AU2007237193B2 - Nociceptin Analogs - Google Patents

Nociceptin Analogs Download PDF

Info

Publication number
AU2007237193B2
AU2007237193B2 AU2007237193A AU2007237193A AU2007237193B2 AU 2007237193 B2 AU2007237193 B2 AU 2007237193B2 AU 2007237193 A AU2007237193 A AU 2007237193A AU 2007237193 A AU2007237193 A AU 2007237193A AU 2007237193 B2 AU2007237193 B2 AU 2007237193B2
Authority
AU
Australia
Prior art keywords
dihydro
piperidinyl
indole
alkyl
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2007237193A
Other versions
AU2007237193A1 (en
Inventor
Zhengming Chen
Richard R Goehring
Donald Kyle
Qun Sun
Sam Victory
John Whitehead
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Euro Celtique SA
Original Assignee
Euro Celtique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2005227380A external-priority patent/AU2005227380B2/en
Application filed by Euro Celtique SA filed Critical Euro Celtique SA
Priority to AU2007237193A priority Critical patent/AU2007237193B2/en
Publication of AU2007237193A1 publication Critical patent/AU2007237193A1/en
Assigned to EURO-CELTIQUE S.A. reassignment EURO-CELTIQUE S.A. Alteration of Name(s) of Applicant(s) under S113 Assignors: EURO-CELTIQUE, S.A.
Application granted granted Critical
Publication of AU2007237193B2 publication Critical patent/AU2007237193B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

P/00/011 28/5/91 Regulation 3.2 AUSTRALIA Patents Act 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Name of Applicant: Euro-Celtique, S.A.S. Actual Inventor Sun, Qun Goehring, Richard R Kyle, Donald Chen, Zhengming Victory, Sam Whitehead, John Address for service is: WRAY & ASSOCIATES Level 4, The Quadrant 1 William Street Perth, WA 6000 Attorney code: WR Invention Title: "Nociceptin Analogs The following statement is a full description of this invention, including the best method of performing it known to me: 1/1 NOCICEPTIN ANALOGS This application claims priority from U.S. Provisional Application Serial Nos. 60/284,666; 60/284,667;*60/284,668; 60/284,669 all filed April 18, 2001, the disclosures of which are hereby incorporated by reference. BACKGROUND OF THE INVENTION Chronic pain is a major contributor to disability and is the cause of an untold amount of suffering. The successful treatment of severe and chronic pain is a primary goal of the physician with opioid analgesics being preferred drugs. Until recently, there was evidence of three major classes of opioid receptors in the central nervous system (CNS), with each class having subtype receptors. These receptor classes were designated as p, 8 and ic. As opiates had a high affinity to these receptors while not being endogenous to the body, research followed in order. to identify and isolate the endogenous ligands to these receptors. These ligands were identified as enkephalins, endorphins and dynorphins. Recent experimentation has led to the identification of a cDNA encoding an opioid receptor-like (ORLi) receptor with a high degree of homology to the known receptor classes. This newly discovered receptor was classified as an opioid receptor based only on structural grounds, as the receptor did not exhibit pharmacological homology. It was initially demdnstrated that non-selective ligands having a high affinity for p', 8 and ic receptors had low affinity for the ORLI. This characteristic, along with the fact that an endogenous ligand had not yet been discovered, led to the term "orphan receptor". Subsequent research led to the isolation and structure of the endogenous ligand of the ORLl receptor. This ligand is a seventeen amino acid peptide structurally similar to members of the opioid peptide family. The discovery of the ORLI receptor presents an opportunity in drug discovery for novel compounds which can be administered for pain management or other syndromes modulated by this receptor. All documents cited herein, including the foregoing, are incorporated by reference in their entireties for all purposes. 1/2 OBJECTS AND SUMMARY OF THE INVENTION It is accordingly an object of certain embodiments of the present invention to provide new compounds which exhibit affinity for the ORLI receptor. It is an object of certain embodiments of the.present invention tb provide new compounds which exhibit affinity for the ORLI receptor and one or more of the p, 5 or ic receptors. It is an object of certain embodiments of the present invention to provide new compounds for treating a patient suffering from chronic or acute pain by administering a compound having affity for the ORL1 receptor. It is an object of certain embodiments of the present invention to provide new compounds which have agonist activity at the p, 5 and K receptors which is greater than compounds currently available e.g. morphine. It is an object of certain embodiments of the present invention to provide methods of treating chronic and acute pain by administering compounds which have agonist activity at the p, 5 and K receptors which is greater than compounds currently available. It is an object of certain embodiments of the present invention to provide methods of treating chronic and acute pain by administering non-opioid compounds which have agonist activity at the p., 8 and ic receptors and which produce less side effects than compounds currently available. It is an object of certain embodiments of the present invention to provide compounds useful as analgesics, anti-inflammatories, diuretics, anesthetics and neuroprotective agents, anti-hypertensives, anti-anxioltics; agents for appetite control; hearing regulators; anti-tussives, anti-asthmatics, modulatois of locomotor activity, modulators of learning and memory, regulators of neurotransrnitter and hormone release, kidney function modulators, anti-depressants, agents to treat memory loss due to Alzheimer's disease or other dementias, anti-epileptics, anti-convulsants, agents to treat withdrawal from alcohol and drugs of addiction, agents to control water balance, agents to control sodium excretion and agents to control arterial blood-pressure disorders and methods for administering said compounds. The compounds of the present invention are useful for modulating a pharmacodynamic response from one or more opioid receptors (ORL-1, g, 6 and K) centrally and/or peripherally. The response can be attributed to the compound stimulating 2 (agonist) or inhibiting (antagonist) the one or more receptors. Certain compounds can stimulate one receptor (e.g., a p agonist) and inhibit a different receptor (e.g., an ORL- I antagonist). Other objects and advantages of the present invention will become apparent from the following detailed description thereof. The present invention in certain embodiments comprises compounds having the general formula (I):
R
2 (n) 0 D 0 N Q, A N B R1 (I) wherein D is a 5-8 membered cycloalkyl, 5-8 membered heterocyclic or a 6 membered aromatic or heteroaromatic group; n is an integer from 0 to 3; A, B and Q are independently hydrogen, C,., alkyl, C3 2 cycloalkyl, C,. alkoxy,
C
3 4 2 cycloalkoxy, -CH 2 OH, -NHSO 2 , hydroxyC,.
0 alkyl-, aminocarbonyl-, Cl. 4 alcylaminocarbonyl-, diC,,alkylaminocarbonyl-, acylamino-, acylaminoalkyl-, aide, sulfonylaminoC,.Ioalkyl-, or A-B can together form a C - bridge, or B-Q can together form a C3.
7 bridge, or A-Q can together form a C- bridge; Z is selected from the group consisting of a bond, straight or branched C, alkylene, -NH-, -CH 2 0-, -CH 2 NH-, -CH 2 N(CH3)-, -NHCH 2 -, -CH 2 CONH-, -NHCH 2 CO-,
-CH
2 CO-, -COCH,-, -CH 2
COCH
2 -, -CH(CH 3 )-, -CH=, -0- and -HC=CH-, wherein the -3 carbon and/or nitrogen atoms are unsubstituted or substituted with one or more lower alkyl, hydroxy, halo or alkoxy group; RI is selected from the group consisting of hydrogen, C 1
.
10 alkyl, C 3
.
12 cycloalkyl,
C
21 Oalkenyl, amino, CI- 10 alkylamino-, C 3 .scycloalkylamino-, -COOVI, -CI 4 COOVI, cyano, cyanoCNH 1 0 alkyl-, cyanoC 3
.
10 cycloalkyl-, NH 2
SO
2 , NH 2
SO
2 C,-alkyl-, NH 2 SOC. 4 alkyl-, aminocarbonyl-, C1alkylaminocarbonyl-, diC,.alkylaminocarbonyl-, benzyl, C, cycloalkenyl-, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a hetero monocyclic ring, a hetero-bicyclic ring system, and a spiro ring system of the formula (V): X,
X
2 (V) wherein X, and X 2 are independently selected from the- group consisting ofNH, 0, S and CH 2 ; and wherein said alkyl, cycloalkyl, alkenyl, C,,,alkylamino-, C, 12 cycloalkylamino-, or benzyl of R, is optionally substituted with 1-3 substituents selected from the group consisting of halogen, hydroxy, C 1 .1 0 alkyl, C 1
.
1 0 alkoxy, nitro, trifluoromethyl-, cyano, -COOVI, -C 1 4 COOV,, cyanoC..
1 alkyl-, -C 1
.
5 (=O)W,, -C 1 . 5 NHS(=0) 2 WI, -C 1
.
5 NHS(=O)W,, a 5-membered heteroaromaticC.4alkyl-, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and'benzyloxy optionally being substituted with 1-3 substituents selected from the group consisting of halogen, C,.,, alkyl-, C- 0 alkoxy-, and cyano; and wherein said C 3
.
2 cycloalkyl, C- 2 . cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, hetero-monocyclic ring, hetero-bicyclic ring system, or spiro ring system of the formula (V) is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C,, alkyl, C-, alkoxy, nitro, trifluoromethyl-, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy or benzyloxy is optionally substituted with 1-3 substituents selected from the group consisting of halogen, Cj- 1 O alkyl, Cl 10 alkoxy, and cyano; 4
W
1 is hydrogen, C-o alkyl, C 3
.
1 2 cycloalkyl, C1.O alkoxy, C 3
.
1 cycloalkoxy, CH 2 0H, amino, Clallcylamino-, diCjualkylamino-, or a 5-membered heteroaromatic ring optionally substituted with 1-3 lower alkyl; V, is H, C, alkyl, C3, cycloalkyl, benzyl or phenyl;
R
2 is selected from the group consisting of hydrogen, C,., 0 alkyl, C.12 cycloalkyl and halogen, said alkyl or cycloalkyl optionally substituted with an oxo, amino, ailcylamino or dialkylamino group; and pharmaceutically acceptable salts thereof and solvates thereof. The present invention in certain embodiments comprises compounds having the general formula (IA) as follows:
R
2 (n) 0 N N R1 (IA) wherein n is an integer from 0 to 3; Z is selected from the group consisting of a bond, -CH.-, -NH-, -CH 2 0-, -CH 2
CH
2 -CH 2 NH-, -CH 2
N(CH
3 )-, -NHCH 2 -, -CH 2 CONH-, -NHCH 2 CO-, -CH 2 CO-, -COCHr, CH 2
COCH
2 -, -CH(CH 3 )-, -CH=, and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with a lower alkyl, halogen, hydroxy or alkoxy group; R, is selected from the group consisting of hydrogen, C,.,alcyl, C 3
.
12 cycloalkyl, C2 1 oallcenyl, amino, C, 1 alkylamino, C 3 cycloalkylamino, benzyl, C 3
-
1 cycloalkenyl, a 5 monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a hetero-monocyclic ring, a hetero bicyclic ring system, and a spiro ring system of the formula (V): X,
X
2 (V) wherein-XI and X 2 are independently selected from the group consisting of NH, 0, Sand
CH
2 ; wherein said monocyclic aryl is preferably phenyl; wherein said bicyclic aryl is preferably naphthyI; wherein said alkyl, cycloalkyl, alkenyl, C.I-oalkylamino,
C
3 .cycloalkylamino, or benzyl is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C.
1 o alkyl, CsI- 0 alkoxy, nitro, trifluoromethyl, cyano, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected from the group consisting of halogen, C- 10 alkyl, C 1 .,( alkoxy, and cyano; wherein said C 3 .2 cycloalkyl, C,., cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, hetero-monocyclic ring, hetero-bicyclic ring system, and spiro ring system of the formula (V) are optionally substituted with 1-3 substituents selected from the group consisting of halogen, CI- 1 0 alkyl, C,-,, alkoxy, nitro, trifluoromethyl, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy and benzyloxy are optionally substituted with 1-3 substituents selected from the group consisting of halogen, Cl.,( alkyl, CI.
1 0 alkoxy, and cyano;
R
2 is selected from the group consisting of hydrogen, C 1
.
1 0 ailcyl, C3 12 cycloalkyl and halogen, said ailcyl optionally substituted with an oxo group; and pharmaceutically acceptable salts thereof and solvates thereof. In certain preferred embodiments of formula (I), D is phenyl or a 6 membered heteroaromatic group containing 1-3 nitrogen atoms. In certain preferred embodiments of formula (I) or (IA), the R, alkyl is methyl, ethyl, propyl, butyl, pentyl, or hexyl. In certain preferred em'bodiments of formula (I) or (IA), theR 1 , cycloalcyl is 6 cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, or norbornyl. In other preferredembodiments of formula (I) or (IA), the R, bicyclic ring system is naphthyl. In other preferred embodiments of formula (I) or (IA), the R 1 bicyclic ring system is tetrahydronaphthyl, or decahydronaphthyl and the R 1 tricyclic ring system is dibenzocycloheptyl. In other preferred embodiments R 1 is phenyl or benzyl. In other preferred embodiments of formula (I) or (IA-), the R, bicyclic aromatic ring is a 1 0-membered ring, preferably quinoline or naphthyl. In other preferred embodiments -of formula (I) or (IA), the R, bicyclic aromatic ring is a 9-membered ring, preferably indenyl. In certain embodiments of fomula (I) or (IA), Z is a bond, methyl, or ethyl. In certain embodiments of formula (I) or (IA), the Z group is maximally substituted. as not to have any hydrogen substitution on the base Z group. For example, if the base Z group is -CH 2 -, substitution with two methyl groups would remove hydrogens from the CH 2 - base Z group. In other preferred embodiments of formula (1) or (IA), n is 0. In certain embodiments of formula (1) or.(IA), X, and X 2 are both 0. In certain embodiments of formula (I), ZRI is cyclohexylethyl-, cyclohexylmethyl-, cyclopentylmethyl-, dimethylcyclohexylmethyl-, phenylethyl-, pyrrolyltrifluoroethyl-, thienyltrifluoroethyl-, pyridylethyl-, cyclopentyl-, cyclohexyl-, methoxycyclohexyl-, tetrahydropyranyl-, propylpiperidinyl-, indolylmethyl-, pyrazoylpentyl-, thiazolylethyl-, phenyltrifluoroethyl-, hydroxyhexyl-, methoxyhexyl-, isopropoxybutyl-, hexyl-, or oxocanylpropyl-. In certain embodiments of formula (I), ZR is -CH 2 COOVI, tetrazolylmethyl-, cyanomethyl-, NH 2
SO
2 methyl-, NH2SOmethyl-, aminocarbonylmethyl-,
C
1 . ,allcylaminocarbonylmethyl-, or diCalkylarninocarbonylmethyl-. In certain embodiments of formula (I), ZR, is 3,3 diphenylpropyl optionally substituted at the 3 carbon of the propyl with -COOV,, tetrazolylCalkyl-, cyano-, aminocarbonyl-, Clhalkylaminocarbonyl-, or diC,,alkylaminocarbonyl-. The present invention in certain embodiments comprises compounds having the general formula (II): . 7 .
R
2 (n) D 0 - N A N B R1 wherein the dotted line represents an optional double bond; R is hydrogen, C 1
.
10 alkyl, C3 12 cycloalkyl, C3.
2 cycloalcylC,,alkyl-,
C
1 0 alkoxy, C3- 2 cycloalcoxy-,
C-
10 alkenyl, C. 1 0 ailcylidene, oxo, C 1
.
0 alkyl substituted with 1-3 halogen, C 3 2. cycloalkyl substituted with 1-3 halogen, C,., cycloalkylC alkyl- substituted with 1-3 halogen, C 1
.
1 0 alkoxy substituted with 1-3 halogen, C 3
.
2 cycloalkoxy- substituted with 1-3 halogen, -COOVI,
-C
1 -COOVI,
-CH
2 OH, -SO 2
N(VI)
2 , hydroxyC 1 .IOalkyl hydroxyC 3
.,
0 cycloalky-, cyanoC 1 .-alkyl-, cyanoC 3
.
4 Ocycloalkyl-,
-CON(V
1
)
2 , NH 2
SO
2 C, 4 alkyl-, NH 2
SOC
1 alkyl-, sulfonylaminoC 0 alkyl-, diaminoalcyl-, -sulfonylC.alkyl, a 6 membered heterocyclic ring, a 6-membered heteroaromatic ring, a 6-membered heterocyclicC,,alkyl-, a 6 -membered heteroaromaticC-alCyl-, a 6-membered aromatic ring, a 6-membered aromaticC- alkyl-, a 5-membered heterocyclic ring optionally substituted with an oxo or thio, a 5-membered heteroaromatic ring, a 5-membered heterocyclicC,,alkyl- optionally substituted with an oxo or thio, a 5-membered heteroaromaticC,,alkyl-,
-C
1
.
5 (=O)W-,
-C.
5 (=NH)WI,
-C.
5 NHC(=O)WI, -C . 5 NHS(=0) 2 WI, -C 1
.
5
NHS(=O)W
1 , wherein W 1 is hydrogen, C 11 O alkyl, C 3
.
2 cycloalCyl, C,. 1o alkoxy, C 3
.
2 cycloalkoxy, -CH20H, amino, Cl4alkylanino-, diC,,alkylamino-, or a 5 8 membered heteroaromatic ring optionally substituted with 1-3 lower alkyl; wherein each V, is independently selected from H, C 1
.
6 alkyl, C3.6 cycloalkyl, benzyl and phenyl; n is an integer from 0 to 3; D is a 5-8 membered cycloalkyl, 5-8 membered heterocyclic or a 6 membered aromatic or heteroaromatic group; n is an integer from 0 to 3; A, B and Q are independently hydrogen, C1 0 alkyl, C,.
2 cycloalkyl, C11 alkoxy, C34. cycloalkoxy, C 1
.
1 o alkenyl, CI1 alkylidene, oxo, -CH 2 OH, -NHSO 2 , hydroxyC. _ alkyl.,' aminocarbonyl-,
C
1 ,alkylaminocarbonyl-, diC,,alkylaminocarbonyl-, acylamino-, acylaminoalkyl-, amide, sulfonylaminoC- 10 alkyl-, or A-B can together form a C bridge, or B-Q can together form a C3.7 bridge, or A-Q can together form a C.-, bridge; - Z is selected front the group consisting of a bond, straight or branched C 1 alkylene, -NH-, -CH 2 0-, -CH 2 NH-, -CH 2
N(CH
3 )-, -NHCH 2 -, -CH 2 CONH-, -NHCH 2 CO-,
-CH
2 CO-, -COCH 2 -, -CH, 2 COCH-, -CH(CH,)-, -CH=, -0- and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with one or more lower alkyl, hydroxy, halo or alkoxy group; R is selected from the group consisting of hydrogen, CO alcyl, C 3
-
12 cycloalkyl, C2-,oalkenyl, amino, Cl-.oalkylamino-,
C
3
.
2 cycloalcylamino-, -COOV,, -C 1 4COOV,, cyano, cyanoC 1 40 alkyl-, cyanoC 3
_
10 cycloalkyl-,
NHSO
2 -, NHi 2
SO
2 Calkyl-, NH 2 SOC. 4 alkyl-, aminocarbonyl-,
C,.
4 alkylaminocarbonyl-, diC,,alkylarminocarbonyl-, benzyl, C3.2 cycloalkenyl-, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a hetero monocyclic ring, a hetero-bicyclic. ring system, and a spiro ring system of the formula (V): X,
X
2 (V) wherein X, and X 2 are independently selected from the group consisting of NH, 0, S and CH 2 ; and wherein said alkyl, cycloalkyl, alkenyl, C 11 allcylamino-, C. 9 12 cycloalkylamino-, or benzyl of R, is optionally substituted with 1-3 substituents selected from the group consisting of halogen, hydroxy, Cl., alkyl, C 11 o ailcoxy, nitro, trifluoromethyl-, cyano, -COOV , -CICOOVI, cyanoC 1 0 alkyl-, -C,.
5
(=O)W
1 , -C. 5 NHS(=0) 2 WI, -C 1
.
5 NHS(=O)WI, a 5-membered heteroaromaticCualkyl-, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected from the group consisting of halogen, C 1 a 0 ailcyl-, C,- 0 alkoxy-, and cyano; and wherein said C34 2 cycloalkyl, C 3 .2 cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, hetero-monocyclic ring, hetero-bicyclic ring system, or spiro ring system of the formula (V) is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C-, alkyl, Co alkoxy, nitro, trifluoromethyl-, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy or benzyloxy is optionally substituted with 1-3 substituents selected from the group consisting of halogen,
C
110 alkyl, C,.,o alkoxy, and cyano;
R
2 is selected from the group consisting of hydrogen, C 1
.
1 0 alkyl, C3, cycloalkyl and halogen, said alkyl or cycloalkyl optionally substituted with an oxo, amino, alkylamino or diaUcylamino group; and pharmaceutically acceptable salts thereof and solvates thereof. The present invention in certain embodiments comprises compounds having the formula (IIA): R2(n) O N N Z (IIA) 10 wnerein the dotted line represents an optional double bond; Z is selected from the group consisting of a bond, -CH-, -NH-,
-CH
2 O-, -CH 2
CH
2 ,-CH 2 NH-, -CH 2
N(CH
3 )-, -NHCH 2 -, -CH4 2 CONH-,
-NHCH
2
OO-,.-CH
2 CO-, -COCH 2 - CH 2
COCH
2 -, -CH(CH 3 )-, -CH=, and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with a lower alkyl, halogen, hydroxy or alkoxy group; R and Q are the same or different and are each selected from the group consisting of hydrogen, halogen,
C
1
.
1 O alkyl, CI.
1 0 .alkenyl,
C,.
0 alkylidene,
C
3
-.
2 cycloalkyl,
C,.
1 0 alkoxy, and oxo; R, is selected from the group consisting of hydrogen, Cj-jOalkyl,
C.
1 2 cycloalkyl,
C
2 . joalkenyl, amino, C1.
10 alkylamino,
C-
12 cycloalkylamino, benzyl, C 312 cycloalkenyl, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a heteromonocyclic ring, a bicyclic ring system, and a spiro ring system of the formula (V): xi
X
2 (V) wherein X, and X. are independently selected from the group consisting of NH, 0, S and
CH
2 ; wherein said monocyclic aryl is preferably phenyl; wherein said bicyclic aryl is preferably naphthyl; wherein said alkyl, cycloalkyl, alkenyl,
C
1
.
1 0 alkylamino,
C
3 .icycloalkylamino, or benzyl is optionally substituted with 1-3 substituents selected from the group consisting of halogen,
C.
1 0 alkyl, C,.,( alkoxy, nitro, trifluoromethyl, cyano, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected from the group consisting of halogen,
C
1
.,
0 alkyl, C 1
.
1 0 alkoxy, and cyano; wherein said C 3
.
2 cycloalkyl, C3- 2 cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, heteromonocyclic ring, heterobicyclic ring system, and spiro ring system of the formula (V) are optionally substituted with 1-3 substituents selected from the group consisting of halogen,
C
1
.
1 o alkyl, C 1
.
10 alkoxy, nitro, trifluoromethyl, phenyl, beazyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy and benzyloxy 11 are optionally substituted with 1-3 substituents selected from the group consisting of halogen, Cr.1O alkyl, C,.
1 o alkoxy; and cyano;
R
2 is selected from the group consisting of hydrogen,
C,
0 alkyl, C3.12 cycloallcyl and halogen, said alkyl optionally substituted with an oxo group; and pharmaceutically acceptable salts thereof. In certain preferred embodiments Q of form ula (II) or (IHA), is hydrogen or methyl. In certain preferred embodiments, R of formula (II) or (IIA), is hydrogen, methyl, ethyl, or ethylidene. In certain preferred embodiments of formula (II), D is phenyl or a 6 membered heteroaromatic group containing 1-3 nitrogen atoms. In certain preferred embodiments of formula (H) or (IIA), the R, alkyl is methyl, ethyl, propyl, butyl, pentyl, or hexyl. In certain preferred embodiments of formula (II) or (IIA), the RT cycloalkyl is cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, or norbornyl. In other preferred embodiments of formula (II) or (IIA), the R, bicyclic ring system is naphthyl. In other preferred embodiments of formula (II) or (IIA), the R, bicyclic ring system is tetrahydronaphthyl, or decalydronaphthyl and the R, tricyclic ring system is dibenzocycloheptyl. In other preferred embodiments R, is phenyl or benzyl. In other preferred embodiments of formula (II) or (IIA), the R, bicyclic aromatic ring is a 10-membered ring, preferably quinoline or naphthyl. In other preferred embodiments of formula (II) or (IIA), the R, bicyclic aromatic ring is a 9-membered ring,. preferably indenyl. In certain embodiments of formula (II) or (IIA), Z is a bond, methyl, or ethyl. In certain embodiments of formula (II) or (HA), the Z group is maximally substituted as not to have any hydrogen substitution on the base Z group. For example, if the base Z group is -CH 2 -, substitution with two methyl groups would remove hydrogens from the -CH 2 - base Z group. In other preferred embodiments of formula (II) or (IIA), n is 0. In certain embodiments of formula (II) or (HA), X, and X 2 are both 0. In other preferred embodiments, the dotted line is a double bond. . In certain embodiments of formula (II), R is -CHC(=0)NH 2 , -C(NH)NH 2 , pyridylmethyl, cyclopentyl, cyclohexyl, furanylmethyl,
-C(=O)CH
3 , CH 2
CH
2 NHC(=O)CH3, -S0 2
CH
3 , CH 2
CH
2
NHSO
2
CH
3 , furanylcarbonyl-, methylpyrrolylcarbonyl-, diazolecarbonyl-, azolemethyl-, trifluoroethyl-, hydroxyethyl-, cyanomethyl-, oxo-oxazolemethyl-, or diazolemethy.. In certain embodiments of formula (I), ZRI is cyclohexylethyl-, cyclohexylmethyl-, cyclopentylmethyl-, dimethylcyclohexylmethyl-, phenylethyl-, pyrrolyltrifluoroethyl-, 12 thienyltritluoroethyl-, pyridylethyl-, cyclopentyl-, cyclohexyl-, methoxycyclohexyl-, tetrahydropyranyl-, propylpiperidinyl-, indolylmethyl-, pyrazoylpentyl-, thiazolylethyl-, phenyltrifluoroethyl-, hydroxyhexyl-, methoxyhdxyl-, isopropoxybutyl-, hexyl-, or oxocanylpropyl-. In certain embodiments of formula (II), at least one of ZRI or R is -CH 2 COOV,, tetrazolylmethyl-, cyanomethyl-, NH 2
SO
2 methyl-, NH 2 SOmethyl-, aminocarbonylmethyl-, Clalkylaminocarbonylmethyl-, or diC 1 oalkylaminocarbonylmethyl-. In certain embodiments of formula (II), ZR, is 3,3 diphenylpropyl optionally substituted at the 3 carbon of the propyl with -COOVI, tetrazolylCo 0 .alkyl-, cyano-, aminocarbonyl-, C 14 alkylaminocarbonyl-, or diC 1 -alkylaminocarbonyl-. The present invention in certain embodiments comprises compounds having the general formula (III): R
R
2 (n) D 0 N z R1 wherein R is hydrogen, C,.,, alkyl, C 3 .1 2 cycloalkyl, C 3
.
2 cycloalkylC1alkyl-, C I10 alkoxy, C,., 2 cycloalkoxy-, C- 1 0 alkyl substituted with 1-3 halogen, C3- 2 cycloalkyl substituted with 1-3 halogen, C 3 2 cycloalkylC.alcyl- substituted with 1-3 halogen, C. alkoxy substituted with 1-3 halogen, CsI2 cycloallcoxy- substituted with 1-3 halogen, -COOVI, -C 14 COOV,, -CH 2 OH, -SO2N(V,) 2 , hydroxyC,.
1 Oalkyl-, hydroxyC 3 .Ocycloalkyl cyanoC 1 Oallkyl-, cyanoC 3
.
1 ocycloalkyl-, -CON(V 1
)
2 , NH 2 SOC4alkyl-, NH 2
SOC
1 ,alkyl-, sulfonylaminoCo 0 alkyl-, diaminoalkyl-, -sulfonylC4alky, a 6-membered heterocyclic ring, a 6-membered heteroaromatic ring, a 6-membered heterocyclicClualkyl-, a 6-membered heteroaromaticC4alcyl-, a 6-membered aromatic ring, a 6-membered aromaticC,, alkyl-, 13 a 5-membered heterocyclic ring optionally substituted with an oxo or thio, a 5-membered heteroaromatic ring, a 5-membered heterocyclicC4allcyl- optionally substituted with an oxo or thio, a 5-membered heteroaromaticC alkyl-, -C 1
.(=O)W
1 , -C 1
.,(=NH)W
1 , -C. 5 NHC(=O)WI, -C 1
.
5 NHS(=0) 2 WI, -C 1 .NHS(=o)W 1 , wherein W, is hydrogen, C,, alkyl, C3 1 2 cycloalcyl, C 0 alkoxy, C3- 2 cycloalkoxy, -CH 2 OH, amino, C4alkylamino-, diCj. 4 alkylamino-, or a 5-membered heteroaromatic ring optionally substituted with 1-3 lower alcyl; wherein each V, is independently selected from H, C - alkyl, C 3 . cycloalkyl, benzyl ' and phenyl; n is an integer from 0 to 3; D is a 5-8 membered cycloalkyl, 5-8 membered heterocyclic or a 6 membered aromatic or heteroaromatic group; Z is selected from the group consisting of a bond, straight or branched C, alkylene, -NH-, -CH 2 0-, -CH 2 NH-, -CH 2
N(CH
3 )-, -NHCH 2 -, -CH2CONH-,
-NHCH
2 CO-,
-CH
2 CO-, -COCH 2 -, -CH 2
COCH
2 -, -CH(CH 3 )-, -CH=, -0- and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with one or more lower alcyl, hydroxy, halo or alkoxy group; or Z is a cycloalkylamino system of the formula (VI): QB
N
-H A. (VI) wherein A, B and Q are independently hydrogen, C 1
-
1 0 alkyl, C3. cycloalkyl, CI- 1 0 alkoxy, C3 1 2 cycloalkoxy,
-CH
2 OH, -NHSO 2 , hydroxyC 1 alkyl-, aminocarbonyl-, Cj: 4 alkylaminocarbonyl-, diC 1 4 alkylaminocarbonyl-, acylamino-, acylaminoalkyl-, amide, sulfonylaminoC 10 alkyl-, or A-B can together form a C2.- bridge, or B-Q can together form a C3.7 bridge, or A-Q can together form a C 1
.
5 bridge; R, is selected from the group consisting of hydrogen, C-a, alkyl, C 3
-
12 cycloalkyl,
C
2 .4,alkenyl, amino, C-,Oalkylamino-, C 3
.
1 cycloalkylamino-, -COOVI, -C 1 4COOVI, cyano, cyanoC 1
.
10 allcyl-, cyanoC3.
10 cycloalkyl-, NHS0 2 -, NH 2
SO
2
C
1
.
4 alkyl-, NHSOC 1 . 4 alkyl-, aminocarbonyl-,
C
1 4alkylaminocarbonyl-, diC 1 4alkylaminocarbonyl-, benzyl, C3.3 14 cycloalkenyl-, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a hetero monocyclic ring, a hetero-bicyclic ring system, and a spiro ring system of the formula (V): X,
X
2 (V) wherein X, and X 2 are independently selected from the group consisting ofNH, 0, S and CH 2 ; and wherein said alkyl, cycloalkyl, alkenyl,
C
1
..
10 allylamino-, C, 1 2 cycloalkylamino-, or benzyl of R, is optionally substituted with 1-3 substituents selected from the group consisting of halogen, hydroxy,
C
1
.
1 , alkyl, C 1
..
1 0 alkoxy, nitro, trifluoromethyl-, cyano, -COOVI, -CIACOOVI, cyanoC 1 Oalkyl-, -Ci.s(=0)W,, -C,. 5 NHS(=0) 2 WI, -C 1 .,NHS(=O)W, a 5-membered heteroaromaticCaualkyl-, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected from the gronp consisting of halogen,
C
1
.
1 0 alkyl-, C 1
.
10 alkoxy-, and cyano; and wherein said C 3 - cycloalkyl, C,.,, cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heterparyl ring, hetero-monocyclic ring, hetero-bicyclic ring system, or spiro ring system of the formula (V) is optionally substituted with 1-3 substituents selected from the group consisting of halogen, Cl., 0 alkyl, C 11 , alkoxy, nitro, trifluoromethyl-, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy or benzyloxy is optionally substituted with 1-3 substituents selected from the group consisting of halogen,
C.
10 alcyl, C.O alkoxy, and cyano;
R
2 is selected from the group consisting of hydrogen,
C
1
.
10 allcyl, C 3
.
1 cycloalkyl and halogen, said ailcyl or cycloalkyl optionally substituted with an oxo, amino, alkylamino or dialkylamino group; and pharmaceutically acceptable salts thereof and solvates thereof. The present invention in certain embodiments comprises compounds having the formula (IIIA): 15 .R
R
2 (n) .0O N R (IIIA) wherein n is an integer from 0 to 3; Z is selected from the group consisting of a bond, -CH 2 -, -NH-, -CH 2 0-, -CH 2
CH
2 ,-CH 2 NH-, -CH 2 N(CH2)-,
-NHCH
2 -, -CH 2 CONH-, -NHCH 2 CO-, -CH 2 CO-, -COCH 2 -, CH 2
COCH
2 -, -CH(CH 3 )-, -CH=, -HC=CH-, and a cycloalkylamino system of the formula (VI): N H (VI) wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with a lower alkyl, halogen, hydroxy, phenyl, benzyl, or alkoxy group; R is selected from the group consisting of hydrogen, C,.
1 , alkyl, Cl.
0 alkoxy, and
C-
2 .cycloalkyl; R, is selected from the group consisting of hydrogen, C 1
.
1 0 alkyl, C 3 12 cycloalkyl, C. 1 oalkenyl, amino, C,-oalkylamino,
C
3
-
2 cycloalkylanijno, benzyl, C 3 12 cycloalkenyl, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a heteromonocyclic ring, a heterobicyclic ring system, and a spiro ring system of the formula (V): 16 X1 x 2 (V) wherein X, and X 2 are independently selected from the group consisting of NH, 0, S and CH 2 ; wherein said monocyclic aryl is preferably phenyl; wherein said bicyclic aryl is preferably naphthyl; wherein said alkyl, cycloalkyl, alkenyl, C 1
I
10 alkylamino, C- 12 cycloalcylamino, or benzyl is optionally substituted with 1-3 substituents selected from the group consisting of halogen, CI 10 ailcyl, C,.1 0 alkoxy, nitro, trifluoromethyl, cyano, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected'from the group consisting of halogen, C,-,, alkyl, C, alkoxy, and cyano; wherein said C 3
.
2 cycloalcyl, C3.
2 cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, heteromonocyclic ring, heterobicyclic ring system, and spiro ring system of the formula (V) are optionally substituted with 1-3 substituents selected from the group consisting of halogen, C.
1 0 alkyl, C 1 .1, alkoxy, nitro, trifluoromethyl, phenyl,. benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy and benzyloxy are optionally substituted with 1-3 substituents selected from the group consisting of halogen, C.
1 0 alkyl, C.
10 alkoxy, and cyano; R, is selected from the group consisting of hydrogen, C,.
1 0 alkyl, C3.
2 cycloalkyl and halogen, said alkyl optionally substituted with an oxo group; and pharmaceutically acceptable salts thereof. In certain preferred embodiments of formula (III), D is phenyl or a 6 membered heteroaromatic group containing 1-3 nitrogen atoms. In certain preferred embodiments of formula (III) or (IA), the R, alkyl is methyl, ethyl, propyl, butyl, pentyl, or hexyl. In certain preferred embodiments of formula (III) or (HIA), the R, cycloallcyl is cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, or norbomyl. In other preferred embodiments of formula (III) or (IA), the R, bicyclic ring 17 system is naphthyl. In other preferred embodiments of formula (IM) or (IA), the R, bicyclic ring system is tetrahydronaphthyl, or decahydronaphthyl and the R, tricyclic ring system is dibenzocycloheptyl. In other preferred embodiments R, is phenyl or benzyl. In other preferred embodiments of formula (III) or (lIA), the R, bicyclic aromatic ring is a 1 0-membered ring, preferably quinoline or naphthyl. In other preferred embodiments of formula (III) or (IIA), the R, bicyclic aromatic ring is a 9-membered ring, preferably indenyl. In certain embodiments of formula (III) or (MIA), Z is a bond, methyl, or ethyl. In certain embodiments of formula (II) or (MIA), the Z group is maximally substituted as not to have any hydrogen substitution on the base Z group. For example, if the base Z group is -CH 2 -, substitution with two methyl groups would remove hydrogens from the -CH 2 '- base Z group. In certain embodiments of formula (II) or (IIA), Z is a cycloalkylamino system of the formula (VI): N H (VI) wherein the nitrogen atom is optionally substituted with a C 1
.
3 alkyl, phenyl, or benzyl. In other preferred embodiments of formula (III) or (1IIA), n is 0. In certain. embodiments of formula (III) or (IIIA), X, and X 2 are both 0. In certain embodiments of formula (III), R is -CH 2 C(=0)NH 2 , -C(NH)NH 2 ,. pyridylmethyl, cyclopentyl, cyclohexyl, furanylmethyl,
-C(=O)CH
3 , CH 2
CHNHC(=O)CH
3 , -SO 2
CH
3 , CH 2
CH
2
NHSO
2
CH
3 , furanylcarbonyl-, methylpyrrolylcarbonyl-, diazolecarbonyl-, azolemethyl-, trifluoroethyl-, hydroxyethyl-, cyanomethyl-, oxo-oxazolemethyl-, or diazolemethyl-. In certain embodiments of formula (III), ZR, is cyclohexylethyl-, cyclohexylmethyl cyclopentylmethyl-, dimethylcyclohexylmethyl-, phenylethyl-, pyrrolyltrifluoroethyl-, thienyltrifluoroethyl-, pyridylethyl-, cyclopentyl-, cyclohexyl-, methoxycyclohexyl-, tetrahydropyranyl-, propylpiperidinyl-, indolylmethyl-, pyrazoylpentyl-, thiazolylethyl-, 18 phenyltrifluoroethyl-, hydroxyhexyl-, methoxyhexyl-, isopropoxybutyl-, hexyl-, or oxocanylpropyl-. In certain embodiments of formula (III), at least one of ZR or R is -CH 2 COOV, tetrazolylmethyl-, cyanomethyl-,
NH
2
SO
2 methyl-, NH 2 SOmethyl-, aninocarbonylmethyl-, CI-alkylaminocarbonylmethyl-, or diC,,alkylaminocarbonylmethyl-. In certain embodiments of formula (II), ZR is 3,3 diphenylpropyl optionally substituted at the 3 carbon of the propyl with -COOVI, tetrazolylCo.aIkyl-, cyano-, aminocarbonyl-, C,4alkylaminocarbonyl-,.or diC .4alkylaminocarbonyl-. The present invention in certain embodiments comprises. compounds having the general formula (IV): R
R
2 (n) . N D - N N CN Q A N B z
R
1 (IV) wherein R is hydrogen,
C,.
10 alkyl, C 3
.
2 cycloalkyl, C3..2 cycloalkylC 1 -alkyl-, C3-10 alkoxy, C2.1 cycloalkoxy-, C,, alkyl substituted with 1-3 halogen, C3 2 cycloalkyl substituted with 1-3 halogen, C 3 .1 2 cycloalkylC-aUcyl- substituted with 1-3 halogen, C-o alkoxy substituted with 1-3 halogen, C 3
.
32 cycloalkoxy- substituted with 1-3 halogen,
-COOV
1 , -C 1 'COOVI, -CH 2 OH, -SO 2
N(V)
2 , hydroxyC 10 alkyl-, hydroxyC 3
.
10 cycloalkyl cyanoC 10 aUcyl-, cyanoC- 1 0 cycloallcyl-,
-CON(V,)
2 , NH 2
SO
2 Coalkyl-,
NH
2 SOC-alkyl-, sulfonylaminoC 1 0 alkyl-, diaminoalkyl-, -sulfonylCalkyl, a 6-membered heterocyclic ring, a 6-membered heteroaromatic ring, a 6 -me mbered heterocyclicC4alkyl-, a 6-membered heteroaromaticC.alkyl-, a 6 -membered aromatic ring, a 6-membered aromaticC4 alkyl-, 19 a 5-membered heterocyclic ring optionally substituted with an oxo or thio, a 5-membered heteroaromatic ring, a 5-membered heterocyclicC-4alkyl- optionally substituted with an oxo or thio, a 5-membered heteroaromaticC4alkyl-, -C,.,(=O)WI, -CJ.,(=NH)WI,
-C
1 . 5 NHC(=O)W,, -C 1 .sNHS(=0) 2 W,, -C 1
.,NHS(=O)W
1 , wherein W, is hydrogen, CI1 alkyl,
C
3 ., cycloalkyl,
C,-
1 0 alkoxy, C 3
.
2 cycloalkoxy,
-CH
2 OH, amino, C 1 alkylamino-, diC. 4 alkylamino-, or a 5-membered heteroaromatic ring optionally substituted with 1-3 lower alcyl; wherein each V, is independently selected from H, C,. alkyl, C3 cycloalkyl, benzyl and phenyl; D is a 5-8 membered cycloalcyl, 5-8 membered heterocyclic or a 6 membered aromatic or heteroaromatic group; n is an integer from 0 to 3; A, B and Q are independently hydrogen, C 1
.
1 O alkyl, C3.
1 cycloalkyl, C,-,, alkoxy,
C
3
.
2 cycloalkoxy, -CH 2 OH, -NHSO 2 , hydroxyC 1 alkyl-, aminocarbonyl-,
C
1 . 4 alkylaminocarbonyl-, diC,,alkylaminocarbonyl-, acylamino-, acylaminoalcyl-, amide, sulfonylaminoC, 1 0 alkyl-, or A-B can together form a C2 bridge, or B-Q can together form a C., bridge, or A-Q can together form a Cj., bridge; - Z is selected from the group consisting of a bond, straight or branched C..6 alkylene, -NH-, -CH 2 0-, -CH 2 NH-, -CH 2
N(CH
3 )-, -NHCH 2 -, -CH 2 CONH-, -NHCH 2 CO-,
-CH
2 CO-, -COCH 2 -, -CH 2
COCH
2 -, -CH(CH 3 )-, -CH=, -0- and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with one or more lower alkyl, hydroxy, halo or alkoxy group; R is selected from the group consisting of hydrogen, C 1
.
1 0 alkyl, C 3 -a 2 cycloalkyl,
C
2 -1 0 alkenyl, amino, C 11 oalkylamino-, C 3
.
12 cycloalkylamino-, -COOVI, -C 1 -COOVI, cyano, cyanoCI.
1 0 alkyl-, cyanoC 3 .locycloalkyl-,
NH
2
SO
2 -, N14 2
SO
2 C,4alkyl-, NHI 2 SOC 4 alkyl-, aminocarbonyl-,
C
1 alkylaminocarbonyl-, diC 1
.
4 alkylaminocarbonyl-, benzyl, C 3
.
1 2 cycloalkenyl-, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a hetero monocyclic ring, a hetero-bicyclic ring system, and a spiro ring system of the formula (V): X. .
X
2 (V) 20 wherein X, and X 2 are independently selected from the group consisting of NL, 0, S and CH 2 ; and wherein said alkyl, cycloalkyl, alkenyl, C 1
.
1 alkylamino-, C3. 1 2 cycloalkylamino-, or benzyl of R, is optionally substituted with 1-3 substituents selected from the group consisting of halogen, hydroxy, C,., alkyl, CI 1 0 alkoxy, nitro, trifluoromethyl-, cyano, -COOVi, -C1COOVI, cyanoC.
1 GalCyl-, -C 1
.
5 (=O)WI, -C. 5 NHS(=0) 2 WI, -C.,NHS(=0)W 1 , a 5-membered heteroaromaticCoalkyl-, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected from the group consisting of halogen, Cj_, 0 allcyl-, C,., 0 alkoxy-, and cyano; and wherein .said C 3
.
1 2 cycloalkyl, C3- 1 2 cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, hetero-monocyclic sing, hetero-bicyclic ring system, or spiro ring system of the formula (V). is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C.
0 alkyl, C,.
1 0 alkoxy, nitro, trifluoromethyl-, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy or benzyloxy is optionally substituted with 1-3 substituents selected from the group consisting of halogen,
C
1 . alkyl, CaI 0 ailcoxy, and cyano;
R
2 is selected from the group consisting of hydrogen, C 1
.
10 .alkyl, C 3
.
12 cycloalkyl and halogen, said alkyl or cycloalkyl optionally substituted with an oxo,.amino, alkylamirio or dialkylamino group; and pharmaceutically acceptable salts thereof and solvates thereof. The present invention in certain embodiments comprises compounds having the formula (IVA): R
R
2 (n) 1>> NC CCNN CN N.
.R
1 (VA) 21 wherein n is an integer from 0 to 3; Z is selected from the group consisting of a bond, -CHr 2 -, -NH-, -CH 2 0-, -CH 2
CH
2 ,-CH 2 NH-, -CH 2
N(CH
3 )-, -NHCH 2 -, -CH 2 CONH-, -NHCH 2 CO-, -CH 2 CO-, -COCH 2 -, CH 2
COCH
2 -, -CH(CH 3 )-, -CH=, and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsub'stituted or substituted with a lower alcyl, halogen, hydroxy or alkoxy group; R is selected from the group consisting of hydrogen,'C 10 ailcyl, C 1
.
1 0 alcoxy, and
C
31 2 cycloalkyl; R, is selected from the group consisting of hydrogen, C.- 1 0 alkyl, C 3
.
12 cycloalkyl, C2.oalcenyl, anirio, C-1.alkylamnino, C 1 2 .cycloalkylamino, benzyl, C, 2 cycloalkenyl, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a heteromonocyclic ring, a heterobicyclic ring system, and aspiro ring system of the formula (V): X1 X2 (V) wherein X, and X 2 are independently selected from the group consisting of NH, 0, S and CH 2 ; wherein said monocyclic aryl is preferably phenyl; wherein said bicyclic aryl is preferably naphthyl; wherein said alkyl, cycloalkyl, alkenyl, C 1 .oalcylamino, C 3 .cycloalkylamino, or benzyl is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C 1
.
1 0 alkyl, CI.
10 alkoxy, nitro, trifluoromethyl, cyano, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected from the group consisting of halogen, C 1
.
1 0 alkyl, C,.,, alkoxy, and cyano; wherein said C.-, cycloalkyl, C 34 2 cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, heteromonocyclic ring, heterobicyclic ring system, and spiro ring system of the formula (V) are optionally substituted with 1-3 substituents selected from the group consisting of halogen, CI.
1 0 alkyl, C,-,, alkoxy, nitro, trifluoromethyl, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy and benzyloxy 22 are optionally substituted with 1-3 substituents selected from the group consisting of halogen, C..
0 o alkyl, C 1
-,
0 alkoxy, and cyano;
R
2 is selected from the group consisting of hydrogen, C 1
.
1 , alkyl, C 3 -, cycloalkyl and halogen, said ailcyl optionally substituted with an oxo group; and pharmaceutically acceptable salts thereof. In certain preferred embodiments of formula (IV), D is phenyl or a 6 membered heteroaromatic group containing 1-3 nitrogen atoms. In certain preferred embodiments of formula (IV) or (IVA), the R, alkyl is methyl, ethyl, propyl, butyl, pentyl, or hexyl. In certain preferred embodiments of formula (IV) or (IVA), the R, cycloalkyl is cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, or norbornyl. . In other preferred embodiments of formula (TV) or (IVA), the R, bicyclic ring system is naphthyl. In other preferred embodiments of formula (IV) or (IVA), the R 1 bicyclic ring system is tetrahydronaphthyl, or decahydronaphthyl and the R, tricyclic ring system is dibenzocycloheptyl. In other preferred embodiments R, is phenyl or benzyl. In other preferred embodiments of formula (IV) or (IVA), the R, bicyclic aromatic ring is a 10-membered ring, preferably quinoline or naphthyl. In other preferred embodiments of formula (IV) or (IVA), the R, bicyclic aromatic ring is a 9-membered ring, preferably indenyl. In certain embodiments of formula (IV) or (IVA), Z is a bond, methyl, or ethyl. In certain embodiments of formula (IV) or (IVA), the Z group is maximally substituted as not to have any hydrogen substitution on the base Z group. For example, if . the base Z group is -CH 2 -, substitution with two methyl groups would remove hydrogens from the -CH 2 - base Z group. In other preferred embodiments of formula (IV) or (TVA), n is 0. In certain embodiments of formula (IV) or (VA), X, and X 2 are both 0. In certain embodiments of formula (IV), R is -CH 2 C(=0)NH 2 , -C(NH)NH 2 , pyridylmethyl, cyclopentyl, cyclohexyl, furanylmethyl, -C(=0)CH, CH 2
CH
2
NHC(=O)CH
3 , -SO 2
CH
3 , CH 2
CH
2
NHSO
2
CH
3 , furanylcarbonyl-, methylpyrrolylcarbonyl-, diazolecarbonyl-, azolemethyl-, trifluoroethyl-, hydroxyethyl-, cyanomethyl-, oxo-oxazolemethyl-, or diazolemethyl-. In certain embodiments of formula (IV), ZRI is cyclohexylethyl-, cyclohexylmethyl cyclopentylmethyl-, dimethylcyclohexylmethyl-, phenylethyl-, pyrrolyltrifluoroethyl-, thienyltrifluoroethyl-, p'ridylethyl-, cyclopentyl-, cyclohexyl-, methoxycyclohexyl-, tetrahydropyranyl-, propylpiperidinyl-, indolylmethyl-, pyrazoylpentyl-, thiazolylethyl-, phenyltrifluoroethyl-, hydroxyhexyl-, methoxyhexyl-, isopropoxybutyl-, hexyl-, or 23 oxocanylpropyl-. In certain embodiments of formula (IV), at least one of ZRI or R is -CH 2 COOVI, tetrazolylmethyl-, cyanomethyl-, NH 2
SO
2 methyl-, NH 2 SOmethyl-, aminocarbonylmethyl-, Co 4 alkylaminocarbonylmethyl-, or diCalkylaminocarbonylmethyl-. In certain embodiments of formula (IV), ZR, is 3,3 diphenylpropyl optionally substituted at the 3 carbon of the propyl with -COOVI, tetrazolylCalcyl-, cyano-, aminocarbonyl-,
C
1 -alkylaminocarbonyl-, or diC 1 alkylaminocarbonyl-. In alternate embodiments of formulae (I), (IA), (II), (IIA), (III), (IA), (IV), and (IVA), ZRI can be the following
Y
1 Y3 Y2wherein Y, is R 3
-(CI-C
12 )alkyl, R.
4 -aryl, R-heteroaryl,
R
6
-(C
3
-C
1 )cyclo-alkyl, R 7
-(C
3 C.)heterocycloalkyl, -C0 2
(C,-C
6 )alkyl, CN or -C(O)NRgR,; Y 2 is hydrogen or Y,; Y 3 is hydrogen or (C,-C 6 )alkyl; or Y,, Y 2 and Y 3 , together with the carbon to which they are attached, form one of the following structures: 24 .R(CHR1O)u E E
(CHR
10 ) r - y 3
R
1 R11
R
1 E -- 1d..
R
1 1 Re or wherein r is 0 to 3; w and u are each 0-3, provided that the sum of w and u is 1-3; c and d are independently 1 or 2; s is 1 to 5; and ring E is a fused R 4 -phenyl or Rr heteroaryl ring; Rio is 1 to 3 substituents independently selected from the group consisting of H, (C,-C6)alkyl, -OR,, - (Ci-C6)alkyl-ORs, -NRsR and -(C 1 -C6)alkyl-NRsR,; R,I is 1 to 3 substituents independently selected from the group consisting of R 0 , -.
CF
3 , -OCF 3 , NO 2 and halo, or R 1 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring; R, and R 9 are independently selected from the group consisting of hydrogen, (C 1 C 6 ) alkyl, (C 3 Cl 2 cycloalkyl, aryl and aryl(C,-C6)alkyl;
R
3 is 1 to 3 substituents independently selected from the group consisting of H, R 4 aryl, R-(C 3
-C,
2 )cycloalkyl, R-heteroaryl, R 7 -(q -C 7 )heterocycloalcyl, -NRs R 9 , -OR 1 2 and
-S(O)
0
.
2 R,2; 25
R
6 is 1 to 3 substituents independently selected from the group consisting of H, (C, -C 6 )allcyl, R 4 -aryl, -NR 8 R, , -OR 2 and -SR 12 ;
R
4 is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C,- C 6 )alkyl, R'-aryl, (C 3 - C)cycloalkyl, -CN, -CF3, -ORB, -(C
C
6 )alkyl-OR,, -OCF 3 , -NRR,, -(C 1 - C 6 )alkyl -NR 9 q, -NHS0 2 Rs, -SO 2
N(R
14
)
2 , -SO 2 RJ, SOR,, -SR,, -NO 2 , -CONRgR,, -NRCOR, -COR, -COCF 3 , -OCOR, -OCO 2 R, COORs, -(C-C 6 )alkyl-NHCOOC(CH 3
)
3 , -(C,-C 6 )alkyl-NHCOCF 3 , -(C 1
-C
6 )alkyl-NHSO 2 (C 1
-C
6 )alCyl, -(C -C)alkyl-NHCONH-(C,-C 6 )-alcyl and
-(CH
2 )E-N N-R 8 wherein f is 0 to 6; or R 4 substituents on adjacent ring carbon atoms may together form a methylenedioxy or ethylenedioxy ring; R. is 1 to 3 substituents independently selected from the group consisting of hydrogen, halo, (C,-C 6 )alkyl, R 1 3 -aryl, (C 3
-C
12 )cycloalkyl, -CN, -CF3, -ORB, -(Cl-C 6 )alkyl ORB, -OCF 3 ,-NRR,, -(CI-C 6 )alcyl-NR 8
R
9 , -NHSO 2 Rg, -SO 2
N(R
4
)
2 , -NO 2 , -CONRR 9 , - NR1COR 8 , -COR, .-OCOR, -OCO2Rs and -COOR; R. is H, (C 1
-C
6 )alkyl, -OR, -(C,-C 6 )alkyl-OR, -NR1. or -(CI-C 6 )alcyl-NRRl;
R,
2 is H, (CI-C 6 )alkyl, R 4 -aryl, -(C,-C)alkyl-OR, -(C,-C,)alkyl-NRsR,,
-(C,
C
6 )alkyl-SR, or aryl (C,-C,)alkyl;
R
13 is 1-3 substituents independently selected from the group consisting of H, (CI
C
6 )allcyl, (C,-C 6 )alkoxy and halo; R is independently selected from the group consisting of H, (CI-C 6 )alkyl and R, 3 C 6
H
4
-CH
2 -. As used herein, the term alkyll" means a linear or branched saturated aliphatic hydrocarbon group having a single radical and 1-10 carbon atoms. Examples of alkyl . groups include methyl, propyl, isopropyl, butyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and pentyl. A branched alkyl means that one or more alkyl groups such as methyl, ethyl or propyl, replace one or both hydrogens in a -CH 2 - group of a linear alkyl chain. The term "lower alkyl" means an alkyl of 1-3 carbon atoms. The term "alkoxy" means an "alkyl" as defined above connected to an oxygen radical. The term "cycloalkyl" means a non-aromatic mono- or multicyclic hydrocarbon ring system having a single radical and 3-12 carbon atoms. Exemplary monocyclic 26 cycioancyi rings include cyclopropyl, cyclopentyl, and cyclohexyl. Exemplary multicyclic cycloalkyl rings include adamantyl and norbornyl. The term "alkenyl" means a linear or branched aliphatic hydrocarbon group containing a carbon-carbon double bond having a single radical and 2-10 carbon atoms. A "branched" alkenyl means that one or more alkyl groups such as methyl, ethyl or propyl replace one or both hydrogens in a -CH 2 - or -CH= linear alkenyl chain. Exemplary alkenyl groups include ethenyl, 1- and 2- propenyl, 1-, 2- and 3- butenyl, 3-methylbut-2 enyl, 2-propenyl, heptenyl, octenyl and decenyl. The term "cycloalkenyl" means a non-aromatic monocyclic or multicyclic hydrocarbon ring system containing a carbon-carbon double bond having a single radical and 3 to 12 carbon atoms. Exemplary monocyclic cycloalcenyl rings include cyclopropenyl, cyclopentenyl, cyclohexenyl or cycloheptenyl. An exemplary multicyclic cycloalkenyl ring is norbornenyl. The term "aryl" means a carbocyclic aromatic ring system containing one, two or three rings which may be attached together in a pendent manner or fused, and containing a single radical. Exemplary aryl groups include phenyl, naphthyl and acenaphthyl. The term "heterocyclic" means cyclic.compounds having one or more heteroatoms (atoms other than carbon) in the ring, and having a single radical. The ring may be saturated, partially saturated or unsaturated, and the heteroatoms may be selected from the group consisting of nitrogen, sulfur and oxygen. Examples of saturated heterocyclic radicals include saturated 3 to 6- membered hetero-monocyclic groups containing 1 to 4 nitrogen atoms, such as pyrrolidinyl, imidazolidinyl, piperidino, piperazinyl; saturated 3- to 6- membered hetero-monocyclic groups containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as morpholinyl; saturated 3- to 6- membered hetero-monocyclic groups containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, such as thiazolidinyl. Examples of partially saturated heterocyclic radicals include dihydrothiophene, dihydropyran, and dihydrofuran. Other heterocyclic groups can be 7 to 10 carbon rings substituted with heteroatoms such as oxocanyl and thiocanyl. When the heteroatom is sulfur, the sulfur can be a sulfur dioxide such as thiocanyldioxide. The term "heteroaryl" means unsaturated heterocyclic radicals, wherein "heterocyclic" is as previously described. Exemplary heteroaryl groups include unsaturated 3 to 6 membered hetero-monocyclic groups containing 1 to 4 nitrogen atoms, such as pyrrolyl, pyridyl, pyrimidyl, and pyrazinyl; unsaturated condensed heterocyclic groups containing I to 5 nitrogen itoms, such as indolyl, quinolyl and isoquinolyl; 27 unsaturated 3 to 6- membered hetero-monocyclic groups containing an oxygen atom, such as furyl; unsaturated 3 to 6 membered hetero-monocyclic groups containing a sulfur atom, such as thienyl; unsaturated 3 to 6 membered hetero-monocyclic groups containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as oxazolyl; unsaturated condensed heterocyclic groups containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, such as benzoxazolyl; unsaturated 3 to 6 membered hetero-monocyclic groups containing 1 to 2 sulfur atoms and I to 3 nitrogen atoms, such as thiazolyl; and unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, such as benzothiazolyl. The term "heteroaryl" also includes unsaturated heterocyclic radicals, wherein "heterocyclic" is as previously described, in which the heterocyclic group is fused with an aryl group, in which aryl is as previously described. Exemplary fused radicals include benzofuran, benzdioxole and benzothiophene. As used herein, the term "heterocyclicC.
4 allcyl", "heteroaromaticC,,alkyl" and the like refer to the ring structure bonded to a"C, alkyl radical. All of the cyclic ring structures disclosed herein can be attached at any point where such connection is possible, as recognized by one skilled in the art. As used herein, the term "patient" includes a human or an animal such as a companion animal or livestock. As used herein, the term "halogen" includes fluoride, bromide, chloride, iodide or alabamide. The invention disclosed herein is meant to encompass all pharmaceutically acceptable salts thereof of the disclosed compounds. The pharmaceutically acceptable salts include, but are not limited to, metal salts such as sodium salt, potassium salt, cesium salt and the like; alkaline earth metals such as calcium salt, magnesium salt and the like; organic amine salts such as triethylamine salt, pyridine 'salt, picoline salt, ethanolamine salt, triethanolamine salt, dicyclohexylamine salt, N,N'-dibenzylethylenediamine salt and the like; inorganic acid salts such as hydrochloride, hydrobromide, sulfate, phosphate and the like; organic acid salts such as formate, acetate, trifluoroacetate, maleate, fumarate, tartrate and the like; sulfonates such as methanesulfonate, benzenesulfonate, p toluenesulfonate, and the like; amino acid salts such as arginate, asparginate, glutamate and the like. The invention disclosed herein is also nieant to encompass all prodrugs of the disclosed compounds. Prodrugs are considered to be any covalently bonded carriers which release the active parent drug in vivo. The invention disclosed herein is also meant to encompass the in vivo metabolic 28 products of the disclosed compounds. Such products may result for example from the oxidation, reduction, hydrolysis, amidation, esterification and the like of the administered compound, primarily due to enzymatic processes. Accordingly, the invention includes compounds produced by a process comprising contacting a compound of this invention with a mammal for a period of time sufficient to yield a metabolic product thereof. Such products typically are identified by preparing a radiolabelled compound of the invention, administering it parenterally in a detectable dose to an animal such as rat, mouse, guinea pig, monkey, or to man, allowing sufficient time for metabolism to occur and isolating its conversion products from the urine, blood or other biological samples. The invention disclosed herein is also meant to encompass the disclosed compounds being isotopically-labelled by having one or more atoms replaced by an atom having a different atomic mass or mass number. Examples of isotopes that can be incorporated into the disclosed compounds include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine and chlorine, such as 2 H 3H, 3 C, 4 C, 5 N, "go, 17 o, 3 1 P, 32 P, "5S, 18 F, and "Cl, respectively. Some of the compounds disclosed herein may contain one or more asymmetric centers and may thus give rise to enantiomers, diastereomers, and other stereoisomeric forms. The present invention is also meant to encompass all such possible forms as well as their racemic and resolved forms and mixtures thereof. When the compounds described herein contain olefinic double bonds or other centers of geometric asymmetry, and unless specified otherwise, it is intended to include both E and Z geometric isomers. All tautomers are intended to be encompassed by the present invention. as well As used herein, the term "stereoisomers" is a general term for all isomers of individual molecules that differ only in the orientation of their atoms in space. It includes enantiomers and isomers of compounds with more than one chiral center that are not mirror images of one another (diastereomers). The term "chiral center" refers to a carbon atom to which four different groups are attached. The term "enantiomer" or "enantiomeric" refers to a molecule that is nonsuperimposeable on its mirror image and hence optically active wherein the enantiomer rotates the plane of polarized light in one direction and its mirror image rotates the plane of polarized light in the opposite direction. The term "racemic" refers to a mixture of equal parts of enantiomers and which is optically inactive. The term "resolution" refers to the separation or concentration or depletion of one of the two enantiomeric forms of a molecule. 29 The term "modulate" as used herein with respect to the ORL-1 receptor means the mediation of a pharnacodynanic response (e.g:, analgesia) in a subject from (i) inhibiting or activating the receptor, or (ii) directly or indirectly affecting the normal regulation of the receptor activity. Compounds which modulate the receptor activity include agonists, antagonists, mixed agonists/antagonists and compounds which directly or indirectly affect regulation of the receptor activity. Certain preferred compounds of formula (I) and (IA) include: . 3-(1-(naphth-2-yl-methyl)-4-piperidinyl]-2H-benzoxazol-2-one; . 3-[1-(naphth-1-yl-methyl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(p-phenylbenzyl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(p-benizyloxybenzyl)-4-piperidinyl]-2H-benzoxazol-2-one;. 3-[1 -(p-cyanobenzyl)-4-piperidinyl]-2H-benoxazol-2-one; 3-[1-(3,3-diphenylpropyl)-4-piperidinyl)-2H-benzoxazol-2-one; 3-[1-[4,4-Bis-(4-fluorophenyl)butyl]-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(2-phenylethyl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(cyclooctylmethyl)-4-piperidinyl)-2H-benzoxazol-2-one;. 3-[1-(1,2,3,4-tetrahydro-2-naphthyl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(5-methylhex-2-yl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(10,1 1-Dihydro-5H-dibenzo~a,d]-cyclohepten-5-yl)-4-piperidinyl]-2H benzoxazol-2-one; 3-(1-(4-propyl-cyclohexyl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(norbornan-2-yl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(decahydro-2-naphthyl)-4-piperidinyl]-2H-benzoxazol-2-one; 3-[1-(3,3-dimnethyl-1,5-dioxaspiro(5.5]undeca-9-yl)-4-piperidinyl-2H-benzoxazol 2-one; 3-[1-[4-(1-methylethyl)-cyclohexyl]-4-piperidinyl)-2H-benzoxazol-2-one; 3-[1-(1,3-dihydroinden-2-yl)-4-piperidiny]-2H-benzoxazol-2-one; 3-[1-(cyclooctyl)-4-piperidinyl]-2H-benzoxazol-2-one; and pharmaceutically acceptable salts thereof and solvates thereof. Certain preferred compounds of formula (II) and (IIA) include: 3-ethylidene-1-[1-(5-methylhex-2-yl)-4-piperidinyi]-1,3-dihydro-2H-indole-2-one; 3-ethylidene-1-[-(4-propylyclohexyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2 one; 3-ethylidene-1-[1-(1,2,3,4-tetrahydro-2-naphthyl)-4-piperidinyl]-1,3-dihydro-2H adole-2-one; 3-ethylidene-1-[1-(1,3-dihydroinden-2-yl)-4-piperidinyl]-1,3-dihydro-2H-indole-2 30 one; 3-ethylidene-l1-[1 -(naphth-2-yl-methyl)-4-piperidinyl]- I ,3-dihydro-2H-indole-2 one; 3-ethylidene-1-ri -(p-benzyloxybenzyl)-4-piperidinyl]-1I,3-dihydro-2H-indole-2 one; 3-ethylidene-l-[lI-(benzyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one;. * 3-ethylidene- 1-[1 -(cyclooctylmnethyi)-4-piperidinyl]-1I,3-dihydro-2H-indole-2-one; 3-ethylidene-l1-[1 -(norbornan-2-yl)-4-piperidinyl]-1 ,3-dihydro-2H-indole-2-one; 3 -ethylidene- i-ri-(3 ,3-diphenylpropyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2 one; * ~3-ethylidene- 1- [1-(p-cyanobenzyl)-4-piperidinyi]- 1 ,3-dihydro-2H-indole-2-one; 3 -ethyl-i1-rI -(5-methylhiex-2-yl)-4-piperidinyl]- 1 ,3-dihydro-2H-indoie-2-one; 3 -ethyl- I -ri -(4-(1 -methylethyl)-cyclohexyl]-4-piperidinyl]-,3 -dihydro-2H-indole * 2-one; 3-ethyl-i -ri-(4-propylcychexyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; 3 -ethyl- I - r(I -(1,2,3 , 4 -tetrahydro-2-naphthyl)-4-piperidinyi]- 1 ,3 -dihydro-2H-indole 2-one; 3-ethyl-i-ri -(decahydro-2-naphthyl)-4-piperidinyl]-1 ,3-dihydro-2H-indole-2-one; 3-ethyl-I -ri -(1 ,3-dihydroinden-2-*Yl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; 3 -ethyl-i1-(1 -(cyclooctylmethyl)-piperidinyl]- 1 ,3-dihydro-2H-indole-2-one; 3 -ethyl- I -[1 -(norbornan-2-yl)-4-piperidinyl]- 1 ,3-dihydro-2H- indole-2-one; i-ri -(naphth- 1-yl-methyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; i-ri -(naphth-2-yl-methyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; *1-ri -(p-phenylb'enzyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; i-ri -(3 ,3-Bis(phenyl)propyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; i-ri -(p-.cyanobeazyl)-4-piperidinyl]-1I,3-dihydro-2H-indole-2-one; 1 -[1 -(p-benzyloxybenzyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; -I -r1-(1,2,3 ,4-tetrahydronaphth-2-yi)-4-piperidinyl]- 1,3 -dihydro-2H-indole-2-one; * Iri-(5-rnethylhex-2-yi)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; 1 -[1 -(norboman-2-yi)-4-piperidinyll-1I,3-dihydro-2H-indole-2-one; i-ri -{i,3-dihydroinden-2-yl)-4-piperidinyl]- 1,3 -dihydro-2H-indole-2-one; i-ri -(cycooctylmethyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2-one; i-ri -(benzyl)-3-(methyl)-4-piperidinyl]..i,3-dihydro-2H-indole-2-one; i-ri -( 4 -propyl-cyclohexyl)-3-Qnethyl)-4-piperidinyl.. I,3-dihydro-2H-indoie-2-one; i-ri -( 5 -methylhex-2-y)-3-(methy)-.4-piperidinyl]- 1,3 -dihydro-211-indoie-2-one; i-ri -(decahydro-2-naphthyi)-3 -(methyl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2 31 one; 1- [1 44-01 -methylethyl)-cyclohexyl)3(methy)4piperidinyl]- 1,3 -dihylro-2H indole-2-one; 11 -(cYclooctYlmethyl).3.(methyI)-4-piperidil]- I , 3 -dihydro-2H-indole-2 -one; 1-ElI -(3 , 3 -Bis(phenyl)propyl).3.(methy)4piperidl]- 1 ,3-dihydro-2H-jndole-2 one; 3-ethyl- I -[1 -(3 ) 3 -Bis(phenyl)propyl)..3.(methyl)A4ppe.jdiflj 1,3 -dihydro-2H indole-2-one; 3-ethyl- I -[1 -( 4 -propylcyclohexyl)-3..methyl)-4ppe.jdil]- I,3-dihydro-2H indole-2-one; .3-ethyl-i -[1 -(S-methylhex-2-yl)3.(methyl)..-piperidinyll I ,3-dihydro-2H-indole. 2-one; 3-ethyl- I-[lI -[ 4 -(i-methylethyl)cyclohexyl].3-methyl4-pipeidil]- I ,3-dihydro 2 H-indole-2-one; 1 3 -ethyl- 1-r[I -(decahydro-2-naphthy).3.(methyl)4piperidiflyl]- 1,3 -dihydro-2H indole-2-one;.and pharmaceutically acceptable salts thereof and solvates thereof. Certain preferred compounds of formula (111) and (fIIA) include: 3-ethyl-I -(p-phenylbenzyl)-1
,
3 -dihydro-2H-benzimidazol.2-one; 3-ethyl-i -(5 -methylhex-2.yly. l, 3 -dihydro-2H-benzimjdazol.2-one; 3 -ethyl- I -( 4 -propylcyclohexyl)- l,3-dihydro-2H-benzimdazol.2one; 3 -ethyl- 1 -(decahydro-2-naphthyl) 1,3dhdo2Hbniiazl2oe 3-ethyl-i -(naphth-2-yI-methyl)-1 3 -dihydro-2H-benzimidazolI.one; 1-(p-benzyloxybenzyi)-3-ethyi-1,-iyr-Hbnzmdzl2oe 1 -benzyl-3-ethyl-1,-ihyr-Hbnimdzl2oe I- [ 4 -(benzylamino)-cyclohexyl]-3 -thyl- 1, dhdo2-ezmdzl2oe 3-ethyl-i -(naphthylmethiyl). 3-Ihyr-Hb imdzl2oe 3 -ethyl-I -[5-( 3 -fluorophienyl)5-{4fluorophenyl)-hexyl] 1 ,3-dihydro-2H-. benzimidazol-2-one; 1-4[npt--lmty ehlmn]ccoey]1
,
3 -dihydro-2H-benim~idazol 2-one; l-[ 4 -(norbornan-2-ylanino).cyclohexyl] 1 , 3 -dihydro-2H-bezimidazol-2-on; 1 -[4-[[4-(l -mtyehl-ylhxl mn]-ylhxl 1,3 -dihydro-2H benzinaidazol-2-one; 1-4[dchdo2npty aio-ylh>-l-,3-dih~ydro-2H-benzimidazol-2 one; 32 1- [ 4 -(ethylamino)-cyclohexyl]- 1, 3 -dihydro-2H-benzimidazol-2-one; 1-[4-(benzylamino)-cyclohexyl]-1, 3 -dihydro-2H-benzinidazol-2-one; 1- 4-[(indan-2-yl)benzylamino]-cyclohexyl]-3-ethyl-1,3-dihydro-2H-benzimidazol 2-one; S1-[ 4 -[(cyclooctylmethyl)amino]-cyclohexyl]-3 -ethyl- 1,3 -dihydro-2H-benzimidazol 2-one; . 1-[ 4 -((naphth-2-yl)amino]-cyclohexyl]-3 -ethyl- 1,3-dihydro-2H-benzimidazol-2 one; 1-[ 4 -[(p-benzyloxybenzyl)amino]-cyclohexyl]-3 -ethyl- 1,3 -dihydro-2H benzimidazol-2-one; 1-[ 4 -[(cyclooctylmethyl)amino]-cyclohexyl]-3-ethyl- 1,3-dihydro-2H-benzimidazol 2-one; 1- [4-[(decahydro-2-napthyl)amino] -cyclohexyl-3-ethyl-1,3-dihydro-2H benzimidazol-2-one;. 1-[ 4 -(benzylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H--benzimidazol-2-one; 1-[ 4 -(dibenzylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2 one; 1-( 4 -[(p-phenylbenzyl)amino]-cyclohexy1]-5-carbamoyl-1,3-dihydro-2H benzimidazol-2-one; 1-[4-[(1,2,3, 4 -tetrahydronaphthyl)amino]-cyclohexyl]-5-carbamoyl-1,3-dihydro 2H-benzimidazol-2-one; 1-[ 4
-[(
4 -propyl-cyclohexyl)amino]:cyclohexyl]-5-carbamoyl-1,3-dihydro-2H benzimidazol-2-one; 1-[ 4 -((5-methylhex-2-yl)amino]-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H benzimidazol-2-one; 1-[ 4 -[(decahydro-2-naphthy)amino]-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H benzimidazol-2-one; 1-[ 4 -(cyclooctylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2 one; 1-[ 4 -[(indan-2-yl)amino]-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H-benzimidazol 2-one; 1-[ 4 -((4-phenyl-cyclohexyl)amino)-cyclohexyl]:-5-carbamoyl-1,3-dihydro-2H benzimidazol-2-one; 1-[ 4
-[(
5 -methylhex-2-yl)amino]-cyclohexyl]-7-carbamoyl-1,3-dihydro-2H benzimidazol-2-one; and pharmaceutically acceptable salts thereof and solvates thereof. 33 Other preferred compounds formula (MV and (TVA) include: 2-cyanoimino-3-ethyl-l1-[1-(p-phenylbenzyl)-4-piperidinyl]- 1 ,3-dihydro-2H benzimidazole; 2-cyanoimino-3 -ethyl-i -[1 -(p-benzyloxybenzyl)-4-piperidinyl] 1 ,3-dihydro-2H1 bentirnidazole; 2-cyanoimino-3 -ethyl- 1 -[I -(naphth-2-yl-methyl)-4-piperidinylI 1 ,3-dihydro-2H benzimidazole; 2-cyanoixnino-3 -ethyl- 1 -[l1-(4-propylcyclohexyl)-4-piperidinyl]- 1 ,3-dihydro-2H benzimidazole; 2-cyafaoimino-3 -ethyl- 1 -(I -[4-(2-propyl)-cyclohexyl]-4-piperidinyll- 1,3-dihydro 2H-benzimidazole; 2-cyanoimino-3-ethyl-l1-[1 -(decahydro-2-naphthyl)-4-piperidinyl]- 1,3-dihydro 2H-benzimidazole; 2-cyanoimino-3-ethyl-1 -[1-(cyclooctyl)-4-piperidinyl]-1I,3-dihydro-2 benzirnidazole; 2-cyanoimino-3-ethyl-- [1-(10,l1-dihydro-5H-dibenzo(ad]-cyclohepten-5-yl)-4 piperidinyl]- 1,3-dihydro-2H-benzixnidazole; 2-cyanoimino-3-ethyl-1 -(1 -(3,3-Bis(phenyl)propyl)-4-piperidinyl]- 1,3 -dihydro 2H-benzimidazole; 2-cyanoimino-3-ethyl-1-[1 -(1,2,3 ,4-teftrahydronaphthyl)-4-piperidinyl]-l ,3 dihydro-2H-benzimidazole; 2-cyanoimino-3-ethyl-1 -[1-(5-methiylhex-2-yl)-4-piperidinyl]- 1,3-dihydro-2H benzimnidazole; 2-cyanointino-3 -ethyl-1I -[1I -(norbornan-2-yi)-4-piperidinyl] - 1 ,3-dihydro-2F1 beazimidiazole; 2-cyanoirnino-3 -ethyl-1I- [I -(1 ,3-dihydroinden-2-yI)-4-piperidinyl]- 1 ,3 -diliydro 2F-benzirnidazole; 2-cyanoiniino-3-ethyl-1 -[1-(cyclooctylmethyl)-4-piperidinyl1- 1,3-dihydro-2H benzimidazole; and pharmaceutically acceptable salts thereof and solvates thereof. Other preferred compounds of formula (IV) include 2-cyanoimino-3-(2-hydroxy)ethyl-1 -(1-(cyclooctyl)-4-piperidinyl]-1I,3-dihydro-2H benzimidazole; 2-cyanoiinino-3-methoxycarbonylxnethyl-1 -(Ti-(cyclooctyl)-4-piperidinyl]- 1,3 dihydro-2H-benzixnidazole; 2-cyanoixnino-3-cyanomethyl-1 -[1 -(cyclooctyl)-4-piperidinyl]-1I,3-dihydro-2H 34 benzimidazole;. 2-cyanoimino-3 -butyl-1 -[1 -(cyclooctyl)-4-piperidinyl]- 1,3-dihydro-2H benzimidazole; 2-cyanoimino-3-(2-methanesulfonamido)ethyl--1-[1-(cyclooctyl)-4-piperidinyl]-1,3 dihydro-2H-benzimidazole; 2-cyanoimino-3-acetomido-1 -[1-(cyclooctyl)-4-piperidinyl]- 1,3-dihydro-2H benzimidazole; 2-cyanoimino-3-carboxymethyl-1 -[1 -(cyclooctyl)-4-piperidinyl]- 1,3-dihydro-2H benzimidazole; 2-cyanoimino-3-(2-dimethylamino)ethyl-- -[ 1-(cyclooctyl)-4-piperidinyl]- 1,3 dihydro-2H-benzimidazole; 2-cyanoimino-1-[1-(cyclooctyl)-3-hydroxymethyl-4-piperidinyl]-1,3-dihydro-2H benzimidazole; 2-cyanoimino-1-[1-(cyclooctyl)-4-piperidinyl]-1,3-dihydro-2H-7 azabenzimidazole; 2-cyanoimino-1-[1-(cyclooctyl)-2,6-ethano-4-one-4-piperidinyl]-1,3-dihydro-2H benzimidazole; and pharmaceutically acceptable salts thereof and solvates thereof. The present invention also provides use of any of the disclosed compounds in the preparation of a medicament for treating pain and other disease states modulated by an opioid receptor, e.g., the ORL-1 receptor. DETAILED DESCRIPTION OF THE INVENTION The compounds of the present invention can be administered to anyone requiring modulation of the opioid and ORLI receptors: Administration may be orally, topically, by suppository, inhalation, or parenterally. The present invention also encompasses all pharmaceutically acceptable salts of the foregoing compounds. One skilled in the art will recognize that acid addition salts of the presently claimed compounds may be prepared by reaction of the compounds with the appropriate acid via a variety of known methods. Various oral dosage forms can be used, including such solid forms as tablets, gelcaps, capsules, caplets, granules, lozenges and bulk powders and liquid forms such as emulsions, solution and suspensions. The compounds of the present invention can be administered alone or can be combined with various pharmaceutically acceptable carriers and excipients known to those skilled in the art, including but not limited to diluents, suspending agents, solubilizers, binders, disintegrants, preservatives, coloring agents, 35 lubricants and the like. When the compounds of the present invention are incorporated into oral tablets, such tablets can be compressed, tablet triturates, enteric-coated, sugar-coated, film-coated, multiply compressed or multiply layered. Liquid oral dosage forms include aqueous and nonaqueous solutions, emulsions, suspensions, and solutions and/or suspensions reconstituted from non-effervescent granules, containing suitable solvents, preservatives, emulsifying agents, suspending agents, diluents, sweeteners, coloring agents, and flavoring agents. When the compounds of the present invention are to be injected parenterally, they may be, e.g., in the form of an isotonic sterile solution. Alternatively, when the compounds of the present invention are to be inhaled, they may be formulated into a dry aerosol or may be formulated into an aqueous or partially aqueous solution. In addition, when the compounds of the present invention are incorporated into oral dosage forms,~it is contemplated that such dosage forms may provide an immediate release of the compound in the gastrointestinal tract,'or alternatively may provide a con trolled and/or sustained release through the gastrointestinal tract. A wide variety of controlled and/or sustained release formulations are well known to those skilled in the art, and are contemplated for use in connection with the formulations of the present invention. The controlled and/or sustained release may be provided by, e.g., a coating on the oral dosage form or by incorporating the compound(s) of the invention into a controlled and/or sustained release matrix. Specific examples of pharmaceutically acceptable carriers and excipients that may be used to formulate oral dosage forms, are described in the Handbook of Pharmaceutical Excipients. American Pharmaceutical Association (1986). Techniques and compositions for making solid oral dosage forms are described in Pharmaceutical Dosage Forms: Tablets (Lieberman, Lachman and Schwartz, editors) 2nd edition, published by Marcel Deldcer, Inc. Techniques and compositions for making tablets (compressed and molded), capsules. (hard and soft gelatin) and pills are also described in Remington's Pharmaceutical Sciences (Arthur Osol, editor), 1553B 1593 (1980). Techniques and composition for making liquid oral dosage forms are described in Pharmaceutical Dosage Forms: Disperse Systems. (Lieberman, Rieger and Banker, editors) published by Marcel Dekker, Inc. When the compounds of the present invention are incorporated for parenteral administration by injection (e.g., continuous infusion or bolus injection), the formulation for parenteral administration may be in the form of suspensions, solutions, emulsions in oily or aqueous vehicles, and such formulations may further comprise pharmaceutically necessary additives such as stabilizing agents, suspending agents, dispersing agents, and the like. The compounds of the invention may also be in the form of a powder for 36 reconstitution as an injectable formulation. In certain embodiments, the compounds of the present invention can be used in combination with at least one other therapeutic agent. Therapeutic agents include, but are not limited to, p-opioid agonists; non-opioid analgesics; non-steroid antiinflammatory agents; Cox-II inhibitors; antiemetics; p-adrenergic blockers; anticonvulsants; antidepressants; Ca2+-channel blockers; anticancer agent and mixtures thereof. In certain embodiments, the compounds of the present invention can be formulated in a pharmaceutical dosage form in combination with a p-opioid agonist. A-oyioid agonists, which may be included in the formulations of the present -invention include but are not limited to include alfentanil, allylprodine, alphaprodine, anileridine, benzylmorphine, bezitramide, buprenorphine, butorphanol, clonitazene, codeine, desomorphine, dextromoramide, dezocine, diampromide, diamorphone, dihydrocodeine, dihydromorphine, dimenoxadol, dimepheptanol, dimethylthiambutene; dioxaphetyl butyrate, dipipanone, eptazocine, ethoheptazine, ethylmethylthiambutene, ethylmorphine, etonitazene fentanyl, heroin, hydrocodone, hydromorphone, hydroxypethidine, isomethadone, ketobemidone, levorphanol, levophenacylmorphan, lofentanil, meperidine, . meptazinol, metazocine, methadone, metopon, morphine, myrophine, nalbuphine, narceine, nicomorphine, norlevorphanol, normethadone, nalorphine, normorphine, norpipanone, opium, oxycodone, oxymorphone, papaveretum, pentazocine, phenadoxone, phenomorphan, phenazocine, phenoperidine, piminodine, piritramide, proheptazine, promedol, properidine, propiram, propoxyphene, sufentanil, tilidine, tramadol, pharmaceutically acceptable salts thereof, and mixtures thereof. In certain preferred embodiments, the p-opioid agonist is selected from codeine, hydromorphone, hydrocodone, oxycodone, dihydrocodeine, dihydromorphine, morphine, tramadol, oxymorphone, pharmaceutically acceptable salts thereof, and mixtures thereof. In another embodiment of the invention, the medicament comprises a mixture of a Cox-II inhibitor and an inhibitor of 5-lipoxygenase for the treatment of pain and/or inflammation. Suitable Cox-II inhibitors and 5-lipoxygenase inhibitors, as well as combinations thereof are described in U.S. Patent No. 6,136,839, which is hereby incorporated by reference in its entirety. Cox-II inhibitors include, but are not limited to rofecoxib (Vioxx), celecoxib (Celebrex), DUP-697, flosulide, meloxicam, 6-MNA, L 745337, nabumetone, nimesulide, NS-398, SC-5766, T-614, L-768277, GR-253035,
JTE
522, RS-57067-000, SC-58125, SC-078, PD-138387, NS-398, flosulide, D-1367, SC 37 5766, PD-164387, etoricoxib, valdecoxib and parecoxib or pharmaceutically acceptable salts, enantiomers or tautomers thereof. The compounds of the present invention can also be combined in dosage forms with non-opioid analgesics, e.g., non-steroidal anti-inflammatory agents, including aspirin, ibuprofen, diclofenac, naproxen, benoxaprofen, flurbiprofen, fenoprofen, flubufen, ketoprofen, indoprofen, piroprofen, carprofen, oxaprozin, pramoprofen, muroprofen, trioxaprofen, suprofen, aminoprofen, tiaprofenic acid, fluprofen, bucloxic acid, indomethacin, sulindac, tolmetin, zomepirac, tiopinac, zidometacin, acemetacin, fentiazac, clidanac, oxpinac, rnefenamic acid, meclofenamic acid, flufenamic acid, niflumic acid tolfenamic acid, diflurisal, flufenisal, piroxicarn, sudoxicam or isoxicam, pharmaceutically acceptable salts thereof, and mixtures thereof. Other suitable non-opioid analgesics which may be included in the dosage forms of the present invention include the following, non limiting, chemical classes of analgesic, antipyretic, nonsteroidal antifinflammatory drugs: salicylic acid derivatives, including aspirin, sodium salicylate, choline magnesium trisalicylate, salsalate, diflunisal, salicylsalicylic acid, sulfasalazine, and olsalazin; para aminophennol derivatives including acetaminophen; indole and indene acetic acids, including indomethacin, sulindac, and etodolac; heteroaryl acetic acids, including tolmetin, diclofenac, and ketorolac; anthranilic acids (fenamates), including mefenamic acid, and meclofenarnic acid; enolic acids, including oxicams (piroxicam, tenoxicam), and pyrazolidinediones (phenylbutazone, oxyphenthartazone); and alkanones, including nabumetone. For a more detailed description of the NSAIDs that may be included within the medicaments employed in the present invention, see Paul A. Insel Analgesic Antipyretic and Antiinflammatory Agents and Drugs Employed in the treatment of Gout in Goodman & Gilman's The Pharmacological Basis of Therapeutics, 617-57 (Perry B. Molinhoff and Raymond W. Ruddon, Eds., Ninth Edition, 1996), and Glen R. Hanson Analgesic, Antipyretic and Anit-Inflammatory Drugs in Remington: The Science and Practice of Pharmacy Vol II, 1196-1221 (A. R. Gennaro, Ed. 19th Ed. 1995) which are hereby incorporated by reference in their entireties. In certain embodiments, the compounds of the present invention can be formulated in a pharmaceutical dosage form in combination with antimigraine agents. Antimigraine agents include, but are not limited to, alpiropride, dihydroergotamine, dolasetron, ergocornine, ergocorninine, ergocryptine, ergot, ergotamine, flumedroxone acetate,fonazine,lisuride, lomerizine, methysergide oxetorone, pizotyline, and mixtures 38 thereof The other therapeutic agent can also be an adjuvant to reduce any potential side effects such as, for example, an antiemetic agent. Suitable antiemetic agents include, but are not limited to, netoclopromide, domperidone, prochlorperazine, promethazine, chlorpromazine, trimethobenzamide, ondansetron, granisetron, hydroxyzine, acethylleucine monoethanolamine, alizapride, azasetron, benzquinamide, bietanautine, bromopride, buclizine, clebopride, cyclizine, dimenhydrinate, diphenidol, dolasetron, meclizine, methallatal, metopimazine, nabilone, oxyperndyl, pipamazine, scopolamine, silpiride, tetrahydrocannabinols, thiethylperazine, thioproperazine, tropisetron, and mixtures thereof. In certain embodiments, the compounds of the present invention can be formulated in a pharmaceutical dosage form in combination. with P-adrenergic blockers. Suitable Q: adrenergic blockers include, but are not limited to, acebutolol, alprenolol, amosulabol, arotinolol, atenolol, befunolol, betaxolol, bevantolol, bisoprolol, bopindolol, bucumolol, bufetolol, bufuralol, bunitrolol, bupranolol, butidrine hydrochloride, butofilolol, carazolol, carteolol, carvedilol, celiprolol, cetamolol, cloranolol, dilevalol, epanolol, esmolol, indenolol, labetalol, levobunolol, mepindolol, metipranolol, metoprolol, moprolol, nadolol, nadoxolol, nebivalol, nifenalol, nipradilol, oxprenolol, penbutolol, pindolol, practolol, pronethalol, propranolol, sotalol, sulfinalol, talinolol, tertatolol, tilisolol, timolol, toliprolol, and xibenolol. In certain embodiments, the compounds of the present invention can be formulated in a pharmaceutical dosage form in combination with anticonvulsants. Suitable anticonvulsants include, but are not limited to, acetylpheneturide, albutoin, aloxidone, aminoglutethimide, 4 -amino-3-hydroxybutyric acid, atrolactamide,beclamide, buramate, calcium bromide, carbamazepine, cinromide, clomethiazole, clonazepam, decimemide, diethadione, dimethadione, doxenitroin, eterobarb, ethadione, ethosuximide, ethotoin, felbamate, fluoresone, gabapentin, 5-hydroxytryptophan, lamotrigine, magnesium bromide, magnesium sulfate, mephenytoin, mephobarbital, metharbital, methetoin, methsuximide, 5 methyl-5-(3-phenanthryl)-hydantoin, 3 -methyl-5-phenylhydantoin, narcobarbital, nimetazepam, nitrazepam, oxcarbazepine, paramethadione, phenacemide, phenetharbital, pheneturide, phenobarbital, phensuximide, phenylmethylbarbituric acid, phenytoin, phethenylate sodium, potassium bromide, pregabaline, primidone, progabide, sodium bromide, solanum, strontium bromide, suclofenide, sulthiame, tetrantoin, tiagabine, topiramate, trimethadione, valproic acid, valpromide, vigabatrin, and zonisamide. 39 In certain embodiments, the compounds of the present invention can be formulated in a pharmaceutical dosage form in combination with antidepressants. Suitable antidepressants include, but are not limited to, binedaline, caroxazone, citalopram, dimethazan, fencamine, indalpine, indeloxazine hydrocholoride, nefopam, nonifensine, oxitriptan, oxypertine, paroxetine, sertraline, thiazesim, trazodone, benmoxine, iproclozide, iproniazid, isocarboxazid, nialamide, octamoxin, phenelzine, cotinine, rolicyprine, rolipram, maprotiline, metralindole, mianserin, mirtazepine, adinazolam, amitriptyline, amitriptylinoxide, amoxapine, butriptyline, clomipramine, demixiptiline, desipramine, dibeizepin, dimetacrine, dothiepin, doxepin, fluacizine, imipramine, imipramine N-oxide, iprindole, lofepramine, melitracen, metapramine, nortriptyline, noxiptilin, opipramol, pizotyline, propizepine, protriptyline, quinupramine, tianeptine, trimipramine, adrafinil, benactyzine, bupropion, butacetin, dioxadrol, duloxetine, etoperidone, febarbamate, femoxetine, fenpentadiol, fluoxetine, fluvoxamine, hematoporphyrin, hypericin, levophacetoperane, medifoxamine, milnacipran, minaprine, moclobemide, nefazodone, oxaflozane, piberaline, prolintane, pyrisuccideanol, ritanserin, roxindole, rubidium chloride, sulpiride, tandospirone, thozalinone, tofenacin, toloxatone, tranylcypromine, L-tryptophan, venlafaxine, viloxazine, and zimeldine. In certain embodiments, the compounds of the present invention can be formulated in a pharmaceutical dosage form in combination with Ca2+-channel blockers. Suitable Ca2+-channel blockers include, but are not limited to, bepridil, clentiazem, diltiazem, fendiline, gallopamil, mibefradil, prenylamine, semotiadil, terodiline, verapamil, amlodipine, aranidipine, barnidipine, benidipine, cilnidipine, efonidipine, elgodipine, felodipine, isradipine, lacidipine, lercanidipine, manidipine, nicardipine, nifedipine, nilvadipine, nimodipine, nisoldipine, nitrendipine, cinnarizine, flunarizine, lidoflazine, lomerizine, bencyclane, etafenone, fantofarone, and perhexiline. In certain embodiments, the compounds of the present invention can be formulated in a pharmaceutical dosage form in combination with anticanceri agents. Suitable anticancer agents include, but are not limited to, acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleuldn; altretamine; ambomycin; ametantrone acetate; aminoglutethimide; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; 40 carmustine; carubicin hydrochloride; carzelesin; cedefingol; chlorambucil; cirolemycin; cisplatin; cladribine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine; dactinomycin; daunorubicin hydrochloride; decitabine; dexormaplatin; dezaguanine; dezaguanine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride; droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate; eflornithine hydrochloride; elsamitrucin; enloplatin; enpromate; epipropidine; epirubicin hydrochloride; erbulozole; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride; fazarabine; fenretinide; floxuridine;' fludarabine phosphate; fluoroutacil; flur6citabine; fosquidone; fostriecin sodium; gemcitabine; gemcitabine hydrochloride; hydroxyurea; idarubicin hydrochloride; ifosfamide; ilmofosine; interleukin 11 (including recombinant interleukin II, or rfL2), interferon alfa-2a; interferon alfa-2b; interferon alfa-nl ; interferon alfa-n3; interferon beta-I a; interferon gamma-I b; iproplatin; irinotecan hydrochloride; lanreotide acetate; letrozole; leuprolide acetate; liarozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprocol; maytansine; mechlorethamine hydrochloride; megestrol acetate; melengestrol acetate; melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; metoprine; meturedepa; mitindomide; mitocarcin; mitocromin; mitogillin; rnitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocodazole; nogalan-ycin; ormaplatin; oxisuran; paclitaxel; pegaspargase; peliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan; piroxantrone hydrochloride; plicamycin; -plomestane; porfimer sodium; porfiromycin; prednimustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazofurin; riboprine; rogletimide; safingol; safingol hydrochloride; semustine; simtrazene; sparfosate sodium; sparsomycin; spirogermanium hydrochloride; spiromustine; spiroplatin; streptonigrin; streptozocin; sulofenur; talisomycin; tecogalan sodium; tegafur; teloxantrone hydrochloride; temoporfin; teniposide; teroxirone; testolactone; thiamiprine; thioguanine; thiotepa; tiazofurin; tirapazamine; toremifene citrate; trestolone acetate; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin; tubulozole hydrochloride; uracil mustard; uredepa; - vapreotide; verteporfin; vinblastine sulfate; vincristine sulfate; vindesine; vindesine sulfate; vinepidine sulfate; vinglycinate sulfate; vinleurosine sulfate; vinorelbine tartrate; vinrosidine sulfate; vinzolidine sulfate; vorozole; zeniplatin; zinostatin; zorubicin hydrochloride. Other anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3; 5 41 etnynyiuracil; abiraterone; aclarubicin; acylfulvene; adecypenol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; amifostine; aminolevulinic acid; anrubicin; armsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deaminase; asulacrine; atamestane; atrimustine; axinastatin 1; axinastatin 2; axinastatin 3; azasetron; azatoxin; azityrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine; betaclamycin B; betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene -A; bizelesin; breflate; bropirimine; budotitane; buthionine sulfoximine; calcipotriol; calphostin C; camptothecin derivatives; canarypox IL-2; capecitabine; carboxamide-amino triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorIns; chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole; collismycin A; collismycin B; combretastatin A4; combretastatin analogue; conagenin; crambescidin 816; crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A; cyclopentanthraquinones; cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor; cytostatin; dacliximab; decitabine; dehydrodidemnin B; deslorelin; dexamethasone; dexifosfamide; dexrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorspermine; dihydro-5-azacytidine; dihydrotaxol, 9-; dioxamycin; diphenyl spiromustine; docetaxel; docosanol; dolasetron; doxifluridine; droloxifene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab; eflornithine; elemene; emitefur; epirubicin; epristeride; estramustine analogue; estrogen agonists; estrogen antagonists; etanidazole; etoposide phosphate; exemestane; fadrozole; fazarabine; fenretinide; filgrastin; finasteride; flavopiridol; flezelastine; fluasterone; fludarabine; fluorodaunorunicin hydrochloride;. forfenimex; formestane; fostriecin; fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine; ganirelix; gelatinase inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin; hexamethylene bisacetamide; hypericin; ibandronic acid; idarubicin; idoxifene; idramantone; ilmofosine; ilomastat; inidazoacridones; imiquimod; immunostimulant peptides; insulin-like growth factor-1 receptor inhibitor; interferon agonists; interferons; interleukins; iobenguane; 42 .iododoxorubicin; ipomeanol, 4-; iroplact; irsogladine; isobengazole; isohomohalicondrin B; itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin; lenograstim; lentinan sulfate; leptolstatin; letrozole; leukemia inhibiting factor; leukocyte alpha interferon; leuprolide+estrogen+progesterone; leuprorelin; levanisole; liarozole; linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds; lissoclinamide 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; lovastatin; loxoribine; lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine; mannostatin A; marimastat; masoprocol; maspin; matrilysin inhibitors; matrix metalloproteinase inhibitors; menogaril; merbarone; meterelin; methioninase; metodlopramide; MIF inhibitor; nifepristone; miltefosine; mirimostim; mismatched double stranded RNA; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim; monoclonal antibody, human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell wall sk; mopidamol; multiple drug resistance gene inhibitor; multiple tumor suppressor 1 based therapy; mustard anticancer agent; mycaperoxide B; mycobacterial cell wall extract; myriaporone; N-acetyldinaline; N-substituted benzamides; nafarelin; nagrestip; naloxone+pentazocine; napavin; naphterpin; nartograstim; nedaplatin; nemorubicin; neridronic acid; neutral endopeptidase; nilutamide; nisamycin; nitric oxide modulators; nitroxide antioxidant; nitrullyn; 0 6 -benzylguianine; octreotide; okicenone; .oligonucleotides; onapristone; ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin; osaterone; oxaliplatin; oxaunomycin; paclitaxel; paclitaxel analogues; paclitaxel derivatives; palauamine; palmitoylrhizoxin; pamidronic acid; panaxytriol; panomifene; parabactin; pazelliptine; pegaspargase; peldesine; pentosan polysulfate sodium; pentostatin; pentrozole; perflubron; perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; porfirrier sodium; porfiromycin; prednisone; propyl bis acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylene conjugate; raf antagonists; raltitrexed; ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII 43 retinamide; rogletimide; rohitukine; romurtide; roquinimex; rubiginone BI; ruboxyl; safingol; saintopin; SarCN-U; sarcophytol A; sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1; sense oligonucleotides; signal transduction inhibitors; signal transduction modulators; single chain antigen binding protein; sizofiran; sobuzoxane; sodium borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1; squalamine; stem cell inhibitor; stem-cell division inhibitors;,stipiamide; stromelysin inhibitors; sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; synthetic glycosaminoglycans; tallimustine; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; temozolomide; teniposide; tetrachlorodecaoxide; tetrazomine; thaliblastine; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; toremifene; totipotent stem cell factor, translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; tyrphostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; vector system, erythrocyte gene therapy; velaresol; veramine; verdins; verteporfin; vinorelbine;.vinxaltine; vitaxin; vorozole; zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer. The compounds of the present invention and the other therapeutic agent can act additively or, more preferably, synergistically. In a preferred embodiment, a composition comprising a compounds of the present invention is administered concurrently with the administration of another therapeutic agent, which can be part of the same composition or in a different composition from that comprising the compounds of the present invention. In another embodiment, a composition comprising the compounds of the present invention is administered prior to or subsequent to administration of another therapeutic agent. The compounds of the present invention when administered, e.g., via the oral, parenteral or topical routes to mammals, can be in a dosage in the range of about 0.01 mg/kg to about 3000 mg/kg body weight of the patient per day, preferably about 0.01 mg/kg to about 1000 mg/kg body vyeight per day administered singly or as a divided dose. However, variations will necessarily occur depending upon the weight and physical condition (e.g., hepatic and renal function) of the subject being treated, the affliction to be 44 treated, the severity of the symptoms, the route of administration, the frequency of the. dosage interval, the presence of any deleterious side-effects, and the particular compound utilized, among other things. The compounds of the present invention preferably have a binding affinity Ki for the human ORL-1 receptor of about 500 nM or less; 100 nM or less; 50 nM or less; 20 nM or less or 5 nM or less. The binding affinity Ki can be measured by one skilled in the art by an assay utilizing membranes from recombinant HEK-293 cells expressing the human opioid receptor-like receptor (ORL-1) as described below. The following examples illustrate various aspects of the present invention, and are not to be construed to limit the claims in any manner whatsoever. EXAMPLE 1 SYNTHESIS OF 3ENZOXAZOLONE HEAD GROUPS. The head groups of the present invention were synthesized according to the following procedure: OH 0 OH Na(AcO) 3 BH h1NH C3COOCC NH2 DCE BO Acetic Acid DIEA / THF BBOC 60 N OaC to RT 2 1O 3 0 30%TFA/DCM O RT NN I N BOC H 4 5 45 Procedure: To a mixture of 1 (1.09 g, 10 ramol), 2 (1.99 g, 10 mmol) and acetic acid (0.60 g, 10 mmol) in 50 ML of dichloroethane, was added sodium triacetoxyborohydride (2.97 g, 14 mmol). The mixture was stirred at room temperature overnight. The mixture was filtered through Celite and 1 N NaOH (50 mL) was added to quench the reaction. The organic layer was separated and the aqueous layer was extracted with EtOAc (2 x 30 mL). The combined organic layers were dried over K2CO 3 , filtered and evaporated in vacuum to give crude 3 as a brown solid (2.75 g, yield: 94%). 'H NMR (CDCl 3 ): d 1.
2 0 -1.60.(m, 11H), 2,00.(dd, 2H), 2.9 (m, 2H), 3.40 (in, 111), 4.00 (in, 2H), 6.60-6.85 (i, 411). To an ice cooled solution of crude 3 (12.0 g, 40 mmol) and DIEA (20.8 mL, 120 mmol) in 200 mL of THF, was added a solution of triphosgene (4.32 g, 14.4 mmol) in 200 mL of THF. After the addition was complete the ice bath was removed and the mixture stirred at room temperature overnight. The solids were filtered off and the filtrate evaporated in vacuum. The residual brown oil was dissolved in EtOAc and washed with saturated aqueous K 2 C0 3 . The organic phase was dried over K 2 C0 3 , filtered and evaporated in vacuum to give a red oil which was filtered through a column of silica gel eluting with a mixture of 5% Et 3 N, 25% EtOAc and 70% hexane. The selected fractions were combined and the solvent evaporated in vacuum to give a brown solid which was crystallized from EtOAc to give pure 4 (10.0 g, 78% yield). 'H NMR (CDCl 3 ): d .1.50 (s, 9H), 1.85 (d, 2H), 2.25 (m, 2H), 2.85 (in, 2H), 4.20-4.45 (in, 3H), 7.00-7.25 (m, 4H). A solution of 4 (4.0 g, 17.2 mmol) in 30% TFA/dichloromethane (25 mL) was stirred at room temperature for 3 h. The solvent was evaporated in vacuum and saturated aqueous
K
2 C0 3 was added to the oily residue. The resulting mixture was extracted with dichloromethane (3 x 50 mL). The combined organic extracts were dried over K 2 C0 3 , filtered and evaporated in vacuum to give the crude product Chromatography on silica gel eluting with a mixture of 10% Et 3 N, 60% EtOAc and 30% hexane gave 5 as a yellow solid (1.82 g, 66% yield). MS: m/z 450 'H NMR (CDCla): d 1.75-2.10 (in, 3H), 2.30 (d, 21-), 2.80 (in, 2H), 3.20 (in, 2H), 4.25 (m, 1H), 7.00-7.25 (in, 4H). 46 EXAMPLE 2 ATTACHMENT OF TAIL GROUPS Tail groups were attached to the head groups according to the following procedures: R-Br, EtAN DMF N
R
1 R2 NaCN 3 BH, HOAc mol. sieves, MeOH N
R
1 R2 General procedure for alkylation: To a solution of the amine (1 eq) and triethylamine (1 eq) in dimethylformamide, was added I eq of alkyl bromide or chloride in one portion. The mixture was stirred and heated at 80*C over night. TLC indicated the reaction was complete. The reaction was quenched by the addition of water followed by 1 N NaOH to pH 10. The mixture was extracted 2x with Et 2 0. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromatography to give the pure product. General procedure for reductive amination: To a mixture of ketone or aldehyde (1 eq), amine (1 eq), and acetic acid (1 eq) in methanol, was added sodium cyanoborohydride (1.4 eq) in one portion. The mixture was stirred over night at room temperature. TLC indicated the reaction was complete. The reaction was quenched by the addition of water followed by I N NaOH to pH 10. The mixture was extracted 2x with Et 2 O. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromatography to give the pure product 47.
The following compounds were prepared by attaching the tail groups using the general procedures described: 3-[l-(naphth-Z-yl-methyl)4-piperidinyl]-2H-benzoxazol-2-one 3-[1-(naphth-1-yl-methyl)-4-piperidinyl]-2H-benzoxazol-2-one 3-[1-(p-phenylbenzyl)-4-piperidinyl]-2H-benzoxazol-2-one 3-[1-(p-benzyloxybenzyl)-4-piperidiny1]-2H-benzoxazol-2-one 3-[1-(p-cyanobenzyl)-4-piperidinyl]-2H-benzoxazol-2-one MS: m/z 334.4 (M+1) 1-(3, 3 -diphenylpropyl)-4-piperidinyl]-2H-benzoxazol-2-one 3-[l-[ 4
,
4 -Bis-(4.-fluorophenyl)butyl]-4-piperidinyl]-2H-benzoxazol-2-one MS: m/z 463.6 (M+1). 3-[i-(2-phenylethyl)-4-piperidiny]-2H-benzoxazol-2-one 3-[1-(cyclooctylmethyl)-4-piperidinyl]-2H-benzoxazol-2-one LC: 100% MS: m/z 343.6 (M+1). 'H-NMR (CDCl 3 ): d 1.25 (m, 2H), 1.40-1.7 (m, 17H), 2.10 (m, 4H), 3.10 (m, 2H), 4.20 (m, 1H), 7.10-7.20 (4H). 13C-NMR (CDC13): d 26.02,26.87,27.55,29.27,31.23, 35.31, 53.39, 53.70, 66.28, 110.45, 110.51, 122.45, 123.96, 130.45, 143.08, 154.51. 3-[1-(1,2,3, 4 -tetrahydro-2-naphthyl)-4-piperidinyl]-2H-benzoxazol-2-one LC: 100% MS: 349.6 (M+1) 1H-NMR (CDC13): d 1.70 (m, 1H), 2.00 (b, 2H), 2.10 (b, 1H), 2.40 (m, 4H), 2.90 (m, 51H), 3.10 (m, 2H), 4.20 (m, 1H), 7.10-7.30 (m, 811). 3-[1-(5-methylhex-2-yl)-4-piperidinyl]-2H-benzoxazol-2-one 48 LC: 100% MS: 317.4 (M+1) 'H-NMR (CDC1 3 ): d 0.90 (d, 6H), 1.00 (d, 3H), 1.20 (m, 3H), 1.50-1.60 (m, 411), 1.80 (m, 2H), 2.20-2.60 (m, 5H), 2.90 (b, 2H), 4.2 (m, 1H), 6.90-7.30 (m, 4H). 3-[1-(10,1 1-Dihydro-5H-dibenzo[ad]-cyclohepten-5 -yl)-4-piperidinyl]-2H-benzoxazol-2-one LC: 96.4% 'H-NMR (CDCl 3 ): d 1.80 (dd, 2H), 2.00 (dt, 2H), 2.30 (dq, 2H), 2.80-2.95 (m, 4H), 4.01 (s, 1H), 4.05-4.22 (m, 3H), 7.05-7.25 (m, 12H). 3-[1-(4-propyl-cyclohexyl)-4-piperidinyl]-2H-benzoxazol-2-one MS: m/z 343.0 3-[1-(norbornan-2-yI)-4-piperidinyl]-2H-benzoxazol-2-one LC: 97% MS: n/z 313.41 (M+1) 'H-NMR (CDC1 3 ): d 0.90 (m,1H), 1.30-2.50 (m,17H), 3.20 (m,2H), 4.3 (m, 1H), 6.90-7.30 (m, 4H). 3-[-(decahydro-2-naphthyl )-4-piperidinyl]-2H-benzoxazol-2-one MS: m/z 355.4 3-(1-(3,3-dimethyl-1,5-dioxaspiro(5.5]undeca-9-yl)-4-piperidinyl]-2H-benzoxazol-2-one MS: m/z 401.3 3-[1-[4-(1-methylethyl)-cyclohexyl]-4-piperidinyl]-2H-benzoxazol-2-one MS: m/z 343.0 3-[1-(1,3-dihydroinden-2-yl)-4-pip erdinyl]-2H-benzoxazol-2-one LC: 100% MS: m/z 335.4 (M+1) 'H-NMR (CDC1 3 ): d 1.90 (m, 1H), 2.40 (m, 2H), 2.50 (m, 2H), 2.90 (m, 2H), 3.10-3.40 (m, 6H), 4.20 (m, 11), 7.10-7.30 (n, 8H). 3-[1-(cyclooctyl)-4-piperidinyl]-2H-benzoxazol-2-one LC: 100% 49 MS: m/z 329.2 (M+1) 'H-NMR (CDCl 3 ): d 1.40-2.00 (m, 16H), 2.40-2.65 (m, 4H), 2.80 (m, 1H), 3.05 (m, 2H), 4.25 (m, 1H), 7.10-7.40 (m, 4H). Other compounds within the scope of formula (1) or (IA) of the present invention can be synthesized by analogous techniques. EXAMPLE 3 Nociceptin affinity at the ORLI receptor for preferred compounds was obtained using the following assay: Membranes from recombinant HEK-293 cells expressing the human opioid receptor like receptor (ORL-1) (Receptor Biology) were prepared by lysing cells in ice-cold hypotonic buffer (2.5 mM MgCl 2 , 50 mM HEPES, pH 7.4) (10 ml/10 cm dish) followed by homogenization with a tissue grinder/teflon pestle. Membranes were collected by centrifugation at 30,000 x g for 15 min at 4"C and pellets resuspended in hypotonic buffer to a final concentration' of 1-3 mg/mI. Protein concentrations were determined usingthe BioRad protein assay reagent with bovine serum albumen as standard. Aliquots of the ORL-1 receptor membranes were stored at -80"C. Functional SGTPgS binding assays were conducted as follows. ORL-l membrane solution was prepared by sequentially adding final concentrations of 0.066 mg/ml ORL-1 membrane protein, 10 mg/misaponin, 3 mM GDP and 0.20 nM ["S]GTPgS to binding buffer (100 mMNaCl, 10 mM MgCl 2 , 20 mM HEPES, pH 7.4) on ice. The prepared membrane solution (190 ml/well) was transferred to 96-shallow well polypropylene plates containing 10 ml of 20x concentrated stock solutions of agonist prepared in DMSO. Plates were incubated for 30 min at room temperature with shaking. Reactions were terminated by rapid filtration . onto 96-well Unifilter GF/B filter plates (Packard) using a 96-well tissue harvester (Brandel) and followed by three filtration washes with 200 ml ice-cold binding buffer (10 mM NaH 2
PO
4 , 10 mM Na 2
HPO
4 , pH 7.4). Filter plates were subsequently dried at 50*C for 2-3 hours. Fifty ml/well scintillation cocktail (BetaScint; Wallac) was added and plates were counted in a Packard Top-Count for 1 min/well. Data was analyzed using the curve fitting functions in GraphPad PRISMO, v. 3.0 and the results are set forth in table 1 below: 50 TABLE 1 Nocieeptin Affinity Compound- calc K, (nM) 3-1-(naphth-2-yl-methyl)-4-piperidinyll-2H-benzoxazol-2-one 3030 3-[ 1 -(naphth- 1 -yl-methyl)-4-piperidinyl]-2H-benzoxazol-2-one 370 3-f 1-(p-phenylbenzyl)-4-piperidinyl]-2H-benzoxazol-2-one >10,000 3- 1- (p-benzyloxybenzyl)-4-piperidinyl]-2H-benzoxazol-2-one 2173 3-[1 -(p-cyanobenzyl)-4-piperidinyI]-2H-bezoxazol-2-one >10,000 3-[1-(3, 3 -diphenylpropyl)-4-piperidinyl-2H-benzoxazol-2-one 726 3-[1-[4, 4 -Bis-( 4 -fluorophenyl)butyl]-4-piperidinyl]-2H- 3070 benzoxazol 2-one 3-fl -( 2 -phenylethy)-4-piperidiny11-2Hbezoxzo12-one 7087 3-[ 1 locymtyl--ierdnl-2-ezxao--n 64 3-fl -(1 , 2
,
3
,
4 -tet-ahydro-2-naphthyl) 4piperidinyl)-2H- 93 benzoxazol-2-one 3-(1-(5-methyIhex-2-yl)-4-piperidinyl-2H-benzoxazol-2-one 60 3-[l-(10,11-Dihydro-5H-dibenzo[a,d]-cyclohepten-5-yl)-4- >10,000 piperidinyl]-2H-benzoxazol-2-one 3-[-(3,3-dimethyl-1,5-dioxaspirof5.5]undeca-9-yl)-4- >10,000 piperidinyl]-2H-benzoxazol-2-one 3-fl-(1,3-dihydroinden-2-yl)-4-piperidinyl]-2H-benzoxazol-2- 512 one 3-fl-(cyclooctyl)-4-piperidinyll-2H-benzoxazol-2-one 16 51 EXAMPLE 4 SYNTHESIS OF SUBSTITUTED INDOLE HEAD GROUPS ON NH2 NH C CNA ~j)2 <1> C 9 < C <1> -' Na(OAc) 3 BH N N 3
H
2 N BOC 2 O N 0 base
CH
3 CHO H BOC 5 6 7 acid N N BOC H 8 9 E/Z isomers EJZ isomers Procedure: To a mixture of 2 (23.3 g, 0.25 mol), 1 (47.3 g, 0.25 mol), acetic acid (15 g, 0.25 mol) and molecular sieves (15 g) in 500 mL of dichloroethane, sodium triacetoxyborohydride (74.2 g, 0.35 mol) was added in one portion and the mixture stirred overnight. The molecular sieves were filtered off and I N NaOH (500 mL) was added to quench the reaction. The 52 organic layer was separated and the aqueous layer extracted with EtOAc (2 x 300 mL). The combined organic extracts were dried over K 2 C0 3 , filtered and the solvent evaporated under vacuum to give crude 3 as a brown solid which was directly used in next step. Compound 3 'H-NMR (CDC1 3 ): d 1.50 (m, 2H), 2.05 (in, 2H), 2.20 (bt, 2H), 2.85 (in, 2H), 3.30 (in, 1H1), 3.52 (s, 2H), 6.60 (d, 2H), 6.70 (t, IH), 7.20 (m, 2H), 7.25-7.40 (m, 5H). To an ice cooled solution of crude 3 (0.25 mol, 100% yield assumed) and DIEA (48.4 g, 0.38 mol) in 500 -mL of dichloromethane, was added dropwise chloroacetyl chloride (42.4 g, 0.375 mol). After the addition was complete-the ice bath was removed and the reaction mixture stirred overnight The solvent was removed in vacuum and the residue dissolved in dichloromethane. The organic phase was washed with saturated aqueous K 2 C0 3 , dried over K2CO 3 , filtered and the solvent removed in vaccum to give a brown gum which was filtered through a column of silica gel eluting with a mixture of 10% Et 3 N, 40% EtOAc and 50% . hexane. The selected fractions were combined and the solvent evaporated in vacuum to give a brown solid which was further crystallized from EtOAc to give 42.2 g of 4 (49.2%, 2 steps).. Compound 4 'H NMR (DMSO): d 1.22 (in, 2H), 1.70 (b, 2H), 2.00 (t, 2H), 2.80 (b, 211), 3.40 (s, 2H), 3.80 (s, 2H), 4.40 (in, 1H), 7.15-7.30 (in, 7H), 7.45 (in, 3H). A mixture of 4 (42.2 g, 0.12 mol) and A1Cl 3 (49.2 g, 0.369 mol) was mixed in a flask by rapid stirring. The mixture was then heated in an oil bath at 130 *C. Within a few minutes the solids melted and became a dark liquid with concomitant gas evolution. After heating for 1 h the reaction mixture was cooled somewhat and while still mobile poured into a beaker containing 500 mL of ice water. The solution was basified and extracted with dichloromethane. The organic layer was dried over Na 2
SO
4 , filtered and the solvent evaporated in vacuum to give a dark oil which was filtered through a column of silica gel eluting with a mixture of 10% Et 3 N, 40% EtOAc and 50% hexane. The selected fractions were combined and the solvent evaporated in vacuum to give 5 as a red oil which set to a pale solid (22.0 g, 58.5%). 53 Compound 5 'H NMR (CDCl 3 ): d 1.70 (m, 2H), 2.17 (m 2H), 2.50 (m, 211), 3.05 (m, 2H), 3.55 (s, 2H), 3.60 (s, 2H), 4.33 (m, 111), 7.00-7.40 (m, 9H). To a solution of 5 (16.0 g, 0.052 mol) in 35 mL of methanol was added Pd(OH) 2 (4.0 g). The resulting suspension was hydrogenated at 50 psi for 12 h at room temperature. The solution was filtered through a pad of Celite and the pad washed with methanol (2 x 20 mL). Evaporation of the solvent in vacuum gave 6 as a pale solid (11.2 g, 100%). Compound 6 LC: 100% MS: m/z 217 (M+1). 'H NMR (CDCl 3 ): d 1.75 (m, 3H), 2.35 (m 2H), 2.75 (m, 2H), 3.25 (m, 211), 3.50 (s, 2H), 4.33 (m, 1H), 7.00-7.30 (m, 4H) To a solution of 6 (8.0 g, 37.0 mmol) in 50 mL of dichloromethane was added Et 3 N (4.07 g, 40.7 mmol) and BOC anhydride (8.87 g, 40.7 mmol). After stirring for 3 h saturated aqueous K 2 C0 3 was added and the layers separated. The aqueous phase was extracted with dichloromethane (2 x 50 mL). The combined organic phase was dried over KYCO 3 , filtered and evaporated in vacuum to give a brown oil which was filtered through a column of silica gel eluting with a mixture of 10% Et 3 N, 40% EtOAc and 50% hexane. The selected fractions were combined and the solvent evaporated in vacuum to give 7 as an off white solid (8.50 g, 73%). Compound 7 'H NMR (CDCl 3 ): d 1.50 (m, 9H), 1.70 (m 2H), 2.20-2.50 (in, 2H), 2.80-3.00 (m, 2H), 3.50 (s, 2H), 4.20-4.50 (m, 3H), 6.90-7.60 (m, 51). To a mixture of 7 (6.0 g, 19.0 mmol) and sodium acetate (2.58 g, 19.0 mmol) in 150 mL of methanol was added acetaldehyde (1.67 g, 38.0 mmol). The mixture was refluxed for 2 I The solvent was evaporated in vacuum to give a dark oil which was filtered through a column of silica gel eluting with a mixture of 10% Et 3 N, 40% EtOAc and 50% hexane. The 54 selected fractions were combined and the solvent evaporated in vacuum to give 8 as a red oil (5.90 g, 91%). Compound 8 LC: 2 isomers in a ratio of 2:1. . 'H N1VR (CDC1 3 ): (mixture of 2 isomers) d 1.50 (m, 9H), 1.70 (m 2H), 2.20-2.50 (m, 611), 2.60-3.00 (m, 2H), 4.20-4.50 (m, 311), 6.90-7.60 (m, 5H). A solution of 8 (5.90 g, 17.2 mmol) in 30% TFA/dichloromethane (100 mL) was stirred at room temperature for 3 h. The solvent was evaporated in vacuum and saturated aqueous K 2 C0 3 was added to the oily residue. The resulting mixture was extracted with dichloromethane (3 x 150 mL). The combined organic extracts were dried over K 2 C0 3 , filtered and evaporated in vacuum to give the crude product. Chromatography on silica gel eluting with a mixture of 10% Et 3 N, 50% EtOAc and 40% hexane gave 9 (E/Z isomers) as a yellow foam (3.60 g, 82%). Compound 9 LC: 2 isomers in a ratio of 2:1. MS: m/z 243.1 (M+1). 'H NMR (CDCl 3 ): (mixture of 2 isomers) d 0.85 (m, 1H1), 1.50 -2.00 (m, 4H), 2.20-2.50 (m, 5H), 2.60 (m, 1H), 3.10-3.50 (m, 2H), 4,30 (m, 1H), 6.90-7.60 (m, 5H). 55 EXAMPLE 5 base
H
2
CH
3 CHO 10 To a mixture of 5 (5.50 g, 18 rnmol) and sodium acetate (2.45 g, 18 mmol) in 150 mL of methanol was added acetaldehyde (1.58 g, 36 mmol). The mixture was refluxed for 2 h. The solvent was evaporated in vacuum to give a dark oil which was filtered through a column of silica. gel eluting with a mixture of 10% Et 3 N, 40% EtOAc and 50% hexane. The selected fractions were combined and the solvent evaporated in vacuum to give 10 as a red oil (5.90 g, 98%). Compound 10 LC: 2 isomers in a ratio of 2:1. MS: m/z 333.2 (M+1). 'H NMR (CDCl 3 ): d 1.70 (m, 2H, 2.17 (m 2H), 2.30 (d, 3H), 2.50 (m, 2H), 3.05 (m, 2H), 3.55 (s, 2H), 4.33 (i, 1H), 7.00-7.40 (m, 9H), 7.6 (d, 1H). - To a solution of 10 (5.90 g, .17.7 mmol) in 30 mL of methanol was added Pd(OH) 2 (3.0 g). The resulting suspension was hydrogenated at 50 psi for 12 h at room temperature. The solution was filtered through a pad of Celite and the pad washed with methanol (2 x 20 mL). Evaporation of the solvent in vacuum gave a pale solid which was purified by chromatography on silica gel eluting with a mixture of 10% methanol and 90% EtOAc to give 11 as an off white solid (2.02 g, 50%). Compound 11 LC: 97% MS: m/z 245.2 (M+1) 56 -ti NMRU (CDCl 3 ): d 0.85 (t, 3H), 1.26 (m, 2H), 2.00 (m, 2H), 2.43 (m, 2H), 2.90 (m, 2H), 3.3 (m, 2H), 3.4 (m, 1H), 4.4 (m, 1H), 7.05 (m, 1H), 7.15-7.30 (m, 3H). EXAMPLE 6 a iNH 2 HNH N e.. 2 C I .A' AC1 3 N ---- -- Na(OAc)3BH N N 12 . 13 14
H
2 O 15 16 151 Procedure: In a manner similar to the preparation of 6, compound 16 was prepared. Compound 13 LC: 89.4% MS: m/z 281.2 (M+1) 'H-NMR (mixture of trans and cis) (CDC1 3 ): d 0.95 (m, 3H), 1.50-2.75 (m, 5H), 2.80-3.20 (m, 1H), 3.50 (m, 2H), 3.60 (minor)+3.70 (major) (two s, 2H), 6.55-6.80 (m, 2H), 7.05-7.45 (m, 8H). Compound 14 MS: m/z 357.2 (M+I) 57 '1-NfMK (mixture of trans and cis) (CDC1 3 ): d 1.10 (m, 3H), 1.40-4.20 (m, 11H), 4.40 (m, 1H), 7.05-7.50 (m, 1011). Compound 15 LC: 90.0% MS: m/z 321.2 (M+1) 'H-NMR (CDC1 3 ): d 1.20 (d, 3H), 1.75 (m, 1H), 2.10 (dt 111), 2.25 (b, 1H), 2.30 (dd, 1-), 2.75 (dd, 1H), 3.05 (m, 1H), 3.20 (m, 1H), 3.50 (m, 4H), 4.10 (m, 111), 6.99 (m, 2H1), 7.23 (m, 311), 7.37 (m, 411). Compound 16 LC: 92.5% MS: m/z 231.2 (M+1) 1H-NlvMR (CDCl3): d d 1.20 (d, 3H), 1.75 (m, 1H), 2.10 (dt, 1H), 2.25 (b, 1H), 2.30 (dd, 1H), 2.75 (dd, 1H), 3.05 (i, 1H), 3.20 (m, 1H), 3.50 (, 211), 4.10 (m, 1H1), 6.99 (m, 2H), 7.23 (m, 3H), 7.3 7 (m, 4H). EXAMPLE 7 N base N
H
2
CH
3 CHO .- ' NNN NN N H 15 17 58 Procedure: In a manner similar to the preparation of 11, compound 18 was prepared. Compound 17 MS: m/z 347.3 (M+1) Compound 18 LC: 82.6% MS:~ m/z 259.3 (M+1) 'H-NMR (CDCi 3 ): d 0.80 (t, 3H), 1.20 (d, 3H), 2.00 (m, 2H), 2.3.0 (m, 1H), 2.65 (m, 1H), 2.82 (m, 1H), 3.15-3.25 (m, 111), 3.32 (m, 111), 3.45 (m, 1H), 3.65 (m, 1H), 3.75 (m, 1H), 4.25 (m, 1H), 6.90 (d, 1H), 7.05 (t, 111), 7.25 (m, 2H). EXAMPLE 8 ATTACHMENT OF TAIL GROUPS Tail groups were attached to the head groups according to the following procedures: R-RrFLN DMF N
HR
1
R
2 . NaCN 3 BH, HOAc mol. sieves, MeOH N
R
1
R
2 59 General procedure for alkylation: To a solution of the amine (1 eq) and triethylamine (1 eq) in dimethylformamide, was added 1 eq of alkyl bromide or chloride in one portion. The mixture was stirred and heated at 80"C over night. TLC indicated the reaction was complete. The reaction was quenched by the addition of water followed by 1 NNaOH to pH 10. The mixture was extracted 2x with Et 2 O. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromatography to give the pure product. General procedure for reductive animation: To a mixture of ketone or aldehyde (1 eq), amine (1 eq); and acetic acid (1 eq) in methanol, was added sodium cyanoborohydride (1.4 eq) in one portion. The mixture was stirred over night at room temperature. TLC indicated the reaction was complete. The reaction was quenched by the addition of water followed by I N NaOH to pH 10. The mixture was extracted 2x with Et 2 O. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromatography to give the pure.product. The following compounds were prepared by attaching the tail groups using -the general procedures described: 1-[1-(naphth-1-yl-methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one MS: m/z 357.2 (M+1). 1-[1-(naphth-2-yl-methyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one MS: m/z 357.3 (M+1). 1-[1-(p-phenylbenzyl)-4-piperidinyl]-1,3-dihydro'2H-indole-2-one MS: m/z 383.2 (M+1). 1-[1-(3, 3 -Bis(phenyl)propyl)-4-piperidinyl]- 1, 3 -dihydro-2H-indole-2-one LC: 98.7% MS: m/z 411.2 (M+1) 60 'H-NMR (CDC1 3 ): d 1.65 (bd, 2H), 2.05 (bt, 2H), 2.30 (in, 411), 2.45 (m, 2H), 3.02 (bd, 211), 3.50 (s, 2H), 4.01 (t, 1H), 4.30 (m; 111),.7.00 (t, 1H), 7.15-7.35 (m, 13H). 1-(1-(p-cyanobenzy1)-4-piperidiny1)-1,3-dihydro-2H-indole-2-one MS: n/z 332.2 (M+1). 1-[l-(p-benzyloxybenzyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one MS: nz 413.3 (M+1) 1-[1-(1,2,3, 4 -tetrahydronaphth-2-yi)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 100% MS: m/z 347.5 (M+1). 'H NMR (CDC1 3 ): d 1.70 (m, 3H), 2,10 (in, 111), 2.40 (m, 4H), 2.90 - 3.00(i, 5H), 3.10 (m, 2H), 3.60 (s, 2H), 4.3 (m, 1H), 7.00-7.30 (m, 8H). 1-[1-(5-methylhex-2-yl)-4-piperidinyl]-1,3-dihydro-2H-indol.e-2-one LC: 100% MS: m/z 315.4 (M+1). 'H NMR (CDC1 3 ): d 0.90 (m, 6H), 1.00 (m, 3H), 1.20 (m, 3H), 1.5-1.8 (m, 2H),2.2-2.6 (m, 5H), 2.90 (m, 2H), 3.60 (s, 2H), 4.2 (m, 1H), 6.90-7.30 (m, 4H). 1-[1-(norboman-2-yl)-4-piperidinyl]-I,3-dihydro-2H-indole-2-one LC: 97% MS: m/z 311.41 (M+1). 'H NMR (CDCl 3 ): d 0.90 (m, 1H), 1.30-2.00(m, 7H), 2.10-2.30 (in, 5H), 3.20 (m, 2H), 3.60 (s, 211), 4.3 (n, 1H), 6.90-7.30 (m, 4H). 1-[I-(1,3-dihydroinden-2-yl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 100% MS: m/z 332.4 (M+1). 61 -n vNIVLK. (UL)UI 3 ): c 1.80 (in, 2H), 2,40 (n, 2H), 2.50 (m, 211), 2.90 (m, 2H), 3.10-3,40 (m, 511), 3.60 (s, 2H), 4.20 (m, 1H), 7.10-7.30 (m, 8H). 1 -[1-(cycooctylmethyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: 97% MS: m/z 341.50 (M+1). 'H NMR (CDC1 3 ): d 1.25 (n, 3H), 1-4-1.7 (m, 14H), 2.10 (m, 4H), 2.50(in, 2H), 3.10 (m, 2H), 3.60 (s, 2H), 4.3 (m, 1H), 7.10-7.20 (m, 4H). 3 C-NMR (CDCl 3 ): d23.07, 26.04,26.89,27.56,28.63,31.27,32.00,35.30,36.33,46.63, 50.65, 54.06, 66.47, 110.90, 122.17, 124.90, 125.26, 127.94, 144.25, 175.31. 3-ethyl-1-[1-(1,2,3, 4 -tetrahydro-2-naphthyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one MS: m/z 375.3 (M+1). 3-ethyl-1-[1-( 4 -propylcyclohexyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one MS: m/z 369.2 (M+I1). 3-ethyl-1-[l-(S-methylhex-2-yl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: 100% MS: m/z'342.4 (M+1). 'H NMR (CDC1 3 ): d 0.80 (t, 3H), 0.90 (m, 6H), 1.00 (m, 311), 1.20 (m, 3H), 1.5-1.8 (m, 211), 2.2-2.6 (m, 5H), 2.90 (m, 2H), 3.40 (m, 1H), 4.3 (m, 111), 6.90-7.30 (in, 4H). 3-ethyl-1-[1-(norboman-2-y1)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: 100% MS: m/z 339.41 (M+1). 'H NMR(CDCl 3 ): d 0.80 (m, 3H), 0.90 (m, 1H), 1.30-1.45 (m, 5H), 1.50-2.05 (m, 8H), 2.10 (m, 11), 2.20 (i, 2H), 2.50 (m, 2H), 3.10 (m, 2H), 3.40 (m,1H), 4.3 (n, 1H), 6.90-7.30 (m, 4H). 3-ethyl-1-[1-(decahydro-2--naphthyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one MS: m/z 381.3 (M+1). 62 :-ettyl- i-[ 1-l4-(1 -ethylethy)-cyclohexyl]-4-piperidinyl]- 1, 3 -dihydro-2H-indole-2-one MS: m/z 369.3 (M+1) 'H-NMR (CDC1 3 ): d 0.88 (t, 3H), 0.92 (d, 6H), 1.17 (m, 1H), 1.40 (m, 2H), 1.50-1.70 (m, 9H), 2.05 (m, 2H), 2.25 (m, 2H), 2.32-2.55 (in, 3H), 3.15 (b, 2H), 3.43 (t, 1H), 4.35 (m, 1H), 7.05 (t, 1H), 7.22 (d, 1H), 7.28 (m, 2H). 3-ethyl-1-[ 1-(1,3-dihydroinden-2-yl)-4-piperidinyl]- 1, 3 -dihydro-2H-indole-2-one MS: m/z 361.2 (M+1). 3-ethyl-1-[1-(cyclooctyhnethy)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: 97% MS: m/z 369.50 (M+1). 'H NMR (CDC 3 ): d 0.80 (t, 3H), 1.25 (m, 3H), 1-4-1.7 (m, 14H), 2.10 (in, 6H), 2 .50(m, 2H); 3.10 (m, 2H), 3.40 (m, 1H), 4.3 (m, 1H), 7.10-7.20 (m, 4H). 3 -ethylidene- 1-[1 -(benzyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one MS: m/z 333.2 (M+1) 'H-NMR (CDC1 3 ): d 1.70 (m, 2H), 2.15 (dt, 2H), 2.28 (d, 3H), 2.47 (m, 2H), 3.05 (b, 2H), 3.57 (s, 2H), 4.34 (m, 1H), 7.02 (t, 1H), 7.08-7.40 (m, 8H), 7.58 (d, 111). 3 -ethylidene-1-[1-(naphth-2-yl-methyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one MS: m/z 405.2 3-ethylidene-1-[l-(3, 3 -diphenylpropyl)-4-piperidiny]-1, 3 -dihydro-2H-indole-2-one LC: >97% (2 isomers combined). MS: m/z 437.5 (M+1). 'HINMR (CDCl 3 ): d 1.70 -1.80 (m, 3H), 2,10 (m, 2H), 2.20 -2.40 (m, 8H), 3.10 (m, 2H), 4.10 (M, 1H), 4.3 (m, 1H), 7.00-7.30 (m, 15H). 3-ethylidene-1-[i-(p-cyanobenzy)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: >97% (2 isomers combined). 63 Msi: m/z 3m8.5 (M+1). 'H NMR (CDC1 3 ): d 1.80 (m, 4H), 2.10 -2.60 (m, 511), 3.10 (m, 2H), 3.70 (s, 2H), 4.3 (m, 1H), 6.90-7.60 (m, 8H). 3-ethylidene-1-[1-(p-benzyloxybenzyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one MS: m/z 405.2. 3-ethylidene-1-[i-(1,2,3,4-tetrahydro-2-naphthyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: >97% (2 isomers combined). MS: m/z 373.5 (M+1). 'H NMR (CDCI 3 ): d 1.70 - 3.10 (m, 18H), 4.3 (m, 1H), 7.00-7.30 (m, 9H). 3-ethylidene.-l-( 4 -propylcyclohexyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: >97% (2 isomers combined). MS: m/z 367.5 (M+1). 'H NMR (CDC1 3 ): d 0.90 (m, 1H), 1.
3 0- 2 .00(m, 7H), 2.10-2.30 (m, 5H), 3.20 (m, 2H), 3.60 (s, 2H), 4.3 (m, 1H), 6.90-7.30 (m, 5H). 3-ethylidene-1 -[1 -(5-methylhex-2-yl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: >97% (2 isomers combined). MS: m/z 341.4 (M+1). 'H NMR (CDCI,): d 0.90 -2.6 (m, 24H), 2.90 (m, 2H), 4.2 (m, 1H), 6.90-7.30 (m, 5H). 3-ethylidene-1-[1-(norboman-2-yl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: >97% (2 isomers combined). MS: m/z 337.41 (M+1). 'H NMR (CDC1 3 ): d 0.90 (m, 1M, 1.
3 0- 2 .50(m, 17H), 3.10 (in, 2H), 4.3 (m, 1H), 6.90-7.30 (m, 5H).' 3-ethylidene-1-[1-(1, 3 -dihydroinden-2-yl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one LC: >97% (2 isomers combined). 64 M6: m/z :3)9.4 (M+1). 'H NMR (CDC1 3 ): d 1.80 - 3.10 (m, 17H), 4.20 (m, 1H), 7.10-7.30 (m, 9H). 3-ethylidene-1-(1-(cyclooctylmethyl)-4-piperidinyl]-t,3-dihydro-2H-indole-2-one LC: >97% (2 isomers combined). MS: m/z 367.50 (M+1). 'H NMR (CDC1 3 ): d 1.25 (i, 3H), 1.4-1.7 (n, 2111), 2.10 - 2 .50(m, 2H), 3.10 (m, 2H), 4.3 (m, 1H), 6.90-7.60 (n, 5H). 1-[1-(3, 3 -Bis(phenyl)propyl)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 100% MS: m/z 425.3 (M+1) 'H-NMR (CDC1 3 ): d 1.20 (d, 3H), 1.69 (bd, 1H), 1.95 (dt, 1H), 2.13-2.30 (m, 5H), 2.72 (bd, 1H), 2.98 (bd, 1H), 3.15 (dq, 1H), 3.50 (s, 2H), 4.03 (dt, 1H), 4.12 (t, 1H), 6.94 (d, 1H), 7.00 (t, 1H), 7.10-7.30 (m, 12H). 1-[1-(benzyl)-3-(methy)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 100% MS: m/z 321.2 (M+1) 'H-NMR (CDC1 3 ): d 1.20 (d, 31), 1.70 (m, 1H), 2.10 (dt, IH), 2.23 (in, 1H), 2.35 (dd, 1H), 2.78 (d, 11), 3.05 (m, 1H), 3.20 (dq, 1H), 3.51 (m, 4H), 4.10 (dt, 1H), 7.00 (n, 21), 7.25 (m, 3H), 7.38 (m, 4H). 1-[1-( 4 -propyl-cyclohexy)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 96.2% MS: m/z 355.2 (M+1) 'H-NMR (CDC1 3 ): d 0.85 (m, 3H), 1.15 (m, 3H), 1.22-1.85 (m, 13H), 2.05-2.90 (m, 6H1), 2.95 3.20 (m, 2H), 3.50 (s, 2H), 4.05 (m, 1H), 7.00 (n, 2H), 7.22 (m, 2H). 1-[1-(5-methylhex-2-yl)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 100% 65 MS: m/z 329.2 (M+1) 'H-NMR(CDC1 3 ): dO.85 (m, 9H), 1.15 (m, 3H), 1.20-1.75 (m, 6H), 2.25 (m, 1H), 2.45-2.75 (m, 4H), 2.88 (m1, 1H1), 3.10 (m, 1H), 3.50 (s, 2H), 4.05 (m, 1H), 6.98 (m, 2H), 7.25 (m, 2H). 1-(1-(decahydro-2-naphthyl)-3-(methyl)-4-piperidinyl)-1,3-dihydro-2H-indole-2-one LC: 95.3% MS: m/z 367.2 (M+1) 'H-NMR (CDC1 3 ): dl.1 i(d, 3H), 1.16-1.85 (m, 16f), 2.20 (m, 1H), 2.35 (m, 2H), 2.52(m, 2H), 2.75 (n, 1H), 3.02 (m, 2H), 3.50 (s, 2H), 4.05 (m, 1H), 6.96 (m, 2H), 7.20 (in, 2H). 1-[1-(4-(1-methylethyl)-cyclohexyl)-3-(methyl)-4-piperidiny]-1,3-dihydro-2H-indole-2-one LC: 96.1% MS: m/z 355.2 (M+1) 'H-NMR (CDC1 3 ): d 0.80 (m, 6H), 1.15 (m, 3H), 1.22-1.48 (m, 3H), 1.50-1.90 (i, 6H), 2.15 2.90 (m, 4H), 2.95-3.25 (m, 2H), 3.50 (s, 2H), 4.10 (m, 1H), 6.95 (m, 2H), 7.22 (m, 2H). 1-[1-(cyclooctylmethyl)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 100% MS: m/z 355.2 (l+1) 'H-NMR (CDC1 3 ): d .1.2 (d, 3H), 1.15-1.75 (m, 16H), 1.92-2.10 (m, 3H), 2.20 (m, 2H), 2.73 (m, 1H), 3.00 (m, 1H), 3.12 (dq, 111), 3.50 (s, 2H), 4.05 (dt, 1H), 6.99 (m, 2H), 7.20 (m, 2H). 3-ethyl-1 -[ 1 -(3,3-Bis(phenyl)propyl)-3-(methyl)-4-piperidinyl)- 1,3-dihydro-2H-indole-2-one LC: 96.3% MS: m/z 453.3 (M+I) IH-NMR (CDC1 3 ): d (two t, 3H), 1.18 (d, 3H), 1.70 (m, 11), 1.90-2.05 (m, 3H), 2.12-2.30 (m, 5H), 7.73 (m, 11), 2.97 (bd, 1H), 3.10-3.30 (m, 1H), 3.38 (t, 1H), 3.90-4.05 (m, 1H), 4.12 (q, 1H), 6.90-7.00 (two d, 111), 7.02 (t, 1H), 7.12-7.32 (m,-12H). 3-ethyl-1-(i-( 4 -propylcyclohexyl)-3-(methyl)-4-piperidiny1]-1,3-dihydro-2H-indole-2-one LC: 93.2% 66 Iwo: m/z (A/.: g1+1) 'H-NMR (CDCl 3 ): d 0.75-0.95 (m, 6H), 1.05-1.20 (i, 511), 1.20-1.35 (m, 4H), 1.35-1.75 (m, 6H), 1.75-1.90 (m, 2H), 1.95-2.05 (m, 2H), 2.15-2.45 (m, 3H), 2.55 (d, 0.5H), 2.75 (d, 0.5H), 2.95-3.15 (m, 2H), 3.38 (t, 111), 3.90-4.10 (m, 1H), 6.90-7.05 (2H), 7.20-7.25 (m, 211). 3-ethyl-1-[1-(5-methyhex-2-y)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one; LC: 92.3% MS: m/z 357.4 (M+1) 'H-NMR (CDCl 3 ): d 0.75-0.95 (m, 10H), 1.10 (d, 311), 1.15-1.40 (m, 3H), 1.40-1.75 (in, 4H), 1.97-2.10 (m, 2H), 2.20 (m, 1H), 2.43-2.75 (m, 4H), 2.80-2.95 (m, 1H), 3.00-3.25 (m, 1H), 3.40 (t, 1H), 3.90-4.10 (m, 111), 6.90-7.05 (m, 2H), 7.25 (m, 2H). 3-ethyl-1-[1-[4-(1-methylethy)cyclohexyl]-3-methyl-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 94.7% MS: m/z 383.4 (M+1) 'H-NMR (CDC1 3 ): d 0.75-1.05 (m, 8H), 1.10-1.50 (m, 7H), 1.50-1.90 (m, 7H), 1.90-2.10 (m, 2H), 2.15-2.43 (m, 3H), 2.55 (d, 0.5H),2.75 (d, 0.5H), 2.90-3.25 (m, 3H), 3.40 (t, 1H),3.90-4.10 (n, 1H), 6.90-7.01 (m, 2H), 7.25 (in, 2H). 3-ethyl-1-[1-(decahydro-2-naphthyl)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one LC: 94.3% MS: m/z 395.3 (M+1) 'H-NMR (CDCI 3 ): d 1.75-1.90 (two t, 3H), 1.10 (d, 3H), 1.15-1.90 (m, 15H), 2.00 (m, 211), 2.20 (bs, 11), 2.40 (m, 2H), 2.45-2.60 (m, 2H), 2.75 (m, 1H), 2.90-3.20 (m, 2H), 3.40 (bs, 1H), 3.90 4.15 (m, 1H), 6.90-7.05 (m, 2H), 7.25 (n, 2H). Other compounds within the scope of formula (U) or (HA) of the present invention can be synthesized by analogous techniques. 67 EXAMPLE 9 Nociceptin affinity at the ORL 1 receptor for preferred compounds was obtained using the following assay: Membranes from recombinant HEK-293 cells expressing the human opioid receptor-like receptor (ORL-1) (Receptor Biology) were prepared by lysing cells in ice-cold hypotonic buffer (2.5 miM MgCI 2 , 50 mM HEPES, pH 7.4) (10 ml/10 cm dish) followed by homogenization with a tissue grinder/teflon pestle. Membranes were collected by centrifugation at 30,000 x g for 15 min at 4"C and pellets resuspended in hypotonic buffer to a final concentration of 1-3 mg/ml. Protein concentrations were determined using the BioRad protein assay reagent with bovine serum albumen as standard. Aliquots of the ORL-1 receptor membranes were stored at -80*C. Functional SGTPgS binding assays were conducted as follows. ORL- 1 membrane solution was prepared by sequentially adding final concentrations of 0.066 mg/mI ORL-1 membrane protein, 10 mg/ml saponin, 3 mM GDP and 0.20 nM ["S]GTPgS to binding buffer (100 mM NaCl, 10 mM MgCl 2 , 20 mMH EPES, pH 7.4) on ice. The prepared membrane solution (190 mil/well) was transferred to 96-shallow well polypropylene plates containing 10 ml of20x concentrated stock solutions of agonist prepared in DMSO. Plates were incubated for 30 min at room temperature with shaking. Reactions were terminated by rapid filtration onto 96 well Unifilter GF/B filter plates (Packard) using a 96-well tissue harvester (Brandel) and followed by three filtration washes with 200 ml ice-cold binding buffer (10 mM NaH 2 P0 4 , 10 mM Na 2
HPO
4 , pH 7.4). Filter plates were subsequently dried at 50'C for 2-3 hours. Fifty ml/well scintillation cocktail (BetaScint; Wallac) was added and plates were counted in aPackard Top-Count for I min/well. Data was analyzed using the curve fitting functions in GraphPad PRISMO, v. 3.0 and the results are set forth in table 2 below: 68 TABLE 2 Nociceptin Affinity Compound calc I(nM) 3-ethylidene- I -[ 1-(5-methy hex-2-yl)-4-piperidinyq]- 1,3- 11.1 dihydro-2H-indole-2-one 3-ethylidene-l-(I-( 4 -propylcyclohexyl)-4-piperidinyl-1,3- 19 dihydro-2H'-indole-2-one 3-ethylidene- t-[1-(1,2,3,4-tetrahydro-2-naphthyl)-4- 16.7 piperidinyl]- 1,3-dihydro-2H-indole-2-one 3-ethylidene-1-[1-(1,3-dihydroinden-2-yl)-4-piperidinyl]-1,3- 20.7 dihydro-2H-indole-2-one 3-ethylidene- 1 -[ 1-(naphth-2-yl-methyl)-4-piperidinyl]- 1,3- 630 dihydro-2H-indole-2-one 3-ethylidene-1-[l-(p-benzyloxybenzyl)-4-piperidinyl]-1,3- 516 dihydro-2H-indole-2-one 3-ethylidene-1-[1-(benzyl)-4-piperidinyl]-1,3-dihydro-2H- 1854 indole-2-one 3-etliylidene-1-[1-(cyclooctylmethyl)-4-piperidinyl]-1,3- 22.3 dihydro-2H-indole-2-one 3-ethylidene-1-[1-( 3
,
3 -diphenylpropyl)-4-piperidinyl]-1,3- 100.7 dihydro-2H-indole-2-one 3-ethylidene- 1-[1-(norbornan-2-y)-4-piperidinyl]-1,3-dihydro- 922 2H-indole-2-one 3-ethylidene-1-[1-(p-cyanobenzyl)-4-piperidinyl]-1,3-dihydro- 7652 2H-indole-2-one 3-ethyl-1-[ 1-(5-methylhex-2-yl)]-4-piperidinyl]- 1,3-dihydro- 4 2H-indole-2-one 3-ethyl- 1-[1-[4-(l -methylethyl)-cyclohexyl]-4-piperidinyl]- 1,3- .86 dihydro-2H-indole-2-one 3-ethyl- 1-(1-( 4 -propylcyclohexyl)-4-piperidinyl]- 1,3-dihydro- 40 2H-indole-2-one 3-ethyl-1-[1-(1,2,3, 4 -tetrahydro-.2-naphthyl)-4-piperidiny]- 1,3- 124 dihydro-2H-indole-2-one 3-ethyl- 1-[1-(decahydro-2-naphthyl)-4-piperidinyl- 1,3- 3.6 dihydro-2H-indole-2-one 3-ethyl-1-[l -(1,3-dihydroinden-2-yl)-4-piperidinyl]- 1,3- 43 dihydro-2H-indole-2-one 3-ethyl-I-[ 1-(cyclooctylmethyl)-4-piperidinyl]-1,3-dihydro-2H- 9 indole-2-one 3-ethyl-1-[l-(norbornan-2-yl)-4-piperidinyl]- 1,3-dihydro-2H- 82.7 indole-2-one 1-[1- naphth-1-yhnethy1 -4-piperidinyl-1,3-dihydro-2H- 92 69 indole-2-one 1-[ 1-(naphth-2-y-methyl)-4-piperidinyl]- 1,3-dihydro-2H- 107 indole-2-one 1 -[1 -(p-phenylbenzyl)-4-piperidinyl)-1,3-dihydro-2H-indole-2- 1362 one 1-[ 1-( 3
,
3 -Bis(phenyl)propyl)-4-piperidinyl]- 1,3-dihydro-2H- 12.5 indole-2-one 1-(1-(p-cyanobenzyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2- 1267 one 1-( 1-(p-benzyloxybenzyl)-4-piperidinyl]- 1,3-dihydro-2H- 32 indole-2-one 1-[1 -(1,2,3, 4 -tetrahydronaphth-2-yl)-4-piperidinyl]- 1,3- 28.7 dihydro-2H-indole-2-one 1-[i-(5-methylhex-2-yl)-4-piperidinyl]-1,3-dihydro-2H-indole- 7.4 2-one 1-[1 -(norbornan-2-yl)-4-piperidinyl]- 1,3-dihydro-2H-indole-2- 215 one 1-[1 -(1, 3 -dihydroinden-2-yl)-4-piperidinyl]- 1,3-dihydro-2H- 18.7 indole-2-one 1-[ 1-(cycooctylmethyl)-4-piperidinyl]- 1,3-dihydro-2H-indole- 54.3 2-one 1-[ 1-(benzyl)-3-(methyl)-4-piperidinyl]- ,3-dihydro-2H- > 10,000 indole-2-one 1-r1 -( 4 -propyl-cyclohexyl)-3-(methyl)-4-piperidiny]- 1,3- 2435 dihydro-2H-indole-2-one 1-[ 1-(5-methylhex-2-yl)-3-(methyl)-4-piperidinyl]- 1,3-dihydro- 4335 2H-indole-2-one 1-[i-(decahydro-2-naphthyl)-3-(methyl)-4-piperidinyl]-.1,3- 366 dihydro-2H-indole-2-one 1-[1-(4-(i-methylethyl)-cyclohexyl)-3-(methyl)-4-piperidinyl]- 167 1,3-dihydro-2H-indole-2-one 1-(i-(cyclooctylmethyl)-3-(methyl)-4-piperidinyl]-1,3-dihydro- 189 2H-indole-2-one 70 EXAMPLE 10 SYNTHESIS OF CERTAIN HEAD GROUPS. SCHEME 1: H ONH2 N, O= c NH2 + Na(OAc) 3 BH CXNH N
NH
2 O acetic acid, OCE 4 56 7 NH NH N H Na(OAc)3BH N O acetic acid, DCE N HN HN 0 10 9 8
H
2 /Pd(OH) 2
H
2 /Pd(OH) 2 MeOH MeOH acetaldehyde, DCE HN
H
2
NH
2 2 1 Procedure: To a mixture of 4 (21.6 g, 0.2 mole), 5 (15.6 g, 0.1 mole), acetic acid (6 g, 0.1mole) in 500 ml of dichloroethane, 29.7 g of sodium triacetoxyborohydride (0.14 mal, 1.4 eq) was added in one portion. Gas evolves between 30 min and I hr. The mixture was stirred over night. TLC 71 indicated the reaction is complete. I N NaOH (500 ml) was added to quench the reaction. The organic layer was separated and the aqueous, layer. was extracted by EtOAC (300 ml x2). The combined organics were dried over potassium carbonate and the solvent evaporated to give a red oil which was column filtrated (5%Et3N, 25%EtOAc and 70%Hexane) to givel4 g of product 6 as a white solid (54%). Compound 6 MS: m/z 249.3 (M+1). 'H NMR (CDC1 3 ): d 1.50 - 1.90 (m, 6H), 2.05 (m, 2H), 3.30 (m, 4H), 3.95 (s, 4H), 6.60 -6.80 (m, 4H). To a solution of 13.5 g of 6 (54.4 mmol) in 50 ml of acetonitrile, 11.02 g of carbonyldiimidazole was added in one portion. The mixture was stirred over night. Solid precipitated out of solution which was filtered and washed by H20 and TBMB to give 7.5 g of product The filtrate was evaporated and the crude material was dissolved in EtOAc, washed with water and saturated potassium carbonate solution. The organics were dried over potassium carbonate. The solvent was evaporated to give a second batch of solid with a pink color which was column filtrated (10%Et3N, 40%EtOAc and 50%Hexane) to give another 4.5 g of product 7 (81 %, combined). Compound 7 MS: nm/z 274.7 (M+I1). 'H NMR (CDC 3 ): d 1.50 - 1.90 (m, 7H), 2.50 (m, 2H), 4.00 (m, 4H), 4.50 (m, 1H), 7.10 (in, 3H), 7.25 (in, 1H). A mixture of 7 (7.5 g, 27.4 mmole) and 8.26 g of PPTS in 50 ml of acetone and H20 (10:1) was stirred in refluxed over night. The mixture was cooled to room temperature and acetone was evaporated. Addition of water to the mixture initiated crystalization to give 3 g of product 8 (47.4%). Compound 8 MS: m/z 231 (M+1). 'H. NMR (CDCl 3 ): d 2.20 (m, 211), 2.60 (m, 2H), 4.50 (m, 1H), 7.10 (m, 4H), 9.5 (br, 11H). 72 To a mixture of 8 (7.75 g, 33.65 mmole), benzylamine (3.61 g, 33.65 mmole), acetic acid (2.0 g, 33.65 mmole) in 150 ml of dichloroethane, 10.3 g of sodium triacetoxyborohydride (47.1 mmol, 1.4 eq) was added in one portion. Gas evolves between 30 min and I hr. The mixture was stirred over night. TLC indicated the reaction was complete. 1 N NaOH (500 ml) was added to quench the reaction. The organic layer was separated and the aqueous layer was extracted with EtOAc (300 ml x2). The combined organics were dried over potassium carbonate and the solvent was evaporated to give a brown solid, which was column filtrated (5%Et3N, 25%EtOAc and 70%Hexane to 10%Et3N, 40%EtOAc and 50%Hexane) to give 4.7 g of product 10 as a white solid (53.4%) and 3.01 g of product 9 as a white solid (34.2%). Compound 9 MS: m/z 322 (M+1). 'H NMR (CDC1 3 ): d 1.40 (m, 2H), 1.80-2.35 (m, 6H), 2.70 (m, 1H), 3.86 (s, 2H), 4.30 (m, 11), 7.10 -7.50 (m, 9H), 9.6 (br, 1H). Compound 10 MS: m/z 322 (M+1). 'H NMR (CDCI 3 ): d 1.60 (m, 4H), 1.90 (m, 2H), 2.60 (m, 2H), 3,10 (m, 1H), 3.84 (s, 2H), 4.50 (m, 1H), 7.10 -7.50 (m, 9H), 9.6 (br, 1H). 2 g of Pd(OH)2 was added into a solution of 30 ml of methanol containing 4.7 g of compound 10. The resulting suspension was hydrogenated at 50 psi for 12 hrs at room temperature. TLC indicated the reaction was complete over night. The solution was filtered through a pad of celite to remove the catalyst. The celite was washed with methanol twice (20 ml). The organics were combined and solvent was removed to give a pale solid which was purified by chromatography (10% MeOH, 90% EtOAc) to give an off white product 11 (1.79 g, 50.7%). Compound 11 MS: m/z 232 (M+1). 'HNMR (CDCl 3 ): d 1.50-1.85 (m, 8H), 2.60 (m, 2H), 4.30 (m, 1H), 7.10 (m, 3H), 7.30 (n, 11). 73 To a mixture of 11 (1.7 g, 7.4 mmole), acetaldehyde (0.33 g, 7.4 .mmole) in 50 ml of dichloroethane, 2.2 g of sodium triacetoxyborohydride (10,36 mmol, 1.4 eq) was added in one portion. Gas evolves between 30 min and 1 hr. The mixture was stirred over night. TLC indicated the reaction was complete. I NNaOH (500 ml) was added to quench the reaction. The organic layer was separated and the aqueous layer was extracted with EtOAc'(300 ml x2). The combined organics were dried over potassium carbonate and the solvent was evaporated to give a brown oil which was chromatographed (10%Et3N, 40%EtOAc and 50%lHexane).to give 1.5 g of product 2 as a sticky oil which recrystalized from TBME to give a white solid (78%). Compound 2 MS:. m/z 259.7 (M+1). 'H NMR (CDC1.): d 1.15 (t, 3H), 1.50 -1.95 (m, 6H), 2.40 - 2.75 (m, 4H), 2.95 (m, 1H), 4.35 (m; 1H), 7.10 (m, 3H), 7.35 (m, 1H). 1.5 g of Pd(OH) 2 was added into a solution of30 ml of methanol containing 3.01 g of compound 9. The resulting suspension was hydrogenated at 50 psi for 12 hrs at room temperature. TLC indicated the reaction was complete over night. The solution was filtered through a pad of celite to remove the catalyst. The celite was washed with methanol twice (20 ml). The organics were combined and solvent was removed to give a pale solid which was purified by chromatography (10% MeOH, 90% EtOAc) to give an off white product 1 (1.68 g, 77.4%). Compound 1 MS: m/z 232 (M+1). 'IHNMR (CDCI 3 ): d 1.50 (m, 2H), 1.90-2.35 (m, 611), 3.00 (m, 1H), 4.30 (m, 1H), 7.10-7.30 (m, 4H). 74 SCHEME 2: H N N = Et N PPTS O O O O -DMF G acetone/H20 .0 0 reftux 7 12 13 Na(OAc) 3 BH acetic acid, DCE ~N~N N O O . N O0.
H
2 /Pd(OH) 2 MeOH+ HN HN Hi2 3 14 5 Procedure: About 2.5 g ofNaH was washed by THF twice, suspended in 100 ml of DMF, then 8.15 g of 7 (38 mmole) was added to the mixture.- Gas evolves, and after 5 minutes, 7.13 g of ethyl iodide (45.7 mole) was added. The mixture was stirred over night. LC/MS indicated that the starting material was completely consumed. The reaction was cooled down and H20 was added to the mixture. The product started to precipitated out of solution. The crystals was collected by filtration to give 9.7 g of 12 (84.7%). Compound 12 MS: m/z 303.3 (M+1). 'H NMR (CDCI 3 ): d 1.30 (t, 311), 1.70-1.90 (m, 61), 2.50 (m,2H), 3.85-4.00 (m, 6H), 4.50 (m, 1H), 7.05 (m, 3H), 7.25 (m, 1H). A mixture of 12 (9.7 g, 32.2 mmole) and 9.72 g of-PPTS in 50 ml of acetone and H20 75 (10:1.) was refluxed over night. The mixture was cooled to room temperature and acetone was evaporated. Addition of water to the mixture initiated crystalization to give 6.85 g of product 13 (82.3%). Compound 13 MS: m/z 259 (M+1). H NMR (CDC 3 ): d 1.35 (t, 3H), 2.20 (m, 2H), 2.60 (m, 6H), 3.95 (q, 2H), 4.85 (i, 1H), 7.10 (m, 4H). To a mixture of 13 (6.85 g, 26.5 mmole), benzylamine (2.84 g, 26.5 mmole), acetic acid (1.59 g, 26.5 mmole) in 150 ml of dichloroethane, 7.86 gof sodium triacetoxyborohydride(37.1 mmol, 1.4 eq) was added in one portion. Gas evolves between 30 min and 1 hr. The mixture was stirred over night. TLC indicated the reaction was complete. 1 N NaOH (500 ml) was added to quench the reaction. The organic layer was separated and the aqueous layer was extracted with EtOAc (300 ml x2). The combined organics were dried over potassium carbonate and the solvent was evaporated to give a brown solid, which was column filtrated (5%Et3N; 25%EtOAc and 70%Hexane to 10 0
/
0 Et3N, 40%EtOAc and 50%Hexane) to give 1.52g of product 14 as a white solid and 1.08 g of product 15 as a white solid. Compound 14 MS: m/z 350 (M+l). 'H NMR (CDC 3 ): d*1.35 (t, 3H), 1.50 (m, 2H), 1.65 (m, 4H), 1.95.(m, 2H), 2.60 (m, 2H), 3,02 (m, 1H), 3.83 (s, 2H), 3.95 (ddd, 2H), 4.45 (m, 1H1), 7.00 -7.50 (m, 9H). Compound 15 MS: m/z 350 (M+1). 'HNMR(CDC): d 1.35 (m, 5H), 1.90 (m, 2H), 2.10 -2.35 (m, 4H), 2.70 (m, 1H), 3.83 (s, 2H), 3.95 (ddd, 2H), 4.40 (m, 1H), 7.00 -7.50 (m, 9H). 0.3 g of Pd(OH)2 was added into a solution of 20 ml of methanol containing 0.5 g of compound 14. The resulting suspension was hydrogenated at 50 psi for 12 hr at room temperature. TLC indicated the reaction was complete over night. The solution was filtered through a pad of celite to remove the catalyst. The celite was washed with methanol twice (20 ml). The organics were combined and solvent was removed to give a pale solid which was 76 purified by chromatography (10% MeOH, 90% EtOAc) to give an off white product 3 (300 mg, 50%). Compound 3 MS: m/z 232 (M+1). 'H NMR (CDC1 3 ): d 1.35 (t, 3H), 1.50 -1.85 (m, 8H); 2.60 (m, 2H), 3.20 (m, 1H), 3.95 (ddd, 2H), 4.30 (m, IH), 7.10.(i, 3H), 7.30 (m, IH). EXAMPLE 11 ATTACHMENT OF TAIL GROUPS Tail groups were attached to the head groups according to the following procedures: R-Br, Et3N DMF N R H R 1
R
2
.
NaCN-3BH, HOAc mol. selves, MeOH N
R
1 R 2 General procedure for alkylation: To a solution of the amine (1 eq) and triethylamine (1 eq) in dimethylformamide, was added 1 eq of alkyl bromide or chloride in one portion. The mixture was stirred and heated at 80*C over night. TLC indicated the reaction was complete. The reaction was quenched by the addition of water followed by 1 NNaOH to pH 10. The mixturewas extracted 2x with EtO. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromatography to give the pure product. 77 - General procedure for reductive amination: - To a mixture of ketone or aldehyde (1 eq), amine (1 eq), and acetic acid (1 eq) in methanol, was added sodium cyanoborohydride (1.4-eq) in one portion.. The mixture was stirred over night at room temperature. TLC indicated the reaction was complete. The reaction was quenched by the addition of water followed by 1 N NaOH to pH 10. The mixture was extracted 2x with Et 2 O. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromatography to give the pure product. The following compounds were prepared by attaching the tail groups using the general procedures described: 1-[ 4 -(benzylamino)-cyclohexyl]-3--ethyl-1, 3 -dihydro-2H-benzimidazol-2-one 1-[ 4 -(benzylamino)-cyclohexyl]-3-ethyl-1, 3 -dihydro-2H-benzimidazol-2-one 1-[ 4 -[(naphth-2-yl-methyl)ethylamino]-cyclohexyl]-1, 3 -diliydro-2H-benzimidazol-2-one MS: m/z 400.2 (M+1) 1-[ 4 -(norbornan-2-ylamino)-cyclohexyl]- 1.
3 -dihydro-2H-benzimidazol-2-one MS: m/z 326.3 (M+1) 1-[ 4
-[[
4 -(1-methylethyl)-cyclohexyl]amino]-cyclohexyl]-1,3-dihydro-2H-benziridazol-2-one MS: m/z 356.4 (M+1) 1-[ 4 -[(decahydro-2-naphthy1)amino]-cyclohexyl]-1,3-dihydro-2H-bnzimidazol-2-one ' MS:.m/z 368.2 (M+1) 1-[4-(ethylamino)-cyclohexyl]-.; 3 -dihydro-2H.benzimidazol-2-one 1-[ 4 -(benzylamino)-cyclohexyl]-1, 3 -dihydro-2(H-benzimidazol-2-one 78 1-[4-(benzylanino)-cyclohexyl]-1, 3 -dihydro,2H-benzimidazol-2-one 1-[4-[(indan-2-yl)benzylamino]-cyclohexyl]-3-ethyl-1,3-.dihydro-2H-benzimidazol-2-one MS: m/z 466.3 (M+1) 'H-NMR (CDCl 3 ): d 1.30 (t, 3H), 1.50-1.75 (m, 2H), 1.90 (b, 2H), 2.G2 (b, 2H), 2.20 (n 2H), 2.80 (m, 1H1), 2.99 (n, 4H), 3.75 (s, 2H), 3.90 (m, 3H), 4.25 (m, .IH),.6.95-7.45 (m, 13H). 1-[ 4 -[(cyclooctylmethyl)amino]-cyclohexy]-3-ethyl- 1,3-dihydro-2H-benzimidazol-2-one LC: 99% MS: m/z 384.5
'HNMR(CDC
3 ): dl.40 -1.90 (i, 24H),2.30 (m, 2H), 2.50(m, 2H), 2.90(m, 1H), 3.90(ddd,2), 4.20(m, IH), 7.10(m, 3H), .
7 .30(m, 1H). 1-[ 4 -[(naphth-2-yl)amino)-cyclohexyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one LC: 97% MS: m/z 399 : 'HNMR (CDCl 3 ):.d 1.50 (t, 3H), 1.80 (m, 5H), 2.0 (m, 211), 2.70(m, 2H), 3.10(m, 11), 3.90(m, -2H), 4.0( i, 2H), 4,40(m, 1H), 7.10(m, 31), 7.50(M, 4H), 7.90(m, 4H). 1-[ 4 -[(p-benzyloxybenzyl)amino]-cyclohexyl]-3-ethyl- 1,3-dihydro-2H-benzimidazol-2-one . LC: 97% MS: m/z 455 'HNMR (CDC1 3 ): d 1.40 (t, 3H), 1.70 (m:2H), 1.90 (m, 3H), 2.60(r, 4H), 3.10(m, 1H), 3.80(s, 2H), 4.0(m, 2H), 4.50(m, 1H), 5.10(s, 2H), 7.10(m, 611), 7 .50(m, 6H), 7.90(m, 11H). 1-[ 4 -[(cyclooctylmethyl)amino]-cyclohexyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one LC: 99% MS: m/z 369 'H NMR (CDC1 3 ): dL40 (t, 3H), 1.70(m, 5H), 1.90(m, 12H), 2.10(m,3H), 2.40(m, 2H), 2.50(d, 2H), 3.30(m, 1H), 3.90(m, 2H), 4.20(m, 1H), 7.10(m, 1H), -7.30(m, 3H). 79 1-[4-((decahydro-2-naphthyl)amino)-cyclohexyl]-3-ethyl-1,3-dihydro-2H-benzimidazol-2-one LC: 99% MS: m/z 395
'HNMR(CD.C
3 ): dl.40 (t, 3H), 1.70(m, 3H), 1.80(m, 3H), 1.90(m, 12H), 2.20(m, 2H), 2.30(m, 3H), 2.50(q, 2H), 3.10(m, 1H), 3.90(ri, 2H), 4.20(m, IH),.4.30(m, 1H~), 7.0(m, 1H), 7.30(m, 311). 1-[4-[(p-phenylbenzyl)amino]-cyclohexy]-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2-one LC: 100% MS: m/z 440.8 (M+1) 'H-NMR (MeOH-d 4 ): d 1.75 (m, 2H), 2.00 (m, 2H), 2.40-2.55 (m, 41), 3.35-3.52 (m, 2H), 4.35 (s, 211), 7.40 (m, 2H), 7.59 (t, 2H), 7.60-7.72 (m, 6H), 7.78 (d, 2H). 1-[4-[(1,2,3,4-tetrahydronaphthyl)amino-cyclohexyl]-5-carbamoyl- 1,3 -dihydro-2H benzimidazol-2-one LC: 93.9% MS: mlz 405.7 (M+1) IH-NMR (MeOH-d 4 ): d 1.70 (m, 2H), 1.85 (m, 1H), 2.02 (m, 2H), 2.39 (b, 3H), 2.50 (m, 2H), 2.90 (m, 1H), 3.00 (b, 2H), 3.35 (m, 1H), 3.60 (in, 1H), 3.72 (b, 1H), 4.35 (m, 1H), 7.15 (b, 4H), 7.40 (d, 1H), 7.60 (s, 1H), 7.65 (d, 1H).. 1-[4-[(4-propyl-cyclohexy1)amino)-cyclohexyl)-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2 one LC: 100% MS: m/z 399.6 (M+1) 'H-NMR (MeOH-d 4 ): d 0.95 (t, 3H), 1.10 (m, 1H), 1.20-1.60 (m, 6H), 1.70 (b, 51), 1.80-2.00 (m, 4H), 2.10 (mi, 1H), 2.30 (b, 2H), 2.45 (m, 2H), 3.25 (m, iH), 3.50 (m, 1H), 4.40 (m, 1H), 7.40 (d, 1H), ~7.60 (s, 11), 7.65 (d, 1H). 1-[4-[(5-methyhex-2-yl)amino)-cyclohexyl)-5-carbanoyl-1,3-dihydro-2H-benzimidazol-2-one LC: 100% MS: m/z 373.5 (M+1) 80 'H-NMR (MeOH-d 4 ): d 0.95 (d, 61), 1.25-1.40 (m, 5H), 1.50-1.75 (m, 4H), 1.85 (m, 1H), 1.95 (b, 2H), 2.30 (m, 2H),-2.40-2.55 (m, 2H), 3.35-3.55 (m, 2H), 4.38 (m, 1H), 7.40 (d, 1), 7.60 (s, 1H), 7.70 (d, 1H). 1-[4-[(decahydro-2-naphthyl)amino]-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2 one LC: 100% MS: m/z 411-7 (M+1) 'H-NMR (MeOH-d 4 ): d 0.90-2.10 (m, 18H), 2.10-2.50 (m, 5), 2.82 (n, 1H), 3.50 (m, 2H), 4.35 (m, 1H), 7.42 (d, 111), 7.60 (s, 1H), 7.70 (d, IH). 1-[4-(cyclooctylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydr'o-2H-benzimidazo1-2-one; LC: 95.4% MS: m/z 385.7 (M+1).
'H-NMR (MeOH-d 4 ): d1.50-2.10 (m, 13H), 2.30 (m, 2H), 2.40-2.52 (m, 3), 2.80-2.95(m, 3H), 3.45 (m, 2H); 3.70 (m, 11), 4.38 (mI, .1), 7.40 (d, 1H), 7.63 (s, 1H),7.70 (d, 111). lI[4-[(indan-2-yl)amino]-cyclohexy]-5-carbamoyl- 1,3-dihydro-2H-benzimidazol-2-one LC: 100% MS: m/z 391.6 (M+1) 'H-NMR (MeOH-d 4 ): d 1.70 (m 2H), 2.00 (mn, 2H), 2.40-2.60 (m, 4H), 3.10-3'.20 (m, 21), 3.50 (in, 3H), 4.30-4.45 (m, 2H), 7.25 (m, 2H), 7.35 (n, 211), 7.42 (d, 1H), 7.60 (s, 1H), 7.72 (d, 1H). 1-[4-(benzylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2-one LC: 100% MS: m/z 399.5 (M+1) 'H-NMR (MeOH-d 4 ): d 1.40-1.85 (m, 15M), 2.00 (m, 4H), 2.25-2.50 (m, 4H), 2.93 (d, 2H), 3.30 (m, 1H), 4.30 (m, 1H), 7.36 (d, 1H), 7.60 (s, 1H), 7.65 (d, 1H). 1-[4-[(4-phenyl-cyclohexyl)aminb]-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2 one 81 LC: 100% MS: m/z 433.7 (M+1) 'H-NMR(MeOH-d 4 ): d 1.65 (m, 2H), 1.85-2.20 (m, 811), 2.25-2.50 (m, 5H), 3.90 (n, 1H), 3.50 (m, 2H), 3.58 (m, 1H), 4.30 (m, IH), 7.15-7.40 (m, 6H), 7.60 (s, 1H), 7.65 (d, 1H). 1-[4-(dibenzylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H-benzimidazol-2-one LC: 100% MS: n/z 455.6 (M+1) 'H-NMR (MeOH-d 4 ): d 2.00-2.25 (m, 4H), 2.40 (m, 4H), 3.52 (m, 2), 4.25-4.65 (n, 4H), 7.30 (d, IH), 7.45-7.58 (i, 10H), 7.60 (s, 1H), 7.65 (d, 1H). 1-[4-[(5-methylhex-2-yl)amino]-cyclohexy-7-carbamoyl-1,3-dihydro-2H-benzimidazol-2-one LC: 99.1%. -MS: n/z 373.3 (M+1) 'H-NMR (MeOH-d 4 ): d 0.95 (d, 6H), 1.30 (d, 311), 1.45-1.68 (m, 5H), 1.75 (m, 1H), 2.00 (m, 2H), 2.18-2.32 (m, 3H), 2.60 (m, 2H), 3.20-3.40 (m, 2H), 4.30 (m, 1H), 7.05-7.20 (m, 3H). Other compounds within the scope of formula (DI) or (IIA) of the present invention can be synthesized by analogous techniques. EXAMPLE 12 Nociceptin affinity at the ORLI receptor for preferred compounds was obtained using the following assay:. Membranes fromrecombinant HEK-293 cells expressing thehuman opioid receptor-like receptor (ORL-1) (Receptor Biology) were prepared by lysing cells in ice-cold hypotonic buffer (2.5 mM MgCl 2 , 50 mM HEPES, pH 7.4) (10 ml/10 cm dish) followed by homogenization with a tissue grinder/teflon pestle. Membranes were collected by centrifugation at 30,000 x g for 15 min at 4"C and pellets resuspended in hypotonic buffer to a final concentration of 1-3 mg/m1. .Protein concentrations were determined using the BioRad protein assay reagent with bovine 82 serum albumen as standard. Aliquots of the ORL-1 receptor membranes were stored at -80"C. Functional SGTPgS binding assays were conducted as..follows. ORL-1 membrane solution was prepared by sequentially adding final concentrations of 0.066- mg/mi ORL-1 membrane protein, 10 mg/ml saponin, 3 mM GDP and 0.20'nM ["S}GTPgS to binding buffer (100 mM NaCl, 10 mM MgC 2 , 20 muM HEPES, pH 7..4) on ice. The prepared- membrane solution'(190 ml/well) was transferred to 96-shallow well polypropylene plates containing 10 ml of 20x concentrated stock solutions of agonist prepared in DMSO. Plates were incybated for 30 min at room temperature with shaking. Reactions were terminated by rapid filtration onto 96-. well Unifilter GFIB filter plates (Packard) using a 96-well tissue harvester (Brandel) and followed b'y three filtration washes with 200 ml ice-cold binding buffer (10 mM NaH 2
PO
4 , 10 mM Na 2
HPO
4 , pH 7.4). Filter plates were subsequently dried at 50'C for 2-3 hours. Fifty mil/well scintillation cocktail (BetaScint; Wallac) was added andplates were counted in aPackard Top-Count for 1 min/well. Data was analyzed using the curve fitting functions in GraphPad PRISMO, V. 3.0 and the results are set forth in table 3 below: TABLE 3 Nociceptin Affinity Compound Cale KnM) 3-ethyl-i -(p-phenylbenzyl)- 1,3-dihydro-2H-benzimidazol-2- -509 one 3-ethyl-1-(5-rnethylhex-2-yl)- 1,3-dihydro-2H-benzimidazol-2- 23 one 3-ethyl-1-(4-propylcyclohexyl)-1,3-dihydro-2H-benzimidazol- 68 - 2-one . 3-ethyl-I -(decahydro-2-naphthyl)-1,3-dihydro-2H- 1.6 benzimidazol-2-one_ 3-ethyl-1- (naphth-2-yl-methyl)-1,3-dihydro-2H-benzimidazol- 198 83 2-one 1-(p-benzyloxybenzyl)-3-ethyl-1,3-dihydro-2H-benzimidazol- 438 2-one 1 -benzyl-3-ethyl- 1,3-dihydro-2H-benzimidazol-2-one 296 1-[4-(benzylamino)-cyclohexyl)-3-ethyl-1,3-dihydro-2H- trans: 112 benzimidazol-2-one cis: >10,000 3-ethyl- 1-(naphthylmethyl)- 1,3-dihydro-2H-benziiidazol-2-- 39 one 3-ethyl-1-[5.(3-fluorophenyl)-5-(4-fluorophenyl)-hexyl-1,3- 148 dihydro-2H-benzimidazol-2-one 1-[4-[(naphth-2-yl-methyl)ethylamino]-cyclohexyl]-1,3- 3598 dihydro-2H-benzimidazol-2-one 1-[4-(norbornan-2-ylanino)-cyclohexyl]-1,3-dihydro-2H- >10000 benzimidazol-2-one 1-[4-[[4-(1-methylethyl)-cycldhexyl]amino]-cyclohexyl]-1,3- >10000 dihydro-2H-benzimidazol-2-one -_I 1-[4-[(decahydro-2-naphthyl)amino)-cyclohexyl]-1,3-dihydro- >10000 2H-benzimidazol-2-one 1-[4-(ethylamino)-cyclohexyl)-1,3-dihydro-2H-benzimidazol- 9179. 2-one . 1-[4-(benzylamino)-cyclohexyl]-1,3-dihydro.-2H-benzimidazol- trans: 273 2-one .ci: >10000 1-[4-((indan-2-yl)benzylamino]-cyclohexyl]-3-ethyl-1,3- >10000 dihydro-2H-benzimidazol-2-one . 1-[4-[(cyclooctylmethyl)amino]-cyclohexyl)-3-ethyl-1,3- 115 dihydro-2H-benzimidazol-2-one 1-[4-[(naphth-2-yl)amino]-cyclohexyl]-3-ethyl- 1,3 -dihydro- 961 2H-benzimidazol-2-one 1-[4-[(p-benzyloxybenzyl)amino)-cyclohexyl]-3-ethyl-1,3- 2935 dihydro-2H-be nzimidazol-2-one ' 1-[4-[(cyclooctylmethyl)amino]-cyclohexyl]-3-ethyl-1,3- 286 - dihydro-2H-benzimidazol-2-one 1-[4-((decahydro-2-naphthyl)amino]-cyclohexyl]-3-ethyl-1,3 - 288 dihydro-2H-benzimidazol-2-one 1-[ 4 -(benzylamuino)-cyclohexyl]-5-carbamoyl-1,3-dihydro-2H- >10000 benzimidazol-2-one 1-[4-(dibenzylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydro- >10000 2H-benzimidazol-2-one ~. . 1-[ 4 -[(p-phenylbenzyl)anino]-cyclohexyl)-5-carbamoyl-1,3- >10000 dihydro-2H-benzimidazol-2-one 1-[4-[(1,2,3,4-tetrahydronaphthyl)amino]-cyclohexyl]-S- >10000 carbamoyl-1,3-dihydro-2H-benzimidazol-2-on'e ~_. 1-[ 4 -[(4-propyl-cyclohexyl)amino]-cyclohexyl]-5-carbamoyl- >10000 1,3 -dihydro-2F{-benzin-iida2zol-2-one________ 84 1-[4-[(5-methylhex-2-yl)amino]-cyclohexyl]-5-carbamoyl-1,3- >10000 dihydro-2H-benzimidazol-2-one 1-[ 4 -[(decahydro-2-naphthyl)amino)-cyclohexyl)-5-carbamoyl- >10000 1,3-dihydro-2H-benzimidazol-2-one. 1-[ 4 -(cyclooctylamino)-cyclohexyl]-5-carbamoyl-1,3-dihydro- >10000 2H-benzimidazol-2-one. 1-[4-[(indan- 2 -yl)amino]-cyclohexyl]-5-carbamoyl:1 ,3- >10000 dihydro-2H-benzimidazol-2-one 1-[4-[(4-phenyl-cyclohexyl)amino]-cyclohexyl]-5-carbamoyl- >10000 1,3-dihydro-2H-benzimidazol-2-onie -[4-[(5-methylhex-2-yl) amino]-cyclohexyl]-7-carbamoyl-1,3- >10000 .dihydro-2H-benzinidazol-2-one EXAMPLE 13 SYNTHESIS OF SUBSTITUTED BENZIMIDAZOLE HEAD GROUPS. N'CN 1. NaH, THF, 0 0 -50* 0 C N 'NCN HCI (aq.), EtAc N 'CN 2. EtBrC Boc Boc H 2 3 Procedure: . Sodium hydride 60% dispersion in mineral oil (0.67 g, 16.7 nunol) was washed with dry pentane .and then suspended in 80 mL of dry THF under N 2 . Compound 1 (European patent 0029707) (3.80 g, 11.1 mmol) was added, the mixture stirred at room temperature for 15 min and .then warmed to 50"C. Ethyl bromide (1.06 mL, 13.3 mmol) was added and the resulting mixture stirred at 50 0 C for 18 hr. TLC (SiO 2 , CH 2
CI
2 :MeOH 96:4) showed that the reaction was ca 40% complete. Additional sodium hydride (0.67 g) and ethyl bromide (1.06 mL) were added.-After heating at 50*C for an additional 24 hr the reaction mixture was cooled to room temperature and quenched with water. The layers were separated and the aqueous layer extracted with ethyl . - . .85.
acetate (1x). The combined organic extracts were washed with aqueous sodium bicarbonate solution (lx), dried over MgSO 4 and the solvent wat evaporated to give-the crude product as a yellow solid. Trituration with diethyl ether gave pure 2 as a white solid (3.38 g, 82%). .'H-NMR (CDCl 3 ): d 1.45-1.55 (m, 12H), 1.82 (bs, 21), 2.30 (m, 2H), 2.87 (m, 2H), 4.30 (bs, 2M), 4.41 (q, 2H), 4.82 (m, 1H), 7.10-7.30 (m, 4H). To a solution of 2 (3.60 g, 9.74 mmol) in 100 mL of ethyl acetate was addgd a 25 mL of a 1:1 mixture of ethyl acetate and concentrated HCL. The mixture was stirred vigorously at room. temperature for 2hr. and evaporated to dryness. The residue was neutralized with 50 mL of methanolic ammonia 10:1 and again evaporated to dryness. The residue was suspended in 100 mL a 1:1 mixture of MeOH and CH 2 C1 2 , filtered and the filtrate evaporated to dryness to leave an off-white solid. Flash chromatography on silica gel, eluting with CH 2 Cl2:MeOH:NH 3 (300:10:1) gave pure 3 as a white crystalline solid (1.98 g, 76%). 'H-NMR (CDC 1 3): d .1.45 (t, 3H), 1.82 (bs, 2H), 2.33 (m, 21), 2.80 (m, 2H), 4.40 (q, 2H), 4.80 (m., 1H), 7.10-7.30 (m, 3H), 7.45 (d, 1H). EXAMPLE 14 ATTACHMENT OF TAIL GROUPS Tail groups were attached to the head groups according to the following procedures: R-Br, EtIN DMF N R H
R
1 < R 2 NaCN 3 BH, HOAc mol. selves, MeOH N
R
1 8 2 .86 General procedure for alkylation: To a solution of the amine (1 eq) and triethylamine (1 eq) in dimethylformamide, was added 1 eq of alkyl bromide or chloride in one portion. The mixtue was stirred and heated at 80"C over night TLC indicated the reaction was coniplete. The reaction was quenched by the addition ofwater followed by 1 NNaOH to pH 10. The mixture was extracted 2x with Et 2 O. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromat6graphy to give the pure product. General procedure for reductive amination: To a mixture of ketone or aldehyde (1 eq), anine (1 eq), and acetic acid (1 eq) in methanol, was added sodium cyanoborohydride (1.4 eq) in one portion. The mixture was stirred over night at'room temperature. TLC indicated the reaction was complete. The reaction was quenched by the addition of water followed.by 1 N NaOH to pH 10. The miXture was extracted 2x with Et 2 0. The combined organic extracts were dried over potassium carbonate and the solvent evaporated, followed by chromatography to give the pure product. The following compounds were prepared by attaching the tail groups using the general procedures described: 2-cyanoimino-3-ethyl- I-[1 -(p-phenylb etzyl)-4-piperidinyl]- 1,3-dihydro-2H-benzimidazole 'H-NMR (CDCl 3 ): d 150 (t, 3H), 1.88 (m, 2H), 2.28 (m,.2H), 2.62 (m, 2H), 3.12 (m, 2H), 3.65 (s, 2H), 4.48 (q, 2H), 4.80 (m, 1H), 7.15-7.70 (m, 13H). 2-cyanoimino-3-ethyl-1 -1 -(p-benzyloxybenzyl)-4-piperidinyl] 1,3-dihydro-2H benzimidazole LC: 96.5% MS: m/z 466.5 (M+1) 'H-NlvMR (CDCl 3 ):.d 1.55 (t, 3H), 1.82 (m, 2H), 2.25 (m, 2H), 2.50 (m, 2H), 3.10 (m, 2H), 3.55 (s, 2H), 4.4.8 (q, 2H), 4.78 (m, 1H), 5.20 (s, 2H), 7.00 (d, 2H), 7.15-7.65 (in, 11H). 87 2-cyanoimino-3-ethyl-1-[1-(naphth-2-yl-methyl)-4-piperidinyl] 1,3-dihydro-2H-benzimidazole LC: 93.9% MS: m/z 'H-NMR (CDCI): d 1.55 (t, 3H), 1.80 (m, 2H), 2.30 (t, 2H), 2.52 (m, 2H), 3.18 (bd, 2H), 3.78. (s, 2H), 4.50 (q, 2H), 4.80 (m, 1H), 7.20-7.90 (m, 11H).. 2-cyanoimino-3-ethyl-1-[1-( 4 -propylcyclohexyl)-4-piperidinyl]-1,3-dihydro2H, benzimidazole MS: m/z 394.4 (M+1) 'H-NMR (CDCl,): d 0.90-2.28 (m, 21H), 3.10 (i, 4H), 3.62 (m, 2H), 4.42 (q. 2H),.5.15 (m, 1H), 7.20 (d, 1H), 7.30 (m, 1H), 7.50.(t, 1H), 7.80 (b, 1H), 2-cyanoimino-3-ethyl-1-[I-[ 4 -(2-propyl)-cyclohexyl]-4-piperidinyl]-1,3-dihydro-2H benzimidazole LC: 100% - MS; m/z 394.5 (M+1) 'H-NMR (CDC1): d 0.90 (d, 3H), 0.98 (d, 3H), 1.15-2.35 (m, 14H), 3.10 (i, 5H), 3.70 (mn, 2H), 3.92 (bs, 1H), 4.40 (q, 2H), 5.20 (n, 1H), 7.20 (d, 1H), 7.38 (d, 1H), 7.52 (t, 1H), 7.80 (m,1H). 2-cyanoimino-3-ethyl-1-[l-(decahydro-2-naphthyl)-4-piperidinyl)-1,3-dihydro-2H . benzimidazole LC: 93.9% MS: m/z 406.6 (M+1) - 'H-NMR (CDC1): d 1.25-2.35 (m, 24K), 1.15 (m, 4H), 3.60 (m, 2H), 4.40 (m, 2H), 4.20 (m, . 1H), 7.20-7.80 (m, 4H). 2-cyanoimino-3-ethyl-1-(1-(cyclooctyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazole LQ: 100% MS: m/z 380.3 (M+1) 88 IH-NMR (CDC1 3 ): d 1.50-1.80 (m, .13H), 1.90 (m, 211), 2.10 (m, 4H), 3.05 (m, 3H1), 3.30 (m, 1H), 3.45 (mn, 2H), 3.90 (m, 1H), 4.42 (q, 2H), 5.15 (, 111), 7.20 (d, 1H), 7.35 (d, 1H), 7.50 (IM, 1H), 7.78 (m, 1H). 2-cyanoinino-3-ethyl-1-[1-(10,11-dihydro-5H-dibenzo[a,d)-cyclohepten-5-yl)-4-piperidinyl] 1,3-dihydro-2H-benzimidazole LC: 94.5% MS: mlz 462.2 (M+1) 'H-NMR (CDCI 3 ): d 1.40 (t, 3H), 1.70 (bs, 2H), 2.01 (m, 2H), 2.28 (m, 2H), 2.80 (m, 4H), 3.95 (s, 1H), 4.02 (m, 2H), 4.32 (q, 2h), 4.65 (m, 1H), 7.00-7.32 (m, 12H). -2-cyanoimino-3-ethyl1-[1-(3, 3 -Bis(phenyl)propyl)-4-piperidiny1]-1,3-dihydro-2H benzimidazole MS: m/z 464.2 (M+1) 'H--NMR (CDC 3 ): d 1.40 (t, 31), 1.73 (bs, 2H), 2.09 (m, 211), 2.18-2.45 (m, 6H), 2.98 (b, 2H), 3.93 (t, 1H), 4.35 (q, 2H), 4.63 (m, 1H), 7.10-7.30 (m, 13H), 7.40 (d, 1H). 2-cyanoimino-3-ethyl-1[1-l(1, 2 ,3,4-tetrahydronaphthyl)-4-piperidinyl]-1,3-dihydro-2H benzimidazole LC: 94.0% MS: m/z 400.2 (M+1) 'H-NMR (CDCl 3 ): d 1.30-1.70 (m, 6H), 1.85 (m, 2H), 2.05 (n, 1H), 2.45 (in, 3H), 2.85 (m, 4H), 3.10 (m, 2H), 4.35 (q, 2H), 4:71 (m, 1H), 7.00-7.60 (ma, 8H). 2-cyanoimino-3-ethyl-1-[1-(S-methylhex-2-yl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazole LC: 94.9% MS: m/z 368.3 (M+1) 'H-NMR (CDCl 3 ): d 0.85 (d, 6H), 0.95 (d, 31), 1.12-1.65 (m, 8H), 1.80 (m, 2H), 2.27-2.60 (m, 5H), 2.85 (m, 2H), 4.38 (m, 2H), 4.62 (m, 1H), 7.08-7.30 (m, 3H), 7.45 (m, 1H). 2-cyanoimino'-3-ethyl-1-[1-(norboman-2-yl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazole 89 LC: 99.2% MS: m/z 364.7 (M+1) 'H-NMR (CDC1 3 ): d 1.10-2.10 (m, 13H), 2.35 (m, IH), 2.50-2.70 (m, 3H), 2.70-2.90 (m, 3H), 3.50 (m, 2H), 4.50 (q, 211), 4.80 (m, 1H), 7.35 (m, 2H), 7.48 (m, 1H), 7.75 (n, 11H). 2-cyanoimino-3-ethyl-1-[1-(1,3-dihydroinden-2-yl)-4-piperidinyl]-1,3-dihydro-2H benzimidazole LC: 92.1 % MS: m/z 386.2 (M+1) 1 H-NMR (CDC1 3 ): d 1.42 (t, 3H), 1.82 (m, 2H), 2.21 (m, 2H), 2.43 (m, 2H), 2.88 (n, 21), 3.02-3.19 (m, 4H), 3.23 (m, IH), 4.38 (q, 2H), 4.80 (i, 111), 7.08-7.30 (m, 7H), 7.45 (<i, 1H). 2-cyanoimino-3-ethyl-i-[1-(cyclooctylnethyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazole LC: 100%. MS: m/z 394.7 (M+1) 'H-NMR (MebH): d 1.35-2.00 (m, 2011), 2.60-2.85 (m, 611), 3.40 (m, 2H), 2.52 (q, 2H), 4.90 (M, 1H), 7.35 (m, 2H), 7.48 (m, 1H), 7.70 (m, 111). 2-cyanoimino-3-(2-hydroxy)ethyl-1-(-(cyclooctyl)-4-piperidinyl]--1,3-dihydro-2H benzimidazole LC: 100%. MS: m/z 396.3 (M+1) 'H-NMR (DMSQ): 7.52 (dt, 1H), 7.45 (dt, 1H), 7.21 (m, 2H), 4.97 (t, 1H), 4.55 (n, 1H), 4.38 (t, 2H), 3.76 (q, 2H), 2.88 (m, 2H), 2.61 (bt, 11), 2.33 (m, 4H), 1.76-1.37 (m, 16H). 2 -cyanoimino-3-methoxycarbonylmethyl-1-(I-(cyrlooctyl)-4-piperidinyl]-1,3-dihydro-2H benzimidazole LC: 98.3% MS: m/z 424.2 (M+1) 'H-NMR (DMSO): 7.56 (dd, 1H), 7.51 (dd, 1H), 7.25 (m, 2H), 5.26 (s, 2H), 4.56 (m, 1H), 3.72 (s, 3H), 3.34.(m, 2H), 2.78 (m, 2H), 2.62 (bt, 1N1), 2.32 (m, 4H), 1.80-1.35 (m, 16H). 90 2 -cyanoimino-3-cyanomethyl-1-[1-(cyclooctyl)-4-piperidiny]-1,3-dihydro-2H-benzimidazole LC: 100% MS: m/z 391.2 (M+1) 'H-NMR (DMSO): 7.60 (m; 2H), 7.31 (m, 2H), 5.48 (s, 2H), 4.77 9m, 1H), 3.33 (d, 2H), 2.88 (m, 2H), 2.62 (bt, 1H), 2.33 (m, 4H), 1.86-1.37 (in,'16H). 2-cyanoimino-3-butyl-1-[1-(cyclooctyl)-4-piperidinyl-1,3-dihydro-2H-benzimidazole LC: 95.4% MS: m/z 352.2 (M+1) 'H-NMR (DMSO): 7.58 (dd, 1H), 7.49 (dd, 111), 7.24 (m, 2H), 6.55 (s, 211), 4.59 (m,1H), 4.34 (t, 2H), 2.97 (ma, 2H), 2.80 (m, 1H), 2.55 (m, 21), 2.38 (m, 2H), 1.80-1.30 (m, 18H), 0.90 (t, 3H). 2-cyanoimino-3-(2-methanesulfonamido)ethyl-1-[1-(cyclooctyl)-4-piperidinyl]-1,3-dihydro-2H benzimidazole LC: 100% MS: m/z 473.2 (M+1) !H-NMR (DMSO): 7.53 (dd, 1H), 7.44 (dd, 11H), 7.23 (m, 2H), 4.60 (m, 1H), 4.35 (1, 2H), 3.37 (t, 2H), 2.87 (m, 2H), 2.82 (s, 3H), 2.60 (bt, 111), 2.31 (m, 4H), 1.76-1.37' (m, 15H). 2 -cyanoimino-3-acetomido-1-[l-(cyclooctyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazole LC: 100% MS: m/z 409.2 (M+I) 'H-NMvR (DMSO): 7.75 (s, 111), 7.52 (dd, 111), 7.37 (s, 1H), 7.30 (dd, 1H), 7.20 (m, 2H), 4.96 (s, 2H), 4.55 (i, 11), 3.33 (d, 2H), 2.88 (m, 2H), 2.62 (bt, 1H), 2.30 (m, 4H), 1.80-1.37 (m,. 15H). 2 -cyanoimino-3-carboxymethyl-1-1-(cyclooctyl)-4-piperidinyl]-1,3-dihydro-2H-benzimidazole LC: 97.5% MS: in/z 409.9 (M+1) 91 'H-NMR (DMSO): 7.45 (dd, 1H), 7.14 (m, 3H), 4.57 (s, 2H), 4.50 (m, 111), 2.87 (m, 2H), 2.61 (bt, 1H), 2.33 (m, 4H), 1.75-1.37 (m, 15H). 2 -cyanoimino-3-(2-dimethylamino)ethyl-l-[I-(cyclooctyl)-4-piperidinyl]-1,3-dihydro-2H benzimidazole LC:-100% MS: m/z 423.3 (M+1) 'H-NMR (DMSO): 7.60-6.96 (m, 4), 6.54(21, s), 4.65 (m, 1H), 4.40 (t, 2H), 3.90 (t, 211), 3.05 (m, 4H), 2.90 (m, 1H), 2.63 (n, 3H), 2.56-2.37 (m, 4H), 1.85-1.35 (m, 15H). 2-cyanoimino-1-[1-(cyclooctyl)-3-hydroxymethyl-4-piperidinyl]-1,3-dihydro-2H-benzimidazole 2 -cyanoimino-1-[l-(cyloocty1)-4-piperidinyl]-1, 3 -dihydro-2H-7-azabenzimidazole; 2 -cyanoimino-1-[1-(cyclooctyl)-2,6-ethano-4-one-4-piperidinyl]-1,'-dihydro-2H-benzimidazole Other compounds within the scope of formula (IV) or (TVA) of the present invention can be synthesized by analogous techniques. EXAMPLE 15 Nociceptin affinity at the ORLI receptor for preferred compounds was obtained using the following assay: Membranes from recombinant HEK-293 cells expressing the humdn opioid receptor like receptor (ORL-1) (1keceptor Biology) were prepared by lysing cells in ice-cold hypotonic buffer (2.5 mM MgCL 2 , 50 mM HEPES, pH 7.4) (10 m110 cm dish) followed by homogenization with a tissue grinder/teflon pestle. Membranes were collected by centrifugation at 30,000 x g for 15 min at 4"C and pellets resuspended in hypotonic buffer to a final concentration of 1-3 mg/ml. Protein concentrations were determined using the BioRad protein assay reagent with bovine serum albumen as standard. Aliquots of the ORL- 1 receptor membranes were stored at -80"C. 92 Functional SGTPgS binding assays were conducted as follows. ORL-1 membrane solution was prepared by sequentially adding final concentrations of 0.066 mg/ml ORL-1 membrane protein, 10 mg/ml saponin, 3 mM GDP and 0.20 nM ["S)GTPgS to binding buffer (100 mM NaCl, 10 mM MgCl 2 , 20 mnM HEPES, pH 7.4) on ice. The prepared membrane solution (190 ml/well) was transferred to 96-shallow wdll-polypropylene plates containing 10 ml of 20x concentrated stock solutions of agonist prepared in DMSO. Plates were incubated for 30 min at room temperature with shaking. Reactions were terminated by rapid filtration onto 96 well Unifiltei GF/B filter plates (Packard) using a 96-well tissue harvester (Brandel) and followed by three filtration washes with 200 ml ice-cold binding buffer (10 mM NaH 2
PO
4 , 10 mM Na 2
HPO
4 , pH 7.4). Filter plates were subsequently dried at 50'C for 2-3 hours. Fifty ml/well scintillation cocktail (BetaScint; Wallac) was added and plates were counted in aPackard .Top-Count for I min/well. Data was analyzed using the curve fitting functions in GraphPad PRISMO, v. 3.0 and the results are set forth in table 4 below: TABLE 45 Nociceptin Affinity ._. Compound calc K (nM) 2-cyanoimino-3-ethyl-1-[1-(p-phenylbenzyl)-4-piperidinyl]- 5558 1,3-dihydro-2H-benzimidazole 2-cyanoimino-3-ethyl-1-[1-(p-benzyloxybenzyl)-4-piperidinyl) 1660 1,3-dihydro-2H-benzimidazole 2-cyanoimino-3-ethyl-1-[I -(naphth-2-yl-methyl)-4-piperidinyl] 882 1,3-dihydro-2H-benzimidazole . 2-cyanoimino-3-ethyl-1-[1-(4-propylcyclohexyl)-4- 241 pip eridinyl]- 1,3-dihydro-2H-benzimidazole 2-cyanoimino-3-ethyl-l-(l-[4-(2-propyl)-cyclohexyl]-4- 6.9 piperidinyl)-1,3-dihydro-2H-benzimidazole 2-cyanoimino-3-ethyl-1-[1-(decahydro-2-naphthyl)-4- 6.6 piperidinyl]-1,3-dihydro-2H-benzimidazole . 2-cyanoimino-3-ethyl-1-[I-(cyclooctyl)-4-piperidinyl)-1,3- 5.57 dihydro-2H-benzimidazole ._. 2-cyanoimino.-3-ethyl--1-[l-(10,11 -Dihydro-5H-dibenzo[a,d]- > 10,000 cyclohepten-5-yl)-4-piperidinyl]-1,3-dihydro-2H benzimidazole;_ 2-cyanoimino-3-ethyl-l-[l-(3,3-Bis(phenyl)propyl)-4- 80 piperidinyl)-1,3-dihydro-2H-benzimidazole; 93 2-cyanoimino-3-ethyl-1-{1-(1, 2 ,3,4-tetrahydronaphthyl)-4- 157 piperidinyl)-1, 3 -dihydro-2H-benzimidazole; 2-cyanoimino-3-ethyl1-1 -(5-methylhex-2-yl)-4-piperidinyl]- 76 1,3-dihydro-2H-benzimidazole; 2-cyanoimino-3-ethyl-1-[1-(norbornan-2-yl)-4-piperidinyl]- 323 1,3-dihydro-2H-benzimidazole; 2-cyanoimino-3-ethyl--[1-(1,3-dihydroinden-2-yl)-4- 89 piperidinyl)-1, 3 -dihydro-2H-benzimidazole; and 2-cyanoimino-3-ethyl-1-[I-(cyclooctylmethyl)-4-piperidinyl]- 7.1 1,3-dihydro-2H-benzimidazole. 2 -cyanoimino-3-(2-hydroxy)ethyl-1-[1-(cyclooctyl)-4- 6.4 S piperidinyl)-1,3-dilydro-2H-benzimidazole
.
2 -cyanoimino-3-methoxycarbonylmethyl--[1-(cyclooctyl)-4- 3.3 pip eridinyl]-1,3-dihydro-2H-benzimidazole 2 -cyanoinino-3-cyanomethyl-l-[I-(cyclooctyl)-4-piperidinyl- .97 1,3-dihydro-2H-benzimidazole - 2-cyanoimino-3-butyl-1-[1-(cyclooctyl)-4-piperidinyl)-1,3- 1.36 dihydro-2H-benzimidazole 2 -cyanoimino-3-(2-methanesulfonamido)ethyl-1-[1- 78 (cyclooctyl)-4-piperidinyl-1,3-dihydro-2H-benzimidazole 2 -cyanoimino-3-acetomido-l-[l-(cyclooctyl)-4-piperidinyl)- 11 1,3-dihydro-2H-benzimidazole 2 -cyanoiinino-3-carboxymethyl-1-[1-(cyclooctyl)-4- 201 - piperidinyl)-1,3-dihydro-2H-benzimidazole 2-cyanoimino-:3-(2-dimethylamino)ethyl-1 -[1 -(cyclooctyl)-4- 18 piperidinyl]-1,3-dihydro-2H-benzimidazole 2-cyanoimino-1-[1-(cyclooctyl)-3-hydroxymethyl-4- 473 piperidinyl)- 1, 3 -dihydro-2H-benzimidazole 2-cyanoimino-1 -[1-(cyclooctyl)-4-piperidinyl]- 1,3-dihydro-2H- 3743 7-azabenzimidazole 2-cyanoimino-1 -[ 1-(cyclooctyl)-2,6-eithano-4-one-4- 19 - piperidinyl]-1, 3 -dihydro-2H-benzimidazole Example 16 Affinity at the p receptor for compounds was obtained according to the following assay: Mu opioid receptor membrane solution was prepared by sequentially adding final concentrations of 0.075 ±g/pl of the desired membrane protein, 10 pg/mI saponin, 3 pM GDP and 0.20 nM ["S]GTPyS to binding buffer (100-mM NaCl, 10 mM MgC1 2 , 20 mM HEPES, pH 7.4) on ice. The prepared membrane solution (190 p1/well) was transferred to 96-shallow well 94 polypropylene plates containing 10 [J of 20x concentrated stock solutions of agonist prepared in DMSO. Plates were incubated for 30 min at room temperature with shaking. Reactions were terminated by rapid filtration onto 96-well Unifilter GF/B filter plates (Packard) using a 96-well .tissue harvester (Brandel) and followed by three filtration washes with 200 pl ice-cold binding buffer (1.0 mM NaH 2
PO
4 , 10 nM Na 2
HPO
4 , pH 7.4). Filter plates were subsequently dried at 50" C. for 2-3 hours. Fifty pi/Well scintillation cocktail (MieroScint20,. Packard) was added and plates were counted in a Packard Top-Count for 1 min/well. Data were analyzed using the cnrve fitting functions in GraphPAd PRISM ', v. 3.0 and the results for several compounds are set forth in table 5 below: TABLE 5 Mu Receptor Affinity Compound .calcK -(n y) 3.7[1 -(naphth- 1 y-ehl- pprdnl-Hbnoao--n 340 3-[l- 3,3-dipheny ropyl)-4-piperidiny1
-
2 H-benzoxazol-2-one 726 3-Ll-(1,2 ,34-tetrahydro-2-naphthyl)-4-piperidinyl]-2H-benzoxazol- 343 -2-one 3-4)-4-piperidinyl-2H-benzoxazol-2-one - 145 3-ethylidene-1-[1-(1- 2
,
3
,
4 tetrahydro2naphthyl).-piperdiy 1 ) 23.3 3- t y i e n-, 3 -d ihy dro- 137le- -on 3-ethylidene-l I(aht--imthl--ierd l-,3-dihydro- 1150 2H-indole-2-oie 3thylidene-l [1-(p-benzyloxybenzyl)-4-piperidinyl]-1,3-dihydro- 1150 3thyh dene-l [1-(3,3-diphenylpropyl)-4-piperidinyl]-1,3-dihydro- 24.. 1-[4-[(naphth-2-yl)amino]-cyclohexyl]-ethyl-13-dilydro-2I- 2.1 benzimidazol-2-one 2 -cyanoimino-3 -ethyl-1[
-L(
4 -propyleyclohexyl)-4-piperidinyl]- 1,3- 46 dihydro-2H-benzimidazole 2 -cyanoimino-3-ethyl-1[ 1-(1,2,3, 4 -tetrahydronapbthyl)-4- 458 piperidinyl-l, 3 -dihydro-2H-benzimidazole 2 -cyanoimino-3-ethyl-l-[1-(5-methylhex-2-yl)-4-piperidinyl]-1,3- 15 -dihydro-2H-benzimidazole - 2-cyanoimino-3--ethyl-l-[1-(norboman-2 yl).4piperidinyl]-1,3- 1653 dihydro-2H-benzimidazole 95/1 Throughout the specification and claims, unless the context requires otherwise, the word "comprise" or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the 5 exclusion of any other integer or group of integers. Each document, reference, patent application or patent cited in this text is expressly incorporated herein in their entirety by reference, which means that it should be read and considered by the reader as part of this text. That the document, reference, patent application or patent cited in this text is not repeated in this text is merely for reasons 10 of conciseness. Reference to cited material or information contained in the text should not be understood as a concession that the material or information was part of the common general knowledge or was known in Australia or any other country. 15 20 25 30 35

Claims (27)

1. A compound of the formula (II): R R2(n) A N I I B Ri wherein the dotted line represents an optional double bond; 5 R is, Ci. 10 alkyl, C 3 - 1 2 cycloalkyl, C3- 1 2 cycloalkylCp 4 alkyl-, C- 10 alkoxy, C 3 - 1 2 cycloalkoxy-, Cijo alkenyl, C-io alkylidene, oxo, C 1 i 0 alkyl substituted with 1-3 halogen, C 3 - 1 2 cycloalkyl substituted with 1-3 halogen, C 3 - 12 cycloalkylC 1 4 alkyl- substituted with 1 3 halogen, C- 10 alkoxy substituted with 1-3 halogen, C 3 j 2 cycloalkoxy- substituted with 1 3 halogen, -COOVI, -Cp4COOVI, -CH
2 OH, -SO 2 N(V 1 ) 2 , hydroxyClIoalkyl-, hydroxyC3 10 iocycloalkyl-, cyanoCpIoalkyl-, cyanoC 3 -1ocycloalkyl-, -CON(VI)2, NH 2 SO 2 CI 4 alkyl-, NH 2 SOCi 4 alky-, sulfonylaminoCiioalkyl-, diaminoalkyl-, -sulfony1Ci 4 alky1, a 6 membered heterocyclic ring, a 6-membered heteroaromatic ring, a 6-membered heterocyclieCl- 4 4alkyl-, a 6-membered heteroaromaticC 4 alkyl-, a 6-membered aromatic ring, a 6-membered aromaticCl 4 alkyl-, a 5- membered heterocyclic ring optionally 15 substituted with an oxo or thio, a 5-membered heteroaromatic ring, a 5-membered heterocyclicCp4alkyl- optionally substituted with an oxo or thio, a 5-membered heteroaromaticC j 4 alkyl-, -C> 5 (=O)WI, -Cps(=NH)Wi, -CI- 5 NHC(=O)W 1 , -Cr. 5 NHS(=O) 2 W 1 , -CIsNHS(=O)Wi, wherein W 1 is hydrogen, CIo alkyl, C 3 - 2 cycloalkyl, C 1 10 alkoxy, C 3 - 1 2 cycloalkoxy, -CH 2 OH, amino, C- 4 alkylamino-, diC 1 4 alkylamino-, or a 5 20 membered heteroaromatic ring optionally substituted with 1-3 lower alkyl; wherein each Vi is independently selected from H, Cp 6 alkyl, C 3 - 6 cycloalkyl, benzyl and phenyl; This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information. - 97 n is an integer from 0 to 3; D is a 5-8 membered cycloalkyl, 5-8 membered heterocyclic or a 6 membered aromatic or heteroaromatic group; n is an integer from 0 to 3; 5 A, B and Q are independently hydrogen, C1I10 alkyl, C 3 - 1 2 cycloalkyl, C 1 .o 0 alkoxy, C 3 - 1 2 cycloalkoxy, Co 10 alkenyl, CI-a alkylidene, oxo, -CH 2 QH, -NHSO 2 , hydroxyC1. ioalkyl-, aininocarbonyl-, CI 4 alleylaminocarbonyl-, diCuI 4 alkylaminocarbonyl-, acylarnino-, acylaminoalkyl-, amide, sulfonylaminoC1.ioalkyl-, or A-B can together form a C 2 . 6 bridge, or B-Q can together form a C 3 _7 bridge, or A-Q can together form a C 1 . 5 10 bridge; Z is selected from the group consisting of a bond, straight or branched C1. 6 alkylene, - NH-, -CH 2 0-, -CH 2 NH-, -CH 2 N(CH 3 )-, -NHCH 2 -, -CHI 2 CONH-, -NHCH 2 CO-, -CH 2 CO-, -COCH 2 -, -CH 2 COCH 2 -, -CH(CH 3 )-, -CIH=, -O-and-HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with one or more lower 15 alkyl, hydroxy, halo or alkoxy group; R 1 is selected from the group consisting of hydrogen, Ci.to alkyl, C3- 1 2 cycloalkyl, C 2 . 1 oalkenyl, amino, C 1 .i 0 alkylamino-, C3-12cycloalkylamino-, -COOV 1 , -C 1 4 COOV 1 , cyano, cyanoCi.ioalkyl-, cyanoC 3 -iocycloalkyl-, NH 2 SO 2 -, NH 2 SO 2 Ci 4 alkyl-, NH 2 SOC. 4 alkyl-, aminocarbonyl-, C 1 - 4 alkylaminocarbonyl-, diCialkylaminocarbonyl-, benzyl, C 3 _ 20 12 cycloalkenyl-, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a hetero monocyclic ring, a hetero-bicyclic ring system, and a spiro ring system of the formula (V): X 2 (V) wherein X 1 and X 2 are independently selected from the group consisting of NH, 0, S and CH 2 ; and wherein said alkyl, cycloalkyl, alkenyl, Clioalkylamino-, C 3 -1 2 cycloalkylamino-, 25 or benzyl of R 1 is optionally substituted with 1-3 substituents selected from the group consisting of halogen, hydroxy, C- 10 alkyl, Ci 1 o 0 alkoxy, nitro, trifluoromethyl-, cyano, COOV 1 , -C 1 . 4 COOV 1 , cyanoCi-j 0 alkyl-, -Cts(=O)Wl, -C.sNHS(-O) 2 W1, -C 1 . 5 NHS(=O)Wi, a 5-membered heteroaromaticCo-alkyl-, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents selected 30 from the group consisting of halogen, C1.joalkyl-, Ct-ioalkoxy-, and cyano; and wherein said C 3 - 1 2 cycloalkyl, C 3 . 1 2 cycloalkenyl, monocyclic, bicyclic or tricyclic aryl, heteroaryl ring, hetero-mono cyclic ring, hetero-bicyclic ring system, or spiro ring system of the formula (V) is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C 1 1 0 alkyl, C 1 _ 1 0 alkoxy, nitro, trifluoromethyl-, phenyl, benzyl, 35 phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy or benzyloxy is optionally substituted with 1-3 substituents selected from the group consisting of halogen, C 1 .. o alkyl, Ci-jo alkoxy, and cyano; This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information. - 98 R 2 is selected from the group consisting of hydrogen, C 1 .jo alkyl, C 3 - 12 cycloalkyl and halogen, said alkyl or cycloalkyl optionally substituted with an oxo, amino, alkylamino or dialkylamino group; or a pharmaceutically acceptable salt thereof or solvate thereof. 5 2. A compound of claim 1, wherein D is phenyl or a 6 membered heteroaromatic group containing 1-3 nitrogen atoms.
3. A compound of claim 1, wherein R is selected from the group consisting of -CH 2 C=ONH 2 , -C(NH)NH 2 , pyridylmethyl, cyclopentyl, cyclohexyl, firanylmethyl, C=OCH 3 , -CH 2 CH 2 NHC=OCH 3 , -SO 2 CH 3 , CH 2 CH 2 NHSO 2 CH 3 , furanylcarbonyl-, 10 methylpyrrolylcarbonyl-, diazolecarbonyl-, azolemethyl-, trifluoroethyl-, hydroxyethyl-, eyanomethyl-, oxo-oxazolemethyl-, and diazolemethyl-.
4. A compound of claim 1, wherein ZR 1 is selected from the group consisting of cyclohexylethyl-, cyclohexylnethyl-, cyclopentylmethyl-, dimethylcyclohexylmethyl-, phenylethyl-, pyrrolyltrifluoroethyl-, thienyltrifluoroethyl-, pyridylethyl-, cyclopentyl-, 15 cyclohexyl-, methoxycyclohexyl-, tetrahydropyranyl-, propylpiperidinyl-, indolylmethyl-, pyrazoylpentyl-, thiazolylethyl-, phenyltrifluoroethyl-, hydroxyhexyl-, methoxyhexyl-, isopropoxybutyl-, hexyl-, and oxocanylpropyl-.
5. A compound of claim 1, wherein at least one of ZR 1 or R is selected from the group consisting of CH 2 COOVi, tetrazolylmethyl-, cyanomethyl-, NH 2 SO 2 methyl-, 20 NH 2 SOmethyl-, aminocarbonylmethyl-, C1. 4 alkylaminocarbonylmethyl-, and diC 1 . 4 alkylaminocarbonylmethyl-.
6. A compound of claim 1, wherein ZRi is 3,3 diphenylpropyl optionally substituted at the 3 carbon of the propyl with -COOV 1 , tetrazolylCo.4alkyl-, cyano-, aminocarbonyl-, C 1 4 alkylaminocarbonyl-, or diC I 4 alkylaminocarbonyl-. 25 This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information. - 99
7. A compound of the formula (IIA): N R ((A) wherein the dotted line represents an optional double bond; 5 Zis selected from the group consisting of a bond,-CH 2 -, -NH-, -CH 2 0-, -CH 2 CH 2 -, - CH 2 NH-, -CH 2 N(CH 3 )-, -NHCH 2 -, -CH 2 CONH-, -NHCH2CO-, -CH 2 CO-, -COCH 2 -, CH 2 COCH 2 , -CH(CH 3 )-, -CH=, and -HC=CH-, wherein the carbon and/or nitrogen atoms are unsubstituted or substituted with a lower alkyl, halogen, hydroxy or alkoxy group; R and Q are the same or different and are each selected from the group consisting 10 of hydrogen, halogen, Cp 0 alkyl, Cvio alkenyl, CIo alkylidene, C 3 .1 cycloalkyl, CIoo alkoxy, and oxo, provided that R is not hydrogen; R 1 is selected from the group consisting of hydrogen, CI-Oalkyl, C 3 - 2 eycloalkyl, C 210 alkenyl, amino, C 1 oalkylamino, C 34 2cycloalkylamino, benzyl, C3-u cycloalkenyl, a monocyclic, bicyclic or tricyclic aryl or heteroaryl ring, a heteromonocyclic ring, a 15 bicyclic ring system, and a spiro ring system of the formula (V): This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information. -100 (V) wherein Xi and X 2 are independently selected from the group consisting of NH, 0, S and CH 2 ; wherein said alkyl, cycloalkyl, alkenyl, CI.1 0 alkylamino, C 3 - 1 2 cycloalkylamino, or 5 benzyl is optionally substituted with 1-3 substituents selected from the group consisting of halogen, Cp 10 alkyl, Cio alkoxy, nitro, trifluoromethyl, cyano, phenyl, benzyl, benzyloxy, said phenyl, benzyl, and benzyloxy optionally being substituted with 1-3 substituents. selected from the group consisting of halogen, Ciio alkyl, Ci-io alkoxy, and cyano; wherein said C 3 1 2 cycloallCyl, C 3 - 1 2 cycloalkenyl, monocyclic, bicyclic or tricyclic 10 aryl, heteroaryl ring, heteromonocyclic ring, heterobicyclic ring system, and spiro ring system of the formula (V) are optionally substituted with 1-3 substituents selected from the group consisting of halogen, Ciio alkyl, Ci-io alkoxy, nitro, trifluoromethyl, phenyl, benzyl, phenyloxy and benzyloxy, wherein said phenyl, benzyl, phenyloxy and benzyloxy arc optionally substituted with 1-3 substituents selected from the group consisting of 15 halogen, CIao alkyl, CaIo alkoxy, and cyano; R 2 is selected from the group consisting of hydrogen, Co 10 alkyl, C 3 -1 2 cycloalkyl and halogen, said alkyl optionally substituted with an oxo group; or a pharmaceutically acceptable salt thereof.
8. A compound of claim 7, wherein Q is hydrogen or methyl. 20
9. A compound of claim 7, wherein R is, methyl, ethyl, or ethylidene.
10. A compound of claim 7, wherein R 1 is alkyl selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl and hexyl.
11. A compound of claim 7, wherein R1 is cycloalkyl selected from the group consisting of cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, and norbornyl. 25
12. A compound of claim 7, wherein RI is tetrahydronaphthyl, decahydronaphthyl or dibenzoeycloheptyl.
13. A compound of claim 7, wherein Ri is phenyl or benzyl.
14. A compound of claim 7, wherein R, is a bicyclic aromatic ring.
15. A compound of claim 14, wherein said bicyclic aromatic ring is indenyl, quinoline 30 or naphthyl.
16. A compound of claim 7, wherein Z is a bond, methyl, or ethyl. This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information. - 101
17. A compound of claim 7, wherein n is 0.
18. A compound of claim 7, wherein Xi and X 2 are both 0.
19. A compound of claim 7, wherein the dotted line is a double bond.
20. A compound selected from the group consisting of: 5 3-ethylidene-1- [1- (5-methylhex-2-yl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2 one; 3-ethylidene-l- [1- (4-propylcyclohcxyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2 one; 3-ethylidene-1- [1- (1, 2,3, 4-tetrahydro-2-naphthyl)-4-piperidinyl]-1, 3-dihydro 10 2H- indole-2-one; 3-ethylidene-1- [1- ( 1, 3-dihydroinden-2-yl)-4-piperidinyl]-1,3-dihydro-2H indole-2-one; 3-ethylidene-1 - [1- (naphth-2-yl-methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2 one; 15 3-ethylidene-1- [l- (p-benzyloxybenzyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2 one; 3-ethylidene-1- [l-(benzyl)-4-piperidinyl]-1, 3-diliydro-2H-indole-2-one; 3-ethylidene-1- [1- (cyclooctylmethyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2 one; 20 3-ethylidene-l- [I- (norbornan-2-yl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2-one; 3-ethylidene-l- 1- (3, 3-diphenylpropyl)-4-piperidiny]-1, 3-dihydro-2H-indole-2 one; 3-ethylidene-l- [1- (p-cyanobenzyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2-one; 3-ethyl-1-[i- (5-methylhex-2-yl)-4-piperidinyl]-1, 3-dihydro-21-indole-2-one; 25 3-ethyl-I- [1- [4- (1-methylethyl)-cyclohexyl]-4-piperidinyl]-1, 3-dihydro-2H indole-2- one; 3-ethyl-1- [1- (4-propylcyclohexyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2-one; 3-ethyl-1- [1- (1,2,3,4-tetrahydro-2-napbthyl)-4-piperidinyl-1, 3-dihydro-2H indole-2- one; 30 3-ethyl-I-[l -(decahydro-2-naphthyl)-4-piperidinyll- 1, 3-dihydro-2H-indole-2-one; 3-ethyl-1- [1- (1, 3-dihydroinden-2-yl)-4-piperidinyl]-1,3-dihydro-2H-indole-2 one; 3-ethyl-I- [1- (cyclooctylmethyl)-4-piperidinyl] -1 ,3-dihydro-2H-indole-2-one; 3-ethyl-I-[1 -(norbornan-2-yl)-4-piperidinyl] -1, 3-dihydro-2H-indole-2-one; This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information. - 102 1-[1 -(naphth- 1 -yl-methyl)-4-piperidinyl]-1,3-dihydro-2Hl-indole-2-one; 1- [1- (naphth-2-yl-methyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one; 1- [1- (p-phenylbenzyl)-4-piperidinyl]-1, 3-dihydro-2-indole-2-one; 1- [1- (3, 3-Bis(phenyl)propyl)-4-piperidinyl]-1, 3 -dihydro-2H-indole-2-one; 5 1-[1-(p-cyanobenzyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2-one; 1-[1-(p-benzyloxybenzy)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one; 1- [1- (1,2,3,4-tetrahydronaphth-2-yI)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one; 1-[1-(5-methylhex-2-yl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one; 1- [I- (norbornan-2-yl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2-one; 10 1- [1- ( 1, 3-dihydroinden-2-yl)-4-piperidiny1]-1, 3-dihydro-2H-indole-2-one; 1- [1- (cycooctylmethyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2-one; 1- [l- (benzyl)-3- (nethyl)-4-piperidinyl]-1, 3-diliydro-2H-indole-2-one; 1- [1- (4-propyl-cyclohexyl)-3.- (methyl)-4-piperidinyl]-1, 3-diliydro-2H-indole-2 one; 15 1- [1- (5-methylhex-2-yl)-3- (nethyl)-4-piperidinyl]-1, 3-dihydro-2H-indole-2 one; 1- [1- (decahydro-2-naphthyl)-3- (methyl)-4-piperidinyl]-1, 3-dihydro-2H-indole 2-one; 1- [1- (4- (1-methylethyl)-cyclohexyl)-3- (nethyl)-4-piperidinyll-1, 3-dihydro-2H 20 indole- 2-one; 1-[1-(cyclooctylmethyl)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2-one; 1-[l-(3, 3-Bis(phenyl)propyl)-3-(methyl)-4-piperidinyl]-1,3-dihydro-2H-indole-2 one; 3-ethyl-i - [1- (3, 3-Bis (phenyl) propyl)-3 -(methyl)-4-piperidinyl] -1,3 -dihydro 25 2H-indole- 2-one; 3-ethyl-1- [1- (4-propylcyclohexyl)-3- (methyl)-4-piperidinyl]-1, 3-dihydro-2H indole-2- one; 3-ethyl-1- [1- (5-methylhex-2-yl)-3- (methyl)-4-piperidinyl]-1, 3-dihydro-2H indole-2- one; 30 3-ethyl-i- [1- [4- (1-methylethyl)cyclohexyl]-3-methyl-4-piperidinyl]-1, 3 dihydro-2H- indole-2-one; 3-ethyl-1- [1- (decahydro-2-naphthyl)-3- (methyl)-4-piperidinyl]-1, 3-dihydro-2H indole- 2-one; This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information. - 103 and pharmaceutically acceptable salts thereof.
21. A pharmaceutical composition comprising a compound of claim 1 and at least one pharmaceutically acceptable excipient. 5
22. A method of treating pain comprising administering to a patient in need thereof, an effective mound of an analgesic compound according to claim 1.
23. A method of modulating a pharmacological response from the ORL 1 receptor comprising administering to a patient in need thereof an effective amount of a compound 10 according to claim 1.
24. A pharmaceutical composition comprising a compound of claim 7 and at least one phannaceutically acceptable excipient. 15
25. A method of treating pain comprising administering to a patient in need thereof, an effective amount of an analgesic compound according to claim 7.
26. A method of modulating a pharmacological response from the ORL1 receptor comprising administering an effective amount of a compound according to claim 7. 20 26. A method of modulating a pharmacological response from an opioid receptor comprising administering to a patient in need thereof, an effective amount of a compound according to claim 1. 25
27. A method of modulating a pharmacological response from an opioid receptor comprising administering to a patient in need thereof, an effective amount of a compound according to claim 7. This fax was sent from Wrays fax server. Visit http://www.wrays.com.au for further information.
AU2007237193A 2001-04-18 2007-11-27 Nociceptin Analogs Ceased AU2007237193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007237193A AU2007237193B2 (en) 2001-04-18 2007-11-27 Nociceptin Analogs

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US60/284,666 2001-04-18
US60/284,667 2001-04-18
US60/284,668 2001-04-18
US60/284,669 2001-04-18
AU2005227380A AU2005227380B2 (en) 2001-04-18 2005-10-27 Nociceptin Analogs
AU2007237193A AU2007237193B2 (en) 2001-04-18 2007-11-27 Nociceptin Analogs

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2005227380A Division AU2005227380B2 (en) 2001-04-18 2005-10-27 Nociceptin Analogs

Publications (2)

Publication Number Publication Date
AU2007237193A1 AU2007237193A1 (en) 2007-12-13
AU2007237193B2 true AU2007237193B2 (en) 2010-09-16

Family

ID=38846701

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2007237193A Ceased AU2007237193B2 (en) 2001-04-18 2007-11-27 Nociceptin Analogs
AU2007237190A Abandoned AU2007237190A1 (en) 2001-04-18 2007-11-27 Nociceptin Analogs

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2007237190A Abandoned AU2007237190A1 (en) 2001-04-18 2007-11-27 Nociceptin Analogs

Country Status (1)

Country Link
AU (2) AU2007237193B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325499A (en) * 1964-11-02 1967-06-13 Mcneilab Inc 1-(1-hydrocarbyl-4-piperdyl)-2-indolinone
WO1995002405A1 (en) * 1993-07-16 1995-01-26 Merck & Co., Inc. Benzoxazinone and benzopyrimidinone piperidinyl tocolytic oxytocin receptor antagonists

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3325499A (en) * 1964-11-02 1967-06-13 Mcneilab Inc 1-(1-hydrocarbyl-4-piperdyl)-2-indolinone
WO1995002405A1 (en) * 1993-07-16 1995-01-26 Merck & Co., Inc. Benzoxazinone and benzopyrimidinone piperidinyl tocolytic oxytocin receptor antagonists

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Forbes et al., Tetrahedron Letters 2001 vol 42, no 39 6943-6945 *
Klein et al Archive of Pharmacy, Germany, 1974, vol 307, no 5 pages 360-366 *

Also Published As

Publication number Publication date
AU2007237193A1 (en) 2007-12-13
AU2007237190A1 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US8252815B2 (en) Nociceptin analogs
EP1385514B1 (en) Spiroindene and spiroindane compounds
US7563809B2 (en) Nociceptin analogs
AU2002307416A1 (en) Nociceptin analogs
EP1385518B1 (en) Benzimidazolone compounds
AU2002303406A1 (en) Nociceptin analogs
AU2007237193B2 (en) Nociceptin Analogs
AU2005227380B2 (en) Nociceptin Analogs

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired