell carcinoma may be approached aggressively in appropriate patients with a possibility of durable responses. Nevertheless, there is a remaining need for effective therapies for these patients. Of all new cases of cancer in the United States, bladder cancer represents approximately 5 percent in men (fifth most common neoplasm) and 3 percent in women (eighth most common neoplasm). The incidence is increasing slowly, concurrent with an increasing older population. In 1998, there was an estimated 54,500 cases, including 39,500 in men and 15,000 in women. The age-adjusted incidence in the United States is 32 per 100,000 for men and 8 per 100,000 in women. The historic male/female ratio of 3:1 may be decreasing related to smoking patterns in women. There were an estimated 11,000 deaths from bladder cancer in 1998 (7,800 in men and 3,900 in women). Bladder cancer incidence and mortality strongly increase with age and will be an increasing problem as the population becomes more elderly. Most bladder cancers recur in the bladder. Bladder cancer is managed with a combination of transurethral resection of the bladder (TUR) and intravesical chemotherapy or immunotherapy. The multifocal and recurrent nature of bladder cancer points out the limitations of TUR. Most muscle-invasive cancers are not cured by TUR alone. Radical cystectomy and urinary diversion is the most effective means to 2 eliminate the cancer but carry an undeniable impact on urinary and sexual function. There continues to be a significant need for treatment modalities that are beneficial for bladder cancer patients. An estimated 130,200 cases of colorectal cancer occurred in 2000 in the United States, including 93,800 cases of colon cancer and 36,400 of rectal cancer. Colorectal cancers are the third most common cancers in men and women. Incidence rates declined significantly during 1992-1996 (-2.1% per year). Research suggests that these declines have been due to increased screening and polyp removal, preventing progression of polyps to invasive cancers. There were an estimated 56,300 deaths (47,700 from colon cancer, 8,600 from rectal cancer) in 2000, accounting for about 11% of all U.S. cancer deaths. At present, surgery is the most common form of therapy for colorectal cancer, and for cancers that have not spread, it is frequently curative. Chemotherapy, or chemotherapy plus radiation, is given before or after surgery to most patients whose cancer has deeply perforated the bowel wall or has spread to the lymph nodes. A permanent colostomy (creation of an abdominal opening for elimination of body wastes) is occasionally needed for colon cancer and is infrequently required for rectal cancer. There continues to be a need for effective diagnostic and treatment modalities for colorectal cancer. There were an estimated 164,100 new cases of lung and bronchial cancer in 2000, accounting for 14% of all U.S. cancer diagnoses. The incidence rate of lung and bronchial cancer is declining significantly in men, from a high of 86.5 per 100,000 in 1984 to 70.0 in 1996. In the 1990s, the rate of increase among women began to slow. In 1996, the incidence rate in women was 42.3 per 100,000. Lung and bronchial cancer caused an estimated 156,900 deaths in 2000, accounting for 28% of all cancer deaths. During 1992-1996, mortality from lung cancer declined significantly among men (-1.7% per year) while rates for women were still significantly increasing (0.9% per year). Since 1987, more women have died each year of lung cancer than breast cancer, which, for over 40 years, was the major cause of cancer death in women. Decreasing lung cancer incidence and mortality rates most likely resulted from decreased smoking rates over the previous 30 years; however, decreasing smoking patterns among women lag behind those of men. Of concern, although the declines in adult tobacco use have slowed, tobacco use in youth is increasing again. Treatment options for lung and bronchial cancer are determined by the type and stage of the cancer and include surgery, radiation therapy, and chemotherapy. For many localized cancers, surgery is usually the treatment of choice. Because the disease has usually spread by the time it is discovered, radiation therapy and chemotherapy are often needed in combination with surgery. Chemotherapy alone or combined with radiation is the treatment of choice for small cell lung cancer; on this regimen, a large percentage of patients experience remission, which in some cases is long lasting. There is however, an ongoing need for effective treatment and diagnostic approaches for lung and bronchial cancers. An estimated 182,800 new invasive cases of breast cancer were expected to occur among women in the United States during 2000. Additionally, about 1,400 new cases of breast cancer were expected to be diagnosed in men in 2000. After increasing about 4% per year in the 1980s, breast cancer incidence rates in women have leveled off in the 1990s to about 110.6 cases per 100,000. In the U.S. alone, there were an estimated 41,200 deaths (40,800 women, 400 men) in 2000 due to breast cancer. Breast cancer ranks second among cancer deaths in women. According to the most recent 3 4 data, mortality rates declined significantly during 1992-1996 with the largest decreases in younger women, both white and black. These decreases were probably the result of earlier detection and improved treatment. Taking into account the medical circumstances and the patient's preferences, treatment of breast cancer may involve lumpectomy (local removal of the tumor) and removal of the lymph nodes under the arm; mastectomy 5 (surgical removal of the breast) and removal of the lymph nodes under the arm; radiation therapy; chemotherapy; or hormone therapy. Often, two or more methods are used in combination. Numerous studies have shown that, for early stage disease, long-term survival rates after lumpectomy plus radiotherapy are similar to survival rates after modified radical mastectomy. Significant advances in reconstruction techniques provide several options for breast reconstruction after mastectomy. Recently, such reconstruction has been done at the same time as the mastectomy. 10 Local excision of ductal carcinoma in situ (DCIS) with adequate amounts of surrounding normal breast tissue may prevent the local recurrence of the DCIS. Radiation to the breast and/or tamoxifen may reduce the chance of DCIS occurring in the remaining breast tissue. This is important because DCIS, if left untreated, may develop into invasive breast cancer. Nevertheless, there are serious side effects or sequelae to these treatments. There is, therefore, a need for efficacious breast cancer treatments. 15 There were an estimated 23,100 new cases of ovarian cancer in the United States in 2000. It accounts for 4% of all cancers among women and ranks second among gynaecologic cancers. During 1992-1996, ovarian cancer incidence rates were significantly declining. Consequent to ovarian cancer, there were an estimated 14,000 deaths in 2000. Ovarian cancer causes more deaths than any other cancer of the female reproductive system. . Surgery, radiation therapy, and chemotherapy are treatment options for ovarian cancer. Surgery usually 20 includes the removal of one or both ovaries, the fallopian tubes (salpingo-oophorectomy), and the uterus (hysterectomy). In some very early tumors, only the involved ovary will be removed, especially in young women who wish to have children. In advanced disease, an attempt is made to remove all intra-abdominal disease to enhance the effect of chemotherapy. There continues to be an important need for effective treatment options for ovarian cancer. 25 There were an estimated 28,300 new cases of pancreatic cancer in the United States in 2000. Over the past 20 years, rates of pancreatic cancer have declined in men. Rates among women have remained approximately constant but may be beginning to decline. Pancreatic cancer caused an estimated 28,200 deaths in 2000 in the United States. Over the past years, there has been a slight but significant decrease in mortality rates among men (about -0.9% per year) while rates have increased slightly among women. 30 Surgery, radiation therapy, and chemotherapy are treatment options for pancreatic cancer. These treatment options can extend survival and/or relieve symptoms in many patients but are not likely to produce a cure for most. There is a significant need for additional therapeutic and diagnostic options for pancreatic cancer. Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as 35 an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.
SUMMARY OF THE INVENTION The present invention relates to a gene, designated 162P1E6, that has now been found to be over expressed in the cancer(s) listed in Table I. Northern blot expression analysis of 162P1E6 gene expression in normal tissues shows a restricted expression pattern in adult tissues. The nucleotide (Figure 2) and amino acid (Figure 2, and Figure 3) sequences of 162PIE6 are provided. The tissue-related profile of 162PIE6 in normal adult tissues, combined with the over-expression observed in the tissues listed in Table I, shows that 162P1E6 is aberrantly over-expressed in at least some cancers, and thus serves as a useful diagnostic, prophylactic, prognostic, and/or therapeutic target for cancers of the tissue(s) such as those listed in Table 1. The invention provides polynucleotides corresponding or complementary to all or part of the 162P1E6 genes, mRNAs, and/or coding sequences, preferably in isolated form, including polynucleotides encoding 162P1E6-related proteins and fragments of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, or more than 25 contiguous amino acids; at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100 or more than 100 contiguous amino acids of a 162P1E6-related protein, as well as the peptides/proteins themselves; DNA, RNA, DNA/RNA hybrids, and related molecules, polynucleotides or oligonucleotides complementary or having at least a 90% homology to the 162P1E6 genes or mRNA sequences or parts thereof, and polynucleotides or oligonucleotides that hybridize to the 162P1E6 genes, mRNAs, or to 162P1E6-encoding polynucleotides. Also provided are means for isolating cDNAs and the genes encoding 162P1E6. Recombinant DNA molecules containing 162P1E6 polynucleotides, cells transformed or transduced with such molecules, and host-vector systems for the expression of 162PIE6 gene products am also provided. The invention further provides antibodies that bind to 162P1E6 proteins and polypeptide fragments thereof, including polyclonal and monoclonal antibodies, murine and other mammalian antibodies, chimeric antibodies, humanized and fully human antibodies, and antibodies labeled with a detectable marker or therapeutic agent. In certain embodiments there is a proviso that the entire nucleic acid sequence of Figure 2 is not encoded and/or the entire amino acid sequence of Figure 2 is not prepared. In certain embodiments, the entire nucleic acid sequence of Figure 2 is encoded and/or the entire amino acid sequence of Figure 2 is prepared, either of which are in respective human unit dose forms. The invention further provides methods for detecting the presence and status of 162P1E6 polynucleotides and proteins in various biological samples, as well as methods for identifying cells that express 162P1E6. A typical embodiment of this invention provides methods for monitoring 162P1E6 gene products in a tissue or hematology sample having or suspected of having some form of growth dysregulation such as cancer. The invention further provides various immunogenic or therapeutic compositions and strategies for treating cancers that express 162P1E6 such as cancers of tissues listed in Table I, including therapies aimed at inhibiting the transcription, translation, processing or function of 162P1E6 as well as cancer vaccines. In one aspect, the invention provides compositions, and methods comprising them, for treating a cancer that expresses 162P1E6 in a human subject wherein the composition comprises a carrier suitable for human use and a human unit dose of one or more than one agent that inhibits the production or function of 162P1E6. Preferably, the carrier is a uniquely human carrier. In another aspect of the invention, the agent is a moiety that is immunoreactive with 162P1E6 protein. Non-limiting examples of such moieties include, but are not limited to, antibodies (such as single chain, monoclonal, polyclonal, humanized, chimeric, or human antibodies), functional equivalents thereof (whether naturally occurring or synthetic), and combinations 5 thereof. The antibodies can be conjugated to a diagnostic or therapeutic moiety. In another aspect, the agent is a small molecule as defined herein. In another aspect, the agent comprises one or more than one peptide which comprises a cytotoxic T lymphocyte (CTL) epitope that binds an HLA class I molecule in a human to elicit a CTL response to 162P I E6 and/or one or more than one peptide which comprises a helper T lymphocyte (HTL) epitope which binds an HLA class II molecule in a human to elicit an HTL response. The peptides of the invention may be on the same or on one or more separate polypeptide molecules. In a further aspect of the invention, the agent comprises one or more than one nucleic acid molecule that expresses one or more than one of the CTL or HTL response stimulating peptides as described above. In yet another aspect of the invention, the one or more than one nucleic acid molecule may express a moiety that is immunologically reactive with 162P 1 E6 as described above. The one or more than one nucleic acid molecule may also be, or encodes, a molecule that inhibits production of 162P1E6. Non-limiting examples of such molecules include, but are not limited to, those complementary to a nucleotide sequence essential for production of 162P1E6 (e.g. antisense sequences or molecules that form a triple helix with a nucleotide double helix essential for 162P lE6 production) or a ribozyme effective to lyse 162P1 E6 mRNA. Note that to determine the starting position of any peptide set forth in Tables V-XVIII and XXII to LI (collectively HLA Peptide Tables) respective to its parental protein, e.g., variant 1, variant 2, etc., reference is made to three factors: the particular variant, the length of the peptide in an HLA Peptide Table, and the Search Peptides in Table LIl. Generally, a unique Search Peptide is used to obtain lLA peptides of a partiular for a particular variant. The position of each Search Peptide relative to its respective parent molecule is listed in Table LII. Accordingly if a Search Peptide begins at position "X", one must add the value "X - I" to each position in Tables V-XVIII and XXII to LI to obtain the actual position of the HLA peptides in their parental molecule. For example if a particular Search Peptide begins at position 150 of its parental molecule, one must add 150 - 1, i.e., 149 to each HLA peptide amino acid position to calculate the position of that amino acid in the parent molecule. One embodiment of the invention comprises an HLA peptide, that occurs at least twice in Tables V XVIII and XXII to LI collectively, or an oligonucleotide that encodes the HLA peptide. Another embodiment of the invention comprises an HLA peptide that occurs at least once in Tables V-XVIII and at least once in tables XXII to LI, or an oligonucleotide that encodes the HLA peptide,. Another embodiment of the invention is antibody epitopes which comprise a peptide regions, or an oligonucleotide encoding the peptide region, that has one two, three, four, or five of the following characteristics: i) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Hydrophilicity profile of Figure 5; ii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or less than 0.5, 0.4, 0.3, 0.2, 0.1, or having a value equal to 0.0, in the Hydropathicity profile of Figure 6; 6 7 iii) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Percent Accessible 5 Residues profile of Figure 7; iv) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Average Flexibility 10 profile of Figure 8; or v) a peptide region of at least 5 amino acids of a particular peptide of Figure 3, in any whole number increment up to the full length of that protein in Figure 3, that includes an amino acid position having a value equal to or greater than 0.5, 0.6, 0.7, 0.8, 0.9, or having a value equal to 1.0, in the Beta-turn profile of 15 Figure 9. The present invention also provides a method of detecting the presence of lung, breast, kidney, bladder, or prostate cancer in an individual, comprising determining the level of expression of a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 as evidenced in a test biological sample 20 from an individual and comparing the level so determined to the level of expression that is evidenced in a corresponding normal biological sample, wherein elevated expression of the protein evidenced in the test sample relative to the normal sample is an indication of the presence of the cancer in the individual. The present invention also provides a method of examining a biological sample 25 for evidence of dysregulated cellular growth comprising comparing the level of expression of a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 1, 13, 15, 17, 19, 21 and 23 evidenced in the biological sample to the level of expression evidenced in a corresponding normal sample, wherein an elevation in the level of expression of the protein evidenced in the biological sample as compared 30 to the normal sample is an indication that the sample displays dysregulated cellular growth or is conditioned by cells that display dysregulated cellular growth. The present invention also provides a method of detecting the presence of prostate cancer in an individual comprising: (a) determining the level of mRNA expression that encodes a protein 35 comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 7A 17, 19, 21 and 23 as evidenced in a prostate test sample obtained from the individual; and (b) comparing the level so determined to the level of rnRNA expression in a corresponding normal prostate sample, 5 wherein elevated expression of the mRNA evidenced in the prostate test sample relative to the normal prostate sample is an indication of the presence of prostate cancer in the individual. The present invention also provides a method of examining a biological sample for evidence of dysregulated prostate cellular growth comprising 10 comparing the level of expression of the mRNA that encodes a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, I1, 13, 15, 17, 19, 21 and 23 evidenced in a biological prostate sample to the level of expression evidenced in a corresponding normal prostate sample, wherein an elevation in the level of expression of the mRNA evidenced in the 15 biological prostate sample as compared to the normal prostate sample is an indication that the biological prostate sample displays dysregulated cellular growth. The present invention also provides a method of examining a biological sample for evidence of dysregulated prostate cell proliferation comprising: comparing the level of expression of the mRNA that encodes a protein 20 comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 1I, 13, 15, 17, 19, 21 and 23 evidenced in a biological prostate sample to the level of expression evidenced in a corresponding normal prostate sample, wherein an elevation in the level of expression of the mRNA evidenced in the biological prostate sample as compared to the normal prostate sample is an indication 25 that the biological prostate sample displays dysregulated cell proliferation. The present invention also provides use of an effective amount of an antibody or antigen binding fragment thereof that specifically binds to a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9. I1, 13, 15, 17, 19, 21 and 23 for the preparation of a medicament to inhibit the growth or invasiveness of a 30 neoplastic cell that expresses the protein, wherein the neoplastic cell is selected from the group consisting of lung, breast, kidney, bladder and prostate neoplastic cells. The present invention also provides use of an effective amount of an antisense RNA fragment to a mRNA comprising the coding sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 for the preparation of' a medicament to 35 inhibit the expression of a protein in a lung, breast, kidney, bladder, or prostate cancer cell.
7B Throughout this specification the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element, integer or step, or group of elements, integers or steps, but not the exclusion of any other element, integer or step, or group of elements, integers or steps. 5 Any discussion of documents, acts, materials, devices, articles or the like which has been included in the present specification is solely for the purpose of providing a context for the present invention. It is not to be taken as an admission that any or all of these matters form part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim 10 of this application. BRIEF DESCRIPTION OF THE FIGURES Figure 1. The 162P1 E6 SSH sequence of 335 nucleotides (SEQ ID NO: 1). Figure 2. The cDNA (SEQ ID NO:2) and amino acid sequence (SEQ ID NO:3) of 15 162P1E6 variant I clone B (also called "162PlE6 v.l" or "162P1E6 variant 1") is shown in Figure 2A. The start methionine is underlined. The open reading frame extends from nucleic acid 2028-2468 including the stop codon. The cDNA (SEQ ID NO:4) and amino acid sequence (SEQ ID NO:5) of 162P1E6 variant 2 (also called "162PIE6 v.2") is shown in Figure 2B. The codon for the start methionine is 20 underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ ID NO:6) and amino acid sequence (SEQ ID NO:7) of 162P1E6 variant 3 (also called "162P I E6 v.3") is shown in Figure 2C. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 3-404 including the stop codon. The cDNA (SEQ ID NO:8) and amino acid 25 sequence (SEQ ID NO:9) of 162P1E6 variant 4 (also called "162P1E6 v.4") is shown in Figure 2D. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 388-696 including the stop codon. The cDNA (SEQ ID NO:10) and amino acid sequence (SEQ ID NO: 11) of 162P1 E6 variant 5 (also called "162PlE6 v.5") is shown in Figure 2E. The codon for the start methionine is 30 underlined. The open reading frame extends from nucleic acid 388-618 including the stop codon. The cDNA (SEQ ID NO:12) and amino acid sequence (SEQ ID NO:13) of 162PIE6 variant 6 (also called "162P1E6 v.6") is shown in Figure 2F. The codon for the start methionine is underlined. The open reading frame extends from nucleic 8 acid 388-600 including the stop codon. The cDNA (SEQ ID. NO. :14) and amino acid sequence (SEQ ID. NO. :15) of 162Pl1E6 variant 7 (also called "I 62P I E6 v.7") is shown in Figure 2G. Thc codon for thc start methionine is underlined. The open reading frame extends from nuclcic acid 480-788 including the stop codon. The cDNA (SEQ ID. NO. :16) and amino acid sequence (SEQ ID. NO. :17) of 162PIE6 variant 8 (also called "I62PI E6 v.8") is 5 shown in Figure 211. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 480-692 including the stop codon. The cDNA (SEQ ID. NO. :18) and amino acid sequence (SEQ ID. NO. :19) of 162PIE6 variant 9 (also called "1621PIE6 v.9") is shown in Figure 21. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 1535-1975 including the stop codon. The cDNA (SEQ I). NO. :20) and amino acid sequence (SEQ ID. NO. :21) of 162P1E6 variant 10 (also called 10 "I62PI E6 v.10") is shown in Figure 2J. The codon for the start mnethionine is underlined. The open reading frame extends from nucleic acid 1535-1975 including the stop codon. The cDNA (SEQ ID. NO. :22) and amino acid sequence (SEQ ID. NO. :23) of I62P E6 variant I I (also called "I62P I E6 v.I I") is shown in Figure 2K. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ ID. NO. :24) and amino acid sequence (SEQ ID. NO. :25) of 1621l 6 variant 12 15 (also called "I62PIE6 v.12") is shown in Figure 21 The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ I). NO. :26) and amino acid sequence (SEQ I D. NO. :27) of 162PI E6 variant 13 (also called "162P1 E6 v.13") is shown in Figure 2M. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ ID. NO. :28) arid amino acid sequence (SEQ ID. NO. :29) of 162PI E6 20 variant 14 (also called "1621l E6 v.14") is shown in Figure 2N. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ I). NO. :30) and amino acid sequence (SEQ ID. No. :31) of 162PI E6 variant 15 (also called "162P IE6 v.15") is shown in Figure 20. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ ID. NO. :32) and atnino acid sequence (SEQ ID. NO. :33) of 25 162PIE6 variant 16 (also called "1621IE6 v.16") is shown in Figure 21'. The codon for tie start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ ID. NO. :34) arid amino acid sequence (SEQ ID. NO. :35) of 1621'1E6 variant 17 (also called "162PE6 v.17") is shown inl Figure 2Q. The codon for the start niethionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ ID. NO. :36) arid amino acid sequence 30 (SEQ ID. NO. :37) of 162P1E6 variant I8 (also called "162P11E6 v.18") is shown in Figure 2R. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. The cDNA (SEQ I). NO. :38) and amino acid sequence (SEQ ID. NO. :39) of 162PI E6 variant 19 (also called "I62P IE6 v.19") is shown in Figure 2S. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including tihe stop codon. The cDNA (SEQ ID. NO. :40) and amino acid 35 sequence (SEQ ID. NO. :41) of 162PIE6 variant 20 (also called "I62PIE6 v.20") is shown in Figure 2T. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 9 including the stop codon. The cDNA (SEQ ID. NO. :42) and amino acid sequence (SEQ ID. NO. :43) of 162P1 E6 variant 21 (also called "I62P IE6 v.21") is shown in Figure 2U. The codon for the start methionine is underlined. The open reading frame extends from nucleic acid 2550-2990 including the stop codon. As used herein, a reference to 162P1 E6 includes all variants thereof, including those shown in Figures 10 and 12. 5 Figure 3. The amino acid sequence of 162P] E6 v.I (SEQ ID. NO. :3) is shown in Figure 3A; it has 146 amino acids. The amino acid sequence of 162P1E6 v.3 (SEQ ID. NO. :7) is shown in Figure 3B; it has 133 amino acids. The amino acid sequence of 162PIE6 v.4 (SEQ ID. NO. :9) is shown in Figure 3C; it has 102 amino acids. The amino acid sequence of 162P1E6 v.5 (SEQ ID. NO. :11) is shown in Figure 3D; it has 76 amino acids. The amino acid sequence of 162PlE6 v.6 (SEQ ID. NO. :13) is shown in Figure 3E; it has 70 amino acids. The amino acid 10 sequence of 162PIE6 v.18 (SEQ ID. NO. :37) is shown in Figure 3F; it has 146 amino acids. As used herein, a reference to 162P IE6 includes all variants thereof, including those shown in Figure 11. Figure 4. The nucleic acid sequence alignment of nucleotides 1345-3204 of 162PIE6 v.1 (SEQ ID NO: 2) with hypothetical gene XP_036612 (AK002208) (SEQ ID NO: 44) is shown in Figure 4A. The amino acid sequence alignment of 162P1E6 v.1 (SEQ ID NO: 3) with hypothetical gene XP_036612 (AK002208) (SEQ ID NO: 45) is 15 shown in Figure 4B. The amino acid sequence alignment of nucleotides 51-121 of 162P1E6 v.1 (SEQ ID NO: 3) with putative Man7GlcNAc2-PP-dolichyl mannosyltransferase (SEQ ID NO: 46) is shown in Figure 4C. The amino acid sequence alignment of nucleotides 45-80 of 162P1 E6 v.I (SEQ ID NO: 3) with estrogen receptor beta2 splice variant (SEQ ID NO: 47) is shown in Figure 4D. The amino acid sequence alignment of nucleotides 54-132 of 162P1E6 v.3 (SEQ ID NO: 7) with Alu subfamily (SEQ ID NO: 48) is shown in Figure 4E. The amino acid 20 sequence alignment of nucleotides 59-128 of 162P IE6 v.3 (SEQ ID NO: 7) with Zinc finger protein (SEQ ID NO: 49) is shown in Figure 4F. The amino acid sequence alignemnt of nucleotides 31-63 of 162P1 E6 v.4 (SEQ ID NO: 9) with Interleukin I beta (SEQ ID NO: 50) is shown in Figure 4G. Figure 5. Hydrophilicity amino acid profile of A) 162P1 E6 variant I, B) 162PI E6 variant 3, C) 162P1E6 variant 4, D) 162P1E6 variant 5 and E) 162P1 E6 variant 6, determined by computer algorithm sequence analysis using the 25 method of Hopp and Woods (Hopp T.P., Woods K.R., 1981. Proc. NatI. Acad. Sci. U.S.A. 78:3824-3828) accessed on the Protscale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server. Figure 6. Hydropathicity amino acid profile of A) 162P I E6 variant 1, B) 162P] E6 variant 3, C) 162PI E6 variant 4, D) 162PI E6 variant 5 and E) 162P1 E6 variant 6, determined by computer algorithm sequence analysis using the method of Kyte and Doolittle (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132) accessed on the ProtScale 30 website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server. Figure 7. Percent accessible residues amino acid profile of A) 162PIE6 variant 1, B) 162P1E6 variant 3, C) 162P1E6 variant 4, D) 162P1E6 variant 5 and E) 162PlE6 variant 6, determined by computer algorithm sequence analysis using the method of Janin (Janin J., 1979 Nature 277:491-492) accessed on the ProtScale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server. 35 Figure 8. Average flexibility amino acid profile of A) 162PIE6 variant 1, B) 162P1E6 variant 3, C) 162PIE6 variant 4, D) 162PIE6 variant 5 and E) 162PIE6 variant 6, determined by computer algorithm sequence analysis 10 using the method of Bhaskaran and Ponnuswamy (Bhaskaran K., and Ponnuswamy P.K., 1988. It. J. Pept. Protein Res. 32:242-255) accessed on the ProtScale website (www.expasy.ch/cgi-bin/protscale.pl) through the ExPasy molecular biology server. Figure 9. Beta-turn amino acid profile of A) 162P E F6 variant 1, B) 1 62P1 I6 variant 3, C) 162Pt .E6 variant 4, D) 5 162PIE6 variant 5 and E) 162PIE6 variant 6, determined by computer algorithm sequence analysis using the method of Deleage and Roux (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294) accessed on the ProtScale website (www.expasy.ch/cgi-bin/protscale.p1) through the ExPasy molecular biology server. Figure 10. Schematic alignment of Single Nucleotide Polymorphism (SNP) variants of 1621P I E6. Variants 162PI 16 v.12 through v.21 are variants with single nucleotide differences. Though these SNIP variants arc shown separately 10 on the template of 1621P1 E6 v.2, they could also occur in any combinations and in any one of the transcript variants that contains the base pairs. Numbers correspond to those of* 1621' E6 v.2. Black box shows the same sequence as 162P E6 v.2. SNPs are indicated above the box. Figure 11. Schematic alignment of protein variants of' 162P I E6. Nucleotide variants 162PI E6 v.t, v.2, v.9, v. 10 and v. It in Figure 12 code for the same protein 1621)] E6 v.. Variants 1621P 16 v.4 and v.7 code the same protein 15 162PIE6 v.4. Variant 162P1E6 v.6 and v.8 each code for the same protein 162P E6 v.6. SNP variant 1621P 1E6 v.18 codes the same protein as variant 16211 E6 v.I except for one amino acid. All other SNP1 variants in Figure 10 code for the same protein as 162P I E6 v.1. Boxes with the same fill pattern represent the sane sequence. Variant 162PI E6 v.4 and v.5 share the N-terminal 37 amino acids. Single amino acid differences are indicated above the box. 20 Figure 12. Schematic alignment of transcript variants of 162PI E6. Variant 162Pl E6 v.2 is an alternative transcript. Variants I 62P I E6 v.3 through v.1 I are splice variants of transcript 1621P1 E6. Not all splice variants are shown here Transcript 162PIE6 v.1 may also have similar splicing pattern for the corresponding exons. Numbers in "( )" underneath the box correspond to those of 162'11136 v.2. Boxes with the sane fill pattern represent the same sequence. 25 Figure 13. Secondary structure prediction for 162P1E6. The secondary structure of A) 1621 1E6 variant I (SEQ If) NO: 68), B) 162P1E6 variant 3 (SEQ ID NO. 69), C) 162Pl' E6 variant 4 (SEQ ID NO: 70), D) 162111E6 variant (SEQ ID NO: 71) and E) 162P1E6 variant 6 (SEQ ID NO: 72) was predicted using the IINN - Hierarchical Neural Network method (Guermeur, 1997, http://pbil.ibcp.fr/cgi-bin/npsaautomat.pl'page=npsa_tnn.htmiii), accessed from the PxPasy molecular biology server (http://www.expasy.ch/tools/). This method predicts the presence and location 30 of alpha helices, extended strands, and random coils from the primary protein sequence. The percent of the protein in a given secondary structure is also listed. Figure 14. Expression of 162PIE6 by RT-PCR. First strand cDNA was prepared from 1) vital pool I (liver, lung and kidney), 2) vital pool 2 (pancreas, colon and stomach), 3) LAPC xenogral pool (LAIC-4AD, LAIPC-4Al, LAPC-9AD and LAIC-9AI), 4) prostate cancer pool, 5) bladder cancer pool, 6) lung cancer pool, 7) breast cancer 35 pool, and 8) cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 162P I E6, was performed at 26 and 30 cycles of amplification. Results I I show strong expression of 162PI E6 in bladder cancer pool, lung cancer pool, and breast cancer pool. Expression was also detected in prostate cancer pool and cancer metastasis pool, but not in the vital pools. Figure 15. Expression of 162P IE6 in normal tissues. Two multiple tissue northern blots (Clontech) with 2 ug of mRNA/lane were probed with the 162P1E6 SSH fragment. Size standards in kilobases (kb) are indicated on the 5 side. Results show expression of two approximately 4.4 kbl 62PI E6 transcripts in placenta, prostate and thymus. Figure 16. Expression of 162PIE6 in bladder cancer patient specimens. RNA was extracted from normal bladder (Nb), bladder cancer cell lines (CL: UM-UC-3, J82 and SCaBER), bladder cancer patient tumors (T) and normal tissue adjacent to bladder cancer (N). Northern blots with 10 ug of total RNA were probed with the 162PIE6 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of I62P I E6 in the 10 bladder tumor tissues and in the SCaBER cancer cell line, but not in normal bladder, nor in the other cancer cell lines J82 and UM-UC-3. Figure 17. Expression of 162P1E6 in prostate cancer patient specimens. RNA was extracted from LAPC-4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI prostate cancer xenografts, normal prostate (N), prostate cancer patient tumors (T) and their normal adjacent tissues (NAT). Northern blot with 10 pg of total RNA/lane was probed with 15 162P1E6 SSH sequence. Size standards in kilobases (kb) are indicated on the side. The results show strong expression of 162P I E6 in normal prostate and in patient prostate cancer specimens. Weak expression was detected in the LAPC-4AD tissue, but not in the other prostate cancer xenografts. Figure 18. Expression of 162PIE6 in kidney cancer patient tissues. RNA was extracted from kidney cancer cell lines (769-P, A498, SW839), normal kidney (N), kidney cancer patient tumors (T) and their normal adjacent tissues 20 (NAT). Northern blots with 10 ug of total RNA were probed with the 162PIE6 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 162PIE6 in 2 out of 2 papillary kidney tumor tissues but not in specimens of clear cell carcinoma, normal kidney nor in the kidney cancer cell lines. Figure 19. Expression of 162P IE6 in lung cancer patient tissues. RNA was extracted from lung cancer cell lines (CALU-l, A427, NCI-H82, NCI-H146), normal lung (N), lung cancer patient tumors (T) and normal adjacent tissues 25 (NAT) isolated from lung cancer patients. Northern blots with 10 ug of total RNA were probed with the 162P I E6 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 162PI E6 in the all lung tumor tissues tested, but not in normal lung nor in the lung cancer cell lines. Figure 20. Expression of 162P I E6 in breast cancer patient tissues. RNA was extracted from breast cancer cell lines (DU4475, MCF7 and CAMA-1), normal breast (N), breast cancer patient tumors (T) and breast cancer metastasis to 30 lymph node (M1), and to ovary (M2). Northern blots with 10 ug of total RNA were probed with the 162PIE6 SSH fragment. Size standards in kilobases are indicated on the side. Results show expression of 162PIE6 in normal breast, breast tumor tissues as well as in the cancer metastasis specimens, but not in the breast cancer cell lines tested. Figure 21. 162PlE6 Expression in 293T Cells Following Transfection. 293T cells were transfected with either 35 162PIE6 .pcDNA3.1/mychis cones D7, D8, D9, DIO (A) or 162PIE6.pTag5 vector (B). Forty hours later, cell lysates were collected. Samples were run on an SDS-PAGE acrylamide gel, blotted and stained with anti-his ]]A antibody. The blot was developed using the ECL chemiluminescence kit and visualized by autoradiography. Results show expression of 162PI E6 from the 4 different clone transfections of 162P1 E6 .pcDNA3. I/mychis vector. and from the 2 different clone transfections of I62P E6.pTag5 vector. 5 DETAILED DESCRIPTION OF THE INVENTION Outline of Sections I.) Definitions 11.) 162PI E6 Polynucleotides IL.A.) Uses of' 162P1 E6 Polynucleotides 10 1 .A. I.) Monitoring of Genetic Abnormalities II.A.2.) Antisense Embodiments 1l.A.3.) Primers and Primer Pairs hi.A.4.) Isolation of t62P1 E6-Encoding Nucleic Acid Molecules II.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems 15 Ill.) 162Pt E6-related Proteins Im.A.) Motif-bearing Protein Embodiments III.B.) Expression of 162P1E6-related Proteins III.C.) Modifications of 162P1E6-related Proteins Im.D.) Uses of 162P1E6-related Proteins IV.) 162P1E6 Antibodies V.) 162P1E6 Cellular Immune Responses VI.) 162P1E6 Transgenic Animals VII.) Methods for the Detection of 162P1E6 VIII.) Methods for Monitoring the Status of 162P1E6-related Genes and Their Products IX.)Identification of Molecules That Interact With 162P1E6 X.) Therapeutic Methods and Compositions X.A.) Anti-Cancer Vaccines X.B.) 162P1E6 as a Target for Antibody-Based Therapy X.C.) 162P1E6 as a Target for Cellular Immune Responses X.C.1. Minigene Vaccines X.C.2. Combinations of CTL Peptides with Helper Peptides X.C.3. Combinations of CTL Peptides with T Cell Priming Agents X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides X.D.) Adoptive Immunotherapy X.E.) Administration of Vaccines for Therapeutic or Prophylactic Purposes XI.)Diagnostic and Prognostic Embodiments of 162P1E6. XII.) Inhibition of 162P1E6 Protein Function XI.A.) Inhibition of 162P1E6 With Intracellular Antibodies Xfl.B.) Inhibition of 162P1E6 with Recombinant Proteins XII.C.) Inhibition of 162P1E6 Transcription or Translation XL.D.) General Considerations for Therapeutic Strategies Xm.) KITS I.) Definitions: Unless otherwise defined, all terms of art, notations and other scientific terms or terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a substantial difference over what is generally understood in the art. Many of the techniques and procedures described or referenced herein are well understood and commonly employed using conventional methodology by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook et aL., Molecular Cloning: A Laboratory Manual 2nd. edition (1989) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer defined protocols and/or parameters unless otherwise noted. 12 The terms "advanced prostate cancer", "locally advanced prostate cancer", "advanced disease" and "locally advanced disease" mean prostate cancers that have extended through the prostate capsule, and are meant to include stage C disease under the American Urological Association (AUA) system, stage Cl - C2 disease under the Whitmore-Jewett system, and stage T3 - T4 and N+ disease under the TNM (tumor, node, metastasis) system. In general, surgery is not recommended for patients with locally advanced disease, and these patients have substantially less favorable outcomes compared to patients having clinically localized (organ-confined) prostate cancer. Locally advanced disease is clinically identified by palpable evidence of induration beyond the lateral border of the prostate, or asymmetry or induration above the prostate base. Locally advanced prostate cancer is presently diagnosed pathologically following radical prostatectomy if the tumor invades or penetrates the prostatic capsule, extends into the surgical margin, or invades the seminal vesicles. "Altering the native glycosylation pattern" is intended for purposes herein to mean deleting one or more carbohydrate moieties found in native sequence 162P 1 E6 (either by removing the underlying glycosylation site or by deleting the glycosylation by chemical and/or enzymatic means), and/or adding one or more glycosylation sites that are not present in the native sequence 162P1E6. In addition, the phrase includes qualitative changes in the glycosylation of the native proteins, involving a change in the nature and proportions of the various carbohydrate moieties present. The term "analog" refers to a molecule which is structurally similar or shares similar or corresponding attributes with another molecule (e.g. a 162P1 E6-related protein). For example an analog of a 162P1E6 protein can be specifically bound by an antibody or T cell that specifically binds to 162P1E6. The term "antibody" is used in the broadest sense. Therefore an "antibody" can be naturally occurring or man-made such as monoclonal antibodies produced by conventional hybridoma technology. Anti-162P1E6 antibodies comprise monoclonal and polyclonal antibodies as well as fragments containing the antigen-binding domain and/or one or more complementarity determining regions of these antibodies. An "antibody fragment" is defined as at least a portion of the variable region of the immunoglobulin molecule that binds to its target, i.e., the antigen-binding region. In one embodiment it specifically covers single anti-162PIE6 antibodies and clones thereof (including agonist, antagonist and neutralizing antibodies) and anti-162P1 E6 antibody compositions with polyepitopic specificity. The term "codon optimized sequences" refers to nucleotide sequences that have been optimized for a particular host species by replacing any codons having a usage frequency of less than about 20%. Nucleotide sequences that have been optimized for expression in a given host species by elimination of spurious polyadenylation sequences, elimination of exon/intron splicing signals, elimination of transposon-like repeats and/or optimization of GC content in addition to codon optimization are referred to herein as an "expression enhanced sequences." The term "cytotoxic agent" refers to a substance that inhibits or prevents the expression activity of cells, function of cells and/or causes destruction of cells. The term is intended to include radioactive isotopes chemotherapeutic agents, and toxins such as small molecule toxins or enzymatically active toxins of bacterial, fungal, plant or animal origin, including fragments and/or variants thereof. Examples of cytotoxic agents include, but are not limited to maytansinoids, yttrium, bismuth, ricin, ricin A-chain, doxorubicin, daunorubicin, taxol, ethidium bromide, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicine, 13 dihydroxy anthracin dine, actinomycin, diphtheria toxin, Pseudomonas exotoxin (PE) A, PE40, abrin, abrin A chain, modeccin A chain, alpha-sarcin, gelonin, mitogellin, retstrictocin, phenomycin, enomycin, curicin, crotin, calicheamicin, sapaonaria officinalis inhibitor, and glucocorticoid and other chemotherapeutic agents, as well as radioisotopes such as At2", 31, J12, Y9, Re' 86 , Re'", Sm" 3 , Bi 212 , p 32 and radioactive isotopes of Lu. Antibodies may also be conjugated to an anti-cancer pro-drug activating enzyme capable of converting the pro-drug to its active form. The term "homolog" refers to a molecule which exhibits homology to another molecule, by for example, having sequences of chemical residues that are the same or similar at corresponding positions. "Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., IMMUNOLoGY, 8" ED., Lange Publishing, Los Altos, CA (1994). The terms "hybridize", "hybridizing", "hybridizes" and the like, used in the context of polynucleotides, are meant to refer to conventional hybridization conditions, preferably such as hybridization in 50% formamide/6XSSC/0. 1% SDS/100 pg/ml ssDNA, in which temperatures for hybridization are above 37 degrees C and temperatures for washing in 0.1XSSC/O.1% SDS are above 55 degrees C. The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their in situ environment. For example, a polynucleotide is said to be "isolated" when it is substantially separated from contaminant polynucleotides that correspond or are complementary to genes other than the 162PIE6 genes or that encode polypeptides other than 162P1E6 gene product or fragments thereof. A skilled artisan can readily employ nucleic acid isolation procedures to obtain an isolated 162PIE6 polynucleotide. A protein is said to be "isolated," for example, when physical, mechanical or chemical methods are employed to remove the 162P 1E6 proteins from cellular constituents that are normally associated with the protein. A skilled artisan can readily employ standard purification methods to obtain an isolated 162P1E6 protein. Alternatively, an isolated protein can be prepared by chemical means. The term "mammal" refers to any organism classified as a mammal, including mice, rats, rabbits, dogs, cats, cows, horses and humans. In one embodiment of the invention, the mammal is a mouse. In another embodiment of the invention, the mammal is a human. The terms "metastatic prostate cancer" and "metastatic disease" mean prostate cancers that have spread to regional lymph nodes or to distant sites, and are meant to include stage D disease under the AUA system and stage TxNxM+ under the TNM system. As is the case with locally advanced prostate cancer, surgery is generally not indicated for patients with metastatic disease, and hormonal (androgen ablation) therapy is a preferred treatment modality. Patients with metastatic prostate cancer eventually develop an androgen-refractory state within 12 to 18 months of treatment initiation. Approximately half of these androgen-refractory patients die within 6 months after developing that status. The most common site for prostate cancer metastasis is bone. Prostate cancer bone metastases are often osteoblastic rather than osteolytic (i.e., resulting in net bone formation). Bone metastases are found most frequently in the spine, followed by the femur, pelvis, rib cage, skull and humerus. Other common sites for metastasis include lymph 14 nodes, lung, liver and brain. Metastatic prostate cancer is typically diagnosed by open or laparoscopic pelvic lymphadenectomy, whole body radionuclide scans, skeletal radiography, and/or bone lesion biopsy. The term "monoclonal antibody" refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the antibodies comprising the population are identical except for possible naturally occurring mutations that are present in minor amounts. A "motif', as in biological motif of a 162P1E6-related protein, refers to any pattern of amino acids forming part of the primary sequence of a protein, that is associated with a particular function (e.g. protein protein interaction, protein-DNA interaction, etc) or modification (e.g. that is phosphorylated, glycosylated or amidated), or localization (e.g. secretory sequence, nuclear localization sequence, etc.) or a sequence that is correlated with being immunogenic, either humorally or cellularly. A motif can be either contiguous or capable of being aligned to certain positions that are generally correlated with a certain function or property. In the context of HLA motifs, "motif refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs for HLA binding are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues. A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like. "Pharmaceutically acceptable" refers to a non-toxic, inert, and/or composition that is physiologically compatible with humans or other mammals. The term "polynucleotide" means a polymeric form of nucleotides of at least 10 bases or base pairs in length, either ribonucleotides or deoxynucleotides or a modified form of either type of nucleotide, and is meant to include single and double stranded forms of DNA and/or RNA. In the art, this term if often used interchangeably with "oligonucleotide". A polynucleotide can comprise a nucleotide sequence disclosed herein wherein thymidine (T), as shown for example in Figure 2, can also be uracil (U); this definition pertains to the differences between the chemical structures of DNA and RNA, in particular the observation that one of the four major bases in RNA is uracil (U) instead of thyrmidine (T). The term "polypeptide" means a polymer of at least about 4, 5, 6, 7, or 8 amino acids. Throughout the specification, standard three letter or single letter designations for amino acids are used. In the art, this term is often used interchangeably with "peptide" or "protein". An HLA "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif' for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding groove of an HLA molecule, with their side chains buried in specific pockets of the binding groove. In one embodiment, for example, the primary anchor residues for an HLA class I molecule are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 8, 9, 10, 11, or 12 residue peptide epitope in accordance with the invention. In another embodiment, for example, the primary anchor residues of a peptide that will bind an HLA class II molecule are spaced relative to each other, rather than to the termini of a peptide, where the peptide is generally of at least 9 amino acids in length. The 15 primary anchor positions for each motif and supermotif are set forth in Table IV. For example, analog peptides can be created by altering the presence or absence of particular residues in the primary and/or secondary anchor positions shown in Table IV. Such analogs are used to modulate the binding affinity and/or population coverage of a peptide comprising a particular HLA motif or supermotif. A "recombinant" DNA or RNA molecule is a DNA or RNA molecule that has been subjected to molecular manipulation in vitro. Non-limiting examples of small molecules include compounds that bind or interact with 162P1E6, ligands including hormones, neuropeptides, chemokines, odorants, phospholipids, and functional equivalents thereof that bind and preferably inhibit 162P1E6 protein function. Such non-limiting small molecules preferably have a molecular weight of less than about 10 kDa, more preferably below about 9, about 8, about 7, about 6, about 5 or about 4 kDa. In certain embodiments, small molecules physically associate with, or bind, 162P1E6 protein; are not found in naturally occurring metabolic pathways; and/or are more soluble in aqueous than non-aqueous solutions "Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperature, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured nucleic acid sequences to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature that can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995). "Stringent conditions" or "high stringency conditions", as defined herein, are identified by, but not limited to, those that: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50*C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50 mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42 *C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 pg/ml), 0.1% SDS, and 10% dextran sulfate at 42 *C, with washes at 42*C in 0.2 x SSC (sodium chloride/sodium. citrate) and 50% fornamide at 55 *C, followed by a high stringency wash consisting of 0.1 x SSC containing EDTA at 55 *C. "Moderately stringent conditions" are described by, but not limited to, those in Sambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions (e.g., temperature, ionic strength and %SDS) less stringent than those described above. An example of moderately stringent conditions is overnight incubation at 37 0 C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCi, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardts solution, 10% dextran sulfate, and 20 mg/mL denatured sheared salmon sperm DNA, followed by washing the filters in 16 I x SSC at about 37-50C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like. An HLA "supermotif' is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. As used herein "to treat" or "therapeutic" and grammatically related terms, refer to any improvement of any consequence of disease, such as prolonged survival, less morbidity, and/or a lessening of side effects which are the byproducts of an alternative therapeutic modality; full eradication of disease is not required. A "transgenic animal" (e.g., a mouse or rat) is an animal having cells that contain a transgene, which transgene was introduced into the animal or an ancestor of the animal at a prenatal, e.g., an embryonic stage. A "transgene" is a DNA that is integrated into the genome of a cell from which a transgenic animal develops. As used herein, an HLA or cellular immune response "vaccine" is a composition that contains or encodes one or more peptides of the invention. There are numerous embodiments of such vaccines, such as a cocktail of one or more individual peptides; one or more peptides of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such individual peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit integer from I 150 or more, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I peptides of the invention can be admixed with, or linked to, HLA class II peptides, to facilitate activation of both cytotoxic T lymphocytes and helper T lymphocytes. HLA vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells. The term "variant" refers to a molecule that exhibits a variation from a described type or norm, such as a protein that has one or more different amino acid residues in the corresponding position(s) of a specifically described protein (e.g. the 162P1E6 protein shown in Figure 2 or Figure 3. An analog is an example of a variant protein. Splice isoforms and single nucleotides polymorphisms (SNPs) are further examples of variants. The "162PIE6-related proteins" of the invention include those specifically identified herein, as well as allelic variants, conservative substitution variants, analogs and homologs that can be isolated/generated and characterized without undue experimentation following the methods outlined herein or readily available in the art. Fusion proteins that combine parts of different 162P1E6 proteins or fragments thereof, as well as fusion proteins of a 162P1E6 protein and a heterologous polypeptide are also included. Such 162P1E6 proteins are collectively referred to as the 162P1E6-related proteins, the proteins of the invention, or 162P1E6. The term "162P1E6 related protein" refers to a polypeptide fragment or a I 62P 1E6 protein sequence of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25, or more than 25 amino acids; or, at least 30, 35, 40, 45, 50, 55, 60, 65, 70, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 146 or more amino acids. II.) 162P1E6 Polynucleotides One aspect of the invention provides polynucleotides corresponding or complementary to all or part of a 162P 1E6 gene, mRNA, and/or coding sequence, preferably in isolated form, including polynucleotides encoding a 162P1E6-related protein and fragments thereof, DNA, RNA, DNA/RNA hybrid, and related 17 molecules, polynucleotides or oligonucleotides complementary to a 162PIE6 gene or mRNA sequence or a part thereof, and polynucleotides or oligonucleotides that hybridize to a 162P1E6 gene, mRNA, or to a 162PIE6 encoding polynucleotide (collectively, "162P1E6 polynucleotides"). In all instances when referred to in this section, T can also be U in Figure 2. Embodiments of a 162PIE6 polynucleotide include: a 162PIE6 polynucleotide having the sequence shown in Figure 2, the nucleotide sequence of 162PIE6 as shown in Figure 2 wherein T is U; at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2; or, at least 10 contiguous nucleotides of a polynucleotide having the sequence as shown in Figure 2 where T is U. For example, embodiments of 162P1E6 nucleotides comprise, without limitation: (1) a polynucleotide comprising, consisting essentially of, or consisting of a sequence as shown in Figure 2 (SEQ ID NO: ), wherein T can also be U; (II) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2A (SEQ ID NO: _ , from nucleotide residue number 2028 through nucleotide residue number 2468, including the stop codon, wherein T can also be U; (III)a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2B (SEQ ID NO: _ , from nucleotide residue number 2550 through nucleotide residue number 2990, including the stop codon, wherein T can also be U; (IV)a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2C (SEQ ID NO: __), from nucleotide residue number 3 through nucleotide residue number 404, including the a stop codon, wherein T can also be U; (V) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2D (SEQ ID NO: __), from nucleotide residue number 388 through nucleotide residue number 696, including the stop codon, wherein T can also be U; (VI)a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2E (SEQ ID NO: ___), from nucleotide residue number 388 through nucleotide residue number 618, including the stop codon, wherein T can also be U; (VII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2F (SEQ ID NO: ), from nucleotide residue number 388 through nucleotide residue number 600, including the stop codon, wherein T can also be U; (VIII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2G (SEQ ID NO: _ , from nucleotide residue number 480 through nucleotide residue number 788, including the stop codon, wherein T can also be U; 18 (IX)a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2H (SEQ ID NO: ), from nucleotide residue number 480 through nucleotide residue number 692, including the stop codon, wherein T can also be U; (X) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 21 (SEQ ID NO: __), from nucleotide residue number 1535 through nucleotide residue number 1975, including the stop codon, wherein T can also be U; (XI)a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figure 2J (SEQ ID NO: ), from nucleotide residue number 1535 through nucleotide residue number 1975, including the stop codon, wherein T can also be U; (XII) a polynucleotide comprising, consisting essentially of, or consisting of the sequence as shown in Figures 2K through 2U (SEQ ID NOs: _), from nucleotide residue number 2550 through nucleotide residue number 2990, including the stop codon, wherein T can also be U; (XII) a polynucleotide that encodes a 162P 1E6-related protein that is at least 90% homologous to an entire amino acid sequence shown in Figures 2A-U (SEQ ID NO: ___); (XIV) a polynucleotide that encodes a 162P1E6-related protein that is at least 90% identical to an entire amino acid sequence shown in Figures 2A-U (SEQ ID NO: J; (XV) a polynucleotide that encodes at least one peptide set forth in Tables V-XVIII and XXII-LI; (XVI) a polynucleotide that encodes a peptide region of at least 5 amino acids of a peptide of Figure 3A in any whole number increment up to 146 that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profile of Figure 5A; or of Figure 3B in any whole number increment up to 133 that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profile of Figure 5B; or of Figure 3C in any whole number increment up to 102 that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profile of Figure SC; or of Figure 3D in any whole number increment up to 76 that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profile of Figure 5D; or of Figure 3E in any whole number increment up to 70 that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profile of Figure SE; (XVII) a polynucleotide that encodes a peptide region of at least 5 amino acids of a peptide of Figure 3A in any whole number increment up to 146 that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figure 6A; or of Figure 3B in any whole number increment up to 133 that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figure 6B; or of Figure 3C in any whole number increment up to 102 that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figure 6C; or of Figure 3D in any whole number increment up to 76 that includes an amino acid position 19 having a value less than 0.5 in the Hydropathicity profile of Figure 6D; or of Figure 3E in any whole number increment up to 70 that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figure 6E; (XVIII) a polynucleotide that encodes a peptide region of at least 5 amino acids of a peptide of Figure 3A in any whole number increment up to 146 that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7A; or of Figure 3B in any whole number increment up to 133 that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7B; or of Figure 3C in any whole number increment up to 102 that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7C; or of Figure 3D in any whole number increment up to 76 that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7D; or of Figure 3E in any whole number increment up to 70 that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profile of Figure 7E; (XIX) a polynucleotide that encodes a peptide region of at least 5 amino acids of a peptide of Figure 3A in any whole number increment up to 146 that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profile of Figure 8A; or of Figure 3B in any whole number increment up to 133 that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profile of Figure 8B; or of Figure 3C in any whole number increment up to 102 that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profile of Figure8C; or of Figure 3D in any whole number increment up to 76 that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profile of Figure 8D; or of Figure 3E in any whole number increment up to 70 that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profile of Figure 8B; (XX) a polynucleotide that encodes a peptide region of at least 5 amino acids of a peptide of Figure 3A in any whole number increment up to 146 that includes an amino acid position having a value greater than 0.5 in the Beta-turn profile of Figure 9A; or of Figure 3B in any whole number increment up to 133 that includes an amino acid position having a value greater than 0.5 in the Beta turn profile of Figure 9B; or of Figure 3C in any whole number increment up to 102 that includes an amino acid position having a value greater than 0.5 in the Beta-turn profile of Figure 9C; or of Figure 3D in any whole number increment up to 76 that includes an amino acid position having a value greater than 0.5 in the Beta-turn profile of Figure 9D; or of Figure 3E in any whole number increment up to 70 that includes an amino acid position having a value greater than 0.5 in the Beta turn profile of Figure 9E; (XXI) a polynucleotide that encodes a 162PlE6-related protein whose sequence is encoded by the cDNAs contained in the plasmid deposited with American Type Culture Collection (ATCC) on March 28, 2002 as Accession No. 20 (XXII) a polynucleotide that is fully complementary to a polynucleotide of any one of (I)-(XXI). (XXIII) a peptide that is encoded by any of (I)-(XXII); and (XXIV) a polynucleotide of any of (I)-(XXI) or peptide of (XXIII) together with a pharmaceutical excipient and/or in a human unit dose form. As used herein, a range is understood to specifically disclose all whole unit positions thereof. Typical embodiments of the invention disclosed herein include 162P1E6 polynucleotides that encode specific portions of 162P1E6 mRNA sequences (and those which are complementary to such sequences) such as those that encode the proteins and/or fragments thereof, for example: (a) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,15, 16, 17, 18, 19, 20, 21, 22, 23,24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 146 or more contiguous amino acids of 162P1E6. (b) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, or 133 or more contiguous amino acids of 162P1E6 variant 3. (c) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, or 102 contiguous amino acids of 162P1E6 variant 4; (d) 4, 5, 6, 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, or 76 contiguous amino acids of 162P1E6 variant 5; or (e) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, or 70 contiguous amino acids of 162P1E6 variant 6. (f) 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 146 or more contiguous amino acids of 162P1E6 variant 18. For example, representative embodiments of the invention disclosed herein include: polynucleotides and their encoded peptides themselves encoding about amino acid 1 to about amino acid 10 of the 162P1E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 10 to about amino acid 20 of the 162P1E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 20 to about amino acid 30 of the 162P I E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 30 to about amino acid 40 of the 162P1E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 40 to about amino acid 50 of the 162P1E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 50 to about amino acid 60 of the 162P1E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 60 to about amino acid 70 of the 162P1E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 70 to about amino acid 80 of the 162P1E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 80 to about amino acid 90 of the 162P 1 E6 protein shown in Figure 2 or Figure 3, polynucleotides encoding about amino acid 90 to about amino acid 100 of the 162P1E6 protein shown in Figure 2 or Figure 3, in increments of about 10 amino acids, ending at the carboxyl terminal amino acid set forth in Figure 2 or Figure 3. Accordingly 21 polynucleotides encoding portions of the amino acid sequence (of about 10 amino acids), of amino acids 100 through the carboxyl terminal amino acid of the 162PIE6 protein are embodiments of the invention. Wherein it is understood that each particular amino acid position discloses that position plus or minus five amino acid residues. Polynucleotides encoding relatively long portions of a 162P1E6 protein are also within the scope of the invention. For example, polynucleotides encoding from about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 30, or 40 or 50 etc.) of the 162PIE6 protein "or variant" shown in Figure 2 or Figure 3 can be generated by a variety of techniques well known in the art. These polynucleotide fragments can include any portion of the 162P1E6 sequence as shown in Figure 2. Additional illustrative embodiments of the invention disclosed herein include 162P1E6 polynucleotide fragments encoding one or more of the biological motifs contained within a 162PIE6 protein "or variant" sequence, including one or more of the motif-bearing subsequences of a 162PI E6 protein "or variant" set forth in Tables V-XVIII and XXII-LI. In another embodiment, typical polynucleotide fragments of the invention encode one or more of the regions of 162PIE6 protein or variant that exhibit homology to a known molecule. In another embodiment of the invention, typical polynucleotide fragments can encode one or more of the 162P IE6 protein or variant N-glycosylation sites, cAMP and cGMP-dependent protein kinase phosphorylation sites, casein kinase II phosphorylation sites or N-myristoylation site and amidation sites. H.A.) Uses of 162P1E6 Polynucleotides H.A.1.) Monitoring of Genetic Abnormalities The polynucleotides of the preceding paragraphs have a number of different specific uses. The human 162P1E6 gene maps to the chromosomal location set forth in the Example entitled "Chromosomal Mapping of 162P1E6." For example, because the 162P1E6 gene maps to this chromosome, polynucleotides that encode different regions of the 162P1E6 proteins are used to characterize cytogenetic abnormalities of this chromosomal locale, such as abnormalities that are identified as being associated with various cancers. In certain genes, a variety of chromosomal abnormalities including rearrangements have been identified as frequent cytogenetic abnormalities in a number of different cancers (see e.g. Krajinovic et al., Mutat. Res. 382(3-4): 81-83 (1998); Johansson et al., Blood 86(10): 3905-3914 (1995) and Finger et aL, P.N.A.S. 85(23): 9158-9162 (1988)). Thus, polynucleotides encoding specific regions of the 162P1E6 proteins provide new tools that can be used to delineate, with greater precision than previously possible, cytogenetic abnormalities in the chromosomal region that encodes 162P1E6 that may contribute to the malignant phenotype. In this context, these polynucleotides satisfy a need in the art for expanding the sensitivity of chromosomal screening in order to identify more subtle and less common chromosomal abnormalities (see e.g. Evans et aL., Am. J. Obstet. Gynecol 171(4): 1055-1057 (1994)). Furthermore, as 162P1E6 was shown to be highly expressed in bladder and other cancers, 162P1E6 polynucleotides are used in methods assessing the status of 162PlE6 gene products in normal versus cancerous tissues. Typically, polynucleotides that encode specific regions of the 162P 1E6 proteins are used to assess the presence of perturbations (such as deletions, insertions, point mutations, or alterations resulting in a loss of an antigen etc.) in specific regions of the 162PIE6 gene, such as regions containing one or more motifs. Exemplary assays include both RT-PCR assays as well as single-strand conformation polymorphism 22 (SSCP) analysis (see, e.g., Marrogi et al., J. Cutan. Pathol. 26(8): 369-378 (1999), both of which utilize polynucleotides encoding specific regions of a protein to examine these regions within the protein. II.A.2.) Antisense Embodiments Other specifically contemplated nucleic acid related embodiments of the invention disclosed herein are genomic DNA, cDNAs, ribozymes, and antisense molecules, as well as nucleic acid molecules based on an alternative backbone, or including alternative bases, whether derived from natural sources or synthesized, and include molecules capable of inhibiting the RNA or protein expression of 162PIE6. For example, antisense molecules can be RNAs or other molecules, including peptide nucleic acids (PNAs) or non-nucleic acid molecules such as phosphorothioate derivatives, that specifically bind DNA or RNA in a base pair-dependent manner. A skilled artisan can readily obtain these classes of nucleic acid molecules using the 162P I E6 polynucleotides and polynucleotide sequences disclosed herein. Antisense technology entails the administration of exogenous oligonucleotides that bind to a target polynucleotide located within the cells. The term "antisense" refers to the fact that such oligonucleotides are complementary to their intracellular targets, e.g., 162P1E6. See for example, Jack Cohen, Oligodeoxynucleotides, Antisense Inhibitors of Gene Expression, CRC Press, 1989; and Synthesis 1:1-5 (1988). The 162PIE6 antisense oligonucleotides of the present invention include derivatives such as S oligonucleotides (phosphorothioate derivatives or S-oligos, see, Jack Cohen, supra), which exhibit enhanced cancer cell growth inhibitory action. S-oligos (nucleoside phosphorothioates) are isoelectronic analogs of an oligonucleotide (0-oligo) in which a nonbridging oxygen atom of the phosphate group is replaced by a sulfur atom. The S-oligos of the present invention can be prepared by treatment of the corresponding O-oligos with 3H-1,2-benzodithiol-3-one-1,1-dioxide, which is a sulfur transfer reagent. See, e.g., Iyer, R. P. et al., J. Org. Chem. 55:4693-4698 (1990); and Iyer, R. P. et al., J. Am. Chem. Soc. 112:1253-1254 (1990). Additional 162P1E6 antisense oligonucleotides of the present invention include morpholino antisense oligonucleotides known in the art (see, e.g., Partridge et aL., 1996, Antisense & Nucleic Acid Drug Development 6: 169-175). The 162P1E6 a'ntisense oligonucleotides of the present invention typically can be RNA or DNA that is complementary to and stably hybridizes with the first 100 5' codons or last 100 3' codons of a 162P1E6 genomic sequence or the corresponding mRNA. Absolute complementarity is not required, although high degrees of complementarity are preferred. Use of an oligonucleotide complementary to this region allows for the selective hybridization to 162P1E6 mRNA and not to mRNA specifying other regulatory subunits of protein kinase. In one embodiment, 162P 1E6 antisense oligonucleotides of the present invention are 15 to 30 mer fragments of the antisense DNA molecule that have a sequence that hybridizes to 162PIE6 mRNA. Optionally, 162P1E6 antisense oligonucleotide is a 30-mer oligonucleotide that is complementary to a region in the first 10 5' codons or last 10 3' codons of 162P1E6. Alternatively, the antisense molecules are modified to employ ribozymes in the inhibition of 162P1E6 expression, see, e.g., L. A. Couture & D. T. Stinchcomb; T-ends Genet 12: 510-515 (1996). II.A.3.) Primers and Primer Pairs Further specific embodiments of this nucleotides of the invention include primers and primer pairs, which allow the specific amplification of polynucleotides of the invention or of any specific parts thereof, and probes that selectively or specifically hybridize to nucleic acid molecules of the invention or to any part thereof. Probes can be labeled with a detectable marker, such as, for example, a radioisotope, fluorescent 23 compound, bioluminescent compound, a chemiluminescent compound, metal chelator or enzyme. Such probes and primers are used to detect the presence of a 162PIE6 polynucleotide in a sample and as a means for detecting a cell expressing a 162P1E6 protein. Examples of such probes include polypeptides comprising all or part of the human 162P1E6 cDNA sequence shown in Figure 2. Examples of primer pairs capable of specifically amplifying 162PIE6 mRNAs are also described in the Examples. As will be understood by the skilled artisan, a great many different primers and probes can be prepared based on the sequences provided herein and used effectively to amplify and/or detect a 162P1E6 mRNA. The 162P1E6 polynucleotides of the invention are useful for a variety of purposes, including but not limited to their use as probes and primers for the amplification and/or detection of the 162P 1E6 gene(s), mRNA(s), or fragments thereof; as reagents for the diagnosis and/or prognosis of prostate cancer and other cancers; as coding sequences capable of directing the expression of 162P1E6 polypeptides; as tools for modulating or inhibiting the expression of the 162PIE6 gene(s) and/or translation of the 162P IE6 transcript(s); and as therapeutic agents. The present invention includes the use of any probe as described herein to identify and isolate a 162PIE6 or 162PIE6 related nucleic acid sequence from a naturally occurring source, such as humans or other mammals, as well as the isolated nucleic acid sequence per se, which would comprise all or most of the sequences found in the probe used. l.A.4.) Isolation of 162P1E6-Encoding Nucleic Acid Molecules The 162PIE6 cDNA sequences described herein enable the isolation of other polynucleotides encoding 162P1E6 gene product(s), as well as the isolation of polynucleotides encoding 162PIE6 gene product homologs, alternatively spliced isoforms, allelic variants, and mutant forms of a 162P1E6 gene product as well as polynucleotides that encode analogs of 162P1E6-related proteins. Various molecular cloning methods that can be employed to isolate full length cDNAs encoding a 162P1E6 gene are well known-(see, for example, Sambrook, J. et al, Molecular Cloning: A Laboratory Manual, 2d edition, Cold Spring Harbor Press, New York, 1989; Current Protocols in Molecular Biology. Ausubel et aL., Eds., Wiley and Sons, 1995). For example, lambda phage cloning methodologies can be conveniently employed, using commercially available cloning systems (e.g., Lambda ZAP Express, Stratagene). Phage clones containing 162PIE6 gene cDNAs can be identified by probing with a labeled 162P1E6 cDNA or a fragment thereof. For example, in one embodiment, a 162P1E6 cDNA (e.g., Figure 2) or a portion thereof can be synthesized and used as a probe to retrieve overlapping and full-length cDNAs corresponding to a 162PIE6 gene. A 162P1E6 gene itself can be isolated by screening genornic DNA libraries, bacterial artificial chromosome libraries (BACs), yeast artificial chromosome libraries (YACs), and the like, with 162PIE6 DNA probes or primers. I.A.5.) Recombinant Nucleic Acid Molecules and Host-Vector Systems The invention also provides recombinant DNA or RNA molecules containing a 162P1E6 polynucleotide, a fragment, analog or homologue thereof, including but not limited to phages, plasmids, phagemids, cosmids, YACs, BACs, as well as various viral and non-viral vectors well known in the art, and cells transformed or transfected with such recombinant DNA or RNA molecules. Methods for generating such molecules are well known (see, for example, Sambrook et al., 1989, supra). 24 The invention further provides a host-vector system comprising a recombinant DNA molecule containing a 162PIE6 polynucleotide, fragment, analog or homologue thereof within a suitable prokaryotic or eukaryotic host cell. Examples of suitable eukaryotic host cells include a yeast cell, a plant cell, or an animal cell, such as a mammalian cell or an insect cell (e.g., a baculovirus-infectible cell such as an Sf9 or HighFive cell). Examples of suitable mammalian cells include various prostate cancer cell lines such as DU]45 and TsuPrl, other transfectable or transducible prostate cancer cell lines, primary cells (PrEC), as well as a number of mammalian cells routinely used for the expression of recombinant proteins (e.g., COS, CHO, 293, 293T cells). More particularly, a polynucleotide comprising the coding sequence of 162P1E6 or a fragment, analog or homolog thereof can be used to generate 162PIE6 proteins or fragments thereof using any number of host-vector systems routinely used and widely known in the art. A wide range of host-vector systems suitable for the expression of 162P1E6 proteins or fragments thereof are available, see for example, Sambrook et aL., 1989, supra; Current Protocols in Molecular Biology, 1995, supra). Preferred vectors for mammalian expression include but are not limited to pcDNA 3.1 myc-His tag (Invitrogen) and the retroviral vector pSRoLtkneo (Muller et al., 1991, MCB 11:1785). Using these expression vectors, 162P1E6 can be expressed in several prostate cancer and non-prostate cell lines, including for example 293, 293T, rat-1, NIH 3T3 and TsuPrl. The host-vector systems of the invention are useful for the production of a 162P1E6 protein or fragment thereof. Such host-vector systems can be employed to study the functional properties of 162P1E6 and 162PIE6 mutations or analogs. Recombinant human 162PIE6 protein or an analog or homolog or fragment thereof can be produced by mammalian cells transfected with a construct encoding a 162P1E6-related nucleotide. For example, 293T cells can be transfected with an expression plasmid encoding 162PlE6 or fragment, analog or homolog thereof, a 162P1E6-related protein is expressed in the 293T cells, and the recombinant 162PIE6 protein is isolated using standard purification methods (e.g., affinity purification using anti-I 62PIE6 antibodies). In another embodiment, a 162P 1E6 coding sequence is subcloned into the retroviral vector pSRa.MSVtkneo and used to infect various mammalian cell lines, such as NIH 3T3, TsuPrl, 293 and rat-I in order to establish 162P1E6 expressing cell lines. Various other expression systems well known in the art can also be employed. Expression constructs encoding a leader peptide joined in frame to a 162P1E6 coding sequence can be used for the generation of a secreted form of recombinant 162PIE6 protein. As discussed herein, redundancy in the genetic code permits variation in 162PlE6 gene sequences. In particular, it is known in the art that specific host species often have specific codon preferences, and thus one can adapt the disclosed sequence as preferred for a desired host. For example, preferred analog codon sequences typically have rare codons (i.e., codons having a usage frequency of less than about 20% in known sequences of the desired host) replaced with higher frequency codons. Codon preferences for a specific species are calculated, for example, by utilizing codon usage tables available on the INTERNET such as at URL www.dna.affrc.go.jp/-nakamura/codon.html. Additional sequence modifications are known to enhance protein expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon/intron splice site signals, transposon-like repeats, and/or other such well-characterized sequences that are deleterious to gene expression. The GC content of the sequence is adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. Where possible, the sequence is modified 25 to avoid predicted hairpin secondary mRNA structures. Other useful modifications include the addition of a translational initiation consensus sequence at the start of the open reading frame, as described in Kozak, MoL Cell BioL., 9:5073-5080 (1989). Skilled artisans understand that the general rule that eukaryotic ribosomes initiate translation exclusively at the 5' proximal AUG codon is abrogated only under rare conditions (see, e.g., Kozak PNAS 92(7): 2662-2666, (1995) and Kozak NAR 15(20): 8125-8148 (1987)). Il.) 162P1E6-related Proteins Another aspect of the present invention provides 162P1E6-related proteins. Specific embodiments of 162PIE6 proteins comprise a polypeptide having all or part of the amino acid sequence of human 162P1E6 as shown in Figure 2 or Figure 3. Alternatively, embodiments of 162P IE6 proteins comprise variant, homolog or analog polypeptides that have alterations in the amino acid sequence of 162P1E6 shown in Figure 2 or Figure 3. In general, naturally occurring allelic variants of human 162P IE6 share a high degree of structural identity and homology (e.g., 90% or more homology). Typically, allelic variants of a 162PIE6 protein contain conservative amino acid substitutions within the 162P1E6 sequences described herein or contain a substitution of ah amino acid from a corresponding position in a homologue of 162P1E6. One class of 162PlE6 allelic variants are proteins that share a high degree of homology with at least a small region of a particular 162P1E6 amino acid sequence, but further contain a radical departure from the sequence, such as a non-conservative substitution, truncation, insertion or frame shift. In comparisons of protein sequences, the terms, similarity, identity, and homology each have a distinct meaning as appreciated in the field of genetics. Moreover, orthology and paralogy can be important concepts describing the relationship of members of a given protein family in one organism to the members of the same family in other organisms. Amino acid abbreviations are provided in Table II. Conservative amino acid substitutions can frequently be made in a protein without altering either the conformation or the function of the protein. Proteins of the invention can comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 conservative substitutions. Such changes include substituting any of isoleucine (1), valine (V), and leucine (L) for any other of these hydrophobic amino acids; aspartic acid (D) for glutamic acid (E) and vice versa; glutamine (Q) for asparagine (N) and vice versa; and seine (S) for threonine (T) and vice versa. Other substitutions can also be considered conservative, depending on the environment of the particular amino acid and its role in the three-dimensional structure of the protein. For example, glycine (G) and alanine (A) can frequently be interchangeable, as can alanine (A) and valine (V). Methionine (M), which is relatively hydrophobic, can frequently be interchanged with leucine and isoleucine, and sometimes with valine. Lysine (K) and arginine (R) are frequently interchangeable in locations in which the significant feature of the amino acid residue is its charge and the differing pK's of these two amino acid residues are not significant. Still other changes can be considered "conservative" in particular environments (see, e.g. Table I herein; pages 13-15 "Biochemistry" 2 ,d ED. Lubert Stryer ed (Stanford University); Henikoff et at., PNAS 1992 Vol 89 10915-10919; Lei et al., J Biol Chem 1995 May 19; 270(20):11882-6). Embodiments of the invention disclosed herein include a wide variety of art-accepted variants or analogs of 162P1E6 proteins such as polypeptides having amino acid insertions, deletions and substitutions. 162P1E6 variants can be made using methods known in the art such as site-directed mutagenesis, alanine 26 scanning, and PCR mutagenesis. Site-directed mutagenesis (Carter et al., Nucl. Acids Res., 13:4331 (1986); Zoller et al., Nucl. Acids Res., 10:6487 (1987)), cassette mutagenesis (Wells et al., Gene, 34:315 (1985)), restriction selection mutagenesis (Wells et al., Philos. Trans. R. Soc. London SerA, 317:415 (1986)) or other known techniques can be performed on the cloned DNA to produce the 162P1E6 variant DNA. Scanning amino acid analysis can also be employed to identify one or more amino acids along a contiguous sequence that is involved in a specific biological activity such as a protein-protein interaction. Among the preferred scanning amino acids are relatively small, neutral amino acids. Such amino acids include alanine, glycine, serine, and cysteine. Alanine is typically a preferred scanning amino acid among this group because it eliminates the side-chain beyond the beta-carbon and is less likely to alter the main-chain conformation of the variant. Alanine is also typically preferred because it is the most common amino acid. Further, it is frequently found in both buried and exposed positions (Creighton, The Proteins, (W.H. Freeman & Co., N.Y.); Chothia, J. Mol. Biol., 150:1 (1976)). If alanine substitution does not yield adequate amounts of variant, an isosteric amino acid can be used. As defined herein, 162P 1 E6 variants, analogs or homologs, have the distinguishing attribute of having at least one epitope that is "cross reactive" with a 162P 1 E6 protein having an amino acid sequence of Figure 3. As used in this sentence, "cross reactive" means that an antibody or T cell that specifically binds to a 162P1E6 variant also specifically binds to a 162P1E6 protein having an amino acid sequence set forth in Figure 3. A polypeptide ceases to be a variant of a protein shown in Figure 3, when it no longer contains any epitope capable of being recognized by an antibody or T cell that specifically binds to the starting 162PlE6 protein. Those skilled in the art understand that antibodies that recognize proteins bind to epitopes of varying size, and a grouping of the order of about four or five amino acids, contiguous or not, is regarded as a typical number of amino acids in a minimal epitope. See, e.g., Nair et al., J. Immunol 2000 165(12): 6949-6955; Hebbes et al., Mol Immunol (1989) 26(9):865-73; Schwartz et al., J Immunol (1985) 135(4):2598-608. Other classes of 162P 1E6-related protein variants share 70%, 75%, 80%, 85% or 90% or more similarity with an amino acid sequence of Figure 3, or a fragment thereof. Another specific class of 162P1E6 protein variants or analogs comprise one or more of the 162P 1 E6 biological motifs described herein or presently known in the art. Thus, encompassed by the present invention are analogs of 162P I E6 fragments (nucleic or amino acid) that have altered functional (e.g. immunogenic) properties relative to the starting fragment. It is to be appreciated that motifs now or which become part of the art are to be applied to the nucleic or amino acid sequences of Figure 2 or Figure 3. As discussed herein, embodiments of the claimed invention include polypeptides containing less than the full amino acid sequence of a 162P1E6 protein shown in Figure 2 or Figure 3. For example, representative embodiments of the invention comprise peptides/proteins having any 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or more contiguous amino acids of a 162P1E6 protein shown in Figure 2 or Figure 3. Moreover, representative embodiments of the invention disclosed herein include polypeptides consisting of about amino acid I to about amino acid 10 of a 162P1E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 10 to about amino acid 20 of a 162P1E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 20 to about amino acid 30 of a 162P1E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 30 to about amino acid 40 of a 162P I E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 40 to about 27 amino acid 50 of a 162P IE6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 50 to about amino acid 60 of a 162P1E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 60 to about amino acid 70 of a 162P1E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 70 to about amino acid 80 of a 162P1E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 80 to about amino acid 90 of a 162P1E6 protein shown in Figure 2 or Figure 3, polypeptides consisting of about amino acid 90 to about amino acid 100 of a 162P1E6 protein shown in Figure 2 or Figure 3, etc. throughout the entirety of a 162P1E6 amino acid sequence. Moreover, polypeptides consisting of about amino acid 1 (or 20 or 30 or 40 etc.) to about amino acid 20, (or 130, or 140 or 150 etc.) of a 162P1E6 protein shown in Figure 2 or Figure 3 are embodiments of the invention. It is to be appreciated that the starting and stopping positions in this paragraph refer to the specified position as well as that position plus or minus 5 residues. 162P1E6-related proteins are generated using standard peptide synthesis technology or using chemical cleavage methods well known in the art. Alternatively, recombinant methods can be used to generate nucleic acid molecules that encode a 162P1E6-related protein. In one embodiment, nucleic acid molecules provide a means to generate defined fragments of a 162P1E6 protein (or variants, homologs or analogs thereof). IMA.) Motif-bearing Protein Embodiments Additional illustrative embodiments of the invention disclosed herein include 162P1E6 polypeptides comprising the amino acid residues of one or more of the biological motifs contained within a 162P1E6 polypeptide sequence set forth in Figure 2 or Figure 3. Various motifs are known in the art, and a protein can be evaluated for the presence of such motifs by a number of publicly available Internet sites (see, e.g., URL addresses: pfam.wustl.edu/; http://searchlauncher.bcn.tmc.edu/seq-search/struc-predict.html; psort.ims.u tokyo.ac.jp/; www.cbs.dtu.dk/; www.ebi.ac.uk/interpro/scan.html; www.expasy.ch/tools/scnpsitl.html; EpinatrixTm and Epimerm, Brown University, www.brown.edu/ResearchffB IVLab/epimatrix/epimatrix.html; and BIMAS, bimas.dcrt.nih.gov/.). Motif bearing subsequences of all 162P1E6 variant proteins are set forth and identified in Tables V XVIH and XXII-LI. Table XIX sets forth several frequently occurring motifs based on pfam searches (see URL address pfam.wustl.edu/). The columns of Table XIX list (1) motif name abbreviation, (2) percent identity found amongst the different member of the motif family, (3) motif name or description and (4) most common function; location information is included if the motif is relevant for location. Polypeptides comprising one or more of the 162P1E6 motifs discussed above are useful in elucidating the specific characteristics of a malignant phenotype in view of the observation that the 162P 1E6 motifs discussed above are associated with growth dysregulation and because 162P1E6 is overexpressed in certain cancers (See, e.g., Table I). Casein kinase II, cAMP and camp-dependent protein kinase, and Protein Kinase C, for example, are enzymes known to be associated with the development of the malignant phenotype (see e.g. Chen et al., Lab Invest, 78(2): 165-174 (1998); Gaiddon et al., Endocrinology 136(10): 4331-4338 (1995); Hall et al., Nucleic Acids Research 24(6): 1119-1126 (1996); Peterziel et al., Oncogene 18(46): 6322 6329 (1999) and O'Brian, Oncol. Rep. 5(2): 305-309 (1998)). Moreover, both glycosylation and myristoylation are protein modifications also associated with cancer and cancer progression (see e.g. Dennis et al., Biochem. Biophys. Acta 1473(l):21-34 (1999); Raju et al., Exp. Cell Res. 235(1): 145-154 (1997)). 28 Amidation is another protein modification also associated with cancer and cancer progression (see e.g. Treston et al., J. Natl. Cancer Inst. Monogr. (13): 169-175 (1992)). In another embodiment, proteins of the invention comprise one or more of the immunoreactive epitopes identified in accordance with art-accepted methods, such as the peptides set forth in Tables V-XVIII and XXII-LI. CTL epitopes can be determined using specific algorithms to identify peptides within a 162P1E6 protein that are capable of optimally binding to specified HLA alleles (e.g., Table IV; Epimatrix T M and EpimerTm, Brown University, URL www.brown.edu/ResearchMfB-HIV Lab/epimatrix/epimatrix.html; and BIMAS, URL bimas.dcrt.nih.gov/.) Moreover, processes for identifying peptides that have sufficient binding affinity for HLA molecules and which are correlated with being immunogenic epitopes, are well known in the art, and are carried out without undue experimentation. In addition, processes for identifying peptides that are immunogenic epitopes, are well known in the art, and are carried out without undue experimentation either in vitro or in vivo. Also known in the art are principles for creating analogs of such epitopes in order to modulate immunogenicity. For example, one begins with an epitope that bears a CTL or HTL motif (see, e.g., the HLA Class I and HLA Class II motifs/supermotifs of Table IV). The epitope is analoged by substituting out an amino acid at one of the specified positions, and replacing it with another amino acid specified for that position. For example, one can substitute out a deleterious residue in favor of any other residue, such as a preferred residue as defined in Table IV; substitute a less-preferred residue with a preferred residue as defined in Table IV; or substitute an originally-occurring preferred residue with another preferred residue as defined in Table IV. Substitutions can occur at primary anchor positions or at other positions in a peptide; see, e.g., Table IV. A variety of references reflect the art regarding the identification and generation of epitopes in a protein of interest as well as analogs thereof. See, for example, WO 97/33602 to Chesnut et al.; Sette, Immunogenetics 1999 50(3-4): 201-212; Sette et al., J. 1mmunol. 2001 166(2): 1389-1397; Sidney et al., Hum. Immunol. 1997 58(1): 12-20; Kondo et al., Immunogenetics 1997 45(4): 249-258; Sidney et al., J. Immunol. 1996 157(8): 3480-90; and Falk et al., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et al., J. Immunol. 149:3580-7 (1992); Parker et al., J. Immunol. 152:163-75 (1994)); Kast et al., 1994 152(8): 3904-12; Borras-Cuesta et al., Hum. Immunol. 2000 61(3): 266-278; Alexander et al., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., PMID: 7895164, Ul: 95202582; O'Sullivan et al., J. Immunol. 1991 147(8): 2663-2669; Alexander et al., Immunity 1994 1(9): 751-761 and Alexander et al., Immunol. Res. 1998 18(2): 79-92. Related embodiments of the invention include polypeptides comprising combinations of the different motifs set forth in Table XX, and/or, one or more of the predicted CTL epitopes of Tables V-XVII and XXII XLVU, and/or, one or more of the predicted HTL epitopes of Tables XLVIII-LI, and/or, one or more of the T cell binding motifs known in the art. Preferred embodiments contain no insertions, deletions or substitutions either within the motifs or the intervening sequences of the polypeptides. In addition, embodiments which include a number of either N-terminal and/or C-terminal amino acid residues on either side of these motifs may be desirable (to, for example, include a greater portion of the polypeptide architecture in which the motif is located). Typically the number of N-terminal and/or C-terminal amino acid residues on either side of a motif is between about 1 to about 100 amino acid residues, preferably 5 to about 50 amino acid residues. 29 162PIE6-related proteins are embodied in many forms, preferably in isolated form A purified 162P1E6 protein molecule will be substantially free of other proteins or molecules that impair the binding of 162PlE6 to antibody, T cell or other ligand. The nature and degree of isolation and purification will depend on the intended use. Embodiments of a 162PIE6-related proteins include purified 162PIE6-related proteins and functional, soluble 162P1E6-related proteins. In one embodiment, a functional, soluble 162P1E6 protein or fragment thereof retains the ability to be bound by antibody, T cell or other ligand. The invention also provides 162PIE6 proteins comprising biologically active fragments of a 162P1 E6 amino acid sequence shown in Figure 2 or Figure 3. Such proteins exhibit properties of the starting 162P1E6 protein, such as the ability to elicit the generation of antibodies that specifically bind an epitope associated with the starting 162P1E6 protein; to be bound by such antibodies; to elicit the activation of HTL or CTL; and/or, to be recognized by HTL or CTL that also specifically bind to the starting protein. 162PIE6-related polypeptides that contain particularly interesting structures can be predicted and/or identified using various analytical techniques well known in the art, including, for example, the methods of Chou Fasman, Gamier-Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis, or on the basis of imnmogenicity. Fragments that contain such structures are particularly useful in generating subunit-specific anti- 162P1E6 antibodies, or T cells or in identifying cellular factors that bind to 162P IE6. For example, hydrophilicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828. Hydropathicity profiles can be generated, and immunogenic peptide fragments identified, using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated, and immunogenic peptide fragments identified, using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated, and immunogenic peptide fragments identified, using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated, and immunogenic peptide fragments identified, using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. CTL epitopes can be determined using specific algorithms to identify peptides within a 162PIE6 protein that are capable of optimally binding to specified HLA alleles (e.g., by using the SYFPEITHI site at World Wide Web TRL syfpeithi.bmi-heidelberg.com/; the listings in Table IV(A)-(E); EpimatrixTm and Epimer'1, Brown University, URL (www.brown.edu/Research'-HIV_abepimatrix/epimatrix.html); and BIMAS, URL bimas.dcrt.nih.gov/. illustrating this, peptide epitopes from 162PlE6 that are presented in the context of human MHC Class I molecules, e.g., HLA-Al, A2, A3, Al1, A24, B7 and B35 were predicted (see, e.g., Tables V-XVIII, XXH-LI). Specifically, the complete amino acid sequence of the 162PlE6 protein and relevant portions of other variants, i.e., for HLA Class I predictions 9 flanking residues on either side of a point mutation, and for HLA Class II predictions 14 flanking residues on either side of a point mutation, were entered into the HLA Peptide Motif Search algorithm found in the Bioinformatics and Molecular Analysis Section (BIMAS) web site listed above; in addition to the site SYFPEITHI, at URL syfpeithi.bmi heidelberg.com/. The HLA peptide motif search algorithm was developed by Dr. Ken Parker based on binding of specific peptide sequences in the groove of HILA Class I molecules, in particular HLA-A2 (see, e.g., Falk et a., Nature 351: 290-6 (1991); Hunt et al., Science 255:1261-3 (1992); Parker et a., J. Immunol. 149:3580-7 30 (1992); Parker et al., J. Immunol. 152:163-75 (1994)). This algorithm allows location and ranking of 8-mer, 9-mer, and 10-mer peptides from a complete protein sequence for predicted binding to HLA-A2 as well as numerous other HLA Class I molecules. Many HLA class I binding peptides are 8-, 9-, 10 or 11-mers. For example, for Class I HLA-A2, the epitopes preferably contain a leucine (L) or methionine (M) at position 2 and a valine (V) or leucine (L) at the C-terminus (see, e.g., Parker et aL., J. Immunol. 149:3580-7 (1992)). Selected results of 162P 1E6 predicted binding peptides are shown in Tables V-XVIII and XXII-LI herein. In Tables V-XVIII and XXII-XLVII, selected candidates, 9-mers and 10-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. In Tables XLVIII-LI, selected candidates, 15-mers, for each family member are shown along with their location, the amino acid sequence of each specific peptide, and an estimated binding score. The binding score corresponds to the estimated half time of dissociation of complexes containing the peptide at 37*C at pH 6.5. Peptides with the highest binding score are predicted to be the most tightly bound to HLA Class I on the cell surface for the greatest period of dine and thus represent the best immunogenic targets for T-cell recognition. Actual binding of peptides to an HLA allele can be evaluated by stabilization of HLA expression on the antigen-processing defective cell line T2 (see, e.g., Xue et al., Prostate 30:73-8 (1997) and Peshwa et al., Prostate 36:129-38 (1998)). Immunogenicity of specific peptides can be evaluated in vitro by stimulation of CD8+ cytotoxic T lymphocytes (CTL) in the presence of antigen presenting cells such as dendritic cells. It is to be appreciated that every epitope predicted by the BIMAS site, Epimer T M and EpimatrixTM sites, or specified by the HLA class I or class II motifs available in the art or which become part of the art such as set forth in Table IV (or determined using World Wide Web site URL syfpeithi.bni-heidelberg.com/, or BIMAS, bimas.dcrtnih.gov/) are to be "applied" to a 162P 1E6 protein in accordance with the invention. As used in this context "applied" means that a 162P1E6 protein is evaluated, e.g., visually or by computer-based patterns finding methods, as appreciated by those of skill in the relevant art. Every subsequence of a 162P IE6 protein of 8, 9, 10, or II amino acid residues that bears an HLA Class I motif, or a subsequence of 9 or more amino acid residues that bear an HLA Class II motif are within the scope of the invention. IU.B.) Expression of 162P1E6-related Proteins In an embodiment described in the examples that follow, 162P1 E6 can be conveniently expressed in cells (such as 293T cells) transfected with a commercially available expression vector such as a CMV-driven expression vector encoding 162P1E6 with a C-terminal 6XHis and MYC tag (pcDNA3.1/mycHIS, Invitrogen or Tag5, GenHunter Corporation, Nashville TN). The Tag5 vector provides an IgGK secretion signal that can be used to facilitate the production of a secreted 162P 1 E6 protein in transfected cells. The secreted HIS tagged 162P1E6 in the culture media can be purified, e.g., using a nickel column using standard techniques. Im.C.) Modifications of 162P1E6-related Proteins Modifications of 162P1E6-related proteins such as covalent modifications are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a 162P1E6 polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N- or C- terminal residues of a 162P1E6 protein. Another type of covalent modification of a 162P1E6 polypeptide included within the scope of this invention comprises altering the native glycosylation pattern of a protein of the invention. Another type of covalent modification of 162P1E6 comprises linking a 162P1E6 polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol (PEG), polypropylene 31 glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192 or 4,179,337. The 162P1 E6-related proteins of the present invention can also be modified to form a chimeric molecule comprising 162P1E6 fused to another, heterologous polypeptide or amino acid sequence. Such a chimeric molecule can be synthesized chemically or recombinantly. A chimeric molecule can have a protein of the invention fused to another tumor-associated antigen or fragment thereof. Alternatively, a protein in accordance with the invention can comprise a fusion of fragments of a 162P I E6 sequence (amino or nucleic acid) such that a molecule is created that is not, through its length, directly homologous to the amino or nucleic acid sequences shown in Figure 2 or Figure 3. Such a chimeric molecule can comprise multiples of the same subsequence of 162P1 E6. A chimeric molecule can comprise a fusion of a 162PIE6-related protein with a polyhistidine epitope tag, which provides an epitope to which immobilized nickel can selectively bind, with cytokines or with growth factors. The epitope tag is generally placed at the amino- or carboxyl- terminus of al62PlE6 protein. In an alternative embodiment, the chimeric molecule can comprise a fusion of a 162P1E6-related protein with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule (also referred to as an "immunoadhesin"), such a fusion could be to the Fc region of an IgG molecule. The Ig fusions preferably include the substitution of a soluble (transmembrane domain deleted or inactivated) form of a 162PIE6 polypeptide in place of at least one variable region within an Ig molecule. In a preferred embodiment, the immunoglobulin fusion includes the hinge, CH2 and CH3, or the hinge, CHI, CH2 and CH3 regions of an IgGI molecule. For the production of immunoglobulin fusions see, e.g., U.S. Patent No. 5,428,130 issued June 27, 1995. M.D.) Uses of 162P1E6-related Proteins The proteins of the invention have a number of different specific uses. As 162P1E6 is highly expressed in prostate and other cancers, 162P1 E6-related proteins are used in methods that assess the status of 162P1E6 gene products in normal versus cancerous tissues, thereby elucidating the malignant phenotype. Typically, polypeptides from specific regions of a 162P 1E6 protein are used to assess the presence of perturbations (such as deletions, insertions, point mutations etc.) in those regions (such as regions containing one or more motifs). Exemplary assays utilize antibodies or T cells targeting 162P1E6-related proteins comprising the amino acid residues of one or more of the biological motifs contained within a 162P1E6 polypeptide sequence in order to evaluate the characteristics of this region in normal versus cancerous tissues or to elicit an immune response to the epitope. Alternatively, 162P1E6-related proteins that contain the amino acid residues of one or more of the biological motifs in a 162P IE6 protein are used to screen for factors that interact with that region of 162PIE6. 162P1E6 protein fragments/subsequences are particularly useful in generating and characterizing domain-specific antibodies (e.g., antibodies recognizing an extracellular or intracellular epitope of a 162PE6 protein), for identifying agents or cellular factors that bind to 162P1E6 or a particular structural domain thereof, and in various therapeutic and diagnostic contexts, including but not limited to diagnostic assays, cancer vaccines and methods of preparing such vaccines. Proteins encoded by the 162PIE6 genes, or by analogs, homologs or fragments thereof; have a variety of uses, including but not limited to generating antibodies and in methods for identifying ligands and other agents and cellular constituents that bind to a 162PlE6 gene product. Antibodies raised against a 162PIE6 32 protein or fragment thereof are useful in diagnostic and prognostic assays, and imaging methodologies in the management of human cancers characterized by expression of 162PlE6 protein, such as those listed in Table I. Such antibodies can be expressed intracellularly and used in methods of treating patients with such cancers. 162P1E6-related nucleic acids or proteins are also used in generating HTL or CTL responses. Various immunological assays useful for the detection of 162P 1E6 proteins are used, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), immunocytochemical methods, and the like. Antibodies can be labeled and used as immunological imaging reagents capable of detecting 162P1E6-expressing cells (e.g., in radioscintigraphic imaging methods). 162P I6 proteins are also particularly useful in generating cancer vaccines, as further described herein. IV.) 162PlE6 Antibodies Another aspect of the invention provides antibodies that bind to 162PlE6-related proteins. Preferred antibodies specifically bind to a 162P1E6-related protein and do not bind (or bind weakly) to peptides or proteins that are not 162P1E6-related proteins. For example, antibodies that bind 162P1 E6 can bind 162P1E6-related proteins such as the hornologs or analogs thereof. 162P1E6 antibodies of the invention are particularly useful in cancer (see, e.g., Table I) diagnostic and prognostic assays, and imaging methodologies. Similarly, such antibodies are useful in the treatment, diagnosis, and/or prognosis of other cancers, to the extent 162P1E6 is also expressed or overexpressed in these other cancers. Moreover, intracellularly expressed antibodies (e.g., single chain antibodies) are therapeutically useful in treating cancers in which the expression of 162P1E6 is involved, such as advanced or metastatic prostate cancers. The invention also provides various immunological assays useful for the detection and quantification of 162P1E6 and mutant 162P1E6-related proteins. Such assays can comprise one or more 162P1E6 antibodies capable of recognizing and binding a 162P 1E6-related protein, as appropriate. These assays are performed within various immunological assay formats well known in the art, including but not limited to various types of radioimmunoassays, enzyme-linked immunosorbent assays (ELISA), enzyme-linked immunofluorescent assays (ELIFA), and the like. Immunological non-antibody assays of the invention also comprise T cell immunogenicity assays (inhibitory or stimulatory) as well as major histocompatibility complex (MHC) binding assays. In addition, immunological imaging methods capable of detecting prostate cancer and other cancers expressing 162P1 E6 are also provided by the invention, including but not limited to radioscintigraphic imaging methods using labeled 162P1E6 antibodies. Such assays are clinically useful in the detection, monitoring, and prognosis of 162P1E6 expressing cancers such as prostate cancer. 162P1E6 antibodies are also used in methods for purifying a 162P1E6-related protein and for isolating 162P1 E6 homologues and related molecules. For example, a method of purifying a 162P1E6-related protein comprises incubating a 162PlE6 antibody, which has been coupled to a solid matrix, with a lysate or other solution containing a 162P1E6-related protein under conditions that permit the 162P 1E6 antibody to bind to the 162P1E6-related protein; washing the solid matrix to eliminate impurities; and eluting the 162P1E6-related 33 protein from the coupled antibody. Other uses of 162P 1E6 antibodies in accordance with the invention include generating anti-idiotypic antibodies that mimic a 162PIE6 protein. Various methods for the preparation of antibodies are well known in the art For example, antibodies can be prepared by immunizing a suitable mammalian host using a 162PIE6-related protein, peptide, or fragment, in isolated or immunoconjugated form (Antibodies: A Laboratory Manual, CSH Press, Eds., Harlow, and Lane (1988); Harlow, Antibodies, Cold Spring Harbor Press, NY (1989)). In addition, fusion proteins of 162P1E6 can also be used, such as a I62PlE6 GST-fusion protein. In a particular embodiment, a GST fusion protein comprising all or most of the amino acid sequence of Figure 2 or Figure 3 is produced, then used as an immunogen to generate appropriate antibodies. In another embodiment, a 162PIE6-related protein is synthesized and used as an immunogen. In addition, naked DNA immunization techniques known in the art are used (with or without purified 162PlE6-related protein or 162P IE6 expressing cells) to generate an immune response to the encoded immunogen (for review, see Donnelly et al., 1997, Ann. Rev. Immunol. 15: 617-648). The amino acid sequence of a 162P1E6 protein as shown in Figure 2 or Figure 3 can be analyzed to select specific regions of the 162P1E6 protein for generating antibodies. For example, hydrophobicity and hydrophilicity analyses of a 162PlE6 amino acid sequence are used to identify hydrophilic regions in the 162P IE6 structure. Regions of a 162P1E6 protein that show immunogenic structure, as well as other regions and domains, can readily be identified using various other methods known in the art, such as Chou-Fasman, Gamier Robson, Kyte-Doolittle, Eisenberg, Karplus-Schultz or Jameson-Wolf analysis. Hydrophilicity profiles can be generated using the method of Hopp, T.P. and Woods, K.R., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:3824 3828. Hydropathicity profiles can be generated using the method of Kyte, J. and Doolittle, R.F., 1982, J. Mol. Biol. 157:105-132. Percent (%) Accessible Residues profiles can be generated using the method of Janin J., 1979, Nature 277:491-492. Average Flexibility profiles can be generated using the method of Bhaskaran R., Ponnuswamy P.K., 1988, Int. J. Pept. Protein Res. 32:242-255. Beta-turn profiles can be generated using the method of Deleage, G., Roux B., 1987, Protein Engineering 1:289-294. Thus, each region identified by any of these programs or methods is within the scope of the present invention. Methods for the generation of 162P1E6 antibodies are further illustrated by way of the examples provided herein. Methods for preparing a protein or polypeptide for use as an immunogen are well known in the art. Also well known in the art are methods for preparing immunogenic conjugates of a protein with a carrier, such as BSA, KLH or other carrier protein. In some circumstances, direct conjugation using, for example, carbodiimide reagents are used, in other instances linking reagents such as those supplied by Pierce Chemical Co., Rockford, IL, are effective. Administration of a 162PlE6 immunogen is often conducted by injection over a suitable time period and with use of a suitable adjuvant, as is understood in the art. During the immunization schedule, titers of antibodies can be taken to determine adequacy of antibody formation. 162PlE6 monoclonal antibodies can be produced by various means well known in the art For example, immortalized cell lines that secrete a desired monoclonal antibody are prepared using the standard hybridoma technology of Kohler and Milstein or modifications that immortalize antibody-producing B cells, as is generally known. Inmortalized cell lines that secrete the desired antibodies are screened by immunoassay in which the antigen is a 162P E6-related protein. When the appropriate immortalized cell culture is identified, the cells can be expanded and antibodies produced either from in vitro cultures or from ascites fluid. 34 The antibodies or fragments of the invention can also be produced, by recombinant means. Regions that bind specifically to the desired regions of a 162P1 E6 protein can also be produced in the context of chimeric or complementarity determining region (CDR) grafted antibodies of multiple species origin. Humanized or human 162PIE6 antibodies can also be produced, and are preferred for use in therapeutic contexts. Methods for humanizing murine and other non-human antibodies, by substituting one or more of the non-human antibody CDRs for corresponding human antibody sequences, are well known (see for example, Jones et aL., 1986, Nature 321: 522-525; Riechmann et al., 1988, Nature 332: 323-327; Verhoeyen et al., 1988, Science 239: 1534-1536). See also, Carter et al., 1993, Proc. Natd. Acad. Sci. USA 89: 4285 and Sims et aL., 1993, J. Immunol. 151: 2296. Methods for producing fully human monoclonal antibodies include phage display and transgenic methods (for review, see Vaughan et aL., 1998, Nature Biotechnology 16: 535-539). Fully human 162P1E6 monoclonal antibodies can be generated using cloning technologies employing large human Ig gene combinatorial libraries (i.e., phage display) (Griffiths and Hoogenbooni, Building an in vitro immune system: human antibodies from phage display libraries. In: Protein Engineering of Antibody Molecules for Prophylactic and Therapeutic Applications in Man, Clark, M. (Ed.), Nottingham Academic, pp 45-64 (1993); Burton and Barbas, Human Antibodies from combinatorial libraries. Id., pp 65-82). Fully human 162PlE6 monoclonal antibodies can also be produced using transgenic mice engineered to contain human immunoglobulin gene loci as described in PCT Patent Application W098/24893, Kucherlapati and Jakobovits et al., published December 3, 1997 (see also, Jakobovits, 1998, Exp. Opin. Invest. Drugs 7(4): 607-614; U.S. patents 6,162,963 issued 19 December 2000; 6,150,584 issued 12 November 2000; and, 6,114598 issued 5 September 2000). This method avoids the in vitro manipulation required with phage display technology and efficiently produces high affinity authentic human antibodies. Reactivity of 162P IE6 antibodies with a 162PI E6-related protein can be established by a number of well known means, including Western blot, immunoprecipitation, ELISA, and FACS analyses using, as appropriate, 162PIE6-related proteins, 162P 1 E6-expressing cells or extracts thereof. A 162P I E6 antibody or fragment thereof can be labeled with a detectable marker or conjugated to a second molecule. Suitable detectable markers include, but are not limited to, a radioisotope, a fluorescent compound, a bioluminescent compound, chemiluminescent compound, a metal chelator or an enzyme. Further, bi-specific antibodies specific for two or more 162PIE6 epitopes are generated using methods generally known in the art. Homodimeric antibodies can also be generated by cross-linking techniques known in the art (e.g., Wolff et al., Cancer Res. 53: 2560-2565). V.) 162P1E6 Cellular Immune Responses The mechanism by which T cells recognize antigens has been delineated. Efficacious peptide epitope vaccine compositions of the invention induce a therapeutic or prophylactic immune responses in very broad segments of the world-wide population. For an understanding of the value and efficacy of compositions of the invention that induce cellular immune responses, a brief review of immunology-related technology is provided. A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA restricted T cells (Buus, S. et aL., Cell 47:1071, 1986; Babbitt, B. P. et aL, Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Irnniunol. 11:403, 1993). 35 Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are set forth in Table IV (see also, e.g., Southwood, et al., J. Immunol. 160:3363, 1998; Rammensee, et al., Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHT, access via World Wide Web at URL syfpeithi.bmi-heidelberg.com/; Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480 3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics 1999 Nov; 50(3-4):201-12, Review). Furthermore, x-ray crystallographic analyses of HLA-peptide complexes have revealed pockets within the peptide binding cleft/groove of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stem et al., Structure 2:245, 1994; Jones, E.Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et aL., Proc. Nat. A cad. Sci. USA 90:8053, 1993; Guo, H. C. et al, Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367, 1992; Matsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A. , Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.) Accordingly, the definition of class I and class H allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that are correlated with binding to particular HLA antigen(s). Thus, by a process of HLA motif identification, candidates for epitope-based vaccines have been identified, such candidates can be further evaluated by HLA-peptide binding assays to determine binding affinity and/or the time period of association of the epitope and its corresponding HLA molecule. Additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, and/or immunogenicity. Various strategies can be utilized to evaluate cellular immunogenicity, including: 1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., MoL. ImmunoL. 32:603, 1995; Celis, E. et al., Proc. NatL. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998). This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a lymphoidne- or 5 1 Cr-release assay involving peptide sensitized target cells. 2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. ImmunoL. 8:651, 1996; Alexander, J. et al., J. ImmunoL 159:4753, 1997). For example, in such methods peptides in incomplete Freund's adjuvant are administered subcutaneously to HILA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 36 5 1 Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen. 3) Demonstration of recall T cell responses from immune individuals who have been either effectively vaccinated and/or from chronically ill patients (see, e.g., Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Imnunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997). Accordingly, recall responses are detected by culturing PBL from subjects that have been exposed to the antigen due to disease and thus have generated an immune response "naturally", or from patients who were vaccinated against the antigen. PBL from subjects are cultured in vitro for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays including 5 1 Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release. V.)162P1E6' Transgenic Animals Nucleic acids that encode a 162P1 E6-related protein can also be used to generate either transgenic animals or "knock out" animals that, in turn, are useful in the development and screening of therapeutically useful reagents. In accordance with established techniques, cDNA encoding 162P1E6 can be used to clone genomic DNA that encodes 162PlE6. The cloned genomic sequences can then be used to generate transgenic animals containing cells that express DNA that encode 162PIE6. Methods for generating transgenic animals, particularly animals such as mice or rats, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 issued 12 April 1988, and 4,870,009 issued 26 September 1989. Typically, particular cells would be targeted for 162PIE6 transgene incorporation with tissue-specific enhancers. Transgenic animals that include a copy of a transgene encoding 162PIE6 can be used to examine the effect of increased expression of DNA that encodes 162P1E6. Such animals can be used as tester animals for reagents thought to confer protection from, for example, pathological conditions associated with its overexpression. In accordance with this aspect of the invention, an animal is treated with a reagent and a reduced incidence of a pathological condition, compared to untreated animals that bear the transgene, would indicate a potential therapeutic intervention for the pathological condition. Alternatively, non-human homologues of 162P1E6 can be used to construct a 162P1E6 "knock out" animal that has a defective or altered gene encoding 162P 1 E6 as a result of homologous recombination between the endogenous gene encoding 162PlE6 and altered genomic DNA encoding 162PIE6 introduced into an embryonic cell of the animal. For example, cDNA that encodes 162PIE6 can be used to clone genomic DNA encoding 162P1E6 in accordance with established techniques. A portion of the genomic DNA encoding 162P 1E6 can be deleted or replaced with another gene, such as a gene encoding a selectable marker that can be used to monitor integration. Typically, several kilobases of unaltered flanking DNA (both at the 5' and 3' ends) are included in the vector (see, e.g., Thomas and Capecchi, Cell, a:503 (1987) for a description of homologous recombination vectors). The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced DNA has homologously recombined with the endogenous DNA are selected (see, e.g., Li et al., Cell, 6:915 (1992)). The selected cells are then injected into a 37 blastocyst of an animal (e.g., a mouse or rat) to form aggregation chimeras (see, e.g., Bradley, in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, E. J. Robertson, ed. (IRL, Oxford, 1987), pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal, and the embryo brought to term to create a "knock out" animal. Progeny harboring the homologously recombined DNA in their germ cells can be identified by standard techniques and used to breed animals in which all cells of the animal contain the homologously recombined DNA. Knock out animals can be characterized, for example, for their ability to defend against certain pathological conditions or for their development of pathological conditions due to absence of a 162P1E6 polypeptide. VII.) Methods for the Detection of 162P1E6 Another aspect of the present invention relates to methods for detecting 162PIE6 polynucleotides and 162P IE6-related proteins, as well as methods for identifying a cell that expresses 162PIE6. The expression profile of 162P1E6 makes it a diagnostic marker for metastasized disease. Accordingly, the status of 162PIE6 gene products provides information useful for predicting a variety of factors including susceptibility to advanced stage disease, rate of progression, and/or tumor aggressiveness. As discussed in detail herein, the status of 162P1E6 gene products inpatient samples can be analyzed by a variety protocols that are well known in the art including immimohistochemical analysis, the variety of Northern blotting techniques including in situ hybridization, RT-PCR analysis (for example on laser capture micro-dissected samples), Western blot analysis and tissue array analysis. More particularly, the invention provides assays for the detection of 162P 1E6 polynucleotides in a. biological sample, such as serum, bone, prostate, and other tissues, urine, semen, cell preparations, and the like. Detectable 162PIE6 polynucleotides include, for example, a 162PlE6 gene or fragment thereof; 162P1E6 mRNA, alternative splice variant 162P1E6 mRNAs, and recombinant DNA or RNA molecules that contain a 162P1E6 polynucleotide. A number of methods for amplifying and/or detecting the presence of 162P IE6 polynucleotides are well known in the art and can be employed in the practice of this aspect of the invention. In one embodiment, a method for detecting a 162PE6 mRNA in a biological sample comprises producing cDNA from the sample by reverse transcription using at least one primer; amplifying the cDNA so produced using a 162P 1E6 polynucleotides as sense and antisense primers to amplify 162P 1E6 cDNAs therein; and detecting the presence of the amplified 162P1E6 cDNA. Optionally, the sequence of the amplified 162P1E6 cDNA can be determined. In another embodiment, a method of detecting a 162PIE6 gene in a biological sample comprises first isolating genomic DNA from the sample; amplifying the isolated genomic DNA using 162PIE6 polynucleotides as sense and antisense primers; and detecting the presence of the amplified 162PIE6 gene. Any number of appropriate sense and antisense probe combinations can be designed from a 162PIE6 nucleotide sequence (see, e.g., Figure 2) and used for this purpose. The invention also provides assays for detecting the presence of a 162P1E6 protein in a tissue or other biological sample such as serum, semen, bone, prostate, urine, cell preparations, and the like. Methods for detecting a 162PIE6-related protein are also well known and include, for example, immunoprecipitation, immunohistochemical analysis, Western blot analysis, molecular binding assays, ELISA, ELFA and the like. For example, a method of detecting the presence of a 162P 1E6-related protein in a biological sample comprises 38 first contacting the sample with a 162P1E6 antibody, a 162P1E6-reactive fragment thereof, or a recombinant protein containing an antigen binding region of a 162P1E6 antibody; and then detecting the binding of 162P 1E6-related protein in the sample. Methods for identifying a cell that expresses 162PlE6 are also within the scope of the invention. In one embodiment, an assay for identifying a cell that expresses a 162P1E6 gene comprises detecting the presence of 162PI E6 mRNA in the cell. Methods for the detection of particular mRNAs in cells are well known and include, for example, hybridization assays using complementary DNA probes (such as in situ hybridization using labeled 162P1E6 riboprobes, Northern blot and related techniques) and various nucleic acid amplification assays (such as RT-PCR using complementary primers specific for 162PIE6, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like). Alternatively, an assay for identifying a cell that expresses a 162P1E6 gene comprises detecting the presence of 162PIE6-related protein in the cell or secreted by the cell. Various methods for the detection of proteins are well known in the art and are employed for the detection of 162PIE6-related proteins and cells that express 162P1E6-related proteins. 162P lE6 expression analysis is also useful as a tool for identifying and evaluating agents that modulate 162P1E6 gene expression. For example, 162P1 E6 expression is significantly upregulated in prostate cancer, and is expressed in cancers of the tissues listed in Table I. Identification of a molecule or biological agent that inhibits 162P1E6 expression or over-expression in cancer cells is of therapeutic value. For example, such an agent can be identified by using a screen that quantifies 162P lE6 expression by RT-PCR, nucleic acid hybridization or antibody binding. VIII.) Methods for Monitoring the Status of 162PIE6-related Genes and Their Products Oncogenesis is known to be a multistep process where cellular growth becomes progressively dysregulated and cells progress from a normal physiological state to precancerous and then cancerous states (see, e.g., Alers et al., Lab Invest. 77(5): 437-438 (1997) and Isaacs et aL., Cancer Surv. 23: 19-32 (1995)). In this context, examining a biological sample for evidence of dysregulated cell growth (such as aberrant 162PlE6 expression in cancers) allows for early detection of such aberrant physiology, before a pathologic state such as cancer has progressed to a stage that therapeutic options are more limited and or the prognosis is worse. In such examinations, the status of 162PlE6 in a biological sample of interest can be compared, for example, to the status of 162PIE6 in a corresponding normal sample (e.g. a sample from that individual or alternatively another individual that is not affected by a pathology). An alteration in the status of 162P lE6 in the biological sample (as compared to the normal sample) provides evidence of dysregulated cellular growth. In addition to using a biological sample that is not affected by a pathology as a normal sample, one can also use a predetermined normative value such as a predetermined normal level of mRNA expression (see, e.g., Grever et aL., J. Comp. Neurol. 1996 Dec 9; 376(2): 306-14 and U.S. Patent No. 5,837,50 1) to compare 162P1E6 status in a sample. The term "status" in this context is used according to its art accepted meaning and refers to the condition or state of a gene and its products. Typically, skilled artisans use a number of parameters to evaluate the condition or state of a gene and its products. These include, but are not limited to the location of expressed gene products (including the location of 162P lE6 expressing cells) as well as the level, and biological activity of expressed gene products (such as 162P 1 E6 mRNA, polynucleotides and polypeptides). Typically, an alteration in the 39 status of 162P1E6 comprises a change in the location of 162P1E6 and/or 162PIE6 expressing cells and/or an increase in 162P1 E6 mRNA and/or protein expression. 162P IE6 status in a sample can be analyzed by a number of means well known in the art, including without limitation, immimohistochemical analysis, in situ hybridization, RT-PCR analysis on laser capture micro dissected samples, Western blot analysis, and tissue array analysis. Typical protocols for evaluating the status of a 162P IE6 gene and gene products are found, for example in Ausubel et al. eds., 1995, Current Protocols In Molecular Biology, Units 2 (Northern Blotting), 4 (Southern Blotting), 15 (Immunoblotting) and 18 (PCR Analysis). Thus, the status of 162PIE6 in a biological sample is evaluated by various methods utilized by skilled artisans including, but not limited to genomic Southern analysis (to examine, for example perturbations in a 162P1E6 gene), Northern analysis and/or PCR analysis of 162PlE6 mRNA (to examine, for example alterations in the polynucleotide sequences or expression levels of 162P1E6 mRNAs), and, Western and/or imunohistochemical analysis (to examine, for example alterations in polypeptide sequences, alterations in polypeptide localization within a sample, alterations in expression levels of 162PIE6 proteins and/or associations of 162P1E6 proteins with polypeptide binding partners). Detectable 162P1E6 polynucleotides include, for example, a 162PIE6 gene or fragment thereof, 162PIE6 mRNA, alternative splice variants, 162P1E6 mRNAs, and recombinant DNA or RNA molecules containing a 162PIE6 polynucleotide. The expression profile of 162PIE6 makes it a diagnostic marker for local and/or metastasized disease, and provides information on the growth or oncogenic potential of a biological sample. In particular, the status of 162PIE6 provides information useful for predicting susceptibility to particular disease stages, progression, and/or tumor aggressiveness. The invention provides methods and assays for determining 162P1E6 status and diagnosing cancers that express 162P1E6, such as cancers of the tissues listed in Table L For example, because 162PIE6 mRNA is so highly expressed in prostate and other cancers relative to normal prostate tissue, assays that evaluate the levels of 162P1E6 mRNA transcripts or proteins in a biological sample can be used to diagnose a disease associated with 162P1E6 dysregulation, and can provide prognostic information useful in defining appropriate therapeutic options. The expression status of 162P1E6 provides information including the presence, stage and location of dysplastic, precancerous and cancerous cells, predicting susceptibility to various stages of disease, and/or for gauging tumor aggressiveness. Moreover, the expression profile makes it useful as an imaging reagent for metastasized disease. Consequently, an aspect of the invention is directed to the various molecular prognostic and diagnostic methods for examining the status of 162P 1E6 in biological samples such as those from individuals suffering from, or suspected of suffering from a pathology characterized by dysregulated cellular growth, such as cancer. As described above, the status of 162PIE6 in a biological sample can be examined by a number of well-known procedures in the art. For example, the status of 162PIE6 in a biological sample taken from a specific location in the body can be examined by evaluating the sample for the presence or absence of 162P1E6 expressing cells (e.g. those that express 162P1E6 mRNAs or proteins). This examination can provide evidence of dysregulated cellular growth, for example, when 162P1E6-expressing cells are found in a biological sample that does not normally contain such cells (such as a lymph node), because such alterations in the status of 162PIE6 in a biological sample are often associated with dysregulated cellular growth. Specifically, one indicator of dysregulated cellular growth is the metastases of cancer cells from an organ of 40 origin (such as the prostate) to a different area of the body (such as a lymph node). In this context, evidence of dysregulated cellular growth is important for example because occult lymph node metastases can be detected in a substantial proportion of patients with prostate cancer, and such metastases are associated with known predictors of disease progression (see, e.g., Murphy et aL., Prostate 42(4): 3 15-317 (2000);Su et aL., Semin. Surg. Oncol. 18(1): 17-28 (2000) and Freeman et aL., J Urol 1995 Aug 154(2 Pt 1):474-8). In one aspect, the invention provides methods for monitoring 162P1E6 gene products by determining the status of 162P1E6 gene products expressed by cells from an individual suspected of having a disease associated with dysregulated cell growth (such as hyperplasia or cancer) and then comparing the status so determined to the status of 162P 1 E6 gene products in a corresponding normal sample. The presence of aberrant 162P1E6 gene products in the test sample relative to the normal sample provides an indication of the presence of dysregulated cell growth within the cells of the individual. In another aspect, the invention provides assays useful in determining the presence of cancer in an individual, comprising detecting a significant increase in 162P 1 E6 mRNA or protein expression in a test cell or tissue sample relative to expression levels in the corresponding normal cell or tissue. The presence of 162P 1 E6 mRNA can, for example, be evaluated in tissues including but not limited to those listed in Table I. The presence of significant 162P1E6 expression in any of these tissues is useful to indicate the emergence, presence and/or severity of a cancer, since the corresponding normal tissues do not express 162P1E6 mRNA or express it at lower levels. In a related embodiment, 162P I E6 status is determined at the protein level rather than at the nucleic acid level. For example, such a method comprises determining the level of 162P1E6 protein expressed by cells in a test tissue sample and comparing the level so determined to the level of 162P1E6 expressed in a corresponding normal sample. In one embodiment, the presence of 162P 1 E6 protein is evaluated, for example, using immunohistochemical methods. 162P1E6 antibodies or binding partners capable of detecting 162P1E6 protein expression are used in a variety of assay formats well known in the art for this purpose. In a further embodiment, one can evaluate the status of 162PIE6 nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules. These perturbations can include insertions, deletions, substitutions and the like. Such evaluations are useful because perturbations in the nucleotide and amino acid sequences are observed in a large number of proteins associated with a growth dysregulated phenotype (see, e.g., Marrogi et aL., 1999, J. Cutan. Pathol. 26(8):369-378). For example, a mutation in the sequence of 162P1E6 maybe indicative of the presence or promotion of a tumor. Such assays therefore have diagnostic and predictive value where a mutation in 162P1E6 indicates a potential loss of function or increase in tumor growth. A wide variety of assays for observing perturbations in nucleotide and amino acid sequences are well known in the art. For example, the size and structure of nucleic acid or amino acid sequences of 162P1E6 gene products are observed by the Northern, Southern, Western, PCR and DNA sequencing protocols discussed herein. In addition, other methods for observing perturbations in nucleotide and amino acid sequences such as single strand conformation polymorphism analysis are well known in the art (see, e.g., U.S. Patent Nos. 5,382,510 issued 7 September 1999, and 5,952,170 issued 17 January 1995). Additionally, one can examine the methylation status of a 162P1E6 gene in a biological sample. Aberrant demethylation and/or hypermethylation of CpG islands in gene 5' regulatory regions frequently occurs 41 in immortalized and transformed cells, and can result in altered expression of various genes.. For example, promoter hypermethylation of the pi-class glutathione S-transferase (a protein expressed in normal prostate but not expressed in >90% of prostate carcinomas) appears to permanently silence transcription of this gene and is the most frequently detected genomic alteration in prostate carcinomas (De Marzo et al., Am. J. Pathol. 155(6): 1985-1992 (1999)). In addition, this alteration is present in at least 70% of cases of high-grade prostatic intraepithelial neoplasia (PIN) (Brooks et al., Cancer Epidemiol. Biomarkers Prev., 1998, 7:53 1 536). In another example, expression of the LAGE-I tumor specific gene (which is not expressed in normal prostate but is expressed in 25-50% of prostate cancers) is induced by deoxy-azacytidine in lymphoblastoid cells, suggesting that tumoral expression is due to demethylation (Lethe et al., Int. J. Cancer 76(6): 903-908 (1998)). A variety of assays for examining methylation status of a gene are well known in the art. For example, one can utilize, in Southern hybridization approaches, methylation-sensitive restriction enzymes that cannot cleave sequences that contain methylated CpG sites to assess the methylation status of CpG islands. In addition, MSP (methylation specific PCR) can rapidly profile the methylation status of all the CpG sites present in a CpG island of a given gene. This procedure involves initial modification of DNA by sodium bisulfite (which will convert all unmethylated cytosines to uracil) followed by amplification using primers specific for methylated versus unmethylated DNA. Protocols involving methylation interference can also be found for example in Current Protocols In Molecular Biology, Unit 12, Frederick M. Ausubel et al. eds., 1995. Gene amplification is an additional method for assessing the status of 162P1E6. Gene amplification is measured in a sample directly, for example, by conventional Southern blotting or Northern blotting to quantitate the transcription of mRNA (Thomas, 1980, Proc. Natl. Acad. Sci. USA, 77:5201-5205), dot blotting (DNA analysis), or in situ hybridization, using an appropriately labeled probe, based on the sequences provided herein. Alternatively, antibodies are employed that recognize specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. The antibodies in turn are labeled and the assay carried out where the duplex is bound to a surface, so that upon the formation of duplex on the surface, the presence of antibody bound to the duplex can be detected. Biopsied tissue or peripheral blood can be conveniently assayed for the presence of cancer cells using for example, Northern, dot blot or RT-PCR analysis to detect 162P1E6 expression. The presence of RT-PCR amplifiable 162PIE6 mRNA provides an indication of the presence of cancer. RT-PCR assays are well known in the art. RT-PCR detection assays for tumor cells in peripheral blood are currently being evaluated for use in the diagnosis and management of a number of human solid tumors. In the prostate cancer field, these include RT PCR assays for the detection of cells expressing PSA and PSM (Verkaik et al., 1997, Urol. Res. 25:373-384; Ghossein et al., 1995, J. Clin. Oncol. 13:1195-2000; Heston et al., 1995, Clin. Chem. 41:1687-1688). A further aspect of the invention is an assessment of the susceptibility that an individual has for developing cancer. In one embodiment, a method for predicting susceptibility to cancer comprises detecting 162P1E6 mRNA or 162P1E6 protein in a tissue sample, its presence indicating susceptibility to cancer, wherein the degree of 162P1E6 mRNA expression correlates to the degree of susceptibility. In a specific embodiment, the presence of 162P1E6 in prostate or other tissue is examined, with the presence of 162P1E6 in the sample providing an indication of prostate cancer susceptibility (or the emergence or existence of a prostate tumor). Similarly, one can evaluate the integrity 162P1E6 nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and 42 the like. The presence of one or more perturbations in 162P 1E6 gene products in the sunple is an indication of cancer susceptibility (or the emergence or existence of a tumor). The invention also comprises methods for gauging tumor aggressiveness. In one embodiment, a method for gauging aggressiveness of a tumor comprises determining the level of 162P1E6 mRNA or 162P1E6 protein expressed by tumor cells, comparing the level so determined to the level of 162P1E6 mRNA or 162P1E6 protein expressed in a corresponding normal tissue taken from the same individual or a normal tissue reference sample, wherein the degree of 162P1E6 mRNA or 162P1E6 protein expression in the tumor sample relative to the normal sample indicates the degree of aggressiveness. In a specific embodiment, aggressiveness of a tumor is evaluated by determining the extent to which 162P1E6 is expressed in the tumor cells, with higher expression levels indicating more aggressive tumors. Another embodiment is the evaluation of the integrity of 162P1E6 nucleotide and amino acid sequences in a biological sample, in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like. The presence of one or more perturbations indicates more aggressive tumors. Another embodiment of the invention is directed to methods for observing the progression of a malignancy in an individual over time. In one embodiment, methods for observing the progression of a malignancy in an individual over time comprise determining the level of 162P1E6 mRNA or 162P1E6 protein expressed by cells in a sample of the tumor, comparing the level so determined to the level of 162P1E6 mRNA or 162P 1E6 protein expressed in an equivalent tissue sample taken from the same individual at a different time, wherein the degree of 162P1E6 mRNA or 162P1E6 protein expression in the tumor sample over time provides information on the progression of the cancer. In a specific embodiment, the progression of a cancer is evaluated by determining 162P1E6 expression in the tumor cells over time, where increased expression over time indicates a progression of the cancer. Also, one can evaluate the integrity 162P1E6 nucleotide and amino acid sequences in a biological sample in order to identify perturbations in the structure of these molecules such as insertions, deletions, substitutions and the like, where the presence of one or more perturbations indicates a progression of the cancer. The above diagnostic approaches can be combined with any one of a wide variety of prognostic and diagnostic protocols known in the art. For example, another embodiment of the invention is directed to methods for observing a coincidence between the expression of 162P1E6 gene and 162P1E6 gene products (or perturbations in 162P1E6 gene and 162PIE6 gene products) and a factor that is associated with malignancy, as a means for diagnosing and prognosticating the status of a tissue sample. A wide variety of factors associated with malignancy can be utilized, such as the expression of genes associated with malignancy (e.g. PSA, PSCA and PSM expression for prostate cancer etc.) as well as gross cytological observations (see, e.g., Bocking et al., 1984, Anal. Quant. Cytol. 6(2):74-88; Epstein, 1995, Hum. Pathol. 26(2):223-9; Thorson et al., 1998, Mod. Pathol. 11(6):543-51; Baisden et al., 1999, Am. J. Surg. Pathol. 23(8):918-24). Methods for observing a coincidence between the expression of 162P1E6 gene and 162P1E6 gene products (or perturbations in 162P1E6 gene and 162P1E6 gene products) and another factor that is associated with malignancy are useful, for example, because the presence of a set of specific factors that coincide with disease provides information crucial for diagnosing and prognosticating the status of a tissue sample. In one embodiment, methods for observing a coincidence between the expression of 162P 1E6 gene and 162P1E6 gene products (or perturbations in 162P1E6 gene and 162P1E6 gene products) and another factor associated with malignancy entails detecting the overexpression of 162P1E6 mRNA or protein in a tissue sample, 43 detecting the overexpression of PSA mRNA or protein in a tissue sample (or PSCA or PSM expression), and observing a coincidence of 162PIE6 mRNA or protein and PSA mRNA or protein overexpression (or PSCA or PSM expression). In a specific embodiment, the expression of 162PIE6 and PSA mRNA in prostate tissue is examined, where the coincidence of 162PIE6 and PSA mRNA overexpression in the sample indicates the existence of prostate cancer, prostate cancer susceptibility or the emergence or status of a prostate tumor. Methods for detecting and quantifying the expression of 162P1E6 mRNA or protein are described herein, and standard nucleic acid and protein detection and quantification technologies are well known in the art. Standard methods for the detection and quantification of 162P1 E6 mRNA include in situ hybridization using labeled 162P1E6 niboprobes, Northern blot and related techniques using 162P1E6 polynucleotide probes, RT PCR analysis using primers specific for 162PIE6, and other amplification type detection methods, such as, for example, branched DNA, SISBA, TMA and the like. In a specific embodiment, semi-quantitative RT-PCR is used to detect and quantify 162PIE6 mRNA expression. Any number of primers capable of amplifying 162P1E6 can be used for this purpose, including but not limited to the various primer sets specifically described herein. In a specific embodiment, polyclonal or monoclonal antibodies specifically reactive with the wild-type 162PIE6 protein can be used in an immunohistochemical assay of biopsied tissue. IX.)Identification of Molecules That Interact With 162P1E6 The 162P1E6 protein and nucleic acid sequences disclosed herein allow a skilled artisan to identify proteins, small molecules and other agents that interact with 162P 1E6, as well as pathways activated by 162P1E6 via any one of a variety of art accepted protocols. For example, one can utilize one of the so-called interaction trap systems (also referred to as the "two-hybrid assay"). In such systems, molecules interact and reconstitute a transcription factor which directs expression of a reporter gene, whereupon the expression of the reporter gene is assayed. Other systems identify protein-protein interactions in vivo through reconstitution of a eukaryotic transcriptional activator, see, e.g., U.S. Patent Nos. 5,955,280 issued 21 September 1999, 5,925,523 issued 20 July 1999, 5,846,722 issued 8 December 1998 and 6,004,746 issued 21 December 1999. Algorithms are also available in the art for genome-based predictions of protein function (see, e.g., Marcotte, el al., Nature 402: 4 November 1999, 83-86). Alternatively one can screen peptide libraries to identify molecules that interact with 162P1E6 protein sequences. In such methods, peptides that bind to 162P1E6 are identified by screening libraries that encode a random or controlled collection of amino acids. Peptides encoded by the libraries are expressed as fusion proteins of bacteriophage coat proteins, the bacteriophage particles are then screened against the 162P1E6 protein(s). Accordingly, peptides having a wide variety of uses, such as therapeutic, prognostic or diagnostic reagents, are thus identified without any prior information on the structure of the expected ligand or receptor molecule. Typical peptide libraries and screening methods that can be used to identify molecules that interact with 162P1E6 protein sequences are disclosed for example in U.S. Patent Nos. 5,723,286 issued 3 March 1998 and 5,733,731 issued 31 March 1998. Alternatively, cell lines that express 162PIE6 are used to identify protein-protein interactions mediated by 162P1E6. Such interactions can be examined using immunoprecipitation techniques (see, e.g., Hamilton B.J., et aL. Biochem. Biophys. Res. Commun. 1999, 261:646-51). 162P1E6 protein can be 44 immunoprecipitated from 162P1E6-expressing cell lines using anti-162PlE6 antibodies. Alternatively, antibodies against His-tag can be used in a cell line engineered to express fusions of 162PlE6 and a His-tag (vectors mentioned above). The immunoprecipitated complex can be examined for protein association by procedures such as Western blotting, "S-methionine labeling of proteins, protein microsequencing, silver staining and two-dimensional gel electrophoresis. Small molecules and ligands that interact with 162PIE6 can be identified through related embodiments of such screening assays. For example, small molecules can be identified that interfere with protein function, including molecules that interfere with 162PIE6's ability to mediate phosphorylation and de-phosphorylation, interaction with DNA or RNA molecules as an indication of regulation of cell cycles, second messenger signaling or tumorigenesis. Similarly, small molecules that modulate 162PlE6-related ion channel, protein pump, or cell communication functions are identified and used to treat patients that have a cancer that expresses 162P I E6 (see, e.g., Hille, B., Ionic Channels of Excitable Membranes 2 'd Ed., Sinauer Assoc., Sunderland, MA, 1992). Moreover, ligands that regulate 162P I E6 function can be identified based on their ability to bind 162P1E6 and activate a reporter construct. Typical methods are discussed for example in U.S. Patent No. 5,928,868 issued 27 July 1999, and include methods for forming hybrid ligands in which at least one ligand is a small molecule. In an illustrative embodiment, cells engineered to express a fusion protein of 162P1E6 and a DNA-binding protein are used to co-express a fusion protein of a hybrid ligand/small molecule and a cDNA library transcriptional activator protein. The cells further contain a reporter gene, the expression of which is conditioned on the proximity of the first and second fusion proteins to each other, an event that occurs only if the hybrid ligand binds to target sites on both hybrid proteins. Those cells that express the reporter gene are selected and the unknown small molecule or the unknown ligand is identified. This method provides a means of identifying modulators which activate or inhibit 162P1E6. An embodiment of this invention comprises a method of screening for a molecule that interacts with a 162PIE6 amino acid sequence shown in Figure 2 or Figure 3, comprising the steps of contacting a population of molecules with a 162P1E6 amino acid sequence, allowing the population of molecules and the 162P1 E6 amino acid sequence to interact under conditions that facilitate an interaction, determining the presence of a molecule that interacts with the 162P1E6 amino acid sequence, and then separating molecules that do not interact with the 162P 1 E6 amino acid sequence from molecules that do. In a specific embodiment, the method further comprises purifying, characterizing and identifying a molecule that interacts with the 162P1E6 amino acid sequence. The identified molecule can be used to modulate a function performed by 162P1E6. In a preferred embodiment, the 162P1E6 amino acid sequence is contacted with a library of peptides. X.) Therapeutic Methods and Compositions The identification of 162PIE6 as a protein that is normally expressed in a restricted set of tissues, but which is also expressed in prostate and other cancers, opens a number of therapeutic approaches to the treatment of such cancers. As contemplated herein, 162PIE6 functions as a transcription factor involved in activating tumor-promoting genes or repressing genes that block tumorigenesis. 45 Accordingly, therapeutic approaches that inhibit the activity of a 162P1E6 protein are useful for patients suffering from a cancer that expresses 162P1E6. These therapeutic approaches generally fall into two classes. One class comprises various methods for inhibiting the binding or association of a 162P1E6 protein with its binding partner or with other proteins. Another class comprises a variety of methods for inhibiting the transcription of a 162P1E6 gene or translation of 162P1E6 mRNA. X.A.) Anti-Cancer Vaccines The invention provides cancer vaccines comprising a 162P1E6-related protein or 162P1E6-related nucleic acid. In view of the expression of 162P1E6, cancer vaccines prevent and/or treat 162P1E6-expressing cancers with minimat or no effects on non-target tissues. The use of a tumor antigen in a vaccine that generates humoral and/or cell-mediated immune responses as anti-cancer therapy is well known in the art and has been employed in prostate cancer using human PSMA and rodent PAP immiunogens (Hodge et al., 1995, Int. J. Cancer 63:231-237; Fong et al., 1997, J. Immunol. 159:3113-3117). Such methods can be readily practiced by employing a 162P1E6-related protein, or a 162P1E6 encoding nucleic acid molecule and recombinant vectors capable of expressing and presenting the 162P1E6 immunogen (which typically comprises a number of antibody or T cell epitopes). Skilled artisans understand that a wide variety of vaccine systems for delivery of immunoreactive epitopes are known in the art (see, e.g., Heryln et al., Ann Med 1999 Feb 31(l):66-78; Maruyama et al., Cancer Immunol Immunother 2000 Jun 49(3):123-32) Briefly, such methods of generating an immune response (e.g. humoral and/or cell-mediated) in a mammal, comprise the steps of: exposing the mammal's immune system to an immunoreactive epitope (e.g. an epitope present in a 162P1E6 protein shown in Figure 3 or analog or homolog thereof) so that the mammal generates an immune response that is specific for that epitope (e.g. generates antibodies that specifically recognize that epitope). In a preferred method, a 162P1E6 immunogen contains a biological motif, see e.g., Tables V-XVIU and XXII-LI, or a peptide of a size range from 162P1E6 indicated in Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9. The entire 162P1E6 protein, imminogenic regions or epitopes thereof can be combined and delivered by various means. Such vaccine compositions can include, for example, lipopeptides (e.g.,Vitiello, A. et aL., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et aL., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et aL., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Na. Acad. Sci. US.A. 85:5409-5413, 1988; Tam, J.P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et aL, In. Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et aL, Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148,1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et aL, Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., 46 Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sein. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used. In patients with 162P1E6-associated cancer, the vaccine compositions of the invention can also be used in conjunction with other treatments used for cancer, e.g., 'surgery, chemotherapy, drug therapies, radiation therapies, etc. including use in combination with immune adjuvants such as IL-2, IL-I 2, GM-CSF, and the like. Cellular Vaccines: CTL epitopes can be determined using specific algorithms to identify peptides within 162P 1E6 protein that bind corresponding HLA alleles (see e.g., Table IV; Epimer T M and Epimatrix T M , Brown University (URL www.brown.edu/ResearchfB-HIVLab/epimatriepimatrix.html); and, BIMAS, (URL bimas.dcrt.nih.gov/; SYFPEITHI at URL syfpeithi.bmi-heidelberg.com/). In a preferred embodiment, a 162P1E6 immunogen contains one or more amino acid sequences identified using techniques well known in the art, such as the sequences shown in Tables V-XVIII and XXII-LI or a peptide of 8, 9, 10 or 11 amino acids specified by an HLA Class I motif/supermotif (e.g., Table IV (A), Table IV (D), or Table IV (E)) and/or a peptide of at least 9 amino acids that comprises an HLA Class II motif/supermotif (e.g., Table IV (B) or Table IV (C)). As is appreciated in the art, the HLA Class I binding groove is essentially closed ended so that peptides of only a particular size range can fit into the groove and be bound, generally HLA Class I epitopes are 8, 9, 10, or 11 amino acids long. In contrast, the HLA Class II binding groove is essentially open ended; therefore a peptide of about 9 or more amino acids can be bound by an HLA Class II molecule. Due to the binding groove differences between HLA Class I and II, HLA Class I motifs are length specific, i.e., position two of a Class I motif is the second amino acid in an amino to carboxyl direction of the peptide. The amino acid positions in a Class II motif are relative only to each other, not the overall peptide, i.e., additional amino acids can be attached to the amino and/or carboxyl termini of a motif-bearing sequence. HLA Class II epitopes are often 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 amino acids long, or longer than 25 amino acids. Antibody-based Vaccines A wide variety of methods for generating an immune response in a mammal are known in the art (for example as the first step in the generation of hybridomas). Methods of generating an immune response in a mammal comprise exposing the mammal's immune system to an immunogenic epitope on a protein (e.g. a 162P1E6 protein) so that an immune response is generated. A typical embodiment consists of a method for generating an immune response to 162P1E6 in a host, by contacting the host with a sufficient amount of at least one 162P1E6 B cell or cytotoxic T-cell epitope or analog thereof; and at least one periodic interval thereafter re-contacting the host with the 162P1E6 B cell or cytotoxic T-cell epitope or analog thereof. A specific embodiment consists of a method of generating an immune response against a 162P 1 E6-related protein or a man-made multiepitopic peptide comprising: administering 162P1E6 immunogen (e.g. a 162P1E6 protein or a peptide fragment thereof, a 162P1E6 fusion protein or analog etc.) in a vaccine 47 preparation to a human or another mammal. Typically, such vaccine preparations further contain a suitable adjuvant (see, e.g., U.S. Patent No. 6,146,635) or a universal helper epitope such as a PADRETm peptide (Epimmune Inc., San Diego, CA; see, e.g., Alexander et aL., J. Immunol. 2000 164(3); 164(3): 1625-1633; Alexander et al., Immunity 1994 1(9): 751-761 and Alexander et aL., Immunol. Res. 1998 18(2): 79-92). An alternative method comprises generating an immune response in an individual against a 162PIE6 immunogen by: administering in vivo to muscle or skin of the individual's body a DNA molecule that comprises a DNA sequence that encodes a 162P1E6 immunogen, the DNA sequence operatively linked to regulatory sequences which control the expression of the DNA sequence; wherein the DNA molecule is taken up by cells, the DNA sequence is expressed in the cells and an immune response is generated against the immunogen (see, e.g., U.S. Patent No. 5,962,428). Optionally a genetic vaccine facilitator such as anionic lipids; saponins; lectins; estrogenic compounds; hydroxylated lower alkyls; dimethyl sulfoxide; and urea is also administered. In addition, an antiidiotypic antibody can be administered that mimics 162P1E6, in order to generate a response to the target antigen. Nucleic Acid Vaccines: Vaccine compositions of the invention include nucleic acid-mediated modalities. DNA or RNA that encode protein(s) of the invention can be administered to a patient. Genetic immunization methods can be employed to generate prophylactic or therapeutic humoral and cellular immune responses directed against cancer cells expressing 162PIE6. Constructs comprising DNA encoding a 162P1E6-related protein/immunogen and appropriate regulatory sequences can be injected directly into muscle or skin of an individual, such that the cells of the muscle or skin take-up the construct and express the encoded 162P1E6 protein/immunogen. Alternatively, a vaccine comprises a 162P1E6-related protein. Expression of the 162PlE6-related protein immunogen results in the generation of prophylactic or therapeutic humoral and cellular immunity against cells that bear a 162P1E6 protein. Various prophylactic and therapeutic genetic immunization techniques known in the art can be used (for review, see information and references published at Internet address www.genweb.com). Nucleic acid-based delivery is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687). For therapeutic or prophylactic immunization purposes, proteins of the invention can be expressed via viral or bacterial vectors. Various viral gene delivery systems that can be used in the practice of the invention include, but are not limited to, vaccinia, fowlpox, canarypox, adenovirus, influenza, poliovirus, adeno-associated virus, lentivirus, and sindbis virus (see, e.g., Restifo, 1996, Curr. Opin. Immunol. 8:658-663; Tsang et aL. LNatl. Cancer Inst, 87:982-990 (1995)). Non-viral delivery systems can also be employed by introducing naked DNA encoding a 162PIE6-related protein into the patient (e.g., intramuscularly or intradermally) to induce an anti tumor response. Vaccinia virus is used, for example, as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host, the recombinant vaccinia virus expresses the protein immunogenic peptide, and thereby elicits a host immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille 48 Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein. Thus, gene delivery systems are used to deliver a 162P1E6-related nucleic acid molecule. In one embodiment, the full-length human 162P1E6 cDNA is employed. In another embodiment, 162PI E6 nucleic acid molecules encoding specific cytotoxic T lymphocyte (CTL) and/or antibody epitopes are employed. Ex Vivo Vaccines Various ex vivo strategies can also be employed to generate an immune response. One approach involves the use of antigen presenting cells (APCs) such as dendritic cells (DC) to present 162P1E6 antigen to a patient's immune system. Dendritic cells express MHC class I and I molecules, B7 co-stimulator, and IL-12, and are thus highly specialized antigen presenting cells. In prostate cancer, autologous dendritic cells pulsed with peptides of the prostate-specific membrane antigen (PSMA) are being used in a Phase I clinical trial to stimulate prostate cancer patients' immune systems (Tjoa et al., 1996, Prostate 28:65-69; Murphy et al., 1996, Prostate 29:371-380). Thus, dendritic cells can be used to present 162P1E6 peptides to T cells in the context of MHC class I or I molecules. In one embodiment, autologous dendritic cells are pulsed with 162PI E6 peptides capable of binding to MHC class I and/or class [I molecules.. In another embodiment, dendritic cells are pulsed with the complete 162P1E6 protein. Yet another embodiment involves engineering the overexpression of a 162P1E6 gene in dendritic cells using various implementing vectors known in the art, such as adenovirus (Arthur et al., 1997, Cancer Gene Ther. 4:17-25), retrovirus (Henderson et al., 1996, Cancer Res. 56:3763-3770), lentivirus, adeno-associated virus, DNA transfection (Ribas et al., 1997, Cancer Res. 57:2865-2869), or tumor-derived RNA transfection (Ashley et al., 1997, J. Exp. Med. 186:1177-1182). Cells that express 162P1E6 can also be engineered to express immune modulators, such as GM-CSF, and used as immunizing agents. X.B.) 162P1E6 as a Target for Antibody-based Therapy 162P1E6 is an attractive target for antibody-based therapeutic strategies. A number of antibody strategies are known in the art for targeting both extracellular and intracellular molecules (see, e.g., complement and ADCC mediated killing as well as the use of intrabodies). Because 162P1E6 is expressed by cancer cells of various lineages relative to corresponding normal cells, systemic administration of 162P1 E6 immunoreactive compositions are prepared that exhibit excellent sensitivity without toxic, non-specific and/or non-target effects caused by binding of the immunoreactive composition to non-target organs and tissues. Antibodies specifically reactive with domain of 162PIE6 are useful to treat 162P1E6-expressing cancers systemically, either as conjugates with a toxin or therapeutic agent, or as naked antibodies capable of inhibiting cell proliferation or function. 162P1E6 antibodies can be introduced into a patient such that the antibody binds to 162P1E6 and modulates a function, such as an interaction with a binding partner, and consequently mediates destruction of the tumor cells and/or inhibits the growth of the tumor cells. Mechanisms by which such antibodies exert a therapeutic effect can include complement-mediated cytolysis, antibody-dependent cellular cytotoxicity, modulation of the physiological function of 162P 1 E6, inhibition of ligand binding or signal transduction 49 pathways, modulation of tumor cell differentiation, alteration of tumor angiogenesis factor profiles, and/or apoptosis. Those skilled in the art understand that antibodies can be used to specifically target and bind immunogenic molecules such as an immunogenic region of a 162P1E6 sequence shown in Figure 2 or Figure 3. In addition, skilled artisans understand that it is routine to conjugate antibodies to cytotoxic agents (see, e.g., Slevers et al. Blood 93:113678-3684 (June 1, 1999)). When cytotoxic and/or therapeutic agents are delivered directly to cells, such as by conjugating them to antibodies specific for a molecule expressed by that cell (e.g. 162P1E6), the cytotoxic agent will exert its known biological effect (i.e. cytotoxicity) on those cells. A wide variety of compositions and methods for using antibody-cytotoxic agent conjugates to kill cells are known in the art. In the context of cancers, typical methods entail administering to an animal having a tumor a biologically effective amount of a conjugate comprising a selected cytotoxic and/or therapeutic agent linked to a targeting agent (e.g. an anti-162PIE6 antibody) that binds to a marker (e.g. 162P1E6) expressed, accessible to binding or localized on the cell surfaces. A typical embodiment is a method of delivering a cytotoxic and/or therapeutic agent to a cell expressing 162P1E6, comprising conjugating the cytotoxic agent to an antibody that immunospecifically binds to a 162P1E6 epitope, and, exposing the cell to the antibody-agent conjugate. Another illustrative embodiment is a method of treating an individual suspected of suffering from metastasized cancer, comprising a step of administering parenterally to said individual a pharmaceutical composition comprising a therapeutically effective amount of an antibody conjugated to a cytotoxic and/or therapeutic agent. Cancer immunotherapy using anti-162P1E6 antibodies can be done in accordance with various approaches that have been successfully employed in the treatment of other types of cancer, including but not limited to colon cancer (Arlen et al, 1998, Crit. Rev. Immunol. 18:133-138), multiple myeloma (Ozaki et al., 1997, Blood 90:3179-3186, Tsunenari et al, 1997, Blood 90:2437-2444), gastric cancer (Kasprzyk et al, 1992, Cancer Res. 52:2771-2776), B-cell lymphoma (Funakoshi et al., 1996, J. Immunother. Emphasis Tumor Immunol. 19:93-101), leukemia (Zhong et al, 1996, Leuk. Res. 20:581-589), colorectal cancer (Moun et aL., 1994, Cancer Res. 54:6160-6166; Velders et al, 1995, Cancer Res. 55:4398-4403), and breast cancer (Shepard et al., 1991, J. Clin. Immunol. 11:117-127). Some therapeutic approaches involve conjugation of naked antibody to a toxin or radioisotope, such as the conjugation of Y9 or Im13 to anti-CD20 antibodies (e.g., ZevalinT', IDEC Pharmaceuticals Corp. or BexxarTM, Coulter Pharmaceuticals), while others involve co administration of antibodies and other therapeutic agents, such as Herceptinrm (trastuzumab) with paclitaxel (Genentech, Inc.). The antibodies can be conjugated to a therapeutic agent To treat prostate cancer, for example, 162P1E6 antibodies can be administered in conjunction with radiation, chemotherapy or hormone ablation. Also, antibodies can be conjugated to a toxin such as calicheamicin (e.g., MylotargTm, Wyeth Ayerst, Madison, NJ, a recombinant humanized IgG 4 kappa antibody conjugated to antitumor antibiotic calicheamicin) or a maytansinoid (e.g., taxane-based Tumor-Activated Prodrug, TAP, platform, ImmunoGen, Cambridge, MA, also see e.g., US Patent 5,416,064). Although 162PlE6 antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who 50 have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Fan et al. (Cancer Res. 53:4637-4642, 1993), Prewett et al. (International J. of Onco. 9:217-224, 1996), and Hancock et al. (Cancer Res. 51:4575-4580, 1991) describe the use of various antibodies together with chemotherapeutic agents. Although 162P 1 E6 antibody therapy is useful for all stages of cancer, antibody therapy can be particularly appropriate in advanced or metastatic cancers. Treatment with the antibody therapy of the invention is indicated for patients who have received one or more rounds of chemotherapy. Alternatively, antibody therapy of the invention is combined with a chemotherapeutic or radiation regimen for patients who have not received chemotherapeutic treatment. Additionally, antibody therapy can enable the use of reduced dosages of concomitant chemotherapy, particularly for patients who do not tolerate the toxicity of the chemotherapeutic agent very well. Cancer patients can be evaluated for the presence and level of 162P1E6 expression, preferably using immunohistochemical assessments of tumor tissue, quantitative 162PIE6 imaging, or other techniques that reliably indicate the presence and degree of 162P1E6 expression. Immunohistochemical analysis of tumor biopsies or surgical specimens is preferred for this purpose. Methods for immunohistochemical analysis of tumor tissues are well known in the art. Anti-162P1E6 monoclonal antibodies that treat prostate and other cancers include those that initiate a potent immune response against the tumor or those that are directly cytotoxic. In this regard, anti-162P1E6 monoclonal antibodies (mAbs) can elicit tumor cell lysis by either complement-mediated or antibody dependent cell cytotoxicity (ADCC) mechanisms, both of which require an intact Fc portion of the immunoglobulin molecule for interaction with effector cell Fc receptor sites on complement proteins. In addition, anti-162P1E6 mAbs that exert a direct biological effect on tumor growth are useful to treat cancers that express 162PIE6. Mechanisms by which directly cytotoxic mAbs act include: inhibition of cell growth, modulation of cellular differentiation, modulation of tumor angiogenesis factor profiles, and the induction of apoptosis. The mechanism(s) by which a particular anti-162P1E6 mAb exerts an anti-tumor effect is evaluated using any number of in vitro assays that evaluate cell death such as ADCC, ADMMC, complement mediated cell lysis, and so forth, as is generally known in the art. In some patients, the use of murine or other non-human monoclonal antibodies, or human/mouse chimeric mAbs can induce moderate to strong immune responses against the non-human antibody. This can result in clearance of the antibody from circulation and reduced efficacy. In the most severe cases, such an immune response can lead to the extensive formation of immune complexes which, potentially, can cause renal failure. Accordingly, preferred monoclonal antibodies used in the therapeutic methods of the invention are those that are either fully human or humanized and that bind specifically to the target 162P I E6 antigen with high affinity but exhibit low or no antigenicity in the patient Therapeutic methods of the invention contemplate the administration of single anti-162P IE6 mAbs as well as combinations, or cocktails, of different mAbs. Such mAb cocktails can have certain advantages inasmuch as they contain mAbs that target different epitopes, exploit different effector mechanisms or combine directly cytotoxic mAbs with mAbs that rely on immune effector functionality. Such mAbs in combination can exhibit synergistic therapeutic effects. In addition, anti-162P1E6 mAbs can be administered 51 concomitantly with other therapeutic modalities, including but not limited to various chemotherapeutic agents, androgen-blockers, immune modulators (e.g., IL-2, GM-CSF), surgery or radiation. The anti 162P1E6 mAbs are administered in their "naked" or unconjugated form, or can have a therapeutic agent(s) conjugated to them. Anti-I 62P1E6 antibody formulations are administered via any route capable of delivering the antibodies to a tumor cell. Routes of administration include, but are not limited to, intravenous, intraperitoneal, intramuscular, intratumor, intradermal, and the like. Treatment generally involves repeated administration of the anti-162P1E6 antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1, .2,.3, .4, .5,.6, .7,.8,.9., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, or 25 mg/kg body weight. In general, doses in the range of 10-1000 mg mAb per week are effective and well tolerated. Based on clinical experience with the Herceptin T m mAb in the treatment of metastatic breast cancer, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti-162PIE6 mAb preparation represents an acceptable dosing regimen. Preferably, the initial loading dose is administered as a 90 minute or longer infusion. The periodic maintenance dose is administered as a 30 minute or longer infusion, provided the initial dose was well tolerated. As appreciated by those of skill in the art, various factors can influence the ideal dose regimen in a particular case. Such factors include, for example, the binding affinity and half life of the Ab or mAbs used, the degree of 162PIE6 expression in the patient, the extent of circulating shed 162P1E6 antigen, the desired steady-state antibody concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient Optionally, patients should be evaluated for the levels of 162PIE6 in a given sample (e.g. the levels of circulating 162P1E6 antigen and/or 162P1E6 expressing cells) in order to assist in the determination of the most effective dosing regimen, etc. Such evaluations are also used for monitoring purposes throughout therapy, and are useful to gauge therapeutic success in combination with the evaluation of other parameters (for example, urine cytology and/ohn mmunoCyt levels in bladder cancer therapy, or by analogy, serum PSA levels in prostate cancer therapy). Anti-idiotypic anti-162P1E6 antibodies can also be used in anti-cancer therapy as a vaccine for inducing an immune response to cells expressing a 162P1E6-related protein. In particular, the generation of anti-idiotypic antibodies is well known in the art; this methodology can readily be adapted to generate anti idiotypic anti-162PIE6 antibodies that mimic an epitope on a 162P1E6-related protein (see, for example, Wagner et aL., 1997, Hybridoma 16: 33-40; Foon et al., 1995, J. Clin. Invest. 96:334-342; Herlyn et al., 1996, Cancer Immunol. Immunother. 43:65-76). Such an anti-idiotypic antibody can be used in cancer vaccine strategies. X.C.) 162P1E6 as a Target for Cellular Immune Responses Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more HLA-binding peptides as described herein are further embodiments of the invention. Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. 52 Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis. Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P 3 CSS). Moreover, an adjuvant such as a synthetic cytosine-phosphorothiolated-guanine-containing (CpG) oligonucleotides has been found to increase CTL responses 10- to 100-fold. (see, e.g. Davila and Celis, J. Immunol. 165:539-547 (2000)) Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later development of cells that express or overexpress 162P 1E6 antigen, or derives at least some therapeutic benefit when the antigen was tumor associated. In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses directed to the target antigen. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross reactive HTL epitope such as PADRET" (Epimmune, San Diego, CA) molecule (described e.g., in U.S. Patent Number 5,736,142). A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention, or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo. Vaccine compositions, either DNA- or peptide-based, can also be administered in vivo in combination with dendritic cell mobilization whereby loading of dendritic cells occurs in vivo. Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles be balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived. 53 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one tumor associated antigen (TAA). For HLA Class I a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see, e.g., Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs. 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an ICso of 500 nM or less, often 200 nM or less; and for Class II an ICs 0 of 1000 nM or less. 3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage. 4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope. 5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise B cell, HLA class I and/or HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties. 6.) If a polyepitopic protein is created, or when creating a minigene, an objective is to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed. 7.) Where the sequences of multiple variants of the same target protein are present, potential peptide epitopes can also be selected on the basis of their conservancy. For example, a criterion for conservancy may define that the entire sequence of an HLA class I binding peptide or the entire 9-mer core of a class II binding peptide be conserved in a designated percentage of the sequences evaluated for a specific protein antigen. 54 X.C.1. Minigene Vaccines A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention. The use of multi-epitope minigenes is described below and in, Ishioka et al., J. Immunol. 162:3915 3925, 1999; An, L. and Whitton, J. L., J Virol. 71:2292, 1997; Thomson, S. A. et al., J Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et aL., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotif- and/or motif-bearing epitopes derived 162P 1 E6, the PADRE® universal helper T cell epitope or multiple HTL epitopes from 162P1 E6, (see e.g., Tables V-XVIR and XX11 to LI), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs. The immunogenicity of a multi-epitopic minigene can be confirmed in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA encoded epitopes in vivo can be correlated with the in vitro responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes. For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, antibody epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention. The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector. Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an E. coli origin of replication; and an E. coli selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences. 55 Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression. Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate E. coli strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank. In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the imminogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity. In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytoldne-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (PADRE
T
", Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class T1 pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-p) may be beneficial in certain diseases. Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in E. coli, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well-known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods. Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffer saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, Blo Techniques 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat 'l Acad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds 56 (PING) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types. Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasinid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct in vitro transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting faces) . These cells are then chromium-51 ('Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 5t Cr release, indicates both production of, and HLA presentation of, minigene encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity. In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (i.p.) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, 5 'Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene encoded epitopes, demonstrates DNA vaccine function for in vivo induction of CTLs. Immunogenicity of HTL epitopes is confirmed in transgenic mice in an analogous manner. Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles. Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia. X.C.2. Combinations of CTL Peptides with Helper Peptides Vaccine compositions comprising CTL peptides of the invention can be modified, e.g., analoged, to provide desired attributes, such as improved serum half life, broadened population coverage or enhanced immunogenicity. For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homo-oligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or 57 more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated. In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in a majority of a genetically diverse population. This can be accomplished by selecting peptides that bind to many, most, or all of the HLA class II molecules. Examples of such amino acid bind many HLA Class Il molecules include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE; SEQ ID NO: __), Plasmodiumfalciparum circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS; SEQ ID NO: _), and Streptococcus 18kD protein at positions 116-131 (GAVDSILGGVATYGAA; SEQ ID NO: _ . Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs. Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRE", Epimmune, Inc., San Diego, CA) are designed to most preferably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVAAWTLKAAa (SEQ ID NO: __), where "X" is either cyclohexylalanine, phenylalanine, or tyrosine, and a is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals, regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nucleic acids that encode the epitope. HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini. X.C.3. Combinations of CTL Peptides with T Cell Priming Agents In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes B lymphocytes or T lymphocytes. Lipids have been identified as agents capable of priming CTL in vivo. For example, palmitic acid residues can be attached to the e-and ct amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. In a preferred embodiment, a particularly effective immunogenic composition comprises palmitic acid attached to E- and a- amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide. As another example of lipid priming of CTL responses, E. coli lipoproteins, such as tripalmitoyl-S glycerylcysteinlyseryl- seine (P 3 CSS) can be used to prime virus specific CT when covalently attached to an appropriate peptide (see, e.g., Deres, et al., Nature 342:561, 1989). Peptides of the invention can be coupled to P 3 CSS, for example, and the lipopeptide administered to an individual to specifically prime an 58 immune response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P 3 CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses. X.C.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Pharmacia-Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces. The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL responses to 162P I E6. Optionally, a helper T cell (HTL) peptide, such as a natural or artificial loosely restricted HLA Class 11 peptide, can be included to facilitate the CTL response. Thus, a vaccine in accordance with the invention is used to treat a cancer which expresses or overexpresses 162P1E6. X.D. Adoptive Immunotherapy Antigenic 162P1E6-related peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular antigen are induced by incubating in tissue culture the patients, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (e.g., a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells. X.E. Administration of Vaccines for Therapeutic or Prophylactic Purposes Pharmaceutical and vaccine compositions of the invention are typically used to treat and/or prevent a cancer that expresses or overexpresses 162P1E6. In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective B cell, CTL and/or HTL response to the antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician. For pharmaceutical compositions, the immunogenic peptides of the invention, or DNA encoding them, are generally administered to an individual already bearing a tumor that expresses 162P1E6. The peptides or DNA encoding them can be administered individually or as fusions of one or more peptide sequences. Patients can be treated with the immunogenic peptides separately or in conjunction with other treatments, such as surgery, as appropriate. 59 For therapeutic use, administration should generally begin at the first diagnosis of 162PI E6 associated cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, in a patient with a tumor that expresses 162P1E6, a vaccine comprising 162PlE6 specific CTL may be more efficacious in killing tumor cells in patient with advanced disease than alternative embodiments. It is generally important to provide an amount of the peptide epitope delivered by a mode of administration sufficient to effectively stimulate a cytotoxic T cell response; compositions which stimulate helper T cell responses can also be given in accordance with this embodiment of the invention. The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 pg and the higher value is about 10,000; 20,000; 30,000; or 50,000 pg. Dosage values for a human typically range from about 500 pg to about 50,000 pg per 70 kilogram patient. Boosting dosages of between about 1.0 pg to about 50,000 pg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood. Administration should continue until at least clinical symptoms or laboratory tests indicate that the neoplasia, has been eliminated or reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art. In certain embodiments, the peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts. The vaccine compositions of the invention can also be used purely as prophylactic agents. Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 pg and the higher value is about 10,000; 20,000; 30,000; or 50,000 pg. Dosage values for a human typically range from about 500 pg to about 50,000 pg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 pg to about 50,000 pg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine can be assessed by measuring the specific activity of C'L and HTL obtained from a sample of the patient's blood. The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, nasal, intrathecal, or local (e.g. as a cream or topical ointment) administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. 60 A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well-known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc. The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, i.e., from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected. A human unit dose form of a composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, in one embodiment an aqueous carrier, and is administered in a volume/quantity that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17'* Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pennsylvania, 1985). For example a peptide dose for initial immunization can be from about 1 to about 50,000 gg, generally 100-5,000 pg, for a 70 kg patient. For example, for nucleic acids an initial immunization may be performed using an expression vector in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 pg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-107 to 5x10 9 pfu. For antibodies, a treatment generally involves repeated administration of the anti-162P1E6 antibody preparation, via an acceptable route of administration such as intravenous injection (IV), typically at a dose in the range of about 0.1 to about 10 mg/kg body weight. In general, doses in the range of 10-500 mg mAb per week are effective and well tolerated. Moreover, an initial loading dose of approximately 4 mg/kg patient body weight IV, followed by weekly doses of about 2 mg/kg IV of the anti- 162P1 E6 mAb preparation represents an acceptable dosing regimen. As appreciated by those of skill in the art, various factors can influence the ideal dose in a particular case. Such factors include, for example, half life of a composition, the binding affinity of an Ab, the immunogenicity of a substance, the degree of 162P IE6 expression in the patient, the extent of circulating shed 162PlE6 antigen, the desired steady-state concentration level, frequency of treatment, and the influence of chemotherapeutic or other agents used in combination with the treatment method of the invention, as well as the health status of a particular patient. Non-limiting preferred human unit doses are, for example, 500pug - 1mg, Img - 50mg, 50mg - 100mg, 100mg - 200mg, 200mg - 300mg, 400mg 500mg, 500mg - 600mg, 600mg - 700mg, 700mg - 800mg, 800mg - 900mg, 900mg - lg, or 1mg - 700mg. In certain embodiments, the dose is in a range of 2-5 mg/kg body weight, e.g., with follow on weekly doses of 1 3 mg/kg; 0.5mg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10mg/kg body weight followed, e.g., in two, three or four weeks by weekly doses; 0.5 - 10mg/kg body weight, e.g., followed in two, three or four weeks by weekly doses; 225, 250, 275, 300, 325, 350, 375, 400mg m 2 of body area weekly; 1-600mg n of body area weekly; 225-400mg 61 m 2 of body area weekly; these does can be followed by weekly doses for 2, 3, 4, 5, 6, 7, 8, 9, 19, 11, 12 or more weeks. In one embodiment, human unit dose forms of polynucleotides comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art a therapeutic effect depends on a number of factors, including the sequence of the polynucleotide, molecular weight of the polynucleotide and route of administration. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. Generally, for a polynucleotide of about 20 bases, a dosage range may be selected from, for example, an independently selected lower limit such as about 0.1, 0.25, 0.5, 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400 or 500 mg/kg up to an independently selected upper limit, greater than the lower limit, of about 60, 80, 100, 200, 300, 400, 500, 750, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 or 10,000 mg/kg. For example, a dose may be about any of the following: 0.1 to 100 mg/kg, 0.1 to 50 mg/kg, 0.1 to 25 mg/kg, 0.1 to 10 mg/kg, 1 to 500 mg/kg, 100 to 400 mg/kg, 200 to 300 mg/kg, 1 to 100 mg/kg, 100 to 200 mg/kg, 300 to 400 mg/kg, 400 to 500 mg/kg, 500 to 1000 mg/kg, 500 to 5000 mg/kg, or 500 to 10,000 mg/kg. Generally, parenteral routes of administration may require higher doses of polynucleotide compared to more direct application to the nucleotide to diseased tissue, as do polynucleotides of increasing length. In one embodiment, human unit dose forms of T-cells comprise a suitable dosage range or effective amount that provides any therapeutic effect. As appreciated by one of ordinary skill in the art, a therapeutic effect depends on a number of factors. Dosages are generally selected by the physician or other health care professional in accordance with a variety of parameters known in the art, such as severity of symptoms, history of the patient and the like. A dose may be about 104 cells to about 106 cells, about 106 cells to about 108 cells, about 108 to about 10" cells, or about 10' to about 5 x 100' cells. A dose may also about 10' cells/m 2 to about 10'0 cells/m 2 , or about 106 cells/m 2 to about 10' cells/m2. Proteins(s) of the invention, and/or nucleic acids encoding the protein(s), can also be administered via liposomes, which may also serve to: 1) target the proteins(s) to a particular tissue, such as lymphoid tissue; 2) to target selectively to diseases cells; or, 3) to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369. 62 For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated. For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%. For aerosol administration, immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are about 0.01%-20% by weight, preferably about 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from about 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute about 0.1%-20% by weight of the composition, preferably about 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery. XI.)Diaenostic and Prognostic Embodiments of 162P1E6. As disclosed herein, 162PIE6 polynucleotides, polypeptides, reactive cytotoxic T cells (CTL), reactive helper T cells (HTL) and anti-polypeptide antibodies are used in well known diagnostic, prognostic and therapeutic assays that examine conditions associated with dysregulated cell growth such as cancer, in particular the cancers listed in Table I (see, e.g., both its specific pattern of tissue expression as well as its overexpression in certain cancers as described for example in the Example entitled "Expression analysis of 162PlE6 in normal tissues, and patient specimens"). 162P 1E6 can be analogized to a prostate associated antigen PSA, the archetypal marker that has been used by medical practitioners for years to identify and monitor the presence of prostate cancer (see, e.g., Merrill et al., J. Urol. 163(2): 503-5120 (2000); Polascik et al., J. Urol. Aug; 162(2):293-306 (1999) and Fortier et al., J. Nat Cancer Inst. 91(19): 1635-1640(1999)). A variety of other diagnostic markers are also used in similar contexts including p53 and K-ras (see, e.g., Tulchinsky et al., Int J Mol Med 1999 Jul 4(l):99 102 and Minimoto et al., Cancer Detect Prev 2000;24(l):1-12). Therefore, this disclosure of 162PlE6 polynucleotides and polypeptides (as well as 162P1E6 polynucleotide probes and anti-162PlE6 antibodies used to identify the presence of these molecules) and their properties allows skilled artisans to utilize these molecules in methods that are analogous to those used, for example, in a variety of diagnostic assays directed to examining conditions associated with cancer. Typical embodiments of diagnostic methods which utilize the 162P1E6 polynucleotides, polypeptides, reactive T cells and antibodies are analogous to those methods from well-established diagnostic 63 assays which employ, e.g., PSA polynucleotides, polypeptides, reactive T cells and antibodies. For example, just as PSA polynucleotides are used as probes (for example in Northern analysis, see, e.g., Sharief et al., Biochem. Mol. Biol. Int. 33(3):567-74(1994)) and primers (for example in PCR analysis, see, e.g., Okegawa et al., J. Urol. 163(4): 1189-1190 (2000)) to observe the presence and/or the level of PSA mRNAs in methods of monitoring PSA overexpression or the metastasis of prostate cancers, the 162P1E6 polynucleotides described herein can be utilized in the same way to detect 162P1E6 overexpression or the metastasis of prostate and other cancers expressing this gene. Alternatively, just as PSA polypeptides are used to generate antibodies specific for PSA which can then be used to observe the presence and/or the level of PSA proteins in methods to monitor PSA protein overexpression (see, e.g., Stephan et al., Urology 55(4):560-3 (2000)) or the metastasis of prostate cells (see, e.g., Alanen et al., Pathol. Res. Pract. 192(3):233-7 (1996)), the 162PIE6 polypeptides described herein can be utilized to generate antibodies for use in detecting 162PIE6 overexpression or the metastasis of prostate cells and cells of other cancers expressing this gene. Specifically, because metastases involves the movement of cancer cells from an organ of origin (such as the lung or prostate gland etc.) to a different area of the body (such as a lymph node), assays which examine a biological sample for the presence of cells expressing 162P1E6 polynucleotides and/or polypeptides can be used to provide evidence of metastasis. For example, when a biological sample from tissue that does not normally contain 162P1E6-expressing cells (lymph node) is found to contain 162P1E6 expressing cells such as the 162P1E6 expression seen in LAPC4 and LAPC9, xenografts isolated from lymph node and bone metastasis, respectively, this finding is indicative of metastasis. Alternatively 162P1E6 polynucleotides and/or polypeptides can be used to provide evidence of cancer, for example, when cells in a biological sample that do not normally express 162P1E6 or express 162P1E6 at a different level are found to express 162P1E6 or have an increased expression of 162P1E6 (see, e.g., the 162P1E6 expression in the cancers listed in Table I and in patient samples etc. shown in the accompanying Figures). In such assays, artisans may further wish to generate supplementary evidence of metastasis by testing the biological sample for the presence of a second tissue restricted marker (in addition to 162P1E6) such as PSA, PSCA etc. (see, e.g., Alanen et al., Pathol. Res. Pract. 192(3): 233-237 (1996)). Just as PSA polynucleotide fragments and polynucleotide variants are employed by skilled artisans for use in methods of monitoring PSA, 162PIE6 polynucleotide fragments and polynucleotide variants are used in an analogous manner. In particular, typical PSA polynucleotides used in methods of monitoring PSA are probes or primers which consist of fragments of the PSA cDNA sequence. Illustrating this, primers used to PCR amplify a PSA polynucleotide must include less than the whole PSA sequence to function in the polymerase chain reaction. In the context of such PCR reactions, skilled artisans generally create a variety of different polynucleotide fragments that can be used as primers in order to amplify different portions of a polynucleotide of interest or to optimize amplification reactions (see, e.g., Caetano-Anolles, G. Biotechniques 25(3): 472-476, 478-480 (1998); Robertson et al., Methods MoL Biol. 98:121-154 (1998)). An additional illustration of the use of such fragments is provided in the Example entitled "Expression analysis of 162PIE6 in normal tissues, and patient specimens," where a 162P1E6 polynucleotide fragment is used as a probe to show the expression of 162P1E6 RNAs in cancer cells. In addition, variant polynucleotide sequences are typically used as primers and probes for the corresponding mRNAs in PCR and Northern analyses (see, e.g., Sawai et aL, Fetal Diagn. Ther. 1996 Nov-Dec 11(6):407-13 and Current Protocols In Molecular Biology, 64 Volume 2, Unit 2, Frederick M. Ausubel et al. eds., 1995)). Polynucleotide fragments and variants are useful in this context where they are capable of binding to a target polynucleotide sequence (e.g., a 162PIE6 polynucleotide shown in Figure 2 or variant thereof) under conditions of high stringency. Furthermore, PSA polypeptides which contain an epitope that can be recognized by an antibody or T cell that specifically binds to that epitope are used in methods of monitoring PSA. 162P1E6 polypeptide fragments and polypeptide analogs or variants can also be used in an analogous manner. This practice of using polypeptide fragments or polypeptide variants to generate antibodies (such as anti-PSA antibodies or T cells) is typical in the art with a wide variety of systems such as fusion proteins being used by practitioners (see, e.g., Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubel et al. eds., 1995). In this context, each epitope(s) functions to provide the architecture with which an antibody or T cell is reactive. Typically, skilled artisans create a variety of different polypeptide fragments that can be used in order to generate immune responses specific for different portions of a polypeptide of interest (see, e.g., U.S. Patent No. 5,840,501 and U.S. Patent No. 5,939,533). For example it may be preferable to utilize a polypeptide comprising one of the 162P1E6 biological motifs discussed herein or a motif-bearing subsequence which is readily identified by one of skill in the art based on motifs available in the art. Polypeptide fragments, variants or analogs are typically useful in this context as long as they comprise an epitope capable of generating an antibody or T cell specific for a target polypeptide sequence (e.g. a 162P1 E6 polypeptide shown in Figure 3). As shown herein, the 162P1E6 polynucleotides and polypeptides (as well as the 162P1E6 polynucleotide probes and anti-162P IE6 antibodies or T cells used to identify the presence of these molecules) exhibit specific properties that make them useful in diagnosing cancers such as those listed in Table I. Diagnostic assays that measure the presence of 162P 1 E6 gene products, in order to evaluate the presence or onset of a disease condition described herein, such as prostate cancer, are used to identify patients for preventive measures or further monitoring, as has been done so successfully with PSA. Moreover, these materials satisfy a need in the art for molecules having similar or complementary characteristics to PSA in situations where, for example, a definite diagnosis of metastasis of prostatic origin cannot be made on the basis of a test for PSA alone (see, e.g., Alanen et al., Pathol. Res. Pract. 192(3): 233-237 (1996)), and consequently, materials such as 162P IE6 polynucleotides and polypeptides (as well as the 162P 1 E6 polynucleotide probes and anti-162P1E6 antibodies used to identify the presence of these molecules) need to be employed to confirm a metastases of prostatic origin. Finally, in addition to their use in diagnostic assays, the 162PlE6 polynucleotides disclosed herein have a number of other utilities such as their use in the identification of oncogenetic associated chromosomal abnormalities in the chromosomal region to which the 162P 1 E6 gene maps (see the Example entitled "Chromosomal Mapping of 162P1E6" below). Moreover, in addition to their use in diagnostic assays, the 162P1 E6-related proteins and polynucleotides disclosed herein have other utilities such as their use in the forensic analysis of tissues of unknown origin (see, e.g., Takahama K Forensic Sci Int 1996 Jun 28;80(1-2): 63-9). Additionally, 162PlE6-related proteins or polynucleotides of the invention can be used to treat a pathologic condition characterized by the over-expression of 162Pl E6. For example, the amino acid or nucleic acid sequence of Figure 2 or Figure 3, or fragments of either, can be used to generate an immune 65 response to a 162P 1E6 antigen. Antibodies or other molecules that react with 162P 1E6 can be used to modulate the function of this molecule, and thereby provide a therapeutic benefit. XII.) Inhibition of 162P1E6 Protein Function The invention includes various methods and compositions for inhibiting the binding of 162P 1E6 to its binding partner or its association with other protein(s) as well as methods for inhibiting 162P IE6 function. XII.A.) Inhibition of 162P1E6 With Intracellular Antibodies In one approach, a recombinant vector that encodes single chain antibodies that specifically bind to 162P1E6 are introduced into 162P1E6 expressing cells via gene transfer technologies. Accordingly, the encoded single chain anti- I62P 1E6 antibody is expressed intracellularly, binds to 162P 1E6 protein, and thereby inhibits its function. Methods for engineering such intracellular single chain antibodies are well known. Such intracellular antibodies, also known as "intrabodies", are specifically targeted to a particular compartment within the cell, providing control over where the inhibitory activity of the treatment is focused. This technology has been successfully applied in the art (for review, see Richardson and Marasco, 1995, TIBTECH vol. 13). Intrabodies have been shown to virtually eliminate the expression of otherwise abundant cell surface receptors (see, e.g., Richardson et al., 1995, Proc. Natl. Acad. Sci. USA 92: 3137-3141; Beerli et al., 1994, . Biol. Chem. 289: 23931-23936; Deshane et al., 1994, Gene Ther. 1: 332-337). Single chain antibodies comprise the variable domains of the heavy and light chain joined by a flexible linker polypeptide, and are expressed as a single polypeptide. Optionally, single chain antibodies are expressed as a single chain variable region fragment joined to the light chain constant region. Well-known intracellular traffcking signals are engineered into recombinant polynucleotide vectors encoding such single chain antibodies in order to precisely target the intrabody to the desired intracellular compartment. For example, intrabodies targeted to the endoplasmic reticulum (ER) are engineered to incorporate a leader peptide and, optionally, a C-terminal ER retention signal, such as the KDEL amino acid motif. Intrabodies intended to exert activity in the nucleus are engineered to include a nuclear localization signal. Lipid moieties are joined to intrabodies in order to tether the intrabody to the cytosolic side of the plasma membrane. Intrabodies can also be targeted to exert function in the cytosol. For example, cytosolic intrabodies are used to sequester factors within the cytosol, thereby preventing them from being transported to their natural cellular destination. In one embodiment, intrabodies are used to capture 162P 1E6 in the nucleus, thereby preventing its activity within the nucleus. Nuclear targeting signals are engineered into such 162P 1E6 intrabodies in order to achieve the desired targeting. Such 162P1E6 intrabodies are designed to bind specifically to a particular 162P1E6 domain. In another embodiment, cytosolic intrabodies that specifically bind to a 162P1E6 protein are used to prevent 162P1E6 from gaining access to the nucleus, thereby preventing it from exerting any biological activity within the nucleus (e.g., preventing 162P1E6 from forming transcription complexes with other factors). In order to specifically direct the expression of such intrabodies to particular cells, the transcription of the intrabody is placed under the regulatory control of an appropriate tumor-specific promoter and/or enhancer. In order to target intrabody expression specifically to prostate, for example, the PSA promoter and/or promoter/enhancer can be utilized (See, for example, U.S. Patent No. 5,919,652 issued 6 July 1999). 66 XI.B.) Inhibition of 162P1E6 with Recombinant Proteins In another approach, recombinant molecules bind to 162P1E6 and thereby inhibit 162P1E6 function. For example, these recombinant molecules prevent or inhibit 162PIE6 from accessing/binding to its binding partner(s) or associating with other protein(s). Such recombinant molecules can, for example, contain the reactive parts) of a 162P1E6 specific antibody molecule. In a particular embodiment, the 162P1E6 binding domain of a 162P 1 E6 binding partner is engineered into a dimeric fusion protein, whereby the fusion protein comprises two 162PIE6 ligand binding domains linked to the Fc portion of a human IgG, such as human IgG1. Such IgG portion can contain, for example, the CH 2 and CH 3 domains and the hinge region, but not the CHI domain. Such dimeric fusion proteins are administered in soluble form to patients suffering from a cancer associated with the expression of 162P1E6, whereby the dimeric fusion protein specifically binds to 162P1E6 and blocks 162P1E6 interaction with a binding partner. Such dimeric fusion proteins are further combined into multimeric proteins using known antibody linking technologies. XII.C.) Inhibition of 162P1E6 Transcription or Translation The present invention also comprises various methods and compositions for inhibiting the transcription of the 162PlE6 gene. Similarly, the invention also provides methods and compositions for inhibiting the translation of 162PIE6 mRNA into protein. In one approach, a method of inhibiting the transcription of the 162P 1 E6 gene comprises contacting the 162P 1E6 gene with a 162P 1E6 antisense polynucleotide. In another approach, a method of inhibiting 162P1E6 mRNA translation comprises contacting a 162PlE6 mRNA with an antisense polynucleotide. In another approach, a 162P IE6 specific ribozyme is used to cleave a 162P 1E6 message, thereby inhibiting translation. Such antisense and ribozyme based methods can also be directed to the regulatory regions of the 162P1E6 gene, such as 162P1E6 promoter and/or enhancer elements. Similarly, proteins capable of inhibiting a 162P1 E6 gene transcription factor are used to inhibit 162P I E6 mRNA transcription. The various polynucleotides and compositions useful in the aforementioned methods have been described above. The use of antisense and ribozyme molecules to inhibit transcription and translation is well known in the art. Other factors that inhibit the transcription of 1 62P1 E6 by interfering with 162P 1E6 transcriptional activation are also useful to treat cancers expressing 162P1E6. Similarly, factors that interfere with 162P1E6 processing are useful to treat cancers that express 162P 1 E6. Cancer treatment methods utilizing such factors are also within the scope of the invention. XII.D) General Considerations for Therapeutic Strategies Gene transfer and gene therapy technologies can be used to deliver therapeutic polynucleotide molecules to tumor cells synthesizing 162P1E6 (i.e., antisense, ribozyme, polynucleotides encoding intrabodies and other 162PlE6 inhibitory molecules). A number of gene therapy approaches are known in the art. Recombinant vectors encoding 162P1E6 antisense polynucleotides, ribozymes, factors capable of interfering with 162P1E6 transcription, and so forth, can be delivered to target tumor cells using such gene therapy approaches. The above therapeutic approaches can be combined with any one of a wide variety of surgical, chemotherapy or radiation therapy regimens. The therapeutic approaches of the invention can enable the use of reduced dosages of chemotherapy (or other therapies) and/or less frequent administration, an advantage for all patients and particularly for those that do not tolerate the toxicity of the chemotherapeutic agent well. 67 The anti-tumor activity of a particular composition (e.g., antisense, ribozyme, intrabody), or a combination of such compositions, can be evaluated using various in vitro and in vivo assay systems. In vitro assays that evaluate therapeutic activity include cell growth assays, soft agar assays and other assays indicative of tumor promoting activity, binding assays capable of determining the extent to which a therapeutic composition will inhibit the binding of 162P1E6 to a binding partner, etc. In vivo, the effect of a 162PIE6 therapeutic composition can be evaluated in a suitable animal model. For example, xenogenic prostate cancer models can be used, wherein human prostate cancer explants or passaged xenograft tissues are introduced into immune compromised animals, such as nude or SCID mice (Klein et al., 1997, Nature Medicine 3: 402-408). For example, PCT Patent Application W098/16628 and U.S. Patent 6,107,540 describe various xenograft models of human prostate cancer capable of recapitulating the development of primary tumors, micrometastasis, and the formation of osteoblastic metastases characteristic of late stage disease. Efficacy can be predicted using assays that measure inhibition of tumor formation, tumor regression or metastasis, and the like. In vivo assays that evaluate the promotion of apoptosis are useful in evaluating therapeutic compositions. In one embodiment, xenografts from tumor bearing mice treated with the therapeutic composition can be examined for the presence of apoptotic foci and compared to untreated control xenograft bearing mice. The extent to which apoptotic foci are found in the tumors of the treated mice provides an indication of the therapeutic efficacy of the composition. The therapeutic compositions used in the practice of the foregoing methods can be formulated into pharmaceutical compositions comprising a carrier suitable for the desired delivery method. Suitable carriers include any material that when combined with the therapeutic composition retains the anti-tumor function of the therapeutic composition and is generally non-reactive with the patient's immune system. Examples include, but are not limited to, any of a number of standard pharmaceutical carriers such as sterile phosphate buffered saline solutions, bacteriostatic water, and the like (see, generally, Remington's Pharmaceutical Sciences 16' Edition, A. Osal., Ed., 1980). Therapeutic formulations can be solubilized and administered via any route capable of delivering the therapeutic composition to the tumor site. Potentially effective routes of administration include, but are not limited to, intravenous, parenteral, intraperitoneal, intramuscular, intratumor, intradermal, intraorgan, orthotopic, and the like. A preferred formulation for intravenous injection comprises the therapeutic composition in a solution of preserved bacteriostatic water, sterile unreserved water, and/or diluted in polyvinylchloride or polyethylene bags containing 0.9% sterile Sodium Chloride for Injection, USP. Therapeutic protein preparations can be lyophilized and stored as sterile powders, preferably under vacuum, and then reconstituted in bacteriostatic water (containing for example, benzyl alcohol preservative) or in sterile water prior to injection. Dosages and administration protocols for the treatment of cancers using the foregoing methods will vary with the method and the target cancer, and will generally depend on a number of other factors appreciated in the arL 68 XIU.) Kits For use in the diagnostic and therapeutic applications described herein, kits are also within the scope of the invention. Such kits can comprise a carrier, package or container that is compartmentalized to receive one or more containers such as vials, tubes, and the like, each of the container(s) comprising one of the separate elements to be used in the method. For example, the container(s) can comprise a probe that is or can be detectably labeled. Such probe can be an antibody or polynucleotide specific for a 162PlE6-related protein or a 162P I E6 gene or message, respectively. Where the method utilizes nucleic acid hybridization to detect the target nucleic acid, the kit can also have containers containing nucleotide(s) for amplification of the target nucleic acid sequence and/or a container comprising a reporter-means, such as a biotin-binding protein, such as avidin or streptavidin, bound to a reporter molecule, such as an enzymatic, florescent, or radioisotope label. The kit can include all or part of the amino acid sequence of Figure 2 or Figure 3 or analogs thereof, or a nucleic acid molecules that encodes such amino acid sequences. The kit of the invention will typically comprise the container described above and one or more other containers comprising materials desirable from a commercial and user standpoint, including buffers, diluents, filters, needles, syringes, and package inserts with instructions for use. A label can be present on the container to indicate that the composition is used for a specific therapy or non-therapeutic application, and can also indicate directions for either in vivo or in vitro use, such as those described above. Directions and or other information can also be included on an insert which is included with the kit. 69 EXAMPLES: Various aspects of the invention are further described and illustrated by way of the several examples that follow, none of which are intended to limit the scope of the invention. Example 1: SSH-Generated Isolation of a cDNA Fragment of the 162P1E6 Gene To isolate genes that are over-expressed in bladder cancer we used the Suppression Subtractive Hybridization (SSH) procedure using cDNA derived from bladder cancer patient tissues. The 162P1E6 SSH cDNA sequence was derived from a subtraction consisting of a baldder cancer minus normal bladder and a mixture of 9 normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine and heart. The 162P1E6 SSH cDNA sequence of 335 bp, listed in Figure 1, did not show homology to any known gene. The full-length 162P1E6 v.1 clone B was cloned from bladder cancer cDNA, revealing an ORF of 146 amino acids (Figure 2 and Figure 3). Other variants of 162P1E6 were also identified and these are listed in Figures 2 and 3. Materials and Methods Human Tissues: The patient cancer and normal tissues were purchased from different sources such as the NDRI (Philadelphia, PA). mRNA for some normal tissues were purchased from Clontech, Palo Alto, CA. RNA Isolation: Tissues were homogenized in Trizol reagent (Life Technologies, Gibco BRL) using 10 ml/ g tissue isolate total RNA. Poly A RNA was purified from total RNA using Qiagen's Oligotex mRNA Mini and Midi kits. Total and mRNA were quantified by spectrophotometric analysis (O.D. 260/280 nm) and analyzed by gel electrophoresis. Oligonucleotides: The following HPLC purified oligonucleotides were used. DPNCDN (cDNA synthesis priner): 5'TTGATCAAGCThao3' (SEQ ID NO:__) Adaptor 1: S'CrAATACGACTCACTATAGGGCTCGAGCGGCCGCCCGGGCAG3' (SEQ ID NO: ) 3'GGCCCGTCCTAGS' (SEQ ID NO: ) Adaptor 2: 5'GTAATACGACrCACTATAGGGCAGCGTGGTCGCGGCCGAG3' (SEQ ID NO:_) 3'CGGCTCCTAG5' (SEQ ID NO: _) PCR rimr 1: 5'CTAATACGACTCACTATAGGGC3 (SEQ ID NO: _ 70 Nested primer (NP) 1: 5'TCGAGCGGCCGCCCGGGCAGGA3' (SEQ ID NO: 9 Nested primer (NP)2: 5'AGCGTGGTCGCGGCCGAGGA3' (SEQ ID NO: _) Suppression Subtractive Hybridization: Suppression Subtractive Hybridization (SSH) was used to identify cDNAs corresponding to genes that may be differentially expressed in bladder cancer. The SSH reaction utilized cDNA from bladder cancer and normal tissues. The gene 162P I E6 was derived from bladder cancer minus normal tissue cDNA subtraction. The 162P1E6 SSH DNA sequence (Figure 1) was identified. The cDNA derived from of pool of normal tissues was used as the source of the "driver" cDNA, while the cDNA from a pool of bladder cancer tissues was used as the source of the "tester" cDNA. Double stranded cDNAs corresponding to tester and driver cDNAs were synthesized from 2 tg of poly(A)4 RNA isolated from the relevant xenograft tissue, as described above, using CLONTECH's PCR-Select cDNA Subtraction Kit and 1 ng of oligonucleotide DPNCDN as primer. First- and second-strand synthesis were carried out as described in the Kit's user manual protocol (CLONTECH Protocol No. PTI 117-1, Catalog No. K1804-1). The resulting cDNA was digested with Dpn II for 3 hrs at 37"C. Digested cDNA was extracted with phenol/chloroform (1:1) and ethanol precipitated. Driver cDNA was generated by combining in a 1:1 ratio Dpn II digested cDNA from the relevant tissue source (see above) with a mix of digested cDNAs derived from the nine normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine, and heart. Tester cDNA was generated by diluting 1 pl of Dpn I digested cDNA from the relevant tissue source (see above) (400 ng) in 5 pl of water. The diluted cDNA (2 pl, 160 ng) was then ligated to 2 pl of Adaptor 1 and Adaptor 2 (10 pM), in separate ligation reactions, in a total volume of 10 pl at 6*C overnight, using 400 u of T4 DNA ligase (CLONTECH). Ligation was terminated with I pl of 0.2 M EDTA and heating at 72*C for 5 min. The first hybridization was performed by adding 1.5 1 (600 ng) of driver cDNA to each of two tubes containing 1.5 pl (20 ng) Adaptor 1- and Adaptor 2- ligated tester cDNA. In a final volume of 4 p, the samples were overlaid with mineral oil, denatured in an MJ Research thermal cycler at 98"C for 1.5 minutes, and then were allowed to hybridize for 8 hrs at 68*C. The two hybridizations were then mixed together with an additional 1 Pl of fresh denatured driver cDNA and were allowed to hybridize overnight at 68*C. The second hybridization was then diluted in 200 pl of 20 mM Hepes, pH 8.3, 50 mM NaCI, 0.2 mM EDTA, heated at 70"C for 7 min. and stored at 20 0 C. PCR Amplification, Cloning and Sequencing of Gene Fragments Generated from SSH: To amplify gene fragments resulting from SSH reactions, two PCR amplifications were performed. In the primary PCR reaction 1 pl of the diluted final hybridization mix was added to 1 pl of PCR primer 1 (10 pM), 0.5 pl dNTP mix (10 pM), 2.5 pl 10 x reaction buffer (CLONTECH) and 0.5 p1 50 x Advantage cDNA polymerase Mix (CLONTECH) in a final volume of 25 pl. FCR I was conducted using the following conditions: 75"C for 5 min., 71 94*C for 25 sec., then 27 cycles of 94*C for 10 sec, 66*C for 30 sec, 72*C for 1.5 min. Five separate primary PCR reactions were performed for each experiment. The products were pooled and diluted 1:10 with water. For the secondary PCR reaction, I g1 from the pooled and diluted primary PCR reaction was added to the same reaction mix as used for PCR 1, except that primers NPl and NP2 (10 pM) were used instead of PCR primer 1. PCR 2 was performed using 10-12 cycles of 94*C for 10 sec, 68*C for 30 sec, and 72*C for 1.5 minutes. The PCR products were analyzed using 2% agarose gel electrophoresis. The PCR products were inserted into pCR2.1 using the T/A vector cloning kit (Invitrogen). Transformed E. coli were subjected to blue/white and ampicillin selection. White colonies were picked and arrayed into 96 well plates and were grown in liquid culture overnight. To identify inserts, PCR amplification was performed on 1 ml of bacterial culture using the conditions of PCR1 and NP1 and NP2 as primers. PCR products were analyzed using 2% agarose gel electrophoresis. Bacterial clones were stored in 20% glycerol in a 96 well format. Plasmid DNA was prepared, sequenced, and subjected to nucleic acid homology searches of the GenBank, dBest, and NCI-CGAP databases. RT-PCR Expression Analysis: First strand cDNAs can be generated from I gg of mRNA with oligo (dT)12-18 priming using the Gibco-BRL Superscript Preamplification system. The manufacturer's protocol was used which included an incubation for 50 min at 42*C with reverse transcriptase followed by RNAse H treatment at 37*C for 20 min. After completing the reaction, the volume can be increased to 200 pl with water prior to normalization. First strand cDNAs from 16 different normal human tissues can be obtained from Clontech. Normalization of the first strand cDNAs from multiple tissues was performed by using the primers 5'atatcgccgcgctcgtcgtcgacaa3' (SEQ ID NO: __) and 5'agccacacgcagctcattgtagaagg 3' (SEQ ID NO: ___) to amplify -actin. First strand cDNA (5 pl) were amplified in a total volume of 50 pl containing 0.4 pM primers, 0.2 pM each dNTPs, 1XPCR buffer (Clontech, 10 mM Tris-HCL, 1.5 mM MgC 2 , 50 mM KCL, pH8.3) and 1X Klentaq DNA polymerase (Clontech). Five P1 of the PCR reaction can be removed at 18, 20, and 22 cycles and used for agarose gel electrophoresis. PCR was performed using an MJ Research thermal cycler under the following conditions: Initial denaturation can be at 94'C for 15 sec, followed by a 18, 20, and 22 cycles of 94*C for 15, 65*C for 2 min, 72*C for 5 sec. A final extension at 72*C was carried out for 2 min. After agarose gel electrophoresis, the band intensities of the 283 b.p. P-actin bands from multiple tissues were compared by visual inspection. Dilution factors for the first strand cDNAs were calculated to result in equal P-actin band intensities in all tissues after 22 cycles of PCR. Three rounds of normalization can be required to achieve equal band intensities in all tissues after 22 cycles of PCR. To determine expression levels of the 162P1E6 gene, 5 pl of normalized first strand cDNA were analyzed by PCR using 26, and 30 cycles of amplification. Semi-quantitative expression analysis can be achieved by comparing the PCR products at cycle numbers that give light band intensities. The primers used for RT-PCR were designed using the 162P1E6 SSH sequence and are listed below: 162P1E6.1 5'- CrCAGGATTACGTCCCAAGTGTCT -3' (SEQ ID NO: ) 162P1E6.2 5'- ATAAGGTGGGTGCTGACCAGTrr - 3' (SEQ ID NO: ) 72 A typical RT-PCR expression analysis is shown in Figure 14. First strand cDNA was prepared from vital pool I (liver, lung and kidney), vital pool 2 (pancreas, colon and stomach), LAPC xenograft pool (LAPC-4AD, LAPC-4AI, LAPC-9AD and LAPC-9A), prostate cancer pool, bladder cancer pool, lung cancer pool, breast cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi quantitative PCR, using primers to 162P1E6, was performed at 26 and 30 cycles of amplification. Results show strong expression of 162P 1 E6 in bladder cancer pool, lung cancer pool, and breast cancer pool. Expression was also detected in prostate cancer pool and cancer metastasis pool, but not in the vital pools. Example 2: Full Length Cloning of 162PIE6 To isolate genes that are over-expressed in bladder cancer we used the Suppression Subtractive Hybridization (SSH) procedure using cDNA derived from bladder cancer patient tissues. The 162PlE6 SSH cDNA sequence was derived from a subtraction consisting of a bladder cancer minus normal bladder and a mixture of 9 normal tissues: stomach, skeletal muscle, lung, brain, liver, kidney, pancreas, small intestine and heart. The 162P1E6 SSH cDNA sequence of 335 bp, listed in Figure 1, did not show homology to any known gene. The full-length 162P1E6 v.1 clone B was cloned from bladder cancer cDNA, revealing an ORF of 146 amino acids (Figure 2A and Figure 3A). 162P1E6 v.1 showed 99% identity over 1860 nucleotides (from 1345 to 3204 of 162P1E6 v.1) with the hypothetical gene XP_036612 (AK002208) (Figure 4A). 162P1E6 v.1 protein showed 100% identity over 146 amino acids with the hypothetical protein XP_036612 (AK002208) of unknown function (Figure 4B). Also, 162PIE6 has 35% identity over a 71 amino acid region to the Man7GlcNAc2-PP-dolichyl mannosyltransferase, and 38% identity over a 39 amino acid region homology to the estrogen receptor beta2 splice variant (Figures 4C and 4D, respectively). Other variants of 162P1E6 were also identified and these are listed in Figures 2 and 3. 162P1E6 v.3, v.4, v.5, and v.6 code for proteins that are different from 162P1E6 v.1. The 162P1E6 v.3, v.4, v.5, and v.6 are novel and have not been previously described in public databases. 162P1E6 v.18 codes for the same protein as 162P1E6 v.1 except for one amino acid at position 130. Example 3: Chromosomal Mapping of 162P1E6 Chromosomal localization can implicate genes in disease pathogenesis. Several chromosome mapping approaches are available including fluorescent in situ hybridization (FISH), human/hamster radiation hybrid (RH) panels (Walter et al., 1994; Nature Genetics 7:22; Research Genetics, Huntsville Al), human-rodent somatic cell hybrid panels such as is available from the Coriell Institute (Camden, New Jersey), and genomic viewers utilizing BLAST homologies to sequenced and mapped genomic clones (NCBI, Bethesda, Maryland). 162P1E6 maps to chromosome 1q32.2 using 162P1E6 sequence and the NCBI BLAST tool: (http://www.ncbi.nlm.nih.gov/genome/seq/page.cgi?F-HsIlast.html&&ORG=Hs). Example 4: Expression Analysis of 162P1E6 In Normal Tissues and Patient Specimens Expression analysis by RT-PCR demonstrated that 162P1E6 is strongly expressed in cancer patient specimens (Figure 14). First strand cDNA was prepared from vital pool I (liver, lung and kidney), vital pool 73 2 (pancreas, colon and stomach), LAPC xenograft pool (LAPC-4AD, LAPC-4AI, LAPC-9AD and LAPC 9AI), prostate cancer pool, bladder cancer pool, lung cancer pool, breast cancer pool, and cancer metastasis pool. Normalization was performed by PCR using primers to actin and GAPDH. Semi-quantitative PCR, using primers to 162P I E6, was performed at 26 and 30 cycles of amplification. Results show strong expression of 162P1E6 in bladder cancer pool, lung cancer pool, and breast cancer pool. Expression was also detected in prostate cancer pool and cancer metastasis pool, but not in the vital pools. Extensive northern blot analysis of 162P1E6 in multiple human normal tissues is shown in Figure 15. Two multiple tissue northern blots (Clontech) both with 2 ug of mRNA/lane were probed with the 162P1 E6 SSH sequence. Size standards in kilobases (kb) are indicated on the side. Results show expression of two approximately 4.4 kbl62P1E6 transcripts in placenta, prostate and thymus. Expression of 162PIE6 in patient bladder cancer specimens is shown in Figure 16 RNA was extracted from normal bladder (Nb), bladder cancer cell lines (CL: UM-UC-3, J82 and SCaBER), bladder cancer patient tumors (T) and normal tissue adjacent to bladder cancer (N). Northern blots with 10 ug of total RNA were probed with the 162P1E6 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 162P1E6 in the bladder tumor tissues and in the SCaBER cancer cell line, but not in normal bladder, nor in the other cancer cell lines J82 and UM-UC-3. Figure 17 shows that 162P1E6 was expressed in prostate cancer patient specimens. RNA was extracted from LAPC-4AD, LAPC-4AI, LAPC-9AD and LAPC-9AI prostate cancer xenografts, normal prostate (N), prostate cancer patient tumors (T) and their normal adjacent tissues (NAT). Northern blot with 10 ug of total RNA/lane was probed with 162P1E6 SSH sequence. Size standards in kilobases (kb) are indicated on the side. The results show strong expression of 162P1E6 in normal prostate and in patient prostate cancer specimens. Weak expression was detected in the LAPC-4AD tissue, but not in the other prostate cancer xenografts. Expression of 162P1E6 was also detected in kidney cancer patient specimens (Figure 18). RNA was extracted from kidney cancer cell lines (769-P, A498, SW839), normal kidney (N), kidney cancer patient tumors (T) and their normal adjacent tissues (NAT). Northern blots with 10 ug of total RNA were probed with the 162PIE6 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 162P1E6 in 2 out of 2 papillary kidney tumor tissues but not in specimens of renal clear cell carcinoma, normal kidney, nor in the kidney cancer cell lines. Figure 19 shows that 162P1E6 was expressed in lung cancer patient specimens. RNA was extracted from lung cancer cell lines (CALU-1, A427, NCI-H82, NCI-H146), normal lung (N), lung cancer patient tumors (T) and normal adjacent tissues (NAT) isolated from lung cancer patients. Northern blots with 10 ug of total RNA were probed with the 162P1E6 SSH fragment. Size standards in kilobases are indicated on the side. Results show strong expression of 162PIE6 in the all lung tumor tissues tested, but not in normal lung nor in the lung cancer cell lines. In Figure 20, expression of 162P lE6 was tested in breast cancer patient specimens. RNA was extracted from breast cancer cell lines (DU4475, MCF7 and CAMA-1), normal breast (N), breast cancer patient tumors (T), breast cancer metastasis to lymph node (M1), and to ovary (M2). Northern blots with 10 ug of total RNA were probed with the 162P1E6 SSH fragment. Results show expression of 162P1E6 in 74 normal breast, breast tumor tissues as well as in the cancer metastasis specimens, but not in the breast cancer cell lines tested. The restricted expression of 162P 1 E6 in normal tissues and the expression detected in bladder cancer, breast cancer, lung, prostate, kidney and cancer metastases suggest that 162P 1E6 is a potential therapeutic target and a diagnostic marker for human cancers. Example 5: Transcript Variants of 162P1E6 Transcript variants are variants of matured mRNA from the same gene by alternative transcription or alternative splicing. Alternative transcripts are transcripts from the same gene but start transcription at different points. Splice variants are mRNA variants spliced differently from the same transcript. In eukaryotes, when a multi-exon gene is transcribed from genomic DNA, the initial RNA is spliced to produce functional mRNA, which has only exons and is used for translation into an amino acid sequence. Accordingly, a given gene can have zero to many alternative transcripts and each transcript can have zero to many splice variants. Each transcript variant has a unique exon makeup, and can have different coding and/or non-coding (5' or 3' end) portions, from the original transcript. Transcript variants can code for similar or different proteins with the same or a similar function or may encode proteins with different functions, and may be expressed in the same tissue at the same time, or at different tissue, or at different times, proteins encoded by transcript variants can have similar or different cellular or extracellular localizations, i.e., be secreted. Transcript variants are identified by a variety of art-accepted methods. For example, alternative transcripts and splice variants are identified in a full-length cloning experiment, or by use of full-length transcript and EST sequences. First, all human ESTs were grouped into clusters which show direct or indirect identity with each other. Second, ESTs in the same cluster were further grouped into sub-clusters and assembled into a consensus sequence. The original gene sequence is compared to the consensus sequence(s) or other full-length sequences. Each consensus sequence is a potential splice variant for that gene (see, e.g., http://www.doubletwist.com/products/c I _agentsOverview.jhtml). Even when a variant is identified that is not a full-length clone, that portion of the variant is very useful for antigen generation and for further cloning of the full-length splice variant, using techniques known in the art. Moreover, computer programs are available in the art that identify transcript variants based on genomic sequences. Genomic-based transcript variant identification programs include FgenesH (A. Salamov and V. Solovyev, "Ab initio gene finding in Drosophila genomic DNA," Genome Research. 2000 April; 10(4):516-22); Grail (http://compbio.ornl.gov/Grail-bini/EmptyGrailForm) and GenScan (http://genes.mit.edu/GENSCAN.html). For a general discussion of splice variant identification protocols see., e.g., Southan, C., A genomic perspective on human proteases, FEBS Lett. 2001 Jun 8; 498(2-3):214-8; de Souza, S.J., et al., Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags, Proc. Natl Acad Sci U S A. 2000 Nov 7; 97(23):12690-3. To further confirm the parameters of a transcript variant, a variety of techniques are available in the art, such as full-length cloning, proteomic validation, PCR-based validation, and 5' RACE validation, etc. (see e.g., Proteomic Validation: Brennan, S.O., et aL, Albumin banks peninsula: a new termination variant characterized by electrospray mass spectrometry, Biochem Biophys Acta. 1999 Aug 17;1433(1-2):321-6; 75 Ferranti P, et al., Differential splicing of pre-messenger RNA produces multiple forms of mature caprine alpha(sl)-casein, Eur J Biochem. 1997 Oct 1;249(1):1-7. For PCR-based Validation: Wellmann S, et al., Specific reverse transcription-PCR quantification of vascular endothelial growth factor (VEGF) splice variants by LightCycler technology, Cln Chem. 2001 Apr;47(4):654-60; Jia, H.P., et al., Discovery of new human beta-defensins using a genomics-based approach, Gene. 2001 Jan 24; 263(1-2):211-8. For PCR-based and 5' RACE Validation: Brigle, K.E., et al., Organization of the murine reduced folate carrier gene and identification of variant splice forms, Biochem Biophys Acta. 1997 Aug 7; 1353(2): 191-8). It is known in the art that genomic regions are modulated in cancers. When the genomic region to which a gene maps is modulated in a particular cancer, the alternative transcripts or splice variants of the gene are modulated as well. Disclosed herein is that 162P1E6 has a particular expression profile. Alternative transcripts and splice variants of 162P1E6 that are structurally and/or functionally similar to 162P1E6 share this expression pattern, thus serving as tumor associated markers/antigens. The exon composition of the original transcript is designated as 162P1E6 v.1. Using the full-length gene and EST sequences, an alternative transcript, designated as 162P1E6 v.2, and nine splice variants of this alternative transcript were identified, designated as 162P1E6 v.3 through 162P1E6 v.11. In comparison with 162P1E6 v.1 the alternative transcript 162P1E6 v.2 had an additional 522 bp at the 5' end. Both 162P1E6 v.1 and v.2 were single exon transcripts. Based on the splicing pattern for transcript 162P1E6 v.1 and v.2 can, they may be divided into splicing segments as indicated in Table LIII(A), LIII(B) and Figure 12. Since 162P1E6 v.1 and v.2 share the same 3240 bp sequence, 162P1E6 v.1 may also be spliced in a similar pattern to generate similar splice variants. Each different combination of exons in spatial order, e.g. exons 1, 2, 3, 4 and 7, is a potential splice variant. Figure 12 provides the schematic alignment of the exons of 162P1E6 v.1 through v.11. Tables LIII through LVII are set forth on a variant-by-variant basis. Table LIV shows the nucleotide sequence of transcript variants 2-11 (Tables LIV(A)-LIV(J), respectively). Table LV provides alignments of the transcript variant, 162P1E6 v.2, with the following nucleic acid sequences: of 162P1E6 v.1 (LV(A)), 162P1E6 v.3 (Table LV(B)), 162P1E6 v.4 (Table LV(C)), 162P1E6 v.5 (Table LV(D)), 162P1E6 v.6 (Table LV(E)), 162P1E6 v.7 (Table LV(F)), 162P1E6 v.8 (Table LV(G)), 162P1E6 v.9 (Table LV(H)), 162P1E6 v.10 (Table LV(I)), and 162P1E6 v.11 (Table LV(J)). Table LVI (A-J) provides the amino acid translations of 162P1E6 variant 2 through variant 11 for their identified reading frame orientations. Table LVII provides alignments of the amino acid sequence encoded by the transcript variant, 162PIE6 v.2, with that of 162P1E6 v.1 (Table LVII(A)), 162P1E6 v.3 (Table LVI(B)), 162P1E6 v.4 (Table LVII(C)), 162P1E6 v.5 (Table LVII(D)), 162P1E6 v.6 (Table LVII(E)), 162P1E6 v.7 (Table LVII(F)), 162P1E6 v.8 (Table LVII(G)), 162P1E6 v.9 (Table LVII(H)), 162P1E6 v.10 (Table LVII(I)), and 162P1E6 v.11 (Table LVII(J)). Example 6: Single Nucleotide Polymorlphisms of 162P1E6 A Single Nucleotide Polymorphism (SNP) is a single base pair variation in nucleotide sequences. At a specific point of the genome, there are four possible nucleotide base pairs: A/T, C/G, G/C and T/A. Genotype refers to the base pair make-up of one or more spots in the genome of an individual, while haplotype refers to base pair make-up of more than one varied spots on the same DNA molecule (chromosome in higher organism). SNPs that occur on a cDNA are called cSNPs. These cSNPs may change 76 amino acids of the protein encoded by the gene and thus change the functions of the protein. Some SNPs cause inherited diseases and some others contribute to quantitative variations in phenotype and reactions to environmental factors including diet and drugs among individuals. Therefore, SNPs and/or combinations of alleles (called haplotypes) have many applications including diagnosis of inherited diseases, determination of drug reactions and dosage, identification of genes responsible for disearses and discovery of genetic relationship between individuals (P. Nowotny, J. M. Kwon and A. M. Goate, "SNP analysis to dissect human traits," Curr. Opin. Neurobiol. 2001 Oct; l1(5):637-641; M. Pirmohamed and B. K. Park, "Genetic susceptibility to adverse drug reactions," Trends Pharmacol. Sci. 2001 Jun; 22(6):298-305; J. H. Riley, C. J. Allan, E. Lai and A. Roses, " The use of single nucleotide polymorphisms in the isolation of common disease genes," Pharmacogenomics. 2000 Feb; l(l):39-47; R. Judson, J. C. Stephens and A. Windemuth, "The predictive power of haplotypes in clinical response," Pharmacogenomics. 2000 feb; l(l):15-26). SNPs are identified by a variety of art-accepted methods (P. Bean, "The promising voyage of SNP target discovery," Am. Clin. Lab. 2001 Oct-Nov; 20(9):18-20; K. M. Weiss, "In search of human variation," Genome Res. 1998 Jul; 8(7):691-697; M. M. She, "Enabling large-scale pharmacogenetic studies by high throughput mutation detection and genotyping technologies," Clin. Chem. 2001 Feb; 47(2):164-172). For example, SNPs are identified by sequencing DNA fragments that show polymorphism by gel-based methods such as restriction fragment length polymorphism (RFLP) and denaturing gradient gel electrophoresis (DGGE). They can also be discovered by direct sequencing of DNA samples pooled from different individuals or by comparing sequences from different DNA samples. With the rapid accumulation of sequence data in public and private databases, one can discover SNPs by comparing sequences using computer programs (Z. Gu, L. Hillier and P. Y. Kwok, "Single nucleotide polymorphism hunting in cyberspace," Hum. Mutat. 1998; 12(4):221-225). SNPs can be verified and genotype or haplotype of an individual can be determined by a variety of methods including direct sequencing and high throughput microarrays (P. Y. Kwok, "Methods for genotyping single nucleotide polymorphisms," Annu. Rev. Genomics Hum. Genet. 2001; 2:235-258; M. Kokoris, K. Dix, K. Moynihan, J. Mathis, B. Erwin, P. Grass, B. Hines and A. Duesterhoeft, "High-throughput SNP genotyping with the Masscode system," Mol. Diagn. 2000 Dec; 5(4):329-340). Using the methods described above, ten SNPs were identified in the transcripts. Using 162P1E6 v.2 as template, the SNPs were located at positions 218 (G/A), 1197 (C/G), 1832 (G/A), 2314 (C/A), 2570 (T/A), 2630 (G/A), 2938 (A/G), 3597 (G/A), 3629 (A/C) and 3692 (A/G) (see Figure 12). The transcripts or proteins with alternative alleles were designated as variants 162P1E6 v.12, v.13, v.14, v.15, v.16, v.17, v.18, v.19, v.20 and v.21. Figure 10 shows the schematic alignment of the SNP variants. Figure I1 shows the schematic alignment of protein variants, corresponding to transcript variants and SNP variants. Nucleotide variants that code for the same amino acid sequence as variant 1 arc not shown in Figure 11. These alleles of the SNPs, though shown separately here, can occur in different combinations (haplotypes) and in any one of the transcript variants that contains the sequence context of the SNPs, e.g., 162P1E6 v.1, 162P1E6 v.2 or 162P1E6 v.l 1. 77 Example 7: Production of Recombinant 162P1E6 in Prokarvotic Systems To express recombinant 162P1E6 and 162P1E6 variants in prokaryotic cells, the full or partial length 162P1E6 and 162PIE6 variant cDNA sequences are cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 162P1E6 variants are expressed: the full length sequence presented in Figures 2 and 3, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or more contiguous amino acids from 162P1E6, variants, or analogs thereof. A. In vitro transcription and translation constructs: vCRI: To generate 162PIE6 sense and anti-sense RNA probes for RNA in situ investigations, pCRII constructs (Invitrogen, Carlsbad CA) are generated encoding either all or fragments of the 162PIE6 cDNA. The pCRII vector has Sp6 and T7 promoters flanking the insert to drive the transcription of 162P1E6 RNA for use as probes in RNA in situ hybridization experiments. These probes are used to analyze the cell and tissue expression of 162PIE6 at the RNA level. Transcribed 162P1E6 RNA representing the cDNA amino acid coding region of the 162P1E6 gene is used in in vitro translation systems such as the TnT'm Coupled Reticulolysate System (Promega, Corp., Madison, WI) to synthesize 162P1E6 protein. B. Bacterial Constructs: pGEX Constructs: To generate recombinant 162P 1E6 proteins in bacteria that are fused to the Glutathione S-transferase (GST) protein, all or parts of the 162P 1E6 cDNA protein coding sequence are cloned into the pGEX family of GST-fusion vectors (Amersham Pharmacia Biotech, Piscataway, NJ). These constructs allow controlled expression of recombinant 162P 1E6 protein sequences with GST fused at the amino-terminus and a six histidine epitope (6X His) at the carboxyl-terminus. The GST and 6X His tags permit purification of the recombinant fusion protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-GST and anti-His antibodies. The 6X His tag is generated by adding 6 histidine codons to the cloning primer at the 3' end, e.g., of the open reading frame (ORF). A proteolytic cleavage site, such as the PreScissionTM recognition site in pGEX-6P-1, may be employed such that it permits cleavage of the CST tag from 162PIE6-related protein. The ampicillin resistance gene and pBR322 origin permits selection and-maintenance of the pGEX plasmids in E. coli. pMAL Constructs: To generate, in bacteria, recombinant 162P IE6 proteins that are fused to maltose-binding protein (MBP), all or parts of the 162P 1E6 cDNA protein coding sequence are fused to the MBP gene by cloning into the pMAL-c2X and pMAL-p2X vectors (New England Biolabs, Beverly, MA). These constructs allow controlled expression of recombinant 162P1E6 protein sequences with MBP fused at the amino-terminus and a 6X His epitope tag at the carboxyl-terminus. The MBP and 6X His tags permit purification of the recombinant protein from induced bacteria with the appropriate affinity matrix and allow recognition of the fusion protein with anti-MBP and anti-His antibodies. The 6X His epitope tag is generated by adding 6 histidine codons to the 3' cloning primer. A Factor Xa recognition site permits cleavage of the pMAL tag from 162PlE6. The pMAL-c2X and pMAL-p2X vectors are optimized to express the recombinant protein in the cytoplasm or periplasm respectively. Periplasm expression enhances folding of proteins with disulfide bonds. pET Constructs: To express 162P1E6 in bacterial cells, all or parts of the 162P1E6 cDNA protein coding sequence are cloned into the pET family of vectors (Novagen, Madison, WI). These vectors allow tightly controlled expression of recombinant 162P1E6 protein in bacteria with and without fusion to proteins 78 that enhance solubility, such as NusA and thioredoxin (Trx), and epitope tags, such as 6X His and S-Tag TM that aid purification and detection of the recombinant protein. For example, constructs are made utilizing pET NusA fusion system 43.1 such that regions of the 162P1E6 protein are expressed as amino-terminal fusions to NusA. C. Yeast Constructs: pESC Constructs: To express 162P1E6 in the yeast species Saccharomyces cerevisiae for generation of recombinant protein and functional studies, all or parts of the 162P 1E6 cDNA protein coding sequence are cloned into the pESC family of vectors each of which contain 1 of 4 selectable markers, HIS3, TRP 1, LEU2, and URA3 (Stratagene, La Jolla, CA). These vectors allow controlled expression from the same plasmid of up to 2 different genes or cloned sequences containing either FlagTM or Myc epitope tags in the same yeast cell. This system is useful to confirm protein-protein interactions of 162P I E6. In addition, expression in yeast yields similar post-translational modifications, such as glycosylations and phosphorylations, that are found when expressed in eukaryotic cells. pESP Constructs: To express 162P1E6 in the yeast species Saccharomyces pombe, all or parts of the 162P1E6 cDNA protein coding sequence are cloned into the pESP family of vectors. These vectors allow controlled high level of expression of a 162P 1 E6 protein sequence that is fused at either the amino terminus or at the carboxyl terminus to GST which aids purification of the recombinant protein. A FlagM epitope tag allows detection of the recombinant protein with anti- FlagT" antibody. Example 8: Production of Recombinant 162P1E6 in Eukarvotic Systems A. Mammalian Constructs: To express recombinant 162P1E6 in eukaryotic cells, the full or partial length 162P1E6 cDNA sequences can be cloned into any one of a variety of expression vectors known in the art. One or more of the following regions of 162P1E6 are expressed in these constructs, amino acids 1 to 146 of 162P1E6 v.1 and v.18, amino acids 1 to 133 of 162P1E6 v.3, amino acids 1 to 102 of 162P I E6 v.4, amino acids 1 to 76 of 162P1E6 v.5, amino acids 1 to 70 of 162P1E6 v.6, or any 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more contiguous amino acids from 162P1E6, variants, or analogs thereof. In certain embodiments a region of a specific variant of 162P 1 E6 is expressed that encodes an amino acid at a specific position which differs from the amino acid of any other variant found at that position. In other embodiments, a region of a variant of 162P1E6 is expressed that lies partly or entirely within a sequence that is unique to that variant. The constructs can be transfected into any one of a wide variety of mammalian cells such as 293T cells. Transfected 293T cell lysates can be probed with the anti-162P1E6 polyclonal serum, described herein. pcDNA4/HisMax Constructs: To express 162P1E6 in mammalian cells, a 162P1E6 ORF, or portions thereof, of 162P I E6 are cloned into pcDNA4/HisMax Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytonegalovinis (CMV) promoter and the SP 16 translational enhancer. The recombinant protein has Xprcss m l and six histidine (6X His) epitopes fused to the amino-terminus. The pcDNA4/HisMax vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Zeocin resistance gene 79 allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE 1 origin permits selection and maintenance of the plasmid in E. coli. pcDNA3.1/MycHis Constructs: To express 162PlE6 in mammalian cells, a 162PlE6 ORF, or portions thereof, of 162P1E6 with a consensus Kozak translation initiation site was cloned into pcDNA3. /MycHis Version A (Invitrogen, Carlsbad, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant protein has the myc epitope and 6X His epitope fused to the carboxyl-terminus. The pcDNA3.l/MycHis vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability, along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene was used, as it allows for selection of mammalian cells expressing the protein and the ampicillin resistance gene and ColE 1 origin permits selection and maintenance of the plasmid in E. coli. Results of expression from 162P1E6.pcDNA3.1/MycHis construct are shown in Figure 21A. peDNA3.1/CT-GFP-TOPO Construct: To express 162P1E6 in mammalian cells and to allow detection of the recombinant proteins using fluorescence, a 162P I E6 ORF, or portions thereof, with a consensus Kozak translation initiation site are cloned into pcDNA3.l/CT-GFP-TOPO (Invitrogen, CA). Protein expression is driven from the cytomegalovirus (CMV) promoter. The recombinant proteins have the Green Fluorescent Protein (GFP) fused to the carboxyl-terminus facilitating non-invasive, in vivo detection and cell biology studies. The pcDNA3.1CT-GFP-TOPO vector also contains the bovine growth hormone (BGH) polyadenylation signal and transcription termination sequence to enhance mRNA stability along with the SV40 origin for episomal replication and simple vector rescue in cell lines expressing the large T antigen. The Neomycin resistance gene allows for selection of mammalian cells that express the protein, and the ampicillin resistance gene and ColEI origin permits selection and maintenance of the plasmid in E. coil. Additional constructs with an amino-terminal GFP fusion are made in pcDNA3. 1/NT-GFP-TOPO spanning the entire length of a 162P1E6 protein. PAPtaE: A 162P1E6 ORF, or portions thereof, is cloned into pAPtag-5 (GenHunter Corp. Nashville, TN). This construct generates an alkaline phosphatase fusion at the carboxyl-terminus of a 162PIE6 protein while fusing the IgGK signal sequence to the amino-terminus. Constructs are also generated in which alkaline phosphatase with an amino-terminal IgGK signal sequence is fused to the amino-terminus of a 162PlE6 protein. The resulting recombinant 162PlE6 proteins are optimized for secretion into the media of transfected mammalian cells and can be used to identify proteins such as ligands or receptors that interact with 162PlE6 proteins. Protein expression is driven from the CMV promoter and the recombinant proteins also contain myc and 6X His epitopes fused at the carboxyl-terminus that facilitates detection and purification. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the recombinant protein and the ampicillin resistance gene permits selection of the plasmid in E. coIl. ptag5: A 162P1E6 ORF was cloned into pTag-5. This vector is similar to pAPtag but without the alkaline phosphatase fusion. This construct generated 162PIE6 protein with an amino-terminal IgGr. signal sequence and myc and 6X His epitope tags at the carboxyl-terminus that facilitate detection and affinity purification. The resulting recombinant 162P1E6 protein was optimized for secretion into the media of transfected mammalian cells, and is used as immunogen or ligand to identify proteins such as ligands or 80 receptors that interact with the 162P 1E6 proteins. Protein expression is driven from the CMV promoter. The Zeocin resistance gene present in the vector allows for selection of mammalian cells expressing the protein, and the ampicillin resistance gene permits selection of the plasmid in E. coli. Results of expression from 162P1E6.pTag5 construct are shown in Figure 21B. PsecFc: A 162P1E6 ORF, or portions thereof, is also cloned into psecFe. The psecFc vector was assembled by cloning the human immunoglobulin G 1 (IgG) Fec (hinge, CH2, CH3 regions) into pSecTag2 (Invitrogen, California). This construct generates an IgGI Fe fusion at the carboxyl-terminus of the 162P I E6 proteins, while fusing the IgGK signal sequence to N-terminus. 162P1E6 fusions utilizing the murine IgGl Fc region are also used. The resulting recombinant 162P IE6 proteins are optimized for secretion into the media of transfected mammalian cells, and can be used as immunogens or to identify proteins such as ligands or receptors that interact with 162P1E6 protein. Protein expression is driven from the CMV promoter. The hygromycin resistance gene present in the vector allows for selection of mammalian cells that express the recombinant protein, and the ampicillin resistance gene permits selection of the plasmid in E coli. pSRa Constructs: To generate mammalian cell lines that express 162PIE6 constitutively, 162P1E6 ORF, or portions thereof, of 162P IE6 are cloned into pSRc constructs. Amphotropic and ecotropic retroviruses are generated by transfection of pSRx constructs into the 293T-10A1 packaging line or co transfection of pSRa and a helper plasmid (containing deleted packaging sequences) into the 293 cells, respectively. The retrovirus is used to infect a variety of mammalian cell lines, resulting in the integration of the cloned gene, 162P1E6, into the host cell-lines. Protein expression is driven from a long terminal repeat (LTR). The Neomycin resistance gene present in the vector allows for selection of niammalian cells that express the protein, and the ampicillin resistance gene and ColE 1 origin permit selection and maintenance of the plasmid in E. coli. The retroviral vectors can thereafter be used for infection and generation of various cell lines using, for example, PC3, NIH 3T3, TsuPrl, 293 or rat-1 cells. Additional pSRa constructs are made that fuse an epitope tag such as the FLAG'M tag to the carboxyl-terminus of 162P 1E6 sequences to allow detection using anti-Flag antibodies. For example, the FLAG" sequence 5' gat tac aag gat gac gac gat aag 3' (SEQ ID NO:__) is added to cloning primer at the 3' end of the ORF. Additional pSRa constructs are made to produce both amino-terminal and carboxyl-terminal GFP and myc/6X His fusion proteins of the full-length 162P1E6 proteins. Additional Viral Vectors: Additional constructs are made for viral-mediated delivery and expression of 162P1E6. High virus titer leading to high level expression of 162P1E6 is achieved in viral delivery systems such as adenoviral vectors and herpes amplicon vectors. A 162P1E6 coding sequences or fragments thereof are amplified by PCR and subcloned into the AdEasy shuttle vector (Stratagene). Recombination and virus packaging are performed according to the manufacturer's instructions to generate adenoviral vectors. Alternatively, 162P1E6 coding sequences or fragments thereof are cloned into the HSV-1 vector (Imgenex) to generate herpes viral vectors. The viral vectors are thereafter used for infection of various cell lines such as PC3, NIH 3T3, 293 or rat-I cells. Regulated Expression Systems: To control expression of 162P1E6 in mammalian cells, coding sequences of 162P1E6, or portions thereof, are cloned into regulated mammalian expression systems such as the T-Rex System (Invitrogen), the GeneSwitch System (Invitrogen) and the tightly-regulated Ecdysone 81 System (Sratagene). These systems allow the study of the temporal and concentration dependent effects of recombinant 162P1E6. These vectors are thereafter used to control expression of 162P1E6 in various cell lines such as PC3, NIH 3T3, 293 or rat-I cells. B. Baculovirus Expression Systems To generate recombinant 162PIE6 proteins in a baculovirus expression system, 162P1E6 ORF, or portions thereof, are cloned into the baculovirus transfer vector pBlueBac 4.5 (Invitrogen), which provides a His-tag at the N-terminus. Specifically, pBlueBac-162P1E6 is co-transfected with helper plasmid pBac-N Blue (Invitrogen) into SF9 (Spodopterafrugiperda) insect cells to generate recombinant baculovirus (see Invitrogen instruction manual for details). Baculovirus is then collected from cell supernatant and purified by plaque assay. Recombinant 162P1E6 protein is then generated by infection of HighFive insect cells (Invitrogen) with purified baculovirus. Recombinant 162P1E6 protein can be detected using anti-162P1E6 or anti-His-tag antibody. 162P1E6 protein can be purified and used in various cell-based assays or as immunogen to generate polyclonal and monoclonal antibodies specific for 162PIE6. Example 9: Antigenicity Profiles and Secondary Structure Figure SA-E, Figure 6A-E, Figure 7A-E, Figure 8A-E, and Figure 9A-E depict graphically five amino acid profiles of the 162P1E6 variants 1, 3, 4, 5, and 6, respectively, each assessment available by accessing the ProtScale website (URL www.expasy.ch/cgi-bin/protscale.pl) on the ExPasy molecular biology server. These profiles: Figure 5, Hydrophilicity, (Hopp T.P., Woods K.R., 1981. Proc. Natl. Acad. Sci. U.S.A. 78:3824-3828); Figure 6, Hydropathicity, (Kyte J., Doolittle R.F., 1982. J. Mol. Biol. 157:105-132); Figure 7, Percentage Accessible Residues (Janin J., 1979 Nature 277:491-492); Figure 8, Average Flexibility, (Rhaskaran R., and Ponnuswamy P.K., 1988. Int. J. Pept. Protein Res. 32:242-255); Figure 9, Beta-turn (Deleage, G., Roux B. 1987 Protein Engineering 1:289-294); and optionally others available in the art, such as on the ProtScale website, were used to identify antigenic regions of the 162P1E6 protein. Each of the above amino acid profiles of 162P IE6 were generated using the following ProtScale parameters for analysis: 1) A window size of 9; 2) 100% weight of the window edges compared to the window center, and, 3) amino acid profile values normalized to lie between 0 and 1. Hydrophilicity (Figure 5), Hydropathicity (Figure 6) and Percentage Accessible Residues (Figure 7) profiles were used to determine stretches of hydrophilic amino acids (i.e., values greater than 0.5 on the Hydrophilicity and Percentage Accessible Residues profile, and values less than 0.5 on the Hydropathicity profile). Such regions are likely to be exposed to the aqueous environment, be present on the surface of the protein, and thus available for immune recognition, such as by antibodies. Average Flexibility (Figure 8) and Beta-turn (Figure 9) profiles determine stretches of amino acids (i.e., values greater than 0.5 on the Beta-turn profile and the Average Flexibility profile) that are not constrained in secondary structures such as beta sheets and alpha helices. Such regions are also more likely to be exposed on the protein and thus accessible to immune recognition, such as by antibodies. Antigenic sequences of the 162P1E6 variant proteins indicated, e.g., by the profiles set forth in Figure 5A-E, Figure 6A-E, Figure 7A-E, Figure 8A-E, and/or Figure 9A-E are used to prepare immunogens, 82 either peptides or nucleic acids that encode them, to generate therapeutic and diagnostic anti-162P1E6 antibodies. The immunogen can be any 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50 or more than 50 contiguous amino acids, or the corresponding nucleic acids that encode them, from the 162P1E6 protein variants listed in Figures 2 and 3 (Variants 1, 3, 4. 5, and 6). In particular, peptide immunogens of the invention can comprise, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Hydrophilicity profiles of Figure 5; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value less than 0.5 in the Hydropathicity profile of Figures 6 ; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Percent Accessible Residues profiles of Figure 7; a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Average Flexibility profiles on Figure 8 ; and, a peptide region of at least 5 amino acids of Figures 2 and 3 in any whole number increment that includes an amino acid position having a value greater than 0.5 in the Beta-turn profile of Figures 9 . Peptide immunogens of the invention can also comprise nucleic acids that encode any of the forgoing. All immunogens of the invention, peptide or nucleic acid, can be embodied in human unit dose form, or comprised by a composition that includes a pharmaceutical excipient compatible with human physiology. The secondary structure of 162P1E6 variant proteins 1, 3, 4, 5, and 6, namely the predicted presence and location of alpha helices, extended strands, and random coils, is predicted from the primary amino acid sequence using the HNN - Hierarchical Neural Network method (Guermeur, 1997, http://pbil.ibcp.fr/cgi bin/npsaautomat.pl?page=npsa-nn.html), accessed from the ExPasy molecular biology server (http://www.expasy.ch/tools/). The analysis indicates that 162P1E6 variant 1 is composed of 21.92% alpha helix, 28.08% extended strand, and 50.00% random coil (Figure 13A). Variant 3 is composed of 29.32% alpha helix, 19.55% extended strand, and 51.13% random coil (Figure 13B). Variant 4 is composed of 37.25% alpha helix, 13.73% extended strand, and 49.02% random coil (Figure 13C). Variant 5 is composed of 11.84% alpha helix, 19.74% extended strand, and 68.42% random coil (Figure 13D). Variant 6 is composed of 14.29% alpha helix, 21.43% extended strand, and 64.29% random coil (Figure 13E). Analysis for the potential presence of transmembrane domains in the 162PIE6 variant proteins was carried out using a variety of transmembrane prediction algorithms accessed from the ExPasy molecular biology server (http://www.expasy.ch/tools/). The programs do not predict the presence of transmembrane domains in the 162P1E6 protein variants, suggesting that they are soluble proteins. Example 10: Generation of 162P1E6 Polyclonal Antibodies Polyclonal antibodies can be raised in a mammal, for example, by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. In addition to immunizing with a full length 162P1E6 protein variant, computer algorithms are employed in design of immunogens that, based on amino acid sequence analysis contain characteristics of being antigenic and available for recognition by the immune system of the immunized host (see the Example entitled "Antigenicity Profiles"). Such 83 regions would be predicted to be hydrophilic, flexible, in beta-turn conformations, and be exposed on the surface of the protein (see, e.g., Figure 5A-E, Figure 6A-E, Figure 7A-E, Figure 8A-E, or Figure 9A-E for amino acid profiles that indicate such regions of 162P1E6 protein variants). For example, recombinant bacterial fusion proteins or peptides containing hydrophilic, flexible, beta turn regions of 162P1E6 protein variants are used as antigens to generate polyclonal antibodies in New Zealand White rabbits. For example, in 162P1E6 variant 1, such regions include, but are not limited to, amino acids 1-15, amino acids 25-38, amino acids 44-54, and amino acids 122-132. It is useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include, but are not limited to, keyhole limpet hemocyanin (KLH), serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. In one embodiment, a peptide encoding amino acids 1-15 of 162P 1E6 variant 1 is conjugated to KLH and used to immunize the rabbit. Alternatively the immunizing agent may include all or portions of the 162P1E6 variant proteins, analogs or fusion proteins thereof. For example, the 162P1E6 variant 1 amino acid sequence can be fused using recombinant DNA techniques to any one of a variety of fusion protein partners that are well known in the art, such as glutathione-S-transferase (GST) and HIS tagged fusion proteins. Such fusion proteins are purified from induced bacteria using the appropriate affinity matrix. In one embodiment, a GST-fusion protein encoding the full length 162P1E6 variant 1 gene, amino acids 1-146, is produced and purified and used as immunogen. Other recombinant bacterial fusion proteins that may be employed include maltose binding protein, LacZ, thioredoxin, NusA, or an immunoglobulin constant region (see the section entitled "Production of 162P1E6 in Prokaryotic Systems" and Current Protocols In Molecular Biology, Volume 2, Unit 16, Frederick M. Ausubul et al. eds., 1995; Linsley, P.S., Brady, W., Umes, M., Grosmaire, L., Damle, N., and Ledbetter, L.(1991) J.Exp. Med. 174, 561-566). In addition to bacterial derived fusion proteins, mammalian expressed protein antigens are also used. These antigens are expressed from mammalian expression vectors such as the Tag5 and Fc-fusion vectors (see the section entitled "Production of Recombinant 162P1E6 in Eukaryotic Systems"), and retain post translational modifications such as glycosylations found in native protein. In one embodiment, the full length sequence of variant 1, amino acids 1-146, is cloned into the Tag5 mammalian secretion vector. The recombinant protein is purified by metal chelate chromatography from tissue culture supernatants of 293T cells stably expressing the recombinant vector. The purified Tag5 162P 1E6 protein is then used as immunogen. During the immunization protocol, it is useful to mix or emulsify the antigen in adjuvants that enhance the immune response of the host animal. Examples of adjuvants include, but are not limited to, complete Freund's adjuvant (CFA) and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). In a typical protocol, rabbits are initially immunized subcutaneously with up to 200 pg, typically 100-200 sg, of fusion protein or peptide conjugated to KLH mixed in complete Freund's adjuvant (CFA). Rabbits are then injected subcutaneously every two weeks with up to 200 gg, typically 100-200 pg, of the immunogen in incomplete Freund's adjuvant (IFA). Test bleeds are taken approximately 7-10 days following each immunization and used to monitor the titer of the antiserum by ELISA. 84 To test reactivity and specificity of immune serum, such as the rabbit serum derived from immunization with a KLH.-conjugated peptide encoding amino acids 1-15 of variant 1, the full-length 162P1E6 variant 1 cDNA is cloned into pCDNA 3.1 myc-his expression vector (Invitrogen, see the Example entitled "Production of Recombinant 162P IE6 in Eukaryotic Systems"). After transfection of the constructs into 293T cells, cell lysates are probed with the anti-162P1E6 serum and with anti-His antibody (Santa Cruz Biotechnologies, Santa Cruz, CA) to determine specific reactivity to denatured 162P IE6 protein using the Western blot technique. Figure 21 shows expression of Myc His epitope tagged 162P 1E6 variant 1 protein in 293T cells as detected by an anti-His antibody. In addition, the immune serum is tested by fluorescence microscopy, flow cytometry and immunoprecipitation against 293T and other recombinant 162P IE6 expressing cells to determine specific recognition of native protein. Western blot, imnmunoprecipitation, fluorescent microscopy, and flow cytometric techniques using cells that endogenously express 162PlE6 are also carried out to test reactivity and specificity. Anti-serum from rabbits immunized with 162P1E6 variant fusion proteins, such as GST and MBP fusion proteins, are purified by depletion of antibodies reactive to the fusion partner sequence by passage over an affinity column containing the fusion partner either alone or in the context of an irrelevant fusion protein. For example, antiserum derived from a GST-162P1E6 variant I fusion protein encoding amino acids 1-146 is first purified by passage over a column of GST protein covalently coupled to AffiGel matrix (BioRad, Hercules, Calif.). The antiserum is then affinity purified by passage over a column composed of a MBP fusion protein also encoding amino acids 1-146 covalently coupled to Affigel matrix. The serum is then further purified by protein G affinity chromatography to isolate the IgG fraction. Sera from other His-tagged antigens and peptide immunized rabbits as well as fusion partner depleted sera are affinity purified by passage over a column matrix composed of the original protein immunogen or free peptide. Example 11: Generation of 162P1E6 Monoclonal Antibodies (mAbs) In one embodiment, therapeutic mAbs to 162P1E6 variants comprise those that react with epitopes specific for each variant protein or specific to sequences in common between the variants that would disrupt or modulate the biological function of the 162P1E6 variants, for example those that would disrupt the interaction with ligands and binding partners. Immunogens for generation of such mAbs include those designed to encode or contain the entire 162P1E6 protein variant sequence, regions of the 162P1E6 protein variants predicted to be antigenic from computer analysis of the amino acid sequence (see, e.g., Figure 5A-E, Figure 6A-E, Figure 7A-E, Figure 8A-E, or Figure 9A-E, and the Example entitled "Antigenicity Profiles"). Immunogens include peptides, recombinant bacterial proteins, and mammalian expressed Tag 5 proteins and human and murine IgG FC fusion proteins. In addition, cells engineered to express high levels of a respective 162P1E6 variant, such as 293T-162P1E6 variant 1 or 300.19-162P1E6 variant 1murine Pre-B cells, are used to immunize mice. To generate mAbs to a 162P 1 E6 variant, mice are first immunized intraperitoneally (IP) with, typically, 10-50 pg of protein immunogen or 107 162P1E6-expressing cells mixed in complete Freund's adjuvant. Mice are then subsequently immunized IP every 2-4 weeks with, typically, 10-50 pg of protein immunogen or 107 cells mixed in incomplete Freund's adjuvant. Alternatively, MPL-TDM adjuvant is used in immunizations. In addition to the above protein and cell-based immunization strategies, a DNA-based 85 immunization protocol is employed in which a mammalian expression vector encoding a 162P1E6 variant sequence is used to immunize mice by direct injection of the plasmid DNA. For example, the full length variant 1 sequence, encoding amino acids 1-146, is cloned into the TagS mammalian secretion vector and the recombinant vector is used as immunogen. In another example the same amino acids are cloned into an Fc fusion secretion vector in which the 162P1E6 variant 1 sequence is fused at the amino-terminus to an IgK leader sequence and at the carboxyl-terminus to the coding sequence of the human or murine IgG Fc region. This recombinant vector is then used as immunogen. The plasmid immunization protocols are used in combination with purified proteins expressed from the same vector and with cells expressing the respective 162PIE6 variant. During the immunization protocol, test bleeds are taken 7-10 days following an injection to monitor titer and specificity of the immune response. Once appropriate reactivity and specificity is obtained as determined by ELISA, Western blotting, immunoprecipitation, fluorescence microscopy, and flow cytometric analyses, fusion and hybridoma generation is then carried out with established procedures well known in the art (see, e.g., Harlow and Lane, 1988). In one embodiment for generating 162PIE6 monoclonal antibodies, a Tag5-162P1E6 variant 1 antigen encoding amino acids 1-146, is expressed and purified from stably transfected 293T cells. Balb C mice are initially immunized intraperitoneally with 25 4g of the Tag5-162PIE6 variant I protein mixed in complete Freund's adjuvant. Mice are subsequently immunized every two weeks with 25 ig of the antigen mixed in incomplete Freund's adjuvant for a total of three immunizations. ELISA using the Tag5 antigen determines the titer of serum from immunized mice. Reactivity and specificity of serum to full length 162P1E6 variant I protein is monitored by Western blotting, immunoprecipitation and flow cytometry using 293T cells transfected with an expression vector encoding the 162P1E6 variant 1 cDNA (see e.g., the Example entitled "Production of Recombinant 162P1E6 in Eukaryotic Systems" and Figure 21). Other recombinant 162P I E6 variant 1-expressing cells or cells endogenously expressing 162P1E6 variant I are also used. Mice showing the strongest reactivity are rested and given a final injection of Tag5 antigen in PBS and then sacrificed four days later. The spleens of the sacrificed mice are harvested and fused to SPO/2 myeloma cells using standard procedures (Harlow and Lane, 1988). Supematants from HAT selected growth wells are screened by ELISA, Western blot, immunoprecipitation, fluorescent microscopy, and flow cytometry to identify 162P1E6 specific antibody-producing clones. The binding affinity of a 162P1E6 monoclonal antibody is determined using standard technologies. Affinity measurements quantify the strength of antibody to epitope binding and are used to help define which 162P1E6 monoclonal antibodies preferred for diagnostic or therapeutic use, as appreciated by one of skill in the art. The BIAcore system (Uppsala, Sweden) is a preferred method for determining binding affinity. The BIAcore system uses surface plasmon resonance (SPR, Welford K. 1991, Opt. Quant. Elect. 23:1; Morton and Myszka, 1998, Methods in Enzymology 295: 268) to monitor biomolecular interactions in real time. BlAcore analysis conveniently generates association rate constants, dissociation rate constants, equilibrium dissociation constants, and affinity constants. 86 Example 12: HELA Class I and Class II Binding Assays ILA class I and class II binding assays using purified HLA molecules are performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Anmunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, purified MHC molecules (5 to 500 nM) are incubated with various unlabeled peptide inhibitors and 1-10 nM "'I-radiolabeled probe peptides as described. Following incubation, MEC-peptide complexes are separated from free peptide by gel filtration and the fraction of peptide bound is determined. Typically, in preliminary experiments, each MIHC preparation is titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays are performed using these HLA concentrations. Since under these conditions [label]<[HLA] and IC 5 oe[HLA], the measured IC 50 values are reasonable approximations of the true KD values. Peptide inhibitors are typically tested at concentrations ranging from 120 pg/mil to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC 30 of a positive control for inhibition by the IC 50 for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into ICm nM values by dividing the IC 50 nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation is accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC. Binding assays as outlined above may be used to analyze HLA supermotif and/or 1HLA motif-bearing peptides (see Table IV). Example 13: Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes HIA vaccine compositions of the invention can include multiple epitopes. The multiple epitopes can comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification and confirmation of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below. Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes The searches performed to identify the motif-bearing peptide sequences in the Example entitled "Antigenicity Profiles" and Tables V-XVIII and XXII-LI employ the protein sequence data from the gene product of 162P1E6 set forth in Figures 2 and 3, the specific peptides used to generate the tables are listed in table LII. Computer searches for epitopes bearing HLA Class I or Class U supermotifs or motifs are performed as follows. All translated 162P 1E6 protein sequences are analyzed using a text string search software program to identify potential peptide sequences containing appropriate HLA binding motifs; such programs are readily produced in accordance with information in the art in view of known motif/supermotif disclosures. Furthermore, such calculations can be made mentally. 87 Identified A2-, A3-, and DR-supermotif sequences are scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms account for the impact of different amino acids at different positions, and are essentially based on the premise that the overall affinity (or AG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type: "AG"= al x a x a ...... x a., where aj, is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue] occurs at position i in the peptide, it is assumed to contribute a constant amountj, to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. MoL. Bio!. 267:1258-126, 1997; (see also Sidney et aL., Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying is calculated relative to the remainder of the group, and used as the estimate ofj,. For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired. Selection of HLA-A2 supertype cross-reactive peptides Protein sequences from 162P 1E6 are scanned utilizing motif identification software, to identify 8-, 9 10- and 1 1-mer sequences containing the HLA-A2-supermotif main anchor specificity. Typically, these sequences are then scored using the protocol described above and the peptides corresponding to the positive scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules in vitro (HLA-A*0201 is considered a prototype A2 supertype molecule). These peptides are then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are typically deemed A2-supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLA-A2 supertype molecules. Selection of HLA-A3 supermotif-bearing epitopes The 162P116 protein sequence(s) scanned above is also examined for the presence of peptides with the HLA-A3-supermotif primary anchors. Peptides corresponding to the HLA A3 supermotif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A* 1101 molecules, the molecules encoded by the two most prevalent A3-supertype alleles. The peptides that bind at least one of the two alleles with binding affinities of 5500 nM, often s 200 nM, are then tested for binding cross-reactivity to the other common A3-supertype alleles (e.g., A*3 101, A*3301, and A*6801) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested. 88 Selection of HLA-B7 supermotif bearing epitopes The 162P IE6 protein(s) scanned above is also analyzed for the presence of 8-, 9- 10-, or 11 -mer peptides with the HLA-B7-supermotif. Corresponding peptides are synthesized and tested for binding to HLA-B*0702, the molecule encoded by the most common B7-supertype allele (i.e., the prototype B7 supertype allele). Peptides binding B*0702 with IC 50 of 500 nM are identified using standard methods. These peptides are then tested for binding to other common B7-supertype molecules (e.g., B*3501, B*5101, B*5301, and B*5401). Peptides capable of binding to three or more of the five B7-supertype alleles tested are thereby identified. Selection of Al and A24 motif-bearing epitopes To further increase population coverage, HLA-Al and -A24 epitopes can also be incorporated into vaccine compositions. An analysis of the 162P1E6 protein can also be performed to identify HLA-Al- and A24-motif-containing sequences. High affinity and/or cross-reactive binding epitopes that bear other motif and/or supermotifs are identified using analogous methodology. Example 14: Confirmation of Immunogenicity Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described herein are selected to confirm in vitro immunogenicity. Confirmation is performed using the following methodology: Target Cell Lines for Cellular Screening: The .221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human B-lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2. 1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% (v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to confirm the ability of peptide-specific CTLs to recognize endogenous antigen. Primary CTL Induction Cultures: Generation ofDendritic Cells (DC): PBMCs are thawed in RPMI with 30 pg/mIl DNAse, washed twice and resuspended in complete medium (RPMI-1 640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L-glutamine and penicillin/streptomycin). The monocytes are purified by plating 10 x 106 PBMC/well in a 6-well plate. After 2 hours at 37*C, the non-adherent cells are removed by gently shaking the plates and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 U/ml of IL-4 are then added to each well. TNFa is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7. Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads@ M-450) and the detacha-bead@ reagent. Typically about 200-250x10 6 PBMC are processed to obtain 24x10 6 CD8' T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are thawed in RPMI with 30pg/ml DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/l% AB serum at a concentration of 20x10 6 cells/ml. The magnetic beads are washed 3 89 times with PBS/AB serum, added to the cells (140pl beads/20x10 6 cells) and incubated for 1 hour at 4*C with continuous mixing. The beads and cells are washed 4x with PBS/AB serum to remove the nonadherent cells and resuspended at 100x10 6 cells/ml (based on the original cell number) in PBS/AB serum containing 100pl/ml detacha-bead@ reagent and 30 pg/ml DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for 5-7 minutes, washed once with PBS with 1% BSA, counted and pulsed with 40pg/ln of peptide at a cell concentration of 1-2x10 6 /ml in the presence of 3pg/mnl B- microglobulin for 4 hours at 20*C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again. Setting up induction cultures: 0.25 ml cytokine-generated DC (at 1x1O5 cells/ml) are co-cultured with 0.25ml of CD8+ T-cells (at 2x10' cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7. Recombinant human IL-10 is added the next day at a final concentration of 10 ng/ml and rhuman IL-2 is added 48 hours later at 10 lU/ml. Restimulation of the induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction, the cells are restimulated with peptide-pulsed adherent cells. The PBMCs are thawed and washed twice with RPMI and DNAse. The cells are resuspended at 5x10 6 cells/ml and irradiated at -4200 rads. The PBMCs are plated at 2x10' in 0.5 ml complete medium per well and incubated for 2 hours at 37*C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with Opg/ml of peptide in the presence of 3 Ag/ml B2 microglobulin in 0.25ml RPMI/5%AB per well for 2 hours at 37*C. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later recombinant human IL-10 is added at a final concentration of 10 ng/ml and recombinant human IL2 is added the next day and again 2-3 days later at 50IU/ml (Tsai et al., Critical Reviews in Immunology 18(1-2):65-75, 1998). Seven days later, the cultures are assayed for CTL activity in a "Cr release assay. In some experiments the cultures are assayed for peptide-specific recognition in the in situ IFNy ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side-by-side comparison. Measurement of CTL lytic activity by "Cr release. Seven days after the second restimulation, cytotoxicity is determined in a standard (5 hr) "Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with 10pg/mli peptide overnight at 37 0 C. Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labeled with 200pCi of "Cr sodium chromate (Dupont, Wilmington, DE) for 1 hour at 37*C. Labeled target cells are resuspended at 106 per ml and diluted 1:10 with K562 cells at a concentration of 3.3x10'/ml (an NK-sensitive erythroblastoma cell line used to reduce non-specific lysis). Target cells (100 pl) and effectors (100pl) are plated in 96 well round-bottom plates and incubated for 5 hours at 37 0 C. At that time, 100 pl of supernatant are collected from each well and percent lysis is determined according to the formula: [(cpm of the test sample- cpm of the spontaneous "Cr release sample)/(cpm of the maximal "Cr release sample- cpm of the spontaneous 5 1 Cr release sample)] x 100. 90 Maximum and spontaneous release are determined by incubating the labeled targets with 1% Triton X- 100 and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample background) is 10% or higher in the case of individual wells and is 15% or more at the two highest E:T ratios when expanded cultures are assayed. In situ Measurement of Human IFNy Production as an Indicator of Peptide-specific and Endogenous Recognition Immulon 2 plates are coated with mouse anti-human IFNy monoclonal antibody (4 ig/ml 0.1M NaHCO 3 , pH8.2) overnight at 4*C. The plates are washed with Ca 2 +, Mg"-free PBS/0.05% Tween 20 and blocked with PBS/10% FCS for two hours, after which the CTLs (100 pl/well) and targets (100 il/well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of lx106 cells/mil. The plates are incubated for 48 hours at 37 0 C with 5% CO 2 . Recombinant human IFN-gamma is added to the standard wells starting at 400 pg or 1200pg/100 microliter/well and the plate incubated for two hours at 37*C. The plates are washed and 100 1 of biotinylated mouse anti-human IFN-gamma monoclonal antibody (2 microgram/ml in PBSI3%FCS/0.05% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 microliter HRP-streptavidin (1:4000) are added and the plates incubated for one hour at room temperature. The plates are then washed 6x with wash buffer, 100 microliter/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 microliter/well IM H 3 P0 4 and read at OD450. A culture is considered positive if it measured at least 50 pg of IFN-gamma/well above background and is twice the background level of expression. CTL Expansion. Those cultures that demonstrate specific lytic activity against peptide-pulsed targets and/or tumor targets are expanded over a two week period with anti-CD3. Briefly, 5x10 4 CD8+ cells are added to a T25 flask containing the following: 1x10 6 irradiated (4,200 rad) PBMC (autologous or allogeneic) per ml, 2x10 5 irradiated (8,000 rad) EBV- transformed cells per ml, and OKT3 (anti-CD3) at 30ng per ml in RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate, 25pM 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Recombinant human IL2 is added 24 hours later at a final concentration of 2001U/ml and every three days thereafter with fresh media at 50RU/ml. The cells are split if the cell concentration exceeds 1x10 6 n/ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the 5 Cr release assay or at I x10 6 /ml in the in situ IFNy assay using the same targets as before the expansion. Cultures are expanded in the absence of anti-CD3* as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and 5x10 4 CD8' cells are added to a T25 flask containing the following: Ix1 06 autologous PBMC per ml which have been peptide-pulsed with 10 gg/ml peptide for two hours at 37 0 C and irradiated (4,200 rad); 2x10' irradiated (8,000 rad) EBV-transformed cells per ml RPMI-1640 containing 10%(v/v) human AB serum, non-essential AA, sodium pyruvate, 25mM 2-ME, L-glutamnine and gentamicin. 91 Immunogenicity of A2 supermotif-bearing neptides A2-supermotif cross-reactive binding peptides are tested in the cellular assay for the ability to induce peptide-specific CTL in normal individuals. In this analysis, a peptide is typically considered to be an epitope if it induces peptide-specific CTLs in at least individuals, and preferably, also recognizes the endogenously expressed peptide. Immunogenicity can also be confirmed using PBMCs isolated from patients bearing a tumor that expresses 162P1E6. Briefly, PBMCs are isolated from patients, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen. Evaluation of A*03/AI 1 immunogenicity HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides. Evaluation of B7 immunogenicity Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified as set forth herein are confirmed in a manner analogous to the confirmation of A2-and A3-supermotif-bearing peptides. Peptides bearing other supermotifs/motifs, e.g., HLA-AI, HLA-A24 etc. are also confirmed using similar methodology Example 15: Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creatina Analoas HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analoging peptides to exhibit modulated binding affinity are set forth in this example. Analoging at Primary Anchor Residues Peptide engineering strategies are implemented to further increase the cross-reactivity of the epitopes. For example, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus. To analyze the cross-reactivity of the analog peptides, each engineered analog is initially tested for binding to the prototype A2 supertype allele A*0201, then, if A*0201 binding capacity is maintained, for A2 supertype cross-reactivity. Alternatively, a peptide is confirmed as binding one or all supertype members and then analoged to modulate binding affinity to any one (or more) of the supertype members to add population coverage. The selection of analogs for immunogenicity in a cellular screening analysis is typically further restricted by the capacity of the parent wild type (WT) peptide to bind at least weakly, i.e., bind at an ICSo of 92 5000nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross-reactivity by T cells specific for the parent epitope (see, e.g., Parkhurst et al., J. Inimunol. 157:2539, 1996; and Pogue et al., Proc. Nat!. Acad Sci. USA 92:8166, 1995). In the cellular screening of these peptide analogs, it is important to confirm that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, target cells that endogenously express the epitope. Analoging of HLA-A3 and B7-supermotif-bearing peptides Analogs of HLA-A3 supermotif-bearing epitopes are generated using strategies similar to those employed in analoging HLA-A2 supermotif-bearing peptides. For example, peptides binding to 3/5 of the A3-supertype molecules are engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2. The analog peptides are then tested for the ability to bind A*03 and A* 11 (prototype A3 supertype alleles). Those peptides that demonstrate s 500 nM binding capacity are then confirmed as having A3 supertype cross-reactivity. Similarly to the A2- and A3- motif bearing peptides, peptides binding 3 or more B7-supertype alleles can be improved, where possible, to achieve increased cross-reactive binding or greater binding affinity or binding half life. B7 supermotif-bearing peptides are, for example, engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney et al. (J. Immunol. 157:3480-3490, 1996). Analoging at primary anchor residues of other motif and/or supermotif-bearing epitopes is performed in a like manner. The analog peptides are then be confirmed for immunogenicity, typically in a cellular screening assay. Again, it is generally important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, targets that endogenously express the epitope. Analoging at Secondary Anchor Residues Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide with an F residue at position 1 is analyzed. The peptide is then analoged to, for example, substitute L for F at position 1. The analoged peptide is evaluated for increased binding affinity, binding half life and/or increased cross-reactivity. Such a procedure identifies analoged peptides with enhanced properties. Engineered analogs with sufficiently improved binding capacity or cross-reactivity can also be tested for immunogenicity in HLA-B7-transgenic mice, following for example, IFA immunization or lipopeptide immunization. Analoged peptides are additionally tested for the ability to stimulate a recall response using PBMC from patients with 162PlE6-expressing tumors. 93 Other analoging strategies Another form of peptide analoging, unrelated to anchor positions, involves the substitution of a cysteine with a-amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substitution of a amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette er aL., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999). Thus, by the use of single amino acid substitutions, the binding properties and/or cross-reactivity of peptide ligands for HLA supertype molecules can be modulated. Example 16: Identification and confirmation of 162P1E6-derived sequences with HLA-DR binding motifs Peptide epitopes bearing an HLA class II supermotif or motif are identified and confirmed as outlined below using methodology similar to that described for HLA Class I peptides. Selection of HLA-DR-supermotif-bearing epitopes. To identify 162P1E6-derived, HLA class II HTL epitopes, a 162P1E6 antigen is analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif. Specifically, 15-mer sequences are selected comprising a DR-supermotif, comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total). Protocols for predicting peptide binding to DR molecules have been developed (Southwood et al., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR supermotif primary anchors (i.e., at position I and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele-specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DRI, DR4w4, and DR7, can efficiently select DR cross-reactive peptides. The 162P1E6-derived peptides identified above are tested for their binding capacity for various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DRl, DR4w4, and DR7. Peptides binding at least two of these three DR molecules are then tested for binding to DR2w2 01, DR2w2 p2, DR6wl9, and DR9 molecules in secondary assays. Finally, peptides binding at least two of the four secondary panel DR molecules, and thus cumulatively at least four of seven different DR molecules, are screened for binding to DR4wl5, DRSwl 1, and DR8w2 molecules in tertiary assays. Peptides binding at least seven of the ten DR molecules comprising the primary, secondary, and tertiary screening assays are considered cross-reactive DR binders. 162P1E6-derived peptides found to bind common HLA-DR alleles are of particular interesL Selection of DR3 motif Veptides Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is a relevant criterion in the selection of ITfL epitopes. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the binding specificity 94 of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation. To efficiently identify peptides that bind DR3, target 162P 1 E6 antigens are analyzed for sequences carrying one of the two DR3-specific binding motifs reported by Geluk et al. (J. Immunol. 152:5742-5748, 1994). The corresponding peptides are then synthesized and confirmed as having the ability to bind DR3 with an affinity of 1 pM or better, i.e., less than 1 iM. Peptides are found that meet this binding criterion and qualify as HLA class II high affinity binders. DR3 binding epitopes identified in this manner are included in vaccine compositions with DR supermotif-bearing peptide epitopes. Similarly to the case of HLA class I motif-bearing peptides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding. Example 17: Immunogenicity of 162P1E6-derived HTL epitopes This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those identified using the methodology set forth herein. Immunogenicity of HTL epitopes are confirmed in a manner analogous to the determination of immunogenicity of CTL epitopes, by assessing the ability to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) in vitro primary induction using normal PBMC or 2.) recall responses from patients who have 162PlE6-expressing tumors. Example 18: Calculation of phenotypic frequencies of HLA-supertypes In various ethnic backgrounds to determine breadth of population coverage This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs. In order to analyze population coverage, gene frequencies of HLA alleles are determined. Gene frequencies for each HLA allele are calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=l-(SQRT(I-af)) (see, e.g., Sidney et al., Human hnmunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies are calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af-l.(1-Cgf) 2 ]. Where frequency data is not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies is assumed. To obtain total potential supertype population coverage no linkage disequilibrium is assumed, and only alleles confirmed to belong to each of the supertypes are included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations are made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1-A)). Confirmed members of the A3-like supertype are A3, All, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, 95 A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602). Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups. Coverage may be extended by including peptides bearing the Al and A24 motifs. On average, Al is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when Al and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%. An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes. Immunogenicity studies in humans (e.g., Bertoni et a., J. Clin. Invest. 100:503, 1997; Doolan et a., Immunity 7:97, 1997; and Threlkeld et al, J. Immunol. 159:1648, 1997) have shown that highly cross-reactive binding peptides are almost always recognized as epitopes. The use of highly cross-reactive binding peptides is an important selection criterion in identifying candidate epitopes for inclusion in a vaccine that is immunogenic in a diverse population. With a sufficient number of epitopes (as disclosed herein and from the art), an average population coverage is predicted to be greater than 95% in each of five major ethnic populations. The game theory Monte Carlo simulation analysis, which is known in the art (see e.g., Osborne, M.J. and Rubinstein, A. "A course in game theory" MIT Press, 1994), can be used to estimate what percentage of the individuals in a population comprised of the Caucasian, North American Black, Japanese, Chinese, and Hispanic ethnic groups would recognize the vaccine epitopes described herein. A preferred percentage is 90%. A more preferred percentage is 95%. Example 19: CTL Recognition Of Endogenously Processed Antigens After Priming This example confirms that CTL induced by native or analoged peptide epitopes identified and selected as described herein recognize endogenously synthesized, i.e., native antigens. Effector cells isolated from transgenic mice that are immunized with peptide epitopes, for example HLA-A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on "Cr labeled Jurkat-A2.1/K target cells in the absence or presence of peptide, and also tested on 5Cr labeled target cells bearing the endogenously synthesized antigen, I.e. cells that are stably transfected with 162PIE6 expression vectors. The results demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized 162P IE6 antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that are being evaluated. In addition to HLA-A*0201/Kb transgenic mice, several other transgenic mouse models including mice with human All, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-Al 96 and A24) are being developed. HLA-DRI and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes. Example 20: Activity Of CTL-HTL Coniugated Epitopes In Transgenic Mice This example illustrates the induction of CTLs and HTLs in transgenic mice, by use of a 162P 1 E6 derived CTL and HTL peptide vaccine compositions. The vaccine composition used herein comprise peptides to be administered to a patient with a 162P 1E6-expressing tumor. The peptide composition can comprise multiple CTL and/or HTL epitopes. The epitopes are identified using methodology as described herein. This example also illustrates that enhanced immunogenicity can be achieved by inclusion of one or more HTL epitopes in a CTL vaccine composition; such a peptide composition can comprise an HTL epitope conjugated to a CTL epitope. The CL epitope can be one that binds to multiple HLA family members at an affinity of 500 nM or less, or analogs of that epitope. The peptides may be lipidated, if desired. Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/Kb mice, which are transgenic for the human HLA A2.1 allele and are used to confirm the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif bearing epitopes, and are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTI/HTL conjugate, in DMSO/saline, or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide. Cell lines: Target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2. 1/Kb chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991) In vitro CTL activation: One week after priming, spleen cells (30x1 06 cells/flask) are co-cultured at 37 0 C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10 6 cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity. Assayfor cytotoxic activity: Target cells (1.0 to 1.5x10 6 ) are incubated at 37*C in the presence of 200 pl of 51 Cr. After 60 minutes, cells are washed three times and resuspended in RIO medium. Peptide is added where required at a concentration of 1 jg/ml. For the assay, 10' 5 Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 pl) in U-bottom 96-well plates. After a six hour incubation period at 37*C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is detennined by the formula: percent specific release = 100 x (experimental release - spontaneous release)/(maximum release spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % 3'Cr release data is expressed as lytic units/10 6 cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a six hour "Cr release assay. To obtain specific lytic units/10 6 , the lytic units/10 6 obtained in the absence of peptide is subtracted from the lytic units/10 6 obtained in the presence of peptide. For example, if 30% 51 Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5x10 5 effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5x10 4 effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: [(1/50,000)-(1/500,000)] x 106 = 18 LU. 97 The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTIJHTL conjugate vaccine preparation and are compared to the magnitude of the CTL response achieved using, for example, CTL epitopes as outlined above in the Example entitled "Confimation of Immunogenicity." Analyses similar to this may be performed to confirm the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures, it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions. Example 21: Selection of CTL and HTL epitopes for inclusion in a 162P1E6-specific vaccine. This example illustrates a procedure for selecting peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or can be single and/or polyepitopic peptides. The following principles are utilized when selecting a plurality of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection. Epitopes are selected which, upon administration, mimic immune responses that are correlated with 162P1E6 clearance. The number of epitopes used depends on observations of patients who spontaneously clear 162PIE6. For example, if it has been observed that patients who spontaneously clear 162P IE6 expressing cells generate an immune response to at least three (3) epitopes from 162P1E6 antigen, then at least three epitopes should be included for HLA class I. A similar rationale is used to determine HLA class H epitopes. Epitopes are often selected that have a binding affinity of an IC 50 of 500 nM or less for an HLA class I molecule, or for class II, an IC 50 of 1000 nM or less; or HLA Class I peptides with high binding scores from the BIMAS web site, at URL bimas.dcrt.nih.gov/. In order to achieve broad coverage of the vaccine through out a diverse population, sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. In one embodiment, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage. When creating polyepitopic compositions, or a minigene that encodes same, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest The principles employed are similar, if not the same, as those employed when selecting a peptide comprising nested epitopes. For example, a protein sequence for the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. Epitopes may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9 mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Each epitope can be exposed and bound by an HLA molecule upon administration of such a peptide. A multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. This embodiment provides for the possibility that an 98 as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent the creating of any analogs) directs the immune response to multiple peptide sequences that are actually present in 162P1E6, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions. Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length. A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response similar in magnitude to an immune response that controls or clears cells that bear or overexpress 162P IE6. Example 22: Construction of "Minigene" Multi-Epitope DNA Plasmids This example discusses the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of B cell, CTL and/or HTL epitopes or epitope analogs as described herein. A minigene expression plasmid typically includes multiple CTL and HTL peptide epitopes. In the present example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-AI and -A24 motif bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopcs. HLA class I supermotif or motif-bearing peptide epitopes derived 162P IE6, are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from 162P I E6 to provide broad population coverage, i.e. both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector. Such a construct may additionally include sequences that direct the HTL epitopes to the endoplasmic reticulum. For example, the Ii protein may be fused to one or more HTL epitopes as described in the art, wherein the CLIP sequence of the Ii protein is removed and replaced with an HLA class lI epitope sequence so that HLA class II epitope is directed to the endoplasmic reticulum, where the epitope binds to an HLA class II molecules. This example illustrates the methods to be used for construction of a minigene-bearing expression plasnid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art. The minigene DNA plasmid of this example contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector. Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final 99 multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95*C for 15 sec, annealing temperature (50 below the lowest calculated Tm of each primer pair) for 30 sec, and 72*C for 1 min. For example, a minigene is prepared as follows. For a first PCR reaction, 5 pg of each of two oligonucleotides are annealed and extended: In an example using eight oligonucleotides, i.e., four pairs of primers, oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 pl reactions containing Pfu polymerase buffer (lx= 10 mM KCL, 10 mM (NH4) 2
SO
4 , 20 mM Tris-chloride, pH 8.75,2 mM MgSO 4 , 0.1% Triton X-100, 100 pg/mI BSA), 0.25 mM each dNTP, and 2.5 U of Pfu polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The full-length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing. Example 23: The Plasmid Construct and the Degree to Which It Induces Immunogenicity. The degree to which a plasmid construct, for example a plasmid constructed in accordance with the previous Example, is able to induce immunogenicity is confirmed in vitro by determining epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts et al., J Immunol. 156:683-692, 1996; Demotz et al., Nature 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by diseased or transfected target cells, and then determining the concentration of peptide necessary to obtain equivalent levels of lysis or lymphokine release (see, e.g., Kageyama et al., J. Immunol. 154:567-576, 1995). Alternatively, immunogenicity is confirmed through in vivo injections into mice and subsequent in vitro assessment of CTL and HTL activity, which are analyzed using cytotoxicity and proliferation assays, respectively, as detailed e.g., in Alexander et al., Immunity 1:751-761, 1994. For example, to confirm the capacity of a DNA minigene construct containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2.1/K transgenic mice, for example, are immunized intramuscularly with 100 pg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA imrmmation, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene. Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a 5 tCr release assay. The results indicate the magnitude of the CTL response directed 100 against the A2-restricted epitope, thus indicating the in vivo immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA B7 motif or supermotif epitopes, whereby it is also found that the minigene elicits appropriate immune responses directed toward the provided epitopes. To confirm the capacity of a class II epitope-encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitopes that cross react with the appropriate mouse MHC molecule, I-Ab restricted mice, for example, are immunized intramuscularly with 100 pg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, i.e. HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a 'H-thymidine incorporation proliferation assay, (see, e.g., Alexander et al. Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene. DNA minigenes, constructed as described in the previous Example, can also be confirmed as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439-445, 1998; Sedegah et al., Proc. Nat!. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177-181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999). For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2. 1/K transgenic mice are immunized IM with 100 ig of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing peptide. After an incubation period (ranging from 3-9 weeks), the mice are boosted IP with 107 pfulmouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 pg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated in vitro with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an alpha, beta and/or gamma IFN ELISA. It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A II or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes. The use of prime boost protocols in humans is described below in the Example entitled "Induction of CTL Responses Using a Prime Boost Protocol." 101 Example 24: Peptide Compositions for Prophylactic Uses Vaccine compositions of the present invention can be used to prevent 162P 1E6 expression in persons who are at risk for tumors that bear this antigen. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in the above Examples, which are also selected to target greater than 80% of the population, is administered to individuals at risk for a 162P1E6-associated tumor. For example, a peptide-based composition is provided as a single polypeptide that encompasses multiple epitopes. The vaccine is typically administered in a physiological solution that comprises an adjuvant, such as Incomplete Freunds Adjuvant. The dose of peptide for the initial immunization is from about I to about 50,000 pg, generally 100-5,000 ig, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against 162P IE6-associated disease. Alternatively, a composition typically comprising transfecting agents is used for the administration of a nucleic acid-based vaccine in accordance with methodologies known in the art and disclosed herein. Example 25: Polvepitopic Vaccine Compositions Derived from Native 162P1E6 Sequences A native 162P1E6 polyprotein sequence is analyzed, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify "relatively short" regions of the polyprotein that comprise multiple epitopes. The "relatively short" regions are preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct or overlapping, "nested" epitopes can be used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is generally less than 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (i.e., frame shifted relative to one another). For example, with overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes. The vaccine composition will include, for example, multiple CTL epitopes from 162P1E6 antigen and at least one HTL epitope. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide. Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide. The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally, such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup(s) that is presently 102 unknown. Furthermore, this embodiment (excluding an analoged embodiment) directs the immune response to multiple peptide sequences that are actually present in native 162P1E6, thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing peptide or nucleic acid vaccine compositions. Related to this embodiment, computer programs are available in the art which can be used to identify in a target sequence, the greatest number of epitopes per sequence length. Example 26: Polyepitopic Vaccine Compositions From MultIple Antigens The 162P1E6 peptide epitopes of the present invention are used in conjunction with epitopes from other target tumor-associated antigens, to create a vaccine composition that is useful for the prevention or treatment of cancer that expresses 162P 1 E6 and such other antigens. For example, a vaccine composition can be provided as a single polypeptide that incorporates multiple epitopes from 162P 1 E6 as well as tumor associated antigens that are often expressed with a target cancer associated with 162PIE6 expression, or can be administered as a composition comprising a cocktail of one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro. Example 27: Use of peptides to evaluate an Immune response Peptides of the invention may be used to analyze an immune response for the presence of specific antibodies, CTL or HTL directed to 162P1E6. Such an analysis can be performed in a manner described by Ogg et al., Science 279:2103-2106, 1998. In this Example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen. In this example highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a cross-sectional analysis of, for example, 162P1E6 HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of disease or following immunization comprising a 162P I E6 peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey et al., N. Engl. J Med. 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and 02 microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, p2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5' triphosphate and magnesium. Streptavidin phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to I mg/ml. The resulting product is referred to as tetramer-phycoerythrin. For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300g for 5 minutes and resuspended in 50 pl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201 negative individuals and A*0201-positive non-diseased donors. The percentage of cells stained with the 103 tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the 162P1E6 epitope, and thus the status of exposure to 162P1E6, or exposure to a vaccine that elicits a protective or therapeutic response. Example 28: Use of Peptide Epitopes to Evaluate Recall Responses The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who have recovered from 162P IE6-associated disease or who have been vaccinated with a 162PIE6 vaccine. For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any 162P1E6 vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type. PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients (Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI 1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 pg/ml), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 pg/ml to each well and HBV core 128-140 epitope is added at 1 pg/ml to each well as a source of T cell help during the first week of stimulation. In the microculture format, 4 x 103 PBMC are stimulated with peptide in 8 replicate cultures in 96 well round bottom plate in 100 p/well of complete RPMI. On days 3 and 10, 100 sl of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96 well flat-bottom plate and restimulated with peptide, rIL-2 and 105 irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific 51 Cr release, based on comparison with non-diseased control subjects as previously described (Rehermann, et al., Nature Med. 2:1104,1108, 1996; Rehermann et aL., J Clin. Invest. 97:1655-1665, 1996; and Rehermann et aL. J. Clin. Invest. 98:1432-1440, 1996). Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, et aL. J. Virol. 66:2670-2678, 1992). Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HILA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 pM, and labeled with 100 pCi of "Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS. Cytolytic activity is determined in a standard 4-h, split well 51 Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20 104 50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments. The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to 162P1E6 or a 162PIE6 vaccine. Similarly, Class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5x10 5 cells/well and are stimulated with 10 lig/ml synthetic peptide of the invention, whole 162PIE6 antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing IOU/mI IL-2. Two days later, 1 pCi 3 H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for 3
H
thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of -H-thymidine incorporation in the presence of antigen divided by the 3 H-thymidine incorporation in the absence of antigen. Example 29: Induction Of Specific CTL Response In Humans A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study and carried out as a randomized, double-blind, placebo-controlled trial. Such a trial is designed, for example, as follows: A total of about 27 individuals are enrolled and divided into 3 groups: Group 1: 3 subjects are injected with placebo and 6 subjects are injected with 5 ptg of peptide composition; Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 pg peptide composition; Group M: 3 subjects are injected with placebo and 6 subjects are injected with 500 pg of peptide composition. After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage. The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of this the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints. Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility. Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity. 105 The vaccine is found to be both safe and efficacious. Example 30: Phase U Trials In Patients Expressing 162P1E6 Phase 1H trials are performed to study the effect of administering the CTL-HTL peptide compositions to patients having cancer that expresses 162P1E6. The main objectives of the trial are to determine an effective dose and regimen for inducing CTLs in cancer patients that express 162PIE6, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of these patients, as manifested, e.g., by the reduction and/or shrinking of lesions. Such a study is designed, for example, as follows: The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded. There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group range in age from 21-65 and represent diverse ethnic backgrounds. All of them have a tumor that expresses 162P IE6. Clinical manifestations or antigen-specific T-cell responses are monitored to assess the effects of administering the peptide compositions. The vaccine composition is found to be both safe and efficacious in the treatment of 162PIE6-associated disease. Example 31: Induction of CTL Responses Using a Prime Boost Protocol A prime boost protocol similar in its underlying principle to that used to confirm the efficacy of a DNA vaccine in transgenic mice, such as described above in the Example entitled "The Plasmid Construct and the Degree to Which It Induces Immunogenicity," can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of, for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant. For example, the initial immunization may be performed using an expression vector, such as that constructed in the Example entitled "Construction of "Minigene" Multi-Epitope DNA Plasmids" in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 pg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-107 to 5x10 9 pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples are obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity. 106 Analysis of the results indicates that a magnitude of response sufficient to achieve a therapeutic or protective immunity against 162P 1 E6 is generated. Example 32: Administration of Vaccine Compositions Using Dendritic Cells (DC) Vaccines comprising peptide epitopes of the invention can be administered using APCs, or "professional" APCs such as DC. In this example, peptide-pulsed DC are administered to a patient to stimulate a CTL response in vivo. In this method, dendritic cells are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo. The induced CTL and HTL then destroy or facilitate destruction, respectively, of the target cells that bear the 162PIE6 protein from which the epitopes in the vaccine are derived. For example, a cocktail of epitope-comprising peptides is administered ex vivo to PBMC, or isolated DC therefrom. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinT" (Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides, and prior to reinfusion into patients, the DC are washed to remove unbound peptides. As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of DC reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although 2-50 x 106 DC per patient are typically administered, larger number of DC, such as 107 or 10s can also be provided. Such cell populations typically contain between 50-90% DC. In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC generated after treatment with an agent such as ProgenipoietinTM are injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 10 to 1010. Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if ProgenipoietinTm mobilizes 2% DC in the peripheral blood of a given patient, and that patient is to receive 5 x 106 DC, then the patient will be injected with a total of 2.5 x 10' peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin TM is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art. Ex vivo activation of CTLHTL responses Alternatively, ex vivo CTL or HTL responses to 162P IE6 antigens can be induced by incubating, in tissue culture, the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of APC, such as DC, and immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, i.e., tumor cells. Example 33: An Alternative Method of Identifying and Confirming Motif-Bearing Peptides Another method of identifying and confirming motif-bearing peptides is to elute them from cells bearing defined MIC molecules. For example, EBV transformed B cell lines used for tissue typing have 107 been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can be transfected with nucleic acids that express the antigen of interest, e.g. 162P1E6. Peptides produced by endogenous antigen processing of peptides produced as a result of transfection will then bind to HLA molecules within the cell and be transported and displayed on the cell's surface. Peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo et aL., J. Immunol. 152:3913, 1994). Because the majority of peptides that bind a particular HLA molecule are motif bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell. Alternatively, cell lines that do not express endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells can then be used as described, i.e., they can then be transfected with nucleic acids that encode 162P1E6 to isolate peptides corresponding to 162P1E6 that have been presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell. As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed. Moreover, one of skill would also recognize that means other than transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell. Example 34: Complementary Polynucleotides Sequences complementary to the 162PIE6-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring 162P1E6. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using, e.g., OLIGO 4.06 software (National Biosciences) and the coding sequence of 162P1 E6. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent nbosomal binding to a 162PIE6-encoding transcript. Example 35: Purification of Naturally-occurrine or Recombinant 162P1E6 Using 162P1E6 Specific Antibodies Naturally occurring or recombinant 162P1E6 is substantially purified by immunoaffinity chromatography using antibodies specific for 162PIE6. An immunoaffinity column is constructed by covalently coupling anti-162P1E6 antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amershan Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions. Media containing 162P1E6 are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of 162P1E6 (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/162PIE6 binding (e.g., a 108 buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and GCR.P is collected. Example 36: IdentIfication of Molecules Which Interact with 162P1E6 162PIE6, or biologically active fragments thereof, are labeled with 121 1 Bolton-Hunter reagent. (See, e.g., Bolton et al. (1973) Biochem. J. 133:529.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled 162P1E6, washed, and any wells with labeled 162P IE6 complex are assayed. Data obtained using different concentrations of 162P 1 E6 are used to calculate values for the number, affinity, and association of 162PIE6 with the candidate molecules. Example 37: In Vivo Assay for 162P1E6 Tumor Growth Promotion The effect of the 162P1E6 protein on tumor cell growth is evaluated in vivo by evaluating tumor development and growth of cells expressing or lacking 162P1 E6. For example, SCID mice are injected subcutaneously on each flank with 1 x 106 of either 3T3, prostate, bladder, kidney, lung or breast cancer cell lines (e.g. UM-UC3, J82, 769-P, CaKil, CaLu, NCI-H82 or MCF7 cells) containing tkNeo empty vector or 162P1E6. At least two strategies may be used: (1) Constitutive 162P1E6 expression under regulation of a promoter such as a constitutive promoter obtained from the genomes of viruses such as polyoma virus, fowlpox virus (UK 2,211,504 published 5 July 1989), adenovirus (such as Adenovirus 2), bovine papilloma virus, avian sarcoma virus, cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40), or from heterologous mammalian promoters, e.g., the actin promoter or an immunoglobulin promoter, provided such promoters are compatible with the host cell systems, and (2) Regulated expression under control of an inducible vector system, such as ecdysone, tetracycline, etc., provided such promoters are compatible with the host cell systems. Tumor volume is then monitored by caliper measurement at the appearance of palpable tumors and followed over time to determine if 162P1E6-expressing cells grow at a faster rate and whether tumors produced by 162P I E6-expressing cells demonstrate characteristics of altered aggressiveness (e.g., enhanced metastasis, vascularization, reduced responsiveness to chemotherapeutic drugs). Additionally, mice can be implanted with 1 x 105 of the same cells orthotopically to determine if 162P1E6 has an effect on local growth in prostate, bladder, kidney, lung or breast, and whether 162P1E6 affects the ability of the cells to metastasize, specifically to lymph nodes, adrenal, liver and bone (Mild T et al, Oncol Res. 2001;12:209; Fu X et al, Int J Cancer. 1991, 49:938; Kiguchi Ket al, Clin Exp Metastasis. 1998, 16:751). The assay is also useful to determine the 162P 1E6 inhibitory effect of candidate therapeutic compositions, such as for example, 162PIE6 antibodies, 162P1E6 intrabodies, 162P1E6 antisense molecules and ribozymes. Example 38: 162P1E6 Monoclonal Antibody-mediated Inhibition of Tumor Growth and Metastasis In Vivo The significant expression of 162PIE6 in cancer tissues, together with its restrictive expression in normal tissues makes 162P1E6 a good target for antibody therapy. Similarly, 162P1E6 is a target for T cell based immunotherapy. Thus, the therapeutic efficacy of anti- 1 62P1 E6 mAbs in human bladder cancer 109 xenograft mouse models is evaluated by using recombinant cell lines UM-UC3-162P1E6, J82-162P1E6, 769 P-162P1E6, CaKil-162PIE6, CaLu-162P1E6, NCI-H82-162PIE6 or MCF7-162P1E6 cells, and 3T3 162P1E6 (see, e.g., Kaighn, M.E., et al., Invest Urol, 1979.17(1): p. 16-23). Similarly, anti-162P1E6 mAbs are evaluated in human kidney, bladder, lung, breast and prostate cancer xenograft models using recombinant cell lines such as UM-UC3-162P1E6, J82-162P1E6, 769-P-162P1E6, CaKil-162P1E6, CaLu-162P1E6, NCI H82-162P1E6 and MCF7-162P1E6 cells. Antibody efficacy on tumor growth and metastasis formation is studied, e.g., in a mouse orthotopic bladder cancer xenograft model, a orthotopic kidney cancer, orthotopic mammary cancer model and orthotopic lung cancer xenograft model in addition to the prostate cancer xenograft model. The antibodies can be unconjugated, as discussed in this Example, or can be conjugated to a therapeutic modality, as appreciated in the art. Anti-162P1E6 mAbs inhibit formation of kidney, bladder, lung and breast xenografts. Anti-162P1E6 mAbs also retard the growth of established orthotopic tumors and prolonged survival of tumor bearing mice. Anti-162P1E6 mAbs can also regulate the growth and metastasis of prostate cancer xenograft tumors. These results indicate the utility of anti-162P1E6 mAbs in the treatment of local and advanced stages of kidney, bladder, lung and breast cancer. (See, e.g., Saffran, D., et al., PNAS 10:1073-1078 or www.pnas.org/cgi/doi/I 0.1 073/pnas.051624698). Administration of the anti-162P1E6 mAbs led to retardation of established orthotopic tumor growth and inhibition of metastasis to distant sites, resulting in a significant prolongation in the survival of tumor bearing mice, specially in mice bearing kidney, bladder, lung and breast tumors. These studies indicate that 162P1E6 as an attractive target for immunotherapy and demonstrate the therapeutic potential of anti-162P1E6 mAbs for the treatment of local and metastatic cancer. This example demonstrates that unconjugated 162P1E6 monoclonal antibodies are effective to inhibit the growth of human bladder, kidney, lung and breast tumor xenografts grown in SCID mice; accordingly a combination of such efficacious monoclonal antibodies is also effective. Tumor Inhibition using multiple unconjugated 162P1E6 mAbs Materials and Methods 162P IE6 Monoclonal Antibodies: Monoclonal antibodies are raised against 162P1E6 as described in the Example entitled "Generation of 162P1E6 Monoclonal Antibodies (mAbs)." The antibodies are characterized by ELISA, Western blot, FACS, and immunoprecipitation for their capacity to bind 162PIE6. Epitope mapping data for the anti 162PIE6 mAbs, as determined by ELISA and Western analysis, recognize epitopes on the 162P1E6 protein. Immunohistochemical analysis of prostate cancer tissues and cells with these antibodies is performed. The monoclonal antibodies are purified from ascites or hybridoma tissue culture supernatants by Protein-G Sepharose chromatography, dialyzed against PBS, filter sterilized, and stored at -20 0 C. Protein determinations are performed by a Bradford assay (Bio-Rad, Hercules, CA). A therapeutic monoclonal antibody or a cocktail comprising a mixture of individual monoclonal antibodies is prepared and used for the treatment of mice receiving subcutaneous or orthotopic injections of UM-UC3, J82, 769-P, CaKil, CaLu, NCI-H82 or MCF7 cells tumor xenografts. 110 Cancer xenograft and Cell Lines The LAPC-4AD xenograft, which expresses a wild-type androgen receptor and produces prostate specific antigen (PSA), is passaged in 6- to 8-week-old male ICR-severe combined immunodeficient (SCID) mice (Taconic Farms) by s.c. trocar implant (Craft, N., et al., supra). The bladder, kidney, lung and breast carcinoma cell lines, as well as the fibroblast line NIH 3T3 (American Type Culture Collection) are maintained in DMEM supplemented with L-glutamine and 10% FBS. Prostate cancer cell lines (American Type Culture Collection) are maintained in RPMI supplemented with L-glutamine and 10% FBS. UM-UC3-162P IE6, J82-162P1E6, 769-P-162P1E6, CaKil-162P1E6, CaLu-162P1E6, NCI-H82 162P1E6 or MCF7-162P1E6 cells 3T3-162P1E6 cell populations are generated by retroviral gene transfer as described in Hubert, R.S., et al., Proc Nati Acad Sci U S A, 1999. 96(25): 14523. Xenograft Mouse Models. Subcutaneous (s.c.) tumors are generated by injection of 1 x 10 6 cancer cells mixed at a 1:1 dilution with Matrigel (Collaborative Research) in the right flank of male SCID mice. To test antibody efficacy on tumor formation, i.p. antibody injections are started on the same day as tumor-cell injections. As a control, mice are injected with either purified mouse IgG (ICN) or PBS; or a purified monoclonal antibody that recognizes an irrelevant antigen not expressed in human cells. Tumor sizes are determined by caliper measurements, and the tumor volume is calculated as length x width x height. Mice with s.c. tumors greater than 1.5 cm in diameter are sacrificed. Orthotopic injections are performed under anesthesia by using ketamine/xylazine. For bladder and breast orthotopic studies, an incision is made through the abdomen to expose the bladder or the breast, and tumor cells (5 x 105) mixed with Matrigel are injected into the bladder/breast wall in a 10-pl volume. For kidney orthopotic models, an incision is made through the abdominal muscles to expose the kidney. Tumor cells mixed with Matrigel are injected under the kidney capsule in a 10-pl volume (Yoshida Y et al, Anticancer Res. 1998, 18:327; Ahn et al, Tumour Biol. 2001, 22:146). For prostate orthotopic studies, an incision is made through the abdominal muscles to expose the dorsal prostate. Tumor cells (5 x 105 ) mixed with Matrigel are injected into each dorsal lobe in a 10-pl volume. To monitor tumor growth, mice are palpated and blood is collected on a weekly basis measuring G250, BTA, PSA and TPA (Tissue Polypeptide Antigen) levels (Stephan C et al, Urology. 2002, 59:2; Buccheri G, Ferrigno D. Lung Cancer. 2001;34 Suppl 2:S65; Ross JS, Cohen MB. Adv Anat Pathol. 2001, 8:37). The mice are segregated into groups for the appropriate treatments, with anti-162P1E6 or control mAbs being injected i.p. Anti-162PIE6 mAbs Inhibit Growth of 162P1E6-Expressing Xenograft-Cancer Tumors The effect of anti-I 62P 1 E6 mAbs on tumor formation is tested on the growth and progression of bladder, kidney, lung, prostate and breast cancer xenografts using cell line orthotopic models, as stated above. As compared with the s.c. tumor model, the orthotopic model, which requires injection of tumor cells directly in the mouse bladder, kidney and ovary, respectively, results in a local tumor growth, development of metastasis in distal sites, deterioration of mouse health, and subsequent death (Saffran, D., et al., PNAS supra; Fu, X., et al., Int J Cancer, 1992. 52(6): p. 987-90; Kubota, T., J Cell Biochem, 1994. 56(1): p. 4-8). The features make the orthotopic model more representative of human disease progression and allowed us to follow the therapeutic effect of mAbs on clinically relevant end points. 111 Accordingly, tumor cells are injected into the mouse bladder, kidney, lung, prostate or breast, and 2 days later, the mice are segregated into two groups and treated with either: a) 200-500pg, of anti-162P1E6 Ab, or b) PBS three times per week for two to five weeks. A major advantage of the orthotopic cancer models is the ability to study the development of metastases. Formation of metastasis in mice bearing established orthotopic tumors is studies by IHC analysis on liver, lung and bone sections using an antibody against a tumor-specific cell-surface protein such as anti CK20 for bladder cancer, anti-G250 for kidney cancer, anti-STEAP-1 for prostate cancer and anti-TPA antibody for lung cancer models (Lin S et al, Cancer Detect Prev. 2001;25:202; McCluggage W et al, Histopathol 2001, 38:542). Mice bearing established orthotopic tumors are administered 1000 g injections of either anti 162P1E6 mAb or PBS over a 4-week period. Mice in both groups are allowed to establish a high tumor burden, to ensure a high frequency of metastasis formation in mouse lungs, livers and bones. Mice then are killed and their bladders, livers, bone and lungs are analyzed for the presence of tumor cells by IHC analysis. These studies demonstrate a broad anti-tumor efficacy of anti-162P IE6 antibodies on initiation and progression of prostate and kidney cancer in xenograft mouse models. Anti-162P1E6 antibodies inhibit tumor formation of tumors as well as retarding the growth of already established tumors and prolong the survival of treated mice. Moreover, anti-162P1E6 mAbs demonstrate a dramatic inhibitory effect on the spread of local bladder, kidney, lung and breast tumor to distal sites, even in the presence of a large tumor burden. Thus, anti-162PlE6 mAbs are efficacious on major clinically relevant end points (tumor growth), prolongation of survival, and health. Example 39: Therapeutic and Dlagnostic use of Anti-162P1E6 Antibodies In Humans. Anti-162P1E6 monoclonal antibodies are safely and effectively used for diagnostic, prophylactic, prognostic and/or therapeutic purposes in humans. Western blot and immunohistochemical analysis of cancer tissues and cancer xenografts with anti-162P1E6 mAb show strong extensive staining in carcinoma but significantly lower or undetectable levels in normal tissues. Detection of 162P1 E6 in carcinoma and in metastatic disease demonstrates the usefulness of the mAb as a diagnostic and/or prognostic indicator. Anti 162P1E6 antibodies are therefore used in diagnostic applications such as immunohistochemistry of kidney biopsy specimens to detect cancer from suspect patients. As determined by flow cytometry, anti-162P1E6 mAb specifically binds to carcinoma cells. Thus, anti-162P1E6 antibodies are used in diagnostic whole body imaging applications, such as radioimmunoscintigraphy and radioimmunotherapy, (see, e.g., Potamianos S., et. al. Anticancer Res 20(2A):925-948 (2000)) for the detection of localized and metastatic cancers that exhibit expression of 162P1E6. Shedding or release of an extracellular domain of 162P1E6 into the extracellular milieu, such as that seen for alkaline phosphodiesterase B10 (Meerson, N. R., Hepatology 27:563-568 (1998)), allows diagnostic detection of 162PIE6 by anti-162P1E6 antibodies in serum and/or urine samples from suspect patients. Anti-162P1E6 antibodies that specifically bind 162P1E6 are used in therapeutic applications for the treatment of cancers that express 162P1E6. Anti-162P1E6 antibodies are used as an unconjugated modality and as conjugated form in which the antibodies are attached to one of various therapeutic or imaging 112 modalities well known in the art, such as a prodrugs, enzymes or radioisotopes. In preclinical studies, unconjugated and conjugated anti-162P1E6 antibodies are tested for efficacy of tumor prevention and growth inhibition in the SCID mouse cancer xenograft models, e.g., kidney cancer models AGS-K3 and AGS-K6, (see, e.g., the Example entitled "162P1E6 Monoclonal Antibody-mediated Inhibition of Bladder and Lung Tumors In Vivo '). Conjugated and unconjugated anti-i 62P I E6 antibodies are used as a therapeutic modality in human clinical trials either alone or in combination with other treatments as described in following Examples. Example 40: Human Clinical Trials for the Treatment and Diagnosis of Human Carcinomas through use of Human Anti-162P1E6 Antibodies In vivo Antibodies are used in accordance with the present invention which recognize an epitope on 162P1E6, and are used in the treatment of certain tumors such as those listed in Table I. Based upon a number of factors, including 162P1E6 expression levels, tumors such as those listed in Table I are presently preferred indications. In connection with each of these indications, three clinical approaches are successfully pursued. 1.) Adjunctive therapy: In adjunctive therapy, patients are treated with anti-162PIE6 antibodies in combination with a chemotherapeutic or antineoplastic agent and/or radiation therapy. Primary cancer targets, such as those listed in Table I, are treated under standard protocols by the addition anti-162PIE6 antibodies to standard first and second line therapy. Protocol designs address effectiveness as assessed by reduction in tumor mass as well as the ability to reduce usual doses of standard chemotherapy. These dosage reductions allow additional and/or prolonged therapy by reducing dose-related toxicity of the chemotherapeutic agent. Anti-162P1E6 antibodies are utilized in several adjunctive clinical trials in combination with the chemotherapeutic or antineoplastic agents adriamycin (advanced prostrate carcinoma), cisplatin (advanced head and neck and lung carcinomas), taxol (breast cancer), and doxorubicin (preclinical). II.) Monotherapy: In connection with the use of the anti-162P1E6 antibodies in monotherapy of tumors, the antibodies are administered to patients without a chemotherapeutic or antineoplastic agent. In one embodiment, monotherapy is conducted clinically in end stage cancer patients with extensive metastatic disease. Patients show some disease stabilization. Trials demonstrate an effect in refractory patients with cancerous tumors. II.) Imaging Agent: Through binding a radionuclide (e.g., iodine or yttrium (1'3m, Y*) to anti 162P1E6 antibodies, the radiolabeled antibodies are utilized as a diagnostic and/or imaging agent. In such a role, the labeled antibodies localize to both solid tumors, as well as, metastatic lesions of cells expressing 162P1E6. In connection with the use of the anti-162P1E6 antibodies as imaging agents, the antibodies are used as an adjunct to surgical treatment of solid tumors, as both a pre-surgical screen as well as a post operative follow-up to determine what tumor remains and/or returns. In one embodiment, a ("' In)-162PIE6 antibody is used as an imaging agent in a Phase I human clinical trial in patients having a carcinoma that expresses 162P1E6 (by analogy see, e.g., Divgi et al. J Natl. Cancer Inst. 83:97-104 (1991)). Patients are followed with standard anterior and posterior gamma camera. The results indicate that primary lesions and metastatic lesions are identified 113 Dose and Route of Administration As appreciated by those of ordinary skill in the art, dosing considerations can be determined through comparison with the analogous products that are in the clinic. Thus, anti-162PIE6 antibodies can be administered with doses in the range of 5 to 400 mg/m 2, with the lower doses used, e.g., in connection with safety studies. The affinity of anti-i 62P1E6 antibodies relative to the affinity of a known antibody for its target is one parameter used by those of skill in the art for determining analogous dose regimens. Further, anti-162P IE6 antibodies that are fully human antibodies, as compared to the chimeric antibody, have slower clearance; accordingly, dosing in patients with such fully human anti-162P1 E6 antibodies can be lower, perhaps in the range of 50 to 300 mg/m 2 , and still remain efficacious. Dosing in mg/rn 2 , as opposed to the conventional measurement of dose in mg/kg, is a measurement based on surface area and is a convenient dosing measurement that is designed to include patients of all sizes from infants to adults. Three distinct delivery approaches are useful for delivery of anti-162P1E6 antibodies. Conventional intravenous delivery is one standard delivery technique for many tumors. However, in connection with tumors in the peritoneal cavity, such as tumors of the ovaries, biliary duct, other ducts, and the like, intraperitoneal administration may prove favorable for obtaining high dose of antibody at the tumor and to also minimize antibody clearance. In a similar manner, certain solid tumors possess vasculature that is appropriate for regional perfusion. Regional perfusion allows for a high dose of antibody at the site of a tumor and minimizes short term clearance of the antibody. Clinical Development Plan (CDP) Overview: The CDP follows and develops treatments of anti-162P1E6 antibodies in connection with adjunctive therapy, monotherapy, and as an imaging agent. Trials initially demonstrate safety and thereafter confirm efficacy in repeat doses. Trails are open label comparing standard chemotherapy with standard therapy plus anti-162P1E6 antibodies. As will be appreciated, one criteria that can be utilized in connection with enrollment of patients is 162P1E6 expression levels in their tumors as determined by biopsy. As with any protein or antibody infusion-based therapeutic, safety concerns are related primarily to (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 162PIE6. Standard tests and follow-up are utilized to monitor each of these safety concerns. Anti-162P1 E6 antibodies are found to be safe upon human administration. Example 41;Human Clinical Trial Adiunctive Therapy with Human Anti-162P1E6 Antibody and Chemotherapeutic Ament A phase I human clinical trial is initiated to assess the safety of six intravenous doses of a human anti-162P1E6 antibody in connection with the treatment of a solid tumor, e.g., a cancer of a tissue listed in Table I. In the study, the safety of single doses of anti-162P1E6 antibodies when utilized as an adjunctive therapy to an antineoplastic or chemotherapeutic agent, such as cisplatin, topotecan, doxorubicin, adriamycin, taxol, or the like, is assessed. The trial design includes delivery of six single doses of an anti-162P1E6 antibody with dosage of antibody escalating from approximately about 25 mg/m 2 to about 275 mg/m 2 over the course of the treatment in accordance with the following schedule: 114 Day 0 Day 7 Day 14 Day 21 Day 28 Day 35 mAb Dose 25 75 125 175 225 275 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 mg/m 2 Chemotherapy + + + + + + (standard dose) Patients are closely followed for one-week following each administration of antibody and chemotherapy. In particular, patients are assessed for the safety concerns mentioned above: (i) cytokine release syndrome, i.e., hypotension, fever, shaking, chills; (ii) the development of an immunogenic response to the material (i.e., development of human antibodies by the patient to the human antibody therapeutic, or HAHA response); and, (iii) toxicity to normal cells that express 162P1E6. Standard tests and follow-up are utilized to monitor each of these safety concerns. Patients are also assessed for clinical outcome, and particularly reduction, in tumor mass as evidenced by MRI or other imaging. The anti-162P1E6 antibodies are demonstrated to be safe and efficacious, Phase II trials confirm the efficacy and refine optimum dosing. Example 42: Human Clinical Trial: Monotherapy with Human Anti-162P1E6 Antibody Anti-162P1E6 antibodies are safe in connection with the above-discussed adjunctive trial, a Phase II human clinical trial confirms the efficacy and optimum dosing for monotherapy. Such trial is accomplished, and entails the same safety and outcome analyses, to the above-described adjunctive trial with the exception being that patients do not receive chemotherapy concurrently with the receipt of doses of anti-162PIE6 antibodies. Example 43: Human Clinical Trial: Diagnostic Imaging with Anti-162P1E6 Antibody Once again, as the adjunctive therapy discussed above is safe within the safety criteria discussed above, a human clinical trial is conducted concerning the use of anti-1 62P I E6 antibodies as a diagnostic imaging agent. The protocol is designed in a substantially similar manner to those described in the art, such as in Divgi et al. J. NatL. Cancer Inst. 83:97-104 (1991). The antibodies are found to be both safe and efficacious when used as a diagnostic modality. Example 44: Homology Comparison of 162iME6 to Known Sequences Five variants of 162P1E6 have been identified. The 162P1E6 v.1 gene exhibits homology to a previously cloned human gene of no known function named hypothetical protein XP-036612 (gi 14720533), showing 100% identity over the entire length of the protein (Figure B). 162P 1 E6 v.1 shows some homology to human Man7GIcNAc2-PP-dolichyl mannosyltransferase (gi 15864569), displaying 35% identity and 49% homology to the last segment of that protein (Figure 4C). 162P1E6 v.1 is a 146 aa soluble protein, primarily localized to the cytoplasm, with potential localization to the nucleus and microbodies (Table XXI). While PFam and PRINTS analysis fail to identify known protein motifs within 162P1E6 v.1, BLOCKs analysis 115 demonstrates that 162P1E6 v.1 and v.4 carry a Synapsin 9 motif at amino acid 38-55 (Table XXI). Synapsins are phosphoproteins that associate with cytoskeletal proteins and function in the regulation of neurotransmitter release (Rosahl TW et al, Nature. 1995, 375:488). The 162PIE6 v.3 protein exhibits 41% identity and 43% homology to the human Alu subfamily SQ (gi 728837), a protein of no known function (Figure 4E). The 162P1E6 v.3 protein shows 43% identity and 54% homology the human zinc finger protein 195 (gi6005974) (Figure 4F). 162P1E6 v.3 is a transmembrane protein with a helix located at amino acid 40-70 (Table XXI). The 162PIE6 v.4 protein exhibits 36% identity and 54% homology to the Carp interleukin 1p protein (gi2821975) (Figure 4G). IL-I is an inflammatory cytokine, that plays a role in the progression, drug resistance and survival of cancer cells (Arlt A, et al, Cancer Res. 2002, 62:910; Suganuma M, et al, IntJ Oncol. 2002, 20:131). In addition, IL-1p induces the activation of several MAPK cascades in gastric tumors, resulting in the regulation of gene expression (Fan X et al, I Gastroenterol Hepatol. 2001, 16:1098). While 162P1E6 v.5 shows some homology to an unknown protein (gi 16331181), it also shares a common sequence with 162P1E6 v.4 (See Figure 11), and may function in a similar manner. The presence of a synapsin motif and its homology interleukin-l beta indicate that 162P1E6 participates in the process of tumor formation and progression. By way of its synapsin domain, 1 62P1E6 functions in regulating protein interactions and cell adhesion. Based on its homology to IL-1 p, 1 62PIE6 regulates signal transduction in mammalian cells, thereby regulating gene expression and cellular outcomes, including cell proliferation, survival, drug resistance, etc, all of which have a direct effect on tumor growth and progression. Accordingly, when 162P1E6 functions as a regulator of protein interactions, cell growth, tumor formation, or cell signaling, 162P1E6 is used for therapeutic, diagnostic, prognostic and/or preventative purposes. Example 45: Regulation of Transcription The localization of 162PI E6 coupled to the presence of protein interaction domains within its sequence and homology to IL-1 indicate that 162P1E6 modulates the transcriptional regulation of eukaryotic genes. Regulation of gene expression is confirmed, e.g., by studying gene expression in cells expressing or lacking 162PIE6. For this purpose, two types of experiments are performed. In the first set of experiments, RNA from parental and 162P1E6-expressing cells are extracted and hybridized to commercially available gene arrays (Clontech) (Smid-Koopman E et al. Br J Cancer. 2000. 83:246). Resting cells as well as cells treated with FBS, androgen or growth factors are compared. Differentially expressed genes are identified in accordance with procedures known in the art. The differentially expressed genes are then mapped to biological pathways (Chen K et al. Thyroid. 2001. 11:41.). In the second set of experiments, specific transcriptional pathway activation is evaluated using commercially available (Stratagene) luciferase reporter constructs including: NFkB-luc, SRE-luc, ELKI-luc, ARE-luc, p53-luc, and CRE-luc. These transcriptional reporters contain consensus binding sites for known transcription factors that lie downstream of well-characterized signal transduction pathways, and represent a 116 good tool to ascertain pathway activation and screen for positive and negative modulators of pathway activation. Thus, 162P1E6 plays a role in gene regulation, and it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes. Example 46: Identification and Confirmation of Potential Signal Transduction Pathways Many mammalian proteins have been reported to interact with signaling molecules and to participate in regulating signaling pathways. (J Neurochem. 2001; 76:217-223). In particular, protein interaction motifs have been instrumental in inducing kinase activation, recruitment of proteins and complex formation (Samelson L. Annu Rev Immunol. 2002;20:371). In addition, IL-I has been shown to regulate multiple signaling cascades that control gene expression and cell survival (Oncogene. 1999, 18:6087). In addition, the 162P IE6 protein contains several phosphorylation sites (see Table XX) indicating an association with specific signaling cascades. Based on the presence of a protein interaction motif and similarity to IL-I, 162P1E6 regulates signaling pathways important for cell growth and survival. Using immunoprecipitation and Western blotting techniques, proteins are identified that associate with 162P1E6 and mediate signaling events. Several pathways known to play a role in cancer biology can be regulated by 162P1E6, including phospholipid pathways such as P13K, AKT, etc, adhesion and migration pathways, including FAK, Rho, Rac-1, P-catenin, etc, as well as mitogenic/survival cascades such as ERK, p 3 8, etc (Cell Growth Differ. 2000,11:279; J Biol Chem. 1999, 274:801; Oncogene. 2000, 19:3003, J. Cell Biol. 1997, 138:913.). To confirm that 162P IE6 directly or indirectly activates known signal transduction pathways in cells, luciferase (luc) based transcriptional reporter assays are carried out in cells expressing individual genes. These transcriptional reporters contain consensus-binding sites for known transcription factors that lie downstream of well-characterized signal transduction pathways. The reporters and examples of these associated transcription factors, signal transduction pathways, and activation stimuli are listed below. 1. NFkB-luc, NFkB/Rel; fk-kinase/SAPK; growth/apoptosis/stress 2. SRE-luc, SRF/TCF/ELKl; MAPK/SAPK; growth/differentiation 3. AP-l-luc, FOS/JUN; MAPK/SAPK/PKC; growth/apoptosis/stress 4. ARE-luc, androgen receptor; steroids/MAPK; growth/differentiation/apoptosis 5. p53-luc, p5 3 ; SAPK; growth/differentiation/apoptosis 6. CRE-luc, CREB/ATF2; PKA/p38; growth/apoptosis/stress 7. TCF-luc, TCF/Lef; 0-catenin, Adhesion/invasion Gene-mediated effects can be assayed in cells showing mRNA expression. Luciferase reporter plasnids can be introduced by lipid-mediated transfection (TFX-50, Promega). Luciferase activity, an indicator of relative transcriptional activity, is measured by incubation of cell extracts with luciferin substrate and luminescence of the reaction is monitored in a luminometer. Signaling pathways activated by 162PIE6 are mapped and used for the identification and validation of therapeutic targets. When 162P1E6 is involved in cell signaling, it is used as target for diagnostic, prognostic, preventative and/or therapeutic purposes. 117 Example 47: Involvement in Tumor Progression Based on the role of protoporphyrinogen oxidase in tumor formation (Germanaud J, above), the 162PlE6 gene can contribute to tumor initiation and progression. The role of 162P1E6 in tumor growth is confirmed in a variety of primary and transfected cell lines including bladder, kidney and ovary cell lines, as well as NIH 3T3 cells engineered to stably express 162P1E6. Parental cells lacking 162P1E6 and cells expressing 162P1E6 are evaluated for cell growth using a well-documented proliferation assay (Fraser SP, Grimes JA, Djamgoz MB. Prostate. 2000;44:61, Johnson DE, Ochieng J, Evans SL. Anticancer Drugs. 1996,7:288). To confirm the role of 162P1 E6 in the transformation process, its effect in colony forming assays is investigated. Parental NIH-3T3 cells lacking 162PIE6 are compared to NIH-3T3 cells expressing 162P1E6, using a soft agar assay under stringent and more permissive conditions (Song Z. et al. Cancer Res. 2000;60:6730). To confirm the role of 162P1E6 in invasion and metastasis of cancer cells, a well-established assay is used, e.g., a Transwell Insert System assay (Becton Dickinson) (Cancer Res. 1999; 59:6010). Control cells, including bladder, ovary and kidney cell lines lacking 162P1E6 are compared to cells expressing 162P1E6. Cells are loaded with the fluorescent dye, calcein, and plated in the top well of the Transwell insert coated with a basement membrane analog. Invasion is determined by fluorescence of cells in the lower chamber relative to the fluorescence of the entire cell population. 162PIE6 can also play a role in cell cycle and apoptosis. Parental cells and cells expressing 162PIE6 are compared for differences in cell cycle regulation using a well-established BrdU assay (Abdel Malek ZA. J Cell Physiol. 1988, 136:247). In short, cells are grown under both optimal (full serum) and limiting (low serum) conditions are labeled with BrdU and stained with anti-BrdU Ab and propidium iodide. Cells are analyzed for entry into the GI, S, and G2M phases of the cell cycle. Alternatively, the effect of stress on apoptosis is evaluated in control parental cells and cells expressing 162P I E6, including normal and tumor bladder, kidney and ovary cells. Engineered and parental cells are treated with various chemotherapeutic agents, such as etoposide, taxol, etc, and protein synthesis inhibitors, such as cycloheximide. Cells are stained with annexin V-FITC and cell death is measured by FACS analysis. The modulation of cell death by 162P1E6 can play a critical role in regulating tumor progression and tumor load. When 162P1E6 plays a role in cell growth, transformation, invasion or apoptosis, it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes. Example 48: Involvement in Angiogenesis Angiogenesis or new capillary blood vessel formation is necessary for tumor growth (Hanahan D, Folkrnan J. Cell. 1996, 86:353; Folkman J. Endocrinology. 1998 139:441). Based on the effect of phsophodieseterase inhibitors on endothelial cells, 162PIE6 plays a role in angiogenesis (DeFouw L et al, Microvasc Res 2001, 62:263). Several assays have been developed to measure angiogenesis in vitro and in vivo, such as the tissue culture assays endothelial cell tube formation and endothelial cell proliferation. Using these assays as well as in vitro neo-vascularization, the role of 162P1E6 in angiogenesis, enhancement or inhibition, is confirmed. 118 For example, endothelial cells engineered to express 162P1E6 are evaluated using tube formation and proliferation assays. The effect of 162P lE6 is also confirmed in animal models in vivo. For example, cells either expressing or lacking 162P1E6 are implanted subcutaneously in immunocompromised mice. Endothelial cell migration and angiogenesis are evaluated 5-15 days later using immunohistochemistry techniques. 162PlE6 affects angiogenesis, and it is used as a target for diagnostic, prognostic, preventative and/or therapeutic purposes Example 49: Involvement in Protein-Protein Interactions Synapsin motifs have been shown to mediate interaction with other proteins, specially cytoskeletal protein and SH3 containing proteins (Onofri F et al, J Biol Chem. 2000, 275:29857). Using immunoprecipitation techniques as well as two yeast hybrid systems, proteins are identified that associate with 162P1E6. Immunoprecipitates from cells expressing 162P1E6 and cells lacking 162PIE6 are compared for specific protein-protein associations. Studies are performed to confirm the extent of association of 162P1E6 with effector molecules, such as nuclear proteins, transcription factors, kinases, phsophates etc. Studies comparing 162P1E6 positive and 162P1E6 negative cells as well as studies comparing unstimulated/resting cells and cells treated with epithelial cell activators, such as cytokines, growth factors and anti-integrin Ab reveal unique interactions. In addition, protein-protein interactions are confirmed using two yeast hybrid methodology (Curr Opin Chem Biol. 1999, 3:64). A vector carrying a library of proteins fused to the activation domain of a transcription factor is introduced into yeast expressing a 162PIE6-DNA-binding domain fusion protein and a reporter construct. Protein-protein interaction is detected by colorimetric reporter activity. Specific association with effector molecules and transcription factors directs one of skill to the mode of action of 162P1E6, and thus identifies therapeutic, prognostic, preventative and/or diagnostic targets for cancer. This and similar assays are also used to identify and screen for small molecules that interact with 162P1E6. Thus it is found that 162P1E6 associates with proteins and small molecules. Accordingly, 162PlE6and these proteins and small molecules are used for diagnostic, prognostic, preventative and/or therapeutic purposes. Throughout this application, various website data content, publications, patent applications and patents are referenced. (Websites are referenced by their Uniform Resource Locator, or URL, addresses on the World Wide Web.) The disclosures of each of these references are hereby incorporated by reference herein in their entireties. The present invention is not to be limited in scope by the embodiments disclosed herein, which are intended as single illustrations of individual aspects of the invention, and any that are functionally equivalent are within the scope of the invention. Various modifications to the models and methods of the invention, in addition to those described herein, will become apparent to those skilled in the art from the foregoing description and teachings, and are similarly intended to fall within the scope of the invention. Such modifications or other embodiments can be practiced without departing from the true scope and spirit of the invention. 119 TABLE I: Tissues that Express 162P1E6 When Malignant - Bladder - Prostate - Kidney - Lung - Breast TABLE H: Amino Acid Abbreviations SINGLE LETTER THREE LETTER FULL NAME F Phe phenylalanine L Leu leucine S Ser serine Y Tyr tyrosine C Cys cysteine W Trp tryptophan P Pro praline H His histidine Q Gin glutamine R Arg arginine I Ile isoleucine M Met methionine T Thr threonine N Asn asparagine K Lys lysine V Val valine A Ala alanine D Asp aspartic acid E Glu glutamic acid G Gly glycine 120 TABLE III: Amino Acid Substitution Matrix Adapted from the GCG Software 9.0 BLOSUM62 amino acid substitution matrix (block substitution matrix). The higher the value, the more likely a substitution is found in related, natural proteins. (See URL www.ikp.unibe.ch/manua]iblosum62.html ) A C D E F G H I K L M N P Q R S T V W Y. 4 0 -2 -1 -2 0 -2 -1 -1 -1 -1 -2 -1 -1 -1 1 0 0 -3 -2 A 9 -3 -4 -2 -3 -3 -1 -3 -1 -1 -3 -3 -3 -3 -1 -1 -1 -2 -2 C 6 2 -3 -1 -1 -3 -1 -4 -3 1 -1 0 -2 0 -- 1 -3 -4 -3 D 5 -3 -2 0 -3 1 -3 -2 0 -1 2 0 0 -1 -2 -3 -2 E 6 -3 -1 0 -3 0 0 -3 -4 -3 -3 -2 -2 -1 1 3 F 6 -2 -4 -2 -4 -3 0 -2 -2 -2 0 -2 -3 -2 -3 G 8 -3 -1 -3 -2 1 -2 0 0 -1 -2 -3 -2 2 H 4 -3 2 1 -3 -3 -3 -3 -2 -1 3 -3 -1 I 5 -2 -1 0 -1 1 2 0 -1 -2 -3 -2 K 4 2 -3 -3 -2 -2 -2 -1 1 -2 -1 L 5 -2 -2 0 -1 -1 -1 1 -1 -1 M 6 -2 0 0 1 0 -3 -4 -2 N 7 -1 -2 -1 -1 -2 -4 -3 P 5 1 0 -1 -2 -2 -1 Q 5 -1 -1 -3 -3 -2 R 4 1 -2 -3 -2 S 5 0 -2 -2 T 4 -3 -1 V 11 2 W 7 Y 121 TABLE IV HLA Class I/l Motifs/Supermotifs TABLE TV (A): HLA Class I Supermotifs/Motifs SUPERMOTIFS POSMON POSmON POSITION 2 (Primary Anchor) 3 (Primary Anchor) C Terminus (Primary Anchor) Al TIL VMS FWY A2 LIVMATQ IVMA TL A3 VSMATLI RK A24 YFWIVLMT FIYWLM B7 P VILFMWYA B27 RHK FYLWMIVA B44 ED FWYLMVA B58 ATS FWYLIVMA B62 QLIVMP FWYMIVLA MOTIFS Al TSM Y Al DEAS Y A2.1 LMVQIA T VLIMAT A3 LMVISATFCGD KYRHFA All VTMLISAGNCDF KR YH A24 YFWM FLIW A*3101 MVTALIS RK A*3301 MVALFIST RK A*6801 AVTMSLI RK B*0702 P LMFWYAIV B*3501 P LMFWYIVA B51 P LIVFWYAM B*5301 P IMFWYAL V B*5401 P ATIVLMFWY Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table. TABLE IV (B): HLA Class H Supermotif 1 6 9 W, F, Y, V, .I, L A, V, I, L, P, C, S, T A, V, I, L, C, S, T, M, Y 122 00 C) z U 00 e4 U U 0 L) 0, sa. 0 C.) "o ~ ~ ca 0 0 U 1: C) >EU 1d23 a 0 00 0 000 00Is '- e tn~ C 0 0) C/I~ eq kn4 124) 0 0 0 0- > \0 tdE) C>U ZV A4U .~ a V ~ ~ ~0 CU 0 CU 125O Sa z 00 0 4 44 '< I-I 2 n e e . a a e0 8V 012 6~ -~126 4)) 0- 0 40. 0 0 u U u : S 0 0 0 0 H C4L H H 00 > CY >44) 0 -L CNm 0 -) -r en-A \- e t 127c Table V:: v.1-Al-9mers: 162P1E6 Table V:: v.I-AI-9mers: 162PIE6 Pos 123456789 Score SegID Pos 123456789 Score SeqID 65 ISSGFHIGK 1.500 13 HILGRMWGH 0.010 61 SSSPISSGF 1.500 118 CFFFVSSRK 0.010 6 IVESFSRHI 0.900 30 SLGVRTRSL 0.010 53 SQELWFFLS 0.675 23 RLSFLDKSL 0.010 26 FLDKSLGVR 0.500 5 EIVESFSRH 0.010 113 QLQNTCFFF 0.500 39 TLLCPPTPM 0.010 41 LCPPTPMNG 0.500 126 KDQPHRAQL 0.010 94 APAFQGLGK 0.250 87 LVERNAHAP 0.009 40 LLCPPTPMN 0.200 114 LQNTCFFFV 0.007 51 GSSQELWFF 0.150 21 HWRLSFLDK 0.005 66 SSGFHIGKR 0.150 90 RNAHAPAFQ 0.005 104 AQSSWIFLK 0.150 38 LTLLCPPTP 0.005 117 TCFFFVSSR 0.100 111 LKQLQNTCF 0.005 8 ESFSRHILG 0.075 98 QGLGKQAQS 0.005 105 QSSWIFLKO 0.075 28 DKSLGVRTR 0.005 52 SSQELWFFL 0.075 1 MTNKEIVES 0.005 108 WIFLKQLQN 0.050 81 VLFGQCLVE 0.005 135 WHTQWDLDK 0.050 44 PTPMNGPGS 0.005 103 QAQSSWIFL 0.050 92 AHAPAFQGL 0.005 77 KVLFVLFGQ 0.050 32 GVRTRSLTL 0.005 116 NTCFFFVSS 0.050 123 SSRKDQPHR 0.003 59 FLSSSPISs 0.050 9 SFSRHILGR 0.003 91 NAHAPAFQG 0.050 54 QELWFFLSS 0.003 3 NKEIVESFS 0.045 47 MNGPGSSQE 0.003 136 HTQWDLDKG 0.025 48 NGPGSSQEL 0.003 138 QWDLDKGRG 0.025 73 KRGCKVLFV 0.003 125 RKDQPHRAQ 0.025 15 LGRMWGHWR 0.003 4 KEIVESFSR 0.025 2 TNKEIVESF 0.003 18 MWGHWRLSF 0.025 45 TPMNGPGSS 0.003 86 CLVERNAHA 0.020 19 WGHWRLSFL 0.003 37 SLTLLCPPT 0.020 67 SGFHIGKRG 0.003 75 GCKVLFVLF 0.020 49 GPGSSQELW 0.003 60 LSSSPISSG 0.015 43 PPTPMNGPG 0.003 24 LSFLDKSLG 0.015 83 FGQCLVERN 0.003 62 SSPISSGFH 0.015 25 SFLDKSLGV 0.003 102 KQAQSSWIF 0.015 76 CKVLFVLFG 0.003 112 KQLQNTCFF 0.015 12 RHILGRMWG 0.003 29 KSLGVRTRS 0.015 10 FSRHILGRM 0.002 63 SPISSGFHI 0.013 122 VSSRKDQPH 0.002 34 RTRSLTLLC 0.013 106 SSWIFLKQL 0.002 115 QNTCFFFVS 0.013 36 _RSLTLLCPP 0.002 50 PGSSQELWF 0.013 127 DQPHRAQLW 0.002 85 QCLVERNAH 0.010 97 FQGLGKQAQ 0.002 89 ERNAHAPAF 0.010 84 GQCLVERNA 0.002 69 FHIGKRGCK 0.010 137 TQWDLDKGR 0.002 82 LFGQCLVER 0.010 128 QPHRAQLWH 0.001 93 HAPAFQGLG 0.010 74 RGCKVLFVL 0.001 78 VLFVLFGQC 0.010 72 GKRGCKVLF 0.001 131 RAQLWHTQW 0.010 99 GLGKQAQSS 0.001 80 FVLFGQCLV 0.010 110 FLKOLQNTC 0.001 128 Table V: v.3-Al-9mers: 162PIE6 Table V: v.3-Al-9mers: 162PIE6 Pos 123456789 Score SegID Pos 123456789 Score Segl 3 WAESLLLTL 4.500 115 QSVGITGVS 0.015 100 GLELLSLSN 4.500 74 RSAVAQSWA 0.015 63 FSDRVSLCR 3.750 67 VSLCRPGRS 0.015 35 STILQTLSF 1.250 84 CSLNLPEAG 0.015 10 TLDLEKPVS 1.000 15 KPVSLLLSV 0.013 7 LLLTLDLEK 1.000 121 GVSHRIRPH 0.010 51 PSIPLSSAY 0.750 96 VAQTGLELL 0.010 55 LSSAYFFFF 0.750 77 VAQSWAHCS 0.010 21 LSVTNLYSK 0.600 69 LCRPGRSAV 0.010 19 LLLSVTNLY 0.500 22 SVTNLYSKN 0.010 39 QTLSFPATF 0.500 40 TLSFPATFT 0.010 119 ITGVSHRIR 0.250 118 GITGVSHRI 0.010 88 LPEAGFHHV 0.225 112 SASQSVGIT 0.010 52 SIPLSSAYF 0.200 25 NLYSKNSAQ 0.010 66 RVSLCRPGR 0.200 18 SLLLSVTNL 0.010 85 SLNLPEAGF 0.200 75 SAVAQSWAH 0.010 106 LSNPPASAS 0.150 49 PSPSIPLSS 0.008 98 QTGLELLSL 0.125 97 AQTGLELLS 0.007 47 FTPSPSIPL 0.125 32 AQFSTILQT 0.007 12 DLEKPVSLL 0.090 58 AYFFFFSDR 0.005 56 SSAYFFFFS 0.075 57 SAYFFFFSD 0.005 5 ESLLLTLDL 0.075 91 AGFHHVAQT 0.005 41 LSFPATFTP 0.075 122 VSHRIRPHV 0.003 113 ASQSVGITG 0.075 38 LQTLSFPAT 0.003 107 SNPPASASQ 0.050 13 LEKPVSLLL 0.003 20 LLSVTNLYS 0.050 80 SWAHCSLNL 0.003 37 ILQTLSFPA 0.050 14 EKPVSLLLS 0.003 54 PLSSAYFFF 0.050 99 TGLELLSLS 0.003 125 RIRPHVLFH 0.050 24 TNLYSKNSA 0.003 53 IPLSSAYFF 0.050 28 SKNSAQFST 0.003 45 ATFTPSPSI 0.050 108 NPPASASQS 0.003 87 NLPEAGFHH 0.050 2 KWAESLLLT 0.003 95 HVAQTGLEL 0.050 50 SPSIPLSSA 0.003 31 SAQFSTILQ 0.050 29 KNSAQFSTI 0.003 48 TPSPSIPLS 0.050 27 YSKNSAQFS 0.002 17 VSLLLSVTN 0.030 79 QSWAHCSLN 0.002 111 ASASQSVGI 0.030 78 AQSWAHCSL 0.002 104 LSLSNPPAS 0.030 114 SQSVGITGV 0.002 9 LTLDLEKPV 0.025 120 TGVSHRIRP 0.001 117 VGITGVSHR 0.025 124 HRIRPHVLF 0.001 86 LNLPEAGFH 0.025 26 LYSKNSAQF 0.001 23 VTNLYSKNS 0.025 8 LLTLDLEKP 0.001 76 AVAQSWAHC 0.020 61 FFFSDRVSL 0.001 90 EAGFHHVAQ 0.020 68 SLCRPGRSA 0.001 105 SLSNPPASA 0.020 102 ELLSLSNPP 0.001 103 LLSLSNPPA 0.020 44 PATFTPSPS 0.001 83 HCSLNLPEA 0.020 16 PVSLLLSVT 0.001 116 SVGITGVSH 0.020 6 SLLLTLDLE 0.001 30 NSAQFSTIL 0.015 11 LDLEKPVSL 0.001 34 FSTILQTLS 0.015 36 TILQTLSFP 0.001 129 Table V: v.4-Al-9mers: 162P1E6 Table V: v.4-Al-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 29 PAELGALYR 4.500 31 ELGALYRTL 0.010 65 GADNHEASA 1.000 67 DNHEASAAT 0.005 53 HEDFSGVKF 0.500 49 VRTPHEDFS 0.005 28 RPAELGALY 0.250 54 EDFSGVKFR 0.005 13 RTGPHLSSG 0.250 14 TGPHLSSGV 0.003 5 IKERQLFR 0.225 37 RTLSSLKYP 0.003 90 AAAAAAAAR 0.200 12 FRTGPHLSS 0.003 50 RTPHEDFSG 0.125 64 HGADNHEAS 0.003 36 YRTLSSLKY 0.125 32 LGALYRTLS 0.003 52 PHEDFSGVK 0.090 51 TPHEDFSGV 0.003 68 NHEASAATA 0.090 15 GPHLSSGVI 0.003 17 HLSSGVISV 0.050 10 QLFRTGPHL 0.002 74 ATATTAAAT 0.050 18 LSSGVISVP 0.002 20 SGVISVPHR 0.050 9 NQLFRTGPH 0.002 82 TTVAAAAAA 0.050 35 LYRTLSSLK 0.001 42 LKYPSWRVR 0.050 41 SLKYPSWRV 0.001 33 GALYRTLSS 0.050 43 KYPSWRVRT 0.001 81 ATTVAAAAA 0.050 30 AELGALYRT 0.001 23 ISVPHRPAE 0.030 58 GVKFRRHGA 0.001 19 SSGVISVPH 0.030 34 ALYRTLSSL 0.001 39 LSSLKYPSW 0.030 21 GVISVPHRP 0.001 76 ATTAAATTV 0.025 2 FFFIKERNQ 0.001 55 DFSGVKFRR 0.025 1 MFFFIKERN 0.001 77 TTAAATTVA 0.025 66 ANHEASAA 0.00 1 87 AAAAAAAAA 0.020 69 HEASAATAT 0.001 86 AAAAAAAAA 0.020 27 HRPAELGAL 0.001 88 AAAAAAAAA 0.020 63 RHGADNHEA 0.001 70 EASAATATT 0.020 7 ERNQLFRTG 0.001 85 AAAAAAAAA 0.020 6 KERNQLFRT 0.000 93 AAAAARVTL 0.020 26 PHRPAELGA 0.000 79 AAATTVAAA 0.020 25 VPHRPAELG 0.000 24 SVPHRPAEL 0.020 44 YPSWRVRTP 0.000 91 AAAAAAARV 0.020 8 RNQLFRTGP 0.000 75 TATTAAATT 0.020 57 SGVKFRRHG 0.000 78 TAAATTVAA 0.020 16 PHLSSGVIS 0.000 73 AATATTAAA 0.020 62 RRHGADNHE 0.000 80 AATTVAAAA 0.020 61 FRRHGADNH 0.000 83 TVAAAAAAA 0.020 3 FFIKERNQL 0.000 38 TLSSLKYPS 0.020 11 LFRTGPHLS 0.000 84 VAAAAAAAA 0.020 45 PSWRVRTPH 0.000 89 AAAAAAAAA 0.020 60 KFRRHGADN 0.000 40 SSLKYPSWR 0.015 46 SWRVRTPHE 0.000 71 ASAATATTA 0.015 47 WRVRTPHED 0.000 56 FSGVKFRRH 0.015 59 VKFRRHGAD 0.000 92 AAAAAARVT 0.010 2 VISVPHRPA 0.010 ___ 94 AAAARVTLT 0.010 ____ 4 FIKERNQLF 0.010 72 SAATATTAA 0.010 48 RVRTPHEDF 0.010 130 Table V: v.5-A1-9mers: 162P 1E6 Pos 123456789 Score SeqID 39 WSEVQEAWS 2.700 30 VTDIPTRFQ 1.250 21 TVGPRQRER 1.000 12 TTPSSVMAH 0.125 29 RVTDIPTRF 0.100 11 PTTPSSVMA 0.050 17 VMAHTVGPR 0.050 31 TDIPTRFQW 0.025 1 AELGALYRIK 0.020 18 MAiTVGPRQ 0.020 15 SSVMAHTVG 0.015 28 ERVTDIPTR 0.010 32 DIPTRFQWS 0.010 4 GALYRKGPT 0.010 8 RKGPTTPSS 0.010 2 ELGALYRKG 0.010 19 AHTVGPRQR 0.005 13 TPSSVMAHT 0.005 9 KGPTTPSSV 0.003 10 GPTTPSSVM 0.003 20 HTVGPRQRE 0.003 16 SVMAHTVGP 0.002 5 ALYRKGPTT 0.002 14 PSSVMAHTV 0.002 38 QWSEVQEAW 0.001 35 TRFQWSEVQ 0.001 26 QRERVTDIP 0.000 27 RERVTDIPT 0.000 22 VGPRQRERV 0.000 34 PTRFQWSEV 0.000 3 LGALYRKGP 0.000 23 GPRQRERVT 0.000 37 FQWSEVQEA 0.000 25 RQRERVTDI 0.000 36 RFQWSEVQE 0.000 7 YRKGPTTPS 0.000 33 IPTRFQWSE 0.000 24 PRQRERVTD 0.000 6 LYRKGPTTP 0.000 131 Table V: v.6-Al-9mers: 162P1E6 Pos 123456789 Score SeqID 10 RTNHTELSY 6.250 13 HTELSYGTH 2.250 4 RTPHEERTN 0.025 16 LSYGTHSGT 0.015 2 RVRTPHEER 0.010 15 ELSYGTHSG 0.010 3 VRTPHEERT 0.005 6 PHEERTNHT 0.005 5 TPHEERTNH 0.003 11 TNHTELSYG 0.003 12 NHTELSYGT 0.001 9 ERTNHTELS 0.001 14 TELSYGTHS 0.001 7 HEERTNHTE 0.000 8 EERTNHTEL 0.000 WRVRTPHEE 0.000 132 Table VI: v.1-Al-10mers: 162P1E6 Table VI: v.1-Al-10mers: 162P1E6 I Pos 1234567890 Score SeqID Pos 1234567890 Score SeqlD 3 NKEIVESFSR 2.250 23 RLSFLDKSLG 0.010 103 QAQSSWIFLK 1.000 14 ILGRMWGHWR 0.010 93 HAPAFQGLGK 1.000 127 DQPHRAQLWH 0.007 6 IVESFSRHIL 0.900 104 AQSSWIFLKQ 0.007 8 ESFSRHILGR 0.750 102 KQAQSSWIFL 0.007 53 SQELWPFLSS 0.675 114 LQNTCFFFVS 0.007 40 LLCPPTPMNG 0.500 74 RGCKVLFVLF 0.005 116 NTCFFFVSSR 0.250 111 LKQLQNTCFF 0.005 136 HTQWDLDKGR 0.250 43 PPTPMNGPGS 0.005 81 VLFGQCLVER 0.200 25 SFLDKSLGVR 0.005 117 TCFFFVSSRK 0.200 126 KDQPHRAQLW 0.005 87 LVERNAHAPA 0.180 101 GKQAQSSWIF 0.005 60 LSSSPISSGF 0.150 80 FVLFGQCLVE 0.005 61 SSSPISSGFH 0.150 115 QNTCFFFVSS 0.005 65 ISSGFHIGKR 0.150 92 AHAPAFQGLG 0.005 49 GPGSSQELWF 0.125 75 GCKVLFVLFG 0.005 26 FLDKSLGVRT 0.100 97 FQGLGKQAQS 0.003 64 PISSGFHIGK 0.100 83 FGQCLVERNA 0.003 51 GSSQELWFFL 0.075 42 CPPTPMNGPG 0.003 52 SSQELWFFLS 0.075 48 NGPGSSQELW 0.003 24 LSFLDKSLGV 0.075 45 TPMNGPGSSQ 0.003 62 SSPISSGFHI 0.075 76 CKVLFVLFGQ 0.003 112 KQLQNTCFFF 0.075 11 SRHILGRMWG 0.003 113 QLQNTCFFFV 0.050 73 KRGCKVLFVL 0.003 125 RKDOPHRAQL 0.050 58 FFLSSSPISS 0.003 134 LWHTQWDLDK 0.050 50 PGSSQELWFF 0.003 122 VSSRKDQPHR 0.030 7 VESFSRHILG 0.003 36 RSLTLLCPPT 0.030 63 SPISSGFHIG 0.003 47 MNGPGSSQEL 0.025 94 APAFQGLGKQ 0.003 17 RMWGHWRLSF 0.025 44 PTPMNGPGSS 0.003 1 MTNKEIVESF 0.025 98 QGLGKQAQSS 0.003 38 LTLLCPPTPM 0.025 107 SWIFLKOLQN 0.003 39 TLLCPPTPMN 0.020 67 SGFHIGKRGC 0.003 85 QCLVERNAHA 0.020 37 SLTLLCPPTP 0.002 105 QSSWIPLKQL 0.015 106 SSWIFLKQLQ 0.002 29 KSLGVRTRSL 0.015 10 FSRHILGRMW 0.002 66 SSGFHIGKRG 0.015 132 AOLWHTQWDL 0.002 90 RNAHAPAFQG 0.013 84 GQCLVERNAH 0.002 59 FLSSSPISSG 0.010 19 WGHfWRLSFLD 0.001 110 FLKQLQNTCF 0.010 34 RTRSLTLLCP 0.001 108 WIFLKQLQNT 0.010 31 LGVRTRSLTL 0.001 78 VLFVLFGQCL 0.010 88 VERNAHAPAF 0.001 121 FVSSRKDQPH 0.010 32 GVRTRSLTLL 0.001 41 LCPPTPMNGP 0.010 99 GLGKQAQSSW 0.001 91 NAHAPAFQGL 0.010 95 PAFQGLGKQA 0.001 68 GFHIGKRGCK 0.010 57 WFFLSSSPIS 0.001 13 HILGRMWGHW 0.010 86 CLVERNAHAP 0.001 77 KVLFVLFGQC 0.010 89 ERNAHAPAFQ 0.001 30 SLGVRTRSLT 0.010 70 HIGKRGCKVL 0.001 5 EIVESFSRHI 0.010 131 RAQLWHTQWD 0.001 133 Table VI: v.3-Al-10mers: 162PIE6 Table VI: v.3-A-l-0mers: 162PIE6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 6 SLLLTLDLEK 1.000 21 LSVTNLYSKN 0.015 10 TLDLEKPVSL 1.000 111 ASASQSVGIT 0.015 34 FSTILQTLSF 0.750 74 RSAVAQSWAH 0.015 18 SLLLSVTNLY 0.500 67 VSLCRPGRSA 0.015 12 DLEKPVSLLL 0.450 119 ITGVSHRIRP 0.013 20 LLSVTNLYSK 0.400 99 TGLELLSLSN 0.013 51 PSIPLSSAYF 0.300 22 SVTNLYSKNS 0.010 84 CSLNLPEAGF 0.300 66 RVSLCRPGRS 0.010 106 LSNPPASASQ 0300 95 HVAQTGLELL 0.010 88 LPEAGFHHVA 0.225 85 SLNLPEAGFH 0.010 52 SIPLSSAYFF 0.200 77 VAQSWAHCSL 0.010 25 NLYSKNSAQF 0.200 65 DRVSLCRPGR 0.0 10 41 LSFPATFTPS 0.150 105 SLSNPPASAS 0.010 53 IPLSSAYFFF 0.125 8 LLTLDLEKPV 0.010 86 LNLPEAGFHH 0.125 76 AVAQSWAHCS 0.010 50 SPSIPLSSAY 0.125 83 HCSLNLPEAG 0.010 48 TPSPSIPLSS 0.125 87 NLPEAGFHHV 0.010 116 SVGITGVSHR 0.100 79 QSWAHCSLNL 0.008 57 SAYFFFFSDR 0.100 27 YSKNSAQFST 0.008 118 GITGVSHRIR 0.100 56 SSAYFFFFSD 0.007 100 GLELLSLSNP 0.090 63 FSDRVSLCRP 0.007 3 WAESLLLTLD 0.090 97 AQTGLELLSL 0.007 55 LSSAYFFFFS 0.075 81 WAHCSLNLPE 0.005 30 NSAQFSTILQ 0.075 40 TLSFPATFTP 0.005 9 LTLDLEKPVS 0.050 13 LEKPVSLLLS 0.003 112 SASQSVGITG 0.050 45 ATFTPSPSIP 0.003 54 PLSSAYFFFF 0.050 35 STILQTLSFP 0.003 96 VAQTGLELLS 0.050 4 AESLLLTLDL 0.003 36 TILQTLSFPA 0.050 15 KPVSLLLSVT 0.003 19 LLLSVTNLYS 0.050 94 HHVAQTGLEL 0.003 31 SAQFSTILQT 0.050 117 VGITGVSHRI 0.003 47 FTPSPSIPLS 0.050 120 TGVSHRIRPH 0.003 38 LOTLSFPATF 0.030 108 NPPASASQSV 0.003 104 LSLSNPPASA 0.030 43 FPATFTPSPS 0.003 115 QSVGITGVSH 0.030 2 KWAESLLLTL 0.003 23 VTNLYSKNSA 0.025 - 29 KNSAQFSTIL 0.003 46 TFTPSPSIPL 0.025 24 TNLYSKNISAQ 0.003 39 QTLSFPATFT 0.025 91 AGFHHVAQTG 0.003 98 QTGLELLSLS 0.025 14 EKPVSLLLSV 0.003 62 FFSDRVSLCR 0.025 44 PATFTPSPSI 0.002 107 SNPPASASQS 0.025 110 PASASQSVGI 0.002 90 EAGFHHVAQT 0.020 16 PVSLLLSVTN 0.002 37 ILQTLSFPAT 0.020 5 ESLLLTLDLE 0.002 75 SAVAQSWAHC 0.020 49 PSPSIPLSSA 0.002 102 ELLSLSNPPA 0.020 122 VSHRIRPHn 0.002 121 GVSHRIRPHV 0.020 78 AQSWAHCSLN 0.002 103 LLSLSNPPAS 0.020 114 SQSVGITGVS 0.002 69 LCRPGRSAVA 0.020 32 AQFSTILOTL 0.002 113 ASQSVGITGV 0.015 123 SHRIRPHVLF 0.001 17 VSLLLSVTNL 0.015 -60 FFFFSDRVSL 0.001 134 Table VI: v.4-Al-10mers: 162P1E6 Table VI: v.4-Al-10mers: 162P1E6 I Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 65 GADNHEASAA 0.500 33 GALYRTLSSL 0.010 23 ISVPHRPAEL 0.300 93 AAAAARVTLT 0.010 19 SSGVISVPHR 0.300 31 ELGALYRTLS 0.010 53 HEDFSGVKPR 0.250 24 SVPHRPAELG 0.010 13 RTGPHLSSGV 0.250 64 HGADNHEASA 0.005 89 AAAAAAAAAR 0.200 15 GPHLSSGVIS 0.005 29 PAELGALYRT 0.180 67 DNHEASAATA 0.005 39 LSSLKYPSWR 0.150 9 NQLFRTGPHL 0.003 28 RPAELGALYR 0.125 44 YPSWRVRTPH 0.003 52 PHEDFSGVKF 0.090 8 RNQLFRTGPH 0.003 27 HRPAELGALY 0.050 14 TGPHLSSGVI 0.003 77 TTAAATTVAA 0.050 22 VISVPHRPAE 0.002 81 ATTVAAAAAA 0.050 40 SSLKYPSWRV 0.002 82 TTVAAAAAAA 0.050 25 VPHRPAELGA 0.001 51 TPHEDFSGVK 0.050 66 ADNHEASAAT 0.001 4 FIKERNQLFR 0.050 69 HEASAATATT 0.001 74 ATATTAAATT 0.050 10 QLFRTGPHLS 0.001 37 RTLSSLKYPS 0.050 48 RVRTPHEDFS 0.001 68 NHEASAATAT 0.045 17 HLSSGVISVP 0.001 18 LSSGVISVPH 0.030 3 FFIKERNQLF 0.001 50 RTPHEDFSGV 0.025 47 WRVRTPHEDF 0.001 49 VRTPHEDPSG 0.025 2 FFFIKERNQL 0.001 76 ATTAAATTVA 0.025 30 AELGALYRTL 0.001 54 EDFSGVKFRR 0.025 63 RHGADNHEAS 0.001 5 IKERNQLFRT 0.022 55 DFSGVKFRRH 0.001 72 SAATATTAAA 0.020 62 RRHGADNHEA 0.001 78 TAAATTVAAA 0.020 1 MFFFIKERNQ 0.001 85 AAAAAAAAAA 0.020 12 FRTGPHLSSG 0.001 92 AAAAAARVTL 0.020 16 PHLSSGVISV 0.000 86 AAAAAAAAAA 0.020 11 LFRTGPHLSS 0.000 73 AATATTAAAT 0.020 20 SGVISVPHRP 0.000 79 AAATTVAAAA 0.020 57 SGVKFRRHGA 0.000 84 VAAAAAAAAA 0.020 59 VKFRRHGADN 0.000 87 AAAAAAAAAA 0.020 58 GVKFRRHGAD 0.000 83 TVAAAAAAAA 0.020 7 ERNQLFRTGP 0.000 80 AATTVAAAAA 0.020 6 KERNQLFRTG 0.000 88 AAAAAAAAAA 0.020 36 YRTLSSLKYP 0.000 38 TLSSLKYPSW 0.020 26 PHRPAELGAL 0.000 34 ALYRTLSSLK 0.020 43 KYPSWRVRTP 0.000 90 AAAAAAAARV 0.020 61 FRRHGADNHE 0.000 56 FSGVKFRRHG 0.015 60 KFRRHGADNH 0.000 71 ASAATATTAA 0.015 46 SWRVRTPHED 0.000 35 LYRTLSSLKY 0.013 45 PSWRVRTPHE 0.000 32 LGALYRTLSS 0.013 42 LKYPSWRVRT 0.010 75 TATTAAATTV 0.010 70 EASAATATTA 0.010 41 SLKYPSWRVR 0.010 21 GVISVPHRPA 0.010 91 AAAAAAARVT 0.010 135 Table VI: v.5-Al-10mers: 162PE6 Pos 1234567890 Score Seq9D 31 VTDIPTRFQW 6.250 1 PAELGALYRK 3.600 21 HTVGPRQRER 0.250 12 PTTPSSVMAH 0.125 19 MAHTVGPRQR 0.100 22 TVGPRQRERV 0.100 17 SVMAHTVGPR 0.100 13 TTPSSVMAHT 0.050 27 QRERVTDIPT 0.022 5 GALYRKGPTT 0.020 18 VMAHTVGPRQ 0.010 30 RVTDIPTRFQ 0.010 11 GPTTPSSVMA 0.005 9 RKGPTTPSSV 0.005 32 TDIPTRFQWS 0.005 29 ERVTDIPTRF 0.005 16 SSVMAHTVGP 0.003 10 KGPTTPSSVM 0.003 14 TPSSVMAHTV 0.003 4 LGALYRKGPT 0.003 15 PSSVMAHTVG 0.002 28 RERVTDIPTR 0.001 33 DIPTRFQWSE 0.001 39 QWSEVQEAWS 0.001 3 ELGALYRKGP 0.001 37 RPQWSEVQEA 0.001 2 AELGALYRKG 0.001 35 PTRFQWSEVQ 0.000 34 IPTRFQWSEV 0.000 23 VGPRQRERVT 0.000 38 FQWSEVQEAW 0.000 36 TRFQWSEVQE 0.000 6 ALYRKGPTTP 0.000 8 YRKGPTTPSS 0.000 20 AHTVGPRQRE 0.000 24 GPRQRERVTD 0.000 26 RORERVTDIP 0.000 7 LYRKGPTTPS 0.000 25 PRQRERVTDI 0.000 136 Table VI: v.6-Al-10mers: 162P1E6 Pos 1234567890 Score SeqID 14 HTELSYGTHS 2.250 10 ERTNHTELSY 0.125 11 RTNHTELSYG 0.025 5 RTPHEERTNH 0.025 16 ELSYGTHSGT 0.010 4 VRTPHEERTN 0.005 12 TNHTELSYGT 0.005 8 HEERTNHTEL 0.005 6 TPHEERTNHT 0.003 3 RVRTPHEERT 0.001 2 WRVRTPHEER 0.001 13 NHTELSYGTH 0.001 15 TELSYGTHSG 0.001 7 PHEERTNHTE 0.000 9 EERTNHTELS 0.000 1 SWRVRTPHEE 0.000 137 Table VII: v.1-A2-9mers: 162P1E6 Table VII: v.1-A2-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 133 QLWHTQWDL 1329.809 88 VERNAHAPA 0.012 114 LQNTCFFFV 726.596 33 VRTRSLTLL 0.012 80 FVLFGQCLV 103.580 115 QNTCFFFVS 0.008 52 SSQELWFFL 31.006 116 NTCFFFVSS 0.007 23 RLSFLDKSL 21.362 97 FQGLGKQAQ 0.007 86 CLVERNAHA 20.369 29 KSLGVRTRS 0.006 39 TLLCPPTPM 18.382 91 NAHAPAFQG 0.006 106 SSWIFLKQL 10.116 5 EIVESFSRH 0.006 19 WGHWRLSFL 8.115 4 KEIVESFSR 0.006 78 VLFVLFGQC 7.718 53 SQELWFFLS 0.005 37 SLTLLCPPT 7.452 34 RTRSLTLLC 0.005 30 SLGVRTRSL 4.272 76 CKVLFVLFG 0.005 103 QAQSSWIFL 2.774 1 MTNKEIVES 0.004 113 QLQNTCFFF 2.377 96 AFQGLGKQA 0.003 110 FLKQLQNTC 0.800 71 IGKRGCKVL 0.003 74 RGCKVLFVL 0.763 10 FSRHILGRM 0.003 25 SFLDKSLGV 0.733 26 FLDKSLGVR 0.003 112 KQLQNTCFF 0.538 117 TCFFFVSSR 0.003 73 KRGCKVLFV 0.428 24 LSFLDKSLG 0.003 55 ELWFFLSSS 0.405 121 FVSSRKDQP 0.003 63 SPISSGFRI 0.395 128 QPHRAQLWH 0.003 59 FLSSSPISS 0.343 83 FGQCLVERN 0.003 70 HIGKRGCKV 0.325 60 LSSSPISSG 0.002 7 VESFSRHIL 0.290 85 QCLVERNAH 0.002 77 KVLFVLFGQ 0.225 67 SGFHIGKRG 0.002 108 WIFLKQLQN 0.174 98 OGLGKQAQS 0.002 17 RMWGHWRLS 0.152 38 LTLLCPPTP 0.001 32 GVRTRSLTL 0.142 131 RAQLWHTQW 0.001 48 NGPGSSQEL 0.139 36 RSLTLLCPP 0.001 40 LLCPPTPMN 0.127 41 LCPPTPMNG 0.001 57 WFFLSSSPI 0.123 122 VSSRKDQPH 0.001 126 KDQPHRAQL 0.104 22 WRLSFLDKS 0.001 84 GQCLVERNA 0.101 68 GFHIGKRGC 0.001 79 LFVLFGQCL 0.096 65 ISSGFHIGK 0.001 31 LGVRTRSLT 0.083 27 LDKSLGVRT 0.001 16 GRMWGHWRL 0.082 127 DQPHRAQLW 0.001 102 KQAQSSWIF 0.081 90 RNAHAPAFQ 0.001 101 GKQAQSSWI 0.080 20 GHWRLSFLD 0.000 6 IVESFSRHI 0.075 61 SSSPISSGF 0.000 109 IFLKQLQNT 0.075 58 FFLSSSPIS 0.000 99 GLGKQAQSS 0.075 62 SSPISSGFH 0.000 137 TOWDLDKGR 0.051 12 RHILGRMWG 0.000 51__ GSSQELWFF 0.046 49 GPGSSQELW 0.000 54 QELWFFLSS 0.039 46 PMNGPGSSQ 0.000 81 VLFGQCLVE 0.038 45 TPMNGPGSS 0.000 132 AQLWHTQWD 0.031 42 CPPTPMNGP 0.000 92 AHAPAFQGL 0.028 105 QSSWIPLKQ 0.000 14 ILGRMWGHW 0.028 111 LKQLQNTCF 0.000 13 HILGRMWGH 0.022 64 PISSGFHIG 0.000 104 AQSSWIFLK 0.020 47 MNGPGSSQE 0.000 138 Table VII: v.3-A2-9mers: 162P1E6 Table VII: v.3-A2-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 18 SLLLSVTNL 181.794 5 ESLLLTLDL 0.039 37 ILQTLSFPA 48.984 2 KWAESLLLT 0.034 40 TLSFPATFT 40.986 33 QFSTILQTL 0.034 9 LTLDLEKPV 24.912 8 LLTLDLEKP 0.029 114 SQSVGITGV 16.219 57 SAYFFFFSD 0.028 103 LLSLSNPPA 8.446 13 LEKPVSLLL 0.025 32 AQFSTILQT 6.430 99 TGLELLSLS 0.017 105 SLSNPPASA 4.968 53 IPLSSAYFF 0.017 15 KPVSLLLSV 3.655 39 QTLSFPATF 0.015 38 LQTLSFPAT 2.440 16 PVSLLLSVT 0.014 78 AQSWAHCSL 2.166 112 SASQSVGIT 0.013 87 NLPEAGFHH 1.772 10 TLDLEKPVS 0.012 59 YFFFFSDRV 1.531 109 PPASASQSV 0.010 118 GITGVSHRI 1.435 125 RIRPHVLFH 0.010 47 FTPSPSIPL 1.365 22 SVTNLYSKN 0.010 68 SLCRPGRSA 0.994 75 SAVAQSWAH 0.008 122 VSHRIRPHV 0.772 97 AQTGLELLS 0.008 11 LDLEKPVSL 0.765 116 SVGITGVSH 0.007 76 AVAQSWAHC 0.739 100 GLELLSLSN 0.005 20 LLSVTNLYS 0.697 101 LELLSLSNP 0.004 98 QTGLELLSL 0.682 102 ELLSLSNPP 0.004 96 VAQTGLELL 0.568 79 QSWAHCSLN 0.004 45 ATFTPSPSI 0.536 41 LSFPATFTP 0.004 19 LLLSVTNLY 0.469 89 PEAGFHHVA 0.003 29 KNSAQFSTI 0.453 104 LSLSNPPAS 0.003 1 LKWAESLLL 0.419 17 VSLLLSVTN 0.003 91 AGFHHVAQT 0.414 121 GVSHRIRPH 0.003 61 FFFSDRVSL 0.252 80 SWAHCSLNL 0.003 12 DLEKPVSLL 0.236 83 HCSLNLPEA 0.003 30 NSAQFSTIL 0.217 34 FSTILQTLS 0.002 3 WAESLLLTL 0.201 81 WAHCSLNLP 0.002 74 RSAVAQSWA 0.178 86 LNLPEAGFH 0.002 62 FFSDRVSLC 0.150 77 VAQSWAHCS 0.002 24 TNLYSKNSA 0.120 23 VTNLYSKNS 0.002 56 SSAYFFFFS 0.112 43 FPATFTPSP 0.002 36 TILQTLSFP 0.096 66 RVSLCRPGR 0.001 88 LPEAGFHHV 0.094 48 TPSPSIPLS 0.001 7 LLLTLDLEK 0.094 35 STILQTLSF 0.001 54 PLSSAYFFF 0.078 84 CSLNLPEAG 0.001 50 SPSIPLSSA 0.075 106 LSNPPASAS 0.001 85 SLNLPEAGF 0.075 4 AESLLLTLD 0.001 93 FHHVAQTGL 0.068 108 NPPASASQS 0.000 111 ASASQSVGI 0.068 113 ASQSVGITG 0.000 95 HVAQTGLEL 0.064 123 SHRIRPHVL 0.000 6 SLLLTLIDLE 0.062 27 YSKNSAQFS 0.000 28 SKNSAQFST 0.060 67 VSLCRPGRS 0.000 69 LCRPGRSAV 0.059 117 VGITGVSHR 0.000 52 SIPLSSAYF 0.056 21 LSVTNLYSK 0.000 55 LSSAYFFFF 0.050 70 CRPGRSAVA 0.000 25 NLYSKNSAQ 0.048 L31 SAQFSTILQ 0.000 139 Table VII: v.4-A2-9mers: 162P1E6 Table VII: v.4-A2-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 34 ALYRTLSSL 157.227 13 RTGPHLSSG 0.002 10 QLFRTGPHL 79.041 28 RPAELGALY 0.002 41 SLKYPSWRV 18.257 40 SSLKYPSWR 0.002 17 HLSSGVISV 5.439 21 GVISVPHRP 0.001 51 TPHEDFSGV 3.537 39 LSSLKYPSW 0.001 24 SVPHRPAEL 1.869 56 FSGVKFRRH 0.001 30 AELGALYRT 1.233 32 LGALYRTLS 0.001 91 AAAAAAARV 0.966 19 SSGVISVPH 0.000 76 ATTAAATTV 0.966 25 VPHRPAELG 0.000 6 KERNQLFRT 0.514 8 RNQLFRTGP 0.000 31 ELGALYRTL 0.481 57 SGVKFRRHG 0.000 14 TGPHLSSGV 0.454 48 RVRTPHEDP 0.000 83 TVAAAAAAA 0.435 20 SGVISVPHR 0.000 93 AAAAARVTL 0.297 68 NHEASAATA 0.000 94 AAAARVTLT 0.238 90 AAAAAAAAR 0.000 22 VISVPHRPA 0.232 44 YPSWRVRTP 0.000 79 AAATTVAAA 0.159 23 ISVPHRPAE 0.000 84 VAAAAAAAA 0.117 1 MFFFIKERN 0.000 74 ATATTAAAT 0.104 18 LSBGVISVP 0.000 75 TATTAAATT 0.104 45 PSWRVRTPH 0.000 38 TLSSLKYPS 0.075 54 EDFSGVKFR 0.000 89 AAAAAAAAA 0.069 12 FRTGPHLSS 0.000 86 AAAAAAAAA 0.069 36 YRTLSSLKY 0.000 87 AAAAAAAAA 0.069 49 VRTPHEDFS 0.000 88 AAAAAAAAA 0.069 2 FFFIKERNQ 0.000 81 ATTVAAAAA 0.069 64 HGADNHEAS 0.000 72 SAATATTAA 0.069 27 HRPAELGAL 0.000 78 TAAATTVAA 0.069 53 HEDFSGVKF 0.000 85 AAAAAAAAA 0.069 59 VKFRRHGAD 0.000 82 TTVAAAAAA 0.069 42 LKYPSWRVR 0.000 80 AATTVAAAA 0.069 60 KFRRHGADN 0.000 73 AATATTAAA 0.069 5 IKERNQLFR 0.000 3 FFIKERNQL 0.068 47 WRVRTPHED 0.000 71 ASAATATTA 0.032 11 LFRTGPHLS 0.000 77 TTAAATTVA 0.028 26 PHRPAELGA 0.000 65 GADNHEASA 0.028 55 DFSGVKFRR 0.000 58 GVKFRRHGA 0.015 62 RRHGADNHE 0.000 67 DNHEASAAT 0.015 61 FRRHGADNH 0.000 37 RTLSSLKYP 0.010 16 PHLSSGVIS 0.000 92 AAAAAARVT 0.008 29 PAELGALYR 0.000 70 EASAATATT 0.008 7 ERNQLFRTG 0.000 66 ADNHEASAA 0.007 35 LYRTLSSLK 0.000 4 FIKERNQLF 0.007 46 SWRVRTPHE 0.000 50 RTPHEDFSG 0.006 52 PREDFSGVK 0.000 69 HEASAATAT 0.005 _____ ____ 33 G;ALYRTIJSS 0.004 _____ ____ 9 NQLFRTGPH 0.004 _____ ____ 15 GPHLSSGVI 0.004 43 KYPSWRVRT 0.004 63 RHGADNHEA 0.003 1 -A 140 Table VII: v.5-A2-9mers: 162P1E6 Pos 123456789 Score SeqID 37 FQWSEVQEA 44.232 5 ALYRKGPTT 23.846 9 KGPTTPSSV 1.589 25 RQRERVTDI 0.758 22 VGPRQRERV 0.378 13 TPSSVMAHT 0.112 4 GALYRKGPT 0.050 29 RVTDIPTRF 0.027 10 GPTTPSSVM 0.013 27 RERVTDIPT 0.011 14 PSSVMAHTV 0.010 32 DIPTRFQWS 0.008 17 VMAHTVGPR 0.005 16 SVMAHTVGP 0.005 33 IPTRFQWSE 0.005 34 PTRFQWSEV 0.003 1 AELGALYRK 0.002 12 TTPSSVMAH 0.002 2 ELGALYRKG 0.002 11 PTTPSSVMA 0.002 39 WSEVQEAWS 0.001 31 TDIPTRFQW 0.001 18 MAHTVGPRQ 0.000 23 GPRQRERVT 0.000 21 TVGPRQRER 0.000 15 SSVMAHTVG 0.000 3 LGALYRKGP 0.000 30 VTDIPTRFQ 0.000 8 RKGPTTPSS 0.000 38 QWSEVQEAW 0.000 36 RFQWSEVQE 0.000 20 HTVGPRQRE 0.000 19 AHTVGPRQR 0.000 7 YRKGPTTPS 0.000 35 TRFQWSEVQ 0.000 28 ERVTDIPTR 0.000 6 LYRKGPTTP 0.000 24 PRQRERVTD 0.000 26 QRERVTDIP 0.000 141 Table VII: v.6-A2-9mers: 162P1E6 Pos 123456789 Score SeqD 16 LSYGTHSGT 0.265 12 NHTELSYGT 0.021 11 TNHTELSYG 0.006 15 ELSYGTHSG 0.006 14 TELSYGTHS 0.005 8 EERTNHTEL 0.002 5 TPHEERTNH 0.002 10 RTNHTELSY 0.001 3 VRTPHEERT 0.001 4 RTPHEERTN 0.000 2 RVRTPHEER 0.000 6 PHEERTNHT 0.000 1 WRVRTPHEE 0.000 7 HEERTNHTE 0.000 13 HTELSYGTH 0.000 9 ERTNHTELS 0.000 142 Table VIII: v.1-A2-10mers: 162P1E6 Table VIII: v.1-A2-10mers: 162PlE6 Pos 1234567890 Score SeqlD Pos 1234567890 Score SeqID 113 QLQNTCFFFV 4215.547 100 LGKQAQSSWI 0.022 78 VLFVLFGQCL 510.604 52 SSQELWFFLS 0.022 102 KQAQSSWIFL 70.879 109 IFLKQLQNTC 0.022 132 AQLWHTQWDL 60.104 37 SLTLLCPPTP 0.015 108 WIFLKQLQNT 40.111 110 FLKQLQNTCF 0.012 26 FLDKSLGVRT 13.712 125 RKDQPHRAQL 0.012 51 GSSQELWFFL 7.562 4 KEIVESFSRH 0.010 30 SLGVRTRSLT 7.452 55 ELWFFLSSSP 0.009 112 KQLQNTCFFF 3.121 56 LWFFLSSSPI 0.009 24 LSFLDKSLGV 2.856 80 FVLFGQCLVE 0.009 77 KVLFVLFGQC 1.390 84 GQCLVERNAH 0.008 105 QSSWIFLKQL 1.219 95 PAFQGLGKQA 0.006 128 QPHRAQLWHT 0.839 115 QNTCFFFVSS 0.004 59 FLSSSPISSG 0.788 53 SQELWFFLSS 0.003 91 NAHAPAFQGL 0.564 127 DQPHRAQLWH 0.003 17 RMWGHWRLSF 0.447 104 AQSSWIFLKQ 0.003 38 LTLLCPPTPM 0.434 90 RNAHAPAFQG 0.003 62 SSPISSGFHI 0.395 103 QAQSSWIFLK 0.003 29 KSLGVRTRSL 0.361 49 GPGSSQELWF 0.003 5 EIVESFSRHI 0.335 19 WGHWRLSFLD 0.003 32 GVRTRSLTLL 0.327 123 SSRKDQPHRA 0.002 39 TLLCPPTPMN 0.276 7 VESFSRHILG 0.002 31 LGVRTRSLTL 0.237 1 MTNKEIVESF 0.002 47 MNGPGSSQEL 0.237 116 NTCFFFVSSR 0.002 69 FHIGKRGCKV 0.222 98 QGLGKQAQSS 0.002 114 LQNTCFFFVS 0.221 33 VRTRSLTLLC 0.001 81 VLFGQCLVER 0.216 131 RAQLWHTQWD 0.001 36 RSLTLLCPPT 0.180 9 SFSRHILGRM 0.001 14 ILGRMWGHWR 0.139 50 PGSSQELWFF 0.001 15 LGRMWGHWRL 0.135 111 LKQLQNTCFF 0.001 40 LLCPPTPMNG 0.127 74 RGCKVLFVLF 0.001 85 QCLVERNAHA 0.120 12 RHILGRMWGH 0.001 133 QLWHTQWDLD 0.103 58 FFLSSSPISS 0.001 72 GKRGCKVLFV 0.093 60 LSSSPISSGF 0.001 6 IVESFSRHIL 0.083 75 GCKVLFVLFG 0.001 79 LFVLFGQCLV 0.082 106 SSWIFLKQLQ 0.001 23 RLSFLDKSLG 0.075 66 SSGFHIGKRG 0.000 99 GLGKQAQSSW 0.075 2 TNKEIVESFS 0.000 18 MWGHWRLSPL 0.064 41 LCPPTPMNGP 0.000 86 CLVERNAHAP 0.061 63 SPISSGFHIG 0.000 73 KRGCKVLFVL 0.057 126 KDQPHRAQLW 0.000 22 WRLSFLDKSL 0.050 57 WFFLSSSPIS 0.000 87 LVERNAHAPA 0.047 117 TCFFFVSSRK 0.000 54 QELWFFLSSS 0.047 45 TPMNGPGSSQ 0.000 70 HIGKRGCKVL 0.041 61 SSSPISSGFH 0.000 97 FQGLGKQAQS 0.035 101 GKQAQSSWIF 0.000 137 TQWDLDKGRG 0.033 13 HILGRMWGHW 0.000 121 FVSSRKDQPH 0.030 76 CKVLFVLFGQ 0.000 83 FGQCLVERNA 0.030 135 WHTQWDLDKG 0.000 67 SGFHIGKRGC 0.024 48 NGPGSSQELW 0.000 143 Table VIII: v.3-A2-10mers: 162P1E6 Table VIII: v.3-A2-10mers: 162P1E6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 87 NLPEAGFHHV 541.810 28 SKNSAQFSTI 0.028 8 LLTLDLEKPV 118.238 90 EAGFHHVAQT 0.018 68 SLCRPGRSAV 69.552 86 LNLPEAGFHH 0.018 37 ILQTLSFPAT 24.070 14 EKPVSLLLSV 0.017 32 AQFSTILQTL 18.432 92 GFHHVAQTGL 0.015 36 TILQTLSFPA 14.659 46 TFTPSPSIPL 0.015 10 TLDLEKPVSL 8.545 47 FTPSPSIPLS 0.011 121 GVSHRIRPHV 6.086 9 LTLDLEKPVS 0.011 97 AQTGLELLSL 4.982 1 82 AHCSLNLPEA 0.008 19 LLLSVTNLYS 2.578 78 AQSWAHCSLN 0.008 39 QTLSFPATFT 2.106 99 TGLELLSLSN 0.007 17 VSLLLSVTNL 2.017 76 AVAQSWAHCS 0.007 11 LDLEKPVSLL 1.760 22 SVTNLYSKNS 0.007 102 ELLSLSNPPA 1.379 111 ASASQSVGIT 0.006 79 QSWAHCSLNL 1.157 41 LSFPATFTPS 0.006 113 ASQSVGITGV 1.044 88 LPEAGFHHVA 0.005 29 KNSAQFSTIL 0.760 57 SAYFFFFSDR 0.005 77 VAQSWAHCSL 0.504 56 SSAYFFFFSD 0.004 108 NPPASASQSV 0.454 73 GRSAVAQSWA 0.004 4 AESLLLTLDL 0.415 74 RSAVAQSWAH 0.004 1 LKWAESLLLT 0.336 110 PASASQSVGI 0.003 18 SLLLSVTNLY 0.276 44 PATFTPSPSI 0.003 60 FFFFSDRVSL 0.252 116 SVGITGVSHR 0.003 25 NLYSKNSAQF 0.238 35 STILQTLSFP 0.003 31 SAQFSTILQT 0.238 98 QTGLELLSLS 0.002 104 LSLSNPPASA 0.204 43 FPATFTPSPS 0.002 55 LSSAYFFFFS 0.190 34 FSTILQTLSF 0.002 15 KPVSLLLSVT 0.161 100 GLELLSLSNP 0.002 53 IPLSSAYFFF 0.146 101 LELLSLSNPP 0.002 61 FFFSDRVSLC 0.135 84 CSLNLPEAGF 0.002 103 LLSLSNPPAS 0.127 91 AGFHHVAQTG 0.002 75 SAVAQSWAHC 0.117 96 VAQTGLELLS 0.002 23 VTNLYSKNSA 0.117 69 LCRPGRSAVA 0.002 117 VGITGVSHRI 0.116 49 PSPSIPLSSA 0.002 7 LLLTLDLEKP 0.106 21 LSVTNLYSKN 0.001 12 DLEKPVSLLL 0.103 71 RPGRSAVAQS 0.001 54 PLSSAYFFFF 0.099 112 SASQSVGITG 0.001 2 KWAESLLLTL 0.098 81 WAHCSLNLPE 0.001 122 VSHRIRPHVL 0.097 66 RVSLCRPGRS 0.001 40 TLSFPATFTP 0.086 94 HHVAQTGLEL 0.001 105 SLSNPPASAS 0.075 107 SNPPASASQS 0.000 95 HVAQTGLELL 0.072 115 QSVGITGVSH 0.000 58 AYFFFFSDRV 0.067 50 SPSIPLSSAY 0.000 20 LLSVTNLYSK 0.058 48 TPSPSIPLSS 0.000 52 SIPLSSAYFF 0.056 63 FSDRVSLCRP 0.000 6 SLLLTLDLEK 0.055 114 SQSVGITGVS 0.000 85 SLNLPEAGFH 0.053 24 TNLYSKNSAQ 0.000 38 LQTLSFPATF 0.049 119 ITGVSHRIRP 0.000 27 YSUSAQFST 0.045 45 ATFTPSPSIP 0.000 67 VSLCRPGRSA 0.041 -120 TGVSHRIRPH 0.000 144 Table VIII: v.4-A2-10mers: 162P1E6 Table VIII: v.4-A2-10mers: 162P1 E6 Pos 1234567890 Score SeqD Pos 1234567890 Score SeqID 40 SSLKYPSWRV 12.599 24 SVPHRPAELG 0.003 9 NQLFRTGPHL 8.014 44 YPSWRVRTPH 0.002 33 GALYRTLSSL 2.525 28 RPAELGALYR 0.002 50 RTPHEDFSGV 1.835 56 FSGVKFRRHG 0.002 75 TATTAAATTV 0.966 48 RVRTPHEDFS 0.001 13 RTGPHLSSGV 0.966 39 LSSLKYPSWR 0.001 90 AAAAAAAARV 0.966 18 LSSGVISVPH 0.001 30 AELGALYRTL 0.461 32 LGALYRTLSS 0.001 83 TVAAAAAAAA 0.435 62 RRHGADNHEA 0.001 92 AAAAAARVTL 0.297 59 VKFRRHGADN 0.001 10 QLFRTGPHLS 0.276 17 HLSSGVISVP 0.000 2 FFFIKERNQL 0.252 29 PAELGALYRT 0.000 93 AAAAARVTLT 0.238 68 NHEASAATAT 0.000 23 ISVPHRPAEL 0.237 3 FFIKERNQLF 0.000 78 TAAATTVAAA 0.159 19 SSGVISVPR 0.000 84 VAAAAAAAAA 0.117 89 AAAAAAAAAR 0.000 38 TLSSLKYPSW 0.112 15 GPHLSSGVIS 0.000 73 AATATTAAAT 0.104 6 KERNQLFRTG 0.000 74 ATATTAAATT 0.104 36 YRTLSSLKYP 0.000 21 GVISVPHRPA 0.087 12 FRTGPHLSSG 0.000 87 AAAAAAAAAA 0.069 49 VRTPHEDFSG 0.000 82 TTVAAAAAAA 0.069 20 SGVISVPHRP 0.000 72 SAATATTAAA 0.069 51 TPHEDFSGVK 0.000 88 AAAAAAAAAA 0.069 41 SLKYPSWRVR 0.000 81 ATTVAAAAAA 0.069 8 RNQLFRTGPH 0.000 86 AAAAAAAAAA 0.069 53 HEDFSGVKFR 0.000 79 AAATTVAAAA 0.069 54 EDFSGVKFRR 0.000 85 AAAAAAAAAA 0.069 63 RHGADNHEAS 0.000 77 TTAAATTVAA 0.069 47 WRVRTPHEDF 0.000 80 AATTVAAAAA 0.069 45 PSWRVRTPHE 0.000 42 LKYPSWRVRT 0.056 1 MFFFIKERNQ 0.000 25 VPHRPAELGA 0.055 26 PHRPAELGAL 0.000 34 ALYRTLSSLK 0.048 60 KFRRHGADNH 0.000 71 ASAATATrAA 0.032 11 LFRTGPHLSS 0.000 57 SGVKFRRHGA 0.032 58 GVKFRRHGAD 0.000 76 ATTAAATTVA 0.028 43 KYPSWRVRTP 0.000 65 GADN1EASAA 0.028 55 DFSGVKFRRH 0.000 5 IKERNQLFRT 0.015 35 LYRTLSSLKY 0.000 66 ADNHEASAAT 0.010 61 FRRHGADNHE 0.000 67 DNHEASAATA 0.010 7 ERNQLFRTGP 0.000 16 PHLSSGVISV 0.009 27 HRPAELGALY 0.000 91 AAAAAAARVT 0.008 52 PHEDFSGVKF 0.000 4 FIKERNQLFR 0.007 46 SWRVRTPHED 0.000 31 ELGALYRTLS 0.006 70 EASAATATTA 0.005 69 HEASAATATT 0.005 64 HGADNHEASA 0.005 37 RTLSSLKYPS 0.004 14 TGPHLSSGVI 0.004 22 VISVPHRPAE 0.003 145 Table VIII: v.5-A2-10mers: 162P1E6 Pos 1234567890 Score SeqI 22 TVGPRORERV 2.982 34 IPTRFQWSEV 1.312 14 TPSSVMAHTV 0.454 5 GALYRKGPTT 0.383 13 TTPSSVMAHT 0.238 38 FQWSEVQEAW 0.141 9 RKGPTTPSSV 0.097 6 ALYRKGPTTP 0.048 10 KGPTTPSSVM 0.047 11 GPTTPSSVMA 0.032 18 VMAHTVGPRQ 0.018 4 LGALYRKGPT 0.011 37 RFQWSEVQEA 0.008 23 VGPRQRERVT 0.007 30 RVTDIPTRPQ 0.006 33 DIPTRFQWSE 0.004 31 VTDIPTRFQW 0.004 2 AELGALYRKG 0.002 17 SVMAHTVGPR 0.001 3 ELGALYRKGP 0.001 32 TDIPTRFQWS 0.001 39 QWSEVQEAWS 0.000 16 SSVMAHTVGP 0.000 26 RQRERVTDIP 0.000 25 PRQRERVTDI 0.000 19 ?4AHTVGPRQR 0.000 27 QRERVTDIPT 0.000 12 PTTPSSVMAH 0.000 28 RERVTDIPTR 0.000 20 AHTVGPRQRE 0.000 36 TRFQWSEVQE 0.000 24 GPRQRERVTD 0.000 15 PSSVMAHTVG 0.000 8 YRKGPTTPSS 0.000 21 HTVGPRORER 0.000 7 LYRKGPTTPS 0.000 29 ERVTDIPTRF 0.000 I PAELGALYRK 0.000 35 PTRFQWSEVQ 0.000 146 Table VIII: v.6-A2-10mers: 162P1E6 Pos 1234567890 Score SeqID 16 ELSYGTHSGT 0.559 6 TPHEERTNHT 0.199 12 TNHTELSYGT 0.049 3 RVRTPHEERT 0.024 11 RTNHTELSYG 0.013 15 TELSYGTHSG 0.005 5 RTPHEERTNH 0.001 8 HEERTNHTEL 0.001 13 NHTELSYGTH 0.000 2 WRVRTPHEER 0.000 9 EERTNHTELS 0.000 4 VRTPHEERTN 0.000 14 HTELSYGTHS 0.000 10 ERTNHTELSY 0.000 I SWRVRTPHEE 0.000 7 PHEERTNHTE 0.000 147 Table IX: v.1-A3-9mers: 162P1E6 Table IX: v.1-A3-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqI 133 QLWHTOWDL 9.000 15 LGRMWGHWR 0.012 104 AQSSWIFLK 8.100 18 MWGHWRLSF 0.012 113 QLQNTCFFF 6.000 103 QAQSSWIFL 0.012 26 FLDKSLGVR 1.800 72 GKRGCKVLF 0.009 117 TCFFFVSSR 1.800 66 SSGFHIGKR 0.009 78 VLFVLFGQC 0.900 16 GRMWGHWRL 0.008 65 ISSGFHIGK 0.900 82 LFGQCLVER 0.006 102 KQAQSSWIF 0.540 131 RAQLWHTQW 0.006 39 TLLCPPTPM 0.450 49 GPGSSQELW 0.006 86 CLVERNAHA 0.450 46 PMNGPGSSQ 0.005 94 APAFQGLGK 0.400 74 RGCKVLFVL 0.004 32 GVRTRSLTL 0.360 128 QPHRAQLWH 0.004 23 RLSFLDKSL 0.300 73 KRGCKVLFV 0.004 137 TQWDLDKGR 0.300 54 QELWFFLSS 0.003 81 VLFGQCLVE 0.300 85 QCLVERNAH 0.003 55 ELWFFLSSS 0.270 1 MTNKEIVES 0.003 112 KQLQNTCFF 0.270 57 WFFLSSSPI 0.003 13 HILGRMWGH 0.203 126 KDQPHRAQL 0.003 110 FLKQLQNTC 0.200 79 LFVLFGQCL 0.003 75 GCKVLFVLF 0.180 84 GQCLVERNA 0.003 4 KEIVESFSR 0.162 92 AHAPAFQGL 0.003 118 CFFFVSSRK 0.150 115 QNTCFFFVS 0.002 51 GSSOELWFF 0.135 29 KSLGVRTRS 0.002 135 WHTQWDIDK 0.120 111 LKQLQNTCF 0.002 21 HWRLSFLDK 0.120 87 LVERNAHAP 0.002 99 GLGKQAQSS 0.120 121 FVSSRKDQP 0.002 37 SLTLLCPPT 0.100 101 GKQAQSSWI 0.002 59 FLSSSPISS 0.080 127 DQPHRAQLW 0.002 77 KVLFVLFGO 0.061 7 VESFSRHIL 0.002 14 ILGRMWGHW 0.060 136 HTQWDLDKG 0.002 30 SLGVRTRSL 0.060 38 LTLLCPPTP 0.002 114 LQNTCFFFV 0.054 122 VSSRKDQPH 0.001 40 LLCPPTPMN 0.045 20 GHWRLSFLD 0.001 5 EIVESFSRH 0.041 48 NGPGSSQEL 0.001 106 SSWIFLKQL 0.034 19 WGHWRLSFL 0.001 53 SQELWFFLS 0.032 33 VRTRSLTLL 0.001 17 RMWGHWRLS 0.030 132 AQLWHTQWD 0.001 80 FVLFGQCLV 0.030 91 NAHAPAFQG 0.001 2 TNKEIVESF 0.027 105 QSSWIFLKQ 0.001 63 SPISSGFHI 0.027 10 FSRHILGRM 0.001 61 SSSPISSGF 0.022 25 SFLDKSLGV 0.001 70 HIGKRGCKV 0.020 64 PISSGFHIG 0.001 123 SSRKDQPHR 0.020 97 FQGLGKQAQ 0.001 108 WIFLKQLQN 0.020 41 LCPPTPMNG 0.001 34 RTRSLTLLC 0.020 89 ERNAHAPAF 0.001 6 IVESFSRHI 0.018 88 VERNAHAPA 0.001 116 NTCFFFVSS 0.018 76 CKVLFVLFG 0.001 52 SSQELWFFL 0.013 24 LSFLDKSLG 0.001 69 FHIGKRGCK 0.013 42 CPPTPMNGP 0.000 9 SFSRHILGR 0.012 50 PGSSQELWF 0.000 148 Table IX: v.3-A3-9mers: 162P1E6 Table IX: v.3-A3-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 7 LLLTLDLEK 60.000 13 LEKPVSLLL 0.008 19 LLLSVTNLY 9.000 9 LTLDLEKPV 0.007 85 SLNLPEAGF 3.000 88 LPEAGFHHV 0.006 18 SLLLSVTNL 2.700 1 LKWAESLLL 0.006 87 NLPEAGFHH 0.900 56 SSAYFFFFS 0.005 12 DLEKPVSLL 0.810 51 PSIPLSSAY 0.005 21 LSVTNLYSK 0.675 124 HRIRPHVLF 0.005 37 ILQTLSFPA 0.600 36 TILQTLSFP 0.005 54 PLSSAYFFF 0.600 50 SPSIPLSSA 0.005 39 QTLSFPATF 0.450 97 AQTGLELLS 0.004 118 GITGVSHRI 0.405 61 FFFSDRVSL 0.003 66 RVSLCRPGR 0.400 69 LCRPGRSAV 0.003 105 SLSNPPASA 0.300 111 ASASQSVGI 0.003 35 STILQTLSF 0.300 23 VTNLYSKNS 0.003 55 LSSAYFFFF 0.270 59 YFFFFSDRV 0.003 45 ATFTPSPSI 0.225 83 HCSLNLPEA 0.003 52 SIPLSSAYF 0.200 5 ESLLLTLDL 0.003 103 LLSLSNPPA 0.200 41 LSFPATFTP 0.002 58 AYFFFFSDR 0.180 26 LYSKNSAQF 0.002 125 RIRPHVLFH 0.180 22 SVTNLYSKN 0.002 40 TLSFPATFT 0.150 16 PVSLLLSVT 0.002 100 GLELLSLSN 0.120 122 VSHRIRPHV 0.002 95 HVAQTGLEL 0.120 91 AGFHHVAQT 0.002 25 NLYSKNSAQ 0.100 33 QFSTILQTL 0.001 47 FTPSPSIPL 0.090 11 LDLEKPVSL 0.001 53 IPLSSAYFF 0.090 2 KWAESLLLT 0.001 98 QTGLELLSL 0.090 77 VAQSWAHCS 0.001 20 LLSVTNLYS 0.080 80 SWAHCSLNL 0.001 63 FSDRVSLCR 0.060 74 RSAVAQSWA 0.001 32 AQFSTILQT 0.045 73 GRSAVAQSW 0.001 6 SLLLTLDLE 0.045 - 48 TPSPSIPLS 0.001 10 TLDLEKPVS 0.040 112 SASQSVGIT 0.001 68 SLCRPGRSA 0.030 43 FPATFTPSP 0.001 8 LLTLDLEKP 0.030 123 SHRIRPHVL 0.001 57 SAYFFFFSD 0.027 62 FFSDRVSLC 0.001 15 KPVSLLLSV 0.027 24 TNLYSKNSA 0.001 119 ITGVSHRIR 0.020 93 FHHVAQTGL 0.001 76 AVAQSWAHC 0.020 79 QSWAHCSLN 0.001 116 SVOITGVSH 0.020 106 LSNPPASAS 0.000 117 VGITGVSHR 0.018 31 SAQFSTILQ 0.000 3 WAESLLLTL 0.018 108 NPPASASQS 0.000 78 AQSWAHCSL 0.018 104 LSLSNPPAS 0.000 29 KNSAQFSTI 0.011 70 CRPGRSAVA 0.000 38 LQTLSFPAT 0.009 28 SKNSAQFST 0.000 30 NSAQFSTIL 0.009 81 WAHCSLNLP 0.000 102 ELLSLSNPP 0.009 113 ASQSVGITG 0.000 121 GVSHRIRPH 0.009 86 LNLPEAGFH 0.000 75 SAVAOSWAH 0.009 89 PEAGFHHVA 0.000 114 SQSVGITGV 0.009 115 QSVGITGVS 0.000 96 VAQTGLELL 0.009 71 RPGRSAVAQ 0.000 149 Table DC: v.4-A3-9mers: 162P1E6 Table IX: v.4-A3-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 34 ALYRTLSSL 4.500 84 VAAAAAAAA 0.002 10 QLFRTGPHL 3.000 86 AAAAAAAAA 0.002 17 HLSSGVISV 1.200 89 AAAAAAAAA 0.002 41 SLKYPSWRV 0.900 52 PHEDFSGVK 0.002 4 FIKERNQLF 0.300 19 SSGVISVPH 0.002 48 RVRTPHEDF 0.300 37 RTLSSLKYP 0.001 38 TLSSLKYPS 0.120 75 TATTAAATT 0.001 40 SSLKYPSWR 0.090 39 LSSLKYPSW 0.001 58 GVKFRRHGA 0.060 71 ASAATATTA 0.001 28 RPAELGALY 0.060 43 KYPSWRVRT 0.00 1 24 SVPHRPAEL 0.060 3 FFIKERNQL 0.001 90 AAAAAAAAR 0.040 45 PSWRVRTPH 0.001 83 TVAAAAAAA 0.020 18 LSSGVISVP 0.000 35 LYRTLSSLK 0.020 25 VPHRPABLG 0.000 20 SGVISVPHR 0.018 56 FSGVKFRRH 0.000 31 ELGALYRTL 0.018 69 HEASAATAT 0.000 82 TTVAAAAAA 0.015 70 EASAATATT 0.000 21 GVISVPHRP 0.013 27 HRPAELGAL 0.000 76 ATTAAATTV 0.010 23 ISVPHRPAE 0.000 81 ATTVAAAAA 0.010 66 ADNHEASAA 0.000 77 TTAAATTVA 0.010 63 RHGADNHEA 0.000 51 TPHEDFSGV 0.009 68 NHEASAATA 0.000 54 EDFSGVKFR 0.009 14 TGPHLSSGV 0.000 55 DFSGVKFRR 0.008 61 FRRHGADNH 0.000 29 PAELGALYR 0.008 12 FRTGPHLSS 0.000 5 IKERNQLFR 0.008 1 MFFFIKERN 0.000 36 YRTLSSLKY 0.008 32 LGALYRTLS 0.000 79 AAATTVAAA 0.006 8 RNQLFRTGP 0.000 93 AAAAARVTL 0.006 92 AAAAAARVT 0.000 53 HEDFSGVKP 0.006 67 DNHEASAAT 0.000 65 GADNHEASA 0.006 49 VRTPHEDFS 0.000 15 GPHLSSGVI 0.005 60 KFRRHGADN 0.000 74 ATATTAAAT 0.005 26 PHRPAELGA 0.000 6 KERNQLFRT 0.004 44 YPSWRVRTP 0.000 33 GALYRTLSS 0.004 11 LFRTGPHLS 0.000 30 AELGALYRT 0.003 64 HGADNEEAS 0.000 42 LKYPSWRVR 0.003 62 RRHGADNHE 0.000 80 AATTVAAAA 0.003 47 WRVRTPHED 0.000 50 RTPHEDFSG 0.003 59 VKFRRHGAD 0.000 94 AAAARVTLT 0.003 46 SWRVRTPHE 0.000 22 VISVPHPA 0.003 2 FFFIKERNQ 0.000 9 NQLFRTGPH 0.003 57 SGVKFRRHG 0.000 13 RTGPHLSSG 0.002 16 PHLSSGVIS 0.000 73 AATATTAAA 0.002 7 ERNQLFRTG 0.000 85 AAAAAAAAA 0.002 88 AAAAAAAAA 0.002 87 AAAAAAAAA 0.002 78 TAAATTVAA 0.002 72 SAATATTAA 0.002 91 AAAAAAARV 0.002 150 Table IX: v.5-A3-9mers: 162P1E6 Pos 123456789 Score SeqID 17 VMAHTVGPR 3.600 1 AELGALYRK 0.607 5 ALYRKGPTT 0.500 29 RVTDIPTRF 0.300 37 FQWSEVQEA 0.090 25 RQRERVTDI 0.081 21 TVGPRQRER 0.060 12 TTPSSVMAH 0.060 10 GPTTPSSVM 0.009 32 DIPTRFQWS 0.004 20 HTVGPRQRE 0.003 16 SVMAHTVGP 0.003 28 ERVTDIPTR 0.003 13 TPSSVMAHT 0.002 33 IPTRFQWSE 0.002 11 PTTPSSVMA 0.002 31 TDIPTRFQW 0.001 4 GALYRKGPT 0.001 34 PTRFQWSEV 0.001 9 KGPTTPSSV 0.001 2 ELGALYRKG 0.001 27 RERVTDIPT 0.001 38 QWSEVQEAW 0.000 19 AHTVGPRQR 0.000 35 TRFQWSEVQ 0.000 18 MAHTVGPRQ 0.000 23 GPRQRERVT 0.000 22 VGPRQRERV 0.000 39 WSEVQEAWS 0.000 15 SSVMAHTVG 0.000 30 VTDIPTRFQ 0.000 14 PSSVMAHTV 0.000 7 YRKGPTTPS 0.000 8 RKGPTTPSS 0.000 3 LGALYRKGP 0.000 26 QRERVTDIP 0.000 6 LYRKGPTTP 0.000 36 RFQWSEVQE 0.000 24 PRQRERVTD 0.000 151 Table IX: v.6-A3-9mers: 162PIE6 Pos 123456789 Score SeqID 2 RVRTPHEER 0.600 10 RTNHTELSY 0.400 15 ELSYGTHSG 0.006 16 LSYGTHSGT 0.004 13 HTELSYGTH 0.003 5 TPHEERTNH 0.003 8 EERTNHTEL 0.001 14 TELSYGTHS 0.001 12 NHTELSYGT 0.000 3 VRTPHEERT 0.000 4 RTPHEERTN 0.000 11 TNHTELSYG 0.000 7 HEERTNHTE 0.000 1 WRVRTPHEE 0.000 6 PHEERTNHT 0.000 9 ERTNHTELS 0.000 152 TableX: v.1-A3-10mers: 162P1E6 Table X: v.1-A3-0mers: 162P1E6 Pos 1234567890 Score SeqD Pos 1234567890 Score SeqID 17 RMWGHWRLSF 90.000 73 KRGCKVLFVL 0.012 81 VLFGQCLVER 45.000 5 EIVESFSRHI 0.012 14 ILGRMWGHWR 12.000 3 NKEIVESFSR 0.012 78 VLFVLFGQCL 9.000 75 GCKVLFVLFG 0.011 103 QAQSSWIFLK 2.700 24 LSFLDKSLGV 0.010 110 FLKQLQNTCF 2.000 62 SSPISSGFHI 0.009 20 GHWRLSFLDK 1.800 4 KEIVESFSRH 0.008 113 QLQNTCFFFV 1.800 52 SSQELWFFLS 0.008 116 NTCFFFVSSR 1.800 105 QSSWIFLKQL 0.007 117 TCFFFVSSRK 1.500 74 RGCKVLFVLF 0.006 64 PISSGFHIGK 1.200 88 VERNAHAPAF 0.006 112 KQLQNTCFFF 0.810 80 FVLFGQCLVE 0.006 99 GLGKQAQSSW 0.600 72 GKRGCKVLFV 0.005 1 MTNKEIVESF 0.450 104 AQSSWIFLKQ 0.005 93 HAPAFQGLGK 0.400 128 QPHRAQLWHT 0.005 32 GVRTRSLTLL 0.270 127 DQPHRAQLWH 0.004 134 LWHTQWDLDK 0.120 46 PMNGPGSSQE 0.003 49 GPGSSQELWF 0.120 56 LWFFLSSSPI 0.003 102 KQAQSSWIFL 0.108 34 RTRSLTLLCP 0.003 30 SLGVRTRSLT 0.100 85 QCLVERNAHA 0.003 133 QLWHTQWDLD 0.100 25 SFLDKSLGVR 0.003 136 HTQWDLDKGR 0.100 29 KSLGVRTRSL 0.002 26 FLDKSLGVRT 0.100 71 IGKRGCKVLF 0.002 8 ESFSRHILGR 0.090 111 LKQLQNTCFF 0.002 77 KVLFVLFGQC 0.081 31 LGVRTRSLTL 0.002 132 AQLWHTQWDL 0.081 15 LGRMWGHWRL 0.002 108 WIFLKQLQNT 0.075 47 MNGPGSSQEL 0.002 40 LLCPPTPMNG 0.060 12 RHILGRMWGH 0.001 6 IVESFSRHIL 0.060 27 LDKSLGVRTR 0.001 59 FLSSSPISSG 0.045 97 FQGLGKQAQS 0.001 39 TLLCPPTPMN 0.045 123 SSRKDQPHRA 0.001 86 CLVERNAHAP 0.045 50 PGSSQELWFF 0.001 114 LQNTCFFFVS 0.032 18 MWGHWRLSFL 0.001 55 ELWFFLSSSP 0.030 126 KDQPHRAQLW 0.001 70 HIGKRGCKVL 0.030 63 SPISSGFHIG 0.001 51 GSSQELWFFL 0.027 137 TQWDLDKGRG 0.001 38 LTLLCPPTPM 0.022 54 QELWFFLSSS 0.001 53 SQELWFFLSS 0.022 36 RSLTLLCPPT 0.001 121 FVSSRKDQPH 0.020 115 QNTCFFFVSS 0.001 23 RLSFLDKSLG 0.020 41 LCPPTPMNGP 0.001 87 LVERNAHAPA 0.020 125 RKDQPHRAQL 0.001 122 VSSRKDQPHR 0.020 130 HRAQLWHTQW 0.001 37 SLTLLCPPTP 0.020 100 LGKQAQSSWI 0.001 68 GFHIGKRGCK 0.018 95 PAFQGLGKQA 0.001 101 GKQAQSSWIF 0.018 106 SSWIFLKQLQ 0.001 91 NAHAPAFQGL 0.018 22 WRLSFLDKSL 0.000 84 GQCLVERNAH 0.018 69 FHIGKRGCKV 0.000 60 LSSSPISSGF 0.015 45 TPMNGPGSSQ 0.000 13 HILGRMWGHW 0.013 61 SSSPISSGFH 0.000 65 ISSGFHIGKR 0.013 33 VRTRSLTLLC 0.000 153 Table X: v.3-A3-10mers: 162PIE6 Table X: v.3-A3-10nmers: 162P1E6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 20 LLSVTNLYSK 90.000 123 SHRIRPHVLF 0.003 6 SLLLTLDLEK 60.000 61 FFFSDRVSLC 0.003 25 NLYSKNSAQF 10.000 47 FTPSPSIPLS 0.003 18 SLLLSVTNLY 9.000 74 RSAVAQSWAH 0.003 54 PLSSAYFFFF 5,400 75 SAVAQSWAHC 0.003 57 SAYFFFFSDR 1.800 122 VSHRIRPHVL 0.003 116 SVGITGVSHR 1.200 98 QTGLELLSLS 0.003 87 NLPEAGFHHV 0.900 60 FFFFSDRVSL 0.003 52 SIPLSSAYFF 0.600 69 LCRPGRSAVA 0.003 10 TLDLEKPVSL 0.600 9 LTLDLEKPVS 0.003 12 DLEKPVSLLL 0.540 31 SAQFSTILQT 0.003 37 ILQTLSFPAT 0.300 58 AYFFFFSDRV 0.003 32 AQFSTILQTL 0.203 86 LNLPEAGFHH 0.003 68 SLCRPGRSAV 0.200 56 SSAYFFFFSD 0.003 38 LQTLSFPATF 0.180 46 TFTPSPSIPL 0.003 118 GITGVSHRIR 0.180 51 PSIPLSSAYF 0.002 19 LLLSVTNLYS 0.120 115 QSVGITGVSH 0.002 8 IJLTIDLEKPV 0,100 104 LSLSNPPASA 0.002 102 ELLSLSNPPA 0.090 35 STILQTLSFP 0.002 53 IPLSSAYFFF 0.090 108 NPPASASQSV 0.002 100 GLELLSLSNP 0.090 119 ITGVSHRIRP 0.002 95 HVAQTGLELL 0,090 28 SKNSAQFSTI 0.002 36 TILQTLSFPA 0.090 124 HRIRPHVLFH 0.002 121 GVSHRIRPHV 0.090 94 HHVAQTGLEL 0.002 97 AQTGLELLSL 0.081 92 GFHHVAQTGL 0.002 105 SLSNPPASAS 0.060 48 TPSPSIPLSS 0.002 40 TLSFPATFTP 0.060 65 DRVSLCRPGR 0.002 85 SLNLPEAGFH 0.060 27 YSKNSAQFST 0.002 7 LLLTLDLEKP 0.045 1 LKWAESLLLT 0.002 50 SPSIPLSSAY 0.040 113 ASQSVGITGV 0.002 103 LLSLSNPPAS 0.040 117 VGITGVSHRI 0.001 79 QSWAHCSLNL 0.030 71 RPGRSAVAQS 0.001 84 CSLNLPEAGF 0.022 66 RVSLCRPGRS 0.001 34 FSTILQTLSF 0.020 44 PATFTPSPSI 0.001 17 VSLLLSVTNL 0.013 . 90 EAGFHHVAQT 0.001 62 FFSDRVSLCR 0.012 96 VAQTGLELLS 0.001 76 AVAQSWAHCS 0.012 73 GRSAVAQSWA 0.001 39 QTLSFPATFT 0.011 110 PASASQSVGI 0.001 29 KNSAQFSTIL 0.011 78 AQSWAHCSLN 0.001 23 VTNLYSIGNSA 0.010 112 SASQSVGITG 0.001 2 KWAESLLLTL 0.008 13 LEKPVSLLLS 0.001 15 KPVSLLLSVT 0.007 114 SOSVGITGVS 0.001 11 LDLEKPVSLL 0.006 111 ASASQSVGIT 0.000 88 LPEAGFHHVA 0.006 81 WAHCSLNLPE 0.000 77 VAQSWAHCSL 0.006 43 FPATFTPSPS 0.000 22 SVTNLYSKNS 0.006 3 WAESLLLTID 0.000 55 LSSAYFFFFS 0.005 82 AHCSLNLPEA 0.000 45 ATFTPSPSIP 0.005 49 PSPSIPLSSA 0.000 41 LSFPATFTPS 0.005 67 VSLCRPGRSA 0.000 4 AESLLLTDL 0.004 83 HCSLNLPEAG 0.000 154 Table X: v.4-A3-10mers: 162PlE6 Table X: v.4-A3-10mers: 162PlE6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 34 ALYRTLSSLK 100.000 84 VAAAAAAAAA 0.002 4 FIKERNQLFR 1.200 90 AAAAAAAARV 0.002 41 SLKYPSWRVR 0.400 86 AAAAAAAAAA 0.002 51 TPHEDFSGVK 0.270 75 TATTAAATTV 0.002 38 TLSSLKYPSW 0.200 58 GVKFRRHGAD 0.002 10 QLFRTGPHLS 0.200 15 GPHLSSGVIS 0.001 28 RPAELGALYR 0.120 71 ASAATATTAA 0.001 39 LSSLKYPSWR 0.060 73 AATATTAAAT 0.001 19 SSGVISVPHR 0.060 60 KFRRHGADNH 0.001 17 HLSSGVISVP 0.045 70 EASAATATTA 0.001 33 GALYRTLSSL 0.041 5 IKERNOLFRT 0.000 89 AAAAAAAAAR 0.040 29 PAELGALYRT 0.000 31 ELGALYRTLS 0.036 30 AELGALYRTL 0.000 50 RTPHEIDFSGV 0.030 57 SGVKFRRHGA 0.000 9 NQLFRTGPHL 0.027 62 RRHGADNHEA 0.000 54 EDFSGVKFRR 0.027 69 HEASAATATT 0.000 83 TVAAAAAAAA 0.020 52 PHEDFSGVKF 0.000 53 HEDFSGVKFR 0.018 64 HGADNHEASA 0.000 13 RTGPHLSSGV 0.015 16 PHLSSGVISV 0.000 82 TTVAAAAAAA 0.015 14 TGPHLSSGVI 0.000 21 GVISVPHRPA 0.013 67 DNHEASAATA 0.000 76 ATTAAATTVA 0.010 11 LFRTGPHLSS 0.000 81 ATTVAAAAAA 0.010 8 RNQLFRTGPH 0.000 77 TTAAATTVAA 0.010 66 ADNHEASAAT 0.000 37 RTLSSLKYPS 0.009 59 VKFRRHGADN 0.000 35 LYRTLSSLKY 0.008 68 NHEASAATAT 0.000 23 ISVPHRPAEL 0.007 _91 AAAAAAARVT 0.000 40 SSLKYPSWRV 0.007 49 VRTPHEDFSG 0.000 92 AAAAAARVTL 0.006 32 LGALYRTLSS 0.000 65 GADNHEASAA 0.006 6 KERNQLFRTG 0.000 78 TAAATTVAAA 0.006 45 PSWRVRTPHE 0.000 74 ATATTAAATT 0.005 12 FRTGPHLSSG 0.000 47 WRVRTPHEDF 0.005 20 SGVISVPHRP 0.000 25 VPHRPAELGA 0.004 26 PHRPAELGAL 0.000 27 HRPAELGALY 0.004 63 RHGADNHEAS 0.000 48 RVRTPHEDFS 0.004 56 FSGVKFRRHG 0.000 3 FFIKERNQLF 0.003 55 DFSGVKFRRH 0.000 24 SVPHRPAELG 0.003 61 FRRHGADNHE 0.000 2 FFFIKERNQL 0.003 46 SWRVRTPHED 0.000 44 YPSWRVRTPH 0.003 43 KYPSWRVRTP 0.000 79 AAATTVAAAA 0.003 7 ERNQLFRTGP 0.000 93 AAAAARVTLT 0.003 36 YRTLSSLKYP 0.000 18 LSSGVISVPH 0.002 1 MFFFIKERNQ 0.000 42 LKYPSWRVRT 0.002 88 AAAAAAAAAA 0.002 80 AATTVAAAAA 0.002 85 AAAAAAAAAA 0.002 72 SAATATTAAA 0.002 87 AAAAAAAAAA 0.002 22 VISVPHRPAE 0.002 155 Table X: v.5-A3-10mers: 162PlE6 Pos 1234567890 Score SeqID 17 SVMAHTVGPR 0.540 6 ALYRKGPTTP 0.100 I PAELGALYRK 0.090 21 HTVGPRQRER 0.045 38 FQWSEVQEAW 0.045 18 VMAHTVGPRQ 0.030 22 TVGPRQRERV 0.030 31 VTDIPTRFQW 0.030 28 RERVTDIPTR 0.018 13 TTPSSVMAHT 0.011 12 PTTPSSVMAH 0.009 3 ELGALYRKGP 0.009 11 GPTTPSSVMA 0.006 33 DIPTRFQWSE 0.005 5 GALYRKGPTT 0.005 19 MAHTVGPRQR 0.004 14 TPSSVMAHTV 0.002 34 IPTRFQWSEV 0.002 26 RQRERVTDIP 0.001 29 ERVTDIPTRF 0.001 10 KGPTTPSSVM 0.001 37 RFQWSEVQEA 0.001 24 GPRQRERVTD 0.001 35 PTRFQWSEVQ 0.000 30 RVTDIPTRFQ 0.000 9 RKGPTTPSSV 0.000 32 TDIPTRFQWS 0.000 27 QRERVTDIPT 0.000 25 PRORERVTDI 0.000 16 SSVMAHTVGP 0.000 36 TRFQWSEVQE 0.000 7 LYRKGPTTPS 0.000 8 YRKGPTTPSS 0.000 39 QWSEVQEAWS 0.000 20 AHTVGPRQRE 0.000 4 LGALYRKGPT 0.000 2 AELGALYRKG 0.000 15 PSSVMAHTVG 0.000 23 VGPRQRERVT 0.000 156 Table X: v.6-A3-10mers: 162P1E6 Pos 1234567890 Score SeqID 16 ELSYgTHSGT 0.030 5 RTPHeERTNH 0.010 3 RVRTpHEERT 0.010 2 WRVRtPHEER 0.009 14 HTELsYGTHS 0.006 10 ERTNhTELSY 0.002 8 HEERtNHTEL 0.002 11 RTNHtELSYG 0.002 6 TPHEeRTNHT 0.002 12 TNHTeLSYGT 0.001 13 NHTE1SYGTH 0.000 15 TELSyGTHSG 0.000 9 EERTnHTELS 0.000 1 SWRVrTPHEE 0.000 7 PHEErTNHTE 0.000 4 VRTPhEERTN 0.000 157 Table XI: v.1-Al l-9mers: 162PIE6 Table XI: v.1-Al 1-9mers: 162PIE6 Pos 123456789 Score SeglD Pos 123456789 Score SegID 104 AQSSWIFLK 1.800 108 WIFLKQLQN 0.002 118 CPFFVSSRK 0.400 81 VLFGQCLVE 0.002 94 APAFQGLGK 0.400 38 LTLLCPPTP 0.002 4 KEIVESFSR 0.162 51 GSSQELWFF 0.001 137 TQWDLDKGR 0.120 73 KRGCKVLFV 0.001 32 GVRTRSLTL 0.120 99 GLGKQAQSS 0.001 9 SFSRHILGR 0.080 136 HTQWDLDKG 0.001 117 TCFFFVSSR 0.080 116 NTCFFFVSS 0.001 26 FLDKSLGVR 0.080 1 MTNKEIVES 0.001 65 ISSGFHIGK 0.040 96 AFQGLGKQA 0.001 21 HWRLSFLDK 0.040 132 AQLWHTQWD 0.001 135 WHTQWDLDK 0.040 59 FLSSSPISS 0.001 82 LFGQCLVER 0.040 78 VLFVLFGQC 0.001 102 KQAQSSWIF 0.036 97 FQGLGKQAQ 0.001 69 FHIGKRGCK 0.030 101 GKQAQSSWI 0.001 80 FVLFGQCLV 0.030 91 NAHAPAFQG 0.001 112 KQLQNTCFF 0.027 126 KDQPHRAQL 0.001 77 KVLFVLFGQ 0.027 72 GKRGCKVLF 0.001 114 LQNTCFFFV 0.018 52 SSQELWFFL 0.001 133 QLWHTQWDL 0.016 7 VESFSRHIL 0.001 113 OLQNTCFFF 0.012 - 88 VERNAHAPA 0.001 13 HILGRMWGH 0.012 45 TPMNGPGSS 0.000 63 SPISSGFHI 0.009 40 LLCPPTPMN 0.000 49 GPGSSQELW 0.006 41 LCPPTPMNG 0.000 25 SFLDKSLGV 0.006 110 FLKQLQNTC 0.000 23 RLSFLDKSL 0.006 2 TNKEIVESF 0.000 131 RAQLWHTQW 0.006 18 MWGHWRLSF 0.000 39 TLLCPPTPM 0.006 37 SLTLLCPPT 0.000 86 CLVERNAHA 0.006 30 SLGVRTRSL 0.000 34 RTRSLTLLC 0.006 20 GHWRLSPLD 0.000 75 GCKVLFVLF 0.006 58 FFLSSSPIS 0.000 128 QPHRAQLWH 0.004 109 IFLKQLQNT 0.000 66 SSGFHIGKR 0.004 17 RMWGHWRLS 0.000 57 WFPLSSSPI 0.004 55 ELWFFLSSS 0.000 14 ILGRMWGHW 0.004 111 LKQLQNTCF 0.000 15 LGRMWGHWR 0.004 48 NGPGSSQEL 0.000 103 QAQSSWIFL 0.004 106 SSWIFLKQL 0.000 123 SSRKDQPHR 0.004 33 VRTRSLTLL 0.000 70 HIGKRGCKV 0.004 42 CPPTPMNGP 0.000 85 QCLVRNAH 0.003 93 HAPAFQGLG 0.000 79 LFVLFGQCL 0.003 19 WGHWRLSFL 0.000 16 GRMWGHWRL 0.002 92 AHAPAFQGL 0.000 121 FVSSRKDQP 0.002 100 LGKQAQSSW 0.000 87 LVERNAHAP 0.002 62 SSPISSGFH 0.000 6 IVESFSRHI 0.002 10 FSRHILGRM 0.000 74 RGCKVLFVL 0.002 122 VSSRKDQPH 0.000 84 GQCLVERNA 0.002 124 SRKDQPHRA 0.000 53 SQELWFPLS 0.002 61 SSSPISSGF 0.000 5 EIVESFSRH 0.002 12 RHILGRMWG 0.000 127 DQPHRAQLW 0.002 54 QELWFFLSS 0.000 158 Table XI: v.3-A11-9mers: 162P1E6 Table XI: v.3-Al 1-9ners: 162P1E6 Pos 123456789 Score SegID Pos 123456789 Score SeqID 7 LLLTLDLEK 1.200 13 LEKPVSLLL 0.001 66 RVSLCRPGR 1.200 20 LLSVTNLYS 0.001 58 AYFFFFSDR 0.160 25 NLYSKNSAQ 0.001 21 LSVTNLYSK 0.060 1 LKWAESLLL 0.001 95 HVAQTGLEL 0.040 86 LNLPHAGFH 0.001 35 STILQTLSF 0.030 71 RPGRSAVAQ 0.001 125 RIRPHVLFH 0.024 6 SLLLTLDLE 0.001 45 ATFTPSPSI 0.020 55 LSSAYFFFF 0.001 47 FTPSPSIPL 0.020 36 TILQTLSFP 0.001 119 ITGVSHRIR 0.020 24 TNLYSKNSA 0.001 98 QTGLELLSL 0.020 38 LQTLSFPAT 0.001 116 SVGITGVSH 0.020 73 GRSAVAQSW 0.001 15 KPVSLLLSV 0.018 74 RSAVAQSWA 0.001 39 QTLSFPATF 0.015 92 GFHHVAQTG 0.001 87 NLPEAGFHH 0.012 23 VTNLYSKNS 0.001 37 ILQTLSFPA 0.012 31 SAQFSTILQ 0.000 118 GITGVSHRI 0.012 68 SLCRPGRSA 0.000 63 FSDRVSLCR 0.008 10 TLDLEKPVS 0.000 9 LTLDLEKPV 0.007 40 TLSFPATFT 0.000 117 VGITGVSHR 0.006 80 SWAHCSLNL 0.000 121 GVSHRIRPH 0.006 8 LLTLDLEKP 0.000 78 AQSWAHCSL 0.006 124 HRIRPHVLF 0.000 114 SQSVGITGV 0.006 11 LDLEKPVSL 0.000 18 SLLLSVTNL 0.006 123 SHRIRPHVL 0.000 75 SAVAQSWAH 0.006 42 SFPATFTPS 0.000 19 LLLSVTNLY 0.006 93 FHHVAQTGL 0.000 53 IPLSSAYFF 0.006 48 TPSPSIPLS 0.000 105 SLSNPPASA 0.004 70 CRPGRSAVA 0.000 59 YFFFFSDRV 0.004 62 FFSDRVSLC 0.000 85 SLNLPEAGF 0.004 46 TFTPSPSIP 0.000 3 WAESLLLTL 0.004 122 VSHRIRPHV 0.000 61 FFFSDRVSL 0.004 108 NPPASASQS 0.000 26 LYSKNSAQF 0.004 77 VAQSWAHCS 0.000 103 LLSLSNPPA 0.004 111 ASASQSVGI 0.000 52 SIPLSSAYF 0.004 81 WAHCSLNLP 0.000 32 AQFSTILQT 0.002 43 FPATFTPSP 0.000 100 GLELLSLSN 0.002 109 PPASASQSV 0.000 76 AVAQSWAHC 0.002 30 NSAQFSTIL 0.000 83 HCSLNLPEA 0.002 16 PVSLLLSVT 0.000 69 LCRPGRSAV 0.002 112 SASQSVGIT 0.000 33 QFSTILQTL 0.002 102 ELLSLSNPP 0.000 88 LPEAGFHHV 0.002 5 ESLLLTLDL 0.000 96 VAQTGLELL 0.002 41 LSFPATFTP 0.000 50 SPSIPLSSA 0.002 2 KWAESLLLT 0.000 22 SVTNLYSKN 0.002 101 LELLSLSNP 0.000 29 KNSAQFSTI 0.001 120 TGVSHRIRP 0.000 97 AQTGLELLS 0.001 56 SSAYFFFFS 0.000 54 PLSSAYFFF 0.001 28 SKNSAQFST 0.000 57 SAYFFFPSD 0.001 89 PEAGFHHVA 0.000 12 1DLEKPVSLL 0.001 4 AESLLLTLD 0.000 159 Table XI: v.4-A 1-9mers: 162P1E6 Table X: v.4-AI1-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 35 LYRTLSSLK 0.400 63 RHGADNHEA 0.001 48 RVRTPHEDF 0.060 60 KFRRHGADN 0.001 58 GVKFRRHGA 0.060 53 HEDFSGVKF 0.001 90 AAAAAAAAR 0.040 6 KERNQLFRT 0.001 55 DFSGVKFRR 0.036 22 VISVPHRPA 0.000 83 TVAAAAAAA 0.020 36 YRTLSSLKY 0.000 24 SVPHRPAEL 0.020 1 MFFFIKERN 0.000 82 TTVAAAAAA 0.015 71 ASAATATTA 0.000 76 ATTAAATTV 0.010 39 LSSLKYPSW 0.000 77 TTAAATTVA 0.010 11 LFRTGPHLS 0.000 81 ATTVAAAAA 0.010 27 HRPAELGAL 0.000 21 GVISVPHRP 0.009 19 SSGVISVPH 0.000 9 NQLFRTGPH 0.009 68 NHEASAATA 0.000 50 RTPHEDPSG 0.009 75 TATTAAATT 0.000 5 IKERNQLFR 0.008 94 AAAARVTLT 0.000 17 HLSSGVISV 0.008 25 VPHRPAELG 0.000 34 ALYRTLSSL 0.008 61 FRRHGADNH 0.000 10 QLFRTGPHL 0.008 14 TGPHLSSGV 0.000 29 PAELGALYR 0.008 66 ADNHEASAA 0.000 41 SLKYPSWRV 0.008 30 AELGALYRT 0.000 40 SSLKYPSWR 0.006 8 RNQLFRTGP 0.000 20 SGVISVPHR 0.006 31 ELGALYRTL 0.000 28 RPAELGALY 0.006 62 RRHGADNHE 0.000 15 GPHLSSGVI 0.006 69 HEASAATAT 0.000 65 GADNHEASA 0.006 70 EASAATATT 0.000 4 FIKERNQLF 0.004 12 FRTGPHLSS 0.000 13 RTGPHLSSG 0.003 2 FFFIKERNQ 0.000 3 FFIKERNQL 0.003 59 VKFRRHGAD 0.000 37 RTLSSLKYP 0.002 26 PHRPAELGA 0.000 52 PHEDFSGVK 0.002 45 PSWRVRTPH 0.000 78 TAAATTVAA 0.002 23 ISVPHRPAE 0.000 51 TPHEDFSGV 0.002 47 WRVRTPHED 0.000 89 AAAAAAAAA 0.002 49 VRTPHEDFS 0.000 84 VAAAAAAAA 0.002 32 LGALYRTLS 0.000 93 AAAAARVTL 0.002 44 YPSWRVRTP 0.000 73 AATATTAAA 0.002 56 FSGVKFRRH 0.000 80 AATTVAAAA 0.002 92 AAAAAARVT 0.000 91 __ AAAAAAARV 0.002 64 HGADNHEAS 0.000 86 AAAAAAAAA 0.002 18 LSSGVISVP 0.000 87 AAAAAAAAA 0.002 46 SWRVRTPHE 0.000 79 AAATTVAAA 0.002 67 DNHEASAAT 0.000 85 AAAAAAAAA 0.002 57 SGVKFRRHG 0.000 72 SAATATTAA 0.002 16 PHLSSGVIS 0.000 88 AAAAAAAAA 0.002 7 ERNQLFRTG 0.000 33 GALYRTLSS 0.002 43 KYPSWRVRT 0.001 54 EDFSGVKFR 0.001 74 ATATTAAAT 0.001 42 LKYPSWRVR 0.001 38 TLSSLKYPS 0.001 160 Table XI: v.5-Al 1-9mers: 162PIE6 Pos 123456789 Score SeqID I AELGALYRK 0.180 17 VMAHTVGPR 0.080 29 RVTDIPTRF 0.060 21 TVGPRQRER 0.040 12 TTPSSVMAH 0.020 25 RQRERVTDI 0.018 37 FQWSEVQEA 0.012 10 GPTTPSSVM 0.006 16 SVMAHTVGP 0.004 28 ERVTDIPTR 0.002 20 HTVGPRQRE 0.002 34 PTRFQWSEV 0.001 11 PTTPSSVMA 0.001 31 TDIPTRFQW 0.001 4 GALYRKGPT 0.001 5 ALYRKGPTT 0.001 36 RFQWSEVQE 0.001 9 KGPTTPSSV 0.001 19 AHTVGPRQR 0.000 33 IPTRFQWSE 0.000 6 LYRKGPTTP 0.000 27 RERVTDIPT 0.000 22 VGPRQRERV 0.000 38 QWSEVOEAW 0.000 13 TPSSVMAHT 0.000 18 MAHTVGPRQ 0.000 32 DIPTRFQWS 0.000 30 VTDIPTRFQ 0.000 8 RKGPTTPSS 0.000 23 GPRQRERVT 0.000 35 TRFQWSEVQ 0.000 15 SSVMAHTVG 0.000 7 YRKGPTTPS 0.000 39 WSEVQEAWS 0.000 14 PSSVMAHTV 0.000 26 QRERVTDIP 0.000 2 E3LGALYRKG 0.000 __ 3 LGALYRKGP 0.000 24 PRQRERVTD 0.000 161 Table XI: v.6-Al 1-9mers: 162PE6 Pos 123456789 Score SeqID 2 RVRTPHEER 1.200 10 RTNHTELSY 0.060 13 HTELSYGTH 0.010 S TPHEERTNH 0.002 4 RTPHEERTN 0.000 8 EERTNHTEL 0.000 15 ELSYGTHSG 0.000 14 TELSYGTHS 0.000 7 HEERTNHTE 0.000 11 TNHTELSYG 0.000 16 LSYGTHSGT 0.000 12 NHTELSYGT 0.000 I WRVRTPHEE 0.000 3 VRTPHEERT 0.000 9 ERTNHTELS 0.000 6 PHEERTNHT 0.000 162 Table XII: v.1-A11-Omers: 162P1E6 Table XII: v.1-AII-1Omers: 162P1E6 Pos 1234567890 Score SeqiD Pos 1234567890 Score SeqID 103 QAQSSWIFLK 0.600 72 GKRGCKVLFV 0.001 68 GFHIGKRGCK 0.600 23 RLSFLDKSLG 0.001 93 HAPAFQGLGK 0.400 137 TQWDLDKGRG 0.001 117 TCFFFVSSRK 0.400 53 SQELWFFLSS 0.001 20 GHWRLSFLDK 0.240 40 LLCPPTPMNG 0.001 116 NTCFFFVSSR 0.200 133 QLWHTQWDLD 0.001 81 VLFGQCLVER 0.160 24 LSFLDKSLGV 0.001 136 HTQWDLDKGR 0.100 108 WIFLKQLQNT 0.001 112 KQLQNTCFFF 0.081 125 RKDQPHRAQL 0.001 14 ILGRMWGHWR 0.080 62 SSPISSGFHI 0.001 64 PISSGFHIGK 0.080 97 FQGLGKQAQS 0.001 32 GVRTRSLTLL 0.060 86 CLVERNAHAP 0.001 25 SFLDKSLGVR 0.060 39 TLLCPPTPMN 0.001 17 RMWGHWRLSF 0.048 126 KDQPHRAQLW 0.001 134 LWHTQWDLDK 0.040 31 LGVRTRSLTL 0.001 102 KQAQSSWIFL 0.036 58 FFLSSSPISS 0.001 6 IVESFSRHIL 0.020 74 RGCKVLFVLF 0.001 87 LVERNAHAPA 0.020 131 RAQLWHTQWD 0.001 121 FVSSRKDQPH 0.020 88 VERNAHAPAF 0.001 132 AQLWHTQWDL 0.018 27 LDKSLGVRTR 0.000 84 GQCLVERNAH 0.018 47 MNGPGSSQEL 0.000 38 LTLLCPPTPM 0.015 57 WFFLSSSPIS 0.000 3 NKEIVESFSR 0.012 26 FLDKSLGVRT 0.000 49 GPGSSQELWF 0.012 30 SLGVRTRSLT 0.000 99 GLGKQAQSSW 0.012 37 SLTLLCPPTP 0.000 113 QLQNTCFFFV 0.012 59 FLSSSPISSG 0.000 I MTNKEIVESF 0.010 128 QPHRAQLWHT 0.000 77 KVLFVLFGQC 0.009 45 TPMNGPGSSQ 0.000 78 VLFVLFGQCL 0.008 56 LWFFLSSSPI 0.000 80 FVLFGQCLVE 0.006 15 LGRMWGHWRL 0.000 34 RTRSLTLLCP 0.006 90 RNAHAPAFQG 0.000 13 HILGRMWGHW 0.006 120 FFVSSRKDQP 0.000 8 ESFSRHILGR 0.005 109 IFLKQLQNTC 0.000 122 VSSRKDQPHR 0.004 69 FHIGKRGCKV 0.000 110 FLKQLQNTCF 0.004 63 SPISSGFHIG 0.000 65 ISSGFHIGKR 0.004 55 ELWFFLSSSP 0.000 127 DQPHRAQLWH 0.004 96 AFQGLGKQAQ 0.000 79 LFVLFGQCLV 0.003 48 NGPGSSQELW 0.000 85 QCLVERNAHA 0.003 111 LKQLQNTCFF 0.000 4 KEIVESFSRH 0.003 123 SSRKDQPHRA 0.000 9 SFSRHILGRM 0.002 100 LGKQAQSSWI 0.000 70 HIGKRGCKVL 0.002 42 CPPTPMNGPG 0.000 91 NAHAPAFQGL 0.002 94 APAFQGLGKQ 0.000 12 RHILGRMWGH 0.002 119 FFFVSSRKDQ 0.000 51 GSSQELWFFL 0.002 41 LCPPTPMNGP 0.000 73 KRGCKVLFVL 0.002 130 HRAQLWHTQW 0.000 114 LQNTCFFFVS 0.002 82 LFGQCLVERN 0.000 75 GCKVLFVLFG 0.001 60 LSSSPISSGF 0.000 104 AQSSWIFLKQ 0.001 61 SSSPISSGFH 0.000 101 GKQAQSSWIF 0.001 71 IGKRGCKVLF 0.000 163 Table XII: v.3-Al 1-10mers: 162P1E6 Table XII: v.3-Al l-10mers: 162P1E6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 6 SLLLTLDLEK 1.200 47 FTPSPSIPLS 0.001 20 LLSVTNLYSK 0.800 98 QTGLELLSLS 0.001 116 SVGITGVSHR 0.400 22 SVTNLYSKNS 0.001 57 SAYFFFFSDR 0.080 15 KPVSLLLSVT 0.001 62 FFSDRVSLCR 0.080 79 QSWAHCSLNL 0.001 121 GVSHRIRPHV 0.060 124 HRIRPHVLFH 0.001 118 GITGVSHRIR 0.024 73 GRSAVAQSWA 0.001 95 HVAQTGLELL 0.020 7 LLLTLDLEKP 0.001 36 TILQTLSFPA 0.018 78 AQSWAHCSLN 0.001 97 AQTGLELLSL 0.012 114 SQSVGITGVS 0.001 32 AQFSTILQTL 0.012 94 HHVAQTGLEL 0.001 23 VTNLYSKNSA 0.010 71 RPGRSAVAQS 0.001 53 IPLSSAYFFF 0.009 105 SLSNPPASAS 0.000 52 SIPLSSAYFF 0.008 48 TPSPSIPLSS 0.000 58 AYFFFFSDRV 0.008 26 LYSKNSAQFS 0.000 25 NLYSKNSAQP 0.008 37 ILQTLSFPAT 0.000 38 LQTLSFPATF 0.006 31 SAQFSTILOT 0.000 66 RVSLCRPGRS 0.006 103 LLSLSNPPAS 0.000 18 SLLLSVTNLY 0.006 81 WAHCSLNLPE 0.000 92 GFHHVAQTGL 0.006 96 VAQTGLELLS 0.000 60 FFFFSDRVSL 0.004 112 SASQSVGITG 0.000 68 SLCRPGRSAV 0.004 34 FSTILQTLSF 0.000 85 SLNLPEAGFH 0.004 61 FFFSDRVSLC 0.000 10 TLDLEKPVSL 0.004 17 VSLLLSVTNL 0.000 46 TFTPSPSIPL 0.004 84 CSLNLPEAGF 0.000 87 NLPEAGFHHV 0.004 104 LSLSNPPASA 0.000 12 DLEKPVSLLL 0.002 11 LDLEKPVSLL 0.000 8 LLTLDLEKPV 0.002 117 VGITGVSHRI 0.000 108 NPPASASQSV 0.002 75 SAVAQSWAHC 0.000 119 ITGVSHRIRP 0.002 - 115 QSVGITGVSH 0.000 45 ATFTPSPSIP 0.002 42 SFPATFTPSP 0.000 69 LCRPGRSAVA 0.002 28 SKNSAQFSTI 0.000 50 SPSIPLSSAY 0.002 33 QFSTILQTLS 0.000 77 VAQSWAHCSL 0.002 16 PVSLLLSVTN 0.000 88 LPEAGFHHVA 0.002 82 AHCSLNLPEA 0.000 76 AVAQSWAHCS 0.002 123 SHRIRPHVLF 0.000 86 LNLPEAGFHH 0.002 83 HCSLNLPEAG 0.000 65 DRVSLCRPGR 0.002 44 PATFTPSPSI 0.000 102 ELLSLSNPPA 0.002 113 ASQSVGITGV 0.000 35 STILQTLSFP 0.002 110 PASASQSVGI 0.000 39 QTLSFPATFT 0.002 122 VSHRIRPHVL 0.000 9 LTLDLEKPVS 0.002 43 FPATFTPSPS 0.000 74 RSAVAQSWAH 0.001 3 WAESLLLTLD 0.000 19 LLLSVTNLYS 0.001 13 LEKPVSLLLS 0.000 29 KNSAQFSTIL 0.001 14 EKPVSLLLSV 0.000 100 GLELLSLSNP 0.001 101 LELLSLSNPP 0.000 2 KWAESLLLTL 0.001 1 LKWAESLLLT 0.000 40 TLSFPATFTP 0.001 56 SSAYFFFFSD 0.000 54 PLSSAYFFFF 0.001 27 YSKNSAQFST 0.000 4 AESLLLTLDL 0.001 24 TNLYSKNSAQ 0.000 164 Table XII: v.4-Al l-10mers: 162P1E6 Table XII: v.4-Al 1-1 Omers: 162PIE6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 34 ALYRTLSSLK 0.800 70 EASAATATTA 0.001 28 RPAELGALYR 0.240 22 VISVPHRPAE 0.000 51 TPHEDFSGVK 0.200 17 HLSSGVISVP 0.000 4 FIKERNQLFR 0.160 11 LFRTGPHLSS 0.000 89 AAAAAAAAAR 0.040 57 SGVKFRRHGA 0.000 13 RTGPHLSSGV 0.030 47 WRVRTPHEDF 0.000 50 RTPHEDFSGV 0.030 23 ISVPHRPAEL 0.000 83 TVAAAAAAAA 0.020 71 ASAATATTAA 0.000 82 TTVAAAAAAA 0.015 27 HRPAELGALY 0.000 81 ATTVAAAAAA 0.010 73 AATATTAAAT 0.000 76 ATTAAATTVA 0.010 14 TGPHLSSGVI 0.000 77 TTAAATTVAA 0.010 93 AAAAARVTLT 0.000 9 NQLFRTGPHL 0.009 18 LSSGVISVPH 0.000 37 RTLSSLKYPS 0.009 64 HGADNHEASA 0.000 21 GVISVPHRPA 0.009 43 KYPSWRVRTP 0.000 33 GALYRTLSSL 0.009 31 ELGALYRTLS 0.000 41 SLKYPSWRVR 0.008 67 DNHEASAATA 0.000 35 LYRTLSSLKY 0.008 30 AELGALYRTL 0.000 54 EDFSGVKFRR 0.007 16 PHLSSGVISV 0.000 58 GVKFRRHGAD 0.006 49 VRTPHEDFSG 0.000 48 RVRTPHEDFS 0.006 5 IKERNQLFRT 0.000 65 GADNHEASAA 0.006 63 RHGADNHEAS 0.000 60 KFRRHGADNH 0.006 55 DFSGVKFRRH 0.000 53 HEDFSGVKFR 0.006 69 HEASAATATT 0.000 25 VPHRPAELGA 0.004 42 LKYPSWRVRT 0.000 38 TLSSLKYPSW 0.004 59 VKFRRHGADN 0.000 2 FFFIKERNQL 0.004 29 PAELGALYRT 0.000 19 SSGVISVPHR 0.004 32 LGALYRTLSS 0.000 39 LSSLKYPSWR 0.004 1 MFFFIKERNQ 0.000 3 FFIKERNQLF 0.003 20 SGVISVPHRP 0.000 92 AAAAAARVTL 0.002 68 NHEASAATAT 0.000 85 AAAAAAAAAA 0.002 66 ADNHEASAAT 0.000 78 TAAATTVAAA 0.002 26 PHRPAELGAL 0.000 87 AAAAAAAAAA 0.002 91 AAAAAAARVT 0.000 75 TATTAAATTV 0.002 46 SWRVRTPHED 0.000 80 AATTVAAAAA 0.002 52 PHEDFSGVKCF 0.000 44 YPSWRVRTPH 0.002 12 FRTGPHLSSG 0.000 72 SAATATTAAA 0.002 61 FRRHGADNHE 0.000 79 AAATTVAAAA 0.002 6 KERNQLFRTG 0.000 90 AAAAAAAARV 0.002 36 YRTLSSLKYP 0.000 84 VAAAAAAAAA 0.002 7 ERNQLFRTGP 0.000 86 AAAAAAAAAA 0.002 45 PSWRVRTPHE 0.000 88 AAAAAAAAAA 0.002 56 FSGVKFRRHG 0.000 24 SVPHRPAELG 0.002 8 RNQLFRTGPH 0.001 74 ATATTAAATT 0.001 10 QLFRTGPHLS 0.001 62 RRHGADNHEA 0.001 15 GPHLSSGVIS 0.001 40 SSLKYPSWRV 0.001 165 Table XII: v.5-All-10mers: 162P1E6 Pos 1234567890 Score SeqID 17 SVMAHTVGPR 0.800 1 PAELGALYRK 0.040 28 RERVTDIPTR 0.036 21 HTVGPRQRER 0.030 31 VTDIPTRFQW 0.030 22 TVGPRQRERV 0.020 38 FQWSEVQEAW 0.012 11 GPTTPSSVMA 0.006 37 RFQWSEVQEA 0.006 19 MAHTVGPRQR 0.004 34 IPTRFQWSEV 0.002 14 TPSSVMARTV 0.002 12 PTTPSSVMAH 0.002 26 RQRERVTDIP 0.002 13 TTPSSVMAHT 0.001 5 GALYRKGPTT 0.001 6 ALYRKGPTTP 0.001 30 RVTDIPTRFQ 0.001 9 RKGPTTPSSV 0.001 24 GPRQRERVTD 0.001 10 KGPTTPSSVM 0.001 18 VMAHTVGPRQ 0.000 7 LYRKGPTTPS 0.000 33 DIPTRFQWSE 0.000 35 PTRFQWSEVQ 0.000 29 ERVTDIPTRF 0.000 3 ELGALYRKGP 0.000 36 TRFQWSEVQE 0.000 27 QRERVTDIPT 0.000 32 TDIPTRFQWS 0.000 16 SSVMAHTVGP 0.000 4 LGALYRKGPT 0.000 8 YRKGPTTPSS 0.000 25 PRQRERVTDI 0.000 20 P.HTVGPRQRE 0.000 39 QWSEVQEAWS 0.000 2 AELGALYRKG 0.000 15 PSSVMAHTVG 0.000 23 VGPRQRERVT 0.000 166 Table Xli: v.6-Al 1-l0mers: 162P1E6 Pos 1234567890 Score SeqID 5 RTPHeERTNH 0.030 2 WRVRtPHEER 0.006 3 RVRTpHEERT 0.006 I I RTNI~tELSYG 0.003 14 1HT1ELsYGTHS 0.001 8 REERtNHTEL 0.001 13 NHTE1SYGTH 0.000 6 TPHEeRTNIIT 0.000 16 ELSYgTHSGT 0.000 10 ERTNhTELSY 0.000 15 TELSyGTHSG 0.000 12 TNHTeLSYGT 0.000 1 StWRVrTPHEE 0.000 __ 9 EERTnHTELS 0.000 __ 4 VRTPhEERTN 0.000 __ 7 PHEErTNHTE 0.000 167 Table XIII: v.1-A24-9mers: 162P1E6 Table XIII: v.1-A24-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 79 LFVLFGQCL 36.000 80 FVLFGQCLV 0.150 74 RGCKVLFVL 11.200 45 TPMNGPGSS 0.150 23 RLSFLDKSL 9.600 31 LGVRTRSLT 0.150 52 SSQELWFFL 8.640 101 GKQAQSSWI 0.150 48 NGPGSSQEL 7.920 78 VLFVLFGQC 0.144 103 QAQSSWIFL 6.000 110 FLKQLQNTC 0.144 112 KQLQNTCFF 6.000 84 GQCLVERNA 0.140 57 WFFLSSSPI 5.000 115 QNTCFFFVS 0.120 133 QLWHTQWDL 4.000 116 NTCFFFVSS 0.120 71 IGKRGCKVL 4.000 37 SLTLLCPPT 0.120 106 SSWIFLKQL 4.000 99 GLGKQAQSS 0.120 19 WGHWRLSFL 4.000 40 LLCPPTPMN 0.120 30 SLGVRTRSL 4.000 70 HIGKRGCKV 0.110 32 GVRTRSLTL 4.000 108 WIFLKQLQN 0.100 102 KQAQSSWIF 4.000 55 ELWFFLSSS 0.100 61 SSSPISSGF 3.360 59 FLSSSPISS 0.100 2 TNKEIVESF 3.360 100 LGKQAQSSW 0.100 113 QLQNTCFFF 3.000 49 GPGSSOELW 0.100 75 GCKVLFVLF 2.880 14 ILGRMWGHW 0.100 18 MWGHWRLSF 2.000 120 FFVSSRKDQ 0.075 51 GSSQELWFF 2.000 118 CFFFVSSRK 0.070 6 IVESFSRHI 1.500 82 LFGQCLVER 0.055 63 SPISSGFHI 1.500 119 FFFVSSRKD 0.055 126 KDQPHRAQL 1.440 9 SFSRHILGR 0.050 25 SFLDKSLGV 0.900 77 KVLFVLFGQ 0.042 109 IFLKQLONT 0.900 36 RSLTLLCPP 0.036 96 AFQGLGKQA 0.900 5 EIVESFSRH 0.022 58 FFLSSSPIS 0.750 107 SWIFLKQLQ 0.022 39 TLLCPPTPM 0.750 3 NKEIVESFS 0.021 10 FSRHILGRM 0.700 90 RNAHAPAFQ 0.020 92 AHAPAFQGL 0.691 73 KRGCKVLFV 0.020 16 GRMWGHWRL 0.600 105 QSSWIFLKQ 0.018 68 GFHIGKRGC 0.500 54 QVLWFFLSS 0.018 29 KSLGVRTRS 0.420 132 AQLWRTQWD 0.018 33 VRTRSLTLL 0.400 85 QCLVERNAH 0.018 7 VESFSRHIL 0.400 41 LCPPTPMNG 0.018 111 LKQLQNTCF 0.300 42 CPPTPMNGP 0.018 89 ERNAHAPAF 0.300 22 WRLSFLDKS 0.017 131 RAQLWHTQW 0.300 136 HTQWDLDKG 0.017 34 RTRSLTLLC 0.240 87 LVERNAHAP 0.015 50 PGSSQELWF 0.200 44 PTPMNGPGS 0.015 17 RMWGHWRLS 0.200 93 HAPAFQGLG 0.015 72 GKRGCKVLF 0.200 62 SSPISSGFH 0.015 53 SQELWFFLS 0.180 13 HILGRMWGH 0.015 127 DQPHRAQLW 0.180 38 LTLLCPPTP 0.015 83 FGQCLVERN 0.180 137 TQWDLDKGR 0.014 86 CLVERNAHA 0.180 67 SGFHIGKRG 0.014 114 LQNTCFFFV 0.180 47 MNGPGSSQE 0.012 1 MTNKEIVES 0.165 122 VSSRKDQPH 0.012 98 QGLGKQAQS 0.150 97 FQGLGKQAQ 0.012 168 Table XIII: v.3-A24-9mers: 162P1E6 Table XIII: v.3-A24-9mers: 162PIE6 Pos 123456789 Score SeqID Pos 123456789 Score SeqD 26 LYSKNSAQF 100.000 108 NPPASASQS 0.150 33 QFSTILQTL 33.600 67 VSLCRPGRS 0.150 61 FFFSDRVSL 20.000 23 VTNLYSKNS 0.150 3 WAESLLLTL 7.200 . 77 VAQSWAHCS 0.150 5 ESLLLTLDL 7.200 122 VSHRIRPHV 0.140 47 FTPSPSIPL 6.000 22 SVTNLYSKN 0.132 12 DLEKPVSLL 6.000 48 TPSPSIPLS 0.120 96 VAQTGLELL 6.000 56 SSAYFFFFS 0.120 18 SLLLSVTNL 6.000 97 AQTGLELLS 0.120 95 HVAQTGLEL 4.400 27 YSKNSAQFS 0.120 80 SWAHCSLNL 4.000 69 LCRPGRSAV 0.120 30 NSAQFSTIL 4.000 38 LQTLSFPAT 0.120 98 QTGLELLSL 4.000 34 FSTILQTLS 0.120 78 AQSWAHCSL 4.000 83 HCSLNLPEA 0.110 53 IPLSSAYFF 3.000 76 AVAQSWAHC 0.100 85 SLNLPEAGF 3.000 32 AQFSTILQT 0.100 39 QTLSFPATF 3.000 40 TLSFPATFT 0.100 35 STILQTLSF 3.000 50 SPSIPLSSA 0.100 52 SIPLSSAYF 3.000 91 AGFHHVAQT 0.100 29 KNSAQFSTI 2.400 112 SASQSVGIT 0.100 55 LSSAYFFFF 2.400 105 SLSNPPASA 0.100 118 GITGVSHRI 1.400 103 LLSLSNPPA 0.100 111 ASASQSVGI 1.000 114 SQSVGITGV 0.100 45 ATFTPSPSI 1.000 79 QSWAHCSLN 0.100 42 SFPATPTPS 0.900 68 SLCRPGRSA 0.100 11 LDLEKPVSL 0.720 20 LLSVTNLYS 0.100 13 LEKPVSLLL 0.672 10 TLDLEKPVS 0.100 58 AYFFFFSDR 0.600 92 GFHHVAQTG 0.084 62 FFSDRVSLC 0.600 46 TFTPSPSIP 0.060 59 YFFFFSDRV 0.500 125 RIRPHVLFH 0.024 60 FFFFSDRVS 0.500 51 PSIPLSSAY 0.022 1 LKWAESLLL 0.400 102 ELLSLSNPP 0.022 93 FHHVAQTGL 0.400 49 PSPSIPLSS 0.021 123 SHRIRPHVL 0.400 113 ASQSVGITG 0.021 15 KPVSLLLSV 0.360 66 RVSLCRPGR 0.020 124 HRIRPHVLF 0.300 71 RPGRSAVAQ 0.020 19 LLLSVTNLY 0.252 7 LLLTLDLEK 0.020 2 KWAESLLLT 0.240 87 NLPEAGFHH 0.018 9 LTLDLEKPV 0.216 86 LNLPEAGFH 0.018 99 TGLELLSLS 0.216 107 SNPPASASQ 0.018 115 QSVGITGVS 0.210 84 CSLNLPEAG 0.018 74 RSAVAQSWA 0.200 73 GRSAVAQSW 0.017 54 PLSSAYFFF 0.200 75 SAVAQSWAH 0.015 37 ILQTLSFPA 0.180 70 CRPGRSAVA 0.015 106 LSNPPASAS 0.180 28 SKNSAQFST 0.015 100 GLELLSLSN 0.180 117 VGITGVSHR 0.015 88 LPEAGFHHV 0.180 6 SLLLTLDLE 0.015 17 VSLLLSVTN 0.180 120 TGVSHRIRP 0.015 24 TNLYSKNSA 0.180 31 SAQFSTILQ 0.015 104 LSLSNPPAS 0.150 36 TILQTLSFP 0.015 169 Table XIII: v.4-A24-9mers: 162P1E6 Table XI: v.4-A24-9mer: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqlD 3 FFIKERNQL 36.000 76 ATTAAATTV 0.100 43 KYPSWRVRT 15.000 71 ASAATATTA 0.100 24 SVPHRPAEL 6.600 84 VAAAAAAAA 0.100 31 ELGALYRTL 4.800 55 DFSGVKFRR 0.070 48 RVRTPHEDF 4.000 2 FFFIKERNQ 0.050 34 ALYRTLSSL 4.000 37 RTLSSLKYP 0.030 10 QLFRTGPHL 4.000 50 RTPHEDFSG 0.030 93 AAAAARVTL 4.000 8 RNQLFRTGP 0.030 4 FIKERNQLF 2.880 13 RTGPHLSSG 0.024 15 GPHLSSGVI 1.000 63 RHGADNHEA 0.022 60 KFRRHGADN 1.000 21 GVISVPHRP 0.021 1 MFFFIKERN 0.700 6 KERNQLFRT 0.020 35 LYRTLSSLK 0.600 23 ISVPHRPAE 0.018 27 HRPAELGAL 0.600 20 SGVISVPHR 0.015 11 LFRTGPHLS 0.500 40 SSLKYPSWR 0.015 28 RPAELGALY 0.288 68 NHEASAATA 0.015 53 HEDFSGVKF 0.220 30 AELGALYRT 0.015 14 TGPHLSSGV 0.180 66 ADNHEASAA 0.015 82 TTVAAAAAA 0.150 9 NQLFRTGPH 0.015 33 GALYRTLSS 0.150 57 SGVKFRRHG 0.015 51 TPHEDFSGV 0.144 19 SSGVISVPH 0.014 80 AATTVAAAA 0.140 18 LSSGVISVP 0.014 38 TLSSLKYPS 0.120 56 FSGVKFRRH 0.012 64 HGADNHEAS 0.120 49 VRTPHEDFS 0.012 67 DNHEASAAT 0.120 36 YRTLSSLKY 0.011 32 LGALYRTLS 0.100 90 AAAAAAAAR 0.010 22 VISVPHRPA 0.100 44 YPSWRVRTP 0.010 78 TAAATTVAA 0.100 12 FRTGPHLSS 0.010 70 EASAATATT 0.100 69 HEASAATAT 0.010 75 __ TATAAATT 0.100 25 VPHRPAELG 0.010 85_ AAAAAAAAA 0.100 46 SWRVRTPHE 0.010 94 AAAARVTLT 0.100 62 RRHGADNHE 0.002 87 AAAAAAAAA 0.100 7 ERNQLFRTG 0.002 41 SLKYPSWRV 0.100 47 WRVRTPHED 0.002 39 LSSLKYPSW 0.100 29 PAELGALYR 0.002 73 AATATIAAA 0.100 16 PHLSSGVIS 0.002 92 AAAAAARVT 0.100 5 IKERNQLFR 0.002 72 SAATATTAA 0.100 45 PSWRVRTPH 0.001 89 AAAAAAAAA 0.100 26 PHRPAELGA 0.001 65 GADNHEASA 0.100 42 LKYPSWRVR 0.001 58 GVKFRRHGA 0.100 59 VKFRRHGAD 0.001 17 HLSSGVISV 0.100 61 FRRHGADNH 0.001 88 AAAAAAAAA 0.100 54 EDFSGVKFR 0.001 81 ATTVAAAAA 0.100 52 PHEDFSGVK 0.000 91 AAAAAAARV 0.100 79 AAATTVAAA 0.100 74 ATATTAAAT 0.100 86 AAAAAAAAA 0.100 77 TTAAATTVA 0.100 ____ 83 TVAAAAAAA 0.100 170 Table XIII: v.5-A24-9mers: 162P1E6 Pos 123456789 Score SeqID 29 RVTDIPTRF 6.720 25 RQRERVTDI 2.400 10 GPTTPSSVM 0.500 6 LYRKGPTTP 0.500 9 KGPTTPSSV 0.300 32 DIPTRFQWS 0.216 38 QWSEVQEAW 0.168 36 RFQWSEVQE 0.150 39 WSEVQEAWS 0.150 22 VGPRQRERV 0.150 4 GALYRKGPT 0.150 13 TPSSVMAHT 0.140 37 FQWSEVQEA 0.132 5 ALYRKGPTT 0.100 23 GPRQRERVT 0.100 8 RKGPTTPSS 0.024 27 RERVTDIPT 0.020 31 TDIPTRFQW 0.018 20 HTVGPRQRE 0.018 12 TTPSSVMAH 0.015 16 SVMAHTVGP 0.015 15 SSVMAHTVG 0.015 18 MAHTVGPRQ 0.014 2 ELGALYRKG 0.013 21 TVGPRQRER 0.013 11 PTTPSSVMA 0.012 34 PTRFQWSEV 0.011 14 PSSVMAHTV 0.010 33 IPTRFQWSE 0.010 30 VTDIPTRFQ 0.010 17 VMAHTVGPR 0.010 3 LGALYRKGP 0.010 7 YRKGPTTPS 0.010 26 QRERVTDIP 0.002 I AELGALYRK 0.002 28 ERVTDIPTR 0.002 19 AHTVGPRQR 0.001 35 TRFQWSEVQ 0.001 24 PRQRERVTD 0.000 171 TableXlf: v.6-A24 9mers_______________ Pos 123456789 Score Seq.11 8 EERTNHTEL 0.440 10 RTNHTELSY 0.300 4 RTPH1ERTN 0.300 __ 16 LSYGTHSGT 0.100 2 RVRTPHEER 0.022 13 HTELSYGTH 0.015 14 TELSYGTHS 0.015 12 NHTLSYGT 0.014 5 __ TPHEERTNH 0.012 3 __ VRTPHEERT 0.012 9 __ RTNHTELS 0.010 11 TNHTELSYG 0.010 15 ELSYGTHSG 0.010 6 __ PHEERTNHT 0.002 1 WRVRTPMEE 0.002 7 REERTNHTE 0.002 __ 172 Table XIV: v.1-A24-.10m ers: 162P1E6 Table XIV: v.1-A24- L0 ners: 162PIE6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 29 KSLGVRTRSL 12.000 13 HILGRMWGHW 0.150 102 KQAQSSWIFL 8.000 39 TLLCPPTPMN 0.150 47 MNGPGSSQEL 6.336 87 LVERNAHAPA 0.150 6 IVESFSRHIL 6.000 107 SWIFLKQLQN 0.150 112 KQLQNTCFFF 6.000 48 NGPGSSQELW 0.150 132 AQLWHTQWDL 6.000 108 WIFLKQLQNT 0.120 31 LGVRTRSLTL 6.000 26 FLDKSLGVRT 0.120 91 NAHAPAFQGL 5.760 115 QNTCFFFVSS 0.120 74 RGCKVLFVLF 5.760 10 FSRHILGRMW 0.120 78 VLFVLFGQCL 4.800 21 HWRLSFLDKS 0.110 51 GSSQELWFFL 4.800 67 SGFHIGKRGC 0.100 1 MTNKEIVESF 4.200 24 LSFLDKSLGV 0.100 32 GVRTRSLTLL 4.000 128 QPHRAQLWHT 0.100 70 HIGKRGCKVL 4.000 97 FQGLGKQAQS 0.100 15 LGRMWGHWRL 4.000 99 GLGKQAQSSW 0.100 105 QSSWIFLKQL 4.000 123 SSRKDQPHRA 0.100 17 RMWGHWRLSF 4.000 30 SLGVRTRSLT 0.100 18 MWGHWRLSFL 4.000 96 AFQGLGKQAQ 0.090 9 SFSRHILGRM 3.500 25 SFLDKSLGVR 0.090 60 LSSSPISSGF 2.800 120 FFVSSRKDQP 0.075 49 GPGSSQELWF 2.000 118 CFFFVSSRKD 0.055 71 IGKRGCKVLF 2.000 119 FFFVSSRKDQ 0.050 110 FLKQLQNTCF 2.000 68 GFHIGKRGCK 0.050 5 EIVESFSRHI 1.800 126 KDQPHRAQLW 0.043 62 SSPISSGFHI 1.500 131 RAQLWHTQWD 0.036 73 KRGCKVLFVL 1.120 41 LCPPTPMNGP 0.022 109 IFLKQLQNTC 1.080 90 RNAHAPAFQG 0.020 100 LGKQAQSSWI 1.000 34 RTRSLTLLCP 0.020 56 LWFFLSSSPI 1.000 23 RLSFLDKSLG 0.020 125 RKDQPHRAQL 0.800 104 AQSSWIFLKQ 0.018 58 FFLSSSPISS 0.750 136 HTQWDLDKGR 0.018 38 LTLLCPPTPM 0.750 86 CLVERNAHAP 0.018 79 LFVLFGQCLV 0.750 63 SPISSGFHIG 0.018 22 WRLSFLDKSL 0.720 69 FHIGKRGCKV 0.017 82 LFGQCLVERN 0.600 42 CPPTPMNGPG 0.015 57 WFFLSSSPIS 0.500 44 PTPMNGPGSS 0.015 77 KVLFVLFGQC 0.432 80 FVLFGQCLVE 0.015 36 RSLTLLCPPT 0.360 16 GRMWGHWRLS 0.015 101 GKQAQSSWIF 0.300 45 TPMNGPGSSQ 0.015 111 LKQLQNTCFF 0.300 103 QAQSSWIFLK 0.015 52 SSQELWFFLS 0.216 54 QELWFFLSSS 0.015 83 FGQCLVERNA 0.210 127 DQPHRAQLWH 0.015 50 PGSSQELWFF 0.200 93 HAPAFQGLGK 0.015 88 VERNAHAPAF 0.200 106 SSWIFLKQLQ 0.014 114 LQNTCFFFVS 0.180 66 SSGFHIGKRG 0.014 53 SQELWFFLSS 0.180 28 DKSLGVRTRS 0.014 98 QGLGKQAQSS 0.180 117 TCFFFVSSRK 0.014 113 QLQNTCFFFV 0.180 95 PAFQGLGKQA 0.012 2 TNKEIVESFS 0.168 61 SSSPISSGFH 0.012 85 QCLVERNAHA 0.150 84 GQCLVERNAH 0.012 173 Table XIV: v.3-A24-10mers: 162PIE6 Table XIV: v.3-A24-10mers: 162P1E6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 46 TFTPSPSIPL 24.000 31 SAQFSTILQT 0.150 92 GFHHVAQTGL 20.000 88 LPEAGFHHVA 0.150 60 FFFFSDRVSL 20.000 75 SAVAQSWAHC 0.150 2 KWAESLLLTL 11.520 19 LLLSVTNLYS 0.150 12 DLEKPVSLLL 8.400 102 ELLSLSNPPA 0.150 29 KNSAQFSTIL 8.000 67 VSLCRPGRSA 0.150 32 AQFSTILQTL 6.720 113 ASQSVGITGV 0.150 77 VAQSWAHCSL 6.000 104 LSLSNPPASA 0.150 26 LYSKNSAQFS 6.000 41 LSFPATFTPS 0.144 17 VSLLLSVTNL 6.000 114 SQSVGITGVS 0.140 58 AYFFFFSDRV 5.000 121 GVSHRIRPHV 0.140 10 TLDLEKPVSL 4.000 55 LSSAYFFFFS 0.120 79 QSWAHCSLNL 4.000 50 SPSIPLSSAY 0.120 97 AQTGLELLSL 4.000 69 LCRPGRSAVA 0.120 122 VSHRIRPHVL 4.000 8 LLTLDLEKPV 0.120 95 HVAQTGLELL 4.000 98 QTGLELLSLS 0.120 53 IPLSSAYFFF 3.000 76 AVAQSWAHCS 0.100 52 SIPLSSAYFF 3.000 90 EAGFHHVAQT 0.100 84 CSLNLPEAGF 3.000 44 PATFTPSPSI 0.100 117 VGITGVSHRI 2.100 78 AQSWAHCSLN 0.100 25 NLYSKNSAQF 2.000 105 SLSNPPASAS 0.100 34 FSTILQTLSF 2.000 103 LLSLSNPPAS 0.100 38 LQTLSFPATF 2.000 111 ASASQSVGIT 0.100 11 LDLEKPVSLL 0.720 68 SLCRPGRSAV 0.100 94 HHVAQTGLEL 0.660 27 YSKNSAQFST 0.100 33 QFSTILQTLS 0.600 110 PASASQSVGI 0.100 59 YFFFFSDRVS 0.500 43 FPATFTPSPS 0.100 61 PFFSDRVSLC 0.500 22 SVTNLYSKNS 0.100 4 AESLLLTLDL 0.480 62 FFSDRVSLCR 0.084 51 PSIPLSSAYF 0.360 42 SFPATFTPSP 0.075 is_ KPVSLLLSVT 0.360 74 RSAVAQSWAH 0.020 18 SLLLSVTNLY 0.252 6 SLLLTLDLEK 0.020 54 PLSSAYFFFF 0.240 14 EKPVSLLLSV 0.018 99 TGLELLSLSN 0.216 3 WAESLLLTLD 0.018 87 NLPEAGFHHV 0.216 106 LSNPPASASQ 0.018 123 SHRIRPHVLF 0.200 86 LNLPEAGFHH 0.018 71 RPGRSAVAQS 0.200 91 AGFHHVAQTG 0.017 66 RVSLCRPGRS 0.200 72 PGRSAVAQSW 0.017 21 LSVTNLYSKN 0.198 7 LLLTLDLEKP 0.017 28 SKNSAQFSTI 0.180 49 PSPSIPLSSA 0.015 107 SNPPASASQS 0.180 115 OSVGITGVSH 0.015 9 LTLDLEKPVS 0.180 85 SLNLPEAGFH 0.015 37 ILQTLSFPAT 0.180 120 TGVSHRIRPH 0.015 108 NPPASASQSV 0.180 24 TNLYSKNSAQ 0.015 23 VTNLYSKNSA 0.180 35 STILQTLSFP 0.015 36 TILQTLSFPA 0.180 100 GLELLSLSNP 0.015 96 VAQTGLELLS 0.180 5 ESLLLTLDLE 0.015 48 TPSPSIPLSS 0.168 112 SASQSVGITG 0.014 39 QTLSFPATFT 0.150 83 HCSLNLPEAG 0.012 47 FTPSPSIPLS 0.150 81 WAHCSLNLPE 0.012 174 Table XIV: v.4-A24-1Omers: 162PIE6 Table XIV: v.4-A24- 10mers: 162PIE6 Pos 1234567890 Score SeqD Pos 1234567890 Score SeqID 2 FFFIKERNQL 24.000 90 AAAAAAAARV 0.100 3 FFIKERNQLF 18.000 55 DFSGVKFRRH 0.060 23 ISVPHRPAEL 7.920 1 MFFIKERNQ 0.050 9 NQLFRTGPHL 6.000 26 PHRPAELGAL 0.048 33 GALYRTLSSL 6.000 52 PHEDFSGVKF 0.040 35 LYRTLSSLKY 5.500 8 RNQLFRTGPH 0.030 92 AAAAAARVTL 4.000 28 RPAELGALYR 0.024 14 TGPHLSSGVI 1.500 62 RRHGADNHEA 0.022 43 KYPSWRVRTP 1.500 20 SGVISVPHRP 0.021 30 AELGALYRTL 0.720 63 RHGADNHEAS 0.020 11 LFRTGPHLSS 0.500 27 HRPAELGALY 0.018 37 RTLSSLKYPS 0.360 66 ADNHEASAAT 0.015 50 RTPHEDFSGV 0.360 5 IKERNQLFRT 0.015 47 WRVRTPHEDF 0.300 24 SVPHPPAELG 0.015 13 RTGPHLSSGV 0.288 29 PAELGALYRT 0.015 48 RVRTPHEDFS 0.200 68 NHEASAATAT 0.015 82 TTVAAAAAAA 0.150 18 LSSGVISVPH 0.014 21 GVISVPHRPA 0.150 44 YPSWRVRTPH 0.014 40 SSLKYPSWRV 0.150 17 HLSSGVISVP 0.014 57 SGVKFRRHGA 0.150 51 TPHEDFSGVK 0.012 79 AAATTVAAAA 0.140 34 ALYRTLSSLK 0.012 64 HGADNHEASA 0.120 4 FIKERNQLFR 0.012 67 DNHEASAATA 0.120 42 LKYPSWRVRT 0.012 70 EASAATATTA 0.100 46 SWRVRTPHED 0.011 15 GPHLSSGVIS 0.100 59 VKFRRHGADN 0.010 87 AAAAAAAAAA 0.100 19 SSGVISVPHR 0.010 78 TAAATTVAAA 0.100 69 HEASAATATT 0.010 85 AAAAAAAAAA 0.100 22 VISVPHRPAE 0.010 25 VPHRPAELGA 0.100 41 SLKYPSWRVR 0.010 75 TATTAAATTV 0.100 39 LSSLKYPSWR 0.010 10 QLFRTGPHLS 0.100 56 FSGVKFRRHG 0.010 60 KFRRHGADNH 0.100 89 AAAAAAAAAR 0.010 32 LGALYRTLSS 0.100 58 GVKFRRHGAD 0.010 72 SAATATTAAA 0.100 6 KERNQLFRTG 0.003 73 AATATTAAAT 0.100 16 PHLSSGVISV 0.002 80 AATTVAAAAA 0.100 7 ERNQLFRTGP 0.002 65 GADNHEASAA 0.100 54 EDFSGVKFRR 0.001 38 TLSSLKYPSW 0.100 49 VRTPHEDFSG 0.001 76 ATTAAATTVA 0.100 61 FRRHGADNHE 0.001 31 ELGALYRTLS 0.100 12 FRTGPHLSSG 0.001 91 AAAAAAARVT 0.100 36 YRTLSSLKYP 0.001 81 ATTVAAAAAA 0.100 45 PSWRVRTPHE 0.001 77 TTAAATTVAA 0.100 53 HEDFSGVKFR 0.001 86 AAAAAAAAAA 0.100 88 AAAAAAAAAA 0.100 84 VAAAAAAAAA 0.100 93 AAAAARVTLT 0.100 74 ATATTAAATT 0.100 71 ASAATATTAA 0.100 83 TVAAAAAAAA 0.100 175 Table XIV: v.5-A24-10me rs: 162P1E6 Pos 1234567890 Score SeqID 7 LYRKGPTTPS 5.000 37 RFQWSEVQEA 1.980 10 KGPTTPSSVM 1.500 29 ERVTDIPTRF 0.420 13 TTPSSVMAHT 0.210 23 VGPRQRERVT 0.150 5 GALYRKGPTT 0.150 38 PQWSEVQEAW 0.140 39 QWSEVQEAWS 0.120 22 TVGPRQRERV 0.120 34 IPTRFQWSEV 0.110 31 VTDIPTRFQW 0.100 11 GPTTPSSVMA 0.100 4 LGALYRKGPT 0.100 14 TPSSVMAHTV 0.100 26 RQRERVTDIP 0.034 32 TDIPTRFQWS 0.026 9 RKGPTTPSSV 0.024 30 RVTDIPTRFQ 0.024 21 HTVGPRQRER 0.017 33 DIPTRFQWSE 0.015 27 QRHRVTDIPT 0.015 25 PRQRERVTDI 0.015 16 SSVMAHTVGP 0.015 17 SVMAHTVGPR 0.015 18 VMAHTVGPRQ 0.014 24 GPRQRERVTD 0.010 19 MAHTVGPRQR 0.010 8 YRKGPTTPSS 0.010 6 ALYRKGPTTP 0.010 3 ELGALYRKOP 0.010 28 RERVTDIPTR 0.002 2 AELGALYRKG 0.002 I PAHLGALYRX 0.002 20 AHTVGPRQRE 0.001 12 PTTPSSVMAH 0.001 36 TRPQWSEVQE 0.001 35 PTRPQWSEVQ 0.001 15 PSSVMAHTVG 0.001 176 Table XIV: v.6-A24-10mers: 162P IE6 Pos 1234567890 Score SeqlD 8 HEERTNHTEL 0.660 3 RVRTPHEERT 0.200 14 HTELSYGTHS 0.150 6 TPHEERTNHT 0.144 12 TNHTELSYGT 0.120 16 ELSYGTHSGT 0.100 11 RTNHTELSYG 0.030 5 RTPHEERTNH 0.030 4 VRTPHEERTN 0.012 1 SWRVRTPHEE 0.011 9 EERTNHTELS 0.010 10 ERTNHTELSY 0.010 2 WRVRTPHEER 0.002 15 TELSYGTHSG 0.002 13 NHTELSYGTH 0.001 7 PHEERTNHTE 0.000 177 Table XV: v.1-B7-9mers: 162PlE6 Table XV: v.1-B7-9mers: 162PIE6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 32 GVRTRSLTL 200.000 96 AFQGLGKQA 0.030 103 QAQSSWIFL 12.000 25 SFLDKSLGV 0.020 10 FSRHILGRM 10.000 14 ILGRMWGHW 0.020 63 SPISSGFHI 8.000 112 KQLQNTCFF 0.020 19 WGHWRLSFL 4.000 55 ELWFFLSSS 0.020 71 IGKRGCKVL 4.000 73 KRGCKVLFV 0.020 133 QLWHTQWDL 4.000 102 KQAQSSWIF 0.020 30 SLGVRTRSL 4.000 43 PPTPMNGPG 0.020 48 NGPGSSQEL 4.000 2 TNKEIVESF 0.020 52 SSQELWFFL 4.000 83 FGQCLVERN 0.020 23 RLSFLDKSL 4.000 61 SSSPISSGF 0.020 106 SSWIFLKQL 4.000 127 DQPHRAQLW 0.020 74 RGCKVLFVL 4.000 115 QNTCFFFVS 0.020 39 TLLCPPTPM 1.500 17 RMWGHWRLS 0.020 45 TPMNGPGSS 1.200 59 FLSSSPISS 0.020 92 AHAPAFQGL 1.200 108 WIFLKQLQN 0.020 16 GRMWGHWRL 1.200 1 MTNKEIVES 0.020 34 RTRSLTLLC 1.000 72 GKRGCKVLF 0.020 80 FVLFGQCLV 1.000 98 QGLGKQAQS 0.020 6 IVESPSRHI 0.600 51 GSSQELWFF 0.020 126 KDQPHRAQL 0.600 116 NTCFFFVSS 0.020 94 APAFQGLGK 0.600 113 QLQNTCFFF 0.020 7 VESFSRHIL 0.600 99 GLGKQAQSS 0.020 79 LFVLFGQCL 0.400 75 GCKVLFVLF 0.020 33 VRTRSLTLL 0.400 100 LGKQAQSSW 0.020 49 GPGSSQELW 0.400 87 LVERNAHAP 0.015 42 CPPTPMNGP 0.300 60 LSSSPISSG 0.015 70 HIGKRGCKV 0.200 85 QCLVERNAH 0.015 128 QPHRAQLWH 0.200 117 TCFFFVSSR 0.010 114 LQNTCFFFV 0.200 8 ESFSRHILG 0.010 31 LGVRTRSLT 0.150 136 HTQWDLDKG 0.010 15 LGRMWGHWR 0.100 27 LDKSLGVRT 0.010 84 GQCLVERNA 0.100 68 GFHIGKRGC 0.010 110 FLKQLQNTC 0.100 41 LCPPTPMNG 0.010 78 VLFVLFGQC 0.100 65 ISSGFNIGK 0.010 37 SLTLLCPPT 0.100 137 TQWDLDKGR 0.010 88 VERNAHAPA 0.100 90 RNAHAPAFQ 0.010 86 CLVERNAHA 0.100 124 SRKDQPHRA 0.010 123 SSRKDQPHR 0.100 5 EIVESFSRH 0.010 131 RAQLWHTQW 0.060 36 RSLTLLCPP 0.010 121 FVSSRKDQP 0.050 97 FQGLGKQAQ 0.010 77 KVLFVLFGQ 0.050 109 IFLKQLQNT 0.010 91 NAHAPAFQG 0.045 105 QSSWIFLKQ 0.010 57 WFFLSSSPI 0.040 13 HILGRMWGH 0.010 101 GKQAQSSWI 0.040 24 LSFLDKSLG 0.010 132 AQLwHTQwD 0.030 81 VLFGQCLVE 0.010 93 HAPAFQGLG 0.030 66 SSGFHIGKR 0.010 40 LLCPPTPMN 0.030 47 MNGPGSSQE 0.010 29 KSLGVRTRS 0.030 38 LTLLCPPTP 0.010 104 AQSSWIFLK 0.030 122 VSSRKDQPH 0.010 178 Table XV: v.3-B7-9mers: 162P1E6 Table XV: v.3-B7-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 95 HVAQTGLEL 20.000 66 RVSLCRPGR 0.075 96 VAQTGLELL 12.000 97 AQTGLELLS 0.060 78 AQSWAHCSL 12.000 77 VAQSWAHCS 0.060 47 FTPSPSIPL 6.000 16 PVSLLLSVT 0.050 18 1SLLLSVTNL 4.000 121 GVSHRIRPH 0.050 15 KPVSLLLSV 4.000 116 SVGITGVSH 0.050 30 NSAQFSTIL 4.000 90 EAGFHHVAQ 0.030 98 QTGLELLSL 4.000 57 SAYFFFFSD 0.030 5 ESLLLTLDL 4.000 31 SAQFSTILQ 0.030 123 SHRIRPHVL 4.000 85 SLNLPEAGF 0.030 3 WAESLLLTL 3.600 106 LSNPPASAS 0.030 69 LCRPGRSAV 3.000 113 ASQSVGITG 0.030 50 SPSIPLSSA 3.000 75 SAVAQSWAH 0.030 45 ATFTPSPSI 1.800 81 WAHCSLNLP 0.030 12 DLEKPVSLL 1.800 17 VSLLLSVTN 0.020 76 AVAQSWAHC 1.500 35 STILQTLSP 0.020 88 LPEAGFHHV 1.200 56 SSAYFFFFS 0.020 111 ASASQSVGI 1.200 72 PGRSAVAQS 0.020 61 FFFSDRVSL 0.600 55 LSSAYFFFF 0.020 53 IPLSSAYFF 0.400 52 SIPLSSAYF 0.020 108 NPPASASQS 0.400 34 FSTILQTLS 0.020 29 KNSAQFSTI 0.400 27 YSKNSAQPS 0.020 80 SWAHCSLNL 0.400 79 QSWAHCSLN 0.020 13 LEKPVSLLL 0.400 67 VSLCRPGRS 0.020 33 QFSTILQTL 0.400 99 TGLELLSLS 0.020 109 PPASASQSV 0.400 104 LSLSNPPAS 0.020 93 FHHVAQTGL 0.400 59 YFFFFSDRV 0.020 11 LDLEKPVSL 0.400 39 QTLSFPATF 0.020 118 GITGVSHRI 0.400 20 LLSVTNLYS 0.020 48 TPSPSIPLS 0.400 115 QSVGITGVS 0.020 1 LKWAESLLL 0.400 19 LLLSVTNLY 0.020 122 VSHRIRPHV 0.300 23 VTNLYSKNS 0.020 112 SASQSVGIT 0.300 120 TGVSHRIRP 0.015 91 AGFHHVAQT 0.300 62 FFSDRVSLC 0.010 32 AQFSTILQT 0.300 119 ITGVSHRIR 0.010 9 LTLDLEKPV 0.200 28 SKNSAQFST 0.010 71 RPGRSAVAQ 0.200 41 LSFPATFTP 0.010 43 FPATFTPSP 0.200 8 LLTLDLEKP 0.010 114 SQSVGITGV 0.200 102 ELLSLSNPP 0.010 40 TLSFPATFT 0.150 21 LSVTNLYSK 0.010 68 SLCRPGRSA 0.150 86 LNLPEAGFH 0.010 105 SLSNPPASA 0.150 70 CRPGRSAVA 0.010 38 LQTLSFPAT 0.100 6 SLLLTLDLE 0.010 103 LLSLSNPPA 0.100 25 NLYSKNSAQ 0.010 22 SVTNLYSKN 0.100 107 SNPPASASQ 0.010 83 HCSLNLPEA 0.100 117 VGITGVSHR 0.010 125 RIRPHVLFH 0.100 64 SDRVSLCRP 0.010 24 TNLYSKNSA 0.100 84 CSLNLPEAG 0.010 37 ILQTLSFPA 0.100 87 NLPEAGFHH 0.010 74 RSAVAQSWA 0.100 7 LLLTLDLEK 0.010 179 Table XV: v.4-B7-9mers: 162P IE6 Table XV: v.4-B7-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqlD 93 AAAAARVTL 54.000 60 KFRRHGADN 0.020 24 SVPHRPAEL 20.000 39 LSSLKYPSW 0.020 34 ALYRTLSSL 12.000 4 FIKERNOLF 0.020 15 GPHLSSGVI- 8.000 11 LFRTGPHLS 0.020 10 QLFRTGPHL 4.000 38 1TLSSLKYPS 0.020 31 ELGALYRTL 4.000 64 HGADNHEAS 0.020 51 TPHEDFSGV 4.000 57 SGVKFRRHG 0.015 91 AAAAAAARV 1.800 8 RNQLFRTGP 0.015 48 RVRTPHEDF 1.500 23 ISVPHRPAE 0.015 94 AAAARVTLT 0.900 43 KYPSWRVRT 0.015 89 AAAAAAAAA 0.900 61 FRRHGADNH 0.010 87 AAAAAAAAA 0.900 69 HEASAATAT 0.010 92 AAAAAARVT 0.900 26 PHRPAELGA 0.010 86 AAAAAAAAA 0.900 18 LSSGVISVP 0.010 85 AAAAAAAAA 0.900 40 SSLKYPSWR 0.010 73 AATATTAAA 0.900 20 SGVISVPHR 0.010 79 AAATVAAA 0.900 19 SSGVISVPH 0.010 80 AATTVAAAA 0.900 63 RHGADNHEA 0.010 88 AAAAAAAAA 0.900 37 RTLSSLKYP 0.010 58 GVKFRRHGA 0.750 9 NQLFRTGPH 0.010 76 ATTAAATTV 0.600 35 LYRTLSSLK 0.010 3 FFIKERNQL 0.600 56 FSGVKFRPH 0.010 83 TVAAAAAAA 0.500 13 RTGPHLSSG 0.010 28 RPAELGALY 0.400 46 SWRVRTPHE 0.010 27 HRPAELGAL 0.400 50 RTPHEDFSG 0.010 70 EASAATATT 0.300 12 FRTGPHLSS 0.003 41 SLKYPSWRV 0.300 68 NHEASAATA 0.003 78 TAAATTVAA 0.300 1 MFFFIKERN 0.002 25 VPHRPAELG 0.300 36 YRTLSSLKY 0.002 75 TATTAAATT 0.300 1 49 VRTPHEDFS 0.002 72 SAATATTAA 0.300 45 PSWRVRTPH 0.002 81 ATTVAAAAA 0.300 62 RRHGADNHE 0.001 84 VAAAAAAAA 0.300 55 DFSGVKFRR 0.001 74 ATATTAAAT 0.300 42 LKYPSWRVR 0.001 71 ASAATATTA 0.300 7 ERNQLFRTG 0.001 14 TGPHLSSGV 0.200 47 WRVRTPHED 0.001 44 YPSWRVRTP 0.200 59 VKFRRHGAD 0.001 17 HLSSGVISV 0.200 2 FFFIKERNQ 0.001 22 VISVPHRPA 0.150 54 EDFSGVKFR 0.001 77 TTAAATTVA 0.100 29 PAELGALYR 0.001 6 KERNQLFRT 0.100 53 HEDFSGVKF 0.001 67 DNHEABAAT 0.100 5 IKERNQLFR 0.000 82 TTVAAAAAA 0.100 16 PHLSSGVIS 0.000 90 AAAAAAAAR 0.090 52 PHEDFSGVK 0.000 65 GADNHEASA 0.090 33 GALYRTLSS 0.060 21 GVISVPHRP 0.050 66 ADNHEASAA 0.030 30 AELGALYRT 0.030 32 LGALYRTLS 0.030 180 Table XV: v.5-B7-9mers: 162PlE6 Pos 123456789 Score SeqID 10 GPTTPSSVM 30.000 23 GPRQRERVT 20.000 25 RQRERVTDI 4.000 13 TPSSVMAHT 2.000 22 VGPRQRERV 0.300 5 ALYRKGPTr 0.300 4 GALYRKGPT 0.300 9 KGPTTPSSV 0.200 34 PTRFQWSEV 0.200 33 IPTRFQWSE 0.200 16 SVMAHTVGP 0.150 37 FQWSEVQEA 0.100 29 RVTDIPTRF 0.100 27 RERVTDIPT 0.100 21 TVGPRQRER 0.050 18 MAHTVGPRQ 0.030 20 HTVGPRQRE 0.023 32 DIPTRFQWS 0.020 14 PSSVMAHTV 0.020 3 LGALYRKGP 0.015 2 ELGALYRKG 0.010 6 LYRKGPTTP 0.010 12 TTPSSVMAH 0.010 11 PTTPSSVMA 0.010 15 SSVMAHTVG 0.010 17 VMAHTVGPR 0.010 39 WSEVQEAWS 0.006 30 VTDIPTRFQ 0.004 19 AHTVGPRQR 0.003 7 YRKGPTTPS 0.003 1 AELGALYRK 0.003 31 TDIPTRFQW 0.003 8 RKGPTTPSS 0.002 38 QWSEVQEAW 0.002 35 TRFQWSEVQ 0.001 36 RFQWSEVQE 0.001 28 ERVTDIPTR 0.001 26 QRERVTDIP 0.000 24 PRQRERVTD 0.000 181 Table XV: v.6-B7-9mers Pos 123456789 Score SeqI 8 EERTNFTEL 4.000 2 RVRTPHEER 0.750 5 TPHEERTNH 0.300 16 LSYGTHSGT 0.100 4 RTPHEERT1N 0.020 10 RTNHTELSY 0.020 11 TNHTELSYG 0.010 12 NHTELSYGT 0.010 15 ELSYGTBSG 0.010 3 VRTPHEERT 0.010 13 HTELSYGTH 0.003 9 ERTNHTELS 0.002 14 TELSYGTHS 0.002 1 WRVRTPHEE 0.001 6 PHEERTNHT 0.000 7 HEERTNHTE 0.000 182 Table XVI: v.1-B7-10mers: 162P1E6 Table XVI: v.1-B7-10mers: 162P1E6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 32 GVRTRSLTLL 200.000 39 TLLCPPTPMN 0.030 15 LGRMWGHWRL 40.000 131 RAQLWHTQWD 0.030 91 NAHAPAFQGL 12.000 17 RMWGHWRLSF 0.030 132 AQLWHTQWDL 12.000 26 FLDKSLGVRT 0.030 6 IVESFSRHIL 9.000 21 HWRLSFLDKS 0.020 31 LGVRTRSLTL 4.000 97 FQGLGKQAQS 0.020 47 MNGPGSSQEL 4.000 69 FHIGKRGCKV 0.020 105 QSSWIFLKQL 4.000 1 MTNKEIVESF 0.020 102 KQAQSSWIFL 4.000 110 FLKQLQNTCF 0.020 78 VLFVLFGQCL 4.000 52 SSQELWFFLS 0.020 51 GSSQELWFFL 4.000 48 NGPGSSQELW 0.020 70 HIGKRGCKVL 4.000 79 LFVLFGQCLV 0.020 29 KSLGVRTRSL 4.000 60 LSSSPISSGF 0.020 128 QPHRAQLWHT 2.000 88 VERNAHAPAF 0.020 38 LTLLCPPTPM 1.500 98 QGLGKQAQSS 0.020 123 SSRKDQPHRA 1.000 71 IGKRGCKVLF 0.020 45 TPMNGPGSSQ 0.900 114 LQNTCFFFVS 0.020 94 APAFQGLGKQ 0.600 2 TNKEIVESFS 0.020 77 KVLFVLFGQC 0.500 112 KQLQNTCFFF 0.020 49 GPGSSQELWF 0.400 74 RGCKVLFVLF 0.020 22 WRLSFLDKSL 0.400 13 HILGRMWGHW 0.020 18 MWGHWRLSFL 0.400 99 GLGKQAQSSW 0.020 62 SSPISSGFHI 0.400 115 QNTCFFFVSS 0.020 5 EIVESFSRHI 0.400 41 LCPPTPMNJGP 0.015 100 LGKQAQSSWI 0.400 59 FLSSSPISSG 0.015 73 KRGCKVLFVL 0.400 84 GQCLVERNAH 0.015 10 FSRHILGRMW 0.200 90 RNAHAPAFQG 0.015 63 SPISSGFHIG 0.200 106 SSWIFLKQLQ 0.010 42 CPPTPMNGPG 0.200 117 TCFFFVSSRK 0.010 113 QLQNTCFFFV 0.200 109 IFLKQLQNTC 0.010 72 GKRGCKVLFV 0.200 65 ISSGFHIGKR 0.010 24 LSFLDKSLGV 0.200 136 HTQWDLDKGR 0.010 125 RKDQPHRAQL 0.180 75 GCKVLFVLFG 0.010 87 LVERNAHAPA 0.150 116 NTCFFFVSSR 0.010 30 SLGVRTRSLT 0.150 122 VSSRKDQPHR 0.010 108 WIFLKQLQNT 0.100 55 ELWFFLSSSP 0.010 83 FGQCLVERNA 0.100 14 ILGRMWGHWR 0.010 34 RTRSLTLLCP 0.100 127 DQPHRAQLWH 0.010 9 SFSRHILGRM 0.100 86 CLVERNAHAP 0.010 85 QCLVERNAHA 0.100 137 TQWDLDKGRG 0.010 36 RSLTLLCPPT 0.100 8 ESFSRHILGR 0.010 67 SGFHIGKRGC 0.100 37 SLTLLCPPTP 0.010 80 FVLFGQCLVE 0.050 133 QLWHTQWDLD 0.010 121 FVSSRKDQPH 0.050 81 VLFGQCLVER 0.010 43 PPTPMNGPGS 0.040 66 SSGFHIGKRG 0.010 56 LWFFLSSSPI 0.040 19 WGHWRLSFLD 0.010 93 HAPAFQGLGK 0.030 40 LLCPPTPMNG 0.010 103 QAQSSWIFLK 0.030 23 RLSFLDKSLG 0.010 95 PAFQGLGKQA 0.030 61 SSSPISSGFH 0.010 104 AQSSWIFLKQ 0.030 33 VRTRSLTLLC 0.010 183 Table XVI: v.3-B7-10mers: 162P1E6 Table XVI: v.3-B7-10mers: 162P1E6 Pos 1234567890 Score SegO Pos 1234567890 Score SeqID 95 HVAQTGLELL 20.000 78 AQSWAHCSLN 0.060 32 AQFSTILQTL 12.000 58 AYFFFFSDRV 0.060 97 AQTGLELLSL 12.000 116 SVGITGVSHR 0.050 77 VAQSWAHCSL 12.000 28 SKNSAQFSTI 0.040 108 NPPASASQSV 4.000 105 SLSNPPASAS 0.030 17 VSLLLSVTNL 4.000 112 SASQSVGITG 0.030 122 VSHRIRPHVL 4.000 81 WAHCSLNLPE 0.030 79 QSWAHCSLNL 4.000 91 AGFHHVAQTG 0.030 29 KNSAQFSTIL 4.000 82 AHCSLNLPEA 0.030 15 KPVSLLLSVT 2.000 57 SAYFFFFSDR 0.030 121 GVSHRIRPHV 1.500 45 ATFTPSPSIP 0.030 12 DLEKPVSLLL 1.200 84 CSLNLPEAGF 0.030 4 AESLLLTLDL 1.200 123 SHRIRPHVLF 0.030 10 TLDLEKPVSL 1.200 114 SQSVGITGVS 0.020 69 LCRPGRSAVA 1.000 9 LTLDLEKPVS 0.020 88 LPEAGFHHVA 0.600 109 PPASASQSVG 0.020 11 LDLEKPVSLL 0.600 41 LSFPATFTPS 0.020 46 TFTPSPSIPL 0.600 18 SLLLSVTNLY 0.020 60 FFFFSDRVSL 0.600 72 PGRSAVAQSW 0.020 113 ASQSVGITGV 0.600 55 LSSAYFFFFS 0.020 92 GFHHVAQTGL 0.400 47 FTPSPSIPLS 0.020 94 HHVAQTGLEL 0.400 99 TGLELLSLSN 0.020 53 IPLSSAYFFF 0.400 21 LSVTNLYSKN 0.020 50 SPSIPLSSAY 0.400 14 EKPVSLLLSV 0.020 117 VGITGVSHRI 0.400 25 NLYSKNSAQF 0.020 43 FPATFTPSPS 0.400 52 SIPLSSAYFF 0.020 48 TPSPSIPLSS 0.400 103 LLSLSNPPAS 0.020 71 RPGRSAVAQS 0.400 38 LQTLSFPATF 0.020 2 KWAESLLLTL 0.400 98 QTGLELLSLS 0.020 111 ASASQSVGIT 0.300 19 LLLSVTNLYS 0.020 75 SAVAQSWAHC 0.300 34 FSTILQTLSF 0.020 68 SLCRPGRSAV 0.300 107 SNPPASASQS 0.020 31 SAQFSTILQT 0.300 119 ITGVSHRIRP 0.015 76 AVAQSWAHCS 0.300 49 PSPSIPLSSA 0.015 90 EAGFHHVAQT 0.300 16 PVSLLLSVTN 0.010 87 NLPEAGFHHV 0.200 30 NSAQFSTILQ 0.010 8 LLTLDLEKPV 0.200 5 ESLLLTLDLE 0.010 44 PATFTPSPSI 0.180 73 GRSAVAQSWA 0.010 39 QTLSFPATFT 0.150 61 PFFSDRVSLC 0.010 67 VSLCRPGRSA 0.150 86 LNLPEAGFHH 0.010 104 LSLSNPPASA 0.150 115 QSVGITGVSH 0.010 110 PASASQSVGI 0.120 64 SDRVSLCRPG 0.010 27 YSKNSAQFST 0.100 74 RSAVAQSWAH 0.010 22 SVTNLYSKNS 0.100 1 LKWAESLLLT 0.010 66 RVSLCRPGRS 0.100 35 STILQTLSFP 0.010 37 ILQTLSFPAT 0.100 83 HCSLNLPEAG 0.010 23 VTNLYSKNSA 0.100 85 SLNLPEAGFH 0.010 102 ELLSLSNPPA 0.100 20 LLSVTNLYSK 0.010 36 TILQTLSFPA 0.100 40 TLSFPATFTP 0.010 96 VAQTGLELLS 0.060 6 SLLLTLDLEK 0.010 184 Table XVI: v.4-B7-10mers: 162P1E6 Table XVI: v.4-B7-10mers: 162PIE6 Pos 1234567890 Score SeqD Pos 1234567890 Score SeqID 92 AAAAAARVTL 54.000 66 ADNHEASAAT 0.030 33 GALYRTLSSL 12.000 10 QLFRTGPHLS 0.020 23 ISVPHRPAEL 4.000 37 RTLSSLKYPS 0.020 9 NQLFRTGPHL 4.000 35 LYRTLSSLKY 0.020 25 VPHRPAELGA 2.000 32 LGALYRTLSS 0.020 90 AAAAAAAARV 1.800 38 TLSSLKYPSW 0.020 30 AELGALYRTL 1.200 42 LKYPSWRVRT 0.015 48 RVRTPHEDFS 1.000 56 FSGVKFRRHG 0.015 87 AAAAAAAAAA 0.900 22 VISVPHRPAE 0.015 86 AAAAAAAAAA 0.900 6 KERNQLFRTG 0.010 85 AAAAAAAAAA 0.900 4 FIKERNQLFR 0.010 93 AAAAARVTLT 0.900 69 HEASAATATT 0.010 79 AAATTVAAAA 0.900 61 FRRHGADNHE 0.010 73 AATATTAAAT 0.900 20 SGVISVPHRP 0.010 88 AAAAAAAAAA 0.900 8 RNQLFRTGPH 0.010 91 AAAAAAARVT 0.900 18 LSSGVISVPH 0.010 80 AATTVAAAAA 0.900 19 SSGVISVPHR 0.010 21 GVISVPHRPA 0.750 46 SWRVRTPHED 0.010 2 FFFIKERNQL 0.600 41 SLKYPSWRVR 0.010 75 TATTAAATTV 0.600 60 KFRRHGADNH 0.010 83 TVAAAAAAAA 0.500 17 HLSSGVISVP 0.010 26 PHRPAELGAL 0.400 39 LSSLKYPSWR 0.010 15 GPHLSSGVIS 0.400 62 RRHGADNHEA 0.010 14 TGPHLSSGVI 0.400 29 PAELGALYRT 0.009 70 EASAATATTA 0.300 47 WRVRTPHEDF 0.003 44 YPSWRVRTPH 0.300 68 NHEASAATAT 0.003 78 TAAATTVAAA 0.300 5 IKERNQLFRT 0.003 72 SAATATTAAA 0.300 59 VKFRRHGADN 0.002 84 VAAAAAAAAA 0.300 27 HRPAELGALY 0.002 40 SSLKYPSWRV 0.300 3 FFIKERNQLF 0.002 71 ASAATATTAA 0.300 63 RHGADNHEAS 0.002 81 ATTVAAAAAA 0.300 16 PHLSSGVISV 0.002 74 ATATTAAATT 0.300 7 ERNQLFRTGP 0.002 76 ATTAAATTVA 0.300 43 KYPSWRVRTP 0.001 13 RTGPHLSSGV 0.200 1 MFFFIKERNQ 0.001 51 TPHEDFSGVK 0.200 55 DFSGVKFRRH 0.001 50 RTPHEDFSGV 0.200 45 PSWRVRTPHE 0.001 28 RPAELGALYR 0.200 36 YRTLSSLKYP 0.001 57 SGVKFRRHGA 0.150 49 VRTPHEDFSG 0.001 77 TTAAATTVAA 0.100 12 FRTGPHLSSG 0.001 82 TTVAAAAAAA 0.100 54 EDFSGVKFRR 0.001 67 DNHEASAATA 0.100 53 HEDFSGVKFR 0.000 64 HGADNHEASA 0.100 52 PHEDFSGVKF 0.000 89 AAAAAAAAAR 0.090 65 GADNHEASAA 0.090 24 SVPHRPAELG 0.075 58 GVKFRRHGAD 0.050 31 ELGALYRTLS 0.030 34 ALYRTLSSLK 0.030 11 LFRTGPHLSS 0.030 185 Table XVI: v.5-B7-10mers: 162PIE6 Pos 1234567890 Score Se I1D 34 IPTRFQWSEV 4,000 14 TPSSVMAHTV 4.000 24 GPRQRERVTD 3.000 11 GPTTPSSVMA 2,000 10 KGPTTPSSVM 1.500 22 TVGPRQRERV 1.500 5 GALYRKGPTT 0.300 17 SVMABTVGPR 0.150 23 VGPRORERVT 0.100 26 RQRERVTDIP 0.100 4 LGALYRKGPT 0.100 13 TTPSSVMAHT 0.100 30 RVTDIPTRFQ 0.075 6 ALYRKGPTTP 0.030 19 MAHTVGPROR 0.030 7 LYRKGPTTPS 0.030 9 RKGPTTPSSV 0.020 38 FQWSEVQEAW 0.020 3 ELGALYRKGP 0.015 33 DIPTRFQWSE 0.010 37 RFQWSEVQEA 0.010 18 VMAHTVGPRQ 0.010 16 SSVMAHTVGP 0.010 21 HTVGPRQRER 0.010 28 RERVTDIPTR 0.010 35 PTRFOWSEVQ 0.010 __ 31 VTDIPTRFQW 0.009 20 AHTVGPRQRE 0.007 25 PRQRERVTDI 0.004 2 AELGALYRKG 0.003 27 QRERVTDIPT 0.003 29 ERVTDIPTRF 0.002 32 TDIPTRFQWS 0.002 8 YRKGPTTPSS 0.002 39 QWSEVQEAWS 0.002 12 PTTPSSVMAH 0.001 36 TRFQWSEVQE 0.001 15 PS$VMAHTVG 0.001 I PAELGALYRK 0.001 186 Table XVI: v.6-B7-10mers: 162PlE6 Pos 1234567890 Score SeglD 3 RVRTPHEERT 5.000 6 TPHEERTNHT 2.000 8 HEERTNHTEL 0.120 16 ELSYGTHSGT 0.100 12 TNHTELSYGT 0.100 9 EERTNHTELS 0.020 5 RTPHEERTNH 0.015 I SWRVRTPHEE 0.010 11 RTNHTELSYG 0.010 14 HTELSYGTHS 0.006 4 VRTPHEERTN 0.002 10 ERTNHTELSY 0.002 2 WRVRTPHEER 0.002 13 NHTELSYGTH 0.001 15 TELSYGTHSG 0.001 7 PHEERTNHTE 0.000 187 Table XVII: v.1-B35-9mers: 162P1E6 Table XVII: v.1-B35-9mers: 162PlE6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 10 FSRHILGRM 30.000 16 GRMWGHWRL 0.100 49 GPGSSQELW 10.000 111 LKQLQNTCF 0.100 52 SSQELWFFL 10.000 84 GQCLVERNA 0.100 63 SPISSGFHI 8.000 108 WIFLKQLQN 0.100 51 GSSQELWFF 7.500 55 ELWFFLSSS 0.100 2 TNKEIVESF 6.000 36 RSLTLLCPP 0.100 61 SSSPISSGF 5.000 59 FLSSSPISS 0.100 106 SSWIFLKQL 5.000 83 FGQCLVERN 0.100 103 QAQSSWIFL 3.000 115 QNTCFFFVS 0.100 32 GVRTRSLTL 3.000 92 AHAPAFQGL 0.100 131 RAQLWHTQW 3.000 89 ERNAHAPAF 0.100 75 GCKVLFVLF 3.000 31 LGVRTRSLT 0.100 71 IGKRGCKVL 3.000 37 SLTLLCPPT 0.100 39 TLLCPPTPM 2.000 116 NTCFFFVSS 0.100 102 KQAQSSWIF 2.000 78 VLFVLFGQC 0.100 112 KQLQNTCFF 2.000 99 GLGKQAQSS 0.100 74 RGCKVLFVL 2.000 24 LSFLDKSLG 0.075 45 TPMNGPGSS 2.000 124 SRKDQPHRA 0.060 23 RLSFLDKSL 2.000 62 SSPISSGFH 0.050 100 LGKQAQSSW 1.500 122 VSSRKDQPH 0.050 30 SLGVRTRSL 1.000 105 QSSWIFLKQ 0.050 48 NGPGSSQEL 1.000 66 SSGFHIGKR 0.050 29 KSLGVRTRS 1.000 11 SRHILGRMW 0.050 133 QLWHTQWDL 1.000 60 LSSSPISSG 0.050 19 WGHWRLSFL 1.000 65 ISSGFRIGK 0.050 113 QLQNTCFFF 1.000 8 ESFSRHILG 0.050 34 RTRSLTLLC 0.600 57 WFFLSSSPI 0.040 127 DQPHRAQLW 0.500 25 SFLDKSLG3V 0.040 14 ILGRMWGHW 0.500 73 KRGCKVLFV 0.040 72 GKRGCKVLF 0.300 101 GKQAQSSWI 0.040 110 FLKQLONTC 0.300 15 LGRMWGHWR 0.030 123 SSRKDQPHR 0.225 27 LDKSLGVRT 0.030 128 QPHRAQLWH 0.200 91 NAHAPAFQG 0.030 42 CPPTPMNGP 0.200 88 VERNAHAPA 0.030 70 HIGKRGCKV 0.200 93 HAPAFQGLG 0.030 80 FVLFGQCLV 0.200 53 SQELWFFLS 0.030 126 KDQPHRAQL 0.200 -137 TQWDLDKGR 0.020 94 APAFQGLGK 0.200 77 KVLFVLFGQ 0.020 86 CLVERNAHA 0.200 90 RNAHAPAFQ 0.020 17 RMWGHWRLS 0.200 5 EIVESFSRH 0.020 114 LQN'rCFFFV 0.200 43 PPTPMGPG 0.020 1 MTNEIVES 0.150 - 85 QCLVERMAH 0.015 6 IVESFSRHI 0.120 136 HTQWDLDKG 0.015 98 QGLGKQAQS 0.100 117 TCFFFVSSR 0.010 7 VESFSRHIL 0.100 22 WRLSFLDKS 0.010 50 PGSSQELWF 0.100 96 AFQGLGKQA 0.010 40 LLCPPTPMN 0.100 54 QELWFFLSS 0.010 33 VRTRSLTLL 0.100 47 MNGPGSSQE 0.010 79 LFVLFGQCL 0.100 13 HILGRMWGH 0.010 18 MWGHWRLSF 0.100 121 FVSSRKDQP 0.010 188 Table XVII: v.3-B35-9mers: 162P1E6 Table XVII: v.3-B35-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 53 IPLSSAYFF 20,000 61 FFFSDRVSL 0.150 15 KPVSLLLSV 8.000 1 LKWAESLLL 0.150 55 LSSAYFFFF 5.000 38 LQTLSFPAT 0.100 5 ESLLLTLDL 5.000 83 HCSLNLPEA 0.100 30 NSAQFSTIL 5.000 76 AVAQSWAHC 0.100 96 VAQTGLELL 3.000 80 SWAHCSLNL 0.100 111 ASASQSVGI 2.000 124 HRIRPHVLF 0.100 19 LLLSVTNLY 2.000 93 FHHVAQTGL 0.100 50 SPSIPLSSA 2.000 105 SLSNPPASA 0.100 108 NPPASASQS 2.000 24 TNLYSKNSA 0.100 48 TPSPSIPLS 2.000 103 LLSLSNPPA 0.100 98 QTGLELLSL 1.500 68 SLCRPGRSA 0.100 27 YSKNSAQFS 1.500 32 AQFSTILQT 0.100 88 LPEAGFHHV 1.200 91 AGPHHVAQT 0.100 95 HVAQTGLEL 1.000 33 QFSTILQTL 0.100 78 AQSWAHCSL 1.000 20 LLSVTNLYS 0.100 51 PSIPLSSAY 1.000 26 LYSKNSAQF 0.100 47 FTPSPSIPL 1.000 54 PLSSAYFFF 0.100 85 SLNLPEAGF 1.000 37 ILQTLSFPA 0.100 74 RSAVAQSWA 1.000 97 AQTGLELLS 0.100 18 SLLLSVTNL 1.000 23 VTNLYSKNS 0.100 39 QTLSFPATF 1.000 22 SVTNLYSKN 0.100 122 VSHRIRPHV 1.000 40 TLSFPATFT 0.100 52 SIPLSSAYF 1.000 125 RIRPHVLFH 0.060 35 STILQTLSF 1.000 73 GRSAVAQSW 0.050 3 WAESLLLTL 0.900 41 LSFPATFTP 0.050 29 KNSAQFSTI 0.800 49 PSPSIPLSS 0.050 69 LCRPGRSAV 0.600 21 LSVTNLYSK 0.050 34 FSTILQTLS 0.500 113 ASQSVGITG 0.050 17 VSLLLSVTN 0.500 84 CSLNLPEAG 0.050 106 LSNPPASAS 0.500 10 TLDLEKPVS 0.045 67 VSLCRPGRS 0.500 2 KWAESLLLT 0.040 104 LSLSNPPAS 0.500 31 SAQFSTILQ 0.030 56 SSAYFFFFS 0.500 75 SAVAQSWAH 0.030 79 QSWAHCSLN 0.500 72 PGRSAVAQS 0.030 115 QSVGITGVS 0.500 90 EAGFHHVAQ 0.030 118 GITGVSHRI 0.400 44 PATFTPSPS 0.030 71 RPGRSAVAQ 0.400 81 WAHCSLNLP 0.030 9 LTLDLEKPV 0.400 57 SAYFFPFSD 0.030 109 PPASASQSV 0.400 100 GLELLSLSN 0.030 45 ATFTPSPSI 0.400 62 FFSDRVSLC 0.020 123 SHRIRPHVL 0.300 87 NLPEAGFHH 0.020 77 VAQSWAHCS 0.300 59 YFFFFSDRV 0.020 12 DLEKPVSLL 0.300 66 RVSLCRPGR 0.020 112 SASQSVGIT 0.300 86 LNLPEAGFH 0.015 13 LEKPVSLLL 0.300 63 FSDRVSLCR 0.015 99 TGLELLSLS 0.200 8 LLTLDLEKP 0.015 11 LDLEKPVSL 0.200 116 SVGITGVSH 0.010 114 SQSVGITGV 0.200 14 EKPVSLLLS 0.010 43 FPATFTPSP 0.200 119 ITGVSHRIR 0.010 189 Table XVII: v.4-B35-9mers: 162P1E6 Table XVII: v.4-B35-9mers: 162P1E6 Pos 123456789 Score SeqID Pos 123456789 Score SeqID 28 RPAELGALY 160.000 6 KERNQLFRT 0.060 51 TPHEDFSGV 12.000 60 KFRRHGADN 0.060 15 GPHLSSGVI 8.000 18 LSSGVISVP 0.050 4 FIKERNQLF 6.000 23 ISVPHRPAE 0.050 48 RVRTPHEDF 6.000 40 SSLKYPSWR 0.050 93 AAAAARVTL 3.000 56 FSGVKFRRH 0.050 39 LSSLKYPSW 2.500 19 SSGVISVPH 0.050 10 QLFRTGPHL 1.000 90 AAAAAAAAR 0.030 34 ALYRTLSSL 1.000 50 RTPHEDFSG 0.030 31 ELGALYRTL 1.000 63 RHGADNHEA 0.030 24 SVPHRPAEL 1.000 11 LFRTGPHLS 0.030 41 SLKYPSWRV 0.600 53 HEDFSGVKF 0.030 91 AAAAAAARV 0.600 43 KYPSWRVRT 0.020 71 ASAATATTA 0.500 13 RTGPHLSSG 0.020 75 TATTAAATT 0.300 8 RNQLFRTGP 0.020 94 AAAARVTLT 0.300 37 RTLSSLKYP 0.020 87 AAAAAAAAA 0.300 66 ADNHEASAA 0.015 33 GALYRTLSS 0.300 69 HEASAATAT 0.010 72 SAATATTAA 0.300 30 AELGALYRT 0.010 58 GVKFRRHGA 0.300 1 MFFFIKERN 0.010 70 EASAATATT 0.300 49 VRTPHEDFS 0.010 88 AAAAAAAAA 0.300 57 SGVKFRRHG 0.010 89 AAAAAAAAA 0.300 21 GVISVPHRP 0.010 84 VAAAAAAAA 0.300 20 SGVISVPHR 0.010 80 AATTVAAAA 0.300 12 FRTGPHLSS 0.010 85 AAAAAAAAA 0.300 9 NOLFRTGPH 0.010 79 AAATTVAAA 0.300 45 PSWRVRTPH 0.005 92 AAAAAARVT 0.300 61 FRRHGADNH 0.003 78 TAAATTVAA 0.300 46 SWRVRTPHE 0.003 73 AATATTAAA 0.300 26 PHRPAELGA 0.003 86 AAAAAAAAA 0.300 35 LYRTLSSLK 0.003 76 ATrAAATTV 0.200 68 NHEASAATA 0.003 25 VPHRPAELG 0.200 62 RRHGADNHE 0.002 64 HGADNHEAS 0.200 7 ERNQLFRTG 0.001 17 HLSSGVISV 0.200 54 EDFSGVKFR 0.001 14 TGPHLSSGV 0.200 59 VKFRRHGAD 0.001 67 DNHEASAAT 0.200 47 WRVRTPHED 0.001 44 YPSWRVRTP 0.200 42 LKYPSWRVR 0.001 36 YRTLSSLKY 0.200 2 FFFIKERNQ 0.001 3 FFIKERNQL 0.150 55 DFSGVKFRR 0.001 27 HRPAELGAL 0.150 16 PHLSSGVIS 0.001 74 ATATTAAAT 0.100 29 PAELGALYR 0.001 32 LGALYRTLS 0.100 5 IKERNQLFR 0.000 82 TTVAAAAAA 0.100 52 PHEDFSGVX 0.000 22 VISVPHRPA 0.100 81 ATTVAAAAA 0.100 77 TrAAATTVA 0.100 38 TLSSLKYPS 0.100 83 TVAAAAAAA 0.100 65 GADNHEASA 0.090 190 Table XVII: v.5-B35-9mers:162P1E6 Pos 123456789 Score SeqD 10 GPTTPSSVM 40.000 23 GPRQRERVT 6.000 25 RQRERVTDI 4.800 29 RVTDIPTRF 4.000 13 TPSSVMAHT 2.000 9 KGPTTPSSV 0.400 4 GALYRKGPT 0.300 22 VGPRQRERV 0.200 33 IPTRFQWSE 0.200 39 WSEVQEAWS 0.150 37 FQWSEVQEA 0.150 32 DIPTRFQWS 0.100 5 ALYRKGPTT 0.100 14 PSSVMAHTV 0.100 38 QWSEVQRAW 0.100 34 PTRFQWSEV 0.060 27 RERVTDIPT 0.060 15 SSVMAHTVG 0.050 31 TDIPTRFQW 0.050 7 YRKGPTTPS 0.030 18 MAHTVGPRQ 0.030 8 RKGPTTPSS 0.020 2 ELGALYRKG 0.010 11 PTTPSSVMA 0.010 16 SVMAHTVGP 0.010 20 HTVGPRQRE 0.010 21 TVGPRQRER 0.010 3 LGALYRXGP 0.010 17 VMAHTVGPR 0.010 12 TTPSSVMAH 0.010 6 LYRKGPTTP 0.003 30 VTDIPTRFQ 0.003 36 RFOWSEVQE 0.002 28 ERVTDIPTR 0.002 19 AHTVGPRQR 0.001 1 AELGALYRK 0.001 35 TRFQWSEVQ 0.001 26 QRERVTDIP 0.000 24 PRQRERVTD 0.000 191 Table XVI: v.6-B35-9mers: 162PIE6 Pos 123456789 Score SeqD 10 RTNHTELSY 4.000 5 TPHEERTNH 0.600 16 LSYGTHSGT 0.500 8 __ EERTNHTEL 0.300 4 RTPHEERTN 0.300 2 RVRTPHEER 0.060 12 NHTELSYGT 0.020 11 TNHTELSYG 0.015 15 ELSYGTHSG 0.010 9 ERTNHTELS 0.010 14 TELSYGTHS 0.010 3 VRTPHEERT 0.010 13 HTELSYGTH 0.003 1 WRVRTPHEE 0.001 6 PHEERTNHT 0.001 7 HEERTNHTE 0.000 192 Table XVUI: v.1-B35-10rners: 162P1E6 Table XVIII: v.1-B35-10mers: 162P1E6 Pos 1234567890 Score SegID Pos 1234567890 Score SeqI 49 GPGSSQELWF 20.000 126 KDQPHRAQLW 0.100 29 KSLGVRTRSL 10.000 22 WRLSFLDKSL 0.100 10 FSRHILGRMW 7.500 108 WIFLKQLQNT 0.100 51 GSSQELWFFL 5.000 30 SLGVRTRSLT 0.100 60 LSSSPISSGF 5.000 114 1 LQNTCFFFVS 0.100 105 QSSWIFLKQL 5.000 115 QNTCFFFVSS 0.100 110 FLKQLQNTCF 3.000 85 QCLVERNAHA 0.100 71 IGKRGCKVLF 3.000 67 SGFHIGKRGC 0.100 15 LGR4WGHWRL 3.000 98 QGLGKQAQSS 0.100 91 NAHAPAFQGL 3.000 111 LKQLQNTCFP 0.100 32 GVRTRSLTLL 3.000 101 GKQAQSSWIF 0.100 128 QPHRAQLWHT 2.000 122 VSSRKDQPHR 0.075 62 SSPISSGFHI 2.000 34 RTRSLTLLCP 0.060 17 RMWGHWRLSF 2.000 131 RAQLWHTQWD 0.060 112 1 KQLQNTCFFF 2.000 72 GKRGCKVLFV 0.060 38 LTLLCPPTPM 2.000 125 RKDQPHRAQL 0.060 102 KQAQSSWIFL 2.000 66 SSGFHIGKRG 0.050 74 RGCKVLFVLF 2.000 65 ISSGFHIGKR 0.050 123 SSRKDQPHRA 1.500 130 HRAQLWHTQW 0.050 100 LGKQAQSSWI 1.200 61 SSSPISSGFH 0.050 36 RSLTLLCPPT 1.000 106 SSWIFLKQLQ 0.050 24 LSFLDKSLGV 1.000 8 ESFSRHILGR 0.050 31 LGVRTRSLTL 1.000 56 LWFFLSSSPI 0.040 70 HIGKRGCKVL 1.000 103 QAQSSWIFLK 0.030 132 AQLWHTQWDL 1.000 137 TQWDLDKGRG 0.030 1 MTNKEIVESF 1.000 93 HAPAFQGLGK 0.030 52 SSQELWFFLS 1.000 21 HWRLSFLDKS 0.030 78 VLFVLFGQCL 1.000 95 PAFQGLGKQA 0.030 47 MNGPGSSQEL 1.000 23 RLSFLDKSLG 0.030 5 EIVESFSRHI 0.800 75 GCKVLFVLFG 0.030 2 TNKEIVESFS 0.600 26 FLDKSLGVRT 0.030 48 NGPGSSQELW 0.500 87 LVERNAHAPA 0.030 99 GLGKQAQSSW 0.500 53 SQELWFFLSS 0.030 13 HILGRMWGHW 0.500 69 FHIGKRGCKV 0.020 88 VERNAHAPAF 0.300 86 CLVERNAHAP 0.020 6 IVESFSRHIL 0.300 79 LFVLFGQCLV 0.020 94 APAFQGLGKQ 0.200 90 RNAHAPAFQG 0.020 77 KVLFVLFGQC 0.200 84 GQCLVERNAH 0.015 113 QLQNTCFFFV 0.200 116 NTCFFFVSSR 0.010 9 SFSRHILGRM 0.200 41 LCPPTPMNGP 0.010 63 SPISSGFHIG 0.200 82 LFGQCLVERN 0.010 43 PPTPMNGPGS 0.200 44 PTPMNGPGSS 0.010 45 TPMNGPGSSQ 0.200 37 SLTLLCPPTP 0.010 42 CPPTPMNGPG 0.200 117 TCFFFVSSRK 0.010 73 KRGCKVLFVL 0.200 121 FVSSRKDQPH 0.010 50 PGSSQELWFF 0.150 54 QELWFFLSSS 0.010 83 FGQCLVERNA 0.100 136 HTQWDLDKGR 0.010 39 TLLCPPTPMN 0.100 28 DKSLGVRTRS 0.010 18 MWGHWRLSFL 0.100 14 ILGRMWGHWR 0.010 97 FQGLGKQAQS 0.100 55 ELWFFLSSSP 0.010 193 Table XVIII: v.3-B35-10mers: 162P1E6 Table XVIII: v.3-B35-10rners: 162PIE6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 50 SPSIPLSSAY 40.000 60 FFFFSDRVSL 0.150 53 IPLSSAYFFF 20.000 110 PASASQSVGI 0.120 122 VSHRIRPHVL 5.000 44 PATFTPSPSI 0.120 79 QSWAHCSLNL 5.000 92 GFHEVAQTGL 0.100 34 FSTILQTLSF 5.000 105 SLSNPPASAS 0.100 84 CSLNLPEAGF 5.000 47 FTPSPSIPLS 0.100 17 VSLLLSVTNL 5.000 54 PLSSAYFFFF 0.100 71 RPGRSAVAQS 4.000 39 QTLSFPATFT 0.100 108 NPPASASQSV 4.000 78 AQSWAHCSLN 0.100 15 KPVSLLLSVT 4.000 114 SQSVGITGVS 0.100 77 VAQSWAHCSL 3.000 22 SVTNLYSKNS 0.100 18 SLLLSVTNLY 2.000 46 TFTPSPSIPL 0.100 48 TPSPSIPLSS 2.000 94 HVAQTGLEL 0.100 43 FPATFTPSPS 2.000 107 SNPPASASQS 0.100 29 KNSAQFSTIL 2.000 - 76 AVAQSWAHCS 0.100 97 AQTGLELLSL 1.500 4 AESLLLTLDL 0.100 27 YSKNSAQFST 1.500 37 ILQTLSFPAT 0.100 32 AQFSTILQTL 1.000 23 VTNLYSKNSA 0.100 38 LQTLSFPATF 1.000 36 TILQTLSFPA 0.100 113 ASOSVGITGV 1.000 102 ELLSLSNPPA 0.100 25 NLYSKNSAQF 1.000 74 RSAVAQSWAH 0.100 52 SIPLSSAYFF 1.000 98 QTGLELLSLS 0.100 95 HVAQTGLELL 1.000 103 LLSLSNPPAS 0.100 88 LPEAGFHHVA 0.600 19 LLLSVTNLYS 0.100 104 LSLSNPPASA 0.500 30 NSAQFSTILQ 0.050 111 ASASQSVGIT 0.500 49 PSPSIPLSSA 0.050 67 VSLCRPGRSA 0.500 56 SSAYFFFFSD 0.050 41 LSFPATFTPS 0.500 115 QSVGITGVSH 0.050 51 PSIPLSSAYF 0.500 5 ESLLLTLDLE 0.050 21 LSVTNLYSKN 0.500 - 106 LSNPPASASQ 0.050 55 LSSAYFFFFS 0.500 28 SKNSAQFSTI 0.040 2 KWAESLLLTL 0.400 112 SASQSVGITG 0.030 117 1VGITGVSHRI 0.400 -81 WAHCSLNLPE 0.030 87 NLPEAGFHHV 0.400 13 LEKPVSLLLS 0.030 96 VAQTGLELLS 0.300 57 SAYFFFFSDR 0.030 12 DLEKPVSLLL 0.300 109 PPASASQSVG 0.020 31 SAQFSTILQT 0.300 58 AYFFFFSDRV 0.020 123 SHRIRPHVLF 0.300 14 EKPVSLLLSV 0.020 69 LCRPGRSAVA 0.300 63 FSDRVSLCRP 0.015 10 TLDLEKPVSL 0.300 85 SLNLPEAGFH 0.015 75 SAVAQSWAHC 0.300 7 LLLTLDLEKP 0.015 9 LTLDLEKPVS 0.300 33 QFSTILQThS 0.010 90 EAGFHHVAQT 0.300 26 LYSKNSAQFS 0.010 121 GVSHRIRPHV 0.200 1 LKWAESLLLT 0.010 66 RVSLCRZPGRS 0.200 40 TLSFPATFTP 0.010 99 TGLELLSLSN 0.200 6 SLLLTLDLEK 0.010 8 LLTLDLEKPV 0.200 73 GRSAVAQSWA 0.010 68 SLCRPGRSAV 0.200 59 YFFFFSDRVS 0.010 11 LDLEKPVSLL 0.200 16 PVSLLLSVTN 0.010 72 PGRSAVAQSW 0.150 35 STILQTLSFP 0.010 194 Table XVIII: v.4-B35-10mers: 162PIE6 Table XVIII: v.4-B35-10mers: 162P1E6 Pos 1234567890 Score SeqID Pos 1234567890 Score SeqID 23 ISVPHRPAEL 5.000 83 TVAAAAAAAA 0.100 92 AAAAAARVTL 3.000 57 SGVKFRRHGA 0.100 33 GALYRTLSSL 3.000 4 FIKERNQLFR 0.060 25 VPHRPAELGA 2.000 18 LSSGVISVPH 0.050 15 GPHLSSGVIS 2.000 19 SSGVISVPER 0.050 9 NQLFRTGPHL 1.000 39 LSSLKYPSWR 0.050 40 SSLKYPSWRV 1.000 56 FSGVKFRRHG 0.050 28 RPAELGALYR 0.800 26 PHRPAELGAL 0.045 50 RTPHEDFSGV 0.600 89 AAAAAAAAAR 0.030 48 RVRTPHEDFS 0.600 62 RRHGADNHEA 0.030 90 AAAAAAAARV 0.600 58 GVKFRRHGAD 0.030 75 TATTAAATTV 0.600 41 SLKYPSWRVR 0.030 35 LYRTLSSLKY 0.600 11 LFRTGPHLSS 0.030 71 ASAATATTAA 0.500 63 RHGADNHEAS 0.020 38 TLSSLKYPSW 0.500 8 RNQLFRTGPH 0.020 13 RTGPHLSSGV 0.400 22 VISVPHRPAE 0.010 14 TGPHLSSGVI 0.400 34 ALYRTLSSLK 0.010 51 TPHEDFSGVK 0.400 69 HEASAATATT 0.010 87 AAAAAAAAAA 0.300 20 SGVISVPHRP 0.010 70 EASAATATTA 0.300 42 LKYPSWRVRT 0.010 72 SAATATTAAA 0.300 59 VKFRRHGADN 0.010 73 AATATTAAAT 0.300 66 ADNHEASAAT 0.010 78 TAAATTVAAA 0.300 17 HLSSGVISVP 0.010 91 AAAAAAARVT 0.300 24 SVPHRPAELG 0.010 84 VAAAAAAAAA 0.300 29 PAELGALYRT 0.009 93 AAAAARVTLT 0.300 6 KERNQLFRTG 0.006 85 AAAAAAAAAA 0.300 60 KFRRHGADNH 0.006 79 AAATTVAAAA 0.300 52 PHEDFSGVKF 0.006 86 AAAAAAAAAA 0.300 45 PSWRVRTPiE 0.005 80 AATTVAAAAA 0.300 46 SWRVRTPHED 0.003 88 AAAAAAAAAA 0.300 61 FRRHGADNHE 0.003 44 YPSWRVRTPH 0.200 5 IKERNQLFRT 0,003 37 RTLSSLKYPS 0.200 68 NHEASAATAT 0.003 27 HRPAELGALY 0.200 43 KYPSWRVRTP 0.002 64 HGADNHEASA 0.200 16 PHLSSGVISV 0.002 67 DNHEASAATA 0.200 49 VRTPHEDFSG 0.002 2 FFFIKERNQL 0.150 55 DFSGVKFRRH 0.001 65 GADNHEASAA 0.135 1 MFFFIKERNQ 0.001 30 AELGALYRTL 0.100 7 ERNQLFRTGP 0.001 47 WRVRTPHEDF 0.100 12 FRTGPHLSSG 0.001 21 GVISVPHRPA 0.100 36 YRTLSSLKYP 0.001 10 QLFRTGPHLS 0.100 54 EDFSGVKFRR 0.001 82 TTVAAAAAAA 0.100 53 HEDFSGVKFR 0.000 32 LGALYRTLSS 0.100 3 FFIKERNQLF 0.100 74 ATATTAAATT 0.100 77 TTAAATTVAA 0.100 31 ELGALYRTLS 0.100 81 ATTVAAAAAA 0.100 76 ATTAAATTVA 0.100 195 Table XVM: v.5-B35-10mers: 162P1E6 Pos 1234567890 Score SeqID 10 KGPTTPSSVM 4.000 34 IPTRFQWSEV 4.000 14 TPSSVMAHTV 4.000 11 GPTTPSSVMA 2.000 24 GPRQRERVTD 0.900 38 FQWSEVQEAW 0.500 5 GALYRKGPTT 0.300 22 TVGPRQRERV 0.200 31 VTDIPTRFQW 0.150 26 RQRERVTDIP 0.120 23 VGPRQRERVT 0.100 29 ERVTDIPTRF 0.100 13 TTPSSVMAHT 0.100 4 LGALYRKGPT 0.100 16 SSVMAHTVGP 0.050 30 RVTDIPTRFQ 0.040 9 RKGPTTPSSV 0.040 19 MAHTVGPRQR 0.030 8 YRKGPTTPSS 0.030 7 LYRKGPTTPS 0.030 37 RFQWSEVQEA 0.030 39 QWSEVQEAWS 0.020 18 VMAHTVGPRQ 0.010 32 TDIPTRFQWS 0.010 6 ALYRKGPTTP 0.010 33 DIPTRFQWSE 0.010 21 HTVGPRQRER 0.010 3 ELGALYRKGP 0.010 17 SVMAHTVGPR 0.010 28 RERVTDIPTR 0.009 15 PSSVMAHTVG 0.005 25 PRQRERVTDI 0.004 35 PTRFQWSEVQ 0.003 27 QRERVTDIPT 0.003 36 TRFQWSEVQE 0.001 12 PTTPSSVMAH 0.001 2 AELGALYRKG 0.001 20 AHTVGPRQRE 0.001 1 PAELGALYRK 0.001 196 Table XVIII: v.6-B35-10mers: 162P1E6 Pos 1234567890 Score SeqID 6 TPHEERTNHT 4.000 3 RVRTPHEERT 0.600 10 ERTNHTELSY 0.200 16 ELSYGTHSGT 0.100 12 TNHTELSYGT 0.100 11 RTNHTELSYG 0.030 9 EERTNHTELS 0.030 5 RTPHEERTNH 0.030 8 HEERTNHTEL 0.030 14 HTELSYGTHS 0.030 4 VRTPHEERTM 0.015 1 SWRVRTPHEE 0.003 13 NHTELSYGTH 0.002 2 WRVRTPHEER 0.001 15 TELSYGTHSG 0.001 7 PHEERTNHTE 0.000 197 Table XIX: Frequently Occurring Motifs Name Description Potential Function Nucleic acid-binding protein functions Zinc finger, C2H2 as transcription factor, nuclear location zf-C2H2 34% type probable ytochrome b(N- membrane bound oxidase, generate cytochrome b N 68% erminal)/b6/petB superoxide domains are one hundred amino acids nunoglobulin long and include a conserved 19% domain intradomain disulfide bond. tandem repeats of about 40 residues, each containing a Trp-Asp motif. WD domain, G-beta Function in signal transduction and WD40 18% repeat protein interaction may function in targeting signaling PDZ 23% PDZ domain molecules to sub-membranous sites LRR 28% Leucine Rich Repeat short sequence motifs involved in protein-protein interactions conserved catalytic core common to both serine/threonine and tyrosine Potein kinase protein kinases containing an ATP pkinase 23% domain binding site and a catalytic site pleckstrin homology involved in intracellular signaling or as PH 16% PH domain constituents of the cytoskeleton 30-40 amino-acid long found in the extracellular domain of membrane EGF 34% EGF-like domain bound proteins or in secreted proteins Reverse transcriptase (RNA-dependent rvt 49% DNA polymerase) Cytoplasmic protein, associates integral membrane proteins to the ank 25% Ank repeat cytoskeleton
NADH
Ubiquinone/plastoqui membrane associated. Involved in none (complex I), proton translocation across the oxidored q1 32% various chains membrane 198 Table XIX, continued: Frequently Occurring Motifs Name avrg. Description Potential Function ___________identityDecito calcium-binding domain, consists of a12 residue loop flanked on both sides efhand 24% F hand by a 12 residue alpha-helical domain Retroviral aspartyl Aspartyl or acid proteases, centered on _yp_ 79% protease a catalytic aspartyl residue extracellular structural proteins involved in formation of connective tissue. The sequence consists of the G Collagen triple helix X-Y and the polypeptide chains forms Collagen 42% repeat (20 copies) a triple helix. Located in the extracellular ligand binding region of receptors and is about 200 amino acid residues long Fibronectin type II with two pairs of cysteines involved fn3 20% domain in disulfide bonds seven hydrophobic transmembrane regions, with the N-terminus located 7 transmembrane extracellularly while the C-terminus is eceptor (rhodopsin ytoplasmic. Signal through G 7tm 1 19% family) proteins 199 Table XX: Modfs and Post-translational Modifications of 162P1E6 v.1 Protein kinase C phosphorylation site 2 - 4 TnK 5 123 -125 SsR 124 - 126 SrK Casein kinase H phosphorylation site 2 -5 TnkE 10 25-28 SflD 52 - 55 SsqE 124 - 127 SrkD 137 - 140 TqwD 15 Amidation site 71 - 74 iGKR 200 TABLE XXI: Protein Properties of 162P1E6 162P1E6 variant I Bioinforma URL Outcome tic Program ORF ORF finder bp2028-2468 (includes stop) Protein length 146 aa Transmembrane region TM Pred http://www.ch.embnet.org/ no TM HMMTop http://www.enzim.hu/hmmtop/ no TM Sosui http://www.genome.ad jp/SOSui/ soluble protein TMHMM http://www.cbs.dtu.dk/services/TMHMM no TM, extracellular Signal Peptide Signal P http://www.cbs.dtu.dk/services/SignalP/ none pl pl/MW tool http://www.expasy.ch/tools/ 10.2 pI Molecular weight pI/MW tool http-//www.expasy.ch/tools/ 16.6 kDa Localization PSORT http:/psort.nibb.ac.jp/ 64% microbody, 45% cytoplasmic PSORT II http://psort.nibb.acjp/ 65% cytoplasmic, 21% nuclear, Motifs Pfam http://www.sanger.ac.uk/Pfam/ no significant motif Prints http://www.biochem.uc.ac.uk/ no significant motif Blocks http://www.blocks.fhcrc.org/ no significant motif 162P1E6 variant 3 Bioinforma URL Outcome tic Program ORF ORF finder bp3-404 (includes stop) Protein length 133 as Transmembrane region TM Pred http://www.ch.embnet.org/ 1 TM, TM helix at 40-70aa, N terminus extracellular HMMTop http://www.enzirm.hu/hmmtop/ I TM, TM helix at 41-64aa, N terminus extracellular Sosui http:/www.genome.ad.jp/SOSui/ soluble protein TMHMM http-//www.cbs.dtu.dk/services/TMHMM no TM, extracellular Signal Peptide Signal P http-//www.cbs.dtu.dk/services/SignalP/ none pI pI/MW tool http://www.expasy.ch/tools/ 8
.
8 pI Molecular weight pl/MW tool http://www.expasy.ch/tools/ 14.5 kDa Localization PSORT http://psort.nibb.ac.jp/ 64% peroxisome, 45% cytoplasmic PSORT II http://psort.nibb.ac.jp/ 43.5% nuclear, 30% cytoplasmic Motifs Pfam http://www.sanger.ac.uk/Pfani/ no significant motif Prints http://www.biochem.ucl.ac.uk/ no significant motif Blocks http://www.blocks.fhcrc.org/ no significant motif 201 TABLE XXI, continued: Protein Properties of 162P1E6 162P1E6 varIant 4 Bioinforma URL Outcome tic Program ORF ORF finder bp388-696 (includes stop) Protein length 102 aa Tranamembrane region TM Pred http://www.ch.embnet.org/ I TM,aa 79-97, N-terminus inside HMMTop http://www.enzimhu/hmnntop/ I TM,aa 71-95, N-terminus inside Sosui http://www.genome.ad.jp/SOSui/ membrane protein TMHMM http://www.cbs.dtu.dk/services/TMHMM no TM, extracellular Signal Peptide Signal P http://www.cbs.dtu.dk/services/SignalP/ none pl p1/MW tool http://www.expasy.ch/tools/ 10.8pl Molecular weight pL/MW tool http://www.expasy.ch/tools/ 10.9 kDa Localization PSORT http://psortnibb.ac.jp/ 81% lysosome, 60% peroxisome PSORT 11 http://psort.nibb.ac.jp/ 56% cytoplasmic, 21% mitochondrial Motifs Pfam http://www.sanger.ac.uk/Pfam/ no significant motif Prints http://www.biochem.ucl.ac.uk/ no significant motif Blocks http-//www.blocks.fhcrr.org/ Synapsin 9 galactose-phosphate uridyl transferase family I 202 TABLE XXII 162PIE6 v.1: HLA Peptide TABLE XXH 162PIE6 v.1: HLIA Peptide Scoring Results Al 9-mers SYFPEITHI Scoring Results Al 9-mers SYFPEITHI SEQ. SEQ. Pos 11 2 3 4 5 6 7 8 9 scoreNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 53 S Q E L W F F L S 17 36 R S L T L L C PP 4 105 Q S S W I F L K Q 15 41 L C P P T P M N G 4 34 R T R S L T L L C 14 51 G S S Q E L W F F 4 26 F L D K S L G V R 13 95P A F Q G L G K Q 4 3 N K Z I V E S F S 12 Q A Q S S W I F L 4 811 V L F G Q C L V E 12 107 S W I F L K L Q 4 125 R K D Q P H R A Q 11 115 Q N T C F F F V S 4 6 I V E S F S R H I 10 124 S R K D Q P H R A 4 8 E S F S R H I L G 10 134 L W H T Q W D L D 4 61 S S S P I S S G F 10 5 E I V E S F S R H 3 87 L V E R N A H A P 10 12 R H I L G R M W G 3 94 A P A F Q G L G K 10 17 R M W G H W R L S 3 130 Q W D L D K G R G 10 28 D K S L G V R T R 3 21 H W R L S F L D K 9 3C S L G V R T R S L 3 54 Q E L W F F L S S 9 31 L G V R T R S L T 3 65 I S S G F H I G K 9 33 V R T R S L T L L 3 110 N T C F F V SS 9 37 S L T L L C P P T 3 S F S R H I L G R 8 46 P M N G P G S S Q 3 25 S F L D K S L G V 8 63 S P I S S G F H I 3 2S K S L G V R T R S 8 67 S G F H I G K R G 3 5C P G S S Q E L W F 8 6 F H I G K R G C K 3 6f S S G F H I G K R 8 7C H I G K R G C K V 3 92 A H A P A F Q G L 8 71 I G K R G C K V L 3 13E H T Q W D L D K G 8 72 G K R G C K V L F 3 18 M W G H W R L S F 7 74 R G C K V L F V L 3 4C L C P P T P M N 7 96 A F Q G L G K Q A 3 44 P T P M N G P G S 7 97 F Q G L G K Q A Q 3 73 K R G C K V L F V 7 99 G L G K Q A Q S 8 3 76 C K V L F V L F G 7 104 A Q S S W I F L K 3 1 M T N K E I V E S 6 111 L K Q L Q N T C F 3 24 L S F L D K S L G 6 114 L Q N T C F F F V 3 32 G V R T R S L T L 6 119 F F F V S S R K D 3 35 T R S L T L L C P 6 7 V E S F S R H I L 2 38 L T L L C P P T P 6 14 G R M W G H W RL 2 47 M N G P G S S Q E 6 20 G H W R L S F L D 2 52 S S Q E L W F F L 6 22 W R L S F L D K S 2 59 F L S S S P I S S 6 39 T L L C P P T PM 2 62 S S P I S S G F H 6 45 T P M N G P G S S 2 106 S S W I F L K Q L 6 49 G P G S S Q E L W 2 108 W I F L K Q L Q N6 68 G F H I G K R G C 2 123 S S R K D Q P H R 6 77 K V L F V L F G Q 2 128 Q P H R A Q L W H 6 83 F G Q C L V E R N 2 135 W H T Q W D L D K 6 84 G Q C L V E R N A 2 10 F S R H I L G R M 5 86 C L V E R N A H A 2 43 P P T P M N G P G 5 93 H A P A F Q G L G 2 60 L S S S P I S S G 5 101 G K Q A Q S S W I 2 64 P I S S G F H I G 5 109 I F L K Q L Q N T 2 75 G C K V L F V L F 5 110 F L K Q LQ N T C 2 78 V L F V L F G Q C 5 118 C F F F V S S R K 2 80 F V LF G Q C L V 5 120 F F V S S R K D Q 2 122 V S S R K D Q P H 5 127 D Q P H R A Q L W 2 124 K D Q P H R A Q L 5 129 P H R A Q L W H T 2 11 S R H I L G R M W 4 .I2 T N K E I V E S F I 203 TABLE XXII 162P1E6 v.1: BLA Peptide TABLE XXII 162P1E6 v3: HLA Peptide Score ng Results Al 9-mers SYFPEITH Scoring Results -Al 9-iners SYFPEITHJ ___ SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score EDNO. Pos 11 2 3 4 5 6 7 8 9 score IIDNO. 13 HI L GRM W GH 1 82 AHC S LN L PH 8 _ 14 L GR M WG HW 1 L L LT LD L EK 7__ 15 L G R M W G H W R 1 32 A Q F S T I L Q T 7 __ 23 RL SF L DK SL 1 34 _FSTIL__T__S_ 27 L D KS L GVRT 1 69 _LCRPG__S___ 42 C P PT P MNGP 1 9N _HVAQT__L__L_ 48 N G P G S QEL 1 1111A S_ SQSV 1_ 5 E L WF FLJS SS 1 LTLDLEKPv6 58 FFL8S S PI1S 1 11 K V SL L LS V 7 LF V L F Q CL 1 21 Y__S__NSAQF_8_6 80 V ER NAH A PA 1 48 _TPSPSIP__S_ 91 N AEA P A FQG 1 79QSWAH 113 LQ0N TC F FF 1 11 Q___GITG 117 T C F F F V S S R 1 -1 1_ T _VSHRI_ 121 FV SS R KD Q P I_12 _V _____I __P __V 13 A Q L W H T Q W D 1 __SLLL__LDLZ_ 131 Q L W H T Q W L L S________ V T N TABLE XXII 162P1E6 v.3: E[LA Peptfde 4 coing Results -Al 9-ruers SYFPEITH 51_ S__YF__ FS SEQ. 61 V S LC R P GR 5__ Pos 1 234 5 67 89 score IhDNO.1 60 S LC RP GR SA 5 _ 51 PS I PL S gAY 23 91 VAQTGLELL_ 63 F SD R V SLCR 23 12 __ __ __ T___SHRI 19 LLL S VT N LY 20 1$_ SLL__SV__NL 10Q G L 3L LS LSN 17 211SVTN 31 WA S SLL L TL 16 2 3N S T ILQT L SF 16 3 12 D L K P VS LL 15 41TF___ PSI 8 L P ZA G F H V 15 5N AY___F__FSD_ 13 LE KP VS L LL 14 62_ FF_8__RV__LC_ 10 T L DL EK PVS 12 7 47 FT P SP SI PL 12 75_ S_ 94 Q TQ0LE L L SL 12 84CSLNL 1131 A SQ0S V GI3T 12 85 __ _ __ _ S __LPEA_ 121 R IR PHV L F H 11 86 LNL__EA__FH E SL LL T LDL 10 9 4M PS PS IP L SS 1010LSLSNPPAS4 91 A QTG LE L LS 1-010SLSNPPASA4 5 S S AYFPF FS 9 11 _ SVGI 100 LS N PP A S A 9 117 V___TGVS 1 LK W AE S LLL 8 A AEBL LL T LD 3 2K W AE S LLLT 8 L L TLD LEK V 3 14 EK PV SL L LS 8 30LQLS_ 20 L L SVT NL YS 8 5 23 V TN L YS KNS 8 ISA9QSVGIT3 31 S AQ FS T ILQ 811SVGITGVSH3 41. L S P A TF TP 818GITGVSHR13 41 A T FT PSP S 1 8 121 S RitI R PH VL 3 51 L S 9A YPF FF 8 121 HR IR PH V LF 3 80 S W AHCS L NL 8 25 NL YS KN S AQ 2__ 204 TABLE XXII 162P1E6 v.3: LILA Peptide TABLE XXII 162P1E6 v.4: HLA Peptide Scoring Results -Al 9-mers SYFPEITHI Scoring Results Al 9-mers SYFPEITHI SEQ. SEQ. Pos 11 2 2 3 4 56 789scoreED NO . Pos 3.
2 3 4 5 6 789 oreD NO. 2 SK NS AQ F ST 2 8 4d T L S F P A T F T 2 19 S S G v I S v p H 6 5 9 1 P L S S A Y P 2 33 0ALYR 59 YF F SDRV 37 R T L S S L K Y 25 6___ 20F RPAE G L F S D 25 PHED 53 G K S A N Q L F R 79 AS A A TTV A A A 25 __ 87N5 PEDFSGVHR 11 L_ 21A P HPHV A 10 T_ 2_2L__ YRT 2GAFDNHEVAS~ Q11G259 G PES S V L I 101LL_ NHE PSAA A 10 9__ Ai AH 8 SG I 1 1_ PVSLLLSVT_1_7_RRW___L-I-RTG_ 31 1 L Q____ PA 12 SGVIS __ P_ _ _ _ _ _ 4 RV T H D S 1 5 DF A ~ ~ ~ _ A___QSW C 15 S G VK F RR HG 3 71 VA QS W H S 1659 VKRR H G A D 78 Q W H SL 80A TT6 AFR AHAA A 3 93 __ _ __ _ _ H6 13 RRE A NH Q L_2 10_ ___ __ __V_ 63 R AN H A QLFRT 110_ __ __ 6 AD H A A S I 0 205V VPH TABLE XXII 162P1E6 v.4: HLA Peptide TABLE XXII 162P1E6 v.6: HLA Peptide Scoring Results Al 9-mers SYFPEITHI Scoring Results -Al 9-mers SYFPEITHI_ SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 73 A A T A T T A AA 1 13 H T L S Y G T H 16 84 V A A A A A A AA 1 7 H E R T N H T E 11 85 A A A A A A A AA 1 6 P H E E R T N H T 10 86 A A A A A A A A A 1 4 R T P H E E R T N 6 87 A A A AAAAAA 1 3 V R T P H E E R T 5 80 AAAAAAAAA 1 1 9 A A A A A A A A R I E R T N H T E L S 2 91 A A AAAAARV 1 -1 T E L S Y G T H S 2 2 RVR T PH EE R I TABLE XXII 162P1E6 v.5: HLA Peptide T P H E E R T N H Score ng Results Al 9-mers SYFPErITM SEQ. TABLE XXII 162P1E6 v.1: HLA Peptide Pos 1 2 3 4 5 6 7 8 9 score ID NO. Score ag Results A0201 9-mers SYFPEITH 3C V T D I P T R F Q 18 SEQ. 39 W S E V Q E A W S 16 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 26 Q R E R V T D I P 12 3C S L G V R T R S L 26 11 P T T P S S V M A 11 23 R L S F L D K S L 21 2C H T V G P R Q R E 9 133 Q L W H T Q W D L 21 34 P T R F Q W S E v 8 7C H I G K R G C K v 20 12 T T P S S V M A N 7 25 S F L D K S L G V 18 15 S S V M A H T V G 7 32 G V R T R S L T L 18 31 T D I P T R F Q W 5 4C L L C P P T P M N 18 7 Y R K G P T T P S 4 8C F V L F G Q C L V 18 8 R K G P T T P S S 4 80 C L V E R N A H A 18 14 P S S V M A H T V 4 37 S L T L L C P P T 17 21 T V G P R Q R E R 4 3M T L L C P PT P M 17 22 V G P R Q R E R V 4 73 K R G C K V L F V 17 27 R E R V T D I P T 4 92 A H A P A F Q G L 17 E L G A L Y R K G 3 106 S S W I F L K Q L 17 A L Y R K G P T T 3 26 F L D K S L G V R 15 18 M A H T V G P R Q 3 52 S S Q E L W F F L 15 1 A H T V G P R Q R 3 81 V L F G Q C L V E 15 32 D 1 P T R F Q W S 3 126 K D Q P H R A Q L 15 1 A E L G A L Y R K 2 0I V E S F S R H I 14 3 L G A L Y R K G P 2 16 G R M W G H W R L 14 6 L Y R K G P T T P 2 19 W G H W R L S F L 14 10 G P T T P S S V K 2 33 V R T R S L T L L 14 13 T P S S V M A H T 2 48 N G P G S S Q E L 14 6S- V! A H T V G P 2 55 E L W F F L S S S 14 H T V G P R 2 74 R G C K V L F V L 14 37 F Q W S E V Q E A 2 103 Q A Q S S W I F L 14 38 Q W S E V Q E A W 2 110 F L K Q L Q N T C 14 23 G P R Q R E R V T I I M T N K E I V E S 13 24 P R Q R E R V T D 1 13 H I L G R M W G H 13 25 R Q R E R V T D I 1 59 F L S S S P I S S 13 35 T R F Q W S E V Q 1 78 V L F V L F G Q C 13 79 L F V L F G Q C L 13 TABLE XXII 162P1E6v.6: HLA Peptide 99 G L G K Q A Q S 8 13 Scoring Results -A1 9-mers SYFPEITH 114 L Q N T C F F F V 13 SEQ. 14 I L G R M W G H W 12 Pos 1 2 3 4 5 6 7 8 9 score ID NO. 63 S P I S S G F H I 12 1 R T N H T E L SY 27 71 IG K R G C K V L 12 206 TABLE XXIII 162PIE6 v.1: HLA Peptide TABLE XXI 162P1E6 v.1: HLA Peptide Scoring Results A0201 9-mers SYFPEITHI Scoring Results A0201 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 109 I F L K Q L Q N T 12 112 K Q L Q N T C F F 5 7 V S F S R H I L 11 121 P V S S R K D Q P 5 1 R M W G H W R L S 11 129 P H R A Q L W H T 5 38 L T L L C P P T P 11 12 R H I L G R M W G 4 46 P M N G P G S S Q 11 41 L C P P T P M N G 4 77 K V L F V L F G Q 1l 47 M N G P G S S Q E 4 108 W I F L K Q L Q N 11 58 F F L S S S P I S 4 82 L F G Q C L V E R 10 68 G F H I G K R G C 4 95 P A F Q G L G K Q 10 85 Q C L V E R N A H 4 113 Q L Q N T C F F F 10 9C R N A H A P A F Q 4 136 H T Q W D L D K G 10 97 F Q G L G K Q A Q 4 1C F S R H I L G R M 9 107 S W I F L K Q L Q 4 22 W R L S F L D K S 9 119 F F F V S S R K D 4 57 W F F L S S S P I 9 131 R A Q L W H T Q W 4 6C L S S S P I S S G 9 11 S R H I L G R M W 3 101 G K Q A Q S S W I 9 15 L G R M W G H W R 3 9 S F S R H I L G R 8 18 M W G H W R L S F 3 27 L D K S L G V R T 8 20 G H W R L S F L D 3 34 R T R S L T L L C 8 24 L B F L D K S L G 3 64 P I S S G F H I G 8 42 C P P T P M N G P 3 96 A F Q G L G K Q A 8 44 P T P M N G P G S 3 116 N T C F F F V S S 8 71 G C K V L F V L F 3 T N K E I V E S F 7 10C L G K Q A Q S S W 3 H I V E S F S R H 7 102 K Q A Q S S W I F 3 28 D K S L G V R T R 7 105 Q S S W I F L K Q 3 36 R S L T L L C P P 7 123 S S R K D Q P H R 3 6 S G F H I G K R 7 131 T Q W D L D K G R 3 87 L V E R N A H A P 7 62 S S P I S S G F H 2 88 V E R N A H A P A 7 61 S G F H I G K R G 2 98 Q G L G K Q A Q S 7 111 L K Q L Q N T C F 2 117 T C F F F V S S R 7 122 V S S R K D Q P H 2 124 S R K D Q P H R A 7 125 R K D Q P H R A Q 2 31 L G V R T R S L T 6 134 L W H T Q W D L D 2 54 Q E L W F F L S S 6 21 H W R L S F L D K I 65 I S S G F H I G K 6 49 G P G S S Q E L W 1 69 F H I G K R G C K 6 53 S Q E L W F F L S 1 76 C K V L F V L F G 6 128 Q P H R A Q L W H 1 83 F G Q C L V E R N 6 3 N K E I V E S F S -1 104 A Q S S W I F L K 6 12 D Q P H R A Q L W -1 13C H R A Q L W H T Q 6 8 E S F S R H I L G .- 2 132 A Q L W H T Q W D 6 43 P P T P MNG P G -2 4 K E I V E S F S R 5 5C P G S S Q E L W F -2 29 K S L G V R T R S 5 35 T R S L T L L C P 5 TABLE XXII 162P1E6 v.3: HLA Peptide 45 T P M N G ,P G S S 5 |Scoring Results A0201 9-mers SYFPEITHI 51 G S S Q E L W F F 5 SEQ. 56 L W F F L S S S P 5 Pos 1 2 3 4 5 6 7 8 9 score ID NO. 61 S S S P I S S G F 5 18 S L L L S V T N L 28 72 G K R G C K V L F 5 12 D L E K P V S L L 23 84 G Q C L V ,E R N A 5 3 W A E S L L L T L 21 91 N A H A P A F Q G 5 11 L D L E K P V S L 21 9 H A P A F Q G L G 5 96 V A Q T G L E LL 21 94 A P A F Q G L G K 5 98 Q T G L E L L S L 21 207 TABLE XXII 162P1E6 v.3: HLA Peptide TABLE XXMI 162P1E6 v.3: HLA Peptide Score na Results A0201 9-mers SYFPEITH Scoring Results A0201 9-niers SYFPEITIH SEQ. SEQ. Pos 1. 2 3 4 5 6 7 8 9 score 1D NO. Pos 1. 2 3 4 5 6 7 8 9 score 0D NO. 105 S LSN P PA SA 21 116 S VGIT G V SH 10 9L TL D LE APV 19 21 LSV TN L YS X 9 15 K PV S L L LSV 19 28 S KN S AQ0FS T 9 __ 4N A T FT PS PSI1 19 ___ 41 L SFP AT F TP 9 __ 64 SL CR P GR SA 19 __ 43 PPA TF T PSP 9 95 H V AQT G LEL 19 57 SAY F F F FSD 9 _ 114 S QSV GI TG V 19 81 WAH C SL N LP 9 118 GIT GV S HR 1 19 9__ 9 TQ0LE L LS LS 9 __ 6S LL L TL DLE 18 117 VG IT GV S HR 9__ 7 LL LT LD L EK 18S _ 121 V S HR I RPH 9 __ 8LL TL D LE KP 17 17 V9L L LS V TN 8 _ 1I L LL SV T NLY 17 22 S VT N LYSK V 8 37 ILQ TL S FPA 17 24 T NL YS K NSA 8 69 LC RP GR SA V 17 __ 7C C R P GRS AVA 8 85 S L NILPE A GF 17 __ 101 L HLL S LS NP 8 103 L L SLSN P PA 17 __ 107 S NP PA S ASQ 8 33 QFS TI L.QT L 16 __4 A 3S LLL T LD -7 47 FT PS PS I PL 16 __ 31 S AQF ST I LQ 7 61 FFF S DR V SL 16 38 IQ TLS F PAT 7 80 SW A HC S LXL 15 48 T PS PSI PL 8 7 111 A S A SQSV G 115 54 P PLS S AY F F P7 125 R XRPMHV LF H 15 __ 75 S AV AQ S WAH 7 __ __1 L KW AE S LLL 14 __ 89 P 8A GF HH VA 7 __ 2 K WAES L LL T 14 _ 106 L SN PP A SAS 7 13 L EK PV S LLL 14 __ 23 V T NLYS K NS 6__ 36 T I LQT L SFP14 _ 62 F PS D RVS L C 6_ 40 TL S F PAT FT 14 _ S DRV S LC RP 6 78 AQ SW A HC SL 14 6 R VS LCR P GR 6 8 L PBHAG F HHV 14 __ 74 R SA V AQS WA 6__ 100 GLL L S L SN 14 77 V AQ S WA HC S 6 112 S ASQ0S V GIT 14 __ 86 L NL PE A GFH 6 5 SLL L TL D L 13 1041 LS L SN P P A 6 20. L L S V T N L Y 8 13 119 1 T G V S H R I R 6 25 NL YS K N SAQ 13 _ 53. P L SS AY FF 5 30 NSAQ0F S T IL 13 _ 91 A0T G L EL LS' 5 35 ST I LQT L SF 13 __ 124 HR IR PH V LF 5__ 50 S PS I PL SSA 13 __ 21 L YS K NS AQ 4 59 Y FFF FS DR V 13 _ 5( S S AY FPF FS 4 _ 91 A GF H HV AQT 13 8, ABHC SL N LP E 4 123 S HR IR P HVL 13 __ 8A CS LN LP EA G 4 __ 32 AQ FS T IL QT 12 113 A 9Q S V 3IT G 4 52 S I PLS8A Y F 12 - 115 Q SV G IT GVS 4__ 87 NL PE A G IHH 12 51 PS I PL SS AY 3__ 93, F HH V A T GL 12 55 L SSA Y FF FF 3 __ 12 VS HR IR P HV 12 58 AY FFF F S DR 3 _ 10 T LD LE K PVS' 11 6A VS L CR PG RS 3__ 291 K NS AQ FST 1 11 711 R PG R S AV A 3 _ 3 QT LS FP A TF 1-1 7A P GR S AV AQ 3 8N HC SL NL P EA 11 73 G RS AV AQS w 3__ 10 EL LS LS N PP 11 90E AGF H HV AQ 3__ 10 P P AS A SQS 11 92 G PH HV AQ0T G 3 I PVS L LILS VT 1014 EXP V SL-LL S 2 70 AV AQ S W AHC 10 42 S FP AT FTP S 2 208 TABLE XXIII 162P1E6 v.3: HLA Peptide TABLE XXII 162P1E6 v.4: HLA Peptide Scoring Results A0201 9-mers SYFPEITHI Scoring Results A0201 9-mers SYFPEITI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 63 F S D R V S L C R 2 90 A A A A A A A A R 11 94 H H V A Q T G L E 2 4 F I K E R N Q L F 10 27 Y S K N S A Q F S 1 71 A S A A T A T T A 10 34 F S T I L Q T L S 1 6 K E R N Q L F R T 9 4 T F T P S P S I P 1 15 G P H L S S G V I 9 6 F F F F S D R V S 1 37 R T L S S L K Y P 9 75 Q S W A H C S L N 1 58 G V K F R R H G A 9 11 P A S A S g S V G 1 18 L 9 S G V I S V P 8 P A T F T P S P S -1 21 G V I S V P H R P 8 44 Y P S W R V R T P 8 TABLE XXII 162P1E6 v.4: HLA Peptide 66 A D N H E A S A A 8 Scoring Results A0201 9-mers SYFPEITHI 67 D N H E A S A A T 8 SEQ. 20 S Q V I SV P H R 7 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 28 R P A E L G A L Y 7 34 A L Y R T L S S L 29 43 K Y P S W R V R T 7 17 H L S S G V I S V 28 63 R H G A D N H E A 7 10 Q L F R T G P H L 22 68 N H E A S A A T A 7 93 A A A A A R V T L 22 69 H E A S A A T A T 7 41 S L K Y P S W R V 21 12 F R T G P H L S S 6 24 S V P H R P A E L 20 23| I S V P H R P A E 6 31 E L G A L Y R T L 20 39 L S S L K Y P S W 6 91 A A A A A A A R V 20 5C R T P H E D F S G 6 79 A A A T T V A A A 19 11 L F R T G P H L S 5 76 A T T A A A T T V 17 26 P H R P A E L G A 5 94 A A A A R V T L T 16 32 L G A L Y R T L S 5 27 H R P A E L G A L 15 4C S S L K Y P S W R 5 3C A E L G A L Y R T 15 4 L K Y P S W R V R 5 72 S A A T A T T AA 15 40 S W R V R T P H E 5 74 A T A T T A A A T 15 481 R V R T P H E D F 5 78 T A A A T T V A A 15 19 S S G V I S V P H 4 85 A A A A A A A AA 15 36 Y R T L S S L K Y 4 86 A A A A A A A A A 15 64 H G A D N H E A S 4 87 A A A A A A A A A 15 2 F F F I K E R N Q 3 88 A A A A A A A A A 15 9 N Q L F R T G P H 3 89 A A A A A A A A A 15 29 P A E L G A L Y R 3 3 F F I K E R N Q L 14. 35 L Y R T L S S L K 3 22 V I S V P H R P A 14 4, W R V R T P H E D 3 73 A A T A T T A A A 14 53 H E D F S G V K F 3 84 V A A A A A A A A 14 54 E D F S G V K F R 3 51 T P H E D F S G V 13 5' S G V K F R R H G 3 65 G A D N H E A S A 13 5| V K F R R H G A D 3 83 T V A A A A A A A 13 60 K F R R H G A D N 3 13 R T G P H L S S G 12 61 F R R H G A D N H 3 14 T G P H L S S G V 12 62 R R H G A D N H E 3 38 T L S S L K Y P S 12 5 IK E R N Q L F R 2 77 T T A A A T T V A 12 q R N Q L F R T G P 2 8C A A T T V A A A A 12 2 V P H R P A E L G 2 81 A T T V A A A AA 412 4 V R T P H E D F S 2 92 A A A A A A R V T 12 5 F S G V K F R R H 2 33 G A LY R T L S S 11 ' E R N Q L F R T G 1 7C E A S A A T A TT 11 1( P H L S S G V I S 1 75 T A T T A A A TT 11 55 D F S G V K F RR 1 82 T T V A A A A AA 11 45 P S W R V R T P H -2 209 TABLE XXIII 162P1E6 v.4: HLA Peptide TABLE XXII 162P1E6 v.6: HLA Peptide coring Results A0201 9-mers SYFPEITHI Scoring Results A0201 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score ID NO. Pos 1 2 3 4 5 6 7 8 9 score ID NO. 52 PHEDFS G V 2 10 R T N H T E L S Y 8 12 N H T E L S Y G T 8 TABLEXXH162PE6v.5: HLA Pepde 2 R V R T P H E E R 7 Scoring Results A0201 9-mers SYFPErI 3 V R T P H E E R T 6 SEQ. 4 R T P H E E R T N 6 Pos 1 2 3 4 5 6 7 8 9 score lDNO. 6 P H E E R T N H T 5 5 A L Y R K G P T T 21 13 H T E L S Y G T H 5 1 V M A H T V G P R 15 11 T N H T E L S Y G 4 25 R Q R E R V T D I 14 1 W R V R T P H E E 3 K G P T T P S S V 13 14 T E L S Y G T H S 3 16 S V M A H T V G P 12 5 T P H E E R T N H 2 34 P T R F Q W S E V 12 7H E E R T N H T E 2 37 F Q W S E V Q E A 12 SE R T N H T E L S -2 11 A L G A L Y R K 11 22 V G P R 0 R E R V 11 TABLEXXIV162P1E6: HLAPeptideScoring 2 E L G A L Y R K G 10 Results -A202 9-mers SYFPEITHI 41 G A L Y R K G P T 10 SEQ. 14 P _ S V M A H T V 10 Pos 1 .234567 89 score ID NO. 12 T T P S S V M A H 9 NO DATA 11 P T T P S S V M A 8 213 T V G P TRQ R E R 8 TABLE XXV 162P1E6: HLA Peptide Scoring 3C V T D I P T R F Q 8 Results -A0203 9-mers SYFPEITH 4 R K G P T T P S S 7 SEQ. 2C H T V G P R Q R Z 7 Pos 1 2 3 4 5 6 7 scoreIDNO. 32 D I P T R F Q W S 7 NODATA 6L Y R K G P T T P 6 Y R K G P T T P S 6 TABLE XXVI162P1E6v.1: HLAPeptide 1 Scoring Results A3 9-mers SYFPErTHI 10 GPTTPSSV 5Pos 1 2 3 4 5 6 7 8 9 scoreID NO. 23 GP RQ R RV T 5 32 G V R T R S L T L 22 27 R R V TRD IP T 4 94 A P A F Q G L G K 20 21 E R V T D I P TR 4 26 F L D K S L G V R 19 2S R V T D I P T R 4 81 V L F G Q C L V H 19 31 T D I P T R FQW 4 13 H I L G R M W G H 18 1 31 I P T R F Q WS 4 6M F H I G K R G C K 18 15 AH T VR P RQ R 3Y 21 H W R L S F L D K 17 38 QW S E V Q EA W 3 87 L V E R N A H A P 17 15 S V A H T V G 113 Q L Q N T C F F F 17 31 R FSQ W S V E 2 5 E I V E S F S R H 16 24 P R 0 R E R V T D 14 I L G R M W G H W 16 26 Q R E R V T D I 1 23 R L S F L D K S L 16 32 T R FQ W E V Q 77 K V L F V L F G Q 16 39 W E V Q A W S 8 C L V E R N A H A 16 3 W EVQEAWS 10 W I F L K Q L Q N 16 3C S L G V R T R S L 15 TABLE XXHH 162P1E6 v.6: ELA Peptide 55 E L W F F L S S S 15 Scoring Results A0201 9-mers SYFPEITH__ 99 G L G K Q A Q S S 15 SEQ. 11C F L K Q L Q N T C 15 Pos 12 3 4 5 6 7 8 9 scoreIDNO. 121 F V S S R K D Q P 15 15 E L S Y G T H S G 13 35 T L L C P P T P M 14 1 L S Y G T H S G T 10 4C L L C P P T P M N 14 E IEH1 R T N H T E L 9 65 I S S G F H I G K 14 210 TABLE XXVI 162P1E6 v.1: lILA Peptide TABLE XXVI 162PIE6 v.1: lILA Peptide SEQ. SEQ. Pos 11 2 3 4 5 67 89 scre ED NO. jPos 112. 234 56 789 score ED NO. 781 V L FVL F GQC 14 [9A A H AP A FQ GL 7 8S F VLF G QC LV 14 Ill S R H ILG R MW 6 118 C FF FV S SR X14 1 1 R MW G HW RLS 6 12 R HI LG RMWQG 13 __ 3 RS LT L LC PP 6 59 F LSS S PI SS 13 66 SB F HI G KR 6 _ 70 H IGK R GC K V 13 _ 100 L GKQi A6QS SW -6 72 G KR GC K VLP 13 101 GK Q AQ SSwI1 6 94 QGL G KQ A QS 13 __ 111 L KQ L Q N T C 6 10f A QS S WI FLK 13 __ 115 QN TC FFF VS 6 121 K DQ P HR AQL 13Il NTCF FVSS 6 128 Q PH R AQ LW 13 13 A 0 L W H T Q W D 135 W HT Q WD L D 13 3___ IVHS 4KRI V ES F SR 12 1 37 SL T LLC P PT 12 56 L W F F L S S S P 711 IG KR GCK VL 1260LSS pISSa 5 133 QL W H TQ WD L 12 1051 Q__ WIFL 9 S PS RHI L GR I11 104 S__ IFLK 15 L GR MW G HWR I I -2 47 M NGP G SS QE 11 12___RAQL 61. S S S P I S S G F 11 130 H__R__AQ__L __WH __T__Q_5 96 A FQ GLG KQ0A 11 13___WDLD 18 MW GH WR L SF 101MTNKEIVES 4 29 K SL G V RTRS 10 10 FS__H_ ILG____ 34 RT RS LT L LC 10 24LS DKS 46 P MN GP G SSQ 10 33 VRT__SL__LL 9 R N A H A P A F 0. Q E L__ W___F___ F___ 4 91 QE N H PF Q L S 9 7 WF F S S 1 74_RGCK_ VLF_ VL_9_6 ES GFSH I __G 12 GS R (D P 8 K_ 6C 90__ R N A H A P A F_______________________ _____ 9_____________________________ 79 L____ F V L F G Q C L 112 K 0L QN TC FF 97 P 0G LG KQ21Q1 TABLE XXVI 162P1E6 v.1: lILA Peptide TABLE XVI 162P1E6 Q.: EILA Peptide Scoring Results A3 9-mers SYFPEITH Sc__ oring Results A3 9-mers SYFPEITH SEQ. SEQ. Posi 12 345678 9 scoreED NO. Pos 112 3 456 7 89 scoreED NO . V~~~~__ 10 RHIL O N P P A S A S Q S 11 __ _ _ _ _ _ _ _ _ _ _ _ 118 G I T G V S H R I 11 26 L Y S K N S A 0 F 10 TABLE XVI 162PIE6 v.3: ElLA Peptide _58 A Y F F F F S D R 10 Sco an Results A3 9-mers SYFPEITHJ __ 106 L SN P PA SAS 10 SEQ. _34 AQ FS T I LQT 9 Pos 112 3 456 7 89 scoreED NO. _ 72 PG R SAV A QS 9 __ _ L LL T LD L E 25 74 RSA V AQ S WA 9 110 S V G I T G V S H 25 91 A G F H H V A Q T 9 __ 125 R IR P HV LFH 25 107 SN PP AS A SQ 9 _ 6 R VSL CR P GR 20 110 P AS A SQ SVG -9 __ 19 LL LS VT N LY 19 111 Q SV G IT GVS 9 __ 25 LY S KN S AQ 19K WA ES LILLT 8__ 68 SL C P R SA 1 13 LHK PV S L LL -8 85. LNL P _A GP 1 15 K PV SL L LSV 8 81 _NLP__A__FHH_ 1 75 S AVAOQS W AH 8 _0 SL__NPPA__A_ 1 92 G FH HVA Q TG 8 5Z SI P S SA Y 1797 A QTG LEHL LS 8 70 AV A S WA H 1798 Q T GLE L LSL 8 ___HVA__T__LEL_ 1 111 A S A SQSVGI1 8 ________ Q_ PATF 1 3 W AE S LJL TL 7 511P__IPLSSAY_ 1 41 L SF PAT F TP 7 10 ___LELL__LS__ 1 46 TFT P S PS IP 7 1211 GV S H RIRP H 16 5__S P S I PL S SA 7 _ 101 L L K V 1557 S AY FF FF SD 7 IN _S__LL__VT__L_ 1 61 F 7FS DR V SL 7 __ 711 P R A A 1589 PRA G F HH VA 7 4 S L T D 4 5E SL LL T L DL 6 _ 3 T L T S 1433 F ST I LQ TL 6 _ 40 TL S P AT F 1449 P S PS IP LSS 6 5__PLS__A__FFF_ 1 55, LS SA YF F FF 6 _2 H______ 6 LF 1 F FS D RV SLC 6 121 L K V L 1367 V SL CR P.G RS 6 201LLSVTNLY__ 1 82 AEHCS LN LP H 6 34 I Q L F 1399T GL E LL S LB 6 6 C P R A__1 101 L EL LS LS NP 6 80 LN L E AG P 13119 IT GV S HR IR 6 21 ~ ~ ~ ~ ~ _ L YSK1 L KW AES L LL 5 _ 29 N A FS T1 1 4 A H S L L L T L D 5 37 L T S _P__1 27 Y S KNSA Q FS 5 10 ELL _ LS NP P 1 45 A TF TPS PS 1 5 _ 11 VG__TGVS__R_ 1 78 A QS WA HCS S _ 12_ RPHVL 1 80 SWA H CS L NL 5 8LL T LDL E KP 11 84 CBIJLN LP EA G 5 _ 11 D E P S I g E AG F HHV AQ 5 __ 17 VS L L SV T 1124 T NL YS K NSA 4 53 1P LS SA YF F I 142 S FPA TF T PS 4 63 FSD R VS L CR 11 44 P AT F TPS PS 4__ 70 CRP GR S AV A 11 60 F F FFSD R VS 4 _ 10 L LS LS N PPA 1 64 SDR V S LC RP 4__ 212 IABLE XVI 162P1E6 v.3: HLA Peptide )ABLE XXVI 162P1E6 v.4: HLA Peptide Scoring Results A3 9-mers SYFPEITHI _coring Results A3 9-mers SYFPE3THII SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 88 L P E A G F H H V 4 92 A A A A A A R V T 13 104 L S L S N P P A S 4 5 I K E R N Q L F R 12 114 S Q S V G I T G V 4 13 R T G P H L S S G 12 122 V S H R I R P H V 4 4Q S S L K Y P S W R 12 9 L T L D L E K P V 3 41 S L K Y P S W R V 12 14 E K P V S L L L S 3 61 F R R H C A D N H 12 28 S K N S A Q F S T 3 68 N H E A S A A T A 12 43 F P A T F T P S P 3 91 A A A A A A A R V 12 48 T P S P S I P L S 3 53 H E D F S G V K F II 77 V A Q S W A H C S 3 74 A T A T T A A A T 11 94 H H V A Q T 0 L H 3 80 A A T T V A A A A 11 10 P P A S A S Q S V 3 18 L S S G V I S V P 10 3C N S A Q F S T I L 2 36 Y R T L S S L K Y 10 34 F S T I L Q T L S 2 38 T L S S L K Y P S 10 38 L Q T L S F P A T 2 45 P S W R V R T P 9 10 56 S S A Y F F F F S 2 66 A D N H E A S A A 10 96 V A Q T G L E L L 2 75 T A T T A A A T T 10 112 S A S Q S V G I T 2 81 A T T V A A A A A 10 23 V T N L Y S K N S 1 84 V A A A A A A A A 10 311 S A Q F S T I L Q 1 9 N L F R _T _G P H 9 83 H C S L N L P E A 1 14 P H L S S G V I S 9 93[ F H H V A Q T G L I 1 S S G V I S V P H 9 120 T G V S H R I R P 1 26 P H R P A E L G A 9 331 G A L Y R T L S S 9 TABLE XXVI 162PE6 v.4: HLA Peptide 70 E A S A A T A T T 9 Scoring Results A3 9-mers SYFPEITI 731 A A T A T T A A A 9 SEQ. 82 T T V A A A A A A 9 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 94 A A A A R VT L T 9 34 A L Y R T L S S L 25 22 V I S V P H R P A 8 48 R V R T P H E D F 21 43 K Y P S W R V R T 8 83 T V A A A A A A A 20 77 T T A A A T T V A 8 10 Q L F R T G P H L 18 78 T A A A T T V A A 8 28 R P A E L G A L Y 18 79 A A A T T V A A A 8 24| S V P H R P A E L 17 3 F F I K E R N Q L 7 90 A A A A A'A A A R 17 6 K E R N Q L F R T 7 4 F I K E R N Q L F 16 8 R N Q L F R T G P 7 31 E L G A L Y R T L 16 12. F R T G P H L S 8 7 35 L Y R T L S S L X 16 23 I S V P H R P A E 7 52 P H E D F S G V _ 16 30 A E L G A L Y R T 7 211 G V I S V P H R P 15 55 D F S G V K F R R 7 42 L K Y P S W R V R 15 59 V K F R R H G A D 7 60 K F R R H G A D N 15 11 L F R T G P H L S 6 93 A A A A A R V T L 15 15 G P H L S S G V I 6 17A H L S S G V I S V 14 2 S G V I S V P H R 6 58 G V K F R R H G A 14 25 V P H R P A E L G 6 71 A S A A T A T T A 14 37 R T L S S L K Y P 6 2S P A E L G A L Y R 13 44Y P S W R V R T P 6 74 A T T A A A T T V 13 46 S W R V R T P H 1 6 85 A A A A A A A AA 13 5 R T P H E D F S G 6 81 A A A A A A A A A 13 54 E D F S G V K F R 6 8 A A A A A A A A A 13 62 R R H G A D N H E 6 88 A A A A A A A A A 13 63 R H G A D N H E A 16 8q A A A A A A A A A 13 651 G A D N H E A S A 6 213 TABLE XXVI 162P1E6 v.4: HLA Peptide TABLE XXVI 162P1E6 v.5: HLA Peptide Score ng Results A3 9-mers SYFPEITHI Scoring Results A3 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 69 H E A S A A T A T 6 35 T R F Q W S E V Q 4 56 F S G V K F R R H 5 39 W S E V Q E A W S 4 67 D N H E A S A A T 5 3 L G A L Y R K G P 3 7 E R N Q L F R T G 4 2C H T V G P R Q R E 3 21 H R P A E L G A L 4 3C V T D I P T R F Q 1 32 L G A L Y R T L S 4 4 L S S L K Y P S W 4 ABLE XXVI 162P1E6v.6: HLAPeptide 41 W R V R T P H E D 4 corin Results A3 9-mers SYFPEITHI 511 T P H E D F S G V 4 SEQ. 72 S A A T A T T A A 4 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 14 T G P H L S S G V 3 2 R V R T P H E E R 21 49 V R T P H E D F S 3 1C R T N H T E L S Y 15 H G A D N H E A S 3 15 E L S Y G T H S G 14 F F F I K E R N Q 2 _13 H T E L S Y G T H 10 57 S G V K F R R H G 2 16 L S Y G T H S G T 9 4 R T TPHEER TN 8 TABLE XXVI162P1E6v.5: HLAPeptide | 5 T P H E E R T N H 7 Scoring Results A3 9-mers SYFPEITfH| 7 H E E R T N H T E 7 SEQ. 14 T E L S Y G T H S 6 Pos 1 2 3 4 5 6 7 8 9 scorelDNO. 1 W R V R T P H E H 4 5 A L Y R K G P T T 28 8 E E R T N H T E L 4 29 R V T D I P T R F 21 3 V R T P H E E R T 3 21 T V G P R Q R E R 19 6 P H E E R T N H T 3 1 A E L G A L Y R K 17 11 T N H T E L S Y G 3 10 S VM AH T VGP 17 9E RT NH TE LS1 __ 1 A H T V G P R Q R 13 12 N H T E L S Y G T I E L G A L Y R K G 12 2 P R O R E R V T D 12 TABLE XXVII 162P1E6 v.1: HLA Peptide 2 L Y R K G P T T P 11 Scoring Results A26 9-mers SYFPEITH 23 R Q R E R V T D I I ISEQ. 32 D I P T R F Q W S 11 Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 30 R F Q W S E V Q Z11 5 E I V E S F S R H 25 31 T D I P T R F Q W 10 55 E L W F F L S S S 20 8 R K G P T T P S S 9 2 T N K E I V E S F 18 K G P T T P S S V 9 23 R L S F L D K S L 18 2A G P R Q R E R V T 9 32 G V R T R S L T L 18 11 P T T P S S V M A 8 89 E R N A H A P A F 18 2E E R V T D I P T R 8 113 Q L Q N T C F F F 18 1C G P T T P S S V M 7 1 M T N K E I V E S 17 14 P S S V M A H T V 7 13 H I L G R M W G H 17 27 R E R V T D I P T 7 3C S L G V R T R S L 17 33 I P T R F Q W S E 7 75 G C K V L F V L F 17 12 T T P S S V M A H 6 92 A H A P A F Q G L 17 15 S S V M A H T V G 6 39 T L L C P P T P M 16 17 V M A H T V G P R 6 78 V L F V L F G Q C 16 20 Q R E R V T D I p 6 111 N T C F F F V S S 16 34 P T R F Q W S E V 6 133 Q L W H T Q W D L 16 4 G A L Y R K G P T 5 21 F L D K S L G V R 15 38 Q W S E V Q E A W 5 51 G S S Q E L W F F 15 7 Y R K G P T T P S 4 64 P I S S G F H I G 15 13 T P S S V M A H T 477 K V L F V L F G Q 15 12 M A H T V G P R Q 4 7 L F V L F G Q C L 15 22 V G P R Q R R R V17 4 136 H T Q W D L D K G 15 214 TABLE XXVHI 162P1E6 v.1: HLA Peptide TABLE XXVII 162P1E6 v.1: HILA Peptide Scoring Results A26 9-mers SYFPEITH[ Scoring Results A26 9-iners SYFPEITHI[ SEQ. SEQ. Pos 1 2 3 4 5 67 89sreD NO. Pos 1 2 3 45 6 7 89 ore D NO. 48 NG PG S S QEL 14 2 61 SS SPI S S GF 14 4 108 W IF L KQ LQN 14 83 __GQ_____VE__N 109 IFLK QL Q NT 14 12___RAQL 11 FS RH IL G RM 13 21 HWRLS__LDK _ 19 WG H WR L SFL 13 2 33 VR T RS L TLL 13 3 4PT P M NG PG S 13 41 LC P T PM N 5 72 G KR GC K VLF 13 54 Q E W F FL S S 74 R GC KVL F VL 13 5__ L______LS__SP_ 81. VL F GQ CL VE 1363SPISSGFH1 5 81 LF GQ CL V ER 13 6 10 KQ A QS S WIF 13 6 10 S S wIF L KQL 1373 RGCKVLFV 5 _ V ES FS RHI1 12 981 QG L GK Q AQ S 34 RT RS LT L LC 12 104_ AQS__WI__LK_ 40 LL CP PT PM N 12 105 _QSSWI _FL __Q _ 5q P GS SQ EL WF 12 35 TR__SL__LLCP _ 7Q HI GK RG C KV 12 4 80 C L V RR NA HA 12 4__M__GP__SSQE_ 9 GL GK Q AQ SS 12 5 1211 F VSS R K DQP 12 76 _C__VLFVL__G_ 121 KD Q P H RAQL 1210 LGKQAQSS 4 _ SF S RH I LGR I117SWIF 1$ M WG HW R LSF 1114LQNTCFF V 4 3 L TL LC P PTP 1115QNTCFFFVS 4 S SS Q ELW F FL 1112 SRKDQPHRA 4 5 F L S S S P I S S 11 4__ _ K E I V E S F S R 3 __ 81 LV ER N AH AP 11 12 RHILGRMWG_ 110 F L KQ L QNTC I 1 4L DKS III LK Q LQ NT CF 11 29 KSL__VR__RS_ 112 K QL Q NT CFF 11 65_ 1_SS__ FH__G_ K 28 D KSL GV R TR 10- 67_ SGF__ IG__R_ G 37 SL TL LC PP T 10 94_ A_ PAFQ__ LG_ K 57 WF FL SS SPI1 10 12 RKDQ 8 FV LF GQ C LV 10 125 RKD__PH__AQ_ 90 A FQ G LG KQA 10 13___AQLW 10 QA QS S WI FL 10 137 T__ DLD 11$ CFF F VS S RK 10 1 11 F FF V SS RKD 10 17 R MW G H R L V E SF SR HIL 9 43 _PPTPM__G__G_ ES F SRH I LG 949GPGSSQELW2 14 L GR MW G HW 9 62 SS PI S G H 1I G RM W G HWRL 9 90 RNAHAPAPQ_2 21 SFL D KS L GV 9 97 FQ GL G Q Q 54 FFL SS SsP IS 9 101 __KQAQSS__1_ 711 IGKR G CK V L 9 122 __SSRKDQ__H_ 9 P A FQGL G KQ 18 138 _Q__D__D__G__G_ 111 T CFF F VS SR 18 1 _31_NKEIVES_ _S 12 FF VS SR K DQ 18 20GHWRL_ 12 DQ PH R AQ LW 18 31 _LGVRTRSL____ 61 L SSS PI S SG 17 45 TPMN__PG___ 60GF H I G K R G CJ8 G Q_ ___L V E R X 215 TABLE XXVII 162P1E6 v.1: HLA Peptide TABLE XXVII 162P1E6 v.3: HLA Peptide Scoring Results A26 9-mers SYFPEITHI coring Results A26 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score ID NO. Pos 1 2 3 4 5 6 7 8 9 score ID NO. 85 Q C L V E R N A H 1 13 L E K P V S L L L 11 88 V E R N A H A P A 1 23 V T N L Y S K N S 11 91 N A H A P A F Q G 1 42 S F P A T F T P S 11 93 H A P A F Q G L G 1 119 I T G V S H R I R 11 131 RA Q L W H T Q W 1 7 L L L T L D L E K 10 132 A Q L W H T Q W D 1 1C T L D L E K P V S 10 134 L W H T Q W D L D 1 3C N S A Q F S T I L 10 135 W H T Q W D L D K 1 41 T F T P S P S I P 10 8C S W A H C S L N L 10 TABLEXXVII162P1E6v.3: HLAPepide 10C G L E L L S L S N 10 Scoring Results A26 9-mers SYFPEITHI_ 10 L L S L S N P P A 10 SEQ. 105 S L S N P P A S A 10 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 37 I L Q T L S F P A 9 12 D L E K P V S L L 28 59 Y F F F F S D R V 9 35 S T I L Q T L S F 24 61 F F F F S D R V S 9 52 S I P L S S A Y F 23 68 S L C R P G R S A 9 54 P L S S A Y F F F 23 78 A Q S W A H C S L 9 9N Q T G L E L L S L 23 93 F H H V A Q T G L 9 18 S L L L S V T N L 22 1 L K W A E S L L L 8 39 Q T L S F P A T F 22 K W A E S L L L T 8 9$ H V A Q T G L E L 21 20 L L S V T N L Y S 8 47 F T P S P S I P L 20 32 A Q F S T I L Q T 8 85 S L N L P E A G F 20 41 T L S F P A T F T 8 19 L L L S V T N L Y 19 48 T P S P S I P L S 8 33 Q F S T I L Q T L 19 65 D R V S L C R P G 8 61 F F F S D R V S L 19 9C E A G F H H V A Q 8 22 S V T N L Y S K N 17 91 A G F H H V A Q T 8 51 P S I P L S S A Y 17 99 T G L E L L S L S 8 16 P V S L L L S V T 16 117 V G I T G V S H R 8 36 T I L Q T L S F P 16 123 S H R I R P H V L 8 102 E L L S L S N PP 1 K P V S L L L S V 7 125 R I R P H V L F H 16 3 L Q T L S F P A T 7 5 E S L L L T L D L 58 A Y F F F F S D R 7 76 A V A Q S W A H C 15 72 P G R S A V A Q S 7 WAEL14 92 G F H H V A Q T G 7 45 A T F T P S P S I 14 101 L E L L S L S N P 7 55 L S S A Y F F F F 14 29 K N S A Q F S T I 6 121 G V S H R I R P H 14 5C S P S I P L S S A 6 8 L L T L D L E K P 13 64 S D R V S L C R P 6 11. L D L E K P V S L 13 83 H C S L N L P E A 6 24 L Y S K N S A Q F 13 112 S A S Q S V G I T 6 11E G I T G V S H R I 13 4 A E S L L L T L D 5 124 H R I R P H V L F 13 21 L S V T N L Y S K 5 6 S L L L T L D L E 12 50 S S A Y F F F F S 5 9 L T L D L E K P V 12 57 S A Y F F F F S D 5 14 E K P V S L L L S 12 81 W A H C S L N L P 5 25, N L Y S K N S A Q 12 88 L P E A G F H H V 5 53 I P L S S A Y F F 12 107 S N P P A S A S Q 5 61 F F S D R V S L C 12 111 A S A S Q S V G I 5 6 R V S L C R P G R 114 S Q S V G I T G V 5 8 N L P E A G F H H 41 L S F P A T F T P 4 91 V A Q T G L E L L 1269 L C R P G R S A V 4 11 S V G I T G V S H 17C C R P G R S A V A 4 216 TABLE XXVII 162P1E6 v.3: HLA Peptide TABLE XXVII 162P1E6 v.4: HLA Peptide Scoring Results A26 9-mers SYFPEITHJ Scoring Results A26 9-iers SYPEITI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. Pos 1 2 3 4 5 6 7 8 9 score'DNO. 10 L S N P P A S A S 4 74 A T A T T A A A T 13 10 N P P A S A S Q S 4 83 T V A A A A A AA 13 105 P P A S A S Q S V 4 7 E R N Q L F R T G 12 27 Y S K N S A Q F S 3 36 Y R T L S S L K Y 12 43 F P A T F T P S P 3 50 R T P H E D F S G 12 4S P S P S I P L S S 3 58 G V K F R R H G A 12 71 R P G R S A V A Q 3 81 A T T V A A A A A 12 89 P E A G F H H V A 3 82 T T V A A A A A A 12 91 A Q T G L E L L S 3 77 T T A A A T T V A 11 10 L S L S N P P A S 3 2 F F F I K E R N Q 10 17 V S L L L S V T N 2 22 V I S V P H R P A 10 24 T N L Y S K N S A 2 38 T L S S L K Y P S 10 28 S K N S A Q F S T 2 41 S L KY P S W R V 10 73 G R S A V A Q S W 2 67 D N H E A S A A T 10 74 R S A V A Q S W A 2 76 A T T A A A T T V 10 75 S A V A Q S W A H 2 93 A A A A A R V T L 10 82 A H C S L N L P E 2 1 M F F F IK E R N 9 84 C S L N L P E A G 2 51 T P H E D F S G V 8 80 L N L P E A G F H 2 18 L S S G V I S V p 7 11C P A S A S Q S V G 2 2C S G V I S V P H R 7 115 Q S V G I T G V S 2 3C A E L G A L Y R T 7 12C T G V S H R I R P 2 39 L S S L K Y P S W 7 122 V S H R I R P H V 2 6C K F R R H G A D N 7 31 S A Q F S T I L Q 1 7C 8 A S A A T A T T 7 34 F S T I L Q T L S 1 79 A A A T T V A A A 7 44 P A T F T P S P S 1 _ K E R N Q L F R T 6 63 F S D R V S L C R 1 11 L F R T G P H L S 6 67 V S L C R P G R S 1 56 F S G V K F R R H 6 77 V A Q S W A H C S 1 94 A A A A R V T L T 5 7 Q S W A H C S L N 1 14 T G P H L S SG V 4 94 H H V A Q T G L E 1 23 I S V P H R P A E 4 113 A S Q S V G I T G 1 43 K Y P S W R V R T 4 44 Y P S W R V R T P 4 TABLE XXVII162P1E6 v.4: HLA Peptide 12 F R T G P H L S S 3 Scoring Results A26 9-mers SYFPEITHI[ 16 P H L S S G V I S 3 SEQ. 26 P H R P A E L G A 3 Pos 1 2 3 4 5 6 7 8 9 score ID NO. 42 L K Y P S W R V R 3 31 E L G A L Y R T L 27 59 V K F R R H G A D 3 4 F I K E R N Q L F 24 62 R R H G A D N H E 3 34 A L Y R T L S S L 22 _ 64 H G A D N H E A S 3 24 S V P H R P A E L 21 65G A D N H E A S A 3 1C Q L F R T G P H L 20 69 H E A S A A T A T 3 48 R V R T P H E D F 20 78 T A A A T T V A A 3 3 F F I K E R N Q L 18 84 V A A A A A A A A 3 13 R T G P H L S S G 18 85 A A A A A A A A A 3 37 R T L S S L K Y P 16 86 A A A A A A A A A 3 28 R P A E L G A L Y 15 87 A A A A A A A A A 3 55 D F S G V K F R R 15 88| A A A A A A A A A 3 17 H L S S G V I SV 14 89 A A A A A A A A A 3 21 G V I S V P H R P 14 90 A A A A A A A A R 3 27 H R P A E L G A L |14_ 91 A A A A A A R V 3 53 H E D F S G V K F 114 35 L Y R T L S S L K2 54 E D F S G V K F R 113 40 S S L KY P S WR 2 217 TABLE XXVII 162P1E6 v.4: HLA Peptide TABLE XXVII 162P1E6 v.5: HLA Peptide Score ng Results A26 9-mers SYFPEITHI Scoring Results A26 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score1DNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 44 S W R V R T P H E 2 39 W S E V Q E A W S 2 4 V R T P H E D F S 2 __ L Y R K G P T T P 1 51 S G V K F R R H G 2 IS A H T V G P R Q R 1 60 A D N H E A S A A 2 23 G P R Q R E R V T 1 60 N H E A S A A T A 2 24 P R Q R E R V T D I 7A S A A T A T T A A 2 31 I P T R F Q W S E 1 73 A A T A T T A A A 2 8C A A T T V A A A A 2 TABLEXXVII162P1E6v.6: HLAPeptide E R N _ L F R T G P 1 Scoring Results A26 9-mers SYFPEITH [ 15 G P H L S S G V I I SEQ. 1_ S S G V I S V P H 1 Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 32 L G A L Y R T L S 1 IC R T N H T E L S Y 21 33 G A L Y R T L S S 1 8 E E R T N H T E L 15 47 W R V R T P H E D 1 13 H T E L S Y G T H 15 52 P H E D F S G V K 1 151 E L S Y G T H S G 15 61 F R R H G A D N H 1 2 R V R T P H E E R 11 63 R H G A D N H E A 1 4 R T P H E E R T N 11 71 A S A A T A T T A I q E R T N H T E L S 6 75 T A T T A A A TT 1 1 T N H T E L S Y G 5 92 A A A A A A.R V T 1 N H T E L S Y G T 4 1L S Y G T H S G T 4 TABLE XXVII162P1E6 v.5: HLA Peptide 3 V R T P H E E R T 3 ScoringResultsA269-mersSYFPEITHI _, T P H E E R T N H 3 SEQ. I P H E E R T N H T 3 Pos 1 2 3 4 5 6 7 8 9 score ID NO. 14 T E L S Y G T H S 2 29 R V T D I P T R F 22 1 W R V R T P H E _ 32 D I P T R F Q W S 22 2 E L G A L Y R K G 20 TABLE XXVI162P1E6 v.1: ELLA Peptide 121 T TP S S V M A H 19 Scoring Results B0702 9-mers SYFPE1THI III P T T P S S V M A 15 SEQ. 2C H T V G P R Q R E 14 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 21 T V G P R Q R E R 13 63 S P I S S G F H I 17 34 P T R F Q W S E V 13 94 A P A F Q G L G K 16 16 S V M A H T V G P 12 92 A H A P A F Q G L 15 26 E R V T D I P T R 11 32 G V R T R S L T L 14 3C V T D I P T R F Q 11 120 K D Q P H R A Q L 14 5 A L Y R K G P T T 10 1 V E S F S R H I L 13 1C G P T T P S S V M 9 23 R L S F L D K S L 13 31 R F Q W S E V Q E 9 42 C P P T P M N G P 13 1 A E L G A L Y R K 7 74 R G C K V L F V L 13 13 T P S S V M A H T 7 3C S L G V R T R S L 12 37 F Q W S E V Q E A 7 43 P P T P M N G P G 12 25 R Q R E R V T D I 6 48 N G P G S S Q E L 12 17 V M A H T V G P R 5 71 I G K R G C K V L 12 31 T D I P T R F Q W 5 72 G K R G C K V L F 12 R K G P T T P S S 4 73 K R G C K V L F V 12 iY R K P T T P S 3 120 Q P H R A Q L W H 12 K G P T T P S S V 3 10 G R M W G H W R L 11 21 V G P R Q R E R V 3 19 W G H W R L S F L 11 35 T R F Q W S E V Q 3 33 V R T R S L T L L 11 38 Q W S E V Q E A W 3 39 T L L C P p T P M 11 3 L G A L Y R K G p 2 45 T P M N G P G S a I I 18 M A H T V G P R Q 2 49 G P G S S Q E L W 11 218 TABLE XXVIII 162P1E6 v.1: HLA Peptide TABLE XXVIII 162P1E6 v.1: HLA Peptide Scoring Results B0702 9-mers SYFPEITHI Scoring Results B0702 9-mers SYFPEITHI SEQ. SEQ. Pos 12 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scorelDNO. 52 S S Q E L W F F L 11 17 R M W G H W R L S 3 79 L P V L F G Q C L 11 26 F L D K S L G V R 3 96 A F Q G L G K Q A 11 28 D K S L G V R T R 3 103 Q A Q S S W I F L 11 54 Q H L W F F L S S 3 18 M W G H W R L S P 10 64 P I S S G F H I G 3 5C P G S S Q E L W F 10 69 F H I G K R G C K 3 88 V E R N A H A P A 10 82 L F G Q C L V E R 3 89 E R N A H A P A F 10 98 Q G L G K Q A Q S 3 106 S S W I F L K Q L 10 116 N T C F F F V S S 3 133 Q L W H T Q W D L 10 122 V S S R K D Q P H 3 27 L D K S L G V R T 9 132 A Q L W H T Q W D 3 51 G S S Q E L W F F 9 5 E I V E S F S R H 2 61 S S S P I S S G F 9 12 R H I L G R M W G 2 7C H I G K R G C K V 9 13 H I L G R M W G H 2 75 G C K V L F V L F 9 14. L G R M W G H W 2 112 K Q L Q N T C F F 9 31 R S L T L L C P P 2 129 P H R A Q L W H T 9 44 P T P M N G P G S 2 1C F S R H I L G R M 8 47 M N G P G S S Q E 2 25 S F L D K S L G V 8 59 F L S S S P I S S 2 3A S L T L L C P P T 8 85 Q C L V E R N A H 2 102 K Q A Q S S W I F 8 97 F Q G L G K Q A Q 2 109 1 F L K Q L Q N T 8 99 G L G K Q A Q S S 2 114 L Q N T C F F F V 8 108 W I F L K Q L Q N 2 2 T N K E I V E S F 7 115 Q N T C F F F V S 2 6 I V E S F S R H I 7 121 F V S S R K D Q P 2 31 L G V R T R S L T 7 131 R A Q L W H T Q W 2 57 W F F L S S S P I 7 135 W H T Q W D L D K 2 86 C L V E R N A H A 7 3 N K E I V E S F S I 101 G K Q A Q S S W I 7 4 K E I V E S F S R 1 111 L K Q L Q N T C F 7 8 E S F S R H I L G 1 113 Q L Q N T C F F F 7 11 S R H I L G R M W 1 34 R T R S L T L L C 6 38 L T L L C P P T P 1 4C L L C P P T P M N 6 41 L C P P T P M N G 1 40 P M N G P G S S Q 6 53 S Q E L W F F L S 1 8C F V L F G Q C L V 6 55 E L W F F L S SS 1 84 G Q C L V E R N A 6 58 F F L S S S P I S 1 124 S R K D Q P H R A 6 62 S S P I S S G F H 1 125 R K D Q P H R A Q 6 66 S S G F H I G K R 1 21 H W R L S F L D K 5 67 S G F H I G K R G 1 29 K S L G V R T R S 5 77 K V L F V L F G Q 1 60 L S S S P I S S G 5 78 V L F V L F G Q C 1 65 I S S G F H I G K 5 83 F G Q C L V E R N 1 81 V L F G Q C L V E 5 87 L V E R N A H A P 1 105 Q S S W I F L K Q 5 93 H A P A F Q G L G 1 9 S F S R H I L G R 4 117 T C F F F V S S R 1 35 TRSLT L L C P 4 12 F F V S S R K D Q 1 76 C K V L F V L F G 4 13C H R A Q L W H T Q 1 90 R N A H A P A F Q 4 138 Q W D L D K G R G 1 91 N A H A P A F Q G 4 104 A Q S S W I F L K 4 123 S S R K D Q P H R 4 1 MTNKEIVE S 3 15 L G R M W G H W R 3 219 TABLE XXVIII 162P1E6 v.3: HLA Peptide TABLE XXVII 162P1E6 v.3: HLA Peptide Scoring Results B0702 9-mers SYFFPEITH[ Scoring Results B0702 9-mers SYFPEITHI SEQ. SEQ. Pos 1 . 2 3 4 5 6 7 8 9 score ED NO. Pos 11 2 3 4 5 6 7 8 9 score ED NO. 5( S PS IP L SSA 21 11 G ITG VS HRI1 8 1! K PVS L LL SV 19 __ 121 V SHR IR P Hv 8 5'1 PL S SA Y FF 18 12 R IRP HV L FH 8 8 LP EA G FH HV 18 L TL DL E KPV 7 105 PP A SA SQ SV 17 __ 31 Q TL S F P AT 7 12 DL E KP VS LL 15 5 S IP LS SA Y.F 7 _ 711 R PGR SA V AQ 15 2 TNL Y SK N SA 6__ E____LLTL__L_ 1 28 SXN S AQ F ST 6 _ _ 4A TP P _IP__1 59 Y FF FF S DRV 6 _ 4_ TP__PSIP__S_ 1 97 AQ T GL E LLS 6 _ _ 7E A___WAH L 1 A 3SL LL T LD -5 __ 95 HVAQTGLEL 16 R VS LC R PGR 5 __ 13 _ __ _ _ L___PVS L 1 90 E AG FH HV AQ 5 _ _ 4_ T___FPA T 1 10q LS NP P AS AS 5 43. P T T S 1320 L LS V TN L YS 4 __ 611 __FFSD__VSL_ 1 4Z S FP A T FT P 4 _ 81 _SWA__C_ LNL_ 1 7 P GR S AV AQS 4 _ _ 9 T L L S 1371 AV AQ SW A HC 4 __ 12_ RPHVL 1 110 P AS AS QS V 4 _ 3_ LLTL 1 1151 Q SV GI T GVS 4 _ _ 11 LDLEKPVS_ L 1 111 S V G I T G V S 9 4 _ _ 18 S_ VTNL 1 10 T LD LE K PVS 3 _ 33 ______ QS 25 SS AY FF F FS 3 _ _ 45 AT TPS S1 258 A Y F F F F S D R 3 __ 101 S LS N P PA S A 1 62 F F S D R V S L C 3 29KNSAQFST1 1 63 F S D R V S L C R 3 55 L_8_SAY________ 1 73 G R S A V A Q S N 3 69 LCR_ GRSAV_ 1 113 A SQ S V GI T 3 93 __H__V__Q__G__ I_ 12-1 GV S HR IRP H 3 111.A _SASQSVG1_ 1 17 VSL LL S V TN 2 K WA E S LLILT 10 49 P___SIPL 6_ S_ 10 GRSA 07 SNAPVAQS WAQ 2 71 C_ _ _ _ _ _ R_ 11 GITSAGVS1H8RIRL AG 2 __ _ __ _ _ S_ 25 NL S N A L P 1 4 H 10 PA 1 0 A S AQT SSQP 2 16_________ P T F T S P R I 35S IL TL P 9 9- L T PS V SINLP 1 _ 38,L QT S P T 9 2 NL YS KN 22Q0 TABLE XXVIll 162P1E6 v.3: HLA Peptide TABLE XXVIH 162P1E6 v.4: HLA Peptide Scoring Results B0702 9-mers SYFPEITHI Scoring Results B0702 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scoreEDNO. 57 S A Y F F F F S D 1 17 H L S S G V I S V 9 6C F F F F S D R V S 1 41 S L K Y P S W R V 9 65 D R V S L C R P G j 63 R H G A D N H E A 9 79 Q S W A H C S L N 1 66 A D N H E A S A A 9 8 C S L N L P E A G 1 69 H E A S A A T A T 9 8 N L P E A G F H H 1 82 T T V A A A A A A 9 117 V G I T G V S H R 1 65 G A D N H E A S A 8 12C T G V S H R I R P j 67 D N H E A S A A T 8 68 N H E A S A A T A 8 TABLE XXVIII162P1E6 v.4: HLA Peptide 12 F R T G P H L S S 7 Scoring Results B0702 9-mers SYFPEITHI 58 G V K F R R H G A 7 SEQ. 75 T A T T A A A T T 7 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 4 F I K E R N Q L F 6 15 G P H L S S G V I 17 14 T G P H L S S G V 6 51 T P H E D F S G V 17 9C A A A A A A A A R 6 93 A A A A A R V T L 17 18 L S S G V I S V P 5 28 R P A E L G A L Y 14 23 I S V P H R P A E 5 25 V P H R P A E L G 13 6C K F R R H G A D N 5 31 E L G A L Y R T L 13 5 I K E R N Q L F R 4 44 Y P S W R V R T P 13 19 S S G V I S V P H 4 3 F F I K E R N Q L 12 46 S W R V R T P H E 4 1C Q L F R T G P H L 12 55 D F S G V K F R R 4 22 V I S V P H R P A 12 8 R N Q L F R T G P 3 27 H R P A E L G A L 12 13 R T G P H L S S G 3 34 A L Y R T L S S L 12 16 P H L 9 S G V I S 3 48 R V R T P H E D F 12 32 L G A L Y R T L S 3 70 E A S A A T A T T 12 33 G A L Y R T L S S 3 73 A A T A T T A A A 12 38 T L S S L K Y P S 3 7q T A A A T T V A A 12 39 L S S L K Y P S W 3 79 A A A T T V A A A 12 45 P S W R V R T P H 3 85 A A A A A A A A A 12 54 E D F S G V K F R 3 86 A A A A A A A A A 12 62 R R H G A D N H E 3 87 A A A A A A A A A 12 7 E R N Q L F R T G 2 88 A A A A A A A A A 12 9 N Q L F R T G P H 2 89 A A A A A A A A A 12 11 L F R T G P H L S 2 94 A A A A R V T L T 12 2C S G V I S V P H R 2 24 S V P H R P A E L 11 29 P A E L G A L Y R 2 26 P H R P A E L G A 11 35 L Y R T L S S L K 2 71 A S A A T A T T A 11 36 Y R T L S S L K Y 2 74 A T A T T A A A T 11 42 L KY P S W R V R 2 77 T T A A A T T V A 11 49 V R T P H E D F S 2 91 A A A A A A A R V 11 56 F S G V K F R R H 2 92 A A A A A A R V T 11 57 S G V K F R R H G 2 3C A E L G A L Y R T 10 61 F R R H G A D N H 2 43 K Y P S W R V R T 10 64 H G A D N H E A S 2 53 H 8 D F S G V K F 10 37 R T L S S L K Y P I 72 S A A T A T T AA 10 4 SS L K Y P S W, R I 76 A T T A A A T T V 10 5 R T P H E D F S G 1 8C A A T T V A A A A 10 52 P H E D F S G V K 1 81 A T T V A A A A A 10 59 VKFRIRHGAD j 83 T V A A A A A A A 10 84 VAAAAAAAA 10 221 TABLE XXVIII 162P1E6 v.5: HLA Peptide TABLE XXVIII 162P1E6 v.6: HLA Peptide Scoring Results B0702 9-mers SYFPEITHI Scoring Results B0702 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 1( G P T T P S S V M 20 E R T N H T E L 8 2 13 T P S S V M A H T 19 14 T E L S Y G T H S 2 23 G P R Q R E R V T 19 R T P H E E R T N 1 25 R Q R E R V T D I 11 33 I P T R F Q W S E 11 ABLE XXIX 162P1E6 HLA v.1: Peptide 5 A L Y R K G P T T 10 coring Results B08 9-mers SYFPEITHl 2' R H R V T D I P T 10 SEQ. 11, P T T P S S V M A 9 Pos 1 2 3 4 5 6 7 8 9 score IDNO. I Y R K G P T T P S 8 3C S L G V R T R S L 27 14 P 8 S V M A H T V 8 32 G V R T R S L T L 25 29 R V T D I P T R F 8 71 I G K R G C K V L 22 34 P T R F Q W S E V 8 2 T N K E I V E S F 19 G A L Y R K G P T 7 75 G C K V L F V L F 19 K G P T T P S S V 7 1 W G H W R L S F L 18 22 V G P R Q R E R V 7 23 R L S F L D K S L 17 31 F Q W S E V Q E A 7 86 C L V E R N A H A 17 21 H T V G P R Q R E 6 11C F L K Q L Q N T C 17 30 V T D I P T R F Q 6 133 Q L W H T Q W D L 16 0 R K G P T T P S S 5 108 W I F L K Q L Q N 15 11 S V M A H T V G P 5 52 S S Q E L W F F L 14 1 A E L G A L Y R K 4 63 S P I S S G FI 14 L Y R K G P T T P 4 72 G K R G C K V L F 14 E L G A L Y R K G 3 103 Q A Q S S W I F L 14 17 V M A H T V G P R 3 13 H I L G R M W G H 13 23 P R Q R E R V T D 3 7q H I G K R G C K V 13 31 R F Q W S E V Q 3 106 S S W I F L K Q L 13 38 Q W S E V Q E A W 3 2 S F'L DK S L G V 12 3 L G A L Y R K G P 2 113 Q L Q N T C F F F 12 12 T T P S S V M A H 2 124 S R K D Q P H R A 12 15 S S V M A H T V G 2 V E S P S R H I L 11 18 M A H T V G P R Q 2 1 G R M W G H W R L 11 19 A H T V G P R Q R 2 2 L D K S L G V R T 11 21 T V G P R Q R E R 2 3 V R T R S L T L L 11 28 E R V T D I P T R 2 4 N G P G 8 S Q E L 11 31 T D I P T R F Q W 2 6S F H I G K R G C K 11 2 Q R E R V T D I P 1 73 K R G C K V L F V 11 32 D I P T R F Q W S 1 79 L F V L F G Q C L 11 3 T R F Q W S E V Q 1 122 V S S R K D Q P H 11 39 W S E V Q E A W S 1 E S F S R H I L G 10 74 R G C K V L F V L 10 TABLE XXVIH 162PIE6 v.6: HLA Peptide 92 A H A P A F Q G L 10 Score i Results B0702 9-mers SYFPEITHI 98 Q G L G K Q A Q S 10 SEQ. 10 L G K Q A Q S S W 10 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 12 K D Q P H R A Q L 10 E E R T N H T E L 14 3 S L T L L C P P T 9 T P H E E R T NH 12 81 E R N A H A P A F 9 16 L S Y G T H S G T 8 121 F V S S R K D Q P 9 VRTPHEER T 7 5 EIVES FSRH 8 P H E E R T N H T 7 21 H W R L S F L D K 8 RV R T P H E E R 6 55 E L W F F L S S S 8 1 NH T E L S Y G T 6 61 S S S P I S S G F 8 SELSY G T H S G 4 781 V L V L F G Q C 8 1C R T N H T E L Y 3 111 L K Q L Q N T C P 8 222 'ABLE XXIX 162P1E6 HLA v.1: Peptide TABLE XXIX 162P1E6 HLA v.1: Peptide Scoring Results B08 9-mers SYFPEITHI Scoring Results B08 9-mers SYFPEITHI SEQ. SEQ. Fos 1. 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scoreDENO. 123 S S R K D Q P H R 8 24 L S F L D K S L G 1 127 D Q P H R A Q L W 8 35 T R S L T L L C P I 6 I V E S F S R H I 7 38 L T L L C P P T P I 1C F S R H I L G R M 7 58 F L S S S P I S __ 14 I L G R M W G H W 7 60 L S S S P I S S G 26 F L D K S L G V R 7 65 I S S G P H I G K K 43 P P T P M N G P G 7 68 G F H I G K R G C 1 49 G P G S S Q E L W 7 8C F V L F G Q C L V 51 G S S Q E L W F F 7 87 L V R N A H A P 1 57 W F F L S S S P I 7 96 A F Q G L G K Q A 1 59 F L S S S P I S S 7 104 A Q S S W I F L K I 81 V L F G Q C L V E 7 109 I F L K Q L Q N T 1 88 V E R N A H A P A 7 116 N T C F F F V S S 1 99 G L G K Q A Q S S 7 117 T C F F F V S S R 1 101 G K Q A Q S S W I 7 125 R K D Q P R A Q 1 15 L G R M W G H W R 6 13 H R A Q L W H T Q 18 M W G H W R L S F 6 136 H T Q W D L D K G 34 R T R S L T L L C 6 137 T Q W D L D K G R 39 T L L C P P T P M 6 138, Q W D L D K G R G_ 4C L L C P P T P M N 6 4 C P P T P M N G P 6 TABLE XXIX162P1E6 v.3: HLA Peptide 4 T P M N G P G S S 6 Scoring Results B08 9-mers SYFPEITHI SC P G S S Q E L W F 6 _ SEQ. 94 A P A F Q G L G K 6 1 Pos 1 2 3 4 5 6 7 8 9 score'IDNO. 102 K Q A Q S S W I F 6 123 S H R I R P H V L 26 112 K Q L Q N T C F F 6 11 L D L E K P V S L 23 128 Q P H R A Q L W H 6 13 L E K P V S L L L 20 129 P H R A Q L W H T 6 18 S L L L S V T N L 20 93 H A P A F Q G L G 5 25 N L Y S K N S A Q 18 131 R A Q L W H T Q W 5 17 D L E K P V S L L 17 64 P I S S G F H I G 4 85 S L N L P E A G F 15 91 N A H A P A F Q G 4 96 V A Q T G L E L L 15 95 P A F Q G L G K Q 4 3 W A E S L L L T L 14 1 M T N K E I V E S 3 5 E S L L L T L D L 13 9 S F S R H I L G R 3 52 S I P L S S A Y F 13 53 S Q E L W F F L S 3 53 I P L S S A Y F F 13 66 S S Q F H I G K R 3 54 P L S S A Y F F F 12 67 S G F H I G K R G 3 61 F F F S D P V S L 12 97 F Q G L G K Q A Q 3 8C S W A H C S L N L 12 11 S R H I L G R M W 2 93 F H H V A Q T G L 12 28 D K S L G V R T R 2 95 H V A Q T G L E L 12 62 S S P I S S G F H 2 47 F T P S P S I P L 11 76 C K V L F V L F G 2 98 Q T G L E L L S L 11 82 L F G Q C L V E R 2 118 G I T G V S H R I 11 83 F G Q C L V E R N 2 125 R I R P H V L F H 11 84 G Q C L V E R N A 2 1 L K W A E S L L L 10 85 Q C L V E R N A H 2 27 Y S K N S A Q F S 10 107 S W I F L K Q L Q 2 3C N S A Q F S T I L 10 119 F F F V S S R K D 2 33 Q F S T I L Q T L 10 12C F F V S S R K D Q 2 62 F F S D R V S L C 10 I K E I V R S F S R 1 78 A Q S W A H C S L 10 12 R H I L G R M W G 1 121 G V S H R I R P H 10 20 G H W R L S F L D 1 SLLLTLDLE 9 223 TABLE XXIX 162P1E6 v.3: HILA Peptide TABLE XXIIX 162P1E6 v.3: HILA Peptide Scoring Results B08 9-mers SYFPEITHl Scoring Results B08 9-mens SYFPEITHI SEQ. SEQ. Pos 1 1 2 3 4 56 7 8 9sreD N. Pos 12 3 45 67 89core mDNO. 3 S TI L QT LSF 9 28 S KNXS AQ FST 2 6 S DR VBL C RP 9 38 LQ TL S FP AT 2 61 VSL CRkP G RS 9 42 SF P AT F T P 2 _ 20 LJS VT N LY S 8 99 TG L ELL S LS 2 50 S P 18 1 P L S S A 8 -101 S N P P A S A S Q 2 60 S LC R PG RSA 8 11A V G ITQGVS HR 2 70 C R P G R S A V A 8 1 I T Q V S H R I R 2 711 R PG R SAV AQ8 A E SLL LT LD I 81 NL PE AG PH H 8 9L T L D L E K P V I 90 EA G H V AQ 816 P VS L L LS VT I 100 L 8L L L SN 824 TN L Y SK NS A I _____LLSLSN__P_ 32 A QFS T I LQT I _0 L__LSLSNP PA 8 34 FS T ILQ T LS I _ _0 S_ 51 PS IP LS S AY 1 L~__ L 63 F S D R V S L C R I L______ L 6 RVS L CR P GR I 1_ T___L3KP 73 G R SAV A QSW I 3A I___TLSF 74 R SA V AQS WA 1 _ F___TFT PS 82 A H CS LN L P R 4__TPS__S__PL___ 84 C S L NLPE AG 1 ___LCRP____S__V_ 91 A G H HV A QT I 71 AV QS__AH_ 94 HH V AQ T G L 1__ 111 ASASQS_'VG_1 101 L E LL SLS NP I _I SAS_0 S G I T 10 L SL S NP P AS I 1_ K___SLLL 106 L SN P PAS AS I _ ________ L 12 2VS HR IR P HV 1 __ ___KNSAQ ___ST 1_6 _ TABLE XXJ= 162PIE6 v.4: lILA Peptide 311 A F T L 6 coring Results B08 9-mers SYFPErTH 3 QT L 7 A TP 6SEQ. 40 TL SF P T__T_ Pos 1 234 56 7 89 scoreED NO. 4 TF TP P__16 _ FI XE R NQ L 32 ___LS_8__Y____F__ 24 S V PH RPA EL 21 57 SA Y F F SD 641 SL KY PS W RV 19 88 P A9 PH HV 5N GV KPFR RHGA 19 108 N PP ASA S QS 6 __ 311 EL G AL YR TL 18__ 10 P___SASQ 40 S WRV RT PH 8 17 77 A SW AH CS 10 QL PR TG P HL 16 31 TI L T S FP 434 A LY R TLS SL 16 0 P T T S S 44YP S W RVR TP 15 811 A HC 0 N LP 493 A AA A ARV TL 15 11 ___ASA_8QS__Q_ 15 P HL SS GVI1 14 114 ____SV__1_T__V_ 33 GAL Y RT LS 8 14 _ _ 1___K__V_____L__8 94 A A A ARV TLT13 1__VSLLL__VN_ 2 HR P A L G AL 12 VTK__YS__NS_ 4 R V RT PHE DF 12 5_ SSA_______F__ 50 F S V XF R RH 12 83H SL LP__A3 _ FFP I KE RNQ 11 110S V0 1T GVS__ 3 F F IKBHR NQL I I K KW AE SL LLT 2 __ 39 L S S L Y PSW I1I S VT NL YS KN 2 __ 59 V K R R H GAD 10__ 224 TABLE XXIX 162P1E6 v.4: HLA Peptide TABLE XXIX 162P1E6 v.4: HLA Peptide Scoring Results B08 9-mers SYFPEITHI coring Results B08 9-iners SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scorellDNO. 9 N Q L F R T G P H 8 43 K Y P S W R V R T I 17 H L S S G V I S V 8 47 W R V R T P H E D 11 28 R P A E L G A L Y 8 49 V R T P H E D F S 1 51 T P H E D F S G V 8 66 A D N H E A S A A I 53 H E DF S G V K F 8 74 A T A T T A A A T 1 25 V P H R P A E L G 7 82 T T V A A A A A A 1 61 F R R H G A D N H 7 83 T V A A A A A A A 1 72 S A A T A T T A A 7 6 K E R N Q L F R T 6 TABLE XXIX 162P1E6 v.5: ILA Peptide II L F R T G P H L S 6 Scoring Results B08 9-mers SYFPEITHI 22 V I S V P H R P A 6 SEQ. 20 P H R P A E L G A 6 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 35 L Y R T L S S L K 6 25 R Q R E R V T D I 23 3 T L S S L K Y P B 6 23 G P R Q R E R V T 21 6C K F R R H G A D N 6 5 A L Y R K G P T T 16 7C E A S A A T A T T 6 4 G A L Y R K G P T 14 78 T A A A T T V A A 6 32 D I P T R F Q W S 12 79 A A A T T V A A A 6 7 Y R K G P T T P S 10 84 V A A A A A A A A 6 21 T V G P R Q R E R 9 29 P A E L G A L Y R 5 2 E L G A L Y R K G 8 65 G A D N 9 E A S A 5 1 G P T T P S S V M 7 73 A A T A T T A A A 5 27 R E R V T D I P T 7 8C A A T T V A A A A 5 33 I P T R F Q W S E 7 85 A A A A A A A A A 5 34 P T R F Q W S E V 7 8 A A A A A A A A A 5 6 L Y R K G P T T P 6 87 A A A A A A A A A 5 13 T P B S V M A H T 6 88 A A A A A A A A A 5 29 R V T D I P T R F 6 89 A A A A A A A A A 5 18 M A H T V G P R Q 4 9C A A A A A A A A R 5 1q S V X A H T V G P 3 19 S S G V I S V P H 4 28 E R V T D I P T R 3 54 E D F S G V K F R 4 37 F Q W S E V Q E A 3 75 T A T T A A A T T 4 38 Q W S E V Q E A W 3 91 A A A A A A A R V 4 3 L G A L Y R K G P 2 91 A A A A A A R V T 4 12 T T P S S V M A H 2 2 S G V I S V P H R 3 15 SS V M A H T V G 2 67 D N H E A S A A T 3 17 V M A H T V G P R 2 7 E R N Q L F R T G 2 11 P T T P S S V M A 1 23 I S V P H R P A E 2 14 P S S V M A H T V 1 4C S S L K Y P S W R 2 1 A H T V G P R Q R 1 57 S G V K F R R H G 2 20 H T V G P R Q R E 1 63 R H G A D N H E A 2 22 V G P R Q R E R V 1 6 H G A D N H E A S 2 24 P R Q R E R V T D 1 69 H E A S A A T A T 2 30 V T D I P T R F Q 1 81 A T T V A A A A A 2 36 R F Q W S E V Q E 1 I K E R N Q L F R 1 39 W S Z V Q E A W S I R N Q L F R T G P 1 1 F R T G P H L S S TABLE XXIX 162P1E6 v.6: -HLA Peptide 10 P H L S S a V I S 1 Scoring Results B08 9-mers SYFPEITHI 18 L S S G V I S V P I SEQ. 21 G V I S V P H R P 1 Pos 1 2 3 4 5 6 7 8 9 score ID NO. 32 L G A L Y R T L S 1 8 E E R T N H T E L 19 36 Y R T L S S L K Y 1 P H E R T NHT 10 37 R T L S S L K Y P 1 15 E L S Y G T HSG 9 225 TABLE IXJX 162PIE6 v.6: HLA Peptide TABLE XXX 162P1E6 v.1: HLLA Peptide Scoring Results B08 9-mers SYFPFITH Scoring Results B1510 9-mers SYFPEI1ff SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score 0D NO. Pos 11 2 3 4 5 6 7 8 9 score ED NO. 5 TPH E ER TN H 8 __ 1251 RKD Q P H RAQ- 5 2 R VRT P H EER 7 _ EIV E SF S RH 4__ 7 H E ERT N HTE 2 __ 21 L D K SLG VRT 4__ 9_ ER TN HT E LS 2 -2 KS L GVR TR 8 4 __ 12 NH T ELS Y GT 2 40 L LCP PT P MN 4 13 HT EL SY G TH 2 __ 65 ISS GFH I GK 4 1 W RV RT P HEE 1 __ 82 L FGQ0CL V ER 4 3 VR TP H E ERT 1 124 SR K DQ P HRA 4__ 17 R MWG(;HW R LS 3 TABLE XXX162P1E6 v.I: FAPpie26 F L DKS LG VR 3 Scoring Results B15109-mers SYFPErff 3N L T L L C P P T P 3 SEQ. 411 L C PPT P mNG 3 Pos 1 2 3 4 5 6 7 8 9 score ED NO. 45 T P M N G P G S S 3 92 A H AP AF Q GL 23 _ 47 M NG PG S S Q 3 71 1_ G_ KVL 1 60 L SS SP I SSQ 3 16 R W H R 1481 V LF GQ C L V 3 _ 30__ RTRSL 1 83 F GQC LV E RN 3 74 G K L V 1384 G QCL VEHR NA 3 _ 126 KDQPHRA__L 1 8 Q C L VERNAHK 3 7 V S FS RH I 128A L VER NA H AP 3 12 RHILGRMW G_1 91 FQG L GK Q AQ 3 32 ______ 10 LTL 1 o I PL KQ LQ NT 3 48__ SSQEL 1 119 FPFFV SS R KD 3 6 FK I K RG C 1213C H RAQ0L W HTQ 3 2______R__S__L__ I 138 Q WDL D KG R G 3 2NRLSFLDKSL1_ S PS R HIL G R 2 5 SS 0E L F L 1 11 SR H ILG R MW 2 7AGXRGCKVL_1 131 H ILG RM W GH 2 13$W HT QW DL DK 1 141 IIIGR M WG HW 2 1 WG HW P L F 1035 T RSL TL L CP 2 3 VR T 8 LT L 1042 C P PTP M NGP 2 _ GCKVLFVLP 1 43 P PTP M N G P 2' 79 F L G C 1044P TPM NG P GS 2 10 QA__SSWI__L_ 1 40 PdN G PG S SQ 2 129P XR AQ LW HT 1 (4P IS SG F HIG 2__ __T__KEI___S__ 91 RNA H AP A FQ 2 __ ________ T _ CPPT 91 P AF QG L GKQ 2 __ 511G SS 0E LW FF 99 GL G KQ A QSS 2 __ 611 S P IS SG F 10O AQ SS WI F LK 2 __ 8 R A A A 9110 FL KQ LQ N TC 2 _ 10 F9 RH IL G M ji QXT CF F FV S 2 _ 11 K Q LQ N TC F _ 8Ii TC FF PV S SR -2 10 M WRLS 1 C F P F V S S R K 2 __ 50 PG S Q L WF 71211 F VSS R KD QP 2 __ 28 DX S G R TR 6123 SSR K DQ P HR 2 __ IIIL K0 LQ NT CF 6137 TQW DL D K GR 2 __ 11_ 3 NKE 1V E S FS I I MT K Iv ES 4K E I V E S F S R I a IV S SR H1 8E S F S R H I L G , 60 G F HIG K.RGC 5 2A L SF LD K SLG I1 226 TABLE XXX 162P1E6 v.1: HLA Peptide TABLE XXX 162P1E6 v.3: HLA Peptide Scoring Results B1510 9-mers SYFPEITHI Scoring Results B1510 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 25 S F L D K S L G V 1 54 P L S S A Y F F F 7 31 L G V R T R S L T 1 55 L S S A Y P F F F 7 37 S L T L L C P P T 1 85 S L N L P E A G F 7 49 G P G S S Q E L W 1 35 S T I L Q T L S F 6 53 S Q E L W F F L S 1 48 T P S P S I P L S 6 55 E L W F F L S S S I 52 S I P L S S A Y F 6 58 F F L S S S P I S 1 10 T L D L E K P V S 5 66 S S G F H I G K R 1 69 L C R P G R S A V 5 7C H I G K R G C K V 1 11 I T G V S H R I R 5 73 K R G C K V L F V 1 121 G V S H R I R P H 5 70 C K V L F V L F G 1 4 T F T P S P S I P 4 78 V L F V L F G Q C 1 6 F F F F S D RV S 4 8C F V L F G Q C L V 1 83 H C S L N L P E A 4 86 C L V E R N A H A 1 8 PEAG F H H V A 4 91 N A H A P A F Q G I 9C E A G F H H V A Q 4 94 A P A F Q G L G K I 104 L S L S N P P A S 4 96 A F Q G L G K Q A 1 -10 L S N P P A S A S 4 98 Q G L G K Q A Q S 1 114 S Q S V G I T G V 4 100 L G K Q A Q S S W I 11 G _I T G V S H R I 4 101 G K Q A Q S S W I 1 12C T G V S H R I R P 4 105 Q S S W I F L K Q 1 16 P V S L L L S V T 3 107 S W I F L K Q L Q 1 17 V S L L L S V T N 3 12C F F V S S R K D Q 1 4C T L S F P A T F T 3 122 V S S R K D Q P H 1 41 L S F P A T P T P 3 51 P S I P L S S A Y 3 TABLE XXX 162PE6 v.3: ILA Peptide 59 Y F F F F S D R V 3 Scoring Results B1510 9-mers SYFPEITHI 6 F F S D R V S L C 3 SEQ. 64 S D R V S L C R P 3 Pos 1 2 3 4 5 6 7 8 9 score ID NO. 66 R V S L C R P G R 3 123 S H R I R P H V L 23 6' V S L C R P G R S 3 93 F H H V A Q T G L 21 68 S L C R P G R S A 3 11 L D L E K P V S L 14 70 C R P G R S A V A 3 12 D L E K P V S LL 14 71 R P G R S A V A Q 3 61 F F F S D R V S L 13 105 S L S N P P A S A 3 95 H V A Q T G L E L 13 110 P A S A S Q S V G 3 3 W A E S L L L T L 12 111 A S A S Q S V G I 3 13 L E K P V S L LL 12 112 S A S Q S V G I T 3 3C N S A Q F S T I L 12 115 Q S V G I T G V S 3 33 Q F S T I L Q T L 12 125 R I R P H V L F H 3 5 E S L L L T L D L 11 2 K W A E S L L L T 2 18 S L L L S V T N L 11 14 E K P V S L L L S 2 47 F T P S P S I P L 11 20 L L S V T N L Y S 2 78 A Q S W A H C S L 11 24 T N L Y S K N S A 2 8C S W A H C S L N L 11 29 K N S A Q F S T I 2 90 V A Q T G L E L L 11 31 T I L Q T L S F P 2 I L K W A E S L L L 10 37 I L Q T L S F P A 2 82 A H C S L N L P 8 10 38 L Q T L S F P A T 2 94 H H V A Q T G L E 10 43 F P A T F T P S P 2 98 Q T G L E L L S L 10 45 A T F T P S P S I 2 26 L Y S K N S A Q F 9 5C' S P S I P L S S A 2 124 H R I R P H V L P 9 65 D R V S L C R P G 2 391 Q T L S F P A _TF g 73 G R S AV AQ S W 2 53 P L S S A Y F F 8 74 R S A V A Q S W A 2 227 TABLE XXX 162PIE6 v.3: HLA Peptide TABLE XXX 162P1E6 v.4: HLA Peptide Scoring Results B1510 9-mers SYFPETIHI Scoring Results B1510 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 76 A V A Q S W A H C 2 7 E R N Q L F R T G 5 84 C S L N L P E A G 2 18 L S S G V I S V V 5 86 L N L P E A G F H 2 22 V I S V P H R P A 5 881 L P E A G F H H V 2 43 K Y P S W R V R T 5 92 G F H H V A Q T G 2 55 D F S C V K F R A 5 9_ T G L E L L S L S 2 5 FSGVKF R R H 5 10C G L E L L S L S N 2 78 T A A A T T V A A 5 103 L L S L S N P P A 2 92 A A A A A A R V T 5 107 S N P P A S A S Q 2 5 I K E R N Q L F R 4 116 S V G I T G V S H 2 21 G V IS V P H R P 4 117 V G I T G V S H R 2 57 S G V K F R R H G 4 122 V S H R I R P H V 2 64 H G A D N H E A S 4 4 A I S L L L T L D 1 77 T T A A A T T V A 4 71 LLL TL DLEK 1 1 MFFFIKERN 3 9 L T L D L 8 K P V I 15 G P H L S S G V I 3 21 L S V T N L Y S K 1 17 H L S S G V I S V 3 25 N L Y S K N S A 1 19 S G V I S V P H 3 27 Y 8 K N S A Q F 1 30 A E L G A L Y RT 3 32 A Q F S T I L Q T 1 38 T L S S L K Y P S 3 44 P A T F T P S P S 1 41 S L K Y P S W R V 3 49 P S P S I P L S S 1 54 E D F S G V K F R 3 56 S S A Y F F F F S 1 7 E A S A A T A T T 3 72 P G R S A V A Q S I 79 A A A T T V A A A 3 75 S A V A Q S W A H I 83 T V A A A A A'A A 3 87 N L P E A G F H H 1 91 A A A A A A A R V 3 911 A G F H H V A Q T 1 2 F F I K E R N Q 2 97 A Q T G L E L L S 1 6 K E R N Q L F R T 2 102 E L L S L S N P P I 11 L F R T G P H L 8 2 109 P P A S A S Q S V 1 12 F R T G P H L S S 2 113 A S Q S V G I T G 13 R T G P H L S S G 2 2C S G V I S V P H R 2 TABLE XXX 162P1E6 v.4: HLA Peptide 28 R P A E L G A L Y 2 Scoring ResultsB15109-mersSYFPErTM 29 P A E L G A L Y R 2 SEQ. 32 L 0 A L Y R T L S 2 Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 39 L S S L K Y P S W 2 93 A A A A A R V T L 15 4C S S L K Y P S W R 2 31 E L G A L Y R T L 14 46 S W R V R T P H E 2 52 P H E D F S G V K 14 47 W R V R T P H E D 2 N F F I K E R N Q L 12 49 V R T P H E D F S 2 16 P H L S S G V I S 12 51 T P H E D F S G V 2 24 S V P H R P A E L 12 58 G V K F R R H G A 2 26 P H R P A H L G A 12 67 D N H E A S A A T 2 68 N H E A S A A T A 12 69 H E A S A A T A T 2 1C Q L F R T G P H L 11 71 A S A A T A T T A 2 27 H R P A H L G A L 11 72 S A A T A T T A A 2 63 R K G A D N H H A 11 74 A T A T T A A A T 2 34 A L Y R T L S S L 10 75 T A T T A A A T T 2 53 H E D F S G V K F 8 81 A T T V A A A A A 2 4 F I K E R N Q L F 7 82 T T V A A A A A A 2 23 I 9 V P H R P A E 7 8 V A A A A A A A A 2 48 RVR T P H E D F 85 A A A A A A A A A 2 42 L Y P S W R V R 6 8 A A A A A A A A A 2 44 Y P S W R V R T P 6 8 A AAAAAAAA 2 228 TABLE XXX 162P1E6 v.4: lILA Peptide TrABLE XXX I62P1E6 v.5: lILA Peptide Scoring Results B1510 9-mers SYFPEITHI ~ Scoring Results B1510 9-mers SYFPEITIII SEQ. SEQ. Pos 1 2 3 4 5 67 89score M NO. Pos 1 1 2 3 4 5 6 7 89scoremr. O. 88 A AAA A AA AA 2 31 IPTR F Q WSE 2 89 A A AAA A AA A2 _ 36 R FQ W E V QE 2 90 A AAA A AA AR 2 37 F Q W S EVQEA 2 94 AA A AR V TLT 2 __ 39 WSE V QE A WS 2 8R N QLF RT GP 1 9 KGP T TP S SV I 14 TG PH L SS GV 1 _ 26 Q RER V T D I __I 25 V PH RP AERLQ _1 27 R ER VT D-1P T 33 G A L Y R T L S S I1 3 P T R F Q W S H V lI 36 YRT L SS L KY I__ 5 P S W R R H P A D TABLE XXXl162PIE6 v.6: IHLA Peptide 61V FR R H A D HScoring Results B15109-niers SYF7EITfl 611 P R R H G A D N H1 1 SEQ. 6R R HG A D NH 1 ___ Pos 1 2 3 4 5 6 7 8 9 score ED NO. 65 G A DN HE ASA I E___TNH L1 6 A D N H E A S A A 1 N R T N H T 132__ 73 A A T AT T A A A PE R TN H T 12 YGT 76 A T TA AAT TV 1 31 NTEPLSEYGT -4 5 T PMH 9E RTiN H 3 TABLE XXXI162P1E6 v.5: EBLA Peptide 15 E L S Y G T H S 0 3 Soring Results B1510 9-mers SYFPEITH1 _ I W R V R T P H E R 2 SEQ. 2R VR T PHE ER 2 Pos 112 34 56 7 89 scoreED NO. 7 H 9ER T NH TE 2 19 AHT V G PRQ R 15 13 H TE L S YGTH 2__ 10 G P TT P-SS VK 10 9E RTN H TE LS I___ 29 RV TD I PT RF 10 11. T N HTE LSYG0 1__ 21 T VG P RQ RER 6 11 TZL S YGT H S 1 23 GPR Q RE R VT 6 L BGHG T 1__ 20 H TVG PR Q RE 5 _ 6_ L Y R K G P T T P 4 TABLE XXXI 1621E6 v.I: HLA Peptide I~ IP T T P S S V M A 4 Scoring Results B2705 9-mers SYFPErTH 24 PRQ RRER V TD 4 SEQ. 28_ERVTDIPTR_ Pos 123 4 56 7 89 scoreED NO. 31 D P R Q 416 R W H 2292 TABLE XXXI 162P1E6 v.1: HFLA Peptide TABLE XXXI 162PIE6 v.1: HLIA Peptide Scoring Results B2705 9-mers SYFPEITEI Scoring Results B2705 9-mers SYFPEITHI SEQ. SEQ. Pos 1.1 2 3 4 5 6 7 8 9 score ID NO. Pos 1 3 2 3 4 5 6 7 8 9 score MDNO. 751 G CK VL F VLF 15 5 L WFF L SS SP 7__ 82 LPGQ C LV E R 15 811 V LFG Q CL V E 7 123 SSR K DQ P HR 15 8A G QCL V ER NA 7 126 KD QP HR A QL 15 - 9 GL GK Q AQ SS 7 2 T NK HI VE SF 14 __ 110 F L KQ LQNXTC 7 5 E IV ESF S RH 14 119 F F VSS R KD 7 9S FSR H I LGR 14 __ 125 RXD Q PH R AQ 7 61 S SS PI S SGF 14 _ 17 R MW GH WR LS 6__ 65 S G FH I GK 14 24 L SF LD KS LG 6 71 1IQK RG C KVL 14 _ 34 RT RS L TL LC 6 104 AQ0S S WI F L 14 __ 47 M N GPG S S Q 6 III L KQ LQ NT CF 14 _ 49 GPG S S QE LW 6 130 H RA QL WH TQ 14 60 L8S SSP IS SQ 6 135 W HTQ W DLD X 14 __ 67 SG F HI GK RG 6 13 H ILG R M W G 13 __ 68 G FH IG KR GC 6__ 21 HW R LSF L DK 13 71 KV LF V L FGQ 6 35 T RSL TL L CP 13 ___8( FV L FGQ C LV 6 39_ PPTPM 1 10( LGK Q AQ S SW 6 51 _W__F__S__SP1_ 1 2( G HWR L SFLD 5 131_ LWHTQWDL 1 25 S FLD KS L GV 5 1_ FSRHILGRM 1 38 LT L LC P PTP 5 ___MW____W__LS__ 1 4Q P NN GPG S SQ 5 _ _ _ WGHWRLSFL 1 58 F FL SS SP I 5 52 S8 Q L WF F 1270 V L FV L FGQC 5 79 LFV_ FGQCL_ 1 90 R NA HAP A FQ 5 85QCLVHRNA_1 91 A FQG L GK QA 5 92 A HA P A Q GL12 __ E 8F S R HI L 4 94 A PAF QG L GK 12 27 L DK SL G VRT 4 103 QAQ_ SW IF L 1 41 LC P PTP MN G 4 ______0_ ___ IPL L 1 54 QZL W FF LS 8 4 _ 12 S RKXDQ0P HRA 12 70 HIO K R GC KV 4 131 ____WDL__KGR_ 1 76 C XVL FV L PG 4 IV__S__SRHIL_ 1 83, FG QC L VE RN 4 III R I G M 1186 CL V ERN A HA 4 __ KSL__VRTRS_ 1 97 FQ GL GK Q AQ 4 _ 30 SL__VRTR__L_ 1 105 Q SSW IF L'KQ 4 __ _ __ _ _ P___S0E F 1 107 SW I FLK Q LQ 4 12 Q___RAQ H 1 37 SLT L LC P PT 3 _ I R LGR G1 40 LL C PPT P MN 3 1 0HWR 1 45 TP M NG P GS8 3 6 S8 PI SS GF H 10 5 H LW FF LS SS 3 _ 91 P A F Q G L G K Q 10 _ _ 59 F L S S S P I S S 3 _ _ __ QLQ__TCF___ 1 91 N AH AP AF QG 3 _ 12 V____RKDQ__H_ 1 132 A QL W H TQ WD 3 63_ 136 HT Q WD LDKXG 3 90 Q G L G K Q A Q S 9 3__ N X E I V E S F 8 2 __ 101WIFL 31 LQGVR TR S LT 2 S1 M TN KE I VE S8 42 C PP T PMKG P2 0 1 E F 8R H1 843 P PTP MN G PG 2 _ 3 R. 8 L T L L C P P 64 P I S S G F H I G 2 __ 10 I FL KQ LQ0NT 893 HA P AFQ G LQ 2__ 1311 R AQ L WH TQ W _ 116 N TCPF FV SS 2 _ 230 TABLE XXXI 162P1E6 v.1: HLA Peptide TABLE XXXI 162P1E6 v.3: HLA Peptide Scoring Results B2705 9-mers SYFPEITHI Scoring Results B2705 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 45 6 7 8 9 score ID NO. Pos 1 2 3 4 5 6 7 8 9 score ID NO. 12C F F V S S R K D Q 2 65 D R V S L C R P G 12 121 F V S S R K D Q P 2 78 A Q S W A H C S L 12 129 P H R A Q L W H T 2 119 I T G V S H R I R 12 14 I L G R M W G H W 1 75 S A V A Q S W A H 11 44 PTPMNGP G S 1 123 S H R I R P H V L 11 53 S Q E L W F F L S 1 29 K N S A Q F S T I 10 87 L V E R N A H A P 1 54 P L S S A Y F F F 10 8 V E R N A H A P A 1 55 L S S A Y F F F F 10 115 Q N T C F F F V S 1 116 S V GI T G V S H 10 127 D Q P H R A Q L W 1 32 A Q F S T I L Q T 9 87 N L P E A G F H H 9 TABLE XXXI 162P1E6 v.3: HLA Peptide 111 A S A S Q S V G I 9 Scoring Results B2705 9-mers SYFPEITHI 10 G L E L L S L S N 8 SEQ. 101 L E L L S L S N P 8 Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 15 K P V S L L L S V 7 124 H R I R P H V L F 24 17 V S L L L S V T N 7 18 S L L L S V T N L 19 71 R P G R S A V A Q 7 7 L L L T L D L E K 16 74 R S A V A Q S W A 7 11 L D L E K P V S L 16 91 A G F H H V A 0 T 7 53 I P L S S A Y F F 16 114 S Q S V G I T G V 7 60 R V S L C R P G R 16 K W A E S L L L T 6 73 G R S A V A Q S W 16 A E S L L L T L D 6 117 V G I T G V S H R 16 24 T N L Y S K N S A 6 5 E S L L L T L D L 15 36 T I L Q T L S F P 6 12 D L E K P V S L L 15 48 T P S P S I P L S 6 26 L Y S K N S A Q F 15 59 Y F F F F S D R V 6 3C N S A Q F S T I L 15 6C F F F F S D R V S 6 35 S T I L Q T L S F 15 92 G F H H V A Q T G 6 58 A Y F F F F S D R 15 9 T G L E L L S L S 6 61 F F F S D R V S L 15 11 T L D L E K P V S 5 7C C R P G R S A V A 15 16 P V S L L L S V T 5 98 Q T G L E L L S L 15 25 N L Y S K N S A Q 5 118 G I T G V S H R I 15 34 F S T I L Q T L S 5 125 R I R P H V L F H 15 41 L S F P A T F T P 5 3 W A E S L L L T L 14 76 A V A Q S W A H C 5 13 L R K P V S L L L 14 97 A Q T G L E L L S 5 21 L S V T N L Y S K 14 102 E L L S L S N P P 5 39 Q T L S F P A T F 14 11C P A S A S Q S V Q 5 45, A T F T P S P S I 14 115 Q S V G I T G V S 5 51 P S I P L S S A Y 14 6 S L L L T L D L E 4 52 S I P L S S A Y P 14 8 L L T L D L E K P 4 80 S W A H C S L N L 14 22 S V T N L Y S K N 4 93 F E H V A Q T G L 14 23 V T N L Y S K N S 4 95 H V A Q T G L E L 14 4C T L S F P A T F T 4 121 G V S H R I R P H 14 50 S P S I P L S S A 4 1L K-W A E S L L L 13 64 S D R V S L C R P 4 33 Q F S T I L Q T L 13 67 V S L C R P G R S 4 47 F T P S P S I P L 13 69 L C R P G R S A V 4 63 F S D R V S L C R 13 82 A H C S L N L P E 4 85 S L N L P E A G F 13 83 H C S L N L P E A 4 86. L N L P E A G F H 13 103 L L S L S N P P A 4 96 V A Q T G L E L L 13 106 L S N P P A S A S 4 19 L L L S V T NL Y 12 107 S N P P A S A S Q 4 231 TABLE XXXI 162P1E6 v.3: lILA Peptide TABLE XX= 162PIE6 v.4: BLA Peptide Scoring Results B2705 9-iners SYFPEITH Scoring Results B2705 9-mers SYFFEITHfI SEQ. SEQ. Pos 11 2 3 4 S 6 7 8 9 score ED NO. Pos 11 2 3 4 5 6 7 8 9 score IUDNO. 100 N P P ASAS QS 4 71 ERNQL__ RT_ _ 1 -i-i S ASOQSV G IT 4 10 Q L F T G PH L 1 1131 A S QS VG1TQG 4 20 SGV_ SV_ PHR_ 1 120 TGV S HR I RP 4 53 _EDFSGVKF_1 L TL D LE KPV 3 15 G__HLSSGV 1_1 IA E KP VSL LLBS 3 35 LYRTLSSL K_1 20 S KN S AQCF ST 3 __ 9C A AAA AA A AR 13__ 31 ILQTL S F PA 3 93_ A AAAARVT L_1 30 LQ T LS FP AT 3 4_F__K__RNQL__ 1 PA FT FT PS PS 4S V P_ H RHG P HA 6 1 ABLE SXX P1E v 4 I IL PPtd L SS_331 _E__GAYR_ L_ 1 61 P ERHA D I 2 HVA 3 49 V___ HEDF 20 HR L AL 22 3 56 _ __ _ _ F___ KFRR 1 FPAT FTG THPSS P 5 2 37 _ __ _ _ R___SSLK 4 SSLKYRPS R 15 A_ 2_ 40 LKP A W HHV 15 33 G_ _ _ _ A___RTL 40 PV T H D 15 A S_ _ _ _ _ A___ 5,RTPH 122)RVLFR 14 I_ R P_ _ __ _ _ H___ FFIKE 44 A F PS PS 163 HG AD KH232 TABLE XXXI 162P1E6 v.4: lILA Peptide TABLE XXXI 162P1E6 v.5: HL1A Peptide Scoring Results B2705 9-mers SYFPEITHI Scoring Results B2705 9-mers SYFPEITH[I SEQ. SEQ. Pos 1 12 34 567 89scoreD N. Pos 1 23 4 56 7 8 9ore D NO. 7 AT AT TA A AT 3 11 P TTP SS VM A4 75 T AT TA A ATT 3 15 S SV M A T V G4 77 T TAA AT T VA 3 __ 18 M AH T V P RQ 4 79 A A A T T V A A A 3 31, T D I P T R F Q W 4 __ 81 A TTV AA A AA 3 __ 38 Q WS E VQ EAW 4 82 TT V AAA A AA 3 2E L GA L YRKG 3 8 AA AA A A AAA 3 __ 37 F Q WSE V QE A 3 80 A A A A A A A A A 3 ___ 13 T P S S V M A H T 2 81 A AAA AA A AA 3 __ 14 P9SSV MA H TV 2 84 AA AA AA A AA 3 22 V G PRQ R ERV 2 89 AAA A AA A AA 3 __ 34 PT RF Q WSE V 2__ 92 A AA AA A RVT 3 3L GAL YR K GP I__ 11 L PRT G PH LS 2 16 SV MA HT V GP 1 _ 25_V__HRPAELG_ 3C V T DI PT R F Q 1 26 ______ P___PAEL 3q W SE V Q 2A WS 1 _ 51 P E F G 2 ABLE X=X 162PIE6 v.6: lILA Peptide 70 EA S A TA T 2 coring Results B2705 9-mers SYFPEITHI 72 SA A A T AA 2SEQ. 73 AA T T A AA 2Pos 12 3 45 67 89 scoreED NO. 83 T V A A A A A A A 2 2__ R V R T P H E 'E R 16 84 V AAA AA A AA 2 __ 5 T P HE ER T N 14 2 VI VP HRPA_ 10 RT NH TE L SY 14 41 __SWRVRTPHE 1 _3, V R T P H E E R T -13 __ 7M TAAA_ ____EZRT__NEHRTNET L 13 _ _ _________ _1 WR VR TP HE E 12 _ TABLE XXXII162PIE6 v.5: HLA Peptide 131 H T E L S Y G T H 11 __ Scoring Results B2705 9-mers SYFPEITHI q E R T N H T E L S 10 Pos 12 34 56 7 89 scoreED NO. 16 SY GTHIiS GT 5 28 E RV T DI PTR 26 12_ NHTELSYGT_4 1 AEL G A L Y R 19 14T___ YGT 29 R V T DI PT R 19 1 35 TR PQ WS E VQ 17 151 __LSYGTH__G_ 7Y RK G PT TPS 15 P__EER_ ____ 2 _ 10 GPT T PS SV X 15 H__ E__TN__TE_ 19 AH T VGP R QR 14 21 T V 0 P R Q R E R 1_TABLE XXX l62PIE6 v.I: IlLA Peptide 25 P R Q R E R V T D1 4_Scoring Results B2709 9-mers SYFPETrHI 24. R QR E V TD 13SEQ. I VT 4 T S P V M A H Pos1 1 2 3 4 5 6 7 8 9 score ID NO. 26 QR ER V TD IP I11 73KRG__ LFv 2 6L YR KGP T TP 7 33VRT TLL2 8 R KG PTT P SS 7 8 NAH AF2 36 R FQWS E VQ R 7 23RLS__ KSL1 4_ G A L Y R K G P T 6 32 G TRS L 1 5 AL YR K GP TT -6 74RGC FVL1 20 HTV G P RQR H 6 126-i -QPHRAQL 1 23 G P RQR E RVT 622WRLSFLDKS1 27 RE R V TD I PT 6 72 _G __RG __KV ____1 33 1IPT RF Q WS 5GCK LF-VLF 1 9 KGP T T PSS v1 4 AHAPAFQGL1 233 TABLE XXXII 162PIE6 v.1: HLA Peptide TABLE XXXII 162PIE6 v.1: HL1A Peptide Scorin2 Results B2709 9-mers SYFFEITHI Scorinj Results B2709 9-mers SVFPEITB SEQ. SEQ. Pos 11 2 3 4 5 6 7 89 core EDN. Fos 11 23 4 56 789 score ID NO. 112 ___ QNT F 1 21 LD KS LG V RT 3 25 SFLDKSL0V 1 38 LT LL C P PTP 3 _ T___ TLLC 54 QE L WFF LSS 3 51GSSQE_ 60 GF H IG KR GC 3 711GKRG_ 70 C KV LF V LFG 3 79LFVLF_ 78 V LF V LF GQC 3 10_ 0SSWI 1 81 V LFOQ0C L VE 3 10 Q___SSW L 1 98 Q G LG KQ AQS 3 106 S W FL KQ L 11117 T C F F F V S S R 3 124 SR__D__ PH__ A_ 1 118 C F FF VS S'RK 3 _ _ T__ VESF1 13A AQ LW H TQ WD 3 I VE SF SR 1 1 1E IV E S PSR H 2 V E__FSR_ L 1 131 HI L GR MW GH 2 __ 1___FSRHILGRM_10 31 S LTL LC P PT 2 II S___ILG W 1 40 LL CP PT P mN 2 19 WGHWRLSFL_1 41 LC PP TP M NG 2 30 _SLG__R__RSL_ 1 43 P PTP MN GP G 2 391TLLCPPTPM_ 1 47 MN G PG SSQ-E 2 _ _ 481 G G S E 1056 L WFF L SS SP 2 _ 50 _PGS__Q__LWF_ 1 83 F GQ0C LVBERN 2 _ _ 521SSQELWFFL_ 1 85 Q CL VE R NAH 2 51W LSS__ 11 91 N AH A P AFQG 2 611SSSPISSGF_ 1 94 AP A FQ GL GK 2 631 _____ S__ GFH1 1 95 P AFQG L G KQ 2 80 _FVL__G__CLV_ 1 96 AF Q GL GK QA 2 1021K _QAQSSWIF_ 1 10 A QS SW I FLK 2 _ _ 13 RAQL__ TQ 1 105 QS S WI F LKQ 2 _ 13 _______ L11 DL 1 I F F FVSS R KD 2 _ 18 _M__GHWRLSF_ 121 F FV S SR KDQ 2 _ 70 H1 0 R C KV 8121 F VSS R KD QP 2 __ IIIL KQ L0 NT CF 8123 S SR KDQ0P HR 2 __ 11__ 0NTC 135 WH TQ WD L DK 2 __ IIAL 0N TC PF Pv 8138 QW D LD K GRG 2 __ 34_ 1 M T NK E IVES 1 _Z RH__L__ R_ MW_ G 5_1 1 L GR MW G HW 1I _ 291 K SL G V RT R S 21 H W R L S F L D K I 131 R 0 _W__T__W_ 28 D KS L GVR TR I _____MWGHWR__S_ 31 L GV RT R SLT 1 _ _ 491 __PGSS__E__W_ 41 PT PMNNG P GS 1 5N F F L S S S P I S 4 5M F L S S S P I S S 1 __ 61 S G F H I G K R G 4 _ 6g L S S S P I S S G 1 71KV___VLF 4- P I S S G F H I G 1 84GCLV_ 6M I S S F HI GK 1 90 RN AH AP A FQ 4 6M F H IG K RGCK _1 9M _GL__KQ__Q__S_ 84 L F GQCL V ER 1 10 ______ W__ LKQL 81 CL VE R NAHA _I 109 _1 __L__Q__Q__T_ 81 LV ER NA H AP 1 1251_____ R _ QPHR 101 SW I FL KQ0L _i 1 _ K_ EIVE_____S R _3 111 QN TC FF F VS 1 E_ S11 HILG I N T CPFFv SS _i __ ___GHW __LSF L _ 124 D Q P HR AQ LW 1_ _ 24 _LSF __DKS L _ 128 Q PHRPA QL W H _1 _ 234 TABLE XXXII 162P1E6 v.1: HLA Peptide TABLE XXXII 162P1E6 v.3: HL A Peptide Scoring Results B2709 9-mers SYFPEITHI Scoring Results B2709 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score ID NO. Pos 1 2 3 4 5 6 7 8 9 score ED NO. 136 H T Q W D L D K G 1 74 R S A V A Q S W A 4 86 L N L P E A G F H 4 TABLE XXXII162P1E6 v.3: HLA Peptide 92 G F H H V A Q T G 4 Scoring Results B2709 9-mers SYFPEITHI 10C G L E L L S L S N 4 SEQ. 104 L S L S N P P A S 4 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 2 K W A E S L L L T 3 124 H R I R P H V L F 20 7 L L T L D L E K 3 61 F F F S D R V S L 15 17 V S L L L S V T N 3 18 S L L L S V T N L 14 IS L L L S V T N L Y 3 53 I P L S S A Y F F 14 25 N L Y S K N S A Q 3 73 G R S A V A Q S W 14 41 L S F P A T F T P 3 5 E S L L L T L D L 13 49 P S P S I P L S S 3 11 L D L E K P V S L 13 58 A Y F F F F S D R 3 15 K P V S L L L S V 13 67 V S L C R P G R S 3 118 G I T G V S H R I 13 72 P G R S A V A Q S 3 3 W A E S L L L T L 12 82 A H C S L N L P E 3 13 L E K P V S L L L 12 97 A Q T G L E L L S 3 45 A T F T P S P S I 12 101 L E L L S L S N P 3 6 D R V S L C R P G 12 102 E L L S L S N P P 3 80 S W A H C S L N L 12 12( T G V S H R I R P 3 1 L K W A E S L L L 11 121 G V S H R I R P H 3 12 D L E K P V S L L 11 6 S L L L T L D L E 2 33 Q F S T I L Q T L 11 8 L L T L D L E K P 2 39 Q T L S P P A T F 11 21 L S V T N L Y S K 2 47 F T P S P S I P L 11 24 T N L Y S K N S A 2 55 Y P F F P S D R V 11 36 T I L Q T L S F P 2 78 A Q S W A H C S L 11 3 L Q T L S F P A T 2 95 H V A Q T G L E L 11 46 T F T P S P S I P 2 9 Q T G L E L L S L 11 48 T P S P S I P L S 2 111 A S A S Q S V G I 11 51 P S I P L S S A Y 2 L T L D L E K P V 10 57 S A Y F F F F S D 2 2 K N S A Q F S T I 10 60 F F F F S D R V S 2 3C N S A Q P S T I L 10 7 V A Q S W A H C S 2 35 S T I L Q T L S F 10 84 C S L N L P E A G 2 7C C R P G R S A V A 10 95 T G L E L L S L S 2 93 F H H V A Q T G L 10 106 L S N P P A S A S 2 96 V A Q T G L E L L 10 108 N P P A S A S Q S 2 122 V S H R I R P H V 10 113 A S Q S V G I T G 2 123 S H R I R P H V L 10 115 Q S V G I T G V S 2 26 L Y S K N S A Q F 9 117 V G I T G V S H R 2 54 P L S S A Y F F F 9 4 A E S L L L T L D 1 65 L C R P G R S A V 9 10 T L D L E K P V S 1 109 P P A S A S Q S V 9 1 E K P V S L L L S 1 52 S I P L S S A Y F 8 20 L L S V T N L Y S 1 55 L S S A Y F F F F 8 22 S V T N L Y S K N 1 85 S L N L P E A G F 8 23 V T N L Y S K N S 1 88 L P E A G F H H V 8 27 Y S K N S A Q F S 1 114 S Q S V G I T G V 8 2 S K N S A Q F S T 1 125 R I R P H V L F H 7 3 F S T I L Q T L S I 32 A Q F S T I L Q T 6 31; I L Q T L S F P A 1 71 R P G R S A V A Q 6 4' T L S F P A T F T 1 VSLCR P G R 5 43 F P A T F T P S P 1 91 A G F H H V A Q T 5 44 P A T F T P S P S 1 235 TABLE XXXII 162P1E6 v.3: HLA Peptide TABLE XXXII 162P1E6 v.4: HLA Peptide Scoring Results B2709 9-mers SYFPEITHI Scoring Results B2709 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 62 F F S D R V S L C 1 28 R P A E L G A L Y 4 63 F S D R V S L C R 1 5 R T P H E D F S G 4 64 S D R V S L C R P 1 54 E D F S G V K F R 4 75 S A V A Q S W A H I 2 F F I K E R N Q 3 76 A V A Q S W A H C I _ K E R N Q L F R T 3 83 H C S L N L P E A i 2C S G V I S V P H R 3 9C E A G F H H V A Q 1 42 L K Y P S W R V R 3 94 H H V A Q T G L'E 1 58 G V K F R R H G A 3 103 L L S L S N P P A 1 65 G A D N H E A S A 3 10 S N P P A S A S Q _ 8C A A T T V A A A A 3 11 S A S Q S V G I T 1 81 A T T V A A A A A 3 11 S V G I T G V S H 1 _5, I K E R N Q L F R 2 11 I T G V S H R I R N L F R T G P H 2 1S S S G V I S V P H 2 TABLE XXXH 162PE6 v.4: HLA Pepde 24 P H R P A E L G A 2 Scorng Results B2709 9-mers SYFPEITlHI 2S P A E L G A L Y R 2 SEQ. 38 T L S S L K Y P S 2 Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 4C S S L K Y P S W R 2 2 H R P A E L G A L 20 59 V K F R R H G A D 2 6 RR H G A D N H E 14 6C K F R R H G A D N 2 10 Q L F R T G P H L 13 66 A D N H E A S A A 2 34 A L Y R T L S S L 13 6S H E A S A A T A T 2 3 FF I K E R N Q L 12 71 A S A A T A T T A 2 1F R T G P H L SS 12 73 A A T A T T A A A 2 34 Y R T L S S L K Y 12 74 A T A T T A A A T 2 48 R V R T P H E D F 12 75 T A T T A A A T T 2 49 V R T P H E D F S 12 7q A A A T T V A A A 2 61 F R R H G A D N H 12 82 T T V A A A A A A 2 93 AAAAAR V T L 12 85 A A A A A A A A A 2 15 G P H L S S G V I 11 84 A A A A A A A A A 2 47 W R V R T P H E D 11 81 A A A A A A A A A 2 7$ A T T A A A T T V I1 88 AAAAAAAAA 2 91 AAAAAAA R V 11 89 AAAAAAAAA 2 E R N Q L F R T G 10 9C AAAAAA A A R 2 H L S S G V I S V 10 92 A A A A A A R V T 2 24 S V P H R P A E L 10 94 A A A A R V T L T 2 31 E L 0 A L Y R T L 10 25 V P H R P A E L G 1 41 S L K Y P S W R V 9 39 L S S L K Y P S W I 51 T P H E D F S G V 9 4 Y P S W R V R T P I 53 H E DF S G V K F 9 44 S W R V R T P H E 1 4 F I K E R N Q L F 8 51 D F S G V K F R R 1 14 T G P H L S S G V 8 50 F S G V K F R R H 1 37 R T L S S L K Y P 7 57 S G V K F R R H G 1 21 G V I S V P H R P 6 6E N H E A S A A T A 1 33 G A L Y R T L S S 6 78 T A A A T T V A A 13 R T G P H L S S G 5 83 T VAAAAAAAr1 30 A E L G A L Y R T 5 84 VAAAAAAAAI 43 K Y P S W R V R T 5 6 R H G A D N H E A 5 1 M F F F I K E R N 4 _ R N Q L F R T G P 4 1 P HLSSGVIS 4 23 I S V P H R P A E 4 236 TABLE XXXH 162P1E6 v.5: HLA Peptide TABLE XXXII 162P1E6 v.1: ILA Peptide Scoring Results B2709 9-mers SYFFEITHI Scoring Results B4402 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 29 R V T D I P T R F 15 7 V E S F S R H I L 23 25 R Q R E R V T D I 13 92 A H A P A F Q G L 17 28 E R V T D I P T R 13 61 S S S P I S S G F 16 10 G P T T P S S V M 12 12q K D Q P H R A Q L 16 35 T R F Q W S E V Q 12 8q E R N A H A P A F 15 24 P R Q R E R V T D 11 106 S S W I F L K Q L 15 7 Y R K G P T T P S 10 4 K E I V E S F S R 14 9 K G P T T P S S V 10 3C S L G V R T R S L 14 26 Q R E R V T D I P 10 32 G V R T R S L T L 14 14 P S S V M A H T V 9 71 I G K R G C K V L 14 22 V G P R Q R E R V 9 112 K Q L Q N T C F F 14 34 P T R F Q W S E V 8 127 D Q P H R A Q L W 14 8 R K G P T T P S S 6 23 R L S F L D K S L 13 36 R F Q W S E V Q E 6 33 V R T R S L T L L 13 1 A E L G A L Y R K 5 48 N G P G S S Q E L 13 4 G A L Y R K G P T 5 54 Q H L W F F L S B 13 5_ A L Y R K G P T T 4 72 G K R G C K V L F 13 27 R E R V T D I P T 4 75 G C K V L F V L F 13 11 P T T P S S V M A 3 2 T N K E I V E S F 12 19 A H T V G P R Q R 3 11 S R H I L G R M W 12 23 G P R Q R E R V T 3 18 M W G H K R L S F 12 31 T D I P T R F Q W 3 I W G H W R L S F L 12 12 T T P S S V M A H 2 5C P G S S Q E L W F 12 18 M A H T V G P R Q 2 51 G S S Q E L W F F 12 20 H T V G P R Q R E 2 63 S P I S S G F H I 12 33 I P T R F Q W S E 2 74 R G C K V j F V L 12 37 F Q W S E V Q E A 2 131 R A Q L W H T Q W 12 13 T P S S V M A H T 1 14 I L G R M W G H W 11 15 S S V M A H T V G 1 16 G R M W G H W R L 11 16 S V M A H T V G P 1 49 G P G S S Q E L W 11 17 V M A H T V G P R 1 52 S S Q E L W F F L 11 211 T V G P R Q R E R 1 57 W P F L S S S P I 11 79 L F V L F G Q C L 11 TABLE XXXII 162P1E6 v.6: HLA Peptide 88 V E R N A H A P A 11 Scoring Results B2709 9-mers SYFPErTM 102 K Q A Q S S W I F 11 SEQ. 103 Q A Q S S W I F L 11 Pos 1 2 3 4 5 6 7 8 9 score ED NO. 111 L K Q L Q N T C F 11 3 V R T P H E E R T 13 113 Q L Q N T C F F F 11 1 W R V R T P H EE 11 10C L G K Q A Q S S W 10 9 E R T N H T E L S 11 133 Q L W H T Q W D L 10 8 E E R T N H T E L 10 6I V E S F S R H I 9 10 R T N H T E L S Y 5 101 GK Q A Q S S W I 8 R V R T P H E E R 4 104 A Q S S W I F L K 8 RT P H E E R T N 4 8 E 8 F S R H I L G 7 14 T E L S Y G T H S 3 9 S F S R H I L G R 7 12 N H T E L S Y G T 2 9' A F Q G L G K Q A 7 16 L S Y G T H S G T 2 67 S G F H I G K R G 6 5 T P H E E R T N H 1 87 L V E R N A H A P 6 12 R I I L G R M W G 5 28 D K S L G V R T R 5 41 L C P P T P M N G 5 66 S S G F H I G K R 5 6 F H I G K R G C 5j 237 TABLE XXXIII 162P1E6 v.1: HLA Peptide TABLE XXXII 162PIE6 v.1: EELA Peptide Scoring Results B4402 9-mers SYFPEITI Scoring Results B4402 9-mers SYFPEITHII SEQ. SEQ. Pos l 2 3 4 5 6 7 8 9sreD No. Pos 11 23 456 7 89 oreD NO. 81 VL F GQ CLJV E 5 _ 4A PT P MNG PG S 2 85 Q CLV ER N AH 5 50 L WFFPL SS SP 2 105 Q SSW IF L KQ 5 6Z 6 S P ISS G FH 2 107 S WI FL KQ0LQ 5 __ 70 HI GKR G C KV 2 108 W I F L K Q L 0 N 5 80 F V L F G Q C L V 2 132 AQ LW HT Q WD 5 82 L PGQ C LV ER 2 1_ M T N K E I V E B 4 _ _ 84 G Q C E V E R N A 2 24 L SF L DK SLQ 4 93 H A PA F 0GL 2__ 25 SFL D KS L GV 410 1FL 0L0NT 2 2! K SLG V RTR S 411 FLKQLQNTC 2 3 TR SL TL L CP 4 114 _____ L __TCFF_ 31 LT LL C P PTP 4 11 Q K T F F V S 4( LL CP PT P MN 411 C FFVSSRX 2 .4 MN G P GS SQ Z 4 12 VSS__KD__P___ 5j S Q E L W F F LBS 4 12_QPH___QLW 61 LB0S SP I SSGC 4 130 _____ H __QLWH_ 74 V L FV LF G QC 4 134 ____HTQW____D 94 AP AF Q G L G 4 136_____ H___WDLD 91 P A FQG LG KQ 4 138 QWD LD K GR G 2__ 111 F PFFV SS RKD 4 3 _ _ __ _ _ N___IVES 124 S RK D Q PHRA 4 151 ____RMWG____R 125 RXD Q PH R AQ 4 27 _____ L___SLGV 5EI V ES FS R H3 46 PBEN G P G S Q I_ 13 H IL GR M WGN 3 58 F L SS S PI S 17 R KW 0H WR LS 3 68 G PH I GK RG C 1_ 211 H WR L SFL DY 3 83 ______ F __CLVE_ 2, WR L SFL DK S 3 80 _CLVER__A__A_ 21 FLD K SL G VR 3 9 31 LG VR T R SLT 3 99 ______ G __KQAQ_ 31 R T RSL T LL C3 123 S 8R KD Q P H R 1 3( RBSL T L C PP 3 129_ __ __ P___AQLW 4 C PPT P MN GP 3 135 _____ W _TQ___LD 43 P PT PM N GP G 3 __ 45 TPM NG P GS S 3 TABLE XXXIII62PIE6v3: lILA Peptide 559L F L S S 8 3 Sco aRln esults B442 9-mers SYFPEITHIEQ 64 P I S S G F H I G 3 PS 123456789soeE O 65 1 B S G F H I G K P3 1 2 3 K 5 V S L L L cr 25 N 73 K R GCKV L FV 351PSIPLSSAY 8 76 CKV L F VLF G 3 4A2SLLLTLD1 7 KV LF V LF GQ 3 35__TILQ_ SF 1 91 N AH AP AF QG 3 ___ LLL DL 1 97 F QGL GK Q AQ 3 14HRIRPHVL7 1 98 Q G L G K Q A Q B 3 33 Q F S T I L Q T L 1 11 NTC FF F VSBS 3 13SHRIRPHVL 1 11A TC F FF V SSR 3 18SLL TNL 1 120 F V SSR K DQ 3 19LLL__ NLY 1 1211 FV S S RK DQP 3 45__TFTP_ S1 1 13A T QW DL D KGR 3 61__F_ VSL 1 1 FBSR HI LG RM 2 78AQS__ CSL 1 20 G HW RL SF LD 2 3WAESLLLTL1 3 SL TL L C PPT 2 1 ,1 3 T L L C P P T P M 2_ I 26LY NSA 11 238 TABLE XXXIII 162P1E6 v.3: HLA Peptide TABLE XXXIII 162P1E6 v.3: HLA Peptide Scoring Results B4402 9-mers SYFPEITHI Scoring Results B4402 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 39 Q T L S F P A T F 13 82 A H C S L N L P H 4 5 S I P L S S A Y F 13 83 H C S L N L P E A 4 89 P E A G F H H V A 13 102 E L L S L S N P P 4 96 V A Q T G L E L L 13 105 S L S N P P A S A 4 98 Q T G L E L L S L 13 10 N P P A S A S Q S 4 101 L E L L S L S N P 13 11 Q S V G I T G V S 4 1 L K W A E S L L L 12 L L L T L D L E K 3 12 D L E K P V S L L 12 L L T L D L E K P 3 29 K N S A Q F S T I 12 1C T L D L E K P V S 3 47 F T P S P S I P L 12 15 K P V S L L L S V 3 53 I P L S S A Y F F 12 21 L S V T N L Y S K 3 55 L S S A Y F F F F 12 22 S V T N L Y S K N 3 73 G R S A V A Q S W 12 23 V T N L Y S K N S 3 8C S W A H C S L N L 12 25 N L Y S K N S A Q 3 85 S L N L PE A G F 12 42 S F P A T F T P S 3 111 A S A S Q S V G I 12 5C S P S I P L S S A 3 3C N S A Q F S T I L 11 63 F S D R V S L C R 3 54 P L S S A Y F F F 11 66 R V S L C R P G R 3 95 H V A Q T G L E L 11 67 V S L C R P G R S 3 32 A Q F S T I L Q T JO 68 S L C R P G R S A 3 93 F H H V A Q T G L 10 75 S A V A Q S W A H 3 118 G I T G V S-H R I 10 70 A V A Q S W A H C 3 48 T P S P S.I P L S 8 81 W A H C S L N L P 3 41 L S F P A T F T P 7 99 T G L E L L S L S 3 91 A G F H H V A Q T 7 112 S A S Q S V G I T 3 14 E K P V S L L L S 6 122 V S H R I R P H V 3 58 A Y F F F F S D R 6 20 L L S V T N L Y S 2 69 L C R P G R S A V 6 24 T N L Y S K N S A 2 97 A Q T G L E L L S 6 27 Y S K N S A Q F S 2 106 L S N P P A S A S 6 30 T I L Q T L S F P 2 121 G V S H R I R P H 6 40 T L S F P A T F T 2 | | 6 S L L L T L D L Z 5 43 F P A T F T P S P 2 62 F S D R V S L C 5 5( S S A Y F F F F S 2 71 R P G R S A V A Q 5 57 S A Y F F F F S D 2 84 C S L N L P E A G 5 59 Y F F F F S D R V 2 86 L N L P E A G F H 5 64. S D R V S L C R P 2 9C E A G F H H V A Q 5 7 P G R S A V A Q S 2 104 L S L S N P P A S 5 7 V A Q S W A H C S 2 107 S N P P A S A S Q 5 81 N L P E A G F H H 2 113 A S Q S V G I T G 5 88 L P E A G F H H V 2 114 S Q S V G I T G V 5 92 G F H H V A Q T G 2 II7 V G I T G V S H R 5 94 H H V A Q T G L E 2 125 R I R P H V L F H 5 1 G L E L L S L S N 2 2_ K W A E S L L L T 4 103 L L S L S N P P A 2 _L T L D L E K P V 4 11( P A S A S Q S V G 2 16 P V S L L L S V T 4 114 S V G I T G V S H 2 11 V S L L L S V T N 4 12( T G V S H R I R P 2 311 S A Q F S T I L Q 4 2 'S X N S A Q F S T I 38 L Q T L S F P A T 4 34 F S T I L Q T L S 1 46 T F T P S P S I P 4 37 I L Q T L S F P A I 49 P S P S I P L S S 4 44 P A T F T P S P S I 6C F F F F S D R V S 4 65 D R V S L C R P G 1 70 C R P G R S A2V A 4 239 TABLE XXXIH 162P1E6 v.3: HLA Peptide TABLE XXXI1 162P1E6 v.4: HLA Peptide Scoring Results B4402 9-mers SYFPEIT! Scoring Results B4402 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score ID NO. Pos 1 2 3 4 5 6 7 8 9 score ID NO. 79 Q S W A H C S L N 1 26 P H R P A E L G A 4 119 I T G V S H R IR 1 33 G A L Y R T L S S 4 37 R T L S S L K Y P 4 ABLE XXXIH 162P1E6 v.4: HLA Peptide 43 K Y P S W R V R T 4 coring ResultsB44029-mers SYFPEIT 64 H G A D N H E A B 4 SEQ. 78 T A A A T T V A A 4 Pos 1 2 3 4 5 6 7 8 9 scoreIDNO. 91 A A A A A A A R V 4 53 H E D F S G V K F 23 1 M F F F I K E R N 3 3 F F I K E R N Q L 16 2 F F F I K E R N Q 3 3C A Z L G A L Y R T 16 5 I K E R N Q L F R 3 93 A A A A A R V T L 16 17 H L S S G V I S V 3 34 A L Y R T L S S L 15 19 S S G V I S V P H 3 24 S V P H R P A E L 14 25 V P H R P A E L Q 3 2A H R P A E L G A L 14 29 P A E L G A L Y R 3 31 E L G A L Y R T L 14 32 L G A L Y R T L S 3 K E R N Q L F R T 13 4C S S L K Y P S W R 3 1C Q L F R T G P H L 13 46 S W R V R T P H H 3 30 Y R T L S S L K Y 13 47 W R V R T P H E D 3 69 H E A S A A T A T 13 49 V R T P H E D F S 3 4 F I K E R N 0 L 7 12 57 S G V K F R R H G 3 31 L S S L K Y P S W 12 58 G V K F R R H G A 3 28 R P A E L G A L Y 11 68 N H E A S A A T A 3 4E R V R T P H E D F 11 75 T A T T A A A T T 3 15 G P H L S S G V I 10 82 T T V A A A A A A 3 54 E D F S G V K F R 7 83 T V A A A A A A A 3 74 ATATT A AT 7 84 V A AAAAAAA 3 75 A A A T T V A A A 7 8 R N Q L F R T G P 2 8 A A T T V A A A A 7 12 F R T G P H L S S 2 18 L S S G V I S V P 6 16 P H L S S G V I S 2 231I S V P H R P A H 6 20 S G V I S V P H R 2 5 V K F R R H G A D 6 22 V I S V P H R P A 2 60 A D N H E A S AA 6 35 L Y R T L S S L K 2 73A AAA 6 45 P T SWRVRTP H 2 81 A T T V A A A A A 6 52 P 3 E D F S G V K 2 85 A A A A A A A AA 6 55 D F S G V K F R R 2 81 A A A A A A A AA 6 56 F S G V K F R R H 2 87 AAAAAAAA A 6 6 KFRRHGADN 2 88 A A A A A A A A A 6 62 R R H G A D N H E 2 85 A A A A A A A A A 6 65 G A D N H E A S A 2 9C A A A A A A A A R 6 67 D N H E A S A A T 2 92 A A A A A A R V T 6 77 T T A A A T T V A 2 94 A A A A R V T L T 6 14 T G P H L S S G V I 7 E R N Q L F R T G 5 38 T L S S L K Y P 8 1 21 G V I S V P H R P 5 41 S L K Y P S W R V 1 42 L K Y P S W R V R 5 5C R T P H E D F S 1 44 Y P S W R V R T P 5 51 T P H E D F S G V 1 7 E A S A A T A T T 61 F R R H G A D N H 1 7 A S A A T A T T A5 63 R H G ADNHEA 1 72 S A A T A T T A A 5 7S T TAAATTV5 SN Q L F R T G P H 4 11L F R T G P H L S 4 13R T G P H L S S G ,4 240 TABLE XXXII1 162PlE6 v.5: lILA Peptide TABLE XXXII 162P1 E6 v.6: lILA Peptide Scoring Results B4402 9-mers SYFPEITHI Scoring Results B4402 9-mers SYFPEITHI SEQ. SEQ. Pos 11 234 56 7 89 scoreED NO. Pos 3. 23 4 56 789 ore ID NO. 31 T D IPfTR FQ W 18 13 HT E LSY G TH 2 1 A ZLG AL Y RK 16 2RV RTP H E ER 1 29 R V T DI PT R 13 5T PHE ER T NH 1 38 QWS E VQ E AW 13 1 NHT E LS Y GT 1 27 RZR V TD IP T 11 10 L SY G TH S GT1 25 R QRE R VTDI1 10 24 E R V T D I P T R 7 TABLE XX)UV 162P1 E6 v.1: iiA Peptide 19 A H Tr V G P R Q R 6 Scoring Results B5101 9-mers SYFPEITHI 5 AL Y R KG PTT 5 SEQ. 21 TVG P RQ R ER 5 Pos 112 34 5 6 789 scoreED NO. 2EL G AL YR KG 4 __ 63 SPI S SG FHI1 22__ __3 LG AL YR K GP 4 74 R 0C K VIF VL 19__ _8 RXG P TT PS S 4 71 1IQK RG C KVL 18__ KGP T T PS SV 4 103 QA QS S WI FL 18__ IIIP TT PS SVMA_ 48 NGP G S SQ EL 16 14 P S S V M A H T V 95 P A FQC;L GKQ 14 16 SV MA HT VG P4 1 W GHW RL S FL 13 24 R RE RV TD 25 S 7LD KS L GV 13__ 32 D I P T R F Q W S 42 C PPT P MN GP 13 22 V G P R Q R E R V 3 91 N AH A PAF QG 13 231 GPRQRERVT_ 43 P P TP MN GPG 12 30 _ __ _ _ V___IPTR 45 T P MN 0P GSS 12 351 R FQ WS E__Q_ 57 WPFFL S SSP 1 12 _ GAL__RK__PT_ 73 KR GC KV L FV 12 0 L Y R K P T T P 93 H AP AFQ GLOG 12 1 Y RK G PT T P3 2 14, LQN T C F FFV 12 10 GP T P S VM 249[ G PG SS Q ELW 11 _ S___VMAHTV___ 70 H1G0K RG C KV 11 20 TV PR RR __ 8 FV LFG Q C LV 11 26 QR E V D IP 2941 AP A FQ GL GK 11 __ 13 TP S V A HT I128 QP HR A QL WH 11__ 17 V M A H T V G P R 1 __ 1311 R A Q L W H T Q W I11 18 MAHTVGPRQ _ 32 GV R T RS LTL 10 _ _ 33 _1__TRFQWS___ 33 V RT R SL T LL 10 98__QG__LG 9 QGLGKQA S 10 _ _ TABLE XXXI1162PE6 v.6: HLA Peptide 28 D K S L G V R T R 9 __ Scoring Results B4402 9-mers SYFPEITHI 31. L G V R T R S L T 9 SEQ. 61 SG FH I G KRG 9__ pos 1 34 67 9scoreED NO. 100 S S WI FL KQL 9 __ 81 E 9RT NH T EL 24 V 8S FS R HIL [8__ 7jH E E RT N HT 13 L G RM WG H WR 8 __ 104 T N HT E LSY 11 5A S SQE L WF FL 8s__ 1 TEL S Y GT H G 1 7 LF VL FG Q CL 8__ 9E RT NH T ELS 5 I_ 0q LGK Q AQ S SW 8__ 15 EL S YG T HS 5 1 1331 Q L W HTQ WDL 8__ 1 W R V R T P H E E 3 14 G R M W~ G H W R L 7 3VRTPHEHKT 323LK L S F L D K S L 7 4R TP H E E RT N3 2 P LD K SLG VR 7 6P H EE R TNHT 3 2 KS LG VR T RS 7 1 T N H T E L S Y G 2 3 S L G V R T R S L 7 241 TABLE XXXI1V 162P1E6 v.1: HILA Peptide TABLE XXXrV 162PIE6 v.1: HL[A Peptide ScorinE Results B5101 9-mers SYFPEITH[ ScorinE Results B5101 9-mers SYFPEITHfI SEQ. SEQ. Pos 1 2 3 4 5 6 789 ore] EDNO. Pos 11 234 56 7 89 score mDNO. 38 LT L LC P PTP 7 130 HT Q W DL DKG 3 50 P GSSQ E L WP 7 8 E S FSR HI LQ 2 _ 81 VL FG QC LV H 7 9S FS R HI LGR 2 9Z AHA P AF Q GL 7 18 ?W G HW R LSP 2 1091 IFL KQ L QNT 6 40 L LC PP T PMN 2 _ 11 F F VSS R KD 6 55 EL WF F L SSS 2 120 K DQ P HR AQL 6 62 SS PI S S G F 2__ 127 DQ PH R AQ LW 6 72 G KR GC KVIL F 2 2T N K B I V B S 1 5 75 G C K V L F V L P 2 __ 5 E I V E S P S R H 89 E R N A H A P A F 2 22 R S L K 596 A FQG LG K QA 2 __ 3 TLL__PP__PM_ 99 GLG KQ AQ0SS 2 _ 7_ KVL__VL__GQ 124 V SSR KD QPEH 2 1 MTN__EI__ES_ 1231 SS R KDQ P HR 2 _ _ 14 LG MW HN- 13 H A QL W HTQ 2 27 DK LG R- 13 AQ L WH TQ WD 2 _ 35 ______ T___LTLL 111 SR HI L G RMW 1 3 ______ R2 GH W RL S PLD 1 50 F S S I 4 ABLE XXXIV 162F1E6 v.3: HLA Peptide 501 L S P S 4 co 2n Results B5101 9-mers SYFPEITHI1 6 1S S F I GX 4SEQ. 8 L FG Q L V R 4Pos 112 34 56 7989 scoreED NO. 81 CL VE R A__A_ 84 LP EA G FHH v 23 10 Q SS WI L 9 3WA HS LL L TL 20 IIIF LK QL QN TC 415 KPV SL L LS v 20 __ Jill L XQ LQ N TCF 4 96 V AQT GL E LL 19 11 Q NT CF P FVS 4 109 PP AS A SQ SV 18 111 T CFF F V sS R4 53 1IPLS SA Y F F16 1*1 C PF F VS SR 4 111 L D LEK PV SL 15 131 TQ W DL D KGR 4 51 SAY F FF F SD -15 31 NKE I VE S FS 3 To1 N P PAS AS QS 15 10 F S RHI LG RM 3 110 P AS AS Q S V 15 1 HIL G RM W GH 3 L_ T L DL E KPV 14 1A RKW G H WR L 3 _ 29 K NS A QFS T 114 21 H WR LS FL DK _3 118 G IT GV SH Rr14 24 L SFL D KS LG 3 __ 12 DL EK PV S LL 13 56i LW FF L S S SP 3 48 T PSP S IPL 8 13 60 LSBSS P I-SSQG 3 71 RP G RSA V AQ 13 6 S S GF HI GK R 3 81 W AH CS L NLP 13 69 F HI GK R GCK 3 112 S ASQ0S V GIT 13 70 C KV L FV LFG 3 18 SL L LS V TNL 12 78 VL FV L FG QC 3 31 S AQ FS T ILQ 12 8GQ C LV ER NA 3 43 FPA T FT P SP 12 81 (2C LV ER NAN 3 __ 41 P AT PT P S PS 12 81 LV ER NA HA P 3 __ 41 A T FT PS PS 1 12__ 10N W IF LK QL Q N 3 5 YFP PF S DR V 12__ 110 N T CF F FV S 3 7A V AQ SW A HC 12__ 12 F F v SSR KDQ 395 T G L ELLS LS 12__ 12 S RK DQ P HRA 3I LKW A ES L LL 11__ 12M P HR AQL W HT 3 __ 13 L EK PV SL LL 1-1__ .13 LWH T QW D LD 3C 8_ 5 SSI PL S SA 11 _ 242 TABLE XXXIV 162P1E6 v.3: HLA Peptide TABLE XXXIV 162P1E6 v.3: HLA Peptide Scoring Results B5101 9-mers SYFPEITHI Scoring Results B5101 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 75 S A V A Q S W A E 11 63 F S D R V S L C R 4 90 E A G F H H V A Q 11 73 G R S A V A Q S W 4 111 A S A S Q S V G I 11 89 P E A G F H H V A 4 117 V G I T G V S H R 11 103 L L S L S N P P A 4 33 Q F S T I L Q T L 10 115 Q S V G I T G V S 4 69 L C R P G R S A V 10 11_ I T G V S H R I R 4 114 S Q S V G I T G V 10 23 V T N L Y S K N S 3 122 V S H R I R P H V 10 2 L Y S KN S A Q F 3 123 S H R I R P H V L 10 37 I L Q T L S F P A 3 5 E S L L L T L D L 9 4q T L S F P A T F T 3 47 F T P S P S I P L 9 46 T F T P S P S I P 3 61 F P F S D R V S L 9 49 P S P S I P L S S 3 91 A G F H H V A Q T 9 64 S D R V S L C R P 3 12C T G V S H R I R P 9 84 C 8 L N L P E A G 3 30 N S A Q F S T I L 8 102 E L L S L S N P P 3 72 P G R S A V A Q 8 8 106 L S N P P A S A S 3 93 F H H V A Q T G L 8 125 R I R P H V L F H 3 95 H V A Q T G L E L 8 4 A S L L L TL D 2 90 Q T G L E L L S L 8 22 S V T N L Y S K N 2 19| L L L S V T N L Y 7 34 F S T I L Q T L S 2 25 N L Y S K N S A Q 7 52 S I P L S S A Y F 2 6C F F F F S D R V S 7 58i A Y F F F F S D R 2 80 S W A H C S L N L 7 _76 A V A Q S W A H C 2 7 L L L T L D L E K 6 79, Q S W A H C S L N 2 17 V S L L L S V T N 6 82 A H C S L N L P E 2 78 A Q S W A H C S L 6 97 A Q T G L E L L S 2 101 L E L L S L S N P 6 116 S V G I T G V S H 2 2 K W A E S L L L T 5 121 G V S H R I R P H 2 8 L L T L D L E K P 5 35 S T I L Q T L S F 1 2C L L S V T N L Y S 5 56' S S A Y F F F F S 1 24 T N L Y S K N S A 5 68 S L C R P G R S A 1 36 T I L Q T L S F P 5 83 H C S L N L P E A 1 39 Q T L S F P A T F 5 94 H H V A Q T G L R 1 41 L S F P A T F T P 5 10C G L E L L S L S N 1 42 S F P A T F T P S 5 105 S L S N P P A S A I 55 L S S A Y F F F F 5 107 S N P P A S A S Q 1 65 D R V S L C R P G 5 124 H R I R P H V L 1 67 V S L C R P G R S 5 70 C R P G R S A V A 5 86 L N L P E A G F H 5 TABLE XXXIV 162P1E6 v.4: HLA Peptide 81 N L P E A G F H H 5 Scoring Results B5101 9-mers SYFPEITHI 92 G F H H V A Q T G 5 SEQ. 104 L S L S N P P A S 5 Pos 1 2 3 4 5 6 7 8 9 score ID NO. 113 A S Q S V G I T G 5 15 G P H L S S G V I 24 6 S L L L T L D L E 4 51 T P H E D F S G V 22 10 T L D L E K P V S 4 91 A A A A A A A R V 21 14 E K P V S L L L S 4 93 A A A A A R V T L 20 16 P V S L L L S V T 4 44 Y P S W R V R T P 17 21 L S V T N L Y S K 4 14 T G P H L S S G V 16 27 Y S K N S A Q F S 4 92 A A A A A A R V T 16 32 A Q F S T I L Q T 4 75 T A T T A A A T T 15 38 L Q T L S F P A T 4 78 T A A A T T V A A 14 62 F F S D R V S L C 4 __ 79 AAATTVAAA 14 243 TABLE XXXIV 162P1E6 v.4: HLA Peptide TABLE XXXIV 162P1E6 v.4: HDA Peptide Scoring Results B5101 9-mers SYFFEITHI Scoring Results B5101 9-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 8C A A T T V A A A A 14 5 IK E R N Q L F R 3 94 A A A A R V T L T 14 9 N Q L F R T G P H 3 33 G A L Y R T L S S 13 12 F R T G P H L S S 3 70 E A S A A T A T T 13 35 L Y R T L S S L K 3 70 A T T A A A T T V 13 39 L S S L K Y P S W 3 84 V A A A A A A A A 13 43 K Y P S W R V R T 3 25 V P H R P A E L G 12 62 R H G A D N H E 3 28 R P A E L G A L Y 12 74 A T A T T A A A T 3 29 P A E L G A L Y R 12 82 T T V A A A A A A 3 34 A L Y R T L S S L 12 83 T V A A A A A A A 3 72 S A AT A T T A A 12 4 K E R N Q L F R T 2 73 A A T A T T A A A 12 22 V I S V P H R P A 2 85 AAAAAA A A A 12 23 I S V P H R P A E 2 86 A A A A A A A A A 12 47 W R V R T P H E D 2 87 A A A A A A A A A 12 SS V K F R R H G A D 2 88 AAAAAAAA A 12 61 F R R H G A D N H 2 89 A A A A A A A A A 12 63, R H G A D H E A 2 90 AAAAAA A A R 12 69 H E A S A A T A T 2 17 H L S S G V I S V 11 8 R N Q L F R T G P 1 4 L K Y P S W R V R 11 13 R T G P H L S S G 1 2C S G V I S V P H R 10 19 S S G V I S V P H I 31 E L G A L Y R T L 10 20 P H R P A E L G A I 32 L G A L Y R T L S 10 3E T L S S L K Y P S 1 65 G A D N H E A S A 10 44 S W R V R T P H E 1 P F I K E R N Q L 9 4 R V R T P H E D F I 1C Q L F R T G P H L 9 49 V R T P H E D F S I 18 L S S G V I S V P 9 5 R T P H E D F'S G I 27 H R P A E L G A L 9 61 A D N H E A S A A I 41 S L K Y P S W R V 9 81 A T T V A A A A A 1 57 S G V K F R R H G 9 24 S V P H R P A E L 8 TABLE XXXIV 162P1E6 v.5: HLA Peptide 55 D F S G V K F R R 8 Scoring Results B5101 9-mers SYFPET 64 H 0 A D N H E A 8 7 SEQ. 36 Y R T L S S L K Y 6 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 67 D N H E A S A A T 6 9 K G P T T P S S V 18 68 N H E A S A A T A 6 22 V G P R Q R E R V 17 71 A S A A T A T T A 6 18 M A.H T V G P R Q 15 77 T T A A A T T V A 6 25 R Q R E R V T D 1 15 3C A H L G A L Y R T 5 1C G P T T P S S V M 14 37 R T L S S L K Y P 5 13 T P S S V M A H T 14 S S L K Y P S W R 5 23 G P R Q R E R V T 14 51 F S G V K F R R H 5 4 G A L Y R K G P T 12 2 F F F I K E R N Q 4 14 P 3 S V M A H T V 12 4 F I K E R N Q L 9 4 33 I P T R F Q W S E 12 7 E R N Q L F R T G 4 3 L G A L Y R K G P 10 11 L F R T G P H L S 4 34 P T R F Q W S E V 8 16 P H L S S G V IS 4 5 A L Y R K G P T T 7 21 G V I S V P H R P 4 Q L Y R K G P T T P 7 45 P B W R V R T P H 4 32 D I P T R F Q W 7 7 52 P H E D F S G V K 4 1 A E L G A L Y R K 5 53 H E D F S G V K F 4 12T T P S S V M A H 5 54 E D F S G V K F R 4 35 T R F Q W S E V Q 5 1 MFF FIKERN 3 ELGALY RKG 4 244 TABLE XXXIV 162P1E6 v.5: HLA Peptide TABLE XXXV 162P1E6 v.1: HLA Peptide Scoring Results B5101 9-mers SYFPEITHI Scoring Results Al 10-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 7 Y R K G P T T P S 4 24 L S F L D K S L G V 10 15 S S V M A H T V G 4 61 S S S P I S S G F H 10 17 V M A H T V G P R 4 87 L V E R N A H A P 10 21 E R V T D I P T R 4 2C G H W R L S F L D K 9 2S R V T D I P T R F 4 33 V R T R S L T L L C 9 3' F Q W S E V Q E A 4 17 R M W G H W R L S F 8 38 Q W S E V Q E A W 4 72 G K R G C K V L F V-8 24 P R Q R E R V T D 3 8C F V L F G Q C L V E 8 11 P T T P S S V M A 2 106 S S W I F L K Q L Q 8 16 S V M A H T V G P 2 107 S W I F L K Q L Q N 8 I A H T V G P R Q R 2 1 M T N K E I V E S F 7 2C H T V G P R Q R B 2 7 V E S F S R H I L G 7 21 T V G P R Q R E R 2 10 F S R H I L G R M W 7 2 Q R E R V T D I P 2 62 S S P I S S G F H I 7 27 R E R V T D I P T 2 65 I SS G F H I G K R 7 3 V T D I P T R F Q 2 66 S S G F H I G K R G 7 31 T D I P T R F Q W 2 75 G C K V L F V L F G 7 31 R F Q W S E V Q E 2 92 A H A P A F Q G L G 7 _ _R K G P T T P S S 1 93 H A P A F Q G L G K 7 116 N T C F F F V S S R 7 TABLE XXXIV 162PIE6 v.6: HLA Peptide 30 S L G V R T R S L T 6 Scoring Results B5101 9-mers SYFPEITHII 31 L G V R T R S L T L 6 SEQ. 3 L T L L C P P T P M 6 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 44 P T P M N G P G S S 6 5 T P H E E R T N H 14 49 G P G S S 0 E L W F 6 8 E E R T N H T E L 8 123 S S R K D Q P H R A 6 16 L S Y G T H S G T 8 126 K D Q P H R A Q L W 6 14 T E L S Y G T H _ 6 127 D Q P H R A Q L W H 6 4 R T P H E E R T N 4 -134 L W H T Q W D L D K 6 6, P H E E R T N H T 4 136 H T Q W D L D K G R 6 6 P H E E R T N H T 4 29 K S L G V R T R S L 5 7 H E E R T N H T E 4 40 L L C P P T P M N G 5 11 T N H T E L S Y G 3 43 P P T P M N G P G S 5 12 N H T E L S Y G T 3 58 F F L S S S P I S S 5 13 H T E L S Y G T H 3 63 S P I S S G F H I G 5 I W R V R T P H E E 2 69 F H I G K R G C K V 5 3 V R T P H E E R T 2 74 R G C K V L F V L F 5 10 R T N H T E L S Y 2 122 V S S R K D Q P H R 5 R V R T P H E E R 1 36 R S L T L L C P P T 4 41 L C P P T P M N G P 4 TABLE XXXV 162P1E6 v.1: HLA Peptide 47 M N G P G S S Q L 4 Scoring Results Al 10-mers SYFPEITHI 51 G S S Q E L W F F L 4 SEQ. 60 L S S S P I S S G F 4 Pos 1 2 3 4 5 6 7 8 9 Oscore IDNO. 64 P 1 0 S G F H I G K 4 53 S Q E L W F F L S S 21 102 K Q A Q S S W I F L 4 26 F L D K S L G V R T 13 105 Q S S W I F L K Q L 4 34 R T R S L T L L C P 12 11FQ LQNTCFFV 4 104 A Q S S W I F L K Q 12 u4 L Q N T C F F F V S 4 6- I V E S F S R H I Ll II 4 K E I V E S F S R H 3 52 S Q E L W F F L S 11 11 S R H I L G R M W G 3 125 R K D Q P H R A Q L 11 23 R L S F L D K S L G 3 3 N K E I V E S F S RI 10 25 S F L D K S L G V R 3 8 ESFSRHILGR1 37 S LTLL C P P T P 3 245 TABLE XXXV 162P1E6 Y.1: HLA Peptde TABLE XXXV 162P1E6 v.3: HLA Peptide Scoring Results Al lO-mers SYFPEITI[ Scoring Results Al IlO-mers SYFPErMH SEQ. SEQ. Pos 11 2 3 4 5 6 7 8 9 0 score ED NO. Pos 1 2 3 4 5 6 7 8 9 0 score IODNO. 4 N G PGS SQ E LW 3 1S SL L LSV T NL Y20 71 K VL F V F G QC3 12 D L E KPVS L LL 19__ 7V LFV LF GQ C L3 _ 50 SP S IPL S S AY17 _ 81 V L F G Q C L V 3 R 3 63 F S D R V S L C R P 15 91 N A H A P A F Q G L 3 3 W A R S L L L T L D 12 9A P A PQG L G Q3 13 L E KP VS LL LS1 110 FL Q LQ NT C F3 10 TLD L E K PV 8L11 115 Q N TCF F FV 8S3 34 F STI L QT L 8FI 11 1331 Q L W H T 0 W D L D 3 41 L S F P A T F T V S I I __ S F SR HI L GR M2 81 LP NA GF H HV A II 14 IL R MW GH W R2 IOG L HL LS L S NP 11 10 G RM W GH W RLS2 11 I T GV SH1ZI RP 11 1 W G HWR L SF LD2 30 NS AQ F STI LQ 10 211H W RLS F L D S2 4 T PS P SI P LSS 10 3A G V RTRS LT L L2 7 Q S WA H C SL NL 10 3M T L C P PTP M N2 $S L LL TL DL H K9 5 PL SS S PI SS G2 47 T PS PS IP LS 9 67 SG FH IG KR G C2 56 S S AY FF F F D9 71 1 G XR GCK V LF2 96 VA Q T GLE LLS 9__ 79 LFV LF G Q CL V2 __1 L KW A ES LL LT 8__ 96 A FQ G LG KQ A 2 19 LL L SV TN L YS 8_ 103 QA QS S WI FL K2 31 S A QFS8TI L QT 8__ 11. CFF F V S SR XD2 35 S T ILQ0TL S PP8 119F F FVS S R K1)Q2 46 T F TPS PS I P L 8 124 S R X D Q P H R A Q 2 -51 P S I P L S S A Y F 8 13 W HTQW D LD X 2 97 AQ0T GLE LL S L8__ I H I L G R M W G H - 1 94 Q T 0 L E L L S L S 8 21 L D S L GV RT Rj 104 L S NP P A SA SQ 8 2D K 8L GVRT R S1 4A E S LLL TL DL 7 0_T__Z4 GP__S__Q_ 23 VT NL YS K NS A7 __ 0 PMNGP__S_ SQE_ 45 A T FT PS PS I P 7 7C __I__K__G__K__L_ 81, W A HCS LN L PE 7 83 FGQCL__ERN_ A 124 HR IR P HV LF H7 8 QC LE RN AH A1 5E S LLL TL D LE 6 80 C LV ER N-A HAP 1 14 E KP V SLL LS V6 9P A FQ L GKQ Ai 21 LS V T NLY SK N6 97 F0G L GK Q A QS1 27 YS KN SA QF S 6 98 QGqL G KQ AQ SS 1 39 QT LS F P ATFT 6 99 ___ QAQS 67 V SL CRP G RS A6 120 __F__S__R__D__P_ 99T GLE LL S LS N 6 121 F V S S R K D Q P 1j 101 S N P P A S A S Q S 6 122 V SH RI R P HVL6 _ 28 S KN S AQ FS T I 5_ L57 S AY F FFF S D R5_ 246 TABLE XXXV 162P1E6 v.3: HLA Peptide TABLE XXXV 162P1E6 v.3: HLA Peptide Scoring Results Al 10-mers SYFPE1THI Scoring Results Al 10-mers SYFPEITHI SEQ. SEQ. Pos 11 2 3 4 5 6 7 8 9 0 score ID NO. Pos 1 2 3 4 5 6 7 8 9 0 score ID NO. 69 L C R P G R S A V A 5 118 G I T G V S H R I R 1 86 L N L P E A G F H H 5 121 G V S H R I R P H V 1 113 A S Q S V G I T G V 5 37 I L Q T L S F P A T 4 TABLEXXXV162P1E6 v.4: HLAPeptide 49 P S P S I P L S S A 4 Scoring Results A1 10-mers SYFEITHI 54 P L S S A Y F F F F 4 SEQ. 61 F F F S D R V S L C 4 Pus 1 2 3 4 5 6 7 8 9 O score IDNO. 68 S L C R P G R S A V 4 35 L Y R T L S S L K Y 23 74 R S A V A Q S W A H 4 27 H R P A E L G A L Y 18 80 S W A H C S L N L P 4 1 52 P H E D F S G V K F 13 84 C S L N L P E A G F 4 53 H E D F S G V K F R 11 87 N L P E A G F H H V 4 5 I K E R N Q L F R T 10 104 L S L S N P P A S A 4 13 R T G P H L S S G V 10 123 S H R I R P H V L F 4 29 P A E L G A L Y R T 10 7 L L L T L D L E K P 3 65 G A D N H E A S A A 10 11 L D L E K P V S L L 3 68. N H A S A A T A T 10 59 Y F F F F S D R V S 3 50 R T P H E D F S G V 9 78 A Q S W A H C S L N 3 23 I S V P H R P A E L 8 85 S L N L P E A G F H 3 76 A T T A A A T T V A 8 93 F H H V A Q T G L E 3 4 F I K E R N Q L F R 7 105 S L S N P P A S A S 3 19 S S G V I S V P H R 7 114 S Q S V G I T G V S 3 25 V P H R P A E L G A 7 116 S V G I T G -V S H R 3 74 A T A T T A A A T T 7 22 S V T N L Y S K N S 2 81 A T T V A A A A A A 7 33 Q F S T I L Q T L S 2 11 L F R T G P H L S S 6 42 S F P A T F T P S P 2 28 R P A E L G A L Y R 6 52 S I P L S S A Y F F 2 32 L G A L Y R T L S S 6 60F F F S D R V B L 2 37 R T L S S L K Y P S 6 6 SDR VSL CRPG 2 4 SSLKY PSWRV 6 75 S A V A Q S W A H C 2 56 F S G V K F R R H G 6 95 H V A Q T G L E L L 2 77 T T A A A T T V A A 6 102 E L L S L S N P P A 2 8 TT V A A A A A A A 6 8 L L T L D L E K P V 1 16 P H L S S G V I S V 5 15 K P V S L L L S V T 1 18 L S S G V I S V P H 5 20 L L S V T N L Y S K 1 42 L K Y P S W R V R T 5 24 T N L Y S K N S A Q 1 49 V R T P H E D F S G 5 25 N L Y S K N S A Q F 1 71 A S A A T A T T A A 5 32 A Q F S T I L Q T L 1 3 F F I K E R N Q L F 4 4C T L S F P A T F T P 1 24 S V P H R P A E L G 4 43 F P A T F T P S P S 1 26 P H R P A E L G A L 4 58 A Y F F F F S D R V 1 31 E L G A L Y R T L S 4 65 D R V S L C R P G R 1 34 A L Y R T L S S L K- 4 7C C R P G R S A V A Q 1 39 L S S L K Y P S W R 4 71 R P G R S A V A Q S 1 41 S L K Y P S W R V R 4 76 AVAQSWA H C S 1 45 P S W R V R T P H E 4 77 V A Q S W A H C S L 1 55 D F S G V K F R R H 4 82 A H C S L N L P E A 1 93 A A A A A R V T L T 4 89 P E A G F H H V A Q 1 6 K E R N Q L F T G 3 90 E A G F H H V A QT 1 10 Q L F R T G P H L S 3 91 A G F H H V A Q T G 1 44 Y P S W R V R T P H 3 103 L L S L S N P P A S 1 57 S G V K F R R H G A 3 109 P P A S A S Q S V 1 2 F F F I K E R N Q L 2 _ 117 V G I T G V S H R I1 F R T G P H LS S G 2 247 TABLE XXXV 162P1E6 v.4: HILA Peptide TABLE XXXV 162P1E6 v.5: HILA Peptide Scoring Results Al lO-mers SYFPEITEHI Scoring Results Al lO-mers SYPPEITHII SEQ. SEQ. Pos 1 12 3 4 5 6 7 8 9 0 score ED NO . Pos 1 12 3 4 5 6 7 8 9 0 score 0D NO. 11 H L8S G V IS VP 2 1N VM AH T VG P RQ 2 2 S G vI SV PH RP2 __ 20 AHT V GP RQ RE 2 2 VI SV PH RP A E2 1 2A V GP RQR E RV T2 3q A ELG A LY RT L2 G GA LYR KGP TT I 30 YRT L SS L K YP2 _ 10 K G PT TPSS VM 1 40 SW R VR T PHHBD2 11 G P T T P S S V M _jI A V K FRR H GAD N2 _ 24 G PR Q RER V TD 1 6A R R HG A DNH E 2 25 PR QR E RVT DI I 7Z SA AT AT TA AA 2 _ 37 R FQ WS EV QB H1I 9IAAAAAAAR V T2 __ C 3 FW S EVQ E AW111 92 A A AA AA R V TL 2________ 7_ E R Kl Q L F R T G P I T__ ABLE XXXV 62P1E6 v.6: ifLA Peptide 9_ N Q L F R T G P H L I ___ cor ng Results Al 0-mers SYFEITHI__ 14 T GP HL S SG VI I SEQ. _15 G P H L S S G V I S I Pos 1 3.2 3 4 5 6 7 8 9 0 score ED NO. 43K Y PS WR VR TP1 14 H T RLSY GT H S17 51 T P H E D F S G V K 1_7 P H R E R T N H T E 11 61 F R R H G A D N H E 1 _8 H E X R T N H T H L 10 6 A DN H EA SA AT1 5R T VH 9E RTN H7 73A ATA TT A AA Tj I IR TN HT EL S YG-6 78 TA AA TT VA AA 1 4, V RT PHH ERT N5 7 A A AT TV AAAA 1 -11 SWR VR T PH EE 2 8A A TTV AA AA A I _ E E R TN H TE LS _4 VAAAAAAAAA I _ _________ 851 AA AAA A A AA I TABLE XXXVI 162P1E6 v.l: HLA Pepide go A A A A A A A A A A I coring Results A020llO-iers SYFPEITH3I 8'AA A AAA A AA AjI SEQ. 8 AA A AA AAAA AjI Pos 1.2 34 5 67 89 0 scoreED NO. 8 AAAAAAAA ART 1______ 78VLF__ 0CL2 __AAAAAAAARV 1 81VL_ GQCLV9R2 TABLE XXXV 162P1E6 v.5: HLA Peptide 3_ __VRTRSLTLL_ 1 Scoring Results Al lO-mers SYFFEITHI 7ZGKRGCKVL__ V_ 1 Pos 1 12 3 4 5 6 7 8 9 0 score 0D NO. 2M K 8 L G V R T R S L 17 311 V T D I P T R F Q W 18 _ F L S S S I S S G 1 21 QR ER VT D I PT14 6q ______ __ GCKV1 _APTTPSSVMAH1 7g_____ 9NHAPAKRFGCQVL 17 1 AH 0A YR T 1P14 IF Q3 STL PT17 21 TV GP Q ZR 70 V SF SR 248 1 ABLE XXXVI 162P1E6 v.1: HLA Peptide ABLE XXXVI 162PIE6 v.1: HLA Peptide corinj! Results A0201 10-mers SYFPEITHI Scoring Results A0201 10-mers SYFPEITH1 SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 132 A Q L W H T Q W D L 14 104 A Q S S W I F L K Q 5 14 I L G R M W G H W R 13 121 F V S S R K D Q P H 5 22 W R L S F L D K S L 13 135 W H T Q W D L D K G 5 39 T L L C P P T P M N 13 E S F S R H I L G R 4 99 G L G K Q A Q S S W 13 35 T R S L T L L C P P 4 102 K Q A Q S S W I F L 13 52 S S Q E L W F F L S 4 105 Q 5 S W I F L K Q L 13 53 S Q E L W F F L S S 4 13 H I L G R M W G H W 12 61 S S S P I S S G F H 4 15 L G R M W G H W R L 12 67 S G F H I G K R G C 4 38 L T L L C P P T P M 12 107 S W I F L K Q L Q N 4 79 L F V L F G Q C L V 12 131 R A Q L W H T Q W D 4 125 R K D Q P H R A Q L 12 136 H T Q W D L D K G R 4 1 M T N K E I V E S F 11 4 K E I V E S F S R H 3 51 G S S 0 E L W F F L 11 12 R H I L G R M W G H 3 8' L V E R N A H A P A 11 2(Q G H W R L S F L D E 3 133 Q L W H T Q W D L D 11 P P M N G P G S S 3 S S R H I L G R M 10 4 T P M N G P G S S Q 3 54 L W F L S S S PI 10 6 L S S S P I S S G F 3 62 S S P I S S G F HI 10 71 I G K R G C K V L F 3 61 S S G F H I G K R1 84 G Q C L V E R N A H 3 11C F L K Q L Q N T C F 10 8 V E R N A H A P A F 3 23 R L S F L D K S L G 9 97 F Q G L G K Q A Q S 3 2 S F L D K S L G V R 9 100 S B W I F L K Q L Q 3 34 R T R S L T L L C P 9 l11 K Q L Q N T C F F F 3 51 E L W F F L S S S P 9 114 L Q N TC F F F V S 3 94 A P A F Q G L G K Q 9 115 0 N T C F F F V S S 3. 100 L G K Q A Q S S W I 9 124 S R K D Q P H R A Q 3 110 N T C F F F V S S R 9 126 K D Q P H R A Q L W 3 44 P M N G P G S S Q E 8 134 L W H T Q W D L D K 3 54 Q E L W F F L S S S 8 _11 S R H I L G R M W G 2 81 Q C L V E R N A H A 8 16 G R M W G H W R L S 2 10Q A Q S SWIFL 8 4 NGPGS S Q E LW 2 124 Q P H R A QL W H T 8 4 G P G S S Q E L W F 2 21 L D K S L G V R T R 7 5 W F F L S S S P I S 2 3' R S L T L L C P P T 7 74 R G C K V L F V L F 2 8( F V L F G Q C L V E 7 9C R N A H A P A F Q G 2 109 I F L K Q L Q N T C 7 111 L K Q L Q N T C F F 2 123 S S R K D Q P H R A 7 118 C F F F V S S R K D 2 21 H W R L S F L D K S 6 122 V S S R K D Q P H R 2 41 L C P P T P M N G P 6 130 H R A Q L W H T Q W 2 64 P I S S G F H I G K 6 137 T Q W D L D K G-R G 2 77 K V L F V L F G Q C 6 2T K E I V E S F S 1 8' L F G Q C L V E R 6 N K E I V E S F S R 1 92 A H A P A F Q G L G 6 i1 F S R H I L G R M W 1 93 H A P A F Q G L G K 6 33 V R T R S L T L L C 1 9[ Q G L G K Q A Q S S 6 P G S S Q E L W F F 1 58 F F L S S S P I S S 5 68 G F H I G K R G C K 1 63 S P I S S G F H IG 5 101 G K Q A Q S S W I F 1 75 G C K V L F V L F G 5 1 F F F V S S R K D Q 1 76 C K V L F V L F G Q 5 12C F F V S S R K D Q P 1 83 F G Q C L V E R N A 5 28 D K S L G V R T R S -1 95 P A F Q G L G K Q A 5 96 A F Q G L G K Q A Q 5 249 TABLE XXXVI 162P1E6 v.3: HLA Peptide TABLE XXXVI 162P1E6 v.3: HLA Peptide Scoring Results A0201 lO-mers SYFPEITHI Scoring Results A0201 1lO-mers SYFPEITHI SEQ. SEQ. Pos 12 3 45 6 7 8 0soreD NO. Pos 12 34 56 78 90soreD NO. 10 T LDLE K PV SL 24 4A F T PS PSI P LS 10 68 S L CR P GRSA V23 6q L C RP G RSAV A10__ 87 N L PEA G FHNH 23 90 E AG F HH VA Q T10 K KWA ESL L LTL 22 116 S V G IT GVSH R10__ L LLTL D LE KP 20 118 GI TG VS H RI R10 8L L T LDL EKP V20 _15 K PVS LLLS VT 9 11 LD L EKP VS L L20 67 VS LC R P GRS A9 _ 95 H V AQ TG LE L L 20 7Q A VA Q S W A HC89_ 97 A Q T GLHL LS L 20 8 S WA HCS LN LP 9 12 DL E KP V SL LL19 106 LSN PP A SA SQ 9 20 LL SV TN L YS K19 13 LZKP V SL L LS 8 3Z AQ F ST ILQ TL 19 75 S AV AQS WA HC 8 31 IL0T LS FP AT 18 9 QT GL E LLS LS 8 18L LLT L D L Z 17 112 S A SQ SVG I T G 8 IA VS LL L SV T NL17 3 3W AES L L L T L D7 71 V AQS W A HC L 17 27 Y SK N SAQ0F ST 7_ 11 A SQ S VG1T G V17 45 A TF T PS P S IP 7 1211 G VS HR IR P H 16 49 P S PSI P LSS A7 _ _I S L LLSV T NL Y15 54 PL SS A YF F FF 7_ 1 LL L SV T NL YS 15 99TG LE LL SL SN 7 6F PF FSD R VS L15 124 H R IR P HV L 7__ 14 EXP VS L LL S V14 57 S AY F F PFS DR 6_ 311 SAQ F ST I LQ T14 61 F7F S DR VS8L C6__ 34 TI LQ T LS FP A14 71 R P GR SA VA Q S6_ 100 GL E LL SLS N P14 80 LN L PE A GFHH 6__ 10 E LL SLJS N PP A14 _ 80 L PE A GFH HV A6 10 L L SL SNPPpA S14 9__ VA__T____ELL_ S 4AR9 S L LLT L DL 13 115 Q SVG__ TG__SH_ 2N VT NL YS KN S A13 119 1 TG__S_ HRI__P_ 2$ NL YS KN SA QF 13 16PV___ LSV 20 SXN S AQ FS TI113 38 L QTL__FP__TF_ 82 A HC S L N L P 13 41. L____P__T__T__ S_ 85 S L NL PEHA G 13 4 SFPAT__TP__ P_ 94 H HV AQ0T GL RL13 4___ PSIP 105 S L SNP P AS AS13 5 SS__Y_____F__D 1 L K WAES L LL T12 6 F __DRVSLC R_5 35 S T ILQ T LS PP12 7 C RP____SA__AQ_ 50 A YF P1 FS DR V12 731 G RSAVAQSW A_ 7 QS WA HC S L NL 12 81 W_ _ __ _ _ A___SLNL 9ZCF Q H H VAQ0T ;L 12 84 C SLNLPEAGF 10 L S LSN P PAS8 12 9 10 N PP A S A SQ SVT1 0 3LLSL 110 P ASAS Q SV G 112 211_ LSVTN__YSKN_ 1111 A S A S Q S V G I T 12 2ZS NL KN II1 V GI T GVS HR 112 __ ____P __S __A__F__F 12Z VSITR IR PH V L 12 _ 61 RVSLCP_ GR_ S 2 K NS AQ FSTI L11 ___ P___AGF__H_ VA_ Q 40 T LS FP AT F T P 1 __07SN__ SAS 40 T FT P S PSI PLf 11 120 __G__S__R__R__H 5Z SXP L S SA Y PF 11 123_ S_ __RIRPHVLF L T L D L E K P V S 105ESLLLTLDLE3 P A T F T P S P S 1 10 4__F AT__TP__PS_ 250 TABLE XXXVI 162P1E6 v.3: HLA Peptide TABLE XXXVI 162P1E6 v.4: HLA Peptide corinp Results A0201 I 0-iers SYFPEITI Scoring Results A0201 JO-mers SYFPEITI SEQ. SEQ. Pos 12 34 5 67890soreD NO. Pos.12 3 4 5 679 0coreD NO. 50 S P SI P L S S AY 3 81 A_ T__TVAAAA A _A_12 51 PS I P LSSA YF 3 __ 91 A A AA AA A RVT 12 62 FPS D R V SL CR3 4__IK__RN__ LF__1 74 R SA VAQ S WA H3 21G__IS__PH__ PI_ 24 LYK S S __ Y PSWRVRT_ 1 30 N SAQ F ST IL Q 2 HGADNHEA S_1 55 L S S AY F F F F S 2 ____TTVAAA AA A_11 59 YF F FFS DR V S2 8 A A AAAAA A AR 11__ 64 S DRV S LC R PG 2 411 S LKYPSWR V _R_10 78 AQ9S WA HC SL N 2 ___ G______ A__ ASAA1 114 S Q S V G I T G3 V S 2 64 A D N H E A S A A T 1 65D RV S L C R P GR 1 I ASAA__ ATT_ 1 83 H CSLN L PE AG 1 II__ERNQLF__T 93 F H H V A 0 T G L E I_____PAELGALYR_9 72 PQGR SA V AQ SW -1 __ RRHGADKHEA_9 109 P PA SAS QS VG, -1 67_ DNHEA__AATA_ TABLE XXXVI 162P1E6 v.4: lILA Peptide 76 A T T A A A T T V A 9 __ Sorting Results A0201 lO-mers SYFPEITHI 12 F R T G3 P H L S 8 (3 8 __ SEQ. 14 T0P H LS S G V18 Pos 12 3 4 56 789 0Oscore D NO. 57 SGV K F R R HGA 8 __ 33 G A L Y R T L S S L 22 19 S S G V S V P H R 92 AA AA AA R VT L22 25 VPHRPAE L _GA_ 90 A AAA A AA AR V20 31 __L__A__Y__T__S_ 23 1 S V P H R P A 3 L 18 32 _LGALYRTLSS _ 30 A 9L GA LY RT L 18 37 _ __ _ _ R___SSL PS 13RT G PH LS S G 17 43 _ __ _ _ K___ WRVR 78 T AAA TT VA AA 17 7 74 AT AT TA AA TT 16 18 LSS__VISV___H 93 A A A A A R V T L T 16 24 S_ V__PHRP__AEL G_6 16 PHL S SG V IS V15 11_ L __RTGPHL __ S_5 50 RT PH E DF SG V15 28RP___ GAL 7Z S A A TA TT AAA 15 35_ LYRTLSSL ___Y 7 TAT T AA A T TV15 46SW___ TPH 791 A A A T T V A A A A 15 36 Y R L S S K Y P 85A A AA A AAAA 15 IS _ 4 _ ___._ R__RT__HE__FS 80A A AA AA A AA 15 _______ V__ HEDF 87A A AA AA A AA 15 581__V_____R__G__D 88 A A AA AAA A AA15 __V_ HGA 17 HLS S GV IS V P14 6N__H__A__A__T__T_ 26 P HR PA EL G AL14 N F FI KE RN Q LF 3 40 SS L KY PS WR V14 __ K____N__LFRTG__ 84 V A AA AAAA AA 14 151 G P H L S__G___IS 21 F F F I K E R N Q L 13 2 __SGVISVPH RP_ 34 AL YR T LS SL K13 27 HRPAE __,_G A _LY_ 38 T L S S L K Y P S W 13 39 L S S L Y P S W R 7 TTA A AT TV AA 13 44 __P__W__V__T__H_ 83 TVA A AA AA AA 13 51 __P__E__F__G__K_ 9_ N Q L F R T G FEH L 12 53 _ _ __ _ _ H__DS_ VKF 10 Q LF R TGP H LS 12 61_ F___HADN 731 AA I A T T A A A T 12 _1_P- EDFSG 8q AAT T VA A AA Iq12 55 D___ V' RRH 251 TABLE XXXVI 162PIE6 v.4: BOLA Peptide TABLE XXXVI 162PlE6 v.6: HLA Peptide Scoring Results A0201 lO-mers SYFPEITHII Scoring Results A0201 1O-mers SYFPEITHII SEQ. SEQ. Pos 112 3 45 67 8 9 0 scoreED NO. Pos 1 2 3 4 5 6 7 8 9 0Oscore EDNO. So FSG V K FRR H G1 8 8H EER TN HTBEL 11__ 6 R HGAD N HE AS1 11 1R T NH T ELS Y 9 I E RN Q F RT G_ 3R VR T PHE E RT 8 45 PB8W RV R T P 1E 6 T PH E ER T NH 7 12__TN__HTE__L1STYTELS TG 6 TABLE XXXVI 162PE6 v,5: HLA Peptide 1 S W R V R T P H E ES5 Scoring Results A020 10-mers SYFPE1T0 15 T E L S Y G T H S GS5 SEQ. 4 VR T PHE E RT N4 Pos 1 12 3 4 5 6 7 8 9 0 score EIDNO. 5R T P H E E R T V H 4 2 T V GPR Q RER V16 13 NEHTE LS Y GT H3 A AL Y R KPT TP 15 14 H TE LS Y GTES 3 R RKG PT T PSS V14 2 W RV RT P HE 9 2 14 T PS SV MA HT V13 IQ ER T NH T E -1 341P T RFQ W S Z 13 - R T NH TE L S -3 1__ 18 V MA HT V GP RQU 12____ 17 S V M A H T V 0 P R I I ABLE XXJ~V 62P1E6 v.: fLA Peptlde 13 R T P S S V MAHT1Scoring Results A0202 10-mens SYFPEITH1I 37 RF QW SE V E 10SEQ. 25 PR QR E RVT DI19 Pos 12 3 45 67 8 9O0scoreD NO. 33D IPT RF QW SE 9 92 A HA PAF Q GL G4 2 AEL GA L YR K G8 94 A PAF QG LG K 4 4L GA L YR KG PT8 9R NA HA PA FQ 3 211 H TV G P RQ0R 8 102 K0A Q SS W I FL 3_ NE LG A LY R KGP 7_ 130 HR AQ LW H TQ w3 1Z PT T PS SV MA 117 91 N A H A P A F QG L 2 24 R2R VT D IP T R7 93H A PA FQ0G LG K2__ IIG PTT P SS V X 6 103QAQS SW I FL K2 _ 1 P AEL GA L YR K5 131 RAQ L W HTQ WD 2 10 KGP T TP S SVN 9 A FQ GL G KQ AQ 1I_ I S SV MA HT V GP5 10 A QS SW IF L KQ 1__ 23V GP RQ0RE RV T5 13 2A QL W HTQ W DL 1 _ 24 G PR Q R ERV T D 5 ________ 311 V T D I P T R F Q W 5 T__ ABLEXXOXVIL62P1E6 v.3: BLA Peptide 1g M A H T V G P R, Q P,4 S__ coring Results A0202 1O-mers SYFPEITHII 30 R VT DI PT R FQ4 SEQ. 3 T D I P T R F Q W S 4 Pos 1 2 3 4 5 6 7 8 9 0 score MDNO. 39 QW SBEVQB EA WS 4 76 A VAQ0S WA H CS4 27 Q RB9RV T DIP T3 __ 111 A SAS Q SV G I 4 36 T RF Q WS EVQ0E3 2 K WAE SL LL TL 3 38 F QW S EVQ0EA W3 30. NS A Q FS T IL Q 3 7L Y RK GPT T PS2 __ 43F P AT FTP S PS 3_ 26 RQ RER V T DI P2 __ 50 S SAY FF FFS D 3 20 A HT VG PR Q RE 1_ 71 RSA V A QS WA H3 15PS S V MA HTG -3 __ 80 S WAH CS LN LP 3 2g E RV TDI P TR P,-3 __ 89 P 3A GFH HV AQ 3 95 H VAQ T G L EL L 3 log P PAS A SQ SV G3 3 WAE S LL LT LD 2 31S AQ FS T I L T 2 44PAT F T PS pS1 2__ 252 TABLE XXXVII 162P1E6 v.3: HLA Peptide TABLE XXXVII 162P1E6 v.4: HLA Peptide Scoring Results A0202 10-mers SYFPEITHI Scoring Results A0202 10-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 0 score IDNO. Pos 1 2 3 4 5 6 7 8 9 0 score IDNO. 57 S A Y F F F F S D R 2 76 A T T A A A T T V A 1 75 S A V A Q S W A H C 2 81 A T T V A A A A A A I 77 V A Q S W A H C S L 2 81 W A H C S L N L P E 2 TABLE XXXVII162P1E6 v.5: HLA Peptide 90 E A G F H H V A Q T 2 Scoring Results A0202 10-mers SYFPEITHI 96 V A Q T G L E L L S 2 SEQ. 11C P A S A S Q S V G I 2 Pos 1 2 3 4 5 6 7 8 9 0 score IDNO. 112 S A S Q S V G I T G 2 4 L G A L Y R K G P T 3 4 A E S L L L T L D L 1 18 V M A H T V G P R Q 3 32 A Q F S T I L Q T L I1 P A E L G A L Y R K 2 45 A T F T P S P S I P 1 5 G A L Y R K G P T T 2 58 A Y F F F F S D R V 1 19 M A H T V G P R Q R 2 78 A Q S W A H C S L N 1 2. A R L G A L Y R K G I 82 A H C S L N L P R A I A L Y R K G P T T PI 1 91 A G F H H V A Q T G I 20 A H T V G P R Q R El 1 | 97 A Q T G L E L L S L 1 113 A S Q S V G I T G VI I TABLE XXXVIH 162PIE6 v.1: HLA Peptide Scoring Results A0203 1 0-mers SYFPEITHI TABLE XXXVII 162P1E6 v.4: HLA Peptide SEQ. Scoring Results A0202 10-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 score ID NO. SEQ. 85 Q C L V E R N A H A 18 Pos 1 2 3 4 5 6 7 8 9 Oscore IDNO. 87 L V E R N A H A P A 18 79 A A A T T V A A A A 6 83 F G Q C L V E R N A 10 85 A A A A A A A A A A 6 95 P A F Q G L G K Q A 10 86 A A A A A A A A A A 6 123 S S R K D 0 P H R A 10 87 A A A A A A A A A A 6 84 G Q C L V E R N A H 9 88 A A A A A A A A A A 6 86 C L V E R N A H A P 9 89 A A A A A A A A A R 6 88 V E R N A H A P A F 9 9C A A A A A A A A R V 6 96 A F Q G L G K Q A Q 9 91 A A A A A A A R V T 6 124 S R K D Q P H R A Q 9 92 A A A A A A R V T L 6 89 E R N A H A P A F Q 8 93 A A A A A R V T L T 6 97 F Q G L G K Q A Q S 8 72 S A A T A T T A A A 5 125 R K D Q P H R A Q L 8 78 T A A A T T V A A A 5 84 V A A A A A A A A A 5 TABLE XXXVM 162P1E6 v.3: HLA Peptide 71 A S A A T A T T A A 4 Scoring Results A0203 10-mers SYFPEITH 74 A T A T T A A A T T 4 SEQ. 28 R P A E L G A L Y R 3 Pos 1 2 3 4 5 6 7 8 9 0 score ID NO. 32 L G A L Y R T L S S 3 69 L C R P G R S A V A 18 64 H G A D N H E A S A 3 104 L S L S N P P A S A 18 69 H E A S A A T A T T 3 23 V T N L Y S K N S A 10 73 A A T A T T A A A T 3 3 T I L Q T L S F P A 10 77 T T A A A T T V A A 3 40 P S P S I P L S S A 10 8C A A T T V A A A A A 3 67 V S L C R P G R S A 10 83 T V A A A A A A A A 3 73 G R S A V A Q S W A 10 2S P A E L G A L Y R T 2 82 A H C S L N L P H A 10 33 G A L Y R T L S S L 2 88 L P H A G F H H V A 10 65 G A D N H E A S A A 2 102 E L L S L S N PP A 10 7C E A S A A T A T T A 2 24 T N L Y S K N S A Q 9 7 T A T TA A A T T V 2 37 L Q T L S F P A T 9 3 A L GA L Y R T L 1 5C S P S I P L S S A Y 9 34 A L Y R T L S S L K 1 6K S L C R P G R S AV 9 60 A D N H E A S A A T 1 70 C R P G R S A V A Q 9 253 TABLE XXXVII 162PIE6 v.3: HLA Peptide TABLE XXXVII 162P1E6 v.4: HLA Peptide Scoring Results A0203 10-met-s SYFPEITHI ~ Scorlng Results A0203 10-me-s SYFPEITHII SEQ. IiI SEQ. Pos 12 34 56 7 89 0OscoreED NO. IPosi 1 234 5 67 89 0 scoreED NO. 74 R S AVAQ S W AH 9 [74 A T ATT A AA T T8__ 83 HC SL NL PE A G9 I90 AA AA AA A AR V 8_ 89 P HAG F HH V AQ 9__________ 103, L L S L S N P P A S 9 TABLE XXXVIU 162P1E6 v.5: B.A Peptide 101 S L 8 N P P A S A S 9 S__ corin Results A0203 10-mers SYFPEITEII 25 ~L Y SK NS A QF8 SEQ. 38 L QT LS F PA TF 8 __ Pos 112 3 45 6 7 89sore D N. 51 P S I P L S S A Y F 8 11GP PSS A1 71 R P G R S A V A Q S 8 37 R F Q W S V Q 9 A 1 75 S AV AOQS WA HC8 12_ PT__P__SV___ H-_ C S L N L P E A G F 8 38_ F Q W S E 0 R A W 91 E AGFH HV A QT8 13_ T_ TPSSVMA__ __ 10 L S NP PAS A SQ 8 3__ Q WSEVQ__AW_1_ 8 TABLE XXXVI 162P1E6 v.4: HILA Peptide TABLE XXXIX 162P1E6 v.1: lILA Peptide Scorngx Results A0203 1O-niers SYFPEITHI Scoring Results A3 10-mers SYFPEITE1I SEQ. SEQ. Pos 1 12 3 4 5 6 7 8 9 0Oscore MDNo. Pos 1 2 3 45 6 7 8 9 0OscoreED NO. 7Z A AT AT TA AA 27 14 ILGR MW G HW R23 74 TA AA TT VA AA 27 81 V L FGQ0C L v 20__ 7 AA AT TV AA AA 27 77 K VLF VL F GQ C19__ 80 AA TT VA-AA AA 27 80 F VL F GQ C L VE 19 81AT TV A AAA AA 27 __ 64 P IS SOGF HIG K18__ 8A TT VA A AAA AA 27 93 H AP A FQ GL G 18__ 8A T V AAA AAA AA 27 23 RLS FL D KS L G17__ 4VA A AA AA AA A2726 F L DK SL GV RT 17__ 81A A A AA AA AA 27 37 S LT LLC PPT P17__ 81A A A AAA A AA 27 11 RXW G HW RLS9F 16__ 81A A AA AA A AA 27 20 GHW R LS F LD 16__ 80A A AAA A AA A 27 __ 81 L VER NA H AP 16 61 GA DN HEAS8A A 1 110 F L K L Q N TCF 16 71 TTAAATVA A _1 40 L LCP PT P MN G15__ 61 DN HE AS A AT A18 50 P LSS S P IS SG15__ 6d _____ 8 SAAT1 C LV ER NA H AP 15__ 731A AT T AA A179 GL ()K Q A QS SW15 _ 8 AA AA A AA AA R17 3 GV R TR SL T LL 14__ 211 GVISVPHPA_ 1 71 1 G K R G C K< V L FP14 __ 21 V_ _ _ _ _ _ P__R_ ELC;A1 121 F VSS R KD QP H14 _ _ SARSGAKDNRRHEGAS 10 4 KEIVE__F__R__1 Q RR GA DN EA 1 61 E FS H254 1 ABLE XXXIX 162P1E6 v.1: HLA Peptide TABLE XXXIX 162P1E6 v.1: HLA Peptide Scoring Results A3 10-mers SYFPEITHI Scoring Results A3 10-mers SYFPEITHI[ SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 score IDNO. Pos 1 2 3 4 5 6 7 8 9 Oscore IDNO. 88 V E R N A H A P A F 12 58 F F L S S S P I S S 5 103 Q A Q S S W I F L K 12 62 S S P I S S G F H I 5 133 Q L W H T Q W D L D 12 94 A P A F Q G L G K Q 5 9C R N A H A P A F Q G I1 100 L G K Q A Q S S W I 5 98 Q G L G K Q A Q S S 11 105 Q S S W I F L K Q L 5 125 R K D Q P H R A Q L 11 111 L K Q L Q N T C F F 5 31 L G V R T R S L T L 10 123 S S R K D Q P H R A 5 34 R T R S L T L L C P 10 128 Q P H R A Q L W H T 5 107 S W I F L K Q L Q N 10 130 H R A Q L W H T Q W 5 5 E I V E S F S R H I 9 132 A Q L W H T Q W D L 5 27 L D K S L G V R T R 9 21 H W R L S F L D X S 4 29 K S L G V R T R S L 9 22 W R L S F L D K S L 4 45 T P M N G P G S S Q 9 24 L S F L D K S L G V 4 54 Q E L W F F L S S S 9 44 P T P MN G P G S S 4 61 S S S P I S S G F H 9 50 P G S S Q E L W P F 4 65 I S S G F H I G K R 9 63 S P I S S G F H I G 4 108 W I F L K Q L Q N T 9 66 S S G F H I G K R G 4 112 K Q L Q N T C F F F 9 75 G C K V L F V L F G 4 116 N T C F F FV S S R 9 102 K Q A Q S S W I F L 4 124 K D Q P H R A Q L W 9 114 L Q N T C F F F V S 4 12 P H R A Q L W H T Q 9 124 S R K D Q P H R A Q 4 40 P M N G P G S S Q E 8 130 H T Q W D L D K G R 4 49 G P G S S Q E L W F 8 -15 L G R M W G H W R L 3 65 F H I G K R G C K V 8 1 M W G H W R L S F L 3 72 G K R G C K V L F V 8 28 D K S L G V R T R S 3 92 A H A P A F Q G L G 8 41 L C P P T P M N G P 3 109 I F L K Q L Q N T C 8 47 M N G P G S S Q E L3 115 Q N T C F F F V S S 8 56 L W F F L S S S P I 3 127 D Q P H R A 0 L W H 8 120 F P V S S R K D Q P 3 N K E I V E S F S R 7 48 N G P G S S Q E L W 2 E S F S R H I L G R 7 5 S S Q E L W F F L S 2 1C F S R H I L G R M W 7 91 N A H A P A F Q G L 2 53 S Q E L W F F L S S 7 106 S S W I F L K Q L Q 2 6C L S S S P I S S G F 7 137 T Q W D L D K G R G 2 73 K R G C K V L F V L 7 35 T R S L T L L C P P 1 84 G Q C L V E R N A H 7 42 C P P T P M N G P G 1 85 Q C L V E R N A H A 7 57 W F F L S S S P I S 1 97 F Q G L G K Q A Q S 7 6 S G F H I G K R G C 1 122 V 9 S R K D Q P H R 7 7 C X V L FV L F G Q 1 I M T N K E I V E S F 6 7 LFVLFGQCL V 1 33 V R T R S L T L L C 6 119 FF F V S S R K D Q 1 36 R S L T L L C P P T 6 43 P P T P M N G P G S 6 TABLE XXXIX 162P1E6 v.3: LIA Peptide 89 E R N A H A P A F Q 6 Scoring Results A3 10-mers SYFPEITHI 95 P A F Q G L G K Q A6 SEQ. 96 A F Q G L G K Q A Q6 Pos 1 2 3 4 5 6 7 8 9 score IDNO. 101 G K Q A Q S S W I F 6 6 S L L L T L D L E K 27 104 A Q S S W I F L K Q 6 25 N L Y S K N S A Q F 24 131 R A Q L W H T Q W D 6 20 L L S V T N L Y S K 22 2 T N K EI V E S F S 5 18 S L L L S V T N L Y 20 S S F S R H I L G R M 5 85 S L N L P E A G FH 20 11 S R H I L GR M W G 5 1 P V S L L L S V T N 19 38 L T L L C P P T P M 5 68 S L C R P G R S A VI 19 255 TABLE XXXIX 162P1E6 Q.: HLA Peptide TABLE XXXIX 162PIE6 Q.: HLA Peptide Scoring Results A3 IlO-mers SYFPEITH[ Scorln2 Results A3 1O-mers SYFPEITHiI SEQ. SEQ. Pos 1 23 45 6 78 90oreD NO. Pos 112 3 45 67 89coreD NO. 105S LS NP-P-AS AS 19 109 P PA S ASQ SVG 8 __ 116 SV G ITG VS HR 19 11S ASQ SV G IT G8__ 10 TL D L K PV 8L 18 122 V S HR I RP HV L 8 52 S IP L SS A Y F17 4_ A9S L L LTL D L 7__ 64 RV S LC RP G RS17 9 L T LDL EK P VS 7__ 74 A VA Q SW A HCS17 13 L 3KP VS L LL S 7_ 11 Q SV GI T GVS H17 31 S A 0FS T IL QT 7 _ 1M L LL SV T NL YS 1 32 A0F S TI L QTL 7 41 T LSF P ATF T P14 45 A T FT P SP STP 7__ 54 P LS SA Y FF FI14 6C F F F S DR V S L7 100 G LEL LS LS NP 14 67 VS L CR P GR 8 7 110 GI TG VS HR IR 14 7QSW A HC S L N L 7 1 D LE K PVSL L L13 11 L DL EKP VS LL 6 31 ILQT LS FP AT 13 24 T KL YSK NS AQ 6 381 LQ T LS F PATF 13 29 KNS A Q FS T I L 6 51 P SI PLS S AY F13 73 QR SAV AQ0SW A6 69 L CRP GR S AV A13 75SA V AQ SWA HC 6 71 RP GR S AVA Q S13 74 AQ SW A HC SL N6__ 103 L LS LS NPP AS 13 8 L PE A GFH HV A6 107 SNP PA S AS Q S13 9 E AGF HH V AQT 6 123 S HRI RP HV L F13 9 Q T GL EL L SLS 6_ 124 HR IR P HV LF H13 __ 11 P AS A SQ S V G 6 __ K KWA ES L LLT L12 11 S 9S V GI T GVS 6_ L LLT L DL E KP12 __ 1LXW AERS LL L T5__ 24 SV TN L YS K NS12 14 E XP VS LIL LS V5_ 5Q S P SIP L SS. AY 12 42 S PP AT FT P S P5 _ 51 S AY FF FF SD R12 __ 43 FP AT F TP S PS 5_ 80 L XLP E A G HH 12 49 PB8P S I PL8SA 5 __ 102 E LLS LS N PP 12 _ 65 DR VS LC R PG R 5 _ 8LL T LDILJE KP V11 1 _11A S ASQS V G IT 5 87 NL P EAG F HH V11 __ 17 V SLL LS VT NL 4 95HV AQ T G LE L L 11 27 Y S KN S AQ F ST 4 121 G V S H R I R P H 1 11 41 L S F P A T F T P S 4 __ 70 CRP G RS AV A Q 10_ 104 N PP AS A SQS V4 74 RSA V AQ SW AH 10 ___ 1 ASQ S V GI TG v4 97 AQ TG LE L S 1021 L S V T N L Y S K N 3 48 __ __ _ T___ SIPL 23 VT NL Y SK NS A3 _ _ 85 SE G HH A~ T I___T__SP__3_Q__ IL TL 10 QT I S P P A T F T8 4 5N PL SS Y FF 858A YF F S256V 'ABLE XXXIX 162P1E6 v.3: HLA Peptide ABLE XXXIX 162P1E6 v.4: HLA Peptide Scoring Results A3 10-mers SYFPEITHI coring Results A3 10-mers SYFPEITHI[ SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 0 score IDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 117 V G I T G V S H R I 3 7C E A S A A T A TT A 10 119 I T G V S H R I R P 3 76 A T T A A A T T V A 10 44 P A T F T P S P S I 2 8C A A T T V A A A A A 10 55 L S S A Y F F F F S 2 81 A T T V A A A A A A 10 77 V A Q S W A H C S L 2 84 V A A A A A A A A A 10 8C S W A H C S L N L P 2 23 I S V P H R P A E L 9 3 W A E S L L L T L D 1 59 V K F R R H G A D N 9 3C N S A Q F S T I L Q 1 82 T T V A A A A A A A 9 92 G F H H V A Q T G L 1 _ 11 L F R T G P H L S S 8 93 F H H V A Q T G L E 1 15 G P H L S S G V I S 8 2 PHR P AELGAL 8 'ABLE XXXIX 162P1E6 v.4: HLA Peptide 65 G A D N H E A S A A 8 Scoring Results A310-mers SYFPEITHI 69 H E A S A A T A T T 8 SEQ. 71 A S A A T A T T A A 8 Pos 1 2 3 4 5 6 7 8 9 Oscore IDNO. 75 T A T T A A A T T V 8 34 A L Y R T L S S L K 33 77 T T A A A T T V A A 8 41 S L K Y P S W R V R 20 3 F F I K E R N Q L F 7 83 T V A A A A A A A A 20 12 F R T G P H L S S G 7 4 F I K E R N Q L F R 17 32 L G A L Y R T L S S 7 17 H L S S G V I S V P 17 33 G A L Y R T L S S L 7 48 R V R T P H E D F S 17 431 K Y P S W R V R T P 7 8 A A A A A A A A A R 17 47 W R V R T P H E D F 7 10 Q L F R T G P H L S 16 50 R T P H E D F S G V 7 28 R P A E L G A L Y R 16 63 R H G A D N H E A S 7 51 T P H E D F S G V Kt16 64 H G A D N H E A S A 7 6C K P R R H G A D N H 16 66 A D N H E A S A A T 7 92 A A A A A A R V T L 15 68 N H E A S A A T A T 7 24 S V P H R P A E L G 14 78 T A A A T T V A A A 7 27 H R P A E L G A L Y 14 93 A A A A A R V T L T 7 31 E L G A L Y R T L S 14 25 V P H R P A E L G A 6 74 A T A T T A A A T T 14 3 R T L S S L K Y P S 6 21 G V I S V P H R P A 13 44 Y P S W R V R T P H 6 58 G V K F R R H G A D 13 55 D F S G V K F R R H 6 85 A A A A A A A A A A 13 62 R R H G A D N H 2 A 6 86 A A A A A A A A A A 13 72 S A A T A T T A A A 6 8 A A A A A A A A A A 13 F F F I K E R N Q L 5 8 A A A A A A A A A A 13 I K E R N Q L F R T 5 91 A A A A A A A R V T 13 9 N Q L F R T G P H L 5 35 L Y R T L S S L X Y 12 14 T G P H L S S G V I 5 3 T L S S L K Y P S W 12 19 S S G V I S V P H R 5 42 L K Y P S W R V R T 12 46 S W R V R T P H E D 5 52 P H E D F S G V K F 12 49 V R T P H E D F S G 5 73 A A T A T T A A A T 12 16 P H L S S G V I S V 4 9C A A A A A A A A R V 12 53 H 3 D F S G V K F R 4 6 K E R N Q L F R T G 11 54 E D F S G V K F R R 4 3C A E L G A L Y R T L 11 2 S G V I S V P H R P 3 6 D N H E A S A A T A 11 _4 S S L K Y P S W R V 3 79 A A A T T V A A A A 11 4 P S W R V R T P H E 3 R N Q L F R T G P H 10 61 F R R H G A D N H E 3 1 R T G P H L S S G V 10 7E R N Q L F R T G P 2 1 L S S G V I S V P H 10 5 S G V K F R R H G A 2 2 V I S V P H R P A E 10 2 P A E L G A L Y R T 1 31 L S S L K Y P S W R 10 3 Y R T L S S L K Y P I 257 TABLE XXXIX 162P1E6 v.4: HLA Peptide TABLE XXXIX 162PIE6 v.6: HLA Peptide coring Results A3 10-mers SYFPEITHI Scoring Results A3 10-mers SYFPEITHIf SEQ. SEQ. Pos1 12 3 4 5 6 7 8 9 0 score ID NO. Pos 1 2 3 4 5 6 7 8 9 0 score ID NO. 5CF S G V K F R R H G 1 5 R T P H E E R T N H 10 13 N H T E L S Y G T H 10 ABLE XXXIX 162PE6 v.5: HOLA Peptide 2 W R V R T P H E E R 7 Scoring ResultsA310-mersSYFPEIT[ 4 V R T P H E E R T N 7 SEQ. 11 R T N H T E L S Y G 7 Pos 1 2 3 4 5 6 7 8 9 OscoreIDNO. 1 S W R V R T P H E E 5 6 A L Y R K G P T T P 26 7 P H E E R T N H T E 5 17 S V M A H T V G P R 18 14 H T E L S Y G T H S 5 28 R E R V T D I P T R 15 8 H A E R T N H T EL 4 3C R V T D I P T R F Q 15 15 T E L S Y G T H S G 4 22 T V G P R Q R E R V 14 E E R T N H T E L S 3I A E L G A L Y R K G P 13 6T P H E E R T N H T 1 9 R K G P T T P SS V 13 24 G P R Q R E R V T D 12 TABLE XL 162P1E6 v.1: HLA Peptide Scoring 1 P A E L G A L Y R K 11 ResultsA2610-mersSYFPEITHI _ 1C K G P T T P S S V M 10 SEQ. 33 D I P T R F Q W S E 10 Pos 1 2 3 4 5 6 7 8 9 score IDNO. G A L Y R K G P T T 9 1 M T N K E I V E S F 26 12 P T T P S S V M A H 9 32 G V R T R S L T L L 22 19 M A H T V G P R Q R 8 110 F L K Q L Q N T C F 20 20 R Q R E R V T D I P 8 5 E I V E S. F S R H I 19 34 I P T R F Q W S E V 8 0 I V E S F S R H I L 19 A H L G A L Y R K G 7 9 S F S R H I L G R M 19 14 T P S S V M A H T V 7 7C H I G K R G C K V L 19 23 V G P R Q R E R V T 7 78 V L F V L F G Q C L 19 32 T D I P T R F Q W S 7 38 L T L L C P P T P M 18 35 P T R F Q W S E V Q 7 81 V L F G Q C L V E R 18 34 T R F QW S E V Q E 7 108 W I F L K Q L Q N T 18 39 Q W S E V Q E A W S 7 55 E L W F F L S S S P 16 21 H T V G P R Q R E R6 74 R G C K V L F V L F 16 29 E R V T D I P T R F 6 110 N T C F F F V S S R 16 8 Y R K G P T T P S S 5 34 R T R S L T L L C P 15 11 G P T T P S S V M A 5 5C P G S S Q E L W F F 15 15 P S S V M A H T V G 5 -S F L S S S P I S S G 15 1 S V M A H T V G P 5 77 K V L F V L F G Q C 15 27 Q R E R V T D I P T 5 N E S F S R H I L G R 14 31 V T D I P T R F Q W 5 91 N A H A P A F Q G L 14 7 L Y R K G P T T P S 4 13 H I L G R M W G H W 13 18 V M A H T V G P R Q 4 17 R M W G H W R L S P 13 2C A H T V G P R Q R E 4 18 M W G H W R L S F L 13 25 P R Q R E R V T D I 4 6C L S S S P I S S G F 13 37 R P Q W S E V Q E A 4 10 Q S S W I F L K Q L 13 4 L G A L Y R K G P T 3 26 F L D K S L G V R T 12 13 T T P S S V M A H T 3 4C L L C P P T P M N G 12 38 F Q W S E V Q E A W 1 44 P T P M N G P G S S 12 47 M N G P G S SQ E L 12 TABLE XXXIX162P1E6v.6: HLAPeptide 64 P I S S G F H I G K 12 Scoring Results A310-mers SYFPEITH_ 71 I G K R G C K V L F 12 SEQ. 73 K R G C K V L F V L 12 Pos 1 2 3 4 5 6 7 8 9 0 score ID NO. 82 L F G Q C L V E R N 12 R V R T P H E E R T 17 88 V E R N A H A P A F 12 1 E L S Y G T H S G T 13 113 Q L Q N T C F F F V 12 10 E R T N H T E L S Y 12 121 F V S S R K D Q P H 12 258 'ABLE XL 162P1E6 v.1: HLA Peptide Scoring TABLE XL 162P1E6 v.1: HLA Peptide Scoring Results A26 10-mers SYFPEITHI Results A26 10-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 Oscore DNO. Pos1 1 2 3 4 5 6 7 8 9 score IDNO. 125 R K D Q P H R A Q L 12 76 C K V L F V L F G Q 5 25 S F L D K S L G V R 11 103 Q A Q S S W I F L K 5 29 K S L G V R T R S L 11 128 Q P H R A Q L W H T 5 49 G P G S S Q E L W F I 2 T N K E I V E S F S 4 86 C L V E R N A H A P 11 2C G H W R L S F L D K 4 87 L V E R N A H A P A 11 3 T R S L T L L C P P 4 99 G L G K Q A Q S S W 11 4N P P T P M N G P G S 4 112 K Q L 0 N T C F F F 11 46 P M N G P G S S Q E 4 136 H T Q W D L D K G R 11 95 P A F Q G L G K Q A 4 22 W R L S F L D K S L 10 98 Q G L G K Q A Q S S 4 39 T L L C P P T P M N 10 114 L Q N T C F F F V S 4 8C FVLF G Q C L V E 10 11 T C F F F V S S R K 4 96 A F Q G L G K Q A Q 10 24 L S F L D K S L G V 3 101 G K Q A Q S S W I F 10 48 N G P G S S Q E L W 3 102 K Q A Q S S W I F L 10 56 L W F F L S S S P I 3 111 L K Q L Q N T C F F 10 67 S G F H I G K R G C 3 15 L G R M W G H W R L 9 92 A H A P A F Q G L G 3 23 R L S F L D K S L G 9 10C L G K Q A Q S S W I 3 3C S L G V R T R S L T 9 107 S W I F L K Q L Q N 3 37 S L T L L C P P T P 9 124 S R K D Q P H R A Q 3 51 G S S Q E L W F F L 9 126 K D Q P H R A Q L W 3 57 W F F L S S S P I S 9 13C H R A Q L W R T Q W 3 118 C F F F V S S R K D 9 45 T P M N G P G S S Q 2 4 K E I V E S F S R H 8 61 S S S P I S S G F H 2 14 I L G R M W G H W R 8 62 S S P I S S G F H I 2 31 L G V R T R S L T L 8 85 Q C L V E R N A H A 2 41 L C P P T P M N G P 8 9C R N A H A P A F Q G 2 58 F F L S S S P I S S 8 93 H A P A F Q G L G K 2 119 F F F V S S R K D Q 8 97 F Q G L G K Q A Q S 2 12C F F V S S R K D Q P 8 122 V S S R K D Q P-H R 2 132 A Q L W H T Q W D L 8 123 S S R K D Q P H R A 2 133 Q L W H T Q W D L D 8 137 T Q W D L D K G R G 2 12 R H I L G R M W G H 7 3 N K E I V E S F S R 1 28 D K S L G V R T R S 7 1C F S R H I L G R M W 1 63 S P I S S G F H I G 7 11 S R H I L G R M W G 1 65 I S S G F H I G K R 7 _36 R S L T L L C P P T 1 89 E R N A H A P A F Q 7 42 C P P T P M N G P G 1 109 I F L K Q L Q N T C 7 66 S S G F H I G K R G 1 127 D Q P H R A Q L W H 7 83 F G Q C L V E R N A 1 27 L D K S L G V R T R 6 84 G Q C L V E R N A H 1 52 S S Q E L W F F L S 6 106 S S W I F L K Q L Q 1 54 Q E L W F F L S S S 6 L131 R A Q L W H T Q W D 1 68 G F H I G K R G C K 6 72 G K R G C K V L F V 6 LIABLE XL 162PIE6 v.3: HLA Peptide Scoring 79 L F V L F G Q C L V 6 Results A26 10-mers SYFPEITI 94 A P A F Q G L G K Q 6 SEQ. 104 A Q S S W I F L K Q 6 Pos 1 2 3 4 5 6 7 8 9 O score ID NO. 115 Q N T C F F F V S S 6 95 H V A Q T G L E L L 24 135 W H T Q W D L D K G 6 12 D L E K P V S L L L 23 21 H W R L S F L D K S 5 54 P L S S A Y F F F F 23 53 S Q E L W F F L S S 5 25 N L Y S K N S A Q F 21 _ 69 F H I G K R G C K 5 52 S I P L S S A Y F F 21 75 G C K V L F V L F G 5 1 T L D L E K P V S L 19 259 'ABLE XL 162P1E6 v.3: HLA Peptide Scoring 'ABLE XL 162P1E6 v.3: HLA Peptde Scoring Results A26 10-mers SYFPEITH1 Results A26 10-mers SYFPEITHI SEQ. SEQ. Pos 1 .2 3 4 5 6 7 8 9 OscoreIDNO. Pos 1 2 3 4 5 6 7 8 9 score IDNO. 1E S L L L S V T N L Y 18 L L T L D L E K P V 8 6C F F F F S D R V S L 18 2! K N S A Q F S T I L 8 35 S T I L Q T L S F P 17 4C T L S F P A T F T P 8 47 F T P S P S I P L S 17 41 L S F P A T F T P S 8 32 A Q F S T I L Q T L 16 4 P S P S I P L SS A 8 . 40 T F T P S P S I P L 16 59 Y F F F F S D R V S 8 87 N L P E A G F H H V 16 85 S L N L P E A G F H 8 102 L L S L S N PP A 16 122 V S H R I R P H V L 8 116 S V G I T G V S H R 16 13 L E K P V S L L L S 7 2 K W A E S L L L T L 15 62 F F S D R V S L C R 7 11 L D L E K P V S L L 15 82 A H C S L N L P E A 7 51 P S I P L S S A Y F 15 15 K P V S L L L S V T 6 53 1 P L S S A Y F F F 15 21 L S V T N L Y S K N 6 92 G F H H V A Q T G L 15 28 S K N S A Q F S T I 6 97 A Q T G L E L L S L 15 33 Q F S T I L Q T L S 6 98 Q T G L E L L S L S 15 56 SS A Y F F F S D 6 37 I L Q T L S F P A T 14 63 F S D R V S L C R P 6 61 F F F S D R V S L C 14 71 R P G R S A V A Q S 6 10C G L E L L S L S N P 14 11I A S A S Q S V G I T 6 7 L L L T L D L E K P 13 113 A S Q S V G I T G V 6 17 V S L L L S V T N L 13 124 H R I R P H V L F H 6 2C L L S V T N L Y S K 13 3 W A E S L L L T L D 5 45 A T F T P S P S I P 13 31 S A Q F S T I L Q T 5 L T L D L E K P V S 12 57 S A Y F F F F S D R 5 14 E K P V S L L L S V 12 7C C R P G R S A V A Q 5 5 S P S I P L S S A Y 12 8C S W A H C S L N L P 5 7 A V A Q S W A H C S 12 89 P E A G F H H V A Q 5 84 C S L L P E A G F 12 107 S N P P A S A S Q S 5 9C E A G F H H V A Q 12 12q T G V S H R I R P H 5 118 G I T G V S H R I R 12 1 L K W A E S L L L T 4 121 G V S H R I R P H V 12 5 L S S A YF F F F S 4 16 P V S L L L S V T N11 10 L S N P P A S A S Q 4 22 S V T N L Y S K N S 11 I15 Q S V G I T G V S H 4 23 V T N L Y S K N S A 11 48 T P S P S I P L S S 3 34 F S T I L Q T L S F 11 58 A Y F F F F S D R V 3 3 T I L Q T L S F P A 11 69 L C R P G R S A V A 3 3 L Q T LS F P A T F 11 72 P G R S A V A Q S W 3 35 Q T L S F P A T F T 11 86 L N L P E A G F H H 3 60 R V S L C R P G R S 11 91 A G F H H V A Q T G 3 115 I T G V S H R I R P 11 9 T G L E L L S L S N 3 123 S H R I R P H V L F I1 104 L S 14 S N P P A S A 3 5 E S L L L T L D L E 10 108 N P P A S A S Q S V 3 68 S L C R P G R S A V 10 109 P P A S A S Q S V G 3 77 V A Q S W A H C S L 10 117 V G I T G V S H R I 3 103 L L S L S N P P A S 10 24, T N L Y S K N S A Q 2 105 S L S N P P A S A S 10 2 L Y S K N S A Q F S 2 S L L L T L D L E X 9 27 Y S K N S A Q F S T 2 19 L L L S V T N L Y S 9 3C T S A Q F S T I L Q 2 42 S F P A T F T P S P 9 43 FP A T F T P S P S 2 6 D R V S L C R P G R 9 P A T F T P S P S I 2 7 Q S W AH C S L N L 9 7 R S A V A Q S W A H 2 94 H H V A Q T G L E L 9 75 S A V A Q S W A H C 2 4 A E S L L L T L D L.8 IC P A S A S Q SV G I2 260 TABLE XL 162PIE6 Q.: HLA Peptide Scoring TABLE XL 162P1E6 v.4: ILA Peptide Scoring Results A26 I 0-mers SYFPEITHI R __ esults A26 IlO-mers SYFPEITI ISEQ. SEQ. Pos] 1 234 5 67 89 0 score ED NO. Pos 1 2 34 56 7 89 0 score ED NO. 67 VS LC RP G RS A1 19 S SG VI S VP HR 6 73j G R SA VAOQSW A1 _ 43 K Y PS WRV R TP 6 78 A QS WA HC SL N1 __ 70 E AS AAT A TT A6 __ 83, HCS L N LP E AG 15 1_ IKE R NQ LF RT 5 Ll11 S AS QS VG I T G I _ 2 P AE LG AL Y RT 5__ 5A__HEDFS_5 HEVFKGVK R 5 TABLE XL 162P1E6 v.4: HLA Peptide Scoring -9 A A A A A R V T L T 5____ Results A26 10-mers SYFPEITII _ ___ __ K E R N Q L F R T G 4 SEQ. 30 YR T L SS L KYP 4 __ Pos 1 234 56 7 89 0OscorelED NO. 4 LK YP S WR V RT 4 __ 3F FIK E R NQ LF 20 __ 6A H GA D XH EAS A4 55 D FS GVK F RR H19 10 LS S GV IS V PH 3 2_ F FF I KER N QL 17 __ 20 R PA EL G AL YR 3__ 50 RT PH E DF SG V17 4 V RT P HED F SG 3__ 24 P HR PA EL GA L 15 5 V KFPRR H GAD N3__ 34 TL SS LK Y PS W15 6% RR HG A D N HE 3 13 R T GP HL SSG V14 6f G A D N HEAS AA 3 __ 17 RLS SG VI S VP 14 65 H EA S AA T ATT 3__ 30 A EL GA L Y RTL 14 72 SA A TAT TA AA 3 31 E L G A L Y R T L S 14 7S A A A T T V A A A A 3 __ 3 GA L YR TL S SL 14 j 4V AAA A A AAA A3__ 4, FI K ER NQ LF R13 8.A A A AA AA AA 3__ 211 G VIS VP H RP A13 8 A AA AAA AA AA 3__ 5 P HE D FSG V KF 13 8 AA AA AA AA AA 3__ 71 T TA AAT TV AA 13 8 A A AA AA A AA 3__ 83 TV AA AA A AA 13 8 A AA A AAA A AR 3 2 V IS V PH R PAE 12 90 A AAA AA A AR V3 23 ISV PH R PA EL 12 32 L GAL YR TL SS. 2 27 HRP A EL GA LYI12 _40 S S LKY PS W RVL2 58 G VK F RR HG AD 12 __ 45 PS WR VR T PHE[ 2__ 74 A TA TT AA A TT 12 __ 51 TP HE D FS GV K~ 2__ 811A T TV AA AAAA 12 57 SGV K FR RH G AL 2__ 8 TT VA AA AA AA 12 6__A D NH 9A SA A T2__ 2 SV P HR PA EL G 11 711_ S AA TA TT AA 2__ 3A RTLSS_ LK_ YP_ S11_o AT T VA AA AA 2 4A ______ W _ RTP _DF1 20 S G VISV PHR P 1 48 _____ R___TPH FS1 25V PH R PA EL GA 1 __ 54 D S VK FR R1039L SS L KYP S WR 1 _ 76 ______ A___ AA TVA1 46 S WR V RTP HED 1 _ _ 92 AAAA A AR VT LI 10 56 FS GV K FR R HG I__ I M F I E N 961 FR RH G AD N HE 1I _ 34, _ __ __ A___RTL LK 63R HG ADN H E AS 1 _ _ 411 _ _ __ _ S___ PSWR 68N HE A SAA T AT 1 _ _ 61 DNHEA__AAT A. 91AA A A AAA R VT I_ _ __ F__RTG__PHLS__SG_8 _ TABLE XL 162P1E6 v.5: HILA Peptide Scoring 11 FR GP HL S 7 esults A26 lO-mers SYFPEITHI______ 6_ K1 SEQ. 71 TA A T TV A A 7P01; 1 2 3 4 5 6 7 B 9 0] score IEDNO. 1 _ __ _ __ _ P__LSS__VIS 1 1 PT T PS S V MA H 18 261 TABLE XL 162P1E6 v.5: HLA Peptide Scoring TABLE XL 162P1E6 v.6: HLA Peptide Scoring Results A26 10-mers SYFPEITHI Results A26 10-mers SYFPEITHI SEQ. SEQ. Pos 1 2 3 4 5 6 7 8 9 0 score ID NO. Pos 1 2 3 4 5 6 7 8 9 0 score ID NO. 13 T T P S S V M A H T 18 15 T E L S Y G T H S G 2 33 D I P T R F Q W S E 18 1 S W R V R T P H E E 1 29 E R V T D I P T R F 17 2 W R V R T P H E E R 1 3 E L G A L Y R K G P 15 12 T N H T E L S Y G T, 1 17 S V M A H T V G P R 14 21 H T V G P R Q R E R 13 TABLE XLI 162P1E6v.1: HLA Peptide 22 T V G P R Q R E R V 13 Scoring ResultsB070210-mersSFPEITHI 31 V T D I P T R F Q W 12 SEQ. 37 R F Q W S E V Q E A 12 Pos 1 2 3 4 5 6 7 8 9 0scoreIDNO. 3C R V T D I P T R F Q 11 49 G P G S S Q E L W F 19 10 K G P T T P S S V M 10 128 Q P H R A Q L W H T 16 35 P T R F Q W S E V-Q 10 29 X S L G V R T R S L 14 32 T D I P T R F Q W S 9 72 G X R G C K V L F V 14 6 A L Y R K G P T T P 8 125 R K D Q P H R A Q L 14 2 A E L G A L Y R K G 7 32 G V R T R S L T L L 13 1 P A E L G A L Y R K 5 51 G S S 0 E L W F F L 13 8 Y R K G P T T P S S 5 7C H I G K R G C K V L 13 28 R E R V T D I P T R 5 73 K R G C K V L F V L 13 3f T R F Q W S E V Q E 5 94 A P A F Q G L G K Q 13 9R K P T T P SS 4 102 K Q A O S S W I F L 13 25 P R Q R E R V T D I 4 6 I V E S P S R H I L 12 18 V M A H T V G P R Q 3 15 L G R M W G H W R L 12 39 Q W S E V Q E A W S 3 17 R M W G H W R L S F 12 11 G P T T P S S V M A 2 18 M W G H W R L S P L 12 1 S S V M A H T V G P 2 31 L G V R T R S L T L 12 2( A H T V G P R Q R E 2 43 P P T P M N G P G S 12 24 G P R Q R E R V T D 2 47 M N G P G S S Q H L 12 26 R Q'R E R V T D I P 2 91 N A H A P A F Q G L 12 34 I P T R F Q W S E V 2 105 Q S S W I F L K Q L 12 38 F Q W S E V Q E A W 2 132 A Q L W H T Q W D L 12 4 L G A L Y R K G P T 1 42 C P P T P M N G P G 11 5 G A L Y R K G P T T 1 45 T P M N G P G S S Q 11 7 L Y R K G P T T P S 1 63 S P I S S G F H I G 11 1 T P S S V M A H T V 1 74 R G C K V L F V L F 11 19 M A H T V G P R Q R 1 22 W R L S F L D K S L 10 23 V G P R Q R E R V T 1 20 F L D K S L G V R T 10 70 V L F V L F G Q C L 10 TABLE XL 162P1E6 v.6: HLA Peptide Scoring 8 V H R N A H A P A F 10 Results A26 10-mers SYFPEITHI_ 3 R S L T L L C P P T 9 SEQ. 5 P G S S Q E L W F F 9 Pos 1 2 3 4 5 6 7 8 9 0 score EDNO. 71 I G K R G C K V L F 9 10 E R T N H T E L S Y 17 123 S R K D Q P H R A 9 16 E L S Y G T H S G T 16 1 M T N K E I V E S F 8 11 R T N H T E L S Y G 15 . S F S R H I L G R M 8 5 R T P H E E R T N H 12 24 L 8 F L D K S L G V 8 3 R V R T P H E E R T 11 3C S L G V R T R S L T 8 14 H T E L S Y G T H S I1 38 L T L L C P P T P M 8 8 H E E R T N H T E L 9 6C L 8 S S P I S S G F 8 9 E E R T N H T E L S 6 69 F H I G K R G C K V 8 13 N H T E L S Y G T H 6 87 L V E R N A H A P A 8 6 T P H E E R T N H T 3 I11 L K Q L Q N T C I F 8 4 V R T P H E E R T N 2 112 K Q L Q N T C F F F 8 P H E E R T N H T E 2 1138Q L QN T C F F V 262 TABLE XLI 162PlE6 v.1: HLA Peptide TABLE XLI 162PIE6 v.1: HLA Peptide Scoring Results B0702 lO-mers SYFPEITHI Scoring Results B0702 lO-mers SYFFE ____ SEQ. SEQ. Pus 1 2 3 4 5 6 7 8 9 0 score ID NO. Pos 1. 2 3 4 5 6 7 8 9 0 score ED NO. E I V E S F S R H I 7 114 L Q N T C F F P V S 2 __ 5 L W F FLSS SPI1 7 126 _____ K___ HRAQ 8$ Q C L V E R N A H A 7 127 D Q P H R A Q L W H2 1011 GKQ AQ SS WIF7130 H RA Q LW H TQW 2 _ ____S __I __S__F__1 T NK E IV ES FS 1 7 ______ L___ FGQC 11 S R HI L GRM WG 1 9$ ______ P_ A___GL0K 16 G RM WG H WRLS 1 10_ L___KQA __SSW_1_ 25 S FL D KS L GVR I___ 10 I LK QL N 621 L D KS LG V RTR 1I _ 3_ RTRSL __LL _ _P_ 37, S L TL L CP PTP 1 _ _ 6$ 1_SSGF__IGX_ R 4 L LC P PT P MNG I __ ________ A _ LGKQ 41 LCP P T PM NG P 1___ 611 _____ S 5 E L WF FL S SSP 1 _ _ 7$ ______ G __VLFV 57 W FF LS SS PIS 1I _ 811V F QC LV t R4 6 S SG F H IG KRG 1 8 ER N A HA PA PQ4 6 G FHI GK R GC 1 I_ 92 A HA P AF QGL G 4 __ 8 C LV ER NA H AP 1 8 _ _ _ _ _ _ E___ RHIL 11 NF F FSSVRKSDR 1 _ _ 20 _ __ _ _ G_ ___ LSF K 3 12,FSFRKVQSPS R K I I _ 31 T R S L T L L C P P 3-TABLE XLI 162P1E6 v.3: H[LA Peptide 531 S__QELWF__FLSS_3_cor ng Results B0702 IlO-mers SYFPEITII 80 _F __LF__QC__VE_ SEQ. 93 H A P A F 0 G L G 3 Pos 1 12 3 4 5 6 7 8 9 0 score ED NO. 115 N C F FV SS 315 K P V S L L L S V T 18 121 FVSSR__DQPH_ 53 IP LS S A YF F 18 122 _____ V___ KDQP 8SL PEA GF HH VA 18 129 P__HRAQLWHT Q _3 L_4 A E S L L L T L D L 17 __ 9 1 V E S F S R H 2 108 N P P A S A S Q S V17 V Z SF S H IL G 97 A QT G L EL LSL 16 10FS RH IL GR XW 22 K NS AQ FS T IL 15 13 HI LG RM WG HW240 T PS PS I PL S S 15 __ 14~__ 1LGRMWGHWR 2 K W A E S L L L T L 14 21 HW R SFL D S_ 711 R PG R SA V AQS 14 39.T LL CP PT PM N2 1 TL D LE K P VBL-13 __ 40 PMNG PG SS QE 21 D LE KP VS L LL 13 48 NG PG SS QE LW251 S PS IP LS S AY 13 __ 59 ______ F_ L SPI G 60 F FF FS DR VSL 13 _ _ 64 ______ P___SGFH 79 Q SW A HC S L NL 13 _ _ 77 _ __ _ _ K_ V___VLF C 94 H HV AQ TG LHL 13 _ _ 82 _ __ _ _ L_ ___ CLVE 17 VS L LL SVT N L 12 _ _ 84. _ __ __ G_ Q___VERN 32 AQF ST I LQ TL 12 _ _ 90 R N A H A P A F Q G 2 43 F P A T F T P S P S 12___ 91 F 0 G L G K 0 A Q S 2 1 _ 46 T F T P S P S I P L 12 __ 9_QGLKQAQSS_ l1g P PA SA SQ SV G 12 9 __GLGKQAQSSW 11 L D L E K P V S L L 11 10qI LK LQ_ NT 9 GIFH_ V ALQRT GSLV 11 1 _ 263 TABLE XL1 162PIE6 Q.: BLA Peptide TABLE XL1 162P1E6 v.3: HLA Peptide Scoring Results B0702 lO-mers SYFPEITI Scoring Results B0702 10-iners SYFPEITHII SEQ. SEQ. Pos 1 2 3 4 5 67 8 9coreD NO. Pos 12 3 4 56 7 8 9coreD NO. 95 HV A QT GL E LL I 64 S DR V SLC R PG 3 110 P AS A SQ S VG 1 _ 16 R VS LC RP G RS 3__ 54 PLS S AY FF FFI10 81 W AH C S L NL P 3__ 7 VAQ S WA HC SLI10 8 H CS LN L PE AG 3_ 90 E AGF HH V AQ T10 101 SL S N PP AS AS 3 IIl A SA SQ S V G IT 11 ITG V SHR I RP 3__ 121 G VSH R IR PH V10 S SLLL T LD L 9 2 123 S HRI R PH V LF10 L TL D LEK P vS 2 1 LKW A ES L LL T9 __ 1 L L LS V T ML YS 2 14 ERKPV SL L LBS 9 20 L LS VT N LYB9 2 _ 34 F ST I LQ T L F9 3 N 3 NA QF ST I LQ 2 73G R S AV AQSW A9 __ 45 AT F TP S P SIP 2_ 81_A__C__LNLP__A_ -56 S A Y FF F P D 2 _ 31 SAQ__S__ILQT_ 75 S AV AQ SW A HC 2 _ _ 39 __T__S__P__T__T_ 91A GF H HV AQT G 2 _ _ 51 __S__P__S__A___ 91 VA QTG LE L LS 2 _ 5_ AYFF___SDRV_ 9 T G L HL L SLS6 2 60 SLCRP__RSAV_ 100 L SN P PAS A SQ 2 _ _ LLTLD ____KPV_ 111 SAS Q SV G IT G 2 _ 21 N______ L11 NSAQ S VG1T GV S H R2 _ 2_ S______ X___A0FS 118 G IT G VS HRI R 2 36 TIL__ TL__ FP_ A 3 W A E S L L L T L D 1 38 LQTLSFP_ ATF_7_ E S L L L T L D L E 1 52 ______ S_ IBL PX 4TNLYS S6PE A Q L pId 84 _______ C_ coin Reut N00 LPEAGF 73,STILQTLO e SF PIT I 8 _ _ _ N L 1 F SEQ.P PL 23 _VTNLYSK__8__6__Y_ F~ V HP EL ADR l 18 _ _ 27 8 NS A0 S 6 FF9 FS1 A A AR V SL C 1 49 S S P S A 6 S P R V SLG jI CRP_ 67 SIPLTCRSP A 2RA H S L P 14 891P AG FH VA 06 1 L LP A264H TABLE XLI 162PIE6 v.4: ilLA Peptide TrABLE XLI 162P1E6 v.4: lILA Peptide Scoring Results B0702 1O-mers SYFPEITHI $coring Results B0702 I 0-mers SYFPEITHI SEQ. SEQ. Pos 1 12 34 5 6 7 8 9 0OscoreED NO. Pos 1 12 3 4 5 67 B 9 0OscoreED NO. 3 AE LGA L YR T L14 551 DF___GV__FRRH_ 7IAS A ATA TT AA 13 111LPR__G__HLSS_ 15 GP HLS SG V IS 12 3A LGALYRT L _SS_ 76 A T TA A ATTV A12 31__Y__T__S__L__Y_ 7 TTA A AT TV AA 12 ___RVRTH__D__S_ 85,A A AA A AA AA 12 631 RHGAD__HEAS_ 84 A AAA AA A A AA12 F I___E__NQ__FR_ 87A AA A A AAA A 12 E RNQ__FR__GP_ 8 AAA A AA A A AA12 RN__L__RTGPH__ 93A AA A AR VT LT 12 17_ HLSSG__ISVP 2F F F I K E R N Q L 11 19 _SS__VIS__PHR_ 9_ N Q L F R T G P H L 11 38 TLS______YPSW_ 51, T P H E D F S G V K 11 53_ HEDFS_ GVKFR___ 70 E AS AA T ATT A11 60____RRH__ADXH!_ 7N A AT ATTA A A T11 _Z F___ PHLS 74 TA A ATT VA AA 11 27__R__A__L__A__Y_ 7 AA AT T VAA AA 11 34 _____ A__YR__LS__LK 90 A AAA AA A AR V11 37 RTLSS__KYPS 91 A A A A A A AR V Ti 11 39 _L __SL__YP__W_ R 4 L XY PS W R VRT 10 45 ______ P___ VRTP 60 A DNH EAS A AT 10 ____W__V__T__H__D 72 SAA T AT TA AA 10 56_ FSGVK__RRHG 74 A TA TT AA A TT 10 61__R__H__A__N__E_ 8C AAT T V AAA AA 10 41, _____ S___ PSWR 8A T TV AA AA AA 10 49_V_ T P HE D FBG 1 83 TV AA A AAA AA 10 54EDF S GVKF RR 1__ 84 V______ A~KRHA~ AAA AA A AA 10 58GVK FR RH GAD 1I _ 6_ N_3aEASAATAT_ 9 tALE XLI 162PIE6 Y.5: lILA Peptide 6 HH A A AI A T 9orinR Results B0702 10-mers SYFPEITM 8ATTVAA SEQ. 5__R__PH__DFGV_ Pos 12234 56 7 89 O scorei-D NO. 52 PAHEAAFS VKA F8A1A PT L KPTS X_1 57 0 KF RR G 814 P SV MA 265 1 TABLE XLI 162P1E6 v.5: EILA Peptide __________________ Scoring Results B0'702 lO-mers SYFPErTH TABLE XLV 162P1E6: HILA Peptide Scoring SEQ. Results B2709 I 0-iers SYFPEITH Pos 1 23 45 6 789 0OscoreED NO. I SEQ. 8Y R KG PT TPS S84 iPos 1 23 4 56 7 89 0scre ED NO. 15 SVM A HT V G4 NODATA 26 R Q R E R V T D I P 4 TABLE XLVI 162P1E6 v.1: EIfA Peptide 281 R Z R V T D I P T R 4 Scorinp Results B4402 10-mers SYFPEITEfl A L Y R K G P T T P 3 SEQ. 1P T T P S S V M A H3 __ Pos 1 2 3 4 5 6 7 8 9 0 score EDNO. 10 S 9 V M A H T V G P 3 88 V H R N A H A P A F 24 20 A HT V GPRQ R E3 __ 126 K DQ P HR AQL W16 30 R VT DI P TR PQ3 4 KHI V E SF SR H15 35 PT R FQ WSBEV Q 3 29_ K S LGV R TR SL15 39 QWSEV__EAWS_ 105 Q SS W IF LK QL 15 18 V X A H V G P R Q 48 N G P G S S Q E L W 14 21H TV GP R QR RR2 13AQ9L WH TQW DLI14 31 VTDIPTR___ QW_2_ V 3 S F S R H I L G 13 32 D PT RF W 217 RMXW GH WR L SF 13__ 36__R__Q__S_____E 2Z W RL SF L D K L13 38 F Q W S E V Q E A W I 31 L G V R T R S L T L 13 32__GV__RT__RS 3LGTRLSL LL13 TABLE XLI 162PIE6 v.6: HiA Peptide 47 M Nr G P a S S Q 9 L 13 Scoriae Results B0702 1-mers SYFPEITERI 70 H 3I G K R G C K V L 13 SEQ. 71IG K R C KV L F13 Pos 1 1 2 3 4 S56 78 9coreD NO. 73 KR GC KV LFV L 13 T P H EE RT N H T17 _ 74 RG CK VL FV LF 13 _ HERT NH T EL1I1 __ 12 RXD Q PH R AQ L13 RVR T PH EE R T9 1V E S F SRH I L12 10 BLSY GT H SG T9 __ 13 H IL GR MWG HW 12 12 T NH T ELS Y GT6 __ 50 PGS S Q EL W PF12 9E ER T NH TE LS4 __ 54 QZL WF FL SS S12__ 5R TPH E ER T NH 3 __ 78 V LF V LF G QCL 12 10 ERT N H TE LS Y3 91N AH A PA FQ GL 1 1 S WRV R TP HU2E 2 10___AQS PL1 4V RT PH EE RT 10IIl K QALQ NIlCL 12 Ill R T N H T E L S 11A K Q L Q N T CF F F 12 TABLE XLH 162P1E6: BRLA Peptide Scoring IC7 F S R H I L G R X WI I Results B08 10-mens SYFPEITEHI 18MWG__ S7L1 ~Pos' 1.2 34 56 7 89 0]scorelDNO. 41 GSS QE L W F __1 WNO DATA jJ__ LSSSP__SS__ F _1 TABLE XLm162r1E6: HLA Peptide Scoring _15 L G R M W G H W R L 10 Results B1510 10-mens SYFFEITHI 56LW___LSS 11 _______]oeISEQ. 62 SSPIS__GF_1_ 1 Pos 1 23 456 7 89 0 Icr D NO. 99 G LG KQ AQ S 8W 10 NO DATA 10_ _ _ _ _ SWIF1 TABLE XLIV 162P1E6: HLA Peptide Scoring 8E S F S .R H I L G R 8 __ Results B2705 1-mers SYFPE1TI __ 10o L 0 K Q A Q S S W 1 8 __ ODT SEQ 92A___PA __ GL Pos 1 23 4 567 8 9 01]scoreID NO. 14A 0S SW I FL KQ 7 _ 266 YABLE XLVI 162P1E6 v.1: lILA Peptide TABLE XLVI 162P1E6 v.1: HILA Peptide coring Results B4402 lO-mers SYFPEITHI coring Results B4402 IlO-mers SYFPEITH1 SEQ. SEQ. Fosl12 3 45 6 78 90ore IDNO. Pos12 3 45 6 7 890soreD NO. 65 IS SG FH IGK R6 39 T LLC P PT PM N2 96 AFQ G LG KQ A Q6 42C PP TP M NG PG 2 107 S WI FLK Q LQ N6 44PT P MN GP GSS 2 25,SSFLD K SL GV R5 45 T PM NGP GS SQ 2 41 L C P P T P M N G P 5 46 P M N G P G S S Q E 2 _ _ 61 S S S -P I S S G F H 5 -5 E L W F F L S S S P-2 _ _ 69 F HI GK R GC X 5 64P IS S GF HIG K2__ 81 V LFGOQC L VE R5 75 GCK V L F VL F G 2 84 GQ CL VE R NA H5 76 C XV LF VL F GQ 2_ 94 AP A FQ GL GXQ 5 79 LPV L F GQ CL V2__ 9$ P AF Q GL G KQA 5 9C R NA H A PAFQ G 2__ 119 F FF VS S RKDQ 5 93H AP A FQ GL G 2 124 SR K DQ PH R AQ5 91 F Q GL GKQ AQS 2 _ 9S FS R H ILG RM 4 100 SW I FL K Q LQ 2 12 R HI L GR m w H4 113 Q LQ NT C FFF v2 _ 24 L SF LD K SL G 4 __ 115 QNTCFF F V SS 2 __ 33 VRT R SL T LL C4 116 Ni NT CFFF V SS R2 31 SL TL L C PP TP4 __ 117 TC FF F VS SR 2 __2 40 L LC PPT PMN G4 _ 122 VS S R KDQ r 2__ 53 S QE LW FF L SS 4 __ 12, DQ PH R AQ L w 2 __ 59 FL SS S P ISS G4 12 Q PH R AQLW H T 2__ 67 S GF HI G KR GC 4 129 P HR AQL W H TQ 2 7 KV LF V LF GQ C4 __ 131 R AQ LW HT Q WD -2__ 86 C LV ER NA H AP 4 134 L WHT Q WD LD K2 _ 103 Q A Q S S W I F L K 4 _ _ 135 W H T Q W D L D K G 2 _ 108 WIF L K Q LQ NT4 136 HT Q WD LD K GR 2 118 C FFPV SS R KD 4 3N XE I VE SF 9R 1_ 16 G R M WG H WR LS3 11 W 0HW R LSPFL D 1 _ _20 G HW RL SF LD K3 6 G FHI GK R GC KI 21 _ __ _ _ H___ SFLD 8 L PG QC LV ER N 1 _ _ 27 L_ _ __ _ _ D_ _LGVR 8 F G Q CLV E RN 1 _ _ 28 D______ __ S S TRS38 Q CL V ER NA HA 1 _ _ 30 L V T S__T_ 8. LV ER N AH AP g1 __ 35 T R SL T L CP P 12( F F VS S R K D QP 1 52 SSQEL__F__LS_ 13' T Q WDL D KG RG 1 _ _ 58_FFLSSSPISS ABLE XLVI 162P1E6 v-3: liLA Peptide O SS GF H G R G 3 scoring Results B4402 1O-mers SYFPEITHI 7A G___RGCKVLF V._3 SEQ. 80_F __L____QC__VE_ Pos 1 234 56 7 89 0OscoreED NO. 89ERNAHA_ A E S L L L TL D L 27 _ _ 109 _____K __L __N__C 13 LHK P VSL L LS 16 _ _ 114 _____ L_ Q 18 S LLL S VT NL Y 16 _ _ 123 S__SRK__DQPH __RA_3 511 P S I P L S S A Y F 16 ___ III S R H I L G R M ___WG_2 971 A Q T G L E L L B L 16 _ _ 14 L RM WG W 2K W A E S L L L T L 14 _ _ 23 __ _ __ _ R_ L 1 T L D L E K P V S L 141 26 F L D K S L G V R T ___2 41 T F T P S P S I P L 14j___ 34_RTRSL __LL _ P S Ip LSS 14j_ _ 36 ______ R___TLL PT 51~ S IP L S SA 4 F 141 267 TABLE XLVI 162P1E6 v.3: HLA Peptide TABLE XLVI 162P1E6 v.3: BILA Peptide Scoring Results B4402 lO-mers SVFPEITHII Scoring Results B4402 1O-mers SYFPEITHI SEQ. SEQ. Pos 1 12 3 4 5 6 7 8 9 O scareED NO. Pos 1 12 3 4 56 7 8 9 0 scoreED NO. 89 _ __ _ _ P___GFH AQ 1 80 N PA GFC HHLN 4 _ _ 101 L2 LL L NP P13111 A S A S Q S V G I T 4 __ 123 _ _ __ _ SHRIRPHVLF111 T VSGRIRGP 4 _ 25_NLYSK__SA_ QF_ 1 1_ LTLDWLAE K PVLL 3 _ _ 29 ___SAQ__ S__ IL_1_8L_ T K VL DLLS PVT3 _ _ 34 F_ _ _ _ _ _ 2 LSF1 T LLS KNPSVQ3 _ _ 28_S__NSAQ__ST1_ 1 4 T L SFP AT F TP 3 53 ______ 1___SSA P1 4 S FP AT FT P SP 3 72 P GRSA V AQ SW 11 6A F FS DR VS LC R3 _ 79 Q___AHC NL1 63 FS DR V SL C R P 3 71 V A Q 8W A H S L 1 71 R P G R S A V A Q S 3 __ 91 A G F H H V A Q T G 7 106_ L_ S N P P A S A 0 Q 107 SN PP A SA SQ S7 3______ W___ LLLT 1 S TL QNT L8SP P6 21__8 T3F NALFYPS X 2__ 4__ TPSPSIP_ LSS_6_ ABL LV 6PE S.4 KHLSA P epi2 461 P S S I V S 57 S A_________ Y_ F FF DR So YF FF SD- - 5 4 DR VS C268G TABLE XLVI 162P1E6 v.4: LILA Peptide 'ABLE XLVI 162P1E6 v.4: LILA Peptide Scoring Results B4402 1O-mers SYFPEITHI Scoring Results B4402 1 O-iers SYFPEITHI SEQ. ISEQ. Pos 123 4 56 7 9core lD NO. Pos 12 34 5 6 7890oreD NO. 6KERR NQ LF R TG 15 39 LS SL K YP S WR 3 _ 3F I K ER NQ LF 14 41 S L KY P SWR VR 31 _ 2315S V P H R P A E L 14 46 S W R V R T P HI9D 3_ 53 H HDF SG V K FR14 49 V R TP H ED FSG 3__ 35 L Y RTLS S L Y 13 57 S GV KF RR H G 3__ 5Z P H ED FS GV CF 13 59 V KFPRR H GAD N3__ N_ QL FR T GP HL 12 60 K PR RH G AD NH 3__ 2A H RPA E L GALY 12 75 T ATT A AA TT v3__ 3A G AL YR TLS SL 12 78 T AAAT T VA AA 3__ 6 H EA SA AT A TT 12 82 TT VAA A AA AA 3 3 TL S S LK Y PS W1I1 83 T VA AA AAA AA 3__ 4A WRV R TP HED F1I1 84 VA AA AA AA AA 3__ 14 __G__HLSS_ GV_ 105_ IKE RN QL F RT 2 _ _ 80 A AT T VAA A AA 7 __ 11 L F RTGP HL SS 2__ 10 QL___RT __PHLS_ 1 F RT GPH L SBS 2 71 ______ A_ S I G P HLS SG V IS 2 _ _ 73 A A T A T T A A A __T_6 19 S SG V IS VPHR 2 __ 81,ATTVAAAAAA6_2 R PA E LGA L YR 2 85A A AAA A AA A 6 __ 29P A EL GAL Y RT 2 86A A A AA A AAA 6 4S SL K YP S WRV 2 87A AA A AA A AA 6 -441 Y PS W RVR T PH -2 88A A AA A AA AA 6 451_ _ _ _ __ _ __ 89 A AA AA A AA AR 6_______ 91. A A A A A A A R V T 6 ABLE XLVI 162P1E6 v.5: HILA Peptide 17_HLSSGVISVP_ oring Results B4402 lO-mers SYFPEITHI 34 _A __YR__LS__LK_ SEQ. 42 _L __YP__WR__RT_ Pos 1.2 34 5 67 89 0 scoreED NO. 43 Y S R R P 2A E L G A L Y R X G 17 __ 71 A AA TA T 531. V T D I P T1 R F Q W 13 __ _ SAATA__TAAA_ 38 FQW S EVQ E AW 121 _ 76_ATT__AATT__A_ 25 P R Q RHE R V T DI1 101 _ 93A A AA AR VT LT 5 32 T D IP TR FQWS 7__ 21 GV IS V H P A4 6A L Y R K G P T T P 6 _ 22_VIS__PHRP__E_ 12 P T TP SSV MAH 6 _ _ 24 ______ S_ 3EL GA L YR K 0P 5 __ 31,R LG AL R L 4RXG P TT P SS V4__ 3__YRT__SLK__P_ 10 K GP TT PS SV M 4 _ 51 ______ D_ -i RRH41 M AH TV 0P R QR 4 ___NHE__SAAT__T_ 2 A HT VGP R QRE 4 71 ______ T _ATTV 2 TVG P R QR ER 4 90 A AA A AAA A RV4 __ 2 VGP RQ RE R V T 4 11 MP F I KE R Q 30 TRF Q WS EV QEl 13 ___RTGPHLSSGy_3 _ TABLE XLVII 162PIE6: HLA Peptide Scoring I __PHL __SGVI__SV_3 _ Results B5101 1O-mers SYFPEITH ILSSGVISVPHSEQ. __ __ _ __ _ S___ SVPH Pos 11 2 345S6 7 S 9 0sore ED NO. _________ L__ 0 LSS 3N DATA 269 TABLE XLVIII 162P1E6 v.1: HLA Peptide Scoring Results DRB1*0101 15-mers SYPFEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 54 Q E L W F F L S 8 S P I S S G 33 35 T R S L T L L C P P T P M N G 32 76 C K V L F V L F G Q C L V E R 32 108 W I F L K Q L Q N T C F F F V 26 41 L C P P T P M N G P G S S Q E 25 55 H L W F F L S S S P I S S G F 25 84 G Q C L V E R N A H A P A F Q 25 116 N T C F F F V S 8 R K D Q P H 25 3 N K E I V E S F S R H I L G R 24 56 L W F F L S S S P I S S G F H 24 53 8 Q E L W P F L S S S P I S S 23 12 R H I L G R M W G H W R L S F 22 19 W G H W R L S F L D K S L G V 22 27 L D K S L G V R T R S L T L L 21 77 K V L F V L F G Q C L V E R N 21 109 I F L K Q L Q N T C F F F V S 21 68 G F H I G K R G C K V L F V L 20 99 0 L G K Q A Q S S W I F L K Q 20 30 S L G V R T R S L T L L C P P 19 60 L S S S P I S S G F H I G K R 19 94 A P A F Q G L G K Q A Q S S W 19 105 Q S S W I F L K Q L Q N T C F 19 118 C F F F V 8 S R K D Q P H R A 19 7 V E S F S R H I L G R M W G H 18 16 G R M W G H W R L S F L D K S 18 24 L S F L D X S L G V R T R S L 18 32 G V R T R S L T L L C P P T P 18 86 C L V E R N A H A P A F Q G L 18 107 S W I F L K Q L Q N T C F F F 18 121 F V S S R K D Q P H R A Q L W 18 8 B S F S R H I L G R M W G H W 17 21 H W R L S F L D K S L G V R T 17 22 W R L S F L D K S L G V R T R 17 67 S G F H I K R G C K V L F V 17 81 V L F G Q C L V E R N A H A P 17 93 H A P A FPQ G L G K Q A Q S S 17 1 M T N K E I V E S F S R H I L 16 4 K E I V E S F S R H I L G R M 16 15 L G R M W G H W R L S F L D K 16 36 R S L T L L C P P T P M N G P 16 42 C P P T P M N G P G S S Q E L 16 44 P T P M N G P G S S Q E L W F 16 50 P G S S Q B L W F F L S S S P 16 58 F F L S S S P I S S G F H I G 16 72 G K R G C K V L F V L F G Q C 16 85 Q C L V E R N A H A P A F Q G 16 96 A F Q G L G K Q A Q S S W I F 16 97 F Q G L G K Q A Q S S W I F L 16 111 L K Q L Q N T C F F F V S S R 16 132 A Q L W H T Q W D L D K G R G 16 29 R S G V R T R S L T L L C P 15 48 N G P G S S Q E L W F F L S S 15 75 G C K V L F V L F G Q C L V E 15 98 Q G L G K Q A Q S S W I F L K 15 270 TABLE XLVIII 162P1E6 v.1: HLA Peptide Scoring Results DRB1*0101 15-mers SYPFEITH] Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 103 Q A Q S S W I F L K Q L Q N T 15 37 S L T L L C P P T P M N G P G 14 38 L T L L C P P T P M N G P G S 14 45 T P M N G P G S S Q E L W F F 14 79 L F V L F G Q C L V E R N A H 14 66 S S G F H I G K R G C K V L F 13 9 S F S R H I L G R M W G H W R 12 13 H I L G R M W G H W R L S F L 12 59 F L S S S P I S-S G F H I G K 12 25 S F L D K S L G V R T R S L T 11 117 T C F F F V S S R K D Q P H R 11 23 R L S F L D K S L G V R T R S 10 26 F L D K S L G V R T R S L T L 10 39 T L L C P P T P M N G P G S S 10 62 S S P I S S G F H I G K R G C 10 64 P I S S G F H I G K R G C K V 10 65 I S S G F H I G K R G C K V L 10 70 R I G K R G C K V L F V L F G 10 80 F V L F G Q C L V E R N A H A 10 89 E R N A H A P A F Q G L G K Q 10 91 N A H A P A F Q G L G K Q A Q 10 14 I L G R M W G H W R L S F L D 9 20 G H W R L S F L D K S L G V R 9 33 V R T R S L T L L C P P T P M 9 51 G S S Q E L W F F L S S S P I 9 69 F H I G K R G C K V L F V L F 9 73 K R G C K V L F V L F G Q C L 9 78 V L F V L F G Q C L V E R N A 9 92 A H A P A F Q G L G K Q A Q S 9 95 P A F Q G L G K Q A Q S S W 1 9 106 S S W I F L K Q L Q N T C F F 9 112 K Q L Q N T C F F F V S S R K 9 113 Q L Q N T C F F P V S S R K D 9 128 Q P H R A Q L W H T Q W D L D 9 11 S R H I L G R M W G H W R L S 8 18 M W G H W R L S F L D K S L G 8 28 D K S L G V R T R S L T L L C 8 34 R T R S L T L L C P P T P M N 8 43 P P T P M N G P G S S Q E L W 8 47 M N G P G S S Q - L W F F L S 8 49 G P G S S Q E L W F F L S S S 8 52 S S Q E L W F F L S S S P I S 8 57 W F F L S S S P I S S G F H I 8 71 I G K R G C K V L F V L F G Q 8 82 L F G Q C L V E R N A H A P A 8 83 P G Q C L V E R N A H A P A F 8 88 V E R N A H A P A F Q G L G K 8 100 L G K Q A Q S S W I F L K Q L 8 110 P L K Q L Q N T C F F F V S S 8 119 F F F V S S R K D Q P H R A Q 8 122 V S S R K D Q P H R A Q L W H 8 123 S S R K D Q P H R A Q L W H T 8 124 S R K D Q P H R A Q L W H T Q 8 127 D Q P H R A Q L W H T Q W D L 8 130 H R A Q L W H T Q W D L D K G 8 271 TABLE XLVII 162PIE6 v.1: HLA Peptide Scoring Results DRR1*0101 15-mers SYPFEITMf Pos 1 234 5 67 89 0 12 3 4 5 score SEQ.ED NO. 131 R AQ L W T QW DL D KGR 8 31 LG VR TR SLT L LC P PT 7 ____ 87 LV ER N AHA P AFQ G LG 7 ____ 115 Q NTC FF F V SSR KD QP 7 ____ 129 PH R AQ L W HTQWD L DK 7 ____ 17 RMW G H WRL S F L DK SL 6 ____ 74 R G C VL FV LF GOQCL V 4 ____ 10 FS R HI L GR MWG H WR L 3_____ 104 A Q S SW IFPL Q LQ NTC 3__ 6 1 VE SF SR H IL GR MWG 2 ___ 5 E I V ES FS R H XLG R-MW 1 ___ 61 S S S PI SS G F HI G 1 R_ G___ 63 S P IBSS GF HI G KR G C K 1__ 102, KQ AQ9S SW I FLK Q LQN 1 ___ 1141 LQ N TC7F F VS S RK DQ 1I ___ _ TABLE XLVI 162PIE6 v.3: HILA Peptide Scoring Results DRB1*0101 15-mers SYPPEITH Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.ID NO. 90 E A GWHRV A QT G LE LL 27 ____ 98 8A0FS LTGSLLFSN P A 25 ____ 40 TS SIP LTFSTPYSPFSIFP 245___ 74 R SAV A QSW A HC 8L NL 24 ___ 100 G LELL S LS NP PA S AS 24 ___ 103 LL SL S NPP A SAS Q 8V 24 ____ 38 L 0T LSFPPA TF T PS PS 23 ____ 64 S DR V SL CRP G RS AVA 23 ___ 101 LE LL S LSN P P A 8A S 23 ____ 34 F S T ILQTL SF PA T FT 22 ____ 49 P S P 1P L S SAYPF F F 22 ____ 57 8A YPF F FS D R VSL CR 20 ____ 58 A YPF F SD RV S LCR P 19 ____ 78 AQ SW A HCS LN L P EAG 18 ___ 272 TABLE XLVII 162P1E6 v.3: HLA Peptide Scoring Results DRB1*0101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 65 D R V S L C R P G R S A V A Q 17 66 R V S L C R P G R S A V A Q S 17 85 S L N L P E A G F H H V A Q T 17 93 F H H V A Q T G L E L L S L S 17 35 S T I L Q T L S F P A T F T P 16 36 T I L Q T L S F P A T F T P S 16 42 S F P A T F T P S P S I P L S 16 52 S I P L S S A Y F F F F S D R 16 60 F F F F S D R V S L C R P G R 16 67 V S L C R P G R S A V A Q S W 16 80 S W A H C S L N L P E A G F H 16 105 S L S N P P A S A S Q S V G I 16 108 N P P A S A S Q S V G I T G V 16 116 S V G I T G V S H R I R P H V 16 119 I T G V S H R I R P H V L F H 16 11 L D L E K P V S L L L S V T N 15 16 P V S L L L S V T N L Y S K N 15 33 Q F S T I L Q T L S F P A T F 15 99 T G L E L L S L S N P P A S A 15 113 A S Q S V G I T Q V S H R I R 15 41 L S F P A T F T P S P S I P L 14 43 FPA T F T P S P S I P L S S 14 46 T F T P S P S I P L S S A Y F 14 47 F T P S P S I P L S S A Y F F 14 61 F F F S D R V S L C R P G R S 14 71 R P G R S A V A Q S W A H C S 14 77 V A Q S W A H C S L N L P E A 14 97 A Q T G L E L L S L S N P P A 14 102 E L L S L S N P P A S A S Q S 14 106 L S N P P A S A S Q S V G I T 14 112 S A S Q S V G I T G V S H R I 14 115 Q S V G I T G V S H R I R P H 14 114 8 Q S V G I T G V S H R I R P 12 63 F S D R V S L C R P G R S A V 11 21 L S V T N L Y S K N S A Q F S 10 59 Y F F F F S D R V S L C R P G 10 70 C R P G R S A V A Q S W A H C 1 1 LKW AESLLL TLDL EK 9 3 W A E S L L L T L D L E K P V 9 4 A E S L L L T L D L E K P V S 9 13 L E K P V S L L L S V T N L Y 9 26 L Y S K N S A Q F S T I L Q T 9 37 I L Q T L S F P A T F T P S P 9 39 Q T L S F P A T P T P S P S I 9 48 T P S P S I P L S S A Y F F F 9 96 V A Q T G L E L L S L S N P P 9 9 L TLDLEKPVSL L LSV 8 12 D L E K P V S L L L S V T N L 8 18 S L L L S V T N L Y S K N S A 8 30 N S A Q F S T I L Q T L S F P 8 45 A T F T P P S I P L S S A Y _ 8 51 P S I P L S S A Y F F F F S D 8 53 I P L S S A Y F F F F S D R V 8 68 S L C R P G R S A V A Q S W A 8 69 L C R P G R S A V A Q S W A H 8 273 TABLE XLVII 162P1E6 v.3: HLA Peptide Scoring Results DRB1*O101 15-mers SYFPEITH Pos 1. 2 3 4 5 6 7 8 9 0 1. 2 3 4 5 score SEO. EDNO. 75 SA V AQ SWA IIC S L NLP 8 84 C S LL P EA GF HH V AQ 8 86 L NL P E AGF HMHV AQ TG 8 ____ 89 PE AQ FHH V AQ TG L EL __8 94 HH V AQ TGL EL LS L SN 8 _ __ 110 P AS AS Q SV 1T GV S H __8 117 VGI T GV S HR IR P HVL 8 _ _ _ 73 G RS AVA Q SW A HC SLN 7 ____ 81 W AH CSL NL PE AG F HH 7 _ __ 104 LS LS N P P ASASQ S VG 7 ___ 28 SXN S AQ FST I LQ T LS -6 _ __ 72 PG R SAV A Q W A HC SL 6 ____ 91 A GF HH VA Q T GLE L LS 6_____ 109 P P A 8A SQSVG IT G VS 6 _ __ 62 F F S DR VS L CR P GRSA 3 ____ 19 L LL8V TN L YS KN S AQ 2 118 G I T 0V HR IR P H VLF 2 25 NL Y SK NS AQ FS T ILQ I_ 29 X NS AQWPST IL QT L SF 1 551 L S SA Y PF F PSD R VSL I_ _ __ 881 L PE A G FHHV AQ T GL-E 1 1 ____ TABLE XLVMI 162P1E6 v.4 HLA Peptide Scoring Results DRB1*O1O1 15-mers SYFPETI Pos 12.234 56 78 90 1 23 45 score SEQ. ID NO. 33 GA LY R TLS SL K YPS W 27 29 P AEL G ALY RT LS S LK 25 81 ATTVAAAAAAAAAAA 24 8 R NQ LF RT GPH LS S GV 23 19 S SG VI SV PH R PA E LG 23 78 TA A ATT VA AA AA A AA 23 ___ 12 F RT QP H LS 80V I SVP 22 58 G VK PR RH G AD N E AS 21 ___ 1__ M MF F FIXE R NQ L R TG 20 5 1XE R NQ LF RT G PHL S 20 ____ 9 NQLEF RT G P L SS GVI1 20 ___ 41 S LK Y P SWR VR TP H ED 19 ___18 L S S V IS V PH R PAEL 18 ____ 44 Y PS WR VR T PHE DF SG 18 46 S WRV RT P H D FS G VK 18 _ __ 73 A AT ATTA A AT TV A AA 18 ___7 R NQ L FRT G PHL S SG 17 1__ 3 R TGP HL6S G V I SVP H 17 ___ 26 P HR P A ELG AL Y RT LS 17 ___ 50 RTP H HD FS GV K FR RH 17 53 H E D PS GVK R RH G AD 17 ___ 63 R HGAD N HE AS A AT AT 17 ___ 68 NH E ASA AT AT TA A AT 17 79 A AA TTVAAAAAAAAA 17 ___ 80 AATTVAAAAAAAAAA 17 ___ 11 L FRT GP H LSS G VI SV 16 ____ 15 GPH L SS G V ISV P HRP 16 ____ 22 VISV P HR P AE LG A LY 16 ___ 36 Y RT LS SLK Y PS WR VR 16 ___ 381 T LS 0L K YpS WR V RTP 16 ____ 651 GAD NH EA S AATA T TA 16 ___ 274 TABLE XLVIII 162P1E6 v.4: HLA Peptide Scoring Results DRB1*010I 15-mers SYFPEITHCI Pos 1 2 34 5 678 90 1 23 45 score -SEQ.ED NO. 74 AT A TTA AA TT V A AA A 16 77 TT A AA TTV AA AA A AA 16 82 TT V AA AAA AA AA A AA 16 83 TV AA A AAA AA AA A AA 16 84 V AAAA A AA AA A AA AR 16 85 A AAA AA AA A AA A ARV 16 86 AAA AA A AA A-A AA RV T 16 88 A AA AA AA A AARV T LT 16 ___ 69 KEA S A AT A TTA A ATT 15 70 EA S AAT AT TA A AT TV 14 75 TA T TA AA T TVA A AAA 14 55 DF8 F RT R H G AKFNR 13 56 P HLSSVISGVPRHGRDPHA 10 43__YP_ 2 FF I E LR TG 9 EDFS1 2__4 S VP HRRNQPIA TGB L 9 ALYRT_1 14 ATLYP TL S SGLVKYPHWR 91 28 PP L AYH LSSA L _ 9 1 45 PS RR TP E F G 9 P__ED__SG__KF_ 20 S GV K FRVRHRPG EA D_ 8 H__E__0 28_ 61 PRARH LG ANLAYARTTL S S__L_9 72 BAAN EASTA ATA T TAA 9 ___ 76 ASTA ATA T TVA AAA T_ 8 VA_9 87 8GVIS AA A A ARELA 8 49 VPRP AEDL GVKLFYR 6 317, L HR AEL Y TLYSRTLS 1 YP__8 42 LKY RTLS LVRYPH D 1 54 DFSRHGVAKD RHGAD A__A_8 61 PR RH GA DN H A -A27T5 TABLE XLVIII 162P1E6 v.5: HLA Peptide Scoring Results DRBI*0101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 10 G A L Y R K G P T T P S S V M 29 6 P A E L G A L Y R K G P T T P 27 9 L G A L Y R K G P T T P S S V 24 17 P T T P S S V M A H T V G P R 22 33 R E R V T D I P T R F Q W S E 22 19 T P S S V M A H T V G P R Q R 18 3 P H R P A E L G A L Y R K G P 17 21 8 S V 4 A H T V G P R Q R E R 16 25 A H T V G P R Q R E R V T D I 16 29 G P R Q R E R V T D I P T R F 16 32 Q R E R V T D I P T R F Q W S 16 11 A L Y R K G P T T P S S V M A 15 14 R K G P T T P S S V M A H T V 15 38 D I P T R F Q W 8 E V Q E A W 15 12 L Y R K G P T T P S S V M A H 14 13 Y R K G P T T P S S V M A H T 14 22 S V M A H T V G P R Q R E R V 14 1 BVP HRPAE LGALYRK 11 28 V G P R Q R E R V T D I P T R 9 37 T D I P T R F Q W S E V Q E A 9 2 V P H R P A E L G A L Y R K G 8 8 E L G A L Y R K G P T T P S S 8 20 P S S V M A H T V G P R Q R E 8 35 R V T D I P T R F Q W S E V Q 8 36 V T D I P T R F Q W S E V Q E 8 18 T T P S S V M A H T V G P R Q 7 26 H T V G P R Q R E R V T D I P 7 30 P R Q R E R V T D I P T R P Q 6 27 T V G P R Q R E R V T D I P T 3 34 Z R V T D I P T R F Q W S E V 3 5 R P A H L G A L Y R K G P T T 2 24 M A H T V G P R Q R E R V T D 2 31 R Q R B R V T D I P T R F Q W 2 4 H R P A E L G A KL Y R K G P T 1 7 A E L G A L Y R K G P T T P S 1 15 K G P T T P S S V M A H T V G 1 23 V M A H T V G P R Q R E R V T 1 TABLE XLVHI 162P1E6 v.6: HLA Peptide Scoring Results DRB1*0101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. I S L K Y P S W R V R T P H E E 19 4 Y P S W R V R T P H E E R T N 18 12 P H E E R T N H T E L S Y G T 16 3 K Y P S W R V R T P H E E R T 12 6 S W R V R T P H B E R T N H T 10 11 T P H E E R T N H T E L S Y G 9 16 R T N H T E L S Y G T H S G T 9 15 E R T N H T E L S Y G T H S G 8 9 V R T P H E E R T N H T E L S 6 7 W R V R T P H R E R T N H T E 3 8 R V R T P H E E R T N H T E L 2 14 R E R T N H T E L S Y G T H S 2 2 LKYPSWRVR TPH EER 1 5 PSWRVR TPHEERTNH 1 13 E E R T N H T H L S Y G T H 1 276 TABLE XLIX 162P1E6 v.1: HILA Peptide Scoring Results DRB1 *0301 15-mers SYFPEITIII Pos 12 34 56 78 9 0 123 45 score SEQ.ED NO. 4 KE IV E S FSRH IL G RM 26 ____ 15 L GR MW GH WR LSF L DK 25 ___ 108 W I F LKQ LQ NTC F FFV 25 30 SLG VR TR SL T LL C PP 21 ____ 68, GF HI G KRG C KVL F VL 19 76 C K VL F VLF0Q C L VER 19 ____ 77 KV LF V L F G0CLV R RN 18 _ _ _ 107 SW I FL KQ LQN TC F FF 18 ____ 21 H WRL S L D KS LG V RT 17 ____ 28 D KS LGV RT R SLT L LC 17 ____ 69 FH I GK RG C KVL FV LF 17 ___ 94 AP A FQQGLG KQ AQ S SW 17 ____ 47 XM GP G SS Q RLW F FL S 16 97 FQ GL G KQ AQS SW I FL 16 118 CFFF V S SR XD Q P HRA 16 130 HR AQ LWH T QW D LD KG 16 66 S S G FH10K R GCK V LF 15 117 T CF F PV SS R D Q P HR 15 123 8 SR K QgP HR A QL W HT 15 22 W R LSFL D K SL GVR TR 13 37 L TL LC P PT PM NG PG 13 ____ 75 GC KVL FV L FG QC L VE 13 78 VL F V L FGQ C LV E RNA 13 ____ 84 G Q CLVHR N A HAP A FQ 13 106 S SW IFL KQ LQ NT C FF 13 ____ 119 F FFV S SR KD Q PH RAQ 13 3 N KEIV 2S FS R HI L GR 12 ____ 11 S RH I L GR M NGH WR LS 12 20 H W R L F L DK SL GVR 12 24 LS F L D SL GV R TR SL 12 35 T RS LT LLC PP T P M N 12 38 LT L LCP PT P MNG P GS 12 56 LW F PL 8S S PI SS GFH 12 57 W FF LS SS P ISS GFHI1 12 13 H IL G R ?4W G W R LS FL 11 23 RL S FL D KSL G V RTRS 11 ___ 44 P T P24NQP GS S QE L WF 11 ____ 45 T PM N GPGS SQ E L WF F1 I__I 53 SQ EL W FFL S SS PI S S1I1 62 SS P IS SG F HIGK R GC I1I 72 G K R GC VL PV LF GQ C 11 ___ 79 LF V L F0QC LV E RN AH 11 85 QC LV E RN AH AP A FQG 11 ____ 121 FPVS SRK DQ PH RA Q LW 11 I_ _ 131 R AQLW HT Q WD LD K GR 11 I _ _ 82 R ILG F WGQCWERN LH S F 10 ____ 27_ LDKSLGV__TRSLTL _ 10 L10 ______ 277 TABLE XLIX 162P1E6 v.1: HRLA Peptide Scoring Results DRBI *0301 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.ED NO. 116 NT CFF F VS SR K DQ PH 10 49 Q P GS SQEL W FF LS SS 9 58 FFL SS S PI SS G FH IG 9 80 F V L GQ CLV E RN A HA 9 83 F GQC LV ER NA HA P AF 9 89 E RN AH AP A FQ GL GKQ 9 95 P A F0G L GKQ AQS SW 1 9 99 G LG K QAQS SW I F L K 9 ___ 100 LGK Q AQ SS W I F L KL 9 104 A Q S SW I FL Q LQN TC 9 105 Q S SW I FL KQLQN T CF 9 109 1 F L Q LQ N TC F F FV 9 7 V ES FS RH IL GR MW GH 8 16 R MW G HWRL S FL DK 8 8 ___ 46 PMN GP G SS Q E LNF FL 8 71 1 GK RG C KV LF V LFG Q 8 90 RN A HA P A POGL G KQA 8 103 QA QS SW I FL KQ LQ NT 8 9 S FSR H IL GR MW GH WR 7 26 F LDXS L GV RT RS L TL 7 65 1 SS GFRI G XR GC K VL 7 81 V L F 0C LV HR N AH Ap 7 125 R K D Q PR AQ LW H TQW 7 40 L LC PP TP M N GPG SSQ 6 120 P V SSR K DQ P HR AQL 6 31 LG V RT RS LT L LC PPT 4__ 36 RS LT L LC PP TP M NGP 4 19 W G HWR LSFL D KS LG V 3 25 F L DK 8L G VR TR S LT 3 ___ 32 G V RTR8L T LL CP P TP 3 34 R T R8LT LL CP PT P MN 3 _ __ 39 TLL CP PT P XN G PGS S 3 __ _ 61 S SS P18S G FHI G KR G 3 70 9 1G XR QC KV LF VL FG 3 ___ 96 A FQ GL 9KQ AQ S SWI F 3 ____ 102 K Q AQ SS WI FL KQ L QN 3_____ 122 V SSR K DQPH R AQ L WH 3 ___ 124 RK DQ P HR A QLW H TQ 3 ____ 2 TN K NI VE STS R H I LG 2 ___ ___6 1 V E8S R HI L GR MWG 2______ ___8 RS F R HIL GR MW G HW 2__ ___ to PSR RI L GRM W GH WRL 2__ ___ 17 R MW GH WRL S FL DK SL 2 18 M W G W R LS FLD K S LG 2 ____ 33 VR TR SL T LLC PPT PM 2 ____ 41 LC P PTP MN GP G SS QE 2 42 C P PT P N G P 8S Q EL 2 50 P GS SQ3L WF F LS S SP 2 51 GS SQ EL W FL S SSP 1 2 52 S SQHL WF FL S SS P IS 2 59 FLS S S PIS SG PH I GK 2 67 'S GF HI GK RGC KV L FV 2 ___ 73 K RG0C KV L F V L GCL 2 92 AH AP A FQ G L G XQAQ S 2 ___ 278 TABLE XLIX 162PIE6 v.1: LILA Peptide Scoring Results DRBI *0301 15-mers SYFPEITII Pos 12 34 5 6789 0 12 3 45 score SEQ.IDNO. 101 G KQ AQ SSW IF L KQ LQ 1 2 113 Q LQNT C FF FV SS R KD j 2 127 D QP HR AQL WH T Q WDL 2 129 PH R AQLW HT Q WD L DK 2 IXT N KE IVE S FS R HIL 1 5 H IV R S FSR 1L GR MW 1 14 1 LG RM WG H WR LS F LD I_ ___ 43 P PT PM N G P S SQ ELW __1 54 Q E L W FL S SS PI S S G _ 1 60 L S SS P ISS GF HI GR X_ R 63 SP I SS GF H IG KR G CK I___ 87 LV E RNAH AP A FQ GL G 1 88 V ER NA HA P AFQG LG K 1 91 A HA P AFQ GL GK Q AQ 1 931 H AP AFQ GL GK Q AQ SS 1 98 Q GL GK Q AQS S WI FLK I 132] AQ L WHTQ W DL DK G RG 1 J___ TABLE XLIX 162PIE6 v.3: 19LA Peptide Scoring Results -DRBI *0301 15-mers SYFPEITI Pos 1 234 56 7 890 12 3 45 score ISEQ. ID NO. 6 S LLL T L DL K PV S LL 29 ____ 16 P VSL LL SV T NLY SKXN 23 ___ 58 AY F FF FSD R VS LC RP 23 90 A G7HH V A QTG L EL L 22 8 LLTLDLEKPV-SLL-LS 21 10 T LD LE KP V L L LS VT 20 17 V SL L LSVT NL YS K NS 20 ___ 23 VT NLYBSK NBSA Q FSTI1 20 50 SP SI PL SS AYPF F FS 20 59 YF F FF SD RV SL C R P 20 93 FHH V A QT CL EL LS LS 20___ 100 G L E LLSL SNP P AS AS 20 44 P ATF T PSPBSI P LS SA 19 52 SI PL S SAY FF F FS DR 19 66 RV S LC RP G RSA V AQS 18 82 AHC SL NL P IA GF H HV 18 31 SA Q FST IL QT L S FPA 16 ___ 119 1 T GVS HRI RP H VL FH 16 4 AE S LL LTL D LE K PVS 15 5 ES LL LT LD LE K P VSL 13 9 LT L DLEK PV S LL L SV 13 14 EK P VS LLL SV T NL YS 13 15 KP V SL LL SV T NL YSK 13 34 FS T I LQT L F P AT FT 13 98 QTG L EL LS LS NP P AS 13 ____ 20 LL S VTN LY SK N SA QF I2 ____ 35 ST IL Q TLS FP A TF TP 12 1 49 PS P SIPL SS A YF F FF 12 83 HC SL N L PE A G HH VA 12 85 SL N L P AG FH HV A QT 12 101 LE L LSL SNPPpA S A S 12 103 L LS LS NP P AS AS Q SV 12 116 S VG IT GV S HR IR P HV . 12 _ _ _ 2 X WA BS LLL TL D LE KP 1 11 36 T ILQ0 TL SF PA TF T PS I1 279 TABLE XLIX 162P1E6 v.3: 19LA Peptide Scoring Results -DRBI*O301 15-mers SYFPErTH Pos 3. 2 3 4 S 6 7 8 9 0 1 2 3 4 5 score SE0. EDNO. 51 P S I PL SS A YF FF F SD 1 64 8BDR VS L C R PG RS AV A 95 H VA QTQGL E LL SL S N P 114 8 Q 8VG I TGV S HR IRP 11 ___18 SL L LSVT N LY S KN SA 10 22 8V T NL YS K NS A F ST 10 30 NS AQFS T I LQ T LS FP 10 32 AQF S T ILQ T LSF P AT 10 38 LQ TL SF PA T FT PS PS 10 48 T PS PSIP L S SA Y FFF 10 ____ 74 RS AV A QSW A HCS L NL 10 77 V AQS8WAH C SL NL P EA 10 92 F H KV AQ0TGL E LL SL 10 7 L LLT LD LE KP V SL LL 9 ___ 60 F FFPS D RV SL CR P GR 9 75 SA VA Q SWAH C S L NLP 9 94 H HVAQ T G L L LS L SN 9 40 T LS FP ATF T PS PS IP 8______ 63 F SD RV SLC R PGR S AV 8 ___ 79 Q S W AHC SL N LP E AGF 8 107 SKP P A SAS QS VG I TG 8 71 RP GR S AV AQS WA H CS 6 ___ 99 T G LEL L SL9N P PA SA 5 ___ 102 9 L L LS NP P A SAS QS 5 ____ 37 1 L Q TL8F P AT FT PSP 4 _ __ 65 D R VS LC R P RS AV AQ 3 67 VS L C R P GR A V A SW 3 ____ 68 L C R P RS AV AQ S WA 3 70 C R P GR 0A VAQSW A HC 3 _ _ _ 73 GRS AV AQ SW A HC S LN 3 96 V AQ TG LE L LS LBN PP 3 2 SKN S ATQPFPSP I PQTL S 2 47 PTP SP SI P LS S AY FF 2 ____ 62 F S D RVSL CR P GR SA 2 ___ 87 NL PE A GFHH VA Q T GL 2 ___ 280 TABLE XLIX 162P1E6 v.3: HLA Peptide Scoring Results -DRB1*0301 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.ID NO. 104 L S L S N P P A S A S Q S V G 2 105 S L S N P P A S A S Q S V G I 2 109 P P A S A S Q S V G I T G V S 2 111 A S A S Q S V G I T G V S H R 2 113 A S Q S V G I T G V S H R I R 2 118 G I T G V S H R I R P H V L F 2 26 L Y S K N S A Q F S T I L Q T 1 29 K N S A Q F S T I L Q T L S F 39 Q T L S F P A T F T P S P S I 1 43 F P A T F T P S P S I P L S S 61 F F F S D R V S L C R P G R S 69 L C R P G R S A V A Q S W A H 1 72 P G R S A V A Q S W A H C S L 1 76 A V A Q S W A H C S L N L P E1 80 S W A H C S L N L P E A G F H i 88 L P E A G H H V A Q T G L E 1 89 P E A G F H H V A Q T G L E L _ 91 A G F H H V A Q T G L E L L S 106 L S N P P A S A S Q S V G I T _ 108 N P P A S A S Q S V G I T G V I 115 Q S V G I T G V S H R I R P H TABLE Y1IX 162P1E6 v.4: HLA Peptide Scoring Results DRB1*0301 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. I M F F F I K E R N Q L F R T G 25 2 F F F I K E R N Q L F R T G P 19 20 S G V I S V P H R P A E L G A 17 29 P A E L G A L Y R T L S S L K 17 46 S W R V R T P H E D F S G V K 17 19 S S G V I S V P H R P A E L G 13 8 R N Q L F R T G P H L S S G V 12 22 V I S V P H R P A E L G A L Y 12 24 S V P H R P A E L G A L Y R T 12 32 L G A L Y R T L S S L K Y P S 12 33 G A L Y R T L S S L K Y P S W 12 36 Y R T L S S L K Y P S W R V R 12 39 L S S L K Y P S W R V R T P H 12 56 F S G V K F R R H G A D N H E 12 81 A T T V A A A A A A A A A A A 12 9 N Q L F R T G P H L S S G V I 11 15 G P H L S S G V I S V P H R P 11 21 G V I S V P H R P A E L G A L 11 25V P H R P A E L G A L Y R T L 11 28 R P A L G A L Y R T L S S L 11 49 V R T P H D F S G V K F R R 50 R T P H E D F S G V K F R R H 58 G V K F R R H G A D N H E A S 61 F R R H G A D N H E A S A A T 7 E R N Q L F R T G P H L S S G 10 31 E L G A L Y R T L S S L K Y P 10 35 L Y R T L S S L K Y P S W R V 10 45 P S W R V R T P I E D F S G V 10 53 H E D F S G V K F R R H G A D 9 40 S S L K Y P S W R V R T P H E 8 23 I S V P H R P A E L G A L Y R 7 281 TABLE XLIX 162P1E6 v.4: HLA Peptide Scoring Results DRBI*0301 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 52 P H E D F S G V K F R R H G A 7 55 D F S G V K F R R H G A D N H 7 62 R R H G A D N H E A S A A T A 7 5 IK E R N Q L F R T G P H L S 6 42 L K Y P S W R V R T P H E D F 6 54 E D F S G V K F R R H G A D N 6 60 K F R R H G A D N H E A S A A 6 14 T G P H L S S G V I S V P H R 4 13 R T G P H L S S Q V I S V P H 3 26 P H R P A E L G A L Y R T L S 3 34 A L Y R T L S S L K Y P S W R 3 38 T L S S L K Y P S W R V R T P 3 47 W R V R T P H E D F S G V K F 3 65 G A D N H E A S A A T A T T A 3 71 A S A A T A T T A A A T T V A 3 78 T A A A T T V AAAAAAAA 3 79 A A A T T V AAAAAAAAA 3 80 A A T T V A A A AAAAAAA 3 4 F I K E R N Q L F R T G P H L 2 11 L F R T G P H L 9 S G V I S V 2 30 A E L G A L Y R T L S S L K Y 2 59 V K F R R H G A D N H E A S A 2 63 R H G A D N H E A S A A T A T 2 64 R G A D N H E A S A A T A T T 2 67 D N H E A S A A T A T T A A A 2 70 2 A S A A T A T T A A A T T V 2 75 T A T T A A A T T V A A A A A 2 76 A T T A A A T T V A A A A A A 2 77 T T A A A T T V A A A A A A A 2 82 TTVAAAAAAAAAAAA 2 83 T V AAAAAAAAAAAAA 2 84 VAAAAAAAAAAAAAR 2 85 AAAAAAAAAAAAARV 2 86 AAAAAAAAAAAARVT 2 87 AAAAAAAAAAARVTL 2 6 K E R N Q L F R T G P H L S S _ 10 Q L F R T G P H L S S 1 V I S 12 F R T G P L S G V I S V P 1 16 P H L S S G V I S V P H R P A 1 17 E L S S G V I S V P H R P A E 1 18 L S S G V I S V P H R P A E L 1 27 H R P A E L G A L Y R T L S S 37 R T L B S L K Y P S W R V R T 1 41 S L K Y P S W R V R T P E D1 44 Y P S W R V R T P H E D F S G _ 51 T P H E D F S G V K F R R H G 1 57 S G V K F R R H G A D N H E A 1 66 A D N R E A S A A T A T T A A 1 69 H E A 8 A A T A T T A A A T T 1 72 A A T A T T A A A T T V AA 1 73 A A T A T T A A A T T V A A A 1 74 A T A T T A A A T T V A A A A 1 88 AAAAAAAAA VA R V T L T 1 282 TABLE XLIX 162PIE6 v.5: HILA Peptide Scoring Results DRB1*0301 15-mers SYFFEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ. IID NO. 32 QRE RV T DI PT RF Q WS 19 ____ 25 A HTV GP RQ RE RV TDI1 17 ____ 6 PA EL G ALY RK G PT TP 16 36 V T DI PTRF Q WSE V QE 16 1. S VP HR P A E LA L Y RK 12 33 R ER VT DI PT R FQ WSE 12 ___ 2 V PHRP A EL G AL Y RKG 11 ___ 9 LG AL YRK G PT T PS SV 11 ____ 20 PS SV M AHTV G PR Q RE 10 ___ 21 S S V XA T VG PR Q RER 10 23 VMA HT VG P RQ RE R VT 9 27 T V G P R RER V TD I PT 9 39 1 PT RF QW S BVQE A WS 8 7 A ELQGA LYR KG PT T PS 7 24 A H TV GPR QR E RV TD __7 _ 26 T VQP R Q R HR VT DIP 6 34 R VT DI P TR FQ W SEV 6 5 RP A RL0A L YR KG P TT 4 15 KGP T T PSS VM A HT VG 4 ____ 3 P HR PA EL0A L YR K GP 3 29 LGA PR ERVKT P T R 2 1A9L TI 16P S.6 S V MA Hetd T V G P ResQt RBI* 315erSYPI _ 0__A_ 6 S R K GPET T T 17 SV 13 H ET P SS V LSA H T H 16P 4__ H RVRP E E N T L L GAL__RK__PT_ 11 A LY R GPTNT P S Y S V__MA 1__2 LIY XGTP H R 6 TPSSVMA_ 13_ Y5 P S S V MEE ATH 2 12 THE RVHT LSGT 12 S V M H T V PRRPE R 41 RQ PS R V T DIP TRT _ Q_ W___ 37T4 EE T R FQ WSYEGVQHE I 15 EDIRP TRTF QW YS EV HQ G A___W___I TALEXLI 12PE6v6:IIA etie crig esls RB *31 5-e283FEIH TABLE L 162P1E6 v.1: HLA Peptide Scoring Results DRBI *0401 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 54 Q E L W F F L S S S P I S S G 28 77 K V L F V L F G Q C L V E R N 28 105 Q S S W I F L K Q L Q N T C F 28 4 K E I V E S F S R H I L G R M 26 55 H L W F F L S S S P I S S G F 22 66 S S G F H I G K R G C K V L F 22 94 A P A F Q G L G K Q A Q S S W 22 116 N T C F F F V S S R K D Q P H 22 117 T C F F F V 9 S R K D Q P H R 22 3 N K E I V E S F S R H I L G R 20 37 S L T L L C P P T P M N G P G 20 53 S Q E L W F F L S S S P I S S 20 62 S S P I S S G F H I G K R G C 20 76 C K V L F V L F G Q C L V E R 20 85 Q C L V E R N A H A P A F Q G 20 108 W I F L K Q L Q N T C F F F V 20 22 W R L S F L D K S L G V R T R 18 27 L D K S L G V R T R S L T L L 18 83 F G Q C L V E R N A H A P A F 18 98 Q G'L G K Q A Q S S W I F L K 18 115 Q N T C F F F V 8 S R K D Q P 18 7 V E S F S R H I L G R M W G H 16 16 G R M W G H W R L S P L D K S 16 19 W G H W R L S F L D K S L G V 16 56 L W F F L S S S P I S S G F H 16 80 V L FG QCL VE RN A HA 16 ____ 107 S W I W jQ L Q NTCFFF 16 132 A Q L W H T Q W D L D K G R G 16 28 D K S L G V R T R S L T L L C 15 15 L G R M W G H W R L S F L D K 14 21 H W R L S F L D K S L G V R T 14 24 L S F L D K S L G V R T R S L 14 35 T R S L T L L C P P T P M N G 14 44 P T P M N G P G S S Q E L W F 14 75 G C.K V L F V L F G Q C L V E 14 97 F Q G L G K Q A Q S S W I F L 14 111 L K Q L Q N T C F F V S S R 14 M T N K E I V E 8 F S R H I L 12 9 S F S R H I L G R M W G H W R 12 13 H I L G R M W G H W R L S F L 12 18 M W G H W R L S F L D K S L G 12 20 G H W R L S F L D K S L G V R 12 26 F L D K S L G V R T R S L T L 12 29 K S L G V R T R S L T L L C P 12 34 R T R S L T L L C P P T P M N 12 45 T P M N G P G S S Q E L W F F 12 49 G P G 8 S Q E L W F F L S S S 12 50 P G S S Q E L W F F L S S S P 12 52 S S Q E L W F F L S S S P I S 12 59 F L S S S P I S 0G F H I G K 12 74 R G C K V L F V L P G Q C L V 12 81 V L F G Q C L V E R N A H A P 12 82 L F G Q C L V E R N A R A P A 12 90 R N A 9 A P A F Q G L G K Q A 12 91 N A H A P A F Q G L G K Q A Q 12 284 TABLE L 162P1E6 v.1: HLA Peptide Scoring Results DRB1*0401 15-mers SYFPEITI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 95 P A F Q G L G K Q A Q S S W I 12 103 Q A Q S S W I F L K Q L Q N T 12 104 A Q S S W I F L K Q L Q N T C 12 113 Q L Q N T C F F F V S S R K D 12 121 F V S S R K D Q P H R A Q L W 12 122 V S S R K D Q P E R A Q L W H 12 123 S S R K D Q P H R A Q L W H T 12 126 K D Q P H R A Q L W H T Q W D 12 128 Q P H R A Q L W H T Q W D L D 12 130 H R A Q L W H T Q W D L D K G 12 118 C F F F V S S R K D Q P H R A 10 30 S L G V R T R S L T L L C P P 9 68 G F H I G K R G C K V L F V L 9 106 S S W I F L K Q L Q N T C F F 9 12 R H I L G R M W G H W R L S F 8 38 L T L L C P P T P M N G P G S 8 57 W F F L S S 8 P I S S G F H I 8 78 V L F V L F G Q C L V E R N A 8 79 L F V L F G Q C L V E R N A H 8 131 R A Q L W H T Q W D L D K G R 8 2 T N K E I V E S F S R H I L G 6 5 E I V R S F S R H I L G R M W 6 8 E S F S R R I L G R M W G H W 6 14 I L G R M W G H W R L S F L D 6 25 S F L D K S L G V R T R S L T 6 31 L G V R T R S L T L L C P P T 6 32 G V R T R S L T L L C P P T P 6 36 R S L T L L CP P T P M N G P 6 40 L L C P P T P M N G P G S S Q 6 41 L C P P T P M N G P G S S Q E 6 42 C P P T P M N G P G S S Q E L 6 43 P P T P M N G P G S S Q E L W 6 46 P M N G P G S S Q E L W F F L 6 51 G S S Q E L W F F L.S S S P I 6 58 F F L S S S P I S S G F H I G 6 60 L S S S P I S S G F H I G K R 6 63 S P I S S G F H I G K R G C K 6 65 I S S G F H I G K R G C K V L 6 70 H I G K R G C K V L F V L F G 6 72 G K R G C K V L F V L F G Q C 6 73 K R G C K V L F V L F G Q C L 6 86 C L V R R N A H A P A F Q G L 6 87 L V E R N A H A P A F Q G L G 6 88 V E R N A H A P A F Q G L G K 6 89 E R N A H A P A F Q G L G K Q 6 92 A H A P A F Q G L G K Q A Q S 6 93 H A P A F Q G L G K Q A Q S S 6 99 G L G K Q A Q S S W I F L K Q 6 100 L G K Q A Q S S W I F L K Q L 6 101 G K Q A Q S S W I F L K Q L Q 6 102 K Q A Q S S W I 6 L K Q L Q N 109 I F L K Q L Q N T C F F F V S 6 112 K Q L Q N T C F P F V S S R K 6 114 L Q N T C F F F V S S R K D Q 6 127 D Q P H R A Q L W H T Q W D L 6 285 TABLE L 162PlE6 v.1: HLA Peptide Scoring Results DRBI*0401 iS-mers SYFPEITHJI Pos 1 23 456 7 89 0 12 3 45 score SE2. ED NO. 129 PH RA QL W H T0W DL DK 6 ____ 23 R LS PLD KS L GV RT RS 5 ___ 11 SR H IL G R M W G WRLS 3 ____ 84 Q QC LV ER N AH AP AFQ 3 ____ 119 FPF V SSGRK DQ PH R AQ 3 _ _ _ 17 RM WG H WR LS FL D KSL 1 ___ 67 SBGF RIG KR GC KV LF V 1 ___ 71 1 QK R G C V L FVL F GQ 1 _ __ ___96 AFQQ GL GK Q AQS SW IF 1I_ ___ 12 IFV SS R XDQ0PH R AQL i_____ 125 RK D Q PH R AQL W HT QW I ____ ___6 1V E SF S RHIL GR M WG -5- ___ TABLE L 162PIE6 v.3: HLIA Peptide Scoring Results DRBI*0401 15-mers SYFPEITHI Pos 12 34 56 78 90 12 345S score SE.EDNO. 31 8 A QFST I LQTL S F PA 28 ____ 56 S SA Y F F SD R VS LC 28 90 3 A G PH VA QT GL E LL 28 ___ ___14 9 XP V SLL L SVT N L YS 26 ___ ___17 V SLL L SVT NL YS KN S 26 ___ 20 L LS VT N LYS K NS AQF 26 100 GL EL L SLS NP PA S AS 26 44 P A T TP SP SI P LS SA 22 57 SAY F F FS DR V S LCR 22 58 A YF PFFS D R VS L CRP 22 6 SL LL T LD L K PV S LL 20 8 LL T LDL EK PV SL L LS 20 10 TL DL EKP V SL L LS VT 20 34 FS T IL QTL SF P AT FT 20 35 ST IL Q TL S P A T FTP 20 66 R VS LC RP G RS AV AQS 20 85 8L N LP8A G FH HV A QT 20 ___ 116 V G XT0V S HR IR P RV 20 _ _ _ 2 W A RSL LL TL DL E KP 18 28 8K N SA Q S TI LQ T LS 18 ____ 71 R PG RS AV AQ SW A HCS 18 ___ 87 N L P E A H V A QT GL 18 ____ 97 AQ T GL9L L SL SN P PA 18 ____ 24 T NL Y S NS AQ FS T IL 16 40 T LSFP AT F T PS P SIP 16 ____ 59 YFF F F SDR V SLC R PG 16 ___ 119 1 T GV SHR IRP H VL FH 15 _ _ _ 4 AE SL L LTL DL E KPV 8 14 ____ ___5 S LL LT L DL EXP V SL 14 ___ 16_ PV SL LL SV TN L YS KN 14 ___ 18 SL LL SV T NLY S KN SA 14 ____ 38 LQ T LSFP A T FT PS PS 14 ____ 52 S IP LS S AYPF FF S DR 14 ____ 64 D R VS LCR P GRS A VA 14 ____ 74 R SA V AQ SW A HC L NL 14 ___ 93 PH H V AQT G LE LL S LS 14 ___ 98 QTG LE L LS LS NP P AS 14 ____ 101 L E LL SLS N PP AS ASQ 14 ____ 103 L LS LS NPP A SA SQS V 14 ____ 71 LL LT LD L EXP V S LLL 12 ___ 286 TABLE L 162P1E6 v.3: HLA Peptide Scoring Results DRBI*0401 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IIDNO. 11 L D L E K P V S L L L S V T N 12 13 L E K P V S L L L S V T N L Y 12 15 K P V S L L L S V T N L Y S K 12 22 S V T N L Y S K N S A Q F S T 12 25 N L Y S K N S A Q F S T I L Q 12 26 L Y S K N S A Q F S T I L Q T 12 27 Y S K N S A Q F S T I L Q T L 12 32 A Q F S T I L Q T L S F P A T 12 37 I L Q T L S F P A T F T P S P 12 39 Q T L S F P A T F T P S P S I 12 41 L S F P A T F T P S P S I P L 12 42 S F P A T F T P S P S I P L S 12 47 F T P S P S I P L S S A Y F F 12 49 P S P S I P L S S A Y F F F F 12 63 F S D R V 8 L C R P G R S A V 12 67 V S L C R P G R S A V A Q S W 12 72 P G R S A V A Q S W A H C S L 12 75 S A V A Q S W A H C S L N L P 12 76 A V A Q S W A H C S L N L P E 12 77 V A Q S W A H C 9 L N L P E A 12 80 S W A H C S L N L P E A G F H 12 86 L N L P E A G F H H V A Q T G 12 91 A G F H H V A Q T G L E L L S 12 95 H V A Q T G L E L L S L S N P 12 96 V A Q T G L E L L S L S N P P 12 104 L S L S N P P A S A S Q S V G 12 105 S L S X P P A S A S Q S V G I 12 106 L S N P P A S A S Q S V G I T 12 107 S N P P A S A S Q S V G I T G 12 108 N P P A S A S Q S V G I T G V 12 111 A S A S Q 9 V G I T G V S H R 12 112 S A S Q S V G I T G V S H R I 12 115 Q S V G I T G V S H R I R P H 12 60 F F F F S D R V S L C R P G R 11 78 A Q S W A R C S L N L P E A G 10 23 V T N L Y S K N S A Q F S T I 9 50 S P S I P L S S A Y F F F F S 8 83 H C S L N L P E A G F H H V A 8 114 S Q S V G I T G V S H R I R P 8 1 L K W A E S L L L T L D L E K 6 3 W A E S L L L T L D L E K P V 6 ._12 D L E K P V S L L L S V T N L 6 19 L L L S V T N L Y S K N S A Q 6 21 L S V T N L Y S K N S A Q F S 6 29 K N S A Q F S T I L Q T L S F 6 30 N S A Q F S T I L Q T L S F P 6 45 A T F T P S P S I P L S S A Y 6 46 T F T P S P S I P L S S A Y F 6 48 T P S P S I P L S S A Y F F F 6 53 I P L S S A Y F F F F S D R V 6 54 P L S S A Y F F F F S D R V S 6 55 L S S A Y F F F F S D R V S L 6 61 F F F S D R V S L C R P G R S 6 69 L C R P G R S A V A Q S W A H 6 70 C R P G R S A V A Q S W A H C 6 287 TABLE L 162P1E6 v.3: BLA Peptide Scoring Results DRBI*0401 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 79 Q S W A H C S L N L P E A G F 6 82 A H C S L N L P E A G F H H V 6 84 C S L N L P E A G F H H V A Q 6 88 L P E A G F H H V A Q T G L E 6 92 G F H H V A Q T G L E L L S L 6 94 H H V A Q T G L E L L S L S N 6 99 T G L E L L S L S N P P A S A 6 102 B L L S L S N P P A S A S Q S 6 109 P P A S A S Q S V G I T G V S 6 113 A S Q S V G I T G V S H R I R 6 117 V G I T G V S H R I R P H V L 6 9 L T L D L E K P V S L L L S V 1 65 D R V S L C R P G R S A V A Q 1 68 S L C R P G R S A V A S W A1 TABLE L 162P1E6 v.4: HLA Peptide Scoring Results DRB1*0401 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 19 S S G V I S V P H R P A E L G 26 29 P A E L G A L Y R T L S S L K 26 1 M F F F I K E R N Q L F R T G 22 9 N Q L F R T G P H L S S G V I 22 33 G A L Y R T L S S L K Y P S W 22 32 L G A L Y R T L S S L K Y P S 20 81 A T T V A A A A AAAAAAA 20 12 F R T G P H L S S G V I S V P 18 49 V R T P H E D F S G V K F R R 18 55 D F S Q V K F R R R G A D N H 18 60 K F R R H G A D N H E A S A A 18 61 F R R H G A D N H E A S A A T 18 64 B G A D N H E A S A A T A T T 18 67 D N H E A S A A T A T T A A A 18 70 E A S A A T A T T A A A T T V 18 74 A T A T T A A A T T V A A A A 18 75 T A T T A A A T T VAAAAA 18 53 H E D F S G V K F R R H G A D 16 8 R N Q L F R T G P H L S S G V 14 20 9 G V I S V P H R P A E L G A 14 36 Y R T L S S L K Y P S W R V R 14 46 8 W R V R T P H E D F S G V K 14 5 I K E R N Q L F R T G P H L S 12 .6 E R N Q L F R T G P H L S S 12 11 L F R T G P H L S S G V I S V 12 16 P H L S S G V I S V P H R P A 12 24 S V P H R P A E L G A L Y R T 12 28 R P A E L G A L Y R T L S S L 12 30 A E L G A L Y R T L S S L K Y 12 38 T L S S L X Y p S W R V R T P 12 40 8 S L K Y P S W R V R T P H E 12 43 K Y P S W R V R T P H E D F S 12 48 R V R T P HR D F S G V K F R 12 65 G A D N H E A S A A T A T T A 12 68 N H E A S A A T A T T A A A T 12 69 H E A A A T A T T A A A T T 12 73 A A T A T T A A A T T V A AA 12 78 T A A A T T VAAAAAAAA 12 288 TABLE L 162P1E6 v.4: HLA Peptide Scoring Results DRBI*0401 15-mers SYFPEITHI Pos 1 23 45 67 89 01 2 345 score SEQ.ED NO. 79 AA AT TV AA AA A AA AA 12 80 A AT TVA AA AA A AA AA 12 82 T TV AA A AA AAA A AAA 12 83 TV AA AA AA AA A AA AA .12 84 VA A AAA A AAA A AA AR 12 85 A AA AA A AA AAA A ARV 12 86 AA A AAA AA AA AA R VT 12 88 A AA AA AA A AAR V TLT 12 58 G V K RR HG AD NH E AS 10 56 FS GV K FR R HGA D NHE 9 -___ 23 PIKVEHR N L F TLYP 6 26 PRGPAHEL SSG VLIYRVTP 6 27 NHLPS EGAI LY PHRPLAS 6 20 GRVP SEDP R A LRRAH 6 ____ 71 ASAVAPTARTPAALGALTY 6 25 S A ATETA0AALTYRVT 6 76 P HRTPAAATLTGAA AARTALA 6 _ _ _ 87 L YA TAAS L YARSVTRL 6 44 YPS WR VRT P HE D FSG V __6 54 R DFGVKDN H H S N 1 7 S AVA TA RTHT A D NHTEVA 1 44 YPASELGRLV R K TT 20 P__EDFSG 31 R GA H R T LGSASLYK 12 P_ _I 42 LKGPPS T VRT PS~ 12 EDFI 54, H FS GV MFA RHGP _ _ D__N_1 57 S G P TTFR PRH SVA MANHT 12 ___ 371 R PLS TLX SPSVWAR V 12 T__-5 TABLE__ ________________________coringResults________ 1 2er __________ Pos 1 2 3 45 6 8 90 1289 45soe E.E O TABLE L 162P1E6 v.5: HLA Peptide Scoring Results DRB1*0401 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 19 T P S S V M A H T V G P R Q R 12 28 V G P R Q R E R V T D I P T R 12 30 P R Q R E R V T D I P T R F Q 12 37 T D I P T R F Q W S E V Q E A 12 38 D I P T R F Q W S E V Q E A W 12 36 V T D I P T R F Q W S E V Q E 9 20 P S S V M A H T V G P R Q R E 8 2 V P H R P A E L G A L Y R K G 6 3 P H R P A E L G A L Y R K G P 6 4 HRPAEL G ALYRKGP T 6 5 R P A E L G A L Y R K G P T T 6 7 A E L G A L Y R X G P T T P S 6 12 L Y R K G P T T P S S V M A H 6 16 G P T T P S S V X A H T V G P 6 18 T T P 8 S V M A H T V G P R Q 6 22 S V M A H T V G P R Q R E R V 6 23 V M A H T V G P R Q R E R V T 6 24 X A H T V G P R Q R E R V T D 6 26 H T V G P R Q R E R V T D I P 6 32 Q R E R V T D I P T R F Q W S 6 34 E R V T D I P T R F Q W S E V 6 35 R V T D I P T R F Q W S E V Q 6 9 L G A L Y R K G P T T P S S V 3 8 E L G A L Y R K G P T T-P S S 27 T V G P R Q R E R V T D I P T 1 29 G P R Q R E R V T D I P T R F 1 TABLE L ]62P1E6 v.6: HLA Peptide Scoring Results DRB1*0401 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 9 V R T P H E 8 R T N H T E L S 18 15 E R T N H T E L 8 Y G T H S G 18 6 S W R V R T P H E E R T N H T 14 3 K Y P S W R V R T P H E E R T 12 8 R V R T P H E E R T N H T E L 12 11 T P H E E R T N H T E L S Y G 12 12 P H E E R T N H T E L S Y G T 12 1 S L K Y P S W R V R T P H E E 10 5 P S W R V R T P H E E R T N H 6 7 W R V R T P HE E R T N H T E 6 16 R T N H T L S Y G T H S GT 6 4 Y P S W R V R T P H E E R T N 5 2 L K Y P S W R V R T P H E E R I 10 R T P H H E R T N H T E L S Y 1 TABLE LI 162P1E6 v.1: HLA Peptide Scoring Results DRBI*1101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 21 H W R L S F L D X S.L G V R T 27 94 A P A F.Q G L G K Q A Q S S W 24 118 C F F F V S S R K D Q P H R A 24 9 S F S R H I L G R M W G H W R 20 35 T R S L T L L C P P T P M N G 20 85 Q C LV E R N A A P A F Q G 20 117 T C F F F V S S R K D Q P H R 20 116 N T C F F F V S S R K D Q P H 19 26 F L D K S L G V R T R S L T L 18 290 TABLE LI 162P1E6 v.1: HLA Peptide Scoring Results DRB1*1101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ. IDNO. 55 E L W F F L S S S P I S S G F 18 66 S S G F H I G K R G C K V L F 18 19 W G H W R L S F L D K S L G V 17 54 Q E L W F F L S S S P I S S G 17 28 D K S-L G V R T R S L T L L C 16 56 L W F F L S S S P I S S G F H 16 65 I S S G F H I G K R G C K V L 16 105 Q S S W I F L K Q L Q N T C F 16 4 K E I V E S F S R H I L G R M 15 5 H I V E S F S R H I L G R M W 15 81 V L F G Q C L V E R N A H A P 15 15 L G R M W G H W R L S F L D K 14 41 L C P P T P M N G P G S S Q E 14 62 S S P I S S G F H I G K R G C 14 76 C K V L F V L F G Q C L V E R 14 82 L F G Q C L V E R N A H A P A 14 128 Q P H R A Q L W H.T Q W D L D 14 50 P G S S Q Z L W P F L S S S P 13 73 K R G C K V L F V L F G Q C L 13 7 V E S F S R H I L G R M W G H 12 12 R H I L G R M W G H W R L S F 12 32 G V R T R S L T L L C P P T P 12 38 L T L L C P P T P M N G P G S 12 53 S Q E L W F F L S S S P I S S 12 57 W F F L S S S P I S S G F H I 12 75 G C K V L F V L F G Q C L V E 12 80 F V L P G Q C L V E R N A H A 12 84 G Q C L V E R N A H A P A F Q 12 108 W I F L K Q L Q N T C F F F V 12 23 R L S F L D K S L G V R T R S 11 77 K V L F V L F G Q C L V E R N 11 13 H I L G R M W G H W R L S F L 10 16 G R M W G H W R L S F L D K S 10 107 S W I F L K Q L Q N T C F F F 10 132 A Q L W H T Q W D L D K G R G 10 69 F H I G K R G C K V L F V L F 9 104 A Q S S W I F L K Q L Q N T C 9 122 V S S R K D Q P H R A Q L W H 9 14 I L G R M W G H W R L S F L D 8 24 L S F L D K S L G V R T R S L 8 64 P I S S G F H I G K R G C K V 8 113 Q L Q N T C F F F V S S R K D 8 121 F V S S R K D Q P H R A Q L W 8 123 S S R K D Q P H R A Q L W H T 8 3 NKEIVESFSR HILGR 7 8 ESFSR HILGRMWGHW 7 25 S F L D K S L G V R T R S L T 7 27 L D K S L G V R T R S L T L L 7 30 S L G V R T R S L T L L C P P 7 61 S S S P I SS G F H I G K R G 7 68 G F H I G K R G C K V L F V L 7 72 G K R G C K V L F V L F G Q C 7 78 V L F V L F G Q C L V E R N A 7 79 L F V L F G Q C L V E R N A H 7 83 F G Q C L V E R N A H A P A F 7 291 TABLE Ul 162PIE6 v.1: IOLA Peptide Scoring Results DRBI *1101 15-mers SYFPEITHI Pos 12 34 56 78 90 12 3 45 score SEQ. ID NO. 90 R NAH AP A FQ GL GK QA 7 93 HA P AFQ G L GKQ AQ SS 7 ___ 106 SS WI F LKQ LQ NT C FF 7 ____ 112. K0L QN T CF FFV S SR K 7 ___ 131 R A 0L W HTQ WD LD KGR 7 1 MT NK E IV ES FS R HIL 6 ____ 11 SR H ILG R MWGH W R LS 6 ____ 18 M WGHW R LS F LD KS LG 6 ___ 33 VR TR SL T LL C P PTPM 6 34 R TR S LTL LC P PT PMN 6 37 8LT L LC PP T PM NG PG 6 39 TL LC P PT PM NG P GSS 6 ____ 40 LL C PPTP M NG P GS SQ 6 42 C PPT P XNG P GSS Q EL 6 ____ 44 PT P MNG P GS SQE L WF 6 ____ 51 G S S QEL W F L SS SPX 6 52 SSQ 8L W PF LS S S PIS 6 ____ 59 F LSSS P IS S GF HI GK 6 88 V ER N A HAP AF Q GL GK 6 95 P AFQ G L GKQ AQS SWI1 6 96 A FQG L GKQ AQ S S WIF 6 97 F QG LG KQA Q SSW I FL 6 103 QA Q SSW I F LKQ LQ NT 6 ill L KQ LQ NT CF F FVS SR 6 119 F FF VS SRK DQ PH R AQ 6 ___ 115 Q N T C F FPV SS R KDP 5 ___2 T NK 91V ES FS R H ILG 3 31 LG V RT R S LT L LCPPT 3 71 1IGK R G C KV LF VL FG Q 3 ___ TABLE LI 162P1E6 v.3: H3LA Peptide Scoring Results DRBI*i1O1 15-mers SYFPErTH Pos 1 234 56 7 89 01 2 345 score SEQ.ED NO. 116 SV G IT GV S HR IR P HV 24 ___ 31 S AQPS T IL Q TL SF PA 23 7 LL LT LD L E P VS L LL 21 20 L LS VT N LY SK NS AQF 20 ___5 S L L T LD L EK PVS L 19 ____ 57 S A Y P F F DR VS L CR 19 ____ 58 A Y F FF8 D RVS L CR P 19 ____ ___17 V SL L L V T NLYS K NS 18 ___ 98 QT GLE L LS LS NP P AS 18 ____ 100 L E LL 8LS NP P AS AS 18 ____ 78 AQ SW AEHCS LN LP E AG 17 117 V GI TG VSH R IR P HVL 17 ___ 24 TN L YS KXS AQ F ST IL 16 ____ 40 T LSPP AT FT P SP SI P 16 90 R A G PH V A QTG LE LL 16I__ 86 LN LP EA GF H HV AQ TG 15 21 LS VT NL YS K NSA Q FS 14 61 FFP 8D R VS LC R PG RS 14 63 F SD RV9L C R PG R S AV 14 64 SD R VS LCR PG R S AVA 14 66 R VS LC R PGR SA V AQS 14 ___ 119 1T G VS HR IR P HVL FH 14 ___ 11 L D LHK P VS L LLS V TN 13 _ _ _ 292 TABLE LI 162P1E6 v.3: HLA Peptide Scoring Results DRB1*1101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 56 S S A Y F F F F S D R V S L C 13 14 E K P V S L L L S V T N L Y S 12 34 F S T I L Q T L S F P A T F T 12 35 S T I L Q T L S F P A T F T P 12 38 L Q T L S F P A T F T P S P S 12 44 P A T F T P S P S I P L S S A 12 47 F T P 8 P S I P L S S A Y F F 12 59 Y F F F F S D R V S L C R P G 12 60 F F F F S D R V S L C R P G R 12 71 R P G R S A V A Q S W A H C S 12 74 R S A V A Q S W A H C S L N L 12 80 S W A H C S L N L P E A G F H 12 101 L E L L S L S N P P A S A S Q 12 103 L L S L S N P P A S A S Q S V 12 10 T L D L E K P V S L L L S V T 9 16 P V S L L L S V T N L Y S K N 9 89 P E A G F H H V A Q T G L E L 9 6 S L L L T L D L R K P V S L L 8 32 A Q F S T I L Q T L S F P A T 8 43 F P A T F T P S P S I P L S S 8 62 F F S D R V S L C R P G R S A 8 75 S A V A Q0 W A H C S L N L P 8 87 N L P E A G F H H V A Q T G L 8 95 H V A Q T G L E L L S L S N P 8 110 P A S A S Q S V G I T G V S H 8 112 S A S Q S V G I T G V S H R I 8 1 L K W A E S L L L T L D L E K 7 3 W A E S L L L T L D L E K P V 7 13 L E K P V S L L L S V T N L Y 7 18 S L L L S V T N L Y S K N S A 7 39 Q T L S F P A T F T P S P S I 7 45 A T F T P S P S I P L S S A Y 7 65 D R V S L C R P G R S A V A Q 7 67 V S L C R P G R 8 A V A Q S W 7 93 F H H V A Q T G L E L L S L S 7 94 H H V A Q T G L 3 L L S L S N 7 96 V A Q T G L E L L S L S N P P 7 107 S N P P A S A S Q S V G I T G 7 2 KW ABS LLL TLDL EKP 6 4 AESLL L TLDLEKPVS 6 8 L L T L D L E K P V S L L L S 6 15 K P V S L L L S V T N L Y S K 6 23 V T N L Y S K N S A Q F S T I 6 33 Q F S T I L Q T L S F P A T F 6 41 L S F P A T F T 6 S P S I P L 6 46 T F T P S P S I P L S S A Y F 6 49 P S P S I P L S S A Y F F F F 6 50 S P S I P L S S A Y F F F F S 6 52 S I P L S S A Y F F F F S D R 6 53 I P L S S A Y F F F F S D R V 6 69 L C R P G R S A V A Q S W A H 6 81 W A H C S L N L P E A G P H H 6 82 A H C S L N L P I A G F H H V 6 83 9 C S L N L P E A G F H H V A 6 85 S L N L P E A G P H H V A Q T 6 293 TABLE LI 162P1E6 v.3: HLA Peptide Scoring Results DRB1*1101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 97 A Q T G L E L L S L S N P P A 6 99 T G L E L L S L S N P P A S A 6 102 E L L 8 L S N P P A S A S Q S 6 105 S L S N P P A S A S Q S V G I 6 111 A S A S Q S V G I T G V S H R 6 113 A S Q S V G I T G V S H R I R 6 114 _ Q S V G I T G V S H R I R P 6 115 Q S V G I T G V S H R I R P H 4 36 T I L Q T L S F P A T F T P S 2 42 S F P A T F T P S P S I P L S 2 70 C R P G R S A V A Q S W A H C 2 91 A G F R H V A Q T G L E L L S 2 9 L TLDLEKPVSL LLSV 12 D L E K P V S L L L S V T N L 1 19 L L L S V T N L Y S K N S A Q 1 27 Y S K N S A Q F S T I L Q T L 1 28 S K N S A Q F S T I L Q T L S 1 30 N S A Q P S T I L 1 T L S F P 72 P G R S A V A Q 1 W A H C S L 76 A V AQ S W A H C S L N L P E 1 109 P P A S A S Q S V G I T G V S 118 GI T G V S H R I R P H V L F TABLE LI 162P1E6 v.4: ILA Peptide Scoring Results DRB1*1101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 19 S S G V I S V P H R P A E L G 27 29 P A E L G A L Y R T L S S L K 27 9 N Q L F R T G P H L S S G V I 24 5 I K E R N Q L F R T G P H L S 20 53 H E D F S G V K F R R H G A D 19 33 G A L Y R T L S S L K Y P S W 17 41 S L K Y P S W R V R T P H E D 17 54 9 D F S G V K F R R H G A D N 16 15 G P H L S S G V I S V P H R P 15 20 S G V I S V P H R P A E L G A 15 8 R N Q L F R T G P H L S S G V 14 35 L Y R T L 0 S L K Y P S W R V 14 55 D F S G V K F R R H G A D N H 14 56 F S G V K F R R H G A D N H E 14 61 F R R H G A D N H E A S A A T 14 78 T A A A T T V A A A A A A A A 14 22 V I S V P H R P A E L G A L Y 13 52 P H E D F S G V K F R R H G A 13 36 Y R T L S S L K Y P S W R V R 12 46 8 W R V R T P H E D F S G V K 12 81 ATTVAAAAAAAAAAA 12 1 M F F F I K E R W Q L F R T G 11 44 Y P S W R V R T P H E D F S G 11 18 L S S G V I S V P H R P A E L 10 40 8 S L K Y P S W R V R T P H E 10 42 L K Y P S W R V R T P H E D F 10 58 G V K F R R H G A D N H E A S 10 74 A T A T T A A A T T V A A A A 9 79 A A A T T V A A A A A A A A A 9 10 Q L F R T G P H L S S G V I S 8 294 TABLE LI 162P1E6 v.4: HLA Peptide Scoring Results DRB1*1101 15-mers SYFPEITH Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 34 A L Y R T L S S L K Y P S W R 8 39 L S S L K Y P S W R V R T P H 8 45 P S W R V R T P H E D F S G V 8 47 W R V R T P H E D F S G V K F 8 77 T T A A A T T V A A A A A A A 8 4 F I K E R N Q L F R T G P H L 7 12 F R T G P H L S S G V I S V P 7 13 R T G P H L S S G V I S V P H 7 17 H L S S G V I S V P H R P A E 7 32 L G A L Y R T L S S L K Y P S 7 2 F F F I K E R N Q L F R T G P 6 16 P H L S S G V I S V P H R P A 6 23 I S V P H R P A I L G A L Y R 6 26 P H R P A E L G A L Y R T L S 6 30 A E L G A L Y R T L S S L K Y 6 43 K Y P S W R V R T P H E D F S 6 60 K F R R H G A D N H E A S A A 6 62 R R H G A D N H E A S A A T A 6 63 R H G A D N H E A S A A T A T 6 65 G A D N H E A S A A T A T T A 6_ 68 N H E A S A A T A T T A A A T 6 69 H E A S A A T A T T A A A T T 6 70 Z A S A A T A T T A A A T T V 6 75 T A T T A A A T T V A A A A A 6 76 A T T A A A T T V A A A A A A 6 80 A A T T V A A A A A A A A A A 6 82 T T V A A A A A A A A A A A A 6 83 T V A A A A A A A A A A A A A 6 TABLE LI 162P1E6 v.5: HLA Peptide Scoring Results DRB1*1101 15-mers SYFPEITHI Pos 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 score SEQ.IDNO. 6 P A EL G A L YR K G P T T P 26 18 T T P S S V M A H T V G P R Q 22 10 G A L Y R K G P T T P S S V M 16 25 A H T V G P R Q R E R V T D I 16 33 R E R V T D I P T R F Q W S E 15 23 V M A H T V G P R Q R E R V T 13 9 L G A L Y R K G P T T P S S V 12 21 S S V M A H T V G P R Q R E R 10 29 G P R Q R X R V T D I P T R F 9 5 R P A E L G A L Y R K G P T T 8 7 AELGALYRKGP TTPS 8 14 R K G P T T P S S V M A H T V 8 27 T V G P R Q R E R V T D I P T 8 34 E R V T D I P T R F Q W S E V 8 22 S V M A H T V G P R Q R E R V 7 3 P H R P A E L G A L Y R K G P 6 11 A L Y R K G P T T P S S V M A 6 17 P T T P S S V M A H T V G P R 6 19 T P S S V M A H T V G P R Q R 6 20 P S S V M A H T V G P R Q R E 6 30 P R Q R E R V T D I P T R F Q 6 35 R V T D I P T R FQW SEV Q 6 36 V T D I P T R F Q W S E V Q E 6 295 4 R RPAESLG A LY R K GPT 2 ___ 15 G P TT PS SV MA H TVG 2 16 G PT T PS S V AHT V GP 2 ___ 26 HTV G PR QR HR V TDI P 2 32 QR E RVTD I PT RF Q WS 2 ___ 37, T D IP T RF Q WSEBVQEA 2 ____ 2 V P HR PA E L 0AL YR KG 1 ____ 24 A H T V P RQ RER V TD I 31 R Q R 3R V TD IP T RF QW _I __ 38 DI P TR PQ WBE VQ0E A W TABLE LI 162P1E6 v.6: HLA Peptide Scoring Results DRB1 *1101 15-mers SYFJPEJTH Pos 1223 45 67S8 9 01223 45 score SEO. EDNO. I1 BLK YP S WRV RT P HEE 17 ___ 4 Y PSWR VR TP H EE R TN 11 2 LK Y PS WR VRT PH E ER 10 S PS WR V RT P HEER T HH 8 6 SWR V R T PH EE R T NT 8 8 R VRT P H EERT N HT EL 8 11 T P H 2E RT N T ELS YG 8 16 R T KH T EL S Y T H ST 8 12 P HE 9RTN HT E LS Y GT 7 3 KY P SW RVRT P HE E RT 6 14 E RT N HT HL SYG T HS 6 7 W RV RT PH E R T NH TE 3 13 HNEERT N HT RL SYQGT R 2 296 Table LII: Search Peptides 162P1E6 v.1: For all 162P1E6 v.1 nonamers, decamers and 15-mers (aa 1-146) 5 MTNKEIVESF SRHILGRMWG HWRLSFLDKS LGVRTRSLTL LCPPTPMNGP GSSQELWFFL SSSPISSGFH IGKRGCKVLF VLFGQCLVER NAHAPAFQGL GKQAQSSWIF LKQLQNTCFF FVSSRKDQPH RAQLWHTQWD LDKGRG 162P1E6 v.3: For all 162P1E6 v.3 nonamers, decamers, and 15-mers (aa 1-133) 10 LKWAESLLLT LDLEKPVSLL LSVTNLYSKN SAQFSTILQT LSFPATFTPS PSIPLSSAYF FFFSDRVSLC RPGRSAVAQS WAHCSLNLPE AGFHHVAQTG LELLSLSNPP ASASQSVGIT GVSHRIRPHV LFH 15 162P1E6 v.4: For all 162P1E6 v.4 nonamers, decamers and 15-mers (aa 1-102) MFFFIKERNQ LFRTGPHLSS GVISVPHRPA ELGALYRTLS SLKYPSWRVR TPHEDFSGVK FRRHGADNHE ASAATATTAA ATTVAAAAAA AAAAAAARVT LT 20 162P1E6 v.5: 162P1E6 v.5 Nonamers (aa 30-76) A ELGALYRKGP TTPSSVMAHT VGPRQRERVTDIPTRFQWSE VQEAWS 25 162P1E6 v.5 Decamers (am 29-76) PA ELGALYRKGP TTPSSVMAHT VGPRQRERVTDIPTRFQWSE VQEAWS 162P1E6 v.5 15-mers (as 24-76) SVPHRPA ELGALYRKGP TTPSSVMAHT VGPRQRERVTDIPTRFQWSE VQEAWS 30 162P1E6 v.6: 162P1E6 v.6 Nonamers (aa 47-70) WRVR TPHEERTNHTELSYGTHSGT 35 162P1E6 v.6 Decamers (aa 46-70) SWRVR TPHEERTNHTELSYGTHSGT 162P1E6 v.6 15-mers (as 41-70) 40 SLKYPSWRVR TPHEERTNHTELSYGTHSGT 297 Table LIH(A). Splicing segments of 162P1E6 v.1 Fragment Number Start End Fragment 1 1 68 Fragment 2 69 1083 Fragment 3 1084 1135 Fragment 4 1136 2401 Fragment 5 2402 2484 Fragment 6 1 2485 2862 Fragment 7 2863 3240 Table LM(B). Splicing segments of 162P1E6 v.2 Fragment Number Start End Fragment 1 1 270 Fragment 2 271 362 Fragment 3 363 590 Fragment 4 591 1605 Fragment 5 1606 1657 Fragment 6 1658 2923 Fragment 7 2924 3006 Fragment 8 3007 3384 Fragment 9 3385 3762 5 298- Table LIV(A). Nucleotide sequence of transcript variant 162P1E6 v.2 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 ctctctcttt tccagctacc tttactccct ctccttcaat tccacttecc tct9cttact 180 5 tttttttttt ttctgacagg gtctcacttt gtcgcccGgg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag gttcaagcga ttctcctgcc tcagcccctc 300 aagtagctgg gactacaagc gcacaccacc acgcctgact aattttttgt atttttttgt 360 agaggcgggg tttcaccatg ttgcccagac tggtcttgaa ctcctgagct taagcaatcc 420 acctgcctcg gcctcccaaa gtgttgggat cacaggcgtg agccaccgca tccggcctca 480 10 tgttcttttt cattaaagag agaaatcaac tattcaggac cggcccccac ctttcctcag 540 gagtcatttc tgttccgcac aggcctgctg aactgggtgc tttatatagg gtaagtgttt 600 ctcattttte gttccctgtc ctcaagcctt aggggcaaaa gaaacatcca agatttgaaa 660 tttcttttct tcttctcatc tgcatggctg tagccatctc tctgttctgc attatcttat 720 gacaaaaaaa aaaaattctt attttgaagc aaactcaaag ctaggtcctg atgtctcaag 780 15 gcacaggtac tcgtacttaa aggtgagtct gaaatctgtg gatttgggga actttggaaa 840 aacaaagatg agtggctaga tcagggggct cattgggcag gaagaggaga ctggaaaatg 900 ccatattcac tgcaagtcaa ttatcaactt cctccaaggc taaaatagct gaacctgctg 960 cattttaaac caatcctcag ccactttggt gttttctcaa ggatttccag ggatcccagg 1020 cagtaaattc tgctgataat aggaattggt gtgataaggt gggtgctgag cagtttaagc 1080 20 accaagattg tagctctgtc tggttttgtg gagatttact caactagaag aacagagatt 1140 tggctggttt ttcagtcctg gggegcaggg tgcacctgta ctggaaaatt taggacCtgg 1200 tttcattctt tgagtctcat gttcaagttg gttttaatgt tatgaagaca cttgggacgt 1260 aatcctgagg gcagctgggg ggaagaaagt ggtcactgga tggacttacc ctgtagcgag 1320 cccatgcatg gtttgttctc tgatcgtgca tgtgcttggc tctagaccca tgtaaccatg 1380 25 gtgaaggcca ctgggggatt cagttggcaa aggcatagtg ggcagaagaa tcttgaacaa 1440 ggagtccaga gcaggtcaag tctcctgata caggttgtga ctcatggttt ttgtctctgc 1500 ctgtagcagc tacaggtctg taaagcaagg ggagagtgat aaggaaagaa ctcacetttc 1560 tggggctctc tgacattaat gccacctccc atttgctttt tgcagacact gtcatctctc 1620 aagtacccat cttggagggt acggacccca catgagggtg aggctctctg cacactccag 1680 30 agtgaggact ttaataatct agtggactgt acatgttggg aggggaagag cggggtgccg 1740 agggtctgga gggagaagaa ttgactgccc cttttgctct tggagttaag cagaaatcta 1800 aagagaaggc aaagaatctt gccttcctgg cGtcatttcc tcctaccatc ccaggccatc 1860 atttatttat tacagccaac agactggcct ctttcttccc tttgactggg aatgggtcaa 1920 aggcggtgca ggaggaggat ctggtccaga taattcacaa gcagggtgca ttttcctctc 1980 35 attattgaga actgtgagtg tttatcaaga aggcagagca ggagaagatg aaccagtctt 2040 cttcccctca ctacccagat ctctgcctgc caacaagccc cgtgttcacc ctggcaaaga 2100 gtctttacat tcagaccaag gagagtgtga ctccttctca gcactagcta gaaacctcaa 2160 gcccttgctt aagggccttt ttcagagaga cccaatgccc agaaggctag atgcgtgggg 2220 aggagccaca tacgagaaac tgcctccctg cttcgggtca gaacaagccc caggaagaaa 2280 40 gtatttcaaa caacaaggtg catctgcccc aacCcatcca gcctgcatgt tggtgctgag 2340 aacagccttt tatggggctt gcactgagcc atgggcatgt ctgaacacaa caaggaagag 2400 gccagagcag caacagcacg caaagggttg atgggcattt cttttaagac agagcagaaa 2460 actcttagat actttgcgtc cttcctattt gactcagtct atgaaagcca ggttagcttg 2520 ctttcttcct ccctaaatcc tccatcctca tgaccaacaa agaaatagtT gaatcatttt 2580 45 ccaggcacat cttggggagg atgtggggcc attggaggct gtccttcctG gataagtctt 2640 taggagtgag aacaaggagt cttaccctcc tctgtccacc cacccccatg aatgggcctg 2700 gctccagcca ggagttgtgg tttttcctga gctcctcacc tatctcttct ggatttcaca 2760 ttggcaaacg gggttgcaaa gtgctcttcg tgctctttgg acagtgcctt gtggagagga 2B20 atgcccatgc ccctgcattc caaggccttg 9taagcaagc tcagagtagc tggatttttc 2880 50 taaagcaatt gcagaacacc tgctttttct ttgtttcctc tagaaaggac caaccacAcc 2940 gagctcagtt atggcacaca cagtgggacc tagacaaagg gagagggtga ccgacatccc 3000 aactag9taa acacagagga ggttccacat ggacttatct gggtggctgt tttgaaaacg 3060 agaaacagtc aagagtccct ggccccacag acccacctcc ccaactcagc actgtctgtc 3120 tgtgcagcag gtgcaaggac gtgttgaact agctctctgc agcctccttg gaggatgtga 3180 55 tcctatggga ggggtaggag tattcaggtc cttgacatct cccaaatgtg tgattccggg 3240 atgccaaagg cctttggcca ggtaatgcag tgtctacagg ctgaggttga catgcatccc 3300 caccctctga gaaaaagatc ctcagacaat ccatgtgctt ctcttgtcct tcattccacc 3360 ggagtctgtc tcatacccaa ccagatttca gtggagtgaa gttcaggagg catggagctg 3420 acaaccatga ggcctcggca gccaccgcca ccaccgccgc cgccaccacc gtagcagcag 3480 60 cagcagcagc agcagcagca gcagcagcag caagagtaac tctgacttag gaatagagac 3540 agccagagag aaatgtgatC aatgaaggag acatctggag tgtgcgtgct tcttcaGagg 3600 gacgggtgat gggcagattg gaaaaagcAc cgcagatggg aaccttaatc tttcttttct 3660 aaaattgatg ctatgaaaat ttgcgttttc tGtaacttgt aaaaactaaa agttgcttgt 3720 65 ctactgaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aa 3762 299 Table LIV(B). Nucleotide sequence of transcript variant 162P1E6 v.3 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 tattgtctgt tactaatctc tattctaaaa attcagctca attatcaacc atactccaaa 120 5 ctctctcttt tccagctacc tttactccct ctccttcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag aggcggggtt tcaccatgtt gcccagactg 300 gecttgaact cctgagctta agcaatccac ctgcctcggc ctcccaaagt gttgggatca 360 caggcgtgag ccaccgcatc cggcctcatg ttctttttca ttaaagagag aaatcaacta 420 10 ttcaggaccg gcccccacct ttcctcagga gecatttctg ttccgcacag gcctgctgaa 480 ctgggtgctt tatataggat ttcagtggag tgaagttcag gaggcatgga gctgacaacc 540 atgaggcctc ggcagccacc gccaccaccg ccgccgccac caccgtagca gcagcagcag 600 cagcagcagc agcagcagca gcagcaagag taactctgac ttaggaatag agacagccag 660 agagaaatgt gatcaatgaa ggagacatct ggagtgtgcg tgcttcttca gagggacggg 720 15 tgatgggcag attggaaaaa gcaccgcaga tgggaacctt aatctttctt ttetaaaatt 780 gatgctatga aaatttgcgt tttctgtaac ttgtaaaaac taaaagttgc ttgtctactg 840 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 876 20 Table LIV(C). Nucleotide sequence of transcript variant 162P1E6 v.4 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 ctCtctcttt tccagctacc tttactccct ctccetcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 25 cttgggctca ctgcagcctc aacctcccag aggcggggtt tcaccatgtt gcccagactg 300 gtcttgaact cctgagctta agcaatccac ctgcctcggc ctcccaaagt gttgggatca 360 caggcgtgag ccaccgcatc cggcctcatg ttctttttca ttaaagagag aaatcaacta 420 ttcaggaccg gcccccacct ttcctcagga gtcatttctg ttccgcacag gcctgctgaa 480 ctgggtgctt tatataggac actgtcatct ctcaagtacc catcttggag ggtacggacc 540 30 ccacatgagg atttcagtgg agtgaagttc aggaggcatg gagctgacaa ccatgaggcc 600 tcggcagcca ccgccaccac cgccgccgcc accaccgtag cagcagcagc agcagcagca 660 gcagcagcag cagcagcaag agtaactctg acttaggaat agagacagcc agagagaaat 720 gtgatcaatg aaggagacat ctggagtgtg cgtgcttctt cagagggacg ggtgatgggc 780 agattggaaa aagcaccgca gatgggaacc ttaatctttc ttttctaaaa ttgatgctat 840 35 gaaaatttgc gttttctgta acttgtaaaa actaaaagtt gcttgtctac tgaaaaaaaa 900 aaaaaaaaaa aaaaaaaaaa aaaaaaaa 928 Table LIV(D). Nucleotide sequence of transcript variant 162P1E6 v.5 40 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 ctctctcttt tccagctacc tttactccct ctccttcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag aggcggggtt tcaccatgtt gcccagactg 300 45 gtcttgaact cctgagctta agcaatccac ctgcctcggc ctcccaaagt gttgggatca 360 caggcgtgag ccaccgcatc cggcctcatg ttctttttca ttaaagagag aaatcaacta 420 ttcaggaccg gcccccacct ttcctcagga gtcatttctg ttccgcacag gcctgctgaa 480 ctgggtgctt tatataggaa aggaccaacc acaccgagct cagttatggc acacacagtg 540 ggacctagac aaagggagag ggtgaccgac atcccaacta gatttcagtg gagtgaagtt 600 50 caggaggeat ggagctgaca accatgaggc ctcggcagcc accgccacca ccgccgccgc 660 caccaccgta gcagcagcag cagcagcagc agcagcagca gcagcagcaa gagtaactct 720 gacttaggaa tagagacagc cagagagaaa tgtgatcaat gaaggagaca tctggagtgt 780 gcgtgcttct tcagagggac gggtgatggg cagattggaa aaagcaccgc agatgggaac 840 cttaatcttt cttttctaaa attgatgcta tgaaaatttg cgttttctgt aacttgtaaa 900 55 aactaaaagt. tgcttgtcta ctgaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 959 Table LIV(E). Nucleotide sequence of transcript variant 162P1E6 v.6 ccttgaaatg ggctgagtcc ctcttgctca ccttgactt ggaaaaacca gtttctcttt 60 60 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 ctctctcttt. tccagctacc tttactccct ctccttcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag aggcggggtt tcaccatgtt gcccagactg 300 gtcttgaact cctgagctta agcaatccac ctgcctcggc ctcccaaagt gttgggatca 360 65 caggcgtgag ccaccgcatc cggcctCatg ttctttttca ttaaagagag aaatcaacta 420 300 ttcaggaccg gcccccacct ttcctcagga gtcatttctg ttccgcacag gcctgctgaa 480 ctgggtgctt tatataggac actgtcatct ctcaagtacc catcttggag ggtacggacc 540 ccacatgagg aaaggaccaa ccacaccgag ctcagttatg gcacacacag tgggacctag 600 acaaagggag agggtgaccg acatcccaac tagatttCag tggagtgaag ttcaggaggc 660 5 atggagctga caaccatgag gcctcggcag ccaccgccac caccgccgcc gccaccaccg 720 tagcagcagc agcagcagca gcagcagcag cagcagcagc aagagtaact ctgacttagg 780 aatagagaca gccagagaga aatgtgatca atgaaggaga catctggagt gtgcgtgctt 840 cttcagaggg acgggtgatg ggcagattgg aaaaagcacc gcagatggga accttaatct 900 ttcttttcta aaattgatgc tatgaaaatt tgcgttttct gtaacttgta aaaactaaaa 960 10 gttgcttgtc tactgaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa a 1011 Table LIV(F). Nucleotide sequence of transcript variant 162PIE6 v.7 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 15 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 ctctctcttt tccagctacc tttactccct ctccttcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag gttcaagcga ttctcctgcc tcagcccctc 300 aagtagctgg gactacaagc gcacaccacc acgcctgact aattttttgt atttttttgt 360 20 agaggcgggg tttcaccatg ttgcccagac tggtcttgaa ctcctgagct taagcaatcc 420 acctgcctcg gcctcccaaa gtgttgggat cacaggcgtg agccaccgca tccggcctca 480 tgttcttttt cattaaagag agaaatcaac tattcaggac cggccCCCac Ctttcctca9 540 gagtcatttc tgttccgcac aggcctgctg aactgggtgc tttatatagg acactgtcat 600 ctctcaagta cccatcttgg agggtacgga ccccacatga ggatttcagt ggagtgaagt 660 25 tcaggaggca tggagctgac aaccatgagg cctcggcagc caccgccacc accgccgccg 720 ccaccaccgt agcagcagca gcagcagcag cagcagcagc agcagcagca agagtaactc 780 tgacttagga atagagacag ccagagagaa atgtgatcaa tgaaggagac atctggagtg 840 tgcgtgcttc ttcagaggga cgggtgatgg gcagattgga aaaagcaccg cagatgggaa 900 ccttaatctt tcttttctaa aattgatgct atgaaaattt gcgttttctg taacttgtaa 960 30 aaactaaaag ttgcttgtct actgaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1020 Table LIV(G). Nucleotide sequence of transcript variant 162P1E6 v.8 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 35 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 ctctctcttt tccagctacc tttactccct ctccttcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag gttcaagcga ttctcctgcc tcagcccctc 300 aagtagctgg gactacaagc gcacaccacc acgcctgact aattttttgt atttttttgt 360 40 agaggcgggg tttcaccatg ttgcccagac tggtcttgaa ctcctgagct taagcaatcc 420 acctgcctcg gcctcccaaa gtgttgggat Cacaggcgtg agccaccgca tccggcctca 480 tgttcttttt cattaaagag agaaatcaac tattcaggac cggcccccac ctttcctcag 540 gagtcatttc tgttccgcac aggcctgctg aactgggtgc tttatatagg acactgtcat 600 ctctcaagta cccatcttgg agggtacgga cCc&catga ggaaaggacc aaccacaccg 660 45 agctcagtta tggcacacac agtgggacct agacaaaggg agagggtgac cgacatccca 720 actagatttc agtggagtga agttcaggag gcatggagct gacaaccatg aggcctcggc 780 agccaccgcc accaccgccg ccgccaccac cgtagcagca gcagcagcag cagcagcagc 840 agcagcagca gcaagagtaa ctctgactta ggaatagaga cagccagaga gaaatgtgat 900 caatgaagga gacatctgga gtgtgcgtgc ttcttcagag ggacgggtga tgggcagatt 960 50 ggaaaaagca ccgcagatgg gaaccttaat ctttcttttc taaaattgat gCtatgaaaa 1020 tttgcgtttt ctgtaacttg taaaaactaa aagttgcttg tctactgaaa aaaaaaaaaa 1080 aaaaaaaaaa aaaaaaaaaa aaa 1103 55 Table LIV(H). Nucleotide sequence of transcript variant 162P1E6 v.9 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactcCaaa 120 ctctctcttt tccagctacc tttactccct Ctccttcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 60 cttgggctca ctgcagcctc aacctcccag gttcaagcga ttctcctgcc tcagcccctc 300 aagtagctgg gactacaagc gcacaccacc aCgcctgact aattttttgt atttttttgt 360 agaggcgggg tttcaccatg ttgcccagac tggtcttgaa ctcctgagct taagcaatcc 420 acctgcctcg 9cctcccaaa gtgttgggat cacaggcgtg agccaccgca tccggcctca 480 tgttcttttt cattaaagag agaaatcaac tattcaggac cggcccccac ctttcctcag 540 65 gagtcatttc tgttccgcac aggcctgctg aactgggtgc tttatatagg acactgtcat 600 301 ctctcaagta cecatcttgg agggtacgga ccccacatga gggtgaggct ctzctgcacac 660 tccagagtga ggactttaat aatctagtgg actgtacatg ttgggagggg aagagcgggg 720 tgccgagggt ctggagggag aagaattgac tgcccctttt gctcttggag ttaagcagaa 780 atctaaagag aaggcaaaga atcttgcctt cctggcgtca tttcctccta ccatcccagg 840 5 ccatcattta tttattacag ccaacagact ggcctctttc ttccctttga. ctgggaatgg 900 gtcaaaggcg gtgcaggagg aggatctggt ccagataatt cacaagcagg gtgcattttc 960 ctetcattat tgagaactgt gagtgtttat caagaaggca gagcaggaga agatgaacca 1020 gtcttcttcc cctcactacc cagatctctg cctgccaaca agccccgtgt tcaccctggc 1080 aaagagtctt tacattcaga ccaaggagag tgtgactcct tctcagcact agctagaaac 1140 10 ctcaagccct tgcttaaggg cctttttcag agagacccaa tgcccagaag gctagatgcg 1200 tggggaggag ccacatacga gaaactgcct ccctgcttcg ggtcagaaca agccccagga 1260 agaaagtatt tcaaacaaca aggtgcatct gccccaaccc atccagcctg catgttggtg 1320 ctgagaacag ccttttatgg ggcttgcact gagccatggg catgtctgaa cacaacaagg 1380 aagaggccag agcagcaaca gcacgcaaag ggttgatggg catttctttt aagacagagc 1440 15 agaaaactct tagatacttt gcgtccttcc tatttgactc agtctatgaa agccaggtta 1500 gcttgctttc ttcctcccta aatcctccat cctcatgacc aacaaagaaa tagttgaatc 1560 attttccagg cacatcttgg ggaggatgtg gggccattgg a99ctgtcct tcctggataa 1620 gtctttagga gtgagaacaa ggagtcttac cctcctctgt ccacccaccc ccatgaatgg 1680 gcctggctcc agccaggagt tgtggttttt cctgagctcc tcacctatct cttctggatt 1740 20 tcacattggc aaacggggtt gcaaagtgct cttcgtgctc tttggacagt gccttgtgga 1800 gaggaatgcc catgcccctg cattccaagg ccttggtaag caagcicaga gtagctggat 1860 ttttctaaag caattgcaga acacctgctt tttctttgtt tcctctagaa aggaccaacc 1920 acaccgagct cagttatggc acacacagtg ggacctagac aaagggagag ggtgaccgac 1980 atcccaacta gatttcagtg gagtgaagtt caggagscat ggagctgaca accatgaggc 2040 25 ctcggcagcc accgccacca ccgccgccgc caccaccgta gcagcagcag cagcagcagc 2100 agcagcagca gcagcagcaa gagtaactct gacttaggaa tagagacagc cagagagaaa 2160 tgtgatcaat gaaggagaca tctggagtgt gegtgcttct tcagagggac gggtgatggg 2220 cagattggaa aaagcaccgc agatgggaac cttaatcttt cttttctaaa attgatgcta 2280 tgaaaatttg cgttttctgt aacttgtaaa aactaaaagt tgcttgtcta ctgaaaaaaa 2340 30 aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2369 Table LIVQI). Nucleotide sequence of transcript variant 162PI.E6 v.10 ccttgaaatg ggctgagtcc ctcttgctca cccttgactt ggaaaaacca gtttctcttt 60 35 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 ctctctcttt tccagctacc tttactccct ctccttcaat tccactttcc tctgcttact 180 tttttttttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag gttcaagcga ttctcctgcc tcagcccctc 300 aagtagctgg gactacaagc gcacaccacc acgcctgact aattttttgt atttttttgt 360 40 agaggcgggg tttcaccatg ttgcccagac tggtcttgaa ctcctgagct taagcaatcc 420 acctgcctcg gcctcccaaa gtgttgggat cacaggcgtg agccaccgca tccggcctca 480 tgttc~ttt cattaaagag agaaatcaac tattcaggac cggcccccac ctttcctcag 540 gagtcatttc tgttccgcac aggcctgctg aactgggtgc tttatatagg acactgtcat 600 ctctcaagta cccatcttgg agggtacgga ccccacatga gggtgaggct ctctgcacac 660 45 tccagagtga ggactttaat aatctagtgg actgtacatg ttgggagggg aagagcgggg 720 tgccgagggt ctggagggag aagaattgac tgcccctttt gctcttggag ttaagcagaa 780 atctaaagag aaggcaaaga atcttgcctt cctggcgtca tttcctccta ccatcccagg 840 ccatcattta tttattacag ccaacagact ggcctctttc ttccctttga ctgggaatgg 900 gtcaaaggcg gtgcaggagg aggatctggt ccagataatt cacaagcagg gtgcattttc 960 50 ctctcattat tgagaactgt gagtgtttat caagaaggca gagcaggaga agatgaacca 1020 gtcttcttcc cctcactacc cagatctctg cctgccaaca agccccgtgt tcaccctggc 1080 aaagagtctt tacattcaga ccaaggagag tgtgactcct tctcagcact agctagaaac 1140 ctcaagccct tgcttaaggg cctttttcag agagacccaa tgcccagaag gctagatgcg 1200 tggggaggag ccacatacga gaaactgcct ccctgcttcg ggtcagaaca agccccagga 1260 55 agaaagtatt tcaaacaaca aggtgcatct gccccaaccc atccagcctg catgttggtg 1320 ctgagaacag CCttttatgg ggcttgcact gagccatggg catgtctgaa cacaacaagg 1380 aagaggccag agcagcaaca gcacgcaaag ggttgatggg catttctttt aagacagagc 1440 agaaaactct tagatacttt gcgtccttcc tatttgactc agtctatgaa agccaggtta 1500 gcttgctttc ttcctcccta aatcctccat cctcatgacc aacaaagaaa tagttgaatc 1560 60 attttccagg cacatcttgg ggaggatgtg gggccattgg aggctgtcct tcctggataa 1620 gtctttagga gtgagaacaa ggagtcttac cctcctctgt ccacccaccc ccatgaatgg 1680 gcctggctcc agccaggagt tgtggttttt cctgagctcc tcacctatct cttctggatt 1740 tcacattggc aaacggggtt gcaaagtgct cttcgtgctc tttggacagt gccttgtgga 1800 9aggaatgcc catgcccctg cattccaagg ccttggtaag caagctcaga gtagctggat 1860 65 ttttctaaag caattgcaga acacctgctt tttctttgtt tcctctagaa aggaccaacc 1920 302 acaccgagct cagttatggc acacacagtg ggacctagac aaagggagag ggtgaccgac 1980 atcccaacta ggtaaacaca gaggaggttc cacatggact tatctgggtg gctgttttga 2040 aaacgagaaa cagtcaagag tccctggccc cacagaccca cctccccaac tcagcactgt 2100 ctgtctgtgc agcaggtgca aggacgtgtt gaactagctc tctgcagcct ccttggagga 2160 5 tgtgatccta tgggaggggt aggagtattc ag9tccttga catctcccaa atgtgtgatt 2220 ccgggatgcc aaaggccttt ggccaggtaa tgcagtgtct acaggctgag gttgacatgc 2280 atccccaccc tctgagaaaa agatcctcag acaatccatg tgcttctctt gtccttcatt 2340 ccaccggagt ctgtctcata cccaaccaga tttcagtgga gtgaagttca ggaggcatgg 2400 agctgacaac catgaggcct cggcagccac cgccaccacc gccgccgcca ccaccgtagc 2460 10 agcagcagca gcagcagcag cagcagcagc agcagcaaga gtaactctga cttaggaata 2520 gagacagcca gagagaaatg tgatcaatga aggagacatc tggagtgtgc gtgcttcttc 2580 agagggacgg gtgatgggca gattggaaaa agcaccgcag atgggaacct taatctttct 2640 tttctaaaat tgatgctatg aaaatttgcg ttttctgtaa cttgtaaaaa ctaaaagttg 2700 cttgtctact gaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa 2747 15 Table LIV(J). Nucleotide sequence of transcript variant 162P1E6 v.11 ccttgaaatg ggctgagtcc ctcttgctca ccctt9actt ggaaaaacca gtttctcttt 60 tattgtctgt tactaatctc tattctaaaa attcagctca attctcaacc atactccaaa 120 20 ctctctcttt tccagctacc tttactccct ctccttcaat tccactttcc tctgcttact 180 ttttettttt ttctgacagg gtctcacttt gtcgcccggg caggagtgca gtggctcaat 240 cttgggctca ctgcagcctc aacctcccag gttcaagcga ttctcctgcc tcagcccctc 300 aagtagctgg gactacaagc gcacaccacc acgcctgact aattttttgt atttttttgt 360 agaggcgggg tttcaccatg ttgcccagac tggtcttgaa ctcctgagct taa9caatcc 420 25 acctgcctcg gcctcccaaa gtgttgggat cacaggcgtg agccaccgca tccggcctca 480 tgttcttttt cattaaagag agaaatcaac tattcaggac cggcccccac ctttcctcag 540 gagtcatttc tgttccgcac aggcctgctg aactgggtgc tttatatagg gtaagtgttt 600 ctcatttttt gttccctgtc ctcaagcctt aggggcaaaa gaaacatcca agatttgaaa 660 ettcttttct tcttctcatc tgcatggctg tagccatctc tctgttctgc attatcttat 720 30 gacaaaaaaa aaaaattctt attttgaagc aaactcaaag ctaggtcctg atgtctcaag 780 gcacaggtac tcgtacttaa aggtgagtct gaaatctgtg gatttgggga actttggaaa 840 aacaaagatg agtggctaga tcagggggct cattgggcag gaagaggaga ctggaaaatg 900 ccatattcac tgcaagtcaa ttatcaactt cctccaaggc taaaatagct gaacctgctg 960 cattttaaac caatcctcag ccactttggt gttttctcaa ggatttccag ggatcccagg 1020 35 cagtaaattc tgctgataat aggaattggt gtgataaggt gggtgctgag cagtttaagc 1080 accaagattg tagctctgtc tggttttgtg gagatttact caactagaag aacagagatt 1140 tggctggttt ttcagtcctg gggtgcaggg tgcacctgta ctggaaaatt taggacctgg 1200 tttcattctt tgagtctcat gttcaagttg gttttaatgt tatgaagaca cttgggacgt 1260 aatcctgagg gcagctgggg ggaagaaagt gtcactgga tggacttacc ctgtagcgag 1320 40 cccatgcatg gtttgttctc tgatcgtgca tgtgcttggc tctagaccca tgtaaccatg 1380 gtgaaggcca ctgggggatt cagttggcaa aggcatagtg ggcagaagaa tcttgaacaa 1440 ggagtccaga gcaggtcaag tctcetgata caggttgtga ctcatggttt ttgtctctgc 1500 ctgtagcagc tacaggtctg taaagcaagg ggagagtgat aaggaaagaa ctcacctttc 1560 tggggctctc tgacattaat gccacctccc atttgctttt tgcagacact gtcatctctc 1620 45 aagtacccat cttggagggt aCggacccca catgagggtg aggctctctg cacactccag 1680 agtgaggact ttaataatct agtggactgt acatgttggg aggggaagag cggggtgccg 1740 agggtctgga gggagaagaa ttgactgccc cttttgctct tggagttaag cagaaatcta 1800 aagagaaggc aaagaatctt gccttcctgg cgtcatttcc tcctaccatc ccaggccatc 1860 atttatttat tacagccaac agactggcct ctttcttccc tttgactggg aatgggtcaa 1920 50 aggcggtgca ggaggaggat ctggtccaga taattcacaa gcagggtgca ttttcctctc 1980 attattgaga actgtgagtg tttatcaaga aggcagagca ggagaagatg aaccagtctt 2040 cttcccctca ctacccagat ctctgcctgc caacaagccc cgtgttcacc ctggcaaaga 2100 gtctttacat tcagaccaag gagagtgtga ctccttctca gcactagcta gaaacctcaa 2160 gcccttgctt aagggccttt ttcagagaga cccaatgccc agaaggctag atgcgtgggg 2220 55 aggagccaca tacgagaaac tgcctccctg cttcgggtca gaacaagccc caggaagaaa 2280 gtatttcaaa caacaaggtg catctgcccc aacccatcca gcctgcatgt tggtgctgag 2340 aacagccttt tatggggctt gcactgagcc atgggcatgt ctgaacacaa caaggaagag 2400 gccagagcag caacagcacg caaagggttg atgggcattt cttttaagac agagcagaaa 2460 actcttagat actttgcgtc cttcctattt gactcagtct atgaaagcca ggttagcttg 2520 60 ctttcttcct ccctaaatcc tccatcctca t9accaacaa agaaatagtt gaatcatttt 2580 ccaggcacat cttggggagg atgtggggcc attggaggct gtccttcctg gataagtctt 2640 taggagtgag aacaaggagt cttaccctcc tctgtccacc cacccccatg aatgggcctg 2700 gctccagcca ggagttgtgg tttttcctga gctcctcacc tatctcttct ggatttcaca 2760 ttggcaaacg gggttgcaaa gtgctcttcg tgctctttgg acagtgcctt gtggagagga 2B20 65 atgcccatgc ccctgcattc caaggccttg gtaagcaagc tcagagtagc tggatttttc 2880 303 taaagcaatt gcagaacacc tgctttttct ttgtttcctc tagaaaggac caaccacacc 2940 gagctcagtt atggcacaca cagtgggacc tagacaaagg gagagggtga ccgacatccc 3000 aactagattt cagtggagtg aagttcagga ggcatggagc tgacaaccat gaggcctcgg 3060 cagccaccgc caccaccgcc gccgccacca ccgtagcagc agcagcagca gcagcagcag 3120 5 cagcagcagc agcaagagta actctgactt aggaatagag acagccagag agaaatgtga 3180 tcaatgaagg agacatctgg agtgtgcgtg cttcttcaga gggacgggtg atgggcagat 3240 tggaaaaagc accgcagatg ggaaccttaa tctttctttt ctaaaattga tgctatgaaa 3300 atttgcgttt tctgtaactt gtaaaaacta aaagttgctt gtctactgaa aaaaaaaaaa 3360 aaaaaaaaaa aaaaaaaaaa aaaa 3384 10 304 Table LV(A). Nucleotide sequence alignment of 121PIF1 v.1 and 162P1E6 v.2 162PIE6v.1 ----------------------------------------------------------- 162P16v.2 CCTrGAAATGGGCTGAGTCCCTCTTGCTCACCCTTACTTGGAAAAACCAGTrTCTCTTT 60 5 162P1E6v.1 ----------------------------------------------------------- 162P1E6v.2 TATGTCTGTTACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 10 162P126v.1 ----------------------------------------------------------- 162P1E6v.2 CTCTCTCTTTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.1 ----------------------------------------------------------- 15 162P1E6v.2 T-rrrFrrT"CTGACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 162P1E6v.1 ---------------------------------------------------------- 162P1E6v.2 CTTGGGCTCACTGCAGCCTCAACCTCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCCCTC 300 20 162P1E6v.1 ----------------------------------------------------------- 162P1E6v.2 AAGTAGCTGGGACTACAAGCGCACACCACCACGCCTGACTAArmTrGTATTTTTTTGT 360 25 162P1E6v.1 ----------------------------------------------------------- 162P1E6v.2 AGAGGCGGGGTTTCACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTTAAGCAATCC 420 30 162P1E6v.1 ----------------------------------------------------------- 162P1E6v.2 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.1 ------------------------------------------ GCCCCCACCTTTCCTCAG 18 35 162 P1E6v.2 TGTTCTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTTCCTCAG 540 162P1E6v.1 GAGTCATTTCTGTrCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGGGTAAGTGTTr 78 162P1E6v.2 GAGTCATTTCTTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGGGTAAGTGTTr 600 40** -*- 162P1E6v.1 CTCATTTTTTGrrCCCTGTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGATTGAAA 138 162PlE~v.2 CTCATTTTTTGTrCCCTGTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGATrGAAA 660 45 162P1E6v.1 TTTCTTTTCTTCTrCTCATCTGCATGGCTGTAGCCATCTCTCTGTTCTGCATTATCTTAT 198 162P1E6v.2 TTTCTTCTTCTCTCATCGCATGGCTGTAGCCATCTCTCTGTTCTGCATTATCTTAT 720 50 162P1E6v.1 GACAAAAAAAAAAAArCrTArTGAAGCAAACTCAAAGCTAGGTCCTGAGTCTCAAG 258 162PlE6v.2 GACAAAAAAAAAAAATTCTTATTTTGAAGCAAACTCAAAGCTAGGTCCTGATGTCTCAAG 780 ***************.**.***************************.************ 3 162 P1Ev. 1 GCACAGGTACTCGTACTrTAAAGGTGAGTCTGAAATCTGTGGATTGGGGAACTrTTGGAAA 318 55 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTCTGAAATCTGTGGArTGGGAACTTTGGAAA 840 162P1E6v.1 AACAAAGATGAGTGGCTAGATCAGGGGGCTCATTGGGCAGGAAGAGGAGACTGGAAAATG 378 162P1E6v.2 AACAAAGATGAGTGGCTAGATCAGGGGGCTCATTGGGCAGGAAGAGGAGACTGGAAAATG 900 60 -- 162P1E6v.1 CCATATTCACTGCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTGAACCTGCTG 438 162P1E6v.2 CCATATTCACTGCAAGTCAATrATCAACTTCCTCCAAGGCTAAAATAGCrAACCTGCTG 960 65 162P1E6v.1 CATTTTAAACCAATCCTCAGCCACTTGGTGTTTTCTCAAGGATTTCCAGGGATCCCAGG 498 162P1E6v.2 CATTTTAAACCAATCCTCAGCCACTTTGGTGTTTTCTCAAGGATTTCCAGGGATCCCAGG 1020 70 162P1E6v.1 CAGTAAATTCTGCTGATAATAGGAATTGGTGTGATAAGOTGGGTGCTGAGCAGTTTAAGC 558 162P1E6v.2 CAGTAAATTCTGCTGATAATAGGAATrGGTGTGATAAGGTGGGTGCTGAGCAGTTTAAGC 1080 305 162P1E6v.1 ACCAAGATTGTAGCTCTGTCTGGTTTGTGGAGATTTACTCAACTAGAAGAACAGAGATT 618 162P1E6v.2 ACCAAGATTGTAGCTCTGTCTGuYTTGTGGAGATTTACTCAACTAGAAGAACAGAGATT 1140 5 162P1E6v.1 TGCTGGTTTTTCAGTCCTGGGGTGCAGGGTGCACCTGTACTGGAAAATTTAGGACCTGG 678 162P1E6v.2 TGGCTGGTTTTCAGTCCTGGGGCAGGTGCACCTGTACTGGAAAATTTAGGACCTGG 1200 162PlE6v.1 TTTCATTCrTTAGTCTCATGTTCAAGTTGGTTTTAAT~ATG AAGACACTGGACGT 738 10 162P1H6v.2 TTTCATTCTTTGAGTCTCATGTTCAAGTTGGTTTTAATGrrATGAAGACAC-GGGACGT 1260 162P1E6v.1 AATCCTGAGGGCAGCTGGGGGGAAGAAAGTGGTCACGGATGGACTrACCCTGTAGCGAG 798 162P1E6v.2 AATCCTGAGGCAGCTGGGGGGAAGAAAGrTCACrGGATGGACTTACCCTGTAGCGAG 1320 15 ...... . . . .. . 162P1E6v.1 CCCATGCATGGTTIrTTCTCTGATCGTCATGTGCTTGGCTCTAGACCCATGTAACCATG 858 162P1E6v.2 CCCATGCATGGTTIGTTCTCTGATCGTGCATGTGCITGCTCTAGACCCATGTAACCATG 1380 20 162PlE6v.1 GTGAAGGCCACTrGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTrGAACAA 918 162P1E6v.2 GTGAAGGCCACTGGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTTAACAA 1440 25 162P1B6v.1 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTTGTGACTCATGGTTTTTGTCTCTGC 978 162PlE6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCATACAG GTGACTCATGGTTTTTGTCTCTGC 1500 162P1E6v.1 CMTAGCACTACAGGTCTGTAAAGCAAGGGAGAGTGATAAGAAAGAACTCACCTTTC 1038 30 162P166v.2 C TAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACTCACCTTTC 1560 162P186v.1 TGGGGCTCTCTGACATTAATGCCACCTCCCATTTGCTTTTTGCAGACACTGTCATCTCTC 1098 162P1E6v.2 TGGGCTCTCTACATTAATGCCACCTCCCATTMCTTTTTCCAGACACTGTCATCTCTC 1620 35 162P166v.1 AAGTACCCATCrrGGAGGGTACGGACCCCACATGAGGGTGAGGCTCTCTGCACACTCCAG 1158 162P1H6v.2 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGGTGAGGCTCTCTGCACACTCCAG 1680 40 ** 162P186v.1 AGTGAGGACTTTAATAATCTAGTGGACTGTACATTGGAGGGGAAGAGGGGGCCG 1218 1629196v. 2 AGTGAGGACTTTAATAATCTAGTGCTTACANTIGGGAGGGGAAGAGCGGGGTGCCG 1740 45 162P16v.1 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTTTTGCTCTTGGAGTTAAGCAGAAATCTA 1278 162P1B6v.2 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTTTTGCTCTTGG AAGCAGAAATCTA 1800 162P1B6v.1 AAGAGAAGGCAAAGAATCTTGCCTTCCMGCGTCATTTCCTCCTACCATCCCAGGCCATC 1338 50 162P1B6v.2 AAGAGAAGGCAAAGAATCTTGCCTTCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 162P1B6v.1 ATTTATTTATTACAGCCAACAGACTGGCCTCTTTCTTCCCTTTGACTGGGAATGGGTCAA 1398 162P1E6v.2 ATTTATTTATTACAGCCAACAGACTGCCTCTTTCTTCCCTTTGACTOGGAATGGGTCAA 1920 55 ... .. ..... ***.**....... 162PlE6v.1 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTGCATTTTCCTCTC 1458 162P1E6v.2 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGTGCATTTTCTC 1980 60 162P166v.1 ATTATTGAGAACTGTGAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCT 1518 162P1E6v.2 ATrATTGAGAACTGTGAGTTTTATCAAGAAGGCAGAGCAGGAAAGAMAACCAGTCTT 2040 65 162P166v.1 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 1578 162PlE6v.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 162P1E6v.1 GTC ACATTCAGACCAAGGAGAGNTGACTCCTTCTAGCACTAGCTAGAAACCTCAA 1638 70 162P1Ev.2 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 306 162P1E6v.1 GCCCTTGCTTAAGGGCCrTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGGGG 1698 162P1E6v.2 GCCCTTGCTTAAGGGCCTrT CAGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGGGG 2220 5 162*E*v*. AGGAGCCACATACGAAAAC**CCTCCC*GCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 1758 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGOAAGAAA 2280 ****************************************************.******** 162P1E6v.1 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTGCTGAG 1818 10 162P1E6v.2 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTGCTGAG 2340 162P1E6v.1 AACAGCCTTTTATGGGGCTTCACTGAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 1878 162P1E6v.2 AACAGCCTrTATGGGGCrTGCACTAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 2400 15 -*-+****** ***-******~** ************ 162P1E6v.1 GCCAGAGCAGCAACAGCACGCAAAGGGTTGATGGGCATTTCTTTTAAGACAGAGCAGAAA 1938 162P1E6v.2 GCCAGACCAGCAACAGCACGCAAAGGGTrGATGGGCATTTCTTrTAAGACAGAGCAGAAA 2460 20 162P12E6v.1 ACTCTTAGATACTTGCGTCCTTCCTATTTGACTCAGTCTATGAAACCACTTAOCTTG 1998 162P1E6v.2 ACTCTTAGATACTTTGCGTCCTTCCTATTTGACTCAGTCTATGAAAGCCAGGTTAGCTTG 2520 25 162P1E6v.1 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATTTT 2058 162P1E6v.2 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATTTr 2580 162P1E6v.1 CCAGGCACATCTTGGGGAGGATGTGGGGCCATTGGAGGCTGTCCTTCCTGGATAACTCTr 2118 30 162P1E6v.2 CCAGGCACATCTTGGGGAGGATGTGGGGCCATTGGAGGCTGTCCTTCCTGGATAAGTCTT 2640 162P1E6v.1 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAAGGCCTG 2178 162P1E6v.2 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 2700 35 *********************-*-**----************************** 162P1E6v.1 GCTCCAGCCAGGACGTGT TTCCTGAGCTCCTCACCTATCTCTTCTGGATTTCACA 2238 162P1E6v.2 GCTCCAGCCAGGAGTTGTGGTTTTTCCTGAGCTCCTCACCTATCTCTTCTGGATTTCACA 2760 40 162P1E6v.1 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTTGGACAGTGCCTTGTGGAGAGGA 2298 162P1E6v.2 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTTGGACAGTGCCTTTGGAGAGGA 2820 45 162P1E6v.1 ATGCCCATGCCCCTGCArYCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATTTTTC 2358 162P156v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATTTTTC 2880 1621*E*v.*1 TAAAGCAATrGCAGAACACCTGCTr*C*GT **CCTCTAGAAAGGACCAACCACACC 2418 50 162P1E6v.2 TAAAGCAATTGCAGAACACCTGCTTTTTCTrTGTTTCCTCTAGAAAGGACCAACCACACC 2940 162P1E6v.1 GACTCACTATGCACACACTGCTTTACCTAGACAAAGGGAGAGGTGACCGACATCCC 2478 162P1E6v.2 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 55 - * - -- * ****----***-*-. - 162P1E6v.1 AACTAGGTAAACACAGAGGAGGTrCCACATGGACTTATCTGGGTGGCTGTTTTGAAAACG 2538 162PlE6v.2 AACTAGGTAAACACAGAGGAGGTTCCACATGGACTTATCTGGGTGGCTGTTTrGAAAACG 3060 60 162P1E6v.1 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTGTC 2598 162P1E6v.2 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTGTC 3120 ************.***********************************************2 65 162P1E6v.1 TGTGCAGCAGGTGCAAGGACGTGTTGAACTAGCTCTCTGCAGCCTCCTTGGAGGATGTGA 2658 162P15Ev. 2 TGTGCAUCAGGTGCAAGGACGTGTTGAACTAGCTCTCTGCAGCCTCCTTGGAGGATGTGA 3180 ******* ************ ********* ******************************** 162P1E6v.1 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTTGACATCTCCCAAATGTGTGArrCCGGG 2718 70 162P1E6v.2 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTTGACATCTCCCAAATGTGTGATTCCGGG 3240 307 162 1E6v.1 ATGCCAAAGGCCTT'IGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 2778 162P1E6v.2 ATGCCAAAGGCCTTTGGCCAGOTAATCCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 3300 **4****** ***************** * * **4** ******* * *** *** **** 5 162P1E6v.1 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGCTTCTTTCTTTTCCTTCATTCCACC 2838 162P1E6v.2 CACCCTCrGAGAAAAAGATCCTCAGACAATCCATGCTTCTCTTGTCCTTCATTCCACC 3360 *..*P* * * 4* * *4* * * ***** ** * ***.****** ** *****4**** ****** 16 2P1E6v.1 GGAGTCTGTCTCATACCCAACCAGATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 2898 10 162P1E6v.2 GGATCTGTCTCATACCCACCAAGATTCATGGAGTGAAGTTCAGGAGGCATGAGCTG 3420 162 P1E6v. 1 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 2958 162P1E6v.2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 15 162PE6v.1 **..***.**********.*****e*********.**..*.****.*. * 3* 162P1E6v.2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 3540 20 162P1E6v.1 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 3078 162P1H6v.2 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGETGCGTGCTTCTTCAGAGG 3600 25 162P1E6v.1 GACGGGTGATGGGCAGATrGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCTTrTCr 3138 162PE6v.2 GACGGGTGATGGGCAGATGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCTrTTCr 3660 162P1E6v.1 AAAATTGATGCTATGAAAATrTCGTTTTCrGTAACTGTAAAAACTAAAAGTTGCTTGT 3198 30 162P1E6v.2 AAAATTGArCTATAAAATTTGCGTrrTCTGTAACTTGTAAAAACTAAAAGTTGCTTGT 3720 .****...* ******* * **** ********.*************4***** 162P136v.1 CTACTGA 3240 162P1E6v.2 C T3762 35 ****.**.*** **.**.*****.4*** Table LV(B). Nucleotide sequence alignment of 121P1F1 v.2 and 162P1E6 v.3 162P1E6v.2 CCrGAAATGGCTAGTCCCTCTCTCACCCTACTTGGAAAAACCAGTTTCTCTrr 60 40 162P1E6v.3 CCTGAAATGGGCTCAGTCCCrCTTGCTCACCCTGACTTGGAAAACCAGTTTCrCTTT 60 162P1E6v.2 TATrGTCTGrACTAATCTCTATTCTAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 162P1E6v.3 TATTGTCTACTAATCTCTATTCTAAAATTCAGCTCAATCTCAACCATACTCCAAA 120 45 162P1E6v.2 CTCTCTCTTTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.3 CTCTCTCrrTTCCACTACCTrrACTCCCTCTCCTTCAATTCCACTTTCCTCGCTrACT 180 ********************.*.** **************************** 50 162P1E6v.2 ' rrr.rrrrrri ACAGGGTCTCACTTTTCCCCGGGCAGGAGTGCAGTGQCTCAAT 240 162P1E6v.3 'rrr rrTTuACAGGGTCTCACTTTGTCGCCCGCCCAGGACTGCAGTGGCTCAAT 240 .*4*********************************4***4******** 55 162 P1E6v.2 CrTGGGCTCACTGCAGCCTCAACCTCCCAGGTrCAAGCGATTCTCCTGCCrCAGCCCCTC 300 162P1E6v.3 CTMUGGCTCACTGCAGCCTCAACCTCCCAG-------------------------------- 270 162P1E6v.2 AAGTAGCTGGGACTAAAGCGCACACCACCACGCCTGACTAATTTTTTGTATTTTTTTGT 360 60 162P1E6v.3 ----------------------------- ------------------------- 162P1E6v.2 AGAGGCGGGGTTTCACCATGTTgCCCAGACTGGTCTTGAACTCCTOAGCTTAAGCAATCC 420 162P1E6v.3 -- AGGCGGGGTTTCACCATGTTGCCCAGAGGTCTAACTCCTGAGCTTAAGCAATCC 328 65 ... .............. **............ 162P1E6v.2 ACCTGCCTCGGCCTCCCAAAGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCrCA 480 162P1E6v.3 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 388 70 16291E6v.2 TGTTCTTTTTCATTAAAGAGAGAAATAACA ACGGCCCCCACCTTTCCTcAG 540 162P1E6v.3 TGTTCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTCCTCAG 448 **********4*************************************** 308 162P1E6v. 2 GAGTCATTTCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATGGGGTAGG7rT 600 162P1E6v. 3 GAGTCATTTCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGG ---------- 498 5 162P1E6v.2 CTCATrrTrGTTCCCTGTCCTCAAGCTAGGGGCAAAGAAACATCCAAGArGAAA 660 162P1E6v.3 -------------------------------------------- 10 162P1E6v.2 TTrCTTTTCTTCTCTCATCTGCATGGCTGTAGCCATCTCCTGTTCTGCArATCTTAT 720 162P1E6v.3 --------------------------------------------- 162PIE6v.2 GACAAAAAAAAAAAATTCTTATTTTGAAGCAAACTCAAAGCTAGGTCCTGATGTCTCAAG 780 15 162P1E6v.3 ----------------------------------------------- 162P1E6v.2 GCACAGGTACTCTACTTAAAGGTGAGTCTGAAATCTGTGGATTTGGGGAACTTTGGAAA 840 162P1E6v.3 ------------------------------------------------- 20 162P1E6v.2 AACAAAGATGAGTGGCTAGATCAGGGGGCTCATTGGGCAGGAAGAGGAGACTGGAAAATG 900 162P1E6v.3 ------------------------------------------- 25 162P1E6v.2 CCATATrCACTGCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTGAACCTGCTG 960 162P1E6v.3 ----------------------------------------- 30 162P18Ev.2 CATTTrAAACCAATCCTCAGCCACTrTGGTGTTTCTCAAGGATTTCCAGGGATCCCAGG 1020 162P1E6v.3 ----------------------------------------------- - -- 162P1E6v.2 CAGTAAATCTGCTGATAATAGGAATrGGTGTGATAAGGTGGCTGCTGAGCAGrTAAGC 1080 35 162P1E6v.3 ----------------------------------------------------------- 162P1Ev.2 ACCAAGATTGTAGCTCTGTCTGGTTTGTGGAGATTTACTCAACTAGAAGAACAGAGATT 1140 162P1E6v.3 ------------------------------------------------ 40 162P1E6v.2 TGGCTGGTTTTTCAGTCCGGGGTGCAGGGTGCACCTGTACTGGAAAATrTAGGACCTGG 1200 162P1E6v.3 ---------------------------------------------------- 45 162P1E6v.2 TTTCATTCTTTGAGTCTCATGTTCAAGTTGGTTTTAATGTTATGAAGACACrTGGGACGT 1260 162P1E6v.3 ---------------------------------------------------------- 50 162P1E6v.2 AATCCTGAGGGCAGCTGGGGGGAAGAAAGTGGTCACTGATGGACTTACCCTGTAGCGAG 1320 162PlEfv.3 ----------------------------------------------------.------- 162P1E6v.2 CCCATGCATGGTTGTTCrCTGATCGCATGTCFTGGCTCTAGACCCATGTAACCATG 1380 55 162P1E6v.3 ----------------------------------------------------------- 162PlE6v.2 GTGAAGGCCACTGGGGGATrCAGrGGCAAAGGCATAGTGGGCAGAAGAATCTTGAACAA 1440 162P1E6v.3 ---------------------------------------------------- ------- 60 162P1E6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTTTGACTCATGGTrrTTTCTCTGC 1500 162P1E6v.3 ----------------------------------------------------------- 65 162P1E6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACTCACCTrC 1560 162PlE~v.3 ----------------------------------------------------------- 70 162P1E6v.2 TGGGGCTCTCTGACATTAATCCCACCTCCCATTTGCTTrrrCAGACACTGTCATCTCTC 1620 162P1E6v.3 ----------------------------------------------------------- 309 162P1E6v.2 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGGTOAGGCTCTCTGCACACTCCAG 1680 162P1E6v.3 --------------------------------------------------------- 5 162PE6v.2 AGTGAGGACTTTAATAATCTATGGACTGTACATGTTGGGAGGGGAAGAGCGGGGTGCCG 1740 162P1E6v.3 ------------------------------ r---------------------------- 162P1E6v.2 AGGGTCTGGAGGGAAAGAArGACTGCCCCITrIGCTCrTGAGTTAAGCAGAAATCTA 1800 10 162P1E6v.3 ----------------------------------------------------------- 162P1E6v.2 AAGAGAAGGCAAAGAATCTTGCCTTCCTGGCGTCATrTCCTCCTACCATCCCAGGCCATC 1860 162P1E6v.3 ---------------------------------------------------------- 15 162P1E6v.2 ATTTATTTATTACAGCCAACAGACTGGCCTCTTCCCTrTGACTGGGAATGGGTCAA 1920 162P1E6v.3 ---------------------------------------------------------. 20 162P1E6v.2 AGGCGTGCAGGAGGAGGATCTGGTCCAGATAA nrCACAAGCAGGGTGCATTCCTCTC 1980 162P1E6v.3 --------------------------------------------..-------... 25 162P1E6v.2 ATTATTGAGAACTOTGAGTGTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCTr 2040 162P1E6v.3 ---------------------------------------------------.------.. 162P1E6v.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTTTCACCCTGGCAAAGA 2100 30 162P1E6v.3 ------------------------------- ---..-......--- 162P1E6v.2 GTarACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 lE2P SEv.3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 35 162P1E6v.2 GCCCTTGCTTAAGGGCCrTCAGAGAGACCCAATCCCAGAAGGCTAGATGCGTGGG 2220 162P1E6v.3 -----------------------------------------------------.... 40 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2260 162P1E6v.3 ----------------------------------------.-----..- 45 162P1E6v.2 GTATTCAAACAACAAGGTGCATCTGCCCAAC CCAGCCTGCATGTGGTGcrGAG 2340 162P1E6v.3 ----------------------------------------------.....---- 162P1E6v.2 AACAGCCTTATGGGCGCACTGAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 2400 50 162PlE6v.3 ------- - ...-- 162PlE6v.2 GCCAGACAG CACACGGCCG mGG ATTTCTTTAAGACAGAGCAGAA 2460 162P136v.3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .55 162P1E6v.2 ACTCTTAGATACTTTGCGTCCTTCCTATTTGCTCAGTCTATGAAAGCCAGGTTAGCTT 2520 162P1E6v.3 -------------------.------- - 60 162P1E6v.2 CTrrCTTCCTCCCTAAATCCrCCATCCTCATGACCAACAAAGAAATAGTTGAATCATTTT 2580. 162P1E6v.3 -------------------------- 65 162P1E6v.2 CCAGGCACATCITGGGGAGGATOTGGGGCCATTGGAGGCTGTCCTTCCTOGATAAGTCTr 2640 162P1E6v.3 ------------------------------ - 162P1EGv.2 TAGGAGTGAGAACAAGGAGTCPACCCTCCTCTGTCCACCCACCCCCATGATGGGCCTG 2700 70 162P1E6v.3 -------.-- 310 162PlE6v.2 GCTCCAGCCAGGAGTrTGGuT CCTGAGCTCCTCACCTATCTCrTCTGGATTTCACA 2760 162PlE6v.3 ---------------------------------------------------------- 5 162P1E6v.2 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTTGGACAGTGCCTTGTGGAGAGGA 2820 162PlE6v.3 ---------------------------------------------------------- 162P1E6v.2 ATGCCCATGCCCCTGCATrCCAAGGCCTGGTAAGCAAGCTCAGAGTAGCTGGATTTTC 2880 10 162PlE6v.3 ------------------------------------------------------------ 162P1E6v.2 TAAAGCAATTGCAQAACACCTGCTTTTTCTTTGTTTCCTCTAGAAAGGACCAACCACACC 2940 162P1E6v.3 ------------------------------ ------------------------ 15 162PlE6v.2 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 162PlE6v.3 ------------------------------------------------------- 20 162PlE6v.2 AACTAGGTAAACACAGAGGAGGTTCCACATGACTTATCTGGGTGGCTGTTTrGAAACG 3060 162P1E6v.3 ---------------------------------------------------------- 25 162PlE6v.2 AGAAACAGTCAAGAGTCCCTGOCCCCACAGACCCACCTCCCCAACTCAGCACTrGTCTGTC 3120 162PlE6v.3 --------------------------------------------------------- 162plE6v.2 TGTGCAGCAGGTGCAAGGACGTGTTGAACTAGCTCTCTGCAGCCTCCTTGGAGGATGTGA 3180 30 162P1E6v.3 --------------------------------------------------------- 162P1E6v.2 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTTOACATCTCCCAAATGTGTGATTCCGGG 3240 162P1E6v.3 -------------------------------------------------------- 35 162PlE6v.2 ATGCCAAAGGCCTTTGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 3300 162P1E6v.3 ---------------------------------------------------------- 40 162P1E6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCTTCTCTTGTCCTTCATTCCACC 3360 162PlE6v.3 ---------------------------------------------------------- 45 1622136v.2 GGAGTCTGTCTCATACCCAACCAGATTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCrG 3420 162P1E6v.3 ------------------------------ ATTTCAGGAGTGAAGTTCAGGAGGCATGGACCTG 534 162P1Ev.2 ACAACCATGAGGCCTCGOCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 50 162P1E6v.3 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 594 *.********.***.*.***********.********..*..*,* 1622136v. 2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTAGAATAGAGAC 3540 162P1E6v.3 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 654 55 162P136v.2 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGAGTGTGCGTGCTTCTTCAGAGG 3600 162P136v.3 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGGTGCGTGCTTCTTCAGAGG 714 60 162PlE6v.2 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGAGGGAACCTrAATCTTTCrC 3660 162P136v.3 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTrAATCTTTCT~rTCT 774 65 162P1E6v.2 AAAATTGATGCTATGAAAATTTGCGTTTTGTAACTTGTAAAAACTAAAAGTTGCTTGT 3720 162P1E6v.3 AAAATTGATGCTATGAAAATTTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTGCTTGT 834 ********************************** ********************** 162P1E6v.2 CTACT 3762 70 162P1E6v.3 CTACTGAA 876 311 Table LV(C). Nucleotide sequence alignment of 121PIFI v.2 and 162P1E6 v.4 162P1E6v.2 CCTTGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACTTGGAAAAACCAGTTTCTCTTT 60 162P1E6v.4 CCTTGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACrTGGAAAAACCAGTTTCTCTTT 60 ******...* .******,**.**..******.*,.*** 5 162P1E6v.2 TATTGTC GTTACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 162P1E6v. 4 TATTGTCTGTTACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 10 162P1E6v.2 CTCrCTCTTTTCCAGCTACCTTTACaCCCTCTCCTTCAATTCCACrrTCCTCTGCTTACa 180 162P1E6v.4 CTCTCTCTTTrCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.2 TrrTrrTCTGACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 15 162P1E6v.4 ?TTrrnTrTCTACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 ************************* **** ****************************.*,* 162P1E6v.2 CTGGGCTCACTGCAGCCTCAACCTCCCAGGTTCAAGCGATTCTCCGCCTCAGCCCCTC 300 162P1E6v.4 Cn"'GGCTCACTGCAGCCTCAACCTCCCAG------------------------------ 270 20 ****..****.**.*...*.... 162P1E6v.2 AAGTAGCTGGACTACAAGCGCACACCACCACGCCTGACTAATTTnTTGTATTrTTTGT 360 162P1E6v.4 ----------------------------------------------------------- 25 162 P1E6v. 2 AGAGGCGGGGTTrCACCATGTTGCCCAGACTGGTCrTGAACTCCTGAGCMrAACCAATCC 420 162P1E6v.4 --AGGCGGGGTTTCACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTTAAGCAATCC 328 30 16E2PlEv.2 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.4 ACCI'CCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 388 162P1E6v.2 TTTCTTTTCATTAAAGAGAGAAATCAACATTCGACCGGCCCCCACCrTCCTCAG 540 35 162P1E6v.4 TGTrC TTCATTAAAGAGAGAAATCAACATTCAGGACCGGCCCCCACCTTCCTCAG 448 162P1E6v.2 GAGTCATTTCTGTCCGCACAGGCCTGCTGAACTOGGGCTTTATATAGGGTAAGTGm 600 162P1E6v.4 GAGTCATTKCTGTTCCGCACAGGCCTCTGAACTMGGTrrTATATAGG---------- 498 40 162P1E6v.2 CTCATTTTTTGTTCCCTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGATTTGAAA 660 162P1E6v.4 ----------------------------------------------------------- 45 162P1E6v.2 TTrCTTTTCTTCTrrCATCTGCATGGCrGTAGCCATCTCCTGTTCrGCATTATCTAT 720 162P1E6v.4 ----------------------------------------------------------- 50 162P1E6v.2 GACAAAAAAAAAAAATTCTTATTrTGAAGCAAACTCAAAGCTAGGTCCTGATGTCTCAAG 780 162P1E6v.4 ----------------------------------------------------------- 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTCTGAAATCTGTGGATTTGGGGAACrrrGGAAA 840 55 162P1E6v.4 -----------------------------------------...----------- 162P1E6v.2 AACAAAGATGAGTGGCTAGATCAGGGGGCTCATTGGGCAGGAAGAGGAGACTGGAAAATG 900 60 1E2P1E6v.4 162P116v.2 CCATATTCACTGCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTGAACCTGCTG 960 162P1E6v.4 ---------------------------------------....------------- 65 162PlE6v.2 CATTTTAAACCAATCCTCAGCCACTTTGGTGTTTTCTCAAGGATTTCCAGGGATCCCAGG 1020 162P1E6v.4 ---------------------------------------------------------- 70 162P1E6v.2 CAGTAAATTCTGCTGATAATAGGAATTGGTGTGATAAGGTGGGTGCTGAGCAGTTTAAGC 1080 162P1E6v.4 ---------------------------------------------------------- 312 162PlE6v.2 ACCAAGATTGTAGCTCTGTCTGGTTTTGTGGAGATTTACTCAACTAGAAGAACAGAGATT 1140 162PlE6v.4 ----------------------------------------------------------- 5 162PlE6v.2 TGGCTGGTTTTTCAGTCCTGGGGTGCAGGGTGCACCTGTACTGGAAAATTTAGGACCTGG 1200 162P1E6v.4 ----------------------------------------------------------- 162PlE6v.2 TTTCATTCTTTGAGTCTCATGTTCAAGTTGGTTTTAATGrTATGAAGACACTTGGGACGT 1260 10 162PlE6v.4 ----------------------------------------------------------- 162P1E6v.2 AATCCTGAGGGCAGCTGGGGGGAAGAAAGTGGTCACTGGATGGACTTACCCTGTAGCGAG 1320 162PlE6v.4 ----------------------------------------------------------- 15 162P1E6v.2 CCCATGCATGGTrTGTTCTCTGATCGTGCATGTGCTTGGCTCTAGACCCATGTAACCATG 1380 162P1E6v.4 ----------------------------------------------------------- 20 162P1E6v.2 GTGAAGGCCACTGGGGGATTCAGTGGCAAAGCATAGTGGGCAGAAGAATCTTGAACAA 1440 162PlE6v.4 ----------------------------------------------------------- 25 162PlE6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTTGTGACTCATGGTTTTTGTCTCTGC 1500 162PlE6v.4 ----------------------------------------------------------- 162PlE6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACTCACCTTTC 1560 30 162PlE6v.4 ----------------------------------------------------------- 162PlE6v.2 TGGGGCTCTCTGACATTAATGCCACCTCCCATTTGCTTTTGCAGACACTGTCATCTCTC 1620 162PlE6v.4 --------------------------------------------- ACACTGTCATCTCTC 513 35 162PlE6v.2 AAGTACCCATCTTGGAGGTACGGACCCCACATGAGGGTGAGG aCTCTGCACACTCCAG 1680 162P1E6v.4 AAGTACCCATCT'GGAGGGTACGGACCCCACATGAGG----------------------- 550 40 162PlE6v.2 AGTGAGGACTTTAATAATCTAGTGGACTGTACATGTTGGGAGGGGAAGAGCGGGGTGCCG 1740 162PlE6v.4 ----------------------------------------------------------- 45 162PlE6v.2 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTTTTGCTCTTGGAGTTAAGCAGAAATCTA 1800 162PlE6v.4 ----------------------------------------------------------- 162P1E6v.2 AAGAGAAGGCAAAGAATCTTGCCTTCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 50 162PE6v.4 ----------------------------------------------------------- 162PlE6v .2 ATrrATYTATrACAGCCAACAGACTGGCCTCTTrCTTCCCTTTGACTGGGAATGGGTCAA 1920 162PLE6v.4 ----------------------------------------------------------- 55 162PLE6v.2 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTGCATTTTCCTCTC 1980 162P1E6v.4 ----------------------------------------------------------- 60 162PE6v.2 ATTAT'GAGAACTGTGAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCTr 2040 162PlE6v.4 ----------------------------------------------------------- 65 162PlE6v.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 162PlE6v.4 ----------------------------------------------------------- 162PlE6v.2 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCACCACTAGCTAGAAACCTCAA 2160 70 162P1E6v.4 ----------------------------------------------------------- 313 162PlE6v.2 GCCCTGCrTAAGGGCCrTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGGGG 2220 162P1E6v.4 -----------------------------------------------.-------- 5 162P1E6v.2 AGGAGCCACATACGAGAAACTCCCCTGCTrCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 162P1E6v.4 ------------------------------------------------------- 162PlE6v.2 GTArTCAAACAACAAGGTCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTCTGAG 2340 10 162P1E6v.4 ------------ -- ----- - 162PlZ6v.2 AACAGCCTTTTAGGGCTTGCACTGAGCCATGGGCA CTGAACACAACAAGGAAGAG 2400 15 162P1E6v.2 GCCAGAGCAGCAACAGCACGCAAAGGGTTGATGGGCATTTCTTI7AAGACAGAGCAGAAA 2460 162P1E6v.4 --------------------------------------- 20 162P1E6v.2 ACTCrrAGATACTTTGCGTCCTCTATrTGACTCAGTCTATGAAAGCCAGGTTAGCTT 2520 162P1H6v.4 ---------------------------------------- 25 162PlE6v.2 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATTTT 2580 162P1E6v.4 --------------------------------- 162P1E6v.2 CCAGGCACATCTIGGGGAGGATGTGGGGCCATTGGAGGCTGTCCTrCCTGGATAAGTCTT 2640 30 162P1E6v.4 -------------------. .-...... 162P1E6v.2 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAA GGCCTG 2700 35 162P1E6v.4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 162P1E6v.2 GCTCCAGCCAGGAGTrGTGGTTrTCCGAGCTCCTCACCTATCTCTTCTGGATTTCACA 2760 162P1E6v.4 -------- ----- --------- 40 162P1E6v.2 TlFGCAAACGGGT'GCAAAGTGCTCTTCGTGCTCTTTGGACA2TGCCTTNTGGAGAGGA 2820 162P1E6v.4 -------------------------------- 45 162PlE6v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATTTTTC 2880 162P1E6v.4 -------------------------------------- 162P1E6v.2 TAAAGCAATTGCAGAACACCTGCTTTTTCTTTGTTTCCTCTAGAAAGGACCAACCACACC 2940 50 162P1E6v.4 -----------.. 162P1E6v.2 GAGCTCAGTTATGGCACACACAGGGACCTAGACAAAGGGAGAGGCTGACCGACATCCC 3000 55 162P1E6v.4 ---------------------------... 162P1E6v.2 AACTAGGTAAACACAGAGGAGGTTCCACATGGACTTATCTGGGTGGCTGTTTTUAAAACG 3060 162P136v.4 -------------------- ------- 60 162P2E6v.2 AGAAACAGTCAAGAGT CCCGCACAGACCCACCTCCCCAACTrAGCACTGTCTOTC 3120 162P136v.4 ------------------------------------- ------- 65 162P16v.2 TGCAGCAGGTGCAAGGACGTGTTA6ACTAGCTCTCWCAGCCTCCTTGGAGGATGTGA 3180 162P136v.4 ----------------------- 162P1E6v.2 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTTGACATCTCCCAAATGTGTGATTCCGGG 3240 70 162P1E6v.4 -------.. ------------- --. 314 162P1E6v.2 ATGCCAAAGGCCTTTGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTrGACATGCATCCC 3300 162P1E6v.4 ----------------------------------------------------------- 5 162P1E6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCrTCTCTTGTCCTTCATTCCACC 3360 162P1E6v.4 ----------------------------------------------------------- 162P136v.2 GGAGTCTGTCTCATACCCAACCAGATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 3420 10 162P1E6v .4 ------------------------ ATTTCATGGAGTGAAGTTCAGGAGGCATGGAGC'r 586 162P1E6v.2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 162P186v.4 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 646 15 ------------------------.-.
162P1E6v.2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 3540 162P1E6v.4 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 706 20 162P1E6v.2 AGCCAGAGAGAAATGTATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTCAGAGG 3600 162P1E6v.4 AGCCAGAGAGAAATGIGATCAATGAAGGAGACATCTGGAGTOTGCOTGCTTCTTCAGAGG 766 .***v.***C*********************************************** 25 162P1E6v.2 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTrAATCTTrCTTTTCT 3660 162 P186v.4 GACGGGTGATGGGCAATGGAAAAAGCACCGCAGATGGGAACCTTAATCTTrCTTT-TCTr 826 162P1E6v.2 AAAATTGATGCTATGAAAATTTGCGT'CTGTAACTTGTAAAAACTAAAAGTTGCTTGT 3720 30 162PLE6v.4 AAAATTGATGCTATGAAAATTTGCGTTTCTGTAACIGTAAAAACTAAAAGTGCTTGT 886 162P1E6v.2 CTACT 3762 162P1E6v.4 CTACTGAA 928 35 Table LV(D). Nucleotide sequence alignment of 121P1F1 v.2 and 162P1E6 v.5 40 162P1E6v.2 CCTTGAAATGGGCTGAGTCCCTCTrGCrCACCCTTGACTTGGAAAAACCAGTTrCTCTTr 60 162P1E6v.5 CCrTGAAATGGGCTGAGTCCCTCTTGCTCACCCTrGACTTGGAAAAACCAGTrrCTCTTT 60 ************************************************** 162P1E6v.2 TATTGTCTGTTACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 45 162P1E6v.5 TATTCTCTGTTACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 162P186v.2 CTCTCTCTTTTCCAGCACCTTTACTCCCTCTCCTTCAATTCCACTTTCCrCTGCrTACT 180 162P1E6v.5 CTCTCTCTrCCAGCACrTTACTCCCTCCTCAATTCCACTTTCCTCTGCTTACT 180 50 ------.---- ******-------- ** - ******* 162P1E6v.2 TTTTTTTTTTCTGACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 162P1E6v.5 TTTTTT CTGACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 55 162P1E6v.2 CTTGGGCTCACrGCAGCCTCAACCTCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCCCTC 300 162P1E6v.5 CTTGGGCTCACTGCAGCCTCAACCTCCCAG------------------------------ 270 60 162P1E6v.2 AAGTAOCTGGGACTACAAGCGCACACCACCACGCCTGACTAATTTTrGTATrrTTGT 360 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 AGAGGCGGGTCACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTTAAGCAATCC 420 65 162P1E6v.5 --AGGCGGGGTTTCACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTrAAGCAATCC 328 162P1E6v.2 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.5 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 388 70 * ************+**. 315 162P1E6v.2 TGTTCTrrTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTrTCCTCAG 540 162P1E6v.5 TGTTCTTrTTCATTAAAGAGAGAAATCAACTATTCAGACCGGCCCCCACCIrrCCTCAG 448 5 162P1E6v.2 GAGTCATCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTrATATAGGGTAAGTGTTr 600 162P1E6v.5 GAGTCATrTCTGTrCCGCACAGGCCGCTGAACGGTGCTTTATATAGG---------- 498 162P1E6v.2 CTCATT7TTGTTCCCTGTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGATTGAAA 660 10 162P1E6v.5 ----------------------------------------------------------- 162P136v.2 TTTCTTTTCTTCTrCTCATCTGCATGGCTGTAGCCATCTCTCTGTTCTGCATTATCTTAT 720 162P1E6v.S ----------------------------------------------------------- 15 162P1E6v.2 GACAAAAAAAAAAAATCATTTTGAAGCAAACTCAAAGCTAGGTCCTGA3TCTCAAG 780 162P1E6v.5 ----------------------------------------------------------- 20 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTCTGAAATCTGTGGATTTGGGAACTrGGAAA 840 162P1E6v.5 ----------------------------------------------------------- 25 162P1E6v.2 AACAAAGATGAGTGGCTAGATCAGGGGGCTCATTGGGCAGGAAGAGGAGACTGGAAAATG 900 162P1E6v.5 ---------------------------------------------------------- 162P1E6v.2 CCATATTCACTGCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTGAACCTGCTG 960 30 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 CATTTAAACCAATCCTCAGCCACTTTGG'vrTECTCAAGGATTTCCAGGGATCCCAGG 1020 35 162P1E6v.5
-----------------------------------------------------------
162P1E6v.2 CAGTAAATTCTGCTGATAATAGGAATMGTQTGATAAGGTGGGTGCTGAGCAGTrTAAGC 1080 162P1E6v.5 ----------------------------------------------------------- 40 162P1E6v.2 ACCAAGATTGTAGCTCTGTCGTTrTGTGGAGATTACTCAACTAGAAGAACAGAGAT 1140 162P1E6v.5 ----------------------------------------------------------- 45 162P1E6v.2 TGGCTGGTTTTTCAGTCCTGGGGTGCAGGGTGCACCTGTACTGGAAAATTTAGGACCTGG 1200 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 TTTCATTCTTTGAGTCTCATGTCAAGTTCGTTTTAATGTTATAAGACACTTGGGACGT 1260 50 162P1E6v.5 -------------------------------------------------------- 162P1E6v.2 AATCCTGAGGGCAGCTGGGGGAAGAAAGTGGTCACTGGATGGACTTACCCTGTAGCGAG 1320 55 162P1E6v.5
----------------------------------------------------------
162P1E6v.2 CCCATGCATGGTTTTTCTGATCGTCATGTGCTTGGCTCTAGACCCATGTAACCATG 1380 162P1E6v.5 ----------------------------------------------------------- 60 162P1E6v.2 GTGAAGGCCACTGGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTTGAACAA 1440 162P1E6v.5 ----------------------------------------------------------- 65 162P1E6v.2 GGAGTCCAGAGCAGGTCAAGTCTCC ATACAGGTTGTGACTCATGGTrTGTCCTGC 1500 162P1E6v.5 ----------------------------------------------------------- 162P1N6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACTCACCITTC 1560 70 162P1E6v.5 ----------------------------------------------------------- 316 162P1E6v.2 TGGGGCTCTCTGACATTAATGCCACCTCCCATTTGCrTTTGCAGACACTGTCATCTCTC 1620 162P1E6v.5 ----------------------------------------------------------- 5 162P1E6v.2 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGGTGAGGCTCTCTGCACACTCCAG 1680 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 AGTGAGGACTTTAATAATCTAGTGGACTGTACATGTTGGGAGGGGAAGAGCGGGGTGCCG 1740 10 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 AGGGTCTGGAGGOAGAAGAATTGACTGCCCCTTrTGCTCTTGGAGTTAAGCAGAAATCTA 1800 162P1E6v.5 ----------------------------------------------------------- 15 162P16v.2 AAGAGAAGGCAAAGAATCTTGCCTTCCTGGCGTCATTTCCrCCTACCATCCCAGGCCATC 1860 162P1E6v.S --------------------------------------------------- ------ 20 162P1E6v.2 ATrTATrTATTACAGCCAACAGACTGGCCTCTTTCTTCCCTTTGACrGGGAATGGGTCAA 1920 162P1E6v.5 ----------------------------------------------------------- 25 162P1E6v.2 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTGCATTTCCTCTC 1980 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 ATTATTGAGAACTGTGAGTGTTTATCAAGAAGCAGAGCAGGAGAAGATGAACCAGTCTT 2040 30 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 162P1E6v.5 ----------------------------------------------------------- 35 162P1E6v.2 GTCTTTACArrCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 162P1E6v.5 ----------------------------------------------------------- 40 162P1E6v .2 GCCCTTGCTAAGGCCTTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGOGG 2220 162P1E6v.5 ----------------------------------------------------------- 45 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 GTATTTCAAACAACAAGGTCCATCTGCCCCAACCCATCCACCCTGCATGTTGGTGCTGAG 2340 50 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 AACAGCCTrTTATGGGGCTTGCACTGAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 2400 162P1E6v.S ----------------------------------------------------------- 55 162PlE6v.2 GCCAGAGCAGCAACAGCACGCAAAGGGTTGATGGGCATrTCrTTTAAGACAGAGCAGAAA 2460 162P1E6v.5 ----------------------------------------------------------- 60 162P1E6v.2 ACTCTTAGATACTTTGCGTCCTTCCTATTrGACTCAGTCTATGAAAGCCAGGTTAGCTIG 2520 162P1E6v.5 ----------------------------------------------------------- 65 162P1E6v.2 CTTTCTTCCTCCCTAAATCCTCCATCCrCATGACCAACAAAGAAATAGTTGAATCATrrT 2580 162P1E6v.S ----------------------------------------------------------- 162P1Ev.2 CCAGGCACATCTTGGGGAGGATGTGGGGCCATTGGAGGCTGTCCTTCCTGGATAAGTCTT 2640 70 162P1E6v.5 ----------------------------------------------------------- 162P1E6v.2 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 2700 162P1E6v.5 ----------------------------------------------------------- 317 162P1E6v.2 GCTCCAGCCAGGAGTrGTrTTCCTGAGCCCTCACCTATCTCTTCTGGATTTCACA 2760 162P1E6v.5 ---------------------------------------------------------- 5 162P1E6v. 2 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTrGGACAGTGCCTTGTGGAGAGGA 2820 162P1E6v.5 ----------------------------------------------------------- 10 162P1E6v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATTTTTC 2880 162P1E6v.5 ----------------------------------------------------------- 15 162P1E6v.2 TAAAGCAATWCAGAACACCTGCrTTCrrTGTTTCCTCTAGAAAGGACCAACCACACC 2940 162P1E6v.S -------------------------------------------- AAAGGACCAACCACACC 515 162 P1E6v.2 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 20 162P1E6v.5 GAGCTCAG7TATGGCACACACAGTGGGACCTA AGGGAGAGGGTGACCGACATCCC 575 162P1E6v.2 AACTAGGTAAACACAGAGGAGCCACATGGACTTATCTGGGTGGCTGTr.AAAACG 3060 162P1E6v.5 AACTAG-------------------------------------------------------581 25 162P1E6v.2 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCrCCCCAACTCAGCACTGTCTGTC 3120 162P1E6v.5 ----------------------------------------------------------- 30 162P1E6v.2 TGTGCAGCAGGTGCAAGGACGTTTGAACTAGCTCTCTGCAGCCTCCTTGGAGGATGTGA 3180 162P1E6v.5 ---------------------------------------------------------- 35 162PlE6v.2 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTTGACATCTCCCAAATGTGTGATTCCGGG 3240 162P1E6v.5 --------------------------------------------------------.-.. 162P1E6v.2 ATGCCAAAGGCCTTMGCCAGGAATGCAGTGTCTACAGGCTAGGTTGACANCATCCC 3300 40 162P1E6v.5 ------------------------------------------------------. 162P1E6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCTTCTCTTGTCCTTCATTCCACC 3360 45 162P1E6v.5 ------------------------------------------------------. 162P1E6v.2 GGAGTCTGTCTCATACCCAACCAG ATTCAGTGGAGTGAAGTTCAGGAGGCANGAGCM 3420 162P1E6v.5 ------------------------ ATTTCAGTGGAGTGAAGrCAGGAGGCATGGAGCTG 617 50 162P1E6v.2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCCCGCCGCCACCACCGTAGCAGCAG 3480 162P1E6v.5 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 677 55 162P1E6v.2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGALrAGGATAGAGAC 3540 162P1E6v.5 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTAGGAATAGAAC 737 162P1E6v.2 AGCCAGAGAGAAATGTGATCPAGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 3600 60 162P1E6v.5 AGCCAGAGAGAAATGTATCAATGAAGGAGACATCTGGAGTG TGCGGCTTCTTCAGAG 797 162P1E6v.2 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCrTTCT 3660 162P1E6v.5 GACGGGTGANGGCAGATGGAAAAAGCACCGCAGATGGAACCTTAATCTTTCTTTTCT 857 162P1E6v.2 AAAATTGATGCTATGAAAATIrGCGTrTTCTGTAACTTGTAAAAACTAAAAGTTGCTTGT 3720 162P1E6v.5 AAAATTGATGCrATGAAAATTTGCGTTTTCTGTAACTGTAAAACTAA TTGCTTGT 917 70 162P1E6v.2 CA3762 162P1E6v.5 CTAC 959 .*.*+*** *.*....**........***.....** 318 Table LV(E). Nucleotide sequence alignment of 121PIF1 v.2 and 162P1E6 v.6 162P1E6v.2 CCTTGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACrrGGAAAAACCAGTTTCTCTTT 60 5 162P1E6v. 6 CCTTGAAATGGGCTGACTCCCTCTTGCTCACCCTrGACTTGGAAAAACCAGTTTCTCTTr 60 1621E*v.*2 TAT*G **CT* **rAC*AATCTC**ATTCTAAAAA*CAGCTCAA*CTCAACCATACTCCA 120 162P1E6v.6 TATrGTCTGTTACTAATCTCrATCAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 10 162P1E6v.2 CTCTCTCTTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.6 CTCTCTCTTTCCAGCTACCTrACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 15 162P1E6v.2 TT'rr.r -rrrCTACAGGGTCCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 162P1E6v.6 TTTrrTTTTTTTT ACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 **************************************************** ******* 20 162P1E6v.2 CTTGGGCTCACTGCAGCCTCAACCTCCCAGGTrCAAGCGATTCTCCTGCCTCAGCCCCTC 300 162P1E6v.6 CT1GGGCTCACTGCAGCCTCAACCTCCCAG------------------------------ 270 162P1E6v.2 AAGTAGCTGGGACTACAAGCGCACACCACCACGCCTGACTAATTrTTGTATPTTTTGT 360 25 162P1E6v.6 ----------------------------------------------------------- 162P1E6v.2 AGAGGCGGGGTTTCACCATGTTGCCCAGACTGGTCTGAACTCCTGAGCTTAAGCAATCC 420 162P1E6v.6 - -AGGCGGGGTTTCACCATGTTGCCCAGACTQGTCTTGAACTCCTGAGCTTAAGCAATCC 328 30 162PIE6v.2 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.6 ACCTGCCTCGGCCTCCCAAAG'TTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 388 35 162P186v.2 TGTrCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTrCCTCAG S40 162P1E6v.6 TGTCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTTCCTCAG 448 40 162P1E6v.2 GAGTCATTTCTGTTCCGCACAGGCCTOCTGAACTGGGTGCTTTATATAGGGTAAGTGTTT 600 162P1E6v.6 GAGTCATTTCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGG---------- 498 162P1E6v.2 CTCATTTTTTGTTCCCTGTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGATTTGAAA 660 45 162P1E6v.6 ----------------------------------------------------------- 162P18E6v.2 TTTCTTTTCTTCTCTCATCTGCATGGCTGTAGCCATCTCTCTGTTCTGCATTATCTTAT 720 162P1E6v.6 ----------------------------------------------------------- 50 162P1E6v.2 GACAAAAAAAAAAAATTCTTATTGAAGCAAACTCAAAGCTAGGTCCTGATGTCTCAAG 780 162P1E6v.6 ----------------------------------------------------------- 55 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTCTGAAATCTGTGGATrTGGGGAACTrrGGAAA 840 162P1E6v.6 ----------------------------------------------------------- 60 162 P1E6v. 2 AACAAAGATGAGTGGCTAGATCAGGGGGCTCATTOGGGCAGGAAGAGGAGACTGGAAAATG 900 162P1E6v.6 ----------------------------------------------------------- 162P1E6v.2 CCATATTCACTGCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTGAACCTGCTG 960 65 162P1E6v.6 ----------------------------------------------------------- 162P1E6v.2 CATTTTAAACCAATCCTCAGCCACTTTGGTGTTTTCTCAAGGATTTCCAGGGATCCCAGG 1020 162P1E6v.6 ----------------------------------------------------------- 70 319 162P1E6v.2 CAGTAAATTCTGCTGATAATAGGAATTGGTGTGATAAGGTGGGTGCTGAGCAGTTTAAGC 1080 162P1E6v.6 ----------------------------------------------------------- 5 162P1E6v.2 ACCAAGATTOTAGCrCTGTCTGGTTTTGTGGAGATrACTCAACTAGAAGAACAGAGATT 1140 162P1E6v.6 ----------------------------------------------------------- 162P1B6v.2 TGGCTGGTTrTTCAGTCCTGGGGTGCAGGGTGCACCTGTACTGGAAAATTTAGGACCTGG 1200 10 162P1E6v.6 -------------------------------------------------------- 162P1E6v.2 TTTCATTCTTYGAGTCTCATGTrCAAGTGGTTTTAATGTTATGAAGACACTTGGGACGT 1260 162P1E6v.6 -------------------------------------------------------. 15 162P1E6v.2 AATCCTGAGGGCAGCTGGGGGAAGAAAGGTCACTGGATGGACTTACCCTGTAGCGAG 1320 162P1B6v.6 ----------------------------------------------------------.. 20 162P1B6v.2 CCCATGCAT GGTTTTCTCTGATCGTGCATGTGCTTGGCTCTAGACCCANTAACCAN 1380 162P126v.6 ---------------------------------------------------------- 25 162P1E6v.2 GWAAGGCCACTGGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTTAACAA 1440 162P1E6v.6 ---------------------------------------------------------. 162P1H6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTTGMACTCATGGTTTTrGTCTCTGC 1500 30 162P186v.6 -------------------------.......--------- --..----.. 162P1E6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGACTCC 1560 35 N162P16v.6 --------------------------------------------..--...... 162P1E6v.2 TGGGCTCTCmACATTAATGCCACCTCCCATTTGCTTTTTGCAGACACTGTCATCTCTC 1620 162P1S6v.6 --------------------------------------------- ACACTGTCATCTCTC 513 40 162P1E6v.2 AAGTACCCATCTTGGAGGGTACGGACC CCACATGAGGGTGAGGCTCCTGCACACTCCAG 1680 162P1E6v. 6 AAGTACCCATCTGGAGGGTACGGACCCCACATGAGG----------------------- -550 45 162P1E6v. 2 AGTGAGGACTTTAATAATCTAGTGGACTTACATUTTGGGAGGGGAAGAGCGGGGTCCG 1740 162P1E6v.6 -----------------------------.
162P1E6v.2 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTTTTGCTCTGGATTAAGCAGAATCTA 1800 50 162P1E6v.6 --------------------------- 162P1E6v.2 AAGAGAAGGCAAAGAATCTTGCCTTCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 162P1S6v.6 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 55 162PlE6v.2 ATn'ATTTATTACAGCCAACAGACTGGCCTC TCCCTTICACTGGGAA'GGTCAA 1920 162P1E6v.6 ----------------------- 60 162P1E6v.2 AGGCGGTGCAGGAGnGATCTGGTCCAGATAATTCACAAGCAGGTGCATTTTCCTCTC 1980 162P1H6v.6 ----------------------------- 65 162P1E6v.2 ATTATIAGAACTGTGAGTGTTTATCAAGAAGGCAGAGCAGAAGATGAACCAGTCTT 2040 162P1E6v.6 ------------------------- 162P1Egv.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 70 162P1E6v.6 --------------.-------------- 320 162 PiE 6v. 2 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 162P1E6v.6 ----------------------------------------------------------- 5 162P1E6v.2 GCCCTrGCTTAAGGGCCTTTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATrCGTGGGG 2220 162P1E6v.6 ---------------------------------------------------------- 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 10 162P1E6v.6 ----------------------------------------------------------- 162P1E6v.2 GTATTTCAAACAACAAGGTGCATC'GCCCCAACCCATCCAGCCTGCATGTTGGTGCGAG 2340 162P1E6v.6 ----------------------------------------------------------- 15 162P1E6v.2 AACAGCCTTTTATGGGGCTTGCACTGAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 2400 162P1E6v.6 ----------------------------------------------------------- 20 162PlE6v.2 GCCAGAGCAGCAACAGCACGCAAAGGGTTGATGGGCATTTCTTTTAAGACAGAGCAGAAA 2460 162P1E6v.6 ----------------------------------------------------------- 25 162P1E6v.2 ACTCTTAGATACTTTCGTCCTTCCTATTI'GACTCAGTCTATGAAAGCCAGGTTAGCTrG 2520 162P1E6v.6 ----------------------------------------------------------- 162PlE6v.2 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATTrT 2580 30 162P1E6v.6 ---------------------------------------------------------- 162P1E6v.2 CCAGGCACATCTTGGGGAGGATGTGGGGCCATTGGAGGCTGTCCTTCCTGGATAAGTCTI 2640 162P1E6v.6 ----------------------------------------------------------- 35 162P1E6v.2 TAGGAGTGAGAACAAGGAGTCTrACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 2700 162P1E6v.6 ----------------------------------------------------------- 40 162P1E6v.2 GCTCCAGCCAGGAGTrTT GTTTTTCCTGAGCTCCTCACCTATCTCTTCTG3ATTTCACA 2760 162P1E6v.6 ----------------------------------------------------------- 45 162P1E6v.2 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTTGGACAGTGCCTTGTGGAGAGGA 2820 162P1E6v.6 ----------------------------------------------------------- 162P1E6v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATIrTTC 2880 50 162P1E6v.6 ----------------------------------------------------------- 162P1E6v.2 TAAAGCAATTGCAGAACACCTGCTTTTTCTTTGTTTCCTCTAGAAAGGACCAACCACACC 2940 162P126v.6 ------------------------------------------- AAAGGACCAACCACACC 567 55 **-**** 162P1B6v.2 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 162P116v.6 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 627 60 162P1E6v.2 AACTAGGTAAACACAGAGGAGGTTCCACATGGACTTATCTGGGTGGCTGTTTTGAAAACG 3060 162P1E6v.6 AACTAG------------------------------------------------------ 633 65 162P186v.2 AGAAACAGTCAAGAGTCCCTGOCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTGTC 3120 162P91E6v.6 ----------------------------------------------------------- 162P1E6v.2 TGTGCAGCAGGTGCAAGGACGTGTTGAACTAGCTCTCTGCAGCCTCCTGGAGGATGTGA 3180 70 162P136v.6 ----------------------------------------------------------- 321 162PIE6v.2 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTIGACATCTCCCAAATGTGTGATTCCGGG 3240 162P1E6v.6 ----------------------------------------------------------- 5 162P1E6v.2 - ATGCCAAAGGCC~rGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 3300 162P186v.6 --------------------------------------------------------- 162PIE6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCTTCTCTGTCCTTCATTCCACC 3360 10 162P1E6v.6 -----------------------------------------------.---.-....- 162P1E6v.2 GGAGTCTCTCATACCCAACCAGATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 3420 162P1E6v.6 ------------------------ ATTTCAGTGAGTGAAGTTCAGGAGGCATGGAGCTO 669 15 ............................. 162PlE6v .2 ACAACCATGAGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 162P1E6v.6 ACAACCATGAGGCCTCGGCCCACCGCCACCACCGCCGCCGCCACCACCGAGCAGCAG 729 20 162P1E6v.2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 3540 162PlE6v.6 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 789 25 162P1E6v.2 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 3600 162P1E6v.6 AGCCAGAGAGAAATGTTCAATGAAGGAGACATCTGGAGTGCGTCTTCrTCAGAGG 849 162P1E6v.2 GACGCGATGGGCAGATTGGAAAAACACCGCAGATGGAACCTTAATCTTTCTTCT 3660 30 162P1E6v.6 GACGGGTATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCTTTTCT 909 162P1E6v.2 AAAATrGATGCTATGAAAATTTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTCTIGT 3720 162P1E6v.6 AAAATTATGCTATAATTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTGCTTGT 969 35 ... 162P1E6v.2 CT 3762 162P1E6v.6 CTAG 1011 40 Table LV(F). Nucleotide sequence alignment of 121P1F1 v.2 and 162P1E6 v.7 162P1E6v.2 CCTrGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACTTiGAAA ACCAGTTTCTCTTT 60 45 162P1E6v.7 CCTTGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACTTGGAAAAACCAGTTTCTCTTT 60 162P1E6v.2 TATTGTCTOTTACTAATCrCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAA 120 1629186v.7 TATTGrCTGTTACTAATCTCTATTCTAAAATTGCTCAATTCCATACCATACTCCAAA 120 50 162P1E6v.2 CTCTCTCTTTrCCAGCTACCTTrACTCCCTCTCCTTCAATTCCACT CTCTGCTTACT 180 162P13E6v.7 CCTCTT CCAGCTACCrTTACTCCCTCTCCTCAATTCCTCC.TCTCMCTTACT 180 55 **.**..**t 4*t****.....******"****.*.*f** 55 162P1E6v.2 ?1rrr rrrCTGACAGGGTCTCACTGTCGCCCGGGCAGGAGTGCAGTGCTCAAT 240 162P1R6v.7 ZrrrrrrrrA.iuACAGGGTCTCACT CGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 60 162PIE6v.2 CTTGGGCTCACTGCAGCCTCAACCTCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCCCTC 300 162P1E6v.7 CrTGGGCTCACTOCAGCCTCAACCTCCCAGOTTCAAGCGATTCTCCTGCCTCAGCCCCTC 300 162PlH6v.2 AAGTAGC7GGACTACAAGCCACACCACCACGCCTGACTAATTTTTTGTATTTTTTTGT 360 65 162P1E6v.7 AAGTAGCTGGGACTACAAGCGCACACCACCACCCTMAcAArrrr rTA TTTGT 360 162P1E6v.2 AGAGGCGGGGTTTCACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTTAAGCAATCC 420 162P1E6v.7 AGAGGCGGGGTTTCACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTTAAGCAATCC 420 70 322 162 P1E6v. 2 ACCTCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.7 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 5 162P1E6v.2 TGTTCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTTCCTCAG 540 162P1E6v.7 TGTTCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCrTCCTCAG 540 162P1E6v.2 GAGTCATTTCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGGGTAAGTGTTT 600 10 162P1E6v.7 GAGTCATTTCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGG---------- 590 162P1E6v.2 CTCATTTTTGTTCCCTGTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGA'rTGAAA 660 162P1E6v.7 ----------------------------------------------------------- 15 162P1E6v.2 TTTCTTTTCTTCTTCTCATCTGCATGGCTGTAGCCATCTCTCTGTTCTGCATTATCTTAT 720 162P1E6v.7 ----------------------------------------------------------- 20 162P1E6v.2 GACAAAAAAAAAAAATTCTTATTTGAAQCAAACTCAAAGCTrAGGTCCTGATTCTCAAG 780 162P1E6v.7 ----------------------------------------------------------- 25 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTCTGAAATCTGTGGATTTGGGGAACTTTGGAAA 840 162P1E6v.7 ----------------------------------------------------------- 162P1E6v.2 AACAAAGATGAGTGOCTAGATCAGGGGGCTCATTGGGCAGGAAGAGGAGACTGGAAAATG 900 30 162P1E6v.7 ----------------------------------------------------------- 162P1Ev.2 CCATATTCACTGCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTG.AACCTGCTG 960 162P1E6v.7 ----------------------------------------------------------- 35 162P1Sv.2 CATTTTAAACCAATCCTCAGCCACTTTGGTGTTTTCTCAAGGATTTCCAGGGATCCCAGG 1020 162P1E6v.7 ----------------------------------------------------------- 40 162P1E6v.2 CACTAAATTCTGCTGATAATAGGAATTCGTGTGATAAGGTCGTGCTGAGCAGTTTAAGC 1080 162P1E6v.7 ----------------------------------------------------------- 45 162P1E6v.2 ACCAAGATTGTAGCTCTGTCrGGrTTTTOTGGAGATTTACTCAACTAGAAGAACAGAATT 1140 162P1E6v.7 ----------------------------------------------------------- 162P1E6v.2 TGGC GGTTTTTCAGTCCTGGGGTGCAGGGTGCACCTGTACTGGAAAATTrAGGACCTGa 1200 50 162P1E6v.7 ---------------------------------------------------------- 162P1E6v.2 TTTCATTCTTTGAGTCTCATGTTCAAGTTGGTTTTAATGTTATGAAGACACTTGGGACGT 1260 162P1E6v.7 ----------------------------------------------------------- 55 162P1E6v.2 AATCCTGAGGGCAGCTGGGGGGAAGAAAGTGGTCACTGGATGGACTTACCCTGTAGCGAG 1320 162P1E6v.7 ------------------------------------------------------------ 60 162P1E6v.2 CCCATGCATGGTTTGTTCTCTGATCGTGCATGTGCTTGCTCTAGACCCATTAACCATG 1380 162P1E6v.7 ----------------------------------------------------------- 65 162PIE6v.2 GTGAAGGCCACTGGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTrGAACAA 1440 162P1E6v.7 ----------------------------------------------------------- 162P1E6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTTGTGACTCATGGTrTTGTCTCTGC 1500 70 162P136v.7 ----------------------------------------------------------- 323 162P1E6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACTCACCTTTC 1560 162P1E6v.7 ----------------------------------------------------------- 5 162P1E6v.2 TGGGGCTCTCTGACATTAATGCCACCTCCCATrGCTTrrrTGCAGACACTGTCATCTCTC 1620 162P1E6v.7 --------------------------------------------- ACACTGTCATCTCTC 605 162P1E6v.2 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGGTGAGGCTCTCTGCACACTCCAG 1680 10 162P1E6v.7 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGG----------------------- 642 162P1E6v.2 AGTGAGGACTTTAATAATCTAGTGGACTGTACATTGGAGGGGAAGAGCGGGGTGCCG 1740 162P1E6v.7 ----------------------------------------------------------- 15 162P1E6v.2 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTTTTGCTCTTGGAGTTAAGCAGAAATCTA 1800 162P1E6v.7 ----------------------------------------------------------- 20 162PE6v.2 AAGAGAAGGCAAAGAATCTIGCCTTCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 162P1E6v.7 ----------------------------------------------------------- 25 162P136v.2 ATTTATTTATTACAGCCAACAGACTGGCCTCTTTCTTCCCTTTGACTGGGAATGGGTCAA 1920 162P1E6v.7 ----------------------------------------------------------- 162P1E6v.2 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATCACAAGCAGGGTGCATTTTCCTCTC 1980 30 162P1E6v.7 ---------------------------------------------------------- 162P1E6v.2 ATTATTGAGAACTGTGAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCT 2040 35 162P1E6v.7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 35 162P1E6v.2 CTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 162P1E6v.7 -----------------------------. ---------------- -- 40 162P1E6v.2 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 162P1E6v.7 ----------------------------------------------------------- 45 162PIE6v.2 GCCCTTGCTTAAGGGCCTTTTCAGAGACCCAATGCCCAGAAGGCTAGATGCGGGG 2220 162P1E6v.7 ---------------------------------------------------------- 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 50 162P1E6v.7 -------------------------------------------------------- 162PlE6v.2 GTATTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTGCTGAG 2340 162P1E6v.7 ----------------------------------------------------------- 55 162P1E6v.2 AACAGCCTTTTAGGGCTYGCACTGAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 2400 162P1E6v.7 ----------------------------------------------------------- 60 162P1E6v.2 GCCAGAGCAGCAACAGCACGCAAAGGGTTGATGGGCATTTCTTTTAAGACAGAGCAGAAA 2460 162P1E6v.7 ----------------------------------------------------------- 65 162P1E6v.2 ACTCTTAGATACTTTGCGTCCTTCCTATTGACTCAGTCTATGAAAGCCAGGTTAGCTI7 2520 162P1E6v.7 ---------------------------------------------------------- 162P1B6v.2 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATTTT 2580 70 162P1g6v.7 -------------------------------------....---------------- 324 162PlE6v.2 CCAGGCACATCTTGGGGAGGATGTGGGGCCATTGGAGGCTGTCCCCTGGATAAGTCTT 2640 162P1EGv.7 --------------------------------------------- 5 162P1E6v.2 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 2700 162P1E6v.7 ------------------------------------------------- -- 162P1E6v.2 GCTCCAGCCAGGAGTTGTGGTTTTTCCTGAGCTCCTCACCTATCTcTCGGATTTCACA 2760 10 162PlE6v.7 ------------------------------------------------- 162P1E6v.2 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTTGGACAGTGCCTTG'(;GAGAGGA 2820 162PlE6v.7 ---------------------------------------------------- 15 162P1E6v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTTGOTAAGCAAGCTCAGATAGCTGGATTTC 2880 162P1E6v.7 ----------------------------------------------------- 20 16 2P1E6v. 2 TAAAGCAATTGCAGAACACCTGCTTTTTCTTTGTTTCCTCTAGAAAGGACCAAtCCACACC 2940 162P1H6v.7 ---------------------------------------------------------- 25 162P1E6v.2 GAGCTCAGrrATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCCACATCCC 3000 162PlE6v.7 ----------------------------------------------------------- 162PlE6v.2 AACTAGGTAAACACAAGGAGGTTCCACATGGACTTATCTGGGTGGCrGTTTTGAAAACG 3060 30 162P1E6v.7 ----------------------------------------------------------- 162PIE6v.2 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTGTC 3120 162PlE6v.7 ---------------------------------------------------------- 35 162P1E6v.2 TGTGCAGCAGGTGCAAGGACGTGTTGAACTACTCTCrGCAGCCTCCrTGGAGGATGTGA 3180 162PlE6v.7 ----------------------------------------------------------- 40 162P1E6v.2 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTTGACATCTCCCAAA'TGTGATTCCGGG 3240 162PIE6v.7 ----------------------------------------------------------- 45 162PlE6v.2 ATGCCAAAGGCCTTTGGCCAGGTAATGCAGTOTCTACAGGCTGAGGTTGACATGCATCCC 3300 162P1E6v.7 ----------------------------------------------------------- 162PlE6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGGCTTCTCTTGTCCTTCATTCCACC 3360 50 162P1E6v.7 ----------------------------------------------------------- 162P1E6v.2 GGAGTCTGTCTCATACCCAACCAGATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 3420 162PlE6v.7 ----------------------------- ATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 678 55 ***** 162PlE6v.2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 162PlE6v.7 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 738 60 162P1E6v.2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCA0CAAGAGTAACTCTGACTTAGGAATAGAGAC 3540 162Pl6v.7 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 798 65 162PlE6v.2 AOCCAGAGAGAAATGTGATCAATCAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGACG 3600 162P1E6v.7 AGCCAGAGAGAAATGYGATCAATGAAGGAGACATCTGAGTGTGCGTCTTCTTCAGAGG 858 162 P1E6v. 2 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCT TTTCT 3660 70 162P1E6v. 7 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTcTrcTC 918 325 162P1E6v.2 AAAATTGATGCTATGAAAATTTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTGCTTGT 3720 162P1E6v.7 AAAATTGATGCTATGAAAATTTGCGTTTrCTGTAACTTGTAAAAACTAAAAG7rGTTGT 978 5 162P1E6v.2 CTACTG 3762 162P196v.7 C T1020 10 Table LV(G). Nucleotide sequence alignment of 121P1F1 v.2 and 162P1E6 v.8 162P1E6v.2 CCTGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACTTGGAAAAACCAGTTTCTCTTT 60 162P1B6v.8 CCTMGAAATGGCTGAGTCCCETrCTCACCCTTGACTGAA AACCAGTTTCTCTTT 60 15 162P1E6v.2 TATWTCGTTACTAATCTCTAT AAATTCAGCTCAATTCTCAACCATACTCCAAA 120 162P1E6v.8 TATTGTCTGTTACTAATCTCTATTCTAAAAATTCAG ATTCTCAACCATACTCCAAA 120 20 162P1E6v.2 CTCTCTCTTTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.8 CrCTCTCTTTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.2 rrrrrrTrrrnTACAGGGTCTCACTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAT 240 25 162P1E6v.8 ,rrrrrrrarri, mCAGGGTCTCACTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 162P1E6v.2 CTTGGCTCACTGCAGCCTCAACCTCCCAGGTTCAAGCGATTCTCCTGCCTAGCCCCTC 300 162P1E6v.8 CTGGCTCACTGCAGCCTCAACCCCCAGGTTCAAGCGArCTCCTCCCAGCCCCTC 300 30 .. . ................ * 162P1E6v.2 AAGTAGCMGGACTACAAGCGCACACCACCACGCCTGACTAATTTTTrGTAnmTui 360 162P1R6v. 8 AAGTAGCTGGGACTACAAGCGCACACCACCACGCCTGACTAArT T uTATTTTTTTGT 360 35 162P1E6v.2 AGAGGCGGGGTI"CACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTTAAGCAATCC 420 162P1E6v.8 AGAGGCGGGGTTTCACCATGTTGCCCAGACMGTCTrGAACTCCTGAGCTTAAGCAATCC 420 40 162P1E6v.2 ACCTCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.8 ACCTGCCTCGGCCTCCCAAAGMTTGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.2 TGTTcTTTTCATTAAAGAGAGAAATCAACTATTCAGACCGGCCCCCACCTTTCCTCAG 540 45 162P1E6v.8 TGTTCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTTCCTCAG 540 162P1E6v.2 GAGTCATTTCETTCCGCACAGGCCTGCTAACTGGGCTTTATATAGGTAAGTGT 600 162P1E6v.8 GAGTCATTTCETTCCGCACAGGCCWCTGAACTGGGTGCTTTATATAGG---------- 590 162P186v.2 CTCATTrTTTCTTCCCGTCCTCAAGCCTAGGGGCAAAAGAAACATCCAAGATTTGAAA 660 162P1E6v.8 ------------------------------------------------------.... 55 162P1B6v.2 TTTCTTTTCTTCTTCTCATCEGCATGGCTAGCCATCTCTCTGTTCTGCATTATCTTAT 720 162P1E6v.8 ----------------------------------------.... 60 162P1E6v.2 GACAAAAAAAAAAAA rCTTATrAGCAAACTCAAAGCTAGGTCCTGATTCTCAAG 780 162P1E6v.8 -------------------------------------------- 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTCTGAAATCTGTGGATTTGGGGAACT7rGGAAA 840 65 162P1B6v.8 ----- ----------------.. 162P1E6v.2 AACAAAGATGAGTGGCTAGATCAGGGGCTCATTGGCAGGAAGAGGAGACTGGAAAAT 900 70 162P186v.8 ------------..- ---------------.. 326 162P1E6v.2 CCATATTCACTGCAAGTCAATTATCAACrrCCTCCAAGGCTAAAATAGCTGAACCTGCTG 960 162P1E6v.8 ----------------------------------------------------------- 5 162P1E6v.2 CATTTTAAACCAATCCTCAGCCACTTrGGTGTTTrCTCAAGGATrTCCAGGGATCCCAGG 1020 162P1E6v.8 ----------------------------------------------------------- 162P1E6v.2 CAGTAAATTCTGCTGATAATAGGAATTGGTGTGATAAGGTGGGTGCTGAGCAGTTAAGC 1080 10 162P1R6v.8 ----------------------------------------------------------- 162P1E6v.2 ACCAAGATTGTAGCTCTGTCTGGTTTTGrGGAGATTTACTCAACTAGAAGAACAGAGATT 1140 162P1B6v.8 ----------------------------------------------------------- 15 162P1E6v.2 TGGCTGGTTTTTCAGTCCTGGGGTCAGGTGCACCTGTACTGGAAAATTTAGGACCrGG 1200 162P1E6v.8 ----------------------------------------------------------- 20 162P1E6v.2 TTTCATTCTTGAGTCTCATGTTCAAGTTGGTTTTAA=TTATGAAGACACTTGGGACGT 1260 162P1E6v.8 ----------------------------------------------------------- 25 162PlE6v.2 AATCCTGAGGGCAGCTGOGGGAAGAAAGTGGTCACTGGATGGACTTACCCTGTAGCGAG 1320 162P1E6v.8 ----------------------------------------------------------- 162PlE6v.2 CCCATGCATGGTTGTrCTCTGATCGTGCATGTGCTTGGCTCTAGACCCATGTAACCATG 1380 30 162P1E6v.8 ----------------------------------------------------------- 162P1E6v.2 GTGAAGGCCACTGGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTTGAACAA 1440 162P1E6v.8 ----------------------------------------------------------- 35 162PlE6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTTGTGACTCATGGTTTTTGTCTCTGC 1500 162P1E6v.8 ----------------------------------------------------------- 40 162P1E6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACTCACCTTTC 1560 162P1E6v.8 ------------------------------------------------------------ 45 162P1E6v.2 TGGGGCTCTCTGACATTAATGCCACCTCCCArrTGCTTrrTGCAGACACTGTCATCTCTC 1620 162P1E6v.8 --------------------------------------------- ACACTGTCATCTCTC 605 162P1E6v.2 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGTGAGGCTCTCTGCACACTCCAG 1680 50 162P1E6v.8 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGG------------------------ 642 162P1E6v.2 AGTGAGGACTTTAATAATCTAGTGGACTGTACATGTTGGGAGGGGAAGAGCGGGGTGCCG 1740 162P1E6v.8 ----------------------------------------------------------- 55 162P1Egv.2 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTTTTGCTCTTGGAGTTAAGCAGAAATCTA 1800 162P1E6v.8 ----------------------------------------------------------- 60 162P1E6v.2 AAGAGAAGGCAAAGAATCTTGCCTTCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 162P126v.8 ----------------------------------------------------------- 65 162P1E6v.2 ATTTATTTATTACAGCCAACAGACTGGCCTCTTTCTTCCC~rrTGACTGGGAATGGGTCAA 1920 162P1E6v.8 ----------------------------------------------------------- 162P1E~v.2 AGGCGG'GCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTGCATTTTCCTCTC 1980 70 162P1E6v.8 ----------------------------------------------------------- 327 162P1E6v.2 ATTATTAGAACTGTGAGTTTATCAAGAAGGCAGAGCAGGAGAAGATAACCAGTCTT 2040 162P1E6v.8 ----------------------------------------------------------.. 5 162P1E6v.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 162P1E6v.8 ----------------------------------------------------------.. 162P1E6v.2 GTCTTTACACAGACCAAGAGAGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 10 162P1E6v.8 ---------------------------------------------------.---..... 162P1E6v.2 GCCCTTCTTAAGGGCCTTTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGGGG 2220 162P1E6v.8 -----------------------------------------------------------. 15 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 162P1E6v.8 ---------------------------------------------------------- 20 162P1ESv.2 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGCTGAG 2340 162P1E6v.8 -----------------------------------------------------------. 25 162P1E6v.2 AACAGCCTTTTATGGGGCTGCACTGAGCCATGGGCAGTCTGAACACAACAAGGAAGAG 2400 162P1E6v.8 ---------------------------------------------...--------. 162P1E6v.2 - GCCAGAGCAGCAACAGCACGCAAAGGGGATGGCATTTCTTTAAGACAGAGCAGAAA 2460 30 162P1E6v.8 ------------------------------------------------------..... 162P1E6v.2 ACTCTTAGATACTT'ICGTCCTTCCTATTIGACTCAGTCTATGAAAGCCAGGTTAGCTTG 2520 162P1E6v.8 -----------------------------------------.......------. 35 162P1E6v.2 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTWAATCATT 2580 162P1E6v.8 ------------------------------------ 40 162P1E6v.2 CCAGGCACATCTaGGGAGGATGTGGGGCCATlGAGGCTGTCCTTCC ATAAGTCTT 2640 162P1E6v.8 ------------------------------------ 45 162P1E6v.2 TAGGAGTAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAANGGCCTG 2700 162P1E6v.8 ----------------------------------- 162P1E6v.2 GCTCCAGCCAGAGTTGGTTTTCCTCACTCCTCACCTATCTCTCTGGATIrCACA 2760 50 162P1E6v.8 -------------------.----.- 162P1E6v.2 TTGGCAAACGGGGTTCAAAGTGCTCTTCGTGCTCTTTGGACAGTGCCTTGTGGAGAGGA 2820 55 162PE6v.8
-------------------------.---
162P1E6v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGA7TTTC 2880 162P1E6v.8 ----------------------------------- 60 162P1E6v.2 TAAAGCAATTGCAGAACACCTCTTTTTCTTTGTTCTAGAACCAACCACACC 2940 162P1E6v.8 -------------------------------------------- AAAGGACCAACCACACC 659 **** ** ***** 65 162P1E6v.2 GAGCTCAGTTANGCACACACAGTGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 162P1E6v. 8 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 719 .......... **************************.**,,,*,*** 162P1E6v.2 AACTAGGTAAACACAGAGGAGGTTCCACATGGACrTATCTGGGTGGCTGTTTMAAAACG 3060 70 162P1E6v.8 AACTAG-------------------------------------------------------- 725 328 162P1E6v. 2 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACrGTCTGTC 3120 162P1E6v.8 ----------------------------------------------------------- 5 162P1E6v.2 TGTGCAGCAGGTGCAAGGACGTGTrGAACTAGCTCTCTGCAGCCTCCTTGGAGGATGTGA 3180 162P1E6v.8 ----------------------------------------------------------- 162PIE6v.2 TCCTATGGGAGGGGTAGGAGTATTCAGGTCCTImACATCTCCCAAATGTGTGATTCCGGO 3240 10 162PlE6v.8 ----------------------------------------------------------- 162P1E6v.2 ATGCCAAAGGCCrTTGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTErACATGCATCCC 3300 162P1E6v.8 ----------------------------------------------------------- 15 162P1E6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCTTCTCTTOTCCTTCATTCCACC 3360 162P136v.8 ----------------------------------------------------------- 20 162P1E6v.2 GGAGTCTGTCTCATACCCAACCAGATTTCATGAGTGAAGTTCAGGAGGCATGGAGCTG 3420 162P1E6v. B ------------------------ ATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 761 25 162P1E6v.2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 162P1E6v. 8 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCOCCGCCACCACCGTAGCAGCAG 821 162P1E6v.2 - CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACrrAGGAATAGAGAC 3540 30 162P1E6v.8 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTrAGGAATAGAGAC 881 162P136v.2 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGTCTTCAAGG 3600 162P1E6v.8 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 941 35 ******-********-********--**---**********-* 162P1E6v.2 GACGGGTGATQGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCTTTTCT 3660 162P1E6v.8 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCTTrrCT 1001 40 162P186v.2 AAAATTGATOCTATGAAAATTTGCGTTTTCTGTAACrrGTAAAAACTAAAAGTTGCTrGT 3720 162P1E6v.8 AAAATTGATGCTATGAAAATTTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTGCTTGT 1061 45 162P1E6v.2 CTACTG 3762 162P1E6v.8 CTACTGAA 1103 50 Table LV(H). Nucleotide sequence alignment of 121PIFI v.2 and 162P1E6 v.9 162P1E6v.2 CCTrGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACTTGGAAAAACCAGTTTCTCTTT 60 162P1E6v.9 CCTGAAATGGGCTGAGTCCCTCTTGCTCACCCTT TTACTGGAAAAACCAGTTTCTCTTT 60 55 162P1E6v.2 TATTGTCTGTTACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 162P1E6v.9 TATTGTCTGTTACTAATCTCTATTCTAAAAArrCAGCTCAATTCTCAACCATACTCCAAA 120 60 162P1E6v.2 CTcrCTCTTTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.9 CTCTCTCTTTTCCAGCTACCTTTACTCCCrCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.2 'TrrrrrTTCTGACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 65 162P1E6v.9 TTIlTrr11TTCTGACAGGGTCTCACTrGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 ******************************.**************************** 162P13Ev .2 CTTGGGCTCACTQCAGCCTCAACCTCCCAGGTTCAAGCGATTCTrCCTGCCTCAGCCCCTC 300 162P1E6v.9 CTTGGGCTCACTGCAGCCTCAACCTCCCAGGTTCAAGCGATTCTCCTGCCTCAGCCCCTC 300 70***----** * * *- -****-********-**-*. ***. *** 329 162P1E6v. 2 AAGTAGCIGGGACTACAAGCGCACACCACCACGCCTGACTAATITTGTATTTTTTTGT 360 162P1E6v.9 AAGTAGCGGGACTACAAGCGCACACCACCACGCCACTAATTTTGTATTTITG 360 5 162P1E6v.2 AGAGGCGGGGTrECACCATGTTGCCCAGACTGGTCTYGAACTCCTOAGCTTAAGCAATCC 420 162P1E6v.9 AGAGGCGGGGTTTCACCATGTGCCCAGACTGGTCTTGAACTCCGAGCTTAAGCAATCC 420 162P.E6v.2 ACCtGCCTCGGCCTCCCAAGOTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 48D 10 162P1E6v.9 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.2 TGTTCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTTCCTCAG 540 162P1E6v.9 TGTTCTTrITCATAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACTTTCCTCAG 540 162P1E6v.2 GAGTCATrTCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGGGTAAGTGTTr 600 162P1E6v.9 GAGTCATTTCTGT'CCGCACAGGCCTGCTGAACTGGGTOCTTTATATAGG---------- 590 20 162P1E6v.2 CTCATTTTGTTCCCTGTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGATTTGAAA 660 162P1E6v.9 ----------------------------------------------------...... 25 162P1E6v.2 T1TTT CTTCICTCATC CATGGCTGTAGCCATCTCTCyT CATTATCTTAT 720 162P1E6v.9 --------------------------------------------------------- 162P1E6v.2 GACAAAAAAAAAAM CTTATr AAGCAAACrCAAAGCTAGGTCCTATGTCTCAAG 780 30 162P1E6v.9 -----------------------------------------...----------- 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTCTGAAATCrGTGGATTTGGGGAACTTTGGAA 840 35 162P1E6v.9 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 162P1E6v.2 AACAAAGATGAGTGGCTAGATCAGGGGGCTCATrGGCAGGAAGAGGAGACTGGAAAATG 900 162P1E6v.9 ---------------------------------------------- 40 162P1E6v. 2 CCATATTCACTCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTGAACCTGCTG 960 162P1E6v.9 ------------------------------------------. 45 162PlN6v.2 CATTrAAACCAATCCTCAGCCACrTrGGTTTrCTCAAGGATTCCAGGGATCCCAGG 1020 162P1E6v.9 ----------------------------------------------.--- 162P1E6v.2 CAGTAAATTCCTGGATAATAGGAATIGGTGTGATAAGGTGGGTGCTGAGCAGTrAAGC 1080 50 162P1B6v.9 -------------------------------- ----- 162P1E6v.2 ACCAAGATTGTAGCTCTCTGGTTTTGTGGAGA rACTCAACTAGAAGAACAGAGATT 1140 55 162P1E6v.9 - - - - - - - - - - - - - - - - - - -w- - - - - - - - - - 162P1E6v.2 TGGCTGGTTTrCAGTCCTGGGGTGCAGGGTGCACCTGTACGAAAATTTAGGACCTGG 1200 162P1E6v.9 --------------------------------------------------------- 60 162P1E6v.2 TTTCATTCTrGAGTCTCATGTTCAAGTTGGTTTTAATGTTATGAAGACACTTGGGACGT 1260 162P186v.9 -------------------------------------------...---------- 65 162P3l6v.2 AATCCTAGGGCAGCTGGGGGAAGAAAG'GGTCACTGATGGACrrACCC.TAGCGAG 1320 162P1E6v.9 --------------------------------------------..------- 162P1E6v.2 CCCATGCATGTTTTTCTCTATCGTGCATGTGCTTGGCTCTAGACCCATGTAACCATG 1380 70 162P16v.9 ---- --.--- ---..---- -- - 330 162P1E6v. 2 GTGAAGGCCACTGGGGGATTCAGTTGGCAA-AGGCATATGGGCAGAAGAATCTTGAACAA 1440 162P1E6v.9 -------------------------------------------------------- 5 162P1E6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCATACAGGTTGTGACTCATGuTrmGTCTCTGC 1500 162P1E6v.9 ----------------------------------------------------------- 162P1E6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACT.CACCTTT 1560 10 162PE6v.9 ----------------------------------------.-----------.- 162P1E6v.2 TGGGGCTCTCTGACATTAATGCCACCTCCCATTTGCTTTTTGCAGACACTGTCATCTCTC 1620 162P1E6v.9 --------------------------------------------- ACACTGTCATCTCTC 605 15 .* *.. 162P1E6v.2 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGGTGAGGCTCTCTGCACACTCCAG 1680 162P1E6v.9 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGTGAGGCTCTCTGCACACTCCAG 665 20 162P1E6v.2 AGTGAGGACTTAATAATCTAGTGGACTGTACATOTTGGGAGGGGAAGAGCGGGGTGCCG 1740 162P1E6v.9 AGTGAGGACT-rAATAATCTAGTGGACTGTACATGTTGGAGGGGAAGAGCGGGGTGCCG 725 25 162P1E6v.2 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTT CTCTTGGAGTTAAGCAGAAATCTA 1800 162P1E6v.9 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCTTTTGCTCTTGGAGTTAAGCAGAAATC'A 785 162P1E6v.2 AAGAGAAGGCAAAGAATCTCCTTCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 30 162P1E6v.9 AAGAGAAGGCAAAGAATCTIGCCrCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 845 162P1E6v.2 ATTTATTTATrACAGCCAACAGACTGGCCCTTTCTTCCCTrrGACTGGGAATGGGTC 1920 162P1E6v.9 ATTTATTTATTACAGCCAACAGACTGGCCTCTTTCTTCCCTTTGACTGGGAATGGGTCAA 905 35 -*..****.* *....... 162P1E6v.2 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTCA7TTTCCTCTC 1980 162P1R6v.9 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTGCATTTTCCTCTC 965 40 162P1E6v.2 ATTATTGAGAACTGTGAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCTT 2040 162P1E6v.9 ATTATTGAGAACTGTCAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCTT 1025 45 162P1E6v.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 162P1E6v.9 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 1085 162P1E6v.2 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 50 162P1E6v.9 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 1145 162P1E6v.2 GCCCTTGCTTAAGGGCCTTTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGGGG 2220 162P1E6v.9 GCCCTTGCTTAAGCCCTTT AGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGGGG 1205 55 *........... .......... , 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCTCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 162P1E6v.9 AGGAGCCACATACGAGAAACTGCCTCCCT CCGTCAGAACAAGCCCCAGGAAGAAA 1265 60 162P1E6v.2 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTGCTGAG 2340 162P1E6v.9 GTATTTCAAACAACAAGGTGCATCTCCCCAACCCATCCAGCCTGCATGTTGGTGCTGA 1325 65 162 P1E6v.2 AACAGCCTTTTATGGGGCTTGCACTGAGCCATGGGCAGTCTAACACAACAAGGAAGAG 2400 162P1E6v.9 AACAGCCTTTTATGGGCTTGCACTGAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 1385 162P1E6v.2 GCCAGAGCAGCAACAGCACGCAAAGGG7TGATGGGCATTTCTTTTAAGACAGAGCAGAAA 2460 70 162P1E6v.9 GCCAGACCAGCAACAGCACGCAAAGGGTTGANGGCATTTCTTTTAAGACAGAGCAGAAA 1445 331 162P1E6v. 2 ACTCrrAGATACTTGCGTCCTTCCTATTTGACTCAGTCTATGAAAGCCAGGTTAGCTrG 2520 162P1E6v. 9 ACTCTTAGATACTTTGCGTCCTTCCTATTTGACTCAGTC TAAAGCCAGGTTAGCTM 1505 5 162P1E6v.2 CTTTCcrCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATTTT 2580 162P1E6v. 9 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTWAATCATTT 1565 162PIE6v.2 CCAGGCACATCTTGGGGAGGATGGGGCCAT'CGAGGCITCCTTCCGAT AAGTCTT 2640 10 162P1E6v. 9 CCAGGCACATCTTGGGAGGATGTGGGGCCATTGGAGGCTGTCCTCCTGGATAAGTCTT 1625 162P1E6v.2 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTTCCACCCACCCCCATGAATGGGCCTG 2700 162P1E6v.9 TAGGAGTGAGCAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 1685 15 162P1E6v.2 GCTCCAGCCAGGAGTTGTGGTTTTTCCTGAGCTCCTCACCTATCTCTTCTGGATTTCACA 2760 162P1E6v.9 GCTCCAGCCAGGATTGGTTTCCTGAGCTCCTCACCTATCTCTTCTGGATTTCACA 1745 20 162P1E6v.2 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTGACATGCCT2'GTGAGAGGA 2820 162P1E6v. 9 TTGGCAAACGGGTCAAAGTGCTCTTCGTGCTCTTTGGACAGTCCTTGTGGAGAGGA 1805 25 162 P186v. 2 ATGCCCATGCCCCTWCATTCCAAGGCCTIGTAAGCAAGCTCAGAGTAGCTGGATTTC 2880 162P1E6v.9 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATTTTTC 1865 162P1E6v.2 TAAAGCAATCAGAACACCTGC7T CTTTGTCCTCTAGAAAGGACCAACCACACC 2940 30 162P1E6v.9 TAAAGCAATTGCAGAACACCTGCTTTTTCTTTGTTTCCTCTAGAAAGGACCAACCACACC 1925 162P1E6v.2 GAGCTCAGTTATGGCACACACAGTWACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 162P1E6v.9 GAGCrCAGTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 1985 162P1E6v. 2 AACTAGGTAAACACAGAGGAGGTTCCACATGGACTTATCTGGGTGGCTGTTTTGAAAACG 3060 162P1E6v.9 AACTAG------------------------------------------------------ 1991 40 162P1E6v.2 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTGTC 3120 162P1E6v.9 ------------------------------ 45 162P186v.2 TGTGCAGCAGGTGCAAGGACGTGTTGAACTAGCTCTCTGCAGCCrCCTTGGAGGATGTGA 3180 162P1E6v.9 ---------------------------------- 162P1E6v.2 TCCrTGGAGGGGTAGGAGTATTCAGGTCCTTGACATCTCCCAAATGTGATTCCGG 3240 50 162P1E6v.9 ---------------------- 162P1B6v.2 ATGCCAAAGGCCTTTGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 3300 162P1E6v.9 ----------------------- 55 162P1E6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCTTCTCTTGTCCTTCATTCCACC 3360 162P1E6v.9 ---------------------------- 60 162P1E6v.2 GGAGTCTGTCTCATACCCAACCAGA rTCAGT GAGTGAAGTTCAGGAGGCATGGAGCTG 3420 162P1E6v. 9 ------------------------ ATTTCAGTGGATGAAGTTCAGGAGGCATGGAGCTG 2027 *****.**. .*********..f*******.., 65 162P1E6v. 2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 162P1E6v.9 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 2087 162P1E6v. 2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAAC 3540 70 162P1E6v.9 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACrTAGOAATAGAGAC 2147 332 162P1E6v.2 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 3600 162P1E6v. 9 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 2207 5 162 P1E6v. 2 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTTCTITCT 3660 162P1E6v. 9 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTrAATCTTrCTTTTCT 2267 162P1E6v. 2 AAAATTGATGCTAIGAAAArrTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTGCTYT 3720 10 162P1E6v.9 AAAATTGATGCTATGAAAATTTOCGTTTTCTGTAACTTGTAAAAACTAAAAGTTCCTTGT 2327 162P1E6v.2 CTACTGAA 3762 162P186v. 9 aACTGAA 2369 15 Table LV(I). Nucleotide sequence alignment of 12IP1F1 v.2 and 162P1E6 v.10 20 162PIE6v.2 CCTTGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACTTGGAAAAACCAGTTTCTCTTT 60 162P1E6v.10 CCTTGAAATGGGCTGAGTCCCTCTTGCTCACCCTTGACTTGGAAAAACCAGTTTCTCTTT 60 162P1E6v.2 TATTGTCrGTTACTAATCPCTATTCTAAAAArrCAGCTCAATTCTCAACCATACTCCAAA 120 25 162P1E6v.10 TATTGTCTGACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 162P1E6v.2 CTCTCTcTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.10 CTCTCTCTTTTCCAGCTACCTTTACTCCCTCTCCrCAATTCCACTTTCCTCTGCTTACT 180 30 .-..---..-........... 162P1E6v.2 TTTTTTTTTTTCTGACAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 162P1E6v.10 TTTrrrrrrrTCTGACAGGGTCTCACTrTGTCGCCCGGGCAGGAGTGCAGTGGCTCAAT 240 *.*****,,***..******* *** ..... *-*..*..*.. 35 162P1E6v.2 CTTGGGCTCACTGCACCCTCAACCTCCCAGGTTCAACCGATTCTCCTGCCTCAGCCCCTC 300 162P1E6v.10 CTTGGGCTCACTOCAGCCrCAACCTCCCAGGTTCAAGCGATTCrCCTGCCTCAGCCCCTC 300 40 162P1E6v.2 AAGTAGCTGGGACTACAAGCGCACACCACCACGCCTGACTAATTTTTTGTATTTTTGT 360 162P1E6v.10 AAGTAGCTGGGACTACAAGCGCACACCACCACGCCTGACTAATTTTGTATTTTTTTGT 360 162P1E6v.2 AGAGGCGGGGTTTCACCATGTTGCCCAGACTGGTCTTGAACTCCTGAGCTTAAGCAATCC 420 45 162P1EGv.10 AGAGCCGGGGTTTCACCATCTTGCCCAGACTGGTCTTGAACTCCTGACCTTAAGCAATCC 420 162P1E6v.2 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGGCGTGAGCCACCGCATCCGGCCTCA 480 162P1E6v.10 ACCTGCCTCGGCCTCCCAAAGTGTTGGGATCACAGQCGTGAGCCACCGCATCCGGCCTCA 480 50*.....--.-*..........*..................*............ 162P1E6v.2 TGTTCTTTTTCATTAAAGAGAGAAATCAACTATTCAGGACCGGCCCCCACCTrTCCTCAG 540 162P1E6v.10 TGTTCTTTTCATAAAAGAGAAATCAACTATTCAGGACCGGCCCCCACCTTTCCTCAG 540 55 162P1E6v.2 GAGTCATTTCTGTTCCGCACAGGCCTCTGAACTGGGTGCTTrATATAGGGTAAGTGTTT 600 162P1E6v.10 GAGTCATTTCTGTTCCGCACAGGCCTGCTGAACTGGGTGCTTTATATAGG---------- 590 60 162P1E6v.2 CTCATTrTrrGTTCCCTGTCCTCAAGCCTTAGGGGCAAAAGAAACATCCAAGATTTGAAA 660 162P1E6v.10 -------------------------------------------------------- 162P1E6v.2 TTTCTTTTCTTCTTCTCATCTGCATGGCTGTAGCCATCTCTCTGTTCTGCATTATCTTAT 720 65 162P1E6V.10 ----------------------------------------------------------- 162P1E6v.2 GACAAAAAAAAAAAATTCTATTTTGAAGCAAACTCAAAGCTAGGTCCTGATGTCTCAAG 780 162P1E6v.10 ----------------------------------------------------------- 70 333 162P1E6v.2 GCACAGGTACTCGTACTTAAAGGTGAGTTGAAATCTGTGGATTTGGGGAACTTTGGAAA 840 162P1E6v.10 ------------------------------------------------............ 5 162P1E6v.2 AACAAAGATGAGEGCTAGATCAGGGGGCTCATEGGCAGGAAGAGGAGACTGGAAAATG 900 162P1E6v.10 ---------------------.---.- 162P1E6v.2 CCATATTCACTGCAAGTCAATTATCAACTTCCTCCAAGGCTAAAATAGCTGAACCTGCTG 960 10 162P1E6v.10 --------------------..---------- -- 162P1E6v.2 CATTTTAAACCAATCCTCAGCCACTrTGGTTTTCTCAAGGATTTCCAGGATCCCAG 1020 162P1E6v.10 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .15 162P1E6v.2 CAGTAAATTCTGCTATAATAGGAATGGTGATAAGGTGGGTGCTGAGCAGTTTAAGC 1080 162P1E6v.10 ------------------------------------ 20 162P136v.2 ACCAAGATTAGCTCTTCTGGTTTErGGAGATTTACTCAACTAGAAGAACAGAGATT 1140 162P1E6v.10 ---------------------------------------- 25 162P1E6v.2 TGGCTGGTTrTCAGTCCTGGGGTGCAGGGTGCACCTGTACTGGAAAATTTAGGACCG 1200 162P1E6v.10 ---------------------------------- 162P1E6v.2 TrCATTCTTAGTCTCA TTCAAGTGGTrIrAATTTATAAGACACTTGGGACGT 1260 30 162P1E6v.10 ------------------------------ 162P1E6v.2 AATCCTGAGGGCAGCTGGGGGGAAGAAAGGTCACTGGATGACTTACCCTGTAGCGAG 1320 162P336v.10 --------- 162P1E6v.2 CCCATGCATGGTTTGTTCTCrGATCGTGCATGTGCTTGGCTCTAGACCCATGTAACCATG 1380 162P1E6v.10 --------------------- 40 162P1E6v.2 GTGAAGGCCACTGGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTTGAACAA 1440 162P1E6v.10 -------------------- 45 162P1E6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTTGTGACTCATGGTTTTTGTCTCTGC 1500 162P1E6v.10 -----------------------------.- 162P1H6v.2 CTGTAGCAGCTACAGGTCrGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACTCACCTTTC 1560 50 162P1E6v.10 ------------------.--- --- 162P136v.2 TGGGGCTCTCTGACATTAATGCCACCTCCCATMCTTTCAGACACETCATCTCTC 1620 162P1E6v.10 --------------------------------------------- ACACTGTCATCTCTC 605 55........ 162P1E6v.2 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGGTAGGCTCTCTGCACACTCCAG 1680 162P1E6v.10 AAGTACCCATCTTGGAGGGTACGGACCCCACATGAGGGTGAGGCTCTCTGCACACTCCAG 665 60 **"****" 60 162P1E6v.2 AGTGAGGACTTTAATAATCTAGTGGACTGTACATGTTGGGAGGGGAAGAGCGGGGTGCCG 1740 162P1E6v.10 AGTGAGGACTTTAATAATTAGMGACTGTACATGTTGGAGGGGAAGAGCGGGGTGC 725 65 162P1E6v .2 AGGGTCTGGAGGGAGAAGAATTGACTCCCCTTTTGCTCrGAGTTAAGCAGAAATCTA 1800 l'62P1E6v.10 AGGGTCTGGAGGGAGAAGAATTGACTGCCCCrTGCTCTTGGAGTTAAGCAGAAATCTA 785 162P1B6v.2 AAGAGAAGGCAAAGAATCTCCCCTGCGTCATTTCCTCCTACCATCCAGGCCATC 1860 70 162P1B6v.10 AAGAGAAGGCMAAGRTTCCTTCCTGGCGTCATrTCCrCC0ACCATCCCAGGCCATC 845 334 162P1E6v.2 ATTTATATTACAGCCAACAGACTGGCCTCTTTCTTCCCT7GCTGGGAATGGGTCAA 1920 162PIE6v.10 ANTATTTATTACAGCCAACAGACTGGCCTC CTTCCC ACTGGAATGGGTCAA 905 5 162P1E6v.2 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTGCATTTTCCTCTC 1980 162P1E6v.10 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATrCACAAGCAGGGTCCATTTTCCTCTC 965 162P1E6v.2 ATTATTGAGAACTGTGAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCTT 2040 10 162P1E6v.10 ATTATTGAGAACTGTGAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCTT 1025 162P1E6v.2 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTTCACCCTGGCAAAGA 2100 162P1E6v.10 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCGTGTrCACCCTGGCAAAGA 1085 15 *..... . 162P1E6v.2 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 162P1E6v.10 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 1145 20 162P1E6v.2 GCCCTTGCTTAAGGGCCTTTTTCAGAGAGACCCAATOCCCAGAAGGCTAGATCGTGGGG 2220 162PIE6v.10 GCCCTTGCTTAAGGGCCTTTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGTGGGG 1205 25 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 162P1E6v.10 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 1265 ************..**********************,********.****** 162P1E6v.2 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATOTTGGTGCTGAG 2340 30 162P1E6v. 10 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTGCTGAG 1325 162P1E6v.2 AACAGCCTTATGGGGCTTGCACTAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 2400 162P1E6v.10 AACAGCCrrTTATGGGGCTGCACTGAGCCATCGCATGTCTAACACAACAAGGAAGAG 1385 35 ********.e...*****.** 162P1E6v.2 GCCAGAGCAGCAACAGCACGCAAAGGGrGATGGGCATTTCTTTTAAGACAGAGCAGAAA 2460 162P1E6v.10 GCCAGAGCAGCAACAGCACGCAAAGGGTTGATGGGCATTTTTAAGACAGAGCAGAAA 1445 40 162P1E6v.2 ACTCTTAGATACTTrCGTCCTTCCTATTTGACTCAGTCTATGAAAGCCAGGTTAGCTG 2520 162P1E6v.10 ACTCTTAGATACTTTCGTCCTTCCTArTGACTCAGTCTATGAAAGCCAGGTTAGCTT 1505 45 162P1E6v.2 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATrTT 2580 162P1E6v.10 CTTTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCATrTT 1565 162PlE6v.2 CCAGGCACATCTrGGGGAGGATGTGGGGCCATTGGAGGCTGTCCrCCTGCATAAGTCTT 2640 50 162P1E6v.10 CCAGGCACATCTTCGGGAGGATGTGGGGCCATTGGAGGCTGTCCrCCTGGATAAGTCrr 1625 ......... ** *..***********.*********,**,,,,**.*,****,e.,* 162PlE6v.2 TAGGAGTGAGAACAAGGAGTCTTACCCrCCTCTGTCCACCCACCCCCATGAATGGCCTG 2700 162P1E6v.10 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 1685 55 **-****.**.****** ******-**.*.,**.****..**. 162P1E6v.2 GCTCCAGCCAGGAGTTGTGOTTTTTCCTGAGCTCCTCACCTATCTCTTCTGGATTTCACA 2760 162P1E6v.10 GCTCCAGCCAGGAGTTGTGGTTTTTCCTGAGCTCCTCACCTATCTCTTCTGGATTTCACA 1745 60 162P1E6v.2 TTGGCAAACGGGGTTGCAAAGTGCTCTTCGTGCTCTTTGGACAGTGCCTTGTGGAGAGGA 2820 162P1E6v.10 TTGGCAAACGGGGTGCAAAGTGCTCTTCGTGCTCTTTGGACArTGCCTTGTGGAGAGGA 1805 65 162P1E6v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTEGTAAGCAAGCTCAGAGTAGCTGGATTTTTC 2880 162P126v.10 ATGCCCATGCCCCTGCATrCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATTTrTC 1865 *.***.************.*************.******************** 162P1E6v.2 TAAAGCAATGCAGAACACCTGCTTTTTCrTGTTTCCTCAGAAAGGACCAACCACACC 2940 70 162P1E6v.10 TAAAGCAATTGCAGAACACCTGCTTTTTCTTTGTTTCCTCTAGAAAGGACCAACCACACC 1925 335 162P1E6v. 2 GAGCTCAGTrATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 162P1E6v.10 GAGCrCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 1985 5 1629186v.2 AACTAGGTAAACACAGAGGAGGTrCCACATGGACTATCTGGGTGGCTGTTTTGAAAACG 3060 162P1E6v.10 AACTAGGTAAACACAGAGGAGGTrCCACATGGACTrATCTGGGTNGCTGTrTTGAAAACG 2045 162P1E6v.2 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTGTC 3120 10 162P1E6v.10 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTC 2105 16291E6v.2 TGTGCAGCAGGTGCAAGGACGTGTTGAACTAGCTCrCTGCAGCCTCCTTGGAGGATGGA 3180 162P1E6v.10 TGTGCAGCAGGTGCAAGGACGTGTTGAACTAGCTCTCTGCAGCCTCCTTGGAGGATGTGA 2165 15 ............. .......................... 162P1E6v.2 TCCTATGGAGGGGTAGGAGTA~rCAGGTCCTTGACATCTCCCAAATGTGTGATTCCGGG 3240 162P186v.10 TCCTANGGAGGGGTAGGAGTATTCAGGTCCTTGACATCTCCCAAATGTGTGATTCCGGG 2225 20 162P1E6v.2 ATGCCAAAGGCCTTGCCAGGTAATGCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 3300 162P1E6v.10 ATCCAAAGGCCTTGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 2285 25 162P1E6V.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCTTCTCTTGTCCTTCATTCCACC 3360 162P186v.10 CACCCTCTGAGAAAAAGATCCrCGACAATCCATGTGCTTCTCTTGTCCTrCATTCCACC 2345 162P186v.2 GGAGTCTCTCATACCCAACCAGATTrCAGTGAGTGAAGTTCAGGAGGCATGGAGCTG 3420 30 162P1E6v.10 GGAGTCTGTCTCATACCCAACCAGATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 240S 162P186v.2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 162P136v.10 ACAACCATWAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 2465 35 162P186v.2 CAGCAGCAGCAGCAGCAGCAnCGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 3540 162P1E6v.10 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGATAACTCTACTAGGAATAGAAC 2525 40 162P1E6v.2 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTCTTCTLTCAGAGG 3600 162P1E6v.10 AGCCAGAGAGAAATGGATCAWAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAG 2585 45 162P1E6v. 2 GACGGGTGATGGGCAGATTGGAAAAGCACCGCAGATGGGAACCTTAATCrTCTTTTCT 3660 162P1E6v.10 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTAATCTTrCTTTTCr 2645 162PlE6v.2 AAATTATCTATGAAArGCGTTCTGTAACTTGTAAAACTAAAAG CTG 3720 50 162P1B6v.10 AAAATTGATGCTATGAAAATTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTGCrGT 2705 162P1E6v.2 CTA 3762 162P186v.10 CTACT hhhflAAAflhA 2747 55 Table LV(J). Nucleotide sequence alignment of 121P1F1 v.2 and 162P1E6 v.11 162P18E6v.2 CCTTGAATGGCTGAGTCCCTCTTCTCACCCTTGACTTGGAAAAACCAGTTTCTCTTT 60 60 162P1E6v.11 CCTTGAAATGGCTGAGTCCCTCTTGCTCACCCTTGACTTGGAAAAACCAGTTCTCET 60 162P186v.2 TATTGTCTMTTACTAATCTCTATTCTAAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 162P1E6v.11 TATrGTCTGTTACTAATCTCTATTCTAAAATTCAGCTCAATTCTCAACCATACTCCAAA 120 65 162P1E6v.2 CTCTCTCTrTTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 162P1E6v.11 CTCTCTCrTCCAGCTACCTTTACTCCCTCTCCTTCAATTCCACTTTCCTCTGCTTACT 180 70 162P1E6v.2 TTrrTrrrr GaCAGGGTCTCACTTTGTCGCCCGGGCAGGAGTGCAGTGCTCAAT 240 162P1E6v.11 ?rrrrrrrCrGACAGGGTCTCACrTTGTCGCCCGGCAGGAGTGCAGTGGCTCAAT 240 336 162 P1E6v .2 CTGGGCTCACTGCAGCCTCAACCTCCCAG'rCAAGC aCaCGCCTCGCCCaTC 300 162 P1Ev. 11 CTTGGGCrCACTGCAGCCTCCCCCAGGCA0ATTaCCCAGCCCC 300 5 162P21Ev. 2 AAGTAGCTGGGACrACAAGCGCACACCACCACGCCTGACTTTrGTA1T.~TO.GT 360 162P1R6v. 11 AATAGCGGACTACAGCGCCACCACCACCcTccAaTz-z-M TA7-nI'r7ny 360 10 162 P1S6v.2 AGAGGCGGGTTCAr-TTGCCAGACGTTGC TGAGCaaccCrAcTCC 420 162 PlR6v.11 A0AGCG000rTTCACCATTTGCCCACATCTTAQACa0AGT1A0CATCC 420 162 P1E6v.2 ACCTGCCTCOOCCTCCCAAATTTG0ATCACGCGTACCACCCTCGCTA~ 480 15 162P1IE6v.11 ACTCTGCTCAATrGGTAAGGACACCTCGCC 480 162 P1E6v.2 TGTCrrnCATTAAAGAGAGAAATCAACTATrCA00ACCGGCCCCCACCnTTCCTCA0 540 162 PXE6v. 11 TGTcrrrnMCATAAAGAGAAAATCAACTArrCAGGACCGCCCCACCmCCCAG 540 20 * 162 P1E6v.2 GATATCOTCCCGCTCGACGGCTAAAG3AGG~ 600 16218Ev. 11 OAGTCATrTCTGTTCCGCACAGGCa0GCTGAAC0OGTCTTTATATGQTAGT.IY. 600 25 16218Ev. 2 C~-~I GTCTTCCACTACGAAGACTCAATGA 660 162 P1E6v. 11 CTA7MTCCGCTAGCTG7CAAAAACAG7rSA 660 30 .16218Ev. 2 TrrTCrrrCTCCTCATCrGCATGGCTGTAGCCATCTCTCTrn-rCTGCATnATaTAT 720 16218Ev. 11 TT=CrTCCTTCTGTTACACCCGTMATTTA 720 162 PlE6v. 2 GACAAAAAAAAAAAATTC rrAMAGCAAACCAAAaCTAGGCaGAVGTCA 780 35 16218Ev.l 11 ACAAAAAAAAAAATTCTTAnGACAAACTJAAGCTAGTCCIQA.JGCTCAAG 780 162 P1E6v. 2 GCCGIATGATAAGGGCGAT~.GTTGGATrGA 840 16218Ev. 11 GCCGTCC;A~AAOGGCGATTTGIrGGACTGX 840 162 2186v.2 AAAAAGGGCAA~GGOTATGCGAGGA.~GAAT 900 162 PlE6v. 11 AAAAAGGGCAACGGGTAT(GCGAGGA3CCAAT 900 45 16218Ev. 2 CCTTrATCATATACATCCCAGCAATGTACTIT 960 162 PlE6v. 11 CCATATrACCAAGTCAATTATCACTTCaCCAAGCTAATAGTAAOCTG 960 50 162 P1ECv.2 CATTACATCCGCCTGTGTTTAGArCAGACCG 1020 16218Ev. 11 CATTACATCCCCCrC0CTTCCAC~TCG(ACCG 1020 162218Ev. 2 CATATCGTAATGATGTGAAGTGTCIACGTG 1080 55 16218Ev. 11 CATATCGTAATGATGTTAAGTGT3TACGTAG 1080 16211Ev. 2 ACAGTrTGTT~~GT~TGAA7rCc~TrAG~A~Ar 1140 16218Ev. 11 ACAGTGACCGCVa GGAA7rCCArGAACGG~ 1140 16218Ev. 2 TGCGTrTATCCGTCGGTCCTTCGAATTGACG 1200 162PI1Ev.11 TGCGr CGCTGGCGGGCCTGAMAATTGACG 1200 65 * * * * *** * * * * * 162 PlE6v, 2 TrrCArrCTnGAGTCTCATGrCAAGrr00rrI1MTGTTATAAGACACTTGtJGACOT 1260 16218Ev .11 TTTCATT=nGAGTCTCATGTCAA0TT1GGTTI7ATGrATAAACACTTG(00AC0T 1260 70 .16218Ev. 2 AACTAGCOTGGGAAATGTATGTGCTCCGACA 1320 162 2186v. 11 AACTAGCGTGGGAAATGTATGTGCTCCGACA 1320 337 162P1E6v.2 CCCATGCATGGTTTGTTCTCTGATCGTGCATGTGCTTGGCTCTAGACCCATGTAACCATG 1380 162P1E6v.11 CCCATGCATGGTTTGTTCTCTGATCGTGCATGTGCTTGGCTCTAGACCCATGTAACCATG 1380 5 162 P1E6v. 2 GAAGGCCACTGGGGGATTCAGTTGGCAAAGGCATAGGGGCAGAAGAATCTTGAACAA 1440 162P1E6v.11 GTGAAGGCCACTGGGGATTCAGTTGGCAAAGGCATAGTGGGCAGAAGAATCTTGAACAA 1440 162PiE6v.2 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTGACTCATGGTrTGTCTCTGC 1500 10 162P1E6v.11 GGAGTCCAGAGCAGGTCAAGTCTCCTGATACAGGTrGTGACTCATGGTTTTTGTCTCTGC 1500 162P1E6v.2 CTGTAGCAGCTACAGGTCTGTAAAGCAAGGGGAGAGTGATAAGGAAAGAACrCACCTTTC 1560 162P1E6v.11 CGTAGCAGCTACAGGTCTGTAAAGCAAGGGOAGAGTGATAAGGAAAGAACTCACCpTTC 1560 162P1E6v.2 TGGGGCTCTCTGACATTAATGCCACCTCCCAT TrCTTTGCAGACACTGTCATCTCrC 1620 162P1E6v.11 TGGGGCTCTCTGACATTAACCACCTCCCATTTGCTTTTTGCAGACACTGTCATCrCTC 1620 20 162P1E6v.2 AAGTACCCATCTNGAGGGTACGGACCCCACATGAGGGTGAGGCTCCTGCACACTCCAG 1680 162P1E6v.11 AAGTACCCATCTTGAGGGTACGGACCCCACATGAGGGTGAGGCTCTCTGCACACTCCAG 1680 ************************ ****............ .. 25 162P1E6v.2 AGTGAGGACTTTAATAATCTAGTGGACTACATGTTGGGAGGGGAAGAGCGGGGTGCCG 1740 162P1E6v.11 AGAGGACTTTAATAATCTAGTGACTGTACATGTTGGGAGGGGAAGAGCGGGGTGCCG 1740 162P1E6v.2 AGGGTCTGGAGGGAGAAGAATTGACTCCCCTTTTGCTCTTGGAGTTAAGCAGAAATCrA 1800 30 162PlE6v.11 AGGGTCTGGAGGGAGAAGAATTGACrGCCCCTTTTGCTCTrGGAGTTAAGCAGAAATCTA 1800 162P1E6v.2 AAGAGAAGGCAAAGAATCTTGCCIrCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 162P1E6v.11 AAGAGAAGGCAAAGAATCTTGCCTTCCTGGCGTCATTTCCTCCTACCATCCCAGGCCATC 1860 162PiE6v.2 ATTTATTTATTACAGCCAACAGACTGGCCTCTTCTTCCCrTACTGGAATGGGTCAA 1920 162P1E6v.11 ATTTATTTATTACAGCCAACAGACTGGCCTCTTrTTCCCIrACTGGAATGGGTCAA 1920 40 162P1E6v.2 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATTCACAAGCAGGGTGCATTTTCCTCTC 1980 162P1B6v.11 AGGCGGTGCAGGAGGAGGATCTGGTCCAGATAATrCACAAGCAGGGTGCATTTTCCTCTC 1980 45 162P1E6v.2 ATTATIGAGAACTTGAGTGTTTATCAAGAAGGCAGAGCAGGAGAAGATGAACCAGTCTT 2040 162P1E6v.11 ATTATrGAGAACTTGAGTGTTTATCAAGAAGGCAGCAGGAGAAGATGAACCAGTCTT 2040 162P1E6v.2 CTTCCCCTCACCCAGATCrCTGCCTGCCAACAAGCCCCGTGCACCCGGCAAAGA 2100 50 162P1E6v.11 CTTCCCCTCACTACCCAGATCTCTGCCTGCCAACAAGCCCCG'TTCCCCTGGCAAAGA 2100 162P1E6v.2 GTCTTTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 162P1E6v.11 GTCrTACATTCAGACCAAGGAGAGTGTGACTCCTTCTCAGCACTAGCTAGAAACCTCAA 2160 55 ...... *......*.... 162P1E6v.2 GCCCTTCTTAAGGGCCTTTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGGGGG 2220 162P1E6v.11 GCCCTTGCTTAAGGGCCTTTTTCAGAGAGACCCAATGCCCAGAAGGCTAGATGCGUGGG 2220 60 162P1E6v.2 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 162PlE6v.11 AGGAGCCACATACGAGAAACTGCCTCCCTGCTTCGGGTCAGAACAAGCCCCAGGAAGAAA 2280 65 162P1E6v.2 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTGCTGAG 2340 162P1E6v.11 GTATTTCAAACAACAAGGTGCATCTGCCCCAACCCATCCAGCCTGCATGTTGGTGCTGAG 2340 **.*..****.**** *************.***..***..*...*............. 162P1E6v.2 AACAGCCTTTTATGGGGCTTGCACTGAGCCATGGGCATGTCTGAACACAACAAGGAAGAG 2400 70 162P1E6v.11 AACAGCCTTATGGGGCTTGCACTGAGCCATGGGCATGTCTGAACACACACAAGGAAGAG 2400 338 162P116v.2 GCCAGAGCAGCAACAGCACOCAAAGGGTTGATGGGCATTTCTTTTAAGACAGAGCAGAAA 2460 162PlE6v.11 GCCAGAGCAGCAACAGCACGCAAAGGGTTGATGGGCATTTCTTTTAAGACAGAGCAGAAA 2460 5 162PlE6v.2 ACTCTTAGATACTTrGCGTCCTTCCTATTTGACTCAGTCTATGAAAGCCAGGrTAGCTTG 2520 162P1E6v.11 ACTCTTAGATACTTTGCCOTCCTTCCTATTGACTCAGTCTATGAAAGCCAGGTTAGCTTG 2520 162P1E6v.2 CTTTCTTCCTCCCTAAATCCCCATCCTCATGACCAACAAAGAAATAOTTGAATCATTTT 2580 10 162P1E6v.11 CTrrTCTTCCTCCCTAAATCCTCCATCCTCATGACCAACAAAGAAATAGTTGAATCArrTr 2580 162P1E6v.*2 CCAGGCACATTTGGGGAGGATGTGGGCCATTGGAGGCTGTCCTTCCTGGArAAGTCTT 2640 162P1E6v.11 CCAGGCACATCTTGGGGAGGATGTGGGCCATTGGAGGCTGTCCTTCCTGGATAAGTCTT 2640 15 -- **** ***.. 162P1E6v.2 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 2700 162P16v.11 TAGGAGTGAGAACAAGGAGTCTTACCCTCCTCTGTCCACCCACCCCCATGAATGGGCCTG 2700 20 162P1E6v.2 GCTCCAGCCAGGAGTTGTGGTTIrTCCTGAGCTCCTCACCTATCTCTTCTGGATTTCACA 2760 162P1E6v.11 GCTCCAGCCAGGAGTTGTGGTTTTCC'AGCTCCTCACCTATCTCTTCTGGArrTCACA 2760 25 162P1Ev .2 TTGGCAAACGGGGTTGCAAAG2ICTCTTCGTGCTCTTTGGACAGTGCCTTGTGGAGAGGA 2820 162PlE6v.11 TTGGCAAACGGGGTTGCAAAGTGCTCCGTGCTCrTGGACAGTCCTTGTGGAGAGGA 2820 162P1E6v.2 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTG3ArrrrTC 2880 30 162P1E6v.11 ATGCCCATGCCCCTGCATTCCAAGGCCTTGGTAAGCAAGCTCAGAGTAGCTGGATTTTTC 2880 162P1E6v.2 TAAAGCAATTGCAGAACACaCTTTTTCTTTGTTCCTCTAGAAAGGACCAACCACACC 2940 162P1E6v.11 TAAAGCAATTGCAGAACACCTGCrTTTCTTTGTTTCCTCTAGAAAGGACCAACCACACC 2940 35 * 162P1E6v.2 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 162P1E6v.11 GAGCTCAGTTATGGCACACACAGTGGGACCTAGACAAAGGGAGAGGGTGACCGACATCCC 3000 40 162P1E6v.2 AACTAGGTAAACACAGAGGAGGTTCCACATGGACTTATCTGGGTGGCTGTTTTGAAAACG 3060 162P1E6v.11 AACTAG------------------------------------------------------- 3006 45 162P1E6v.2 AGAAACAGTCAAGAGTCCCTGGCCCCACAGACCCACCTCCCCAACTCAGCACTGTCTGTC 3120 162P1E6v.11 ----------------------------------------------------------- 162P1E6v.2 TGTGCAGCAGGTGCAAGGACOTGrTGAACTAGCTCTCTGCAGCCTCCTGGAGGATGTGA 3180 50 162P1E6v.11 ----------------------------------------------------------- 162P1E6v.2 TCCTATGGGAGGGGTAGGAGTATrCAGGTCCTTGACATCTCCCAAATGTGTGATTCCGGG 3240 162P1E6v.11 ----------------------------------------------------------- 55 162PLE6v. 2 ATGCCAAAGGCCTTTGGCCAGGTAATGCAGTGTCTACAGGCTGAGGTTGACATGCATCCC 3300 162P1E6v.11 ----------------------------------------------------------- 60 162P1E6v.2 CACCCTCTGAGAAAAAGATCCTCAGACAATCCATGTGCTTCTCTTGTCCTTCATTCCACC 3360 162P1E6v.11 ----------------------------------------------------------- 65 162 P1E6v. 2 GGAGTCTGTCTCATACCCAACCAGATTrCAGTGGATGAAGTTCAGGAGGCATGGAGCTG 3420 162P1E6v.11 ------------------------ ATTTCAGTGGAGTGAAGTTCAGGAGGCATGGAGCTG 3042 *******************************.********.*.***. 162PlE6v.2 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCGCCGCCGCCACCACCGTAGCAGCAG 3480 70 162P1E6v.11 ACAACCATGAGGCCTCGGCAGCCACCGCCACCACCOCCGCCGCCACCACCGTAGCAGCAG 3102 339 162P1E6v. 2 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 3540 162P1E6v.11 CAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAAGAGTAACTCTGACTTAGGAATAGAGAC 3162 5 162PttE6v.2 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 3600 162P1E6v.11 AGCCAGAGAGAAATGTGATCAATGAAGGAGACATCTGGAGTGTGCGTGCTTCTTCAGAGG 3222 162P1E6v.2 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTAAT CTTTCTC 3660 10 162P1E6v.11 GACGGGTGATGGGCAGATTGGAAAAAGCACCGCAGATGGGAACCTTAATCTTCTTTTCr 3282 162P1E6v.2 AAAATTGATGCTATGAAAATTTGCGTTTTCTGTAACTTGTAAAAACTAAAAGTTGCTTGT 3720 162P1E6v.11 AAAATTGATGCTATGAAAATTTGCGTTrTCTGTAACTGTAAAAACTAAAAGTTGCTTGT 3342 15..... 162P1E6v.2 CTB3762 162P1E6v.11 CTACTG 3384 .... **** * ****.*.****.**...*****.*.. 20 340 Table LVI(A). Peptide sequences of protein coded by 162P1E6 v.2 MTNKEIVESF SRHILGRMWG HWRLSFLDKS LGVRTRSLTL LCPPTPMNGP GSSQELWFFL 60 SSSPISSGFH IGKRGCKVLF VLFGQCLVER NAHAPAFQGL GKQAQSSWIF LKQLQNTCFF 120 FVSSRKDQPH RAQLWHTQWD LDKGRG 146 5 Table LVI(B). Peptide sequences of protein coded by 162P1E6 v.3 LKWAESLLLT LDLEKPVSLL LSVTNLYSKN SAQFSTILQT LSFPATFTPS PSIPLSSAYF 60 FFFSDRVSLC RPGRSAVAQS WAHCSLNLPE AGFHHVAQTG LELLSLSNPP ASASQSVGIT 120 10 GVSHRIRPHV LFH 133 Table LVI(C). Peptide sequences of protein coded by 162P1E6 v.4 MFFFIKERNQ LFRTGPHLSS GVISVPHRPA ELGALYRTLS SLKYPSWRVR TPHEDFSGVK 60 15 FRRHGADNHE ASAATATTAA ATTVAAAAAA AAAAAAARVT LT 102 Table LVI(D). Peptide sequences of protein coded by 162P1E6 v.5 MFFFIKERNQ LFRTGPHLSS GVISVPHRPA ELGALYRKGP TTPSSVMAHT VGPRQRERVT 60 20 DIPTRFQWSE VQEAWS 76 Table LVI(E). Peptide sequences of protein coded by 162P1E6 v.6 MFFFIKERNQ LFRTGPHLSS GVISVPHRPA ELGALYRTLS SLKYPSWRVR TPHEERTNHT 60 25 ELSYGTHSGT 70 Table LVI(F). Peptide sequences of protein coded by 162P1E6 v.7 MFFFIKERNQ LFRTGPHLSS GVISVPHRPA ELGALYRTLS SLKYPSWRVR TPHEDFSGVK 60 30 FRRHGADNHE ASAATATTAA ATTVAAAAAA AAAAAAARVT LT 102 Table LVI(G). Peptide sequences of protein coded by 162P1E6 v.8 MFFFIKERNQ LFRTGPHLSS GVISVPHRPA ELGALYRTLS SLKYPSWRVR TPHEERTNHT 60 35 ELSYGTHSGT 70 Table LVI(H). Peptide sequences of protein coded by 162P1E6 v.9 MTNKEIVESF SRHILGRMWG HWRLSFLDKS LGVRTRSLTL LCPPTPMNGP GSSQELWFFL 60 40 SSSPISSGFH IGKRGCKVLF VLFGQCLVER NAHAPAFOGL GKQAQSSWIF LKQLQNTCFF 120 FVSSRKDQPH RAQLWHTQWD LDKGRG 146 Table LVI(I). Peptide sequences of protein coded by 162P1E6 v.10 45 MTNKEIVESP SRHILGRMWG HWRLSFLDKS LGVRTRSLTL LCPPTPMNGP GSSQELWFFL 60 SSSPISSGFH IGKRGCKVLF VLFGQCLVER NAHAPAFQGL GKQAQSSWIF LKQLQNTCFF 120 FVSSRKDQPH RAQLWHTQWD LDKGRG 146 50 Table LVI(J). Peptide sequences of protein coded by 162P1E6 v.11 MTNKEIVESP SRHILGRMWG HWRLSFLDKS LGVRTRSLTL LCPPTPMNGP GSSQELWFFL 60 SSSPISSGFH IGKRGCKVLF VLFGOCLVER NAHAPAFQGL GKQAQSSWIF LKQLQNTCFF 120 FVSSRKDQPH RAQLWHTQWD LDKGRG 146 341 Table LVI(A). Anino acid sequence alignment of 121PIFI v.1 and 162P1E6 v.2 162P1E6v.1 MTNKEIVESFSRHILGRMWGHWRLSFLDKSLOVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162ple6V. 2 MTNKBIVESFSRHILGRMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162P1E6v.1 SSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCFF 120 162ple6V.2 SSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCFF 120 10 162P1E6v.1 FVSSRKDQPHRAQLWHTQWDLDKGRG 146 162plegV.2 FVSSRKDQPHRAQLWHTQWDLDKGRG 146 15 Table LVII(B). Amino acid sequence alignment of 121PlF1 v.2 and 162P1E6 v.3 162ple6V.2 -MTNKEIVESFSRHILGRMWGHWRLSFLDKSLWVRTRSLTLLCPPTPMNGPGSSQELWFF 59 162ple6V.3 LKWAESLLLTLDLEKPVSL.LLSVTNLYSKNSAQFSTILQTLSFPATFTPSPSIPLSSAYF 60 20 :.:: ::. . . . * ** *.. .. . . 162ple6V.2 LSSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCF 119 162ple6V.3 PFFBDRVSLCRPGRSAVAQSWAHCSLNLPEAGFHHVAQMLELLSLS--NPPASASQSVG 118 25 * i . . * * * * 25 162ple6V.2 FFVSSRKDQPHRAQLWMTQWDLDKGRG 146 162ple6V.3 ITGVSHRXRPH--VLFH---------- 133 30 Table LVII(C). Amino add sequence alignment of 121PIFI v.2 and 162P1E6 v.4 162ple6V.2 -MTNKEIVESSRHIWRMWGHWRLSFLDKSLVRTRSLTLLCPPTPMNGPGSSQELWFF 59 162ple6V.4 MFFFIKENQLFRTGPHLSSGVISVPHRPAELALYRTLSSLCYPS-----------WRV 49 35 . . . . . ,.. . .. . . .. . 162ple6V.2 LSSSPISSGFHIGRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSWIFLKQLQNTCF 119 162ple6V.4 RTPHEDFGVKFRRHGADNHEASAATATTAAATTVAAAAAAAAAAAAARVTLT------- 102 40 .. .. . . . .* .* : :* 40 .'.. ". . '.'. ''.'. . ''. '. '* ":: ' 162ple6V. 2 FFVSSRKDQPHRAQLWHTQWDLDKGRG 146 162ple6V.4 -------------------------- 45 Table LVII(D). Amino acid sequence alignment of 121P1F1 v.2 and 162P1E6 v.5 162ple6V.2 MTNKEIVESFSRHILRMqWGHWRLSPLDKSIOVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162ple6V.S - ------------- -- F- - FFIKERNQLFRTGPHLSSGVISVPHRPAELGA --------- LY 36 50 * : . .: .. : . .: .. .. 162ple6V.2 SSSPISSGFHIGKRGCKVLFVLGQCLVERNAHAPAPQGLGKQAQSSWIFLKQLQNTCFF 120 162ple6V.5 RKGPTTP--------SSVMAHTVGPRQRERVTDIP--------TRFQWS---EVQ----- 72 55 ''' ' ..*: '' * ' * " . " * 162ple6V.2 FVSSRKDQPHRAQLWHTQWDLDKORG 146 162ple6V.5 ----------------EAWS------ 76 60 Table LVII(E). Amino acid sequence alignment of 121P1F1 v.2 and 162P1E6 v.6 162ple6V. 2 MTNXEIVNSFSRHILGRMWGHWRLSFLDKSWVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162ple6V.6 -------------------------------------------------------- MPFI 5 65 162ple6V.2 SSSPISSGHIGKRGCKVLFLFGQCLVNAHAPAFQGIKQAQSSWIPLKQLQNTCFF 120 162ple6V.6 KER--NQLFRTOPH--------LSSGVIS-VPHRP--AELG----ALYRTLSSLK----- 43 70 162ple6V.2 FVSSRKDQPHRAQLWHTQWDLDKGRG- 146 162ple6V.6 YPSWRVRTPHEERTNHTELSYGTHSGT 70 342 Table LVII(F). Amino acid sequence alignment of 121PIFI v.2 and 162P1E6 v.7 5 162ple6V.2 -MTNKEIVESFSRHIILRMWGHWRLSFLDKSWVRTRSLTLLCPPTPMNGPGSSQELWFF 59 162ple6V.7 MFFFIKERNQLFRTGPHLSSGVISVPHRPAELGALYRTLSSLKYPS-----------WRV 49 162ple6V.2 LSSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCF 119 10 162ple6V.7 RTPHEDFSGVKFRRHGADNHEASAATATTAAATTVAAAAAAAAAAAAARVTLT------- 102 162ple6V.2 FFVSSRKDOPHRALWHTQWDLDKGRG 146 15 162pie6V.7
--------------------------
Table LVI(G). Amino acid sequence alignment of 121P1F1 v.2 and 162P1E6 v.8 20 162pie6V.2 MTNKEIVESFSRHIGRMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162ple6V.8 -------------------------------------------------------- MFFFI 5 162ple6V.2 SSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCFF 120 25 162ple6V.8 KER--NQLFRTGPH---------LSSGVIS-VPHRP--AELG----ALYRTLSSLK----- 43 162ple6V.2 FVSSRKDQPHRAQLWHTQWDLDKGRG- 146 162ple6V.8 YPSWRVRTPHEERTNHTELSYGTHSGT 70 30 : - . * . . : .*: . .. * Table LVI(H). Amino acid sequence alignment of 121PIF1 v.2 and 162P1E6 v.9 35 162P1E6v.2 MTNKEIVESFSRHILGRMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162ple6V.9 MTNKEIVESPSRHILGRMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSoELWPFL 60 **.** ******.******* ***..**********-*.. 162P1E6v.2 SSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAPQGLGKQAQSSWIFLKQQNTCFF 120 40 162ple6V. 9 SSSPISSGFHIGKRGCCKVLFVLPGQCLVERNAHAPAFQGIKQAQSSWIFLKQLQNTCPF 120 162P1E6v.2 FVSSRKDQPHRAQLWHTQWDLDKGRG 146 162ple6V.9 FVSSRKDQPHRAQLWHTQWDLDKGRG 146 45 -- ---- *-. Table LVII(I). Amino acid sequence alignment of 121PIF1 v.2 and 162P1E6 v.10 50 162p1E6v.2 MI'NKEIVESFSRHILGRMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSQELWFPL 60 162ple6V.10 MTNKEIVESFSRHILGRMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162P1E6v.2 SSSPISSGFHIGKRGCCVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCPF 120 55 162ple6V.10 SSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCFF 120 162P1E6v.2 FVSSRKDQPHRAQLWHTQWDLDKGRG 146 162ple6V.10 FVSSRKDQPHRAQLWHTQWDLDKGRG 146 60 . Table LVH(J). Amino acid sequence alignment of 121P1F1 v.2 and 162P1E6 v.11 65 162P1E6v.2 MTWEIVESFSRHILGRMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162ple6V.11 MTNKEIVESFSRHIIORMWGHWRLSFLDKSLGVRTRSLTLLCPPTPMNGPGSSQELWFFL 60 162P1E6v.2 SSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFQGLGKQAQSSWIFLKQLQNTCFF 120 70 162ple6V.11 SSSPISSGFHIGKRGCKVLFVLFGQCLVERNAHAPAFOGIGKOAQSSWIFLKQLQNTCFP 120 343 162P1E6v. 2 PVSSRWQPHRAQLWHTQWDLDKGRG 146 lE2ple6Vafl FVBSRWQPHRAQLWHTQWflLDKGRfl 146 344

Claims (13)

  1. 2. A method of examining a biological sample for evidence of dysregulated cellular growth comprising comparing the level of expression of a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 15 and 23 evidenced in the biological sample to the level of expression evidenced in a corresponding normal sample, wherein an elevation in the level of expression of the protein evidenced in the biological sample as compared to the normal sample is an indication that the sample displays dysregulated cellular growth or is conditioned by cells that display dysregulated cellular growth. 20
  2. 3. The method according to claim I or claim 2, wherein the elevation in the level of expression of the protein is identified by the presence of the protein in a biological sample of, or conditioned by, a tissue in which the protein is normally absent. 25 4. The method according to any preceding claim, wherein the test and normal samples are selected from the group consisting of prostate tissue, lung tissue, breast tissue, kidney tissue, bladder tissue, cell preparations, serum, bone, urine and semen.
  3. 5. The method according to any preceding claim, wherein determining or 30 comparing the level of expression of the protein in the test sample comprises contacting the sample or a portion thereof with an antibody that specifically binds the protein.
  4. 6. The method according to claim 5, wherein the antibody comprises a polyclonal antibody. 35 346
  5. 7. The method according to claim 5, wherein the antibody comprises a monoclonal antibody.
  6. 8. The method according to claim 5, wherein the level of expression of the protein 5 in the biological sample is evaluated by observing the presence or absence of a immunoreactive complex comprising the protein and an antibody or protein binding fragment thereof.
  7. 9. The method according to any one of the preceding claims, wherein the level of 10 expression of the protein in the biological sample is evaluated by an immunoassay which measures a concentration of a free protein, a concentration of the protein complexed to an antibody or antigen binding fragment thereof, or a ratio comparing a concentration of a free protein to a concentration of the protein complexed to an antibody or antigen binding fragment thereof. 15
  8. 10. A method of detecting the presence of prostate cancer in an individual comprising: (a) determining the level of mRNA expression that encodes a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 20 17, 19, 21 and 23 as evidenced in a prostate test sample obtained from the individual; and (b) comparing the level so determined to the level of mRNA expression in a corresponding normal prostate sample, wherein elevated expression of the mRNA evidenced in the prostate test sample 25 relative to the normal prostate sample is an indication of the presence of prostate cancer in the individual.
  9. 11. A method of examining a biological sample for evidence of dysregulated prostate cellular growth comprising 30 comparing the level of expression of the mRNA that encodes a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 evidenced in a biological prostate sample to the level of expression evidenced in a corresponding normal prostate sample, wherein an elevation in the level of expression of the mRNA evidenced in the 35 biological prostate sample as compared to the normal prostate sample is an indication that the biological prostate sample displays dysregulated cellular growth. 347
  10. 12. A method of examining a biological sample for evidence of dysregulated prostate cell proliferation comprising: comparing the level of expression of the mRNA that encodes a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 5 17, 19, 21 and 23 evidenced in a biological prostate sample to the level of expression evidenced in a corresponding normal prostate sample, wherein an elevation in the level of expression of the mRNA evidenced in the biological prostate sample as compared to the normal prostate sample is an indication that the biological prostate sample displays dysregulated cell proliferation. 10
  11. 13. The method according to claim 11 or claim 12, wherein the level of expression of the mRNA is evaluated by a method selected from the group consisting of Southern analysis, Northern analysis, polymerase chain reaction analysis and immunoassay. 15 14. Use of an effective amount of an antibody or antigen binding fragment thereof that specifically binds to a protein comprising the amino acid sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 for the preparation of a medicament to inhibit the growth or invasiveness of a neoplastic cell that expresses the protein, wherein the neoplastic cell is selected from the group consisting of lung, 20 breast, kidney, bladder and prostate neoplastic cells.
  12. 15. The use according to claim 14, wherein the antibody or fragment thereof binds an epitope within a predominantly cell surface associated domain of the protein. 25 16. The use according to claim 14 or claim 15, wherein the antibody is coupled to a cytotoxic agent.
  13. 17. Use of an effective amount of an antisense RNA fragment to a mRNA comprising the coding sequence of any one of SEQ ID NOs: 3, 5, 7, 9, 11, 13, 15, 17, 30 19, 21 and 23 for the preparation of a medicament to inhibit the expression of a protein in a lung, breast, kidney, bladder, or prostate cancer cell.
AU2007237282A 2001-04-10 2007-11-30 Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer Ceased AU2007237282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007237282A AU2007237282B2 (en) 2001-04-10 2007-11-30 Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/283,112 2001-04-10
US60/286,630 2001-04-25
AU2002305169A AU2002305169C1 (en) 2001-04-10 2002-04-09 Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer
AU2007237282A AU2007237282B2 (en) 2001-04-10 2007-11-30 Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2002305169A Division AU2002305169C1 (en) 2001-04-10 2002-04-09 Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer

Publications (2)

Publication Number Publication Date
AU2007237282A1 AU2007237282A1 (en) 2007-12-20
AU2007237282B2 true AU2007237282B2 (en) 2012-03-15

Family

ID=38835240

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007237282A Ceased AU2007237282B2 (en) 2001-04-10 2007-11-30 Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer

Country Status (1)

Country Link
AU (1) AU2007237282B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056763A1 (en) * 1998-05-07 1999-11-11 The Regents Of The University Of California Use of neglected target tissue antigens in modulation of immune responses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999056763A1 (en) * 1998-05-07 1999-11-11 The Regents Of The University Of California Use of neglected target tissue antigens in modulation of immune responses

Also Published As

Publication number Publication date
AU2007237282A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
EP2280030A2 (en) Nucleic acids and corresponding proteins useful in the detection and treatment of various cancers
US7667015B2 (en) Nucleic acid and corresponding protein entitled 151P3D4 useful in treatment and detection of cancer
US7982004B2 (en) Nucleic acid and corresponding protein entitled 161P5C5 useful in treatment and detection of cancer
EP1372719B1 (en) Nucleic acid and corresponding protein entitled 125p5c8 useful in treatment and detection of cancer
AU2002305169A1 (en) Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer
AU2002258626A1 (en) Nucleid acid and corresponding protein entitled 158P3D2 useful in treatment and detection of cancer
AU2002324842C9 (en) 205P1B5 in treatment and detection of cancer
AU2010201755B2 (en) Nucleic acid and corresponding protein entitled 121P2A3 useful in treatment and detection of cancer
AU2007237282B2 (en) Nucleic acid and corresponding protein entitled 162P1E6 useful in treatment and detection of cancer
AU2002258688B2 (en) Nucleic acid and corresponding protein entitled 238P1B2 useful in treatment and detection of cancer
AU2007203659B2 (en) 205P1B5 in treatment and detection of cancer
AU2002307250A1 (en) Nucleic acid and corresponding protein entitled 121P2A3 useful in treatment and detection of cancer

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired