AU2007203454B2 - Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses - Google Patents
Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses Download PDFInfo
- Publication number
- AU2007203454B2 AU2007203454B2 AU2007203454A AU2007203454A AU2007203454B2 AU 2007203454 B2 AU2007203454 B2 AU 2007203454B2 AU 2007203454 A AU2007203454 A AU 2007203454A AU 2007203454 A AU2007203454 A AU 2007203454A AU 2007203454 B2 AU2007203454 B2 AU 2007203454B2
- Authority
- AU
- Australia
- Prior art keywords
- cocoa
- chocolate
- beans
- polyphenols
- per gram
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 235000009470 Theobroma cacao Nutrition 0.000 title claims description 1080
- 235000013824 polyphenols Nutrition 0.000 title description 472
- 150000008442 polyphenolic compounds Chemical class 0.000 title description 467
- 238000000034 method Methods 0.000 title description 146
- 244000240602 cacao Species 0.000 title description 2
- 244000299461 Theobroma cacao Species 0.000 claims description 1429
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 437
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 437
- 235000019219 chocolate Nutrition 0.000 claims description 349
- 239000007787 solid Substances 0.000 claims description 125
- 238000000855 fermentation Methods 0.000 claims description 70
- 230000004151 fermentation Effects 0.000 claims description 70
- CWEZAWNPTYBADX-UHFFFAOYSA-N Procyanidin Natural products OC1C(OC2C(O)C(Oc3c2c(O)cc(O)c3C4C(O)C(Oc5cc(O)cc(O)c45)c6ccc(O)c(O)c6)c7ccc(O)c(O)c7)c8c(O)cc(O)cc8OC1c9ccc(O)c(O)c9 CWEZAWNPTYBADX-UHFFFAOYSA-N 0.000 claims description 46
- 229920002414 procyanidin Polymers 0.000 claims description 46
- 239000000284 extract Substances 0.000 claims description 38
- 239000000203 mixture Substances 0.000 description 195
- 239000000306 component Substances 0.000 description 133
- 239000000047 product Substances 0.000 description 92
- 239000000843 powder Substances 0.000 description 89
- 239000003925 fat Substances 0.000 description 74
- 235000019197 fats Nutrition 0.000 description 74
- 238000010438 heat treatment Methods 0.000 description 67
- 235000019868 cocoa butter Nutrition 0.000 description 63
- 229940110456 cocoa butter Drugs 0.000 description 63
- 238000012545 processing Methods 0.000 description 61
- 239000004615 ingredient Substances 0.000 description 60
- 230000008569 process Effects 0.000 description 52
- 235000009508 confectionery Nutrition 0.000 description 45
- 235000000346 sugar Nutrition 0.000 description 43
- 239000000796 flavoring agent Substances 0.000 description 40
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 40
- 235000019634 flavors Nutrition 0.000 description 39
- 238000009472 formulation Methods 0.000 description 32
- 238000004519 manufacturing process Methods 0.000 description 31
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 24
- 235000013336 milk Nutrition 0.000 description 24
- 239000008267 milk Substances 0.000 description 24
- 210000004080 milk Anatomy 0.000 description 24
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 22
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 238000004140 cleaning Methods 0.000 description 21
- 239000000463 material Substances 0.000 description 20
- 235000019220 whole milk chocolate Nutrition 0.000 description 20
- 235000014121 butter Nutrition 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 18
- 235000013305 food Nutrition 0.000 description 18
- 239000000787 lecithin Substances 0.000 description 18
- 235000010445 lecithin Nutrition 0.000 description 18
- 235000021243 milk fat Nutrition 0.000 description 18
- 239000006188 syrup Substances 0.000 description 18
- -1 /or Species 0.000 description 17
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 17
- 229940067606 lecithin Drugs 0.000 description 17
- 239000002245 particle Substances 0.000 description 17
- 235000020357 syrup Nutrition 0.000 description 17
- 240000007594 Oryza sativa Species 0.000 description 16
- 235000007164 Oryza sativa Nutrition 0.000 description 16
- 239000000654 additive Substances 0.000 description 16
- 238000001035 drying Methods 0.000 description 16
- 235000009566 rice Nutrition 0.000 description 16
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 15
- 239000008370 chocolate flavor Substances 0.000 description 15
- 230000007423 decrease Effects 0.000 description 15
- 238000003825 pressing Methods 0.000 description 15
- 241000124008 Mammalia Species 0.000 description 14
- IAIWVQXQOWNYOU-BAQGIRSFSA-N [(z)-(5-nitrofuran-2-yl)methylideneamino]urea Chemical compound NC(=O)N\N=C/C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-BAQGIRSFSA-N 0.000 description 14
- 230000000996 additive effect Effects 0.000 description 14
- 238000003801 milling Methods 0.000 description 14
- 238000000926 separation method Methods 0.000 description 14
- 235000019221 dark chocolate Nutrition 0.000 description 13
- 238000000227 grinding Methods 0.000 description 13
- 235000015145 nougat Nutrition 0.000 description 13
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 12
- 235000013736 caramel Nutrition 0.000 description 12
- 238000001816 cooling Methods 0.000 description 12
- 239000003995 emulsifying agent Substances 0.000 description 12
- 235000011962 puddings Nutrition 0.000 description 12
- 238000011282 treatment Methods 0.000 description 12
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 235000013339 cereals Nutrition 0.000 description 10
- 235000013399 edible fruits Nutrition 0.000 description 10
- 235000011187 glycerol Nutrition 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 9
- 235000009499 Vanilla fragrans Nutrition 0.000 description 9
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 9
- 235000013312 flour Nutrition 0.000 description 9
- 230000036541 health Effects 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 9
- 239000003921 oil Substances 0.000 description 9
- 235000019198 oils Nutrition 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000003765 sweetening agent Substances 0.000 description 9
- XFZJEEAOWLFHDH-UHFFFAOYSA-N (2R,2'R,3R,3'R,4R)-3,3',4',5,7-Pentahydroxyflavan(48)-3,3',4',5,7-pentahydroxyflavan Natural products C=12OC(C=3C=C(O)C(O)=CC=3)C(O)CC2=C(O)C=C(O)C=1C(C1=C(O)C=C(O)C=C1O1)C(O)C1C1=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-UHFFFAOYSA-N 0.000 description 8
- MOJZMWJRUKIQGL-FWCKPOPSSA-N Procyanidin C2 Natural products O[C@@H]1[C@@H](c2cc(O)c(O)cc2)Oc2c([C@H]3[C@H](O)[C@@H](c4cc(O)c(O)cc4)Oc4c3c(O)cc(O)c4)c(O)cc(O)c2[C@@H]1c1c(O)cc(O)c2c1O[C@@H]([C@H](O)C2)c1cc(O)c(O)cc1 MOJZMWJRUKIQGL-FWCKPOPSSA-N 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 8
- 240000008042 Zea mays Species 0.000 description 8
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 8
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 8
- 230000003113 alkalizing effect Effects 0.000 description 8
- 235000012467 brownies Nutrition 0.000 description 8
- 235000014510 cooky Nutrition 0.000 description 8
- 235000005822 corn Nutrition 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000007407 health benefit Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- HGVVOUNEGQIPMS-UHFFFAOYSA-N procyanidin Chemical compound O1C2=CC(O)=CC(O)=C2C(O)C(O)C1(C=1C=C(O)C(O)=CC=1)OC1CC2=C(O)C=C(O)C=C2OC1C1=CC=C(O)C(O)=C1 HGVVOUNEGQIPMS-UHFFFAOYSA-N 0.000 description 8
- 239000005720 sucrose Substances 0.000 description 8
- 235000008939 whole milk Nutrition 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 7
- 244000290333 Vanilla fragrans Species 0.000 description 7
- 235000013861 fat-free Nutrition 0.000 description 7
- 244000237494 forastero Species 0.000 description 7
- 235000011846 forastero Nutrition 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- 235000015067 sauces Nutrition 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- 102000008299 Nitric Oxide Synthase Human genes 0.000 description 6
- 108010021487 Nitric Oxide Synthase Proteins 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 6
- 235000020303 café frappé Nutrition 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 235000003599 food sweetener Nutrition 0.000 description 6
- 239000008173 hydrogenated soybean oil Substances 0.000 description 6
- 235000013372 meat Nutrition 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 230000002195 synergetic effect Effects 0.000 description 6
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 6
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 6
- 235000012141 vanillin Nutrition 0.000 description 6
- 235000019871 vegetable fat Nutrition 0.000 description 6
- 235000013311 vegetables Nutrition 0.000 description 6
- 244000215068 Acacia senegal Species 0.000 description 5
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 5
- 244000223760 Cinnamomum zeylanicum Species 0.000 description 5
- 229920000084 Gum arabic Polymers 0.000 description 5
- 206010020772 Hypertension Diseases 0.000 description 5
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 5
- 229930064664 L-arginine Natural products 0.000 description 5
- 235000014852 L-arginine Nutrition 0.000 description 5
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 5
- 241000245026 Scoliopus bigelovii Species 0.000 description 5
- 235000010489 acacia gum Nutrition 0.000 description 5
- 239000000205 acacia gum Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 244000309464 bull Species 0.000 description 5
- 235000017803 cinnamon Nutrition 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000010411 cooking Methods 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- 239000008101 lactose Substances 0.000 description 5
- 235000014594 pastries Nutrition 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 235000016623 Fragaria vesca Nutrition 0.000 description 4
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 4
- 241000199361 Villosa perpurpurea Species 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000008346 aqueous phase Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 235000013351 cheese Nutrition 0.000 description 4
- 235000019877 cocoa butter equivalent Nutrition 0.000 description 4
- 235000019878 cocoa butter replacer Nutrition 0.000 description 4
- 235000019879 cocoa butter substitute Nutrition 0.000 description 4
- 229920002770 condensed tannin Polymers 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 239000008347 soybean phospholipid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 201000001320 Atherosclerosis Diseases 0.000 description 3
- 244000075850 Avena orientalis Species 0.000 description 3
- 235000007319 Avena orientalis Nutrition 0.000 description 3
- 240000002317 Camassia leichtlinii Species 0.000 description 3
- 235000000459 Camassia leichtlinii Nutrition 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 240000009088 Fragaria x ananassa Species 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- 235000010469 Glycine max Nutrition 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 102000003820 Lipoxygenases Human genes 0.000 description 3
- 108090000128 Lipoxygenases Proteins 0.000 description 3
- 239000005913 Maltodextrin Substances 0.000 description 3
- 229920002774 Maltodextrin Polymers 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 102000004005 Prostaglandin-endoperoxide synthases Human genes 0.000 description 3
- 108090000459 Prostaglandin-endoperoxide synthases Proteins 0.000 description 3
- 241001047198 Scomberomorus semifasciatus Species 0.000 description 3
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 description 3
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 230000003610 anti-gingivitis Effects 0.000 description 3
- 230000003110 anti-inflammatory effect Effects 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- 230000000118 anti-neoplastic effect Effects 0.000 description 3
- 239000003963 antioxidant agent Substances 0.000 description 3
- 230000003078 antioxidant effect Effects 0.000 description 3
- 235000006708 antioxidants Nutrition 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 239000004067 bulking agent Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000003086 colorant Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 235000014113 dietary fatty acids Nutrition 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229940125532 enzyme inhibitor Drugs 0.000 description 3
- 239000002532 enzyme inhibitor Substances 0.000 description 3
- 239000000194 fatty acid Substances 0.000 description 3
- 229930195729 fatty acid Natural products 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000004108 freeze drying Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 229940035034 maltodextrin Drugs 0.000 description 3
- 235000012054 meals Nutrition 0.000 description 3
- 230000036542 oxidative stress Effects 0.000 description 3
- 208000028169 periodontal disease Diseases 0.000 description 3
- 230000001766 physiological effect Effects 0.000 description 3
- 235000020183 skimmed milk Nutrition 0.000 description 3
- 235000011888 snacks Nutrition 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 238000000638 solvent extraction Methods 0.000 description 3
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 235000021092 sugar substitutes Nutrition 0.000 description 3
- 229920002994 synthetic fiber Polymers 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 2
- 241000208140 Acer Species 0.000 description 2
- WBZFUFAFFUEMEI-UHFFFAOYSA-M Acesulfame k Chemical compound [K+].CC1=CC(=O)[N-]S(=O)(=O)O1 WBZFUFAFFUEMEI-UHFFFAOYSA-M 0.000 description 2
- 108010011485 Aspartame Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 2
- DLRVVLDZNNYCBX-UHFFFAOYSA-N Polydextrose Polymers OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(O)O1 DLRVVLDZNNYCBX-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 244000098338 Triticum aestivum Species 0.000 description 2
- 244000263375 Vanilla tahitensis Species 0.000 description 2
- 235000010358 acesulfame potassium Nutrition 0.000 description 2
- 239000000619 acesulfame-K Substances 0.000 description 2
- 229940076005 apoptosis modulator Drugs 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 239000000605 aspartame Substances 0.000 description 2
- 235000010357 aspartame Nutrition 0.000 description 2
- IAOZJIPTCAWIRG-QWRGUYRKSA-N aspartame Chemical compound OC(=O)C[C@H](N)C(=O)N[C@H](C(=O)OC)CC1=CC=CC=C1 IAOZJIPTCAWIRG-QWRGUYRKSA-N 0.000 description 2
- 229960003438 aspartame Drugs 0.000 description 2
- 235000008452 baby food Nutrition 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 2
- 229940093797 bioflavonoids Drugs 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000002421 cell wall Anatomy 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 235000015218 chewing gum Nutrition 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- HCAJEUSONLESMK-UHFFFAOYSA-N cyclohexylsulfamic acid Chemical class OS(=O)(=O)NC1CCCCC1 HCAJEUSONLESMK-UHFFFAOYSA-N 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000012467 final product Substances 0.000 description 2
- 235000011194 food seasoning agent Nutrition 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 235000019534 high fructose corn syrup Nutrition 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 235000012907 honey Nutrition 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 235000015243 ice cream Nutrition 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 229960004903 invert sugar Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011785 micronutrient Substances 0.000 description 2
- 235000013369 micronutrients Nutrition 0.000 description 2
- 238000000874 microwave-assisted extraction Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000000050 nutritive effect Effects 0.000 description 2
- 230000008789 oxidative DNA damage Effects 0.000 description 2
- 235000017807 phytochemicals Nutrition 0.000 description 2
- 229930000223 plant secondary metabolite Natural products 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000003996 polyglycerol polyricinoleate Substances 0.000 description 2
- 235000010958 polyglycerol polyricinoleate Nutrition 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 235000019204 saccharin Nutrition 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 2
- 229940081974 saccharin Drugs 0.000 description 2
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 235000021309 simple sugar Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 235000013599 spices Nutrition 0.000 description 2
- 230000003637 steroidlike Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 235000019640 taste Nutrition 0.000 description 2
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000000341 volatile oil Substances 0.000 description 2
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Natural products C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 description 1
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 description 1
- NUFKRGBSZPCGQB-FLBSXDLDSA-N (3s)-3-amino-4-oxo-4-[[(2r)-1-oxo-1-[(2,2,4,4-tetramethylthietan-3-yl)amino]propan-2-yl]amino]butanoic acid;pentahydrate Chemical compound O.O.O.O.O.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C.OC(=O)C[C@H](N)C(=O)N[C@H](C)C(=O)NC1C(C)(C)SC1(C)C NUFKRGBSZPCGQB-FLBSXDLDSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- SERLAGPUMNYUCK-DCUALPFSSA-N 1-O-alpha-D-glucopyranosyl-D-mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O SERLAGPUMNYUCK-DCUALPFSSA-N 0.000 description 1
- 239000004377 Alitame Substances 0.000 description 1
- 235000019737 Animal fat Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 241000599985 Beijerinckia mobilis Species 0.000 description 1
- 235000016068 Berberis vulgaris Nutrition 0.000 description 1
- 241000335053 Beta vulgaris Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 235000002568 Capsicum frutescens Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 235000003255 Carthamus tinctorius Nutrition 0.000 description 1
- 244000020518 Carthamus tinctorius Species 0.000 description 1
- 241000208365 Celastraceae Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 235000019499 Citrus oil Nutrition 0.000 description 1
- 235000009854 Cucurbita moschata Nutrition 0.000 description 1
- 240000001980 Cucurbita pepo Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 244000304337 Cuminum cyminum Species 0.000 description 1
- 235000007129 Cuminum cyminum Nutrition 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- 235000002767 Daucus carota Nutrition 0.000 description 1
- 244000000626 Daucus carota Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 239000001329 FEMA 3811 Substances 0.000 description 1
- 239000001422 FEMA 4092 Substances 0.000 description 1
- 244000307700 Fragaria vesca Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005792 Geraniol Substances 0.000 description 1
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 description 1
- JZNWSCPGTDBMEW-UHFFFAOYSA-N Glycerophosphorylethanolamin Natural products NCCOP(O)(=O)OCC(O)CO JZNWSCPGTDBMEW-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 239000004378 Glycyrrhizin Substances 0.000 description 1
- 241001556407 Herrania Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010061217 Infestation Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- SHZGCJCMOBCMKK-JFNONXLTSA-N L-rhamnopyranose Chemical compound C[C@@H]1OC(O)[C@H](O)[C@H](O)[C@H]1O SHZGCJCMOBCMKK-JFNONXLTSA-N 0.000 description 1
- PNNNRSAQSRJVSB-UHFFFAOYSA-N L-rhamnose Natural products CC(O)C(O)C(O)C(O)C=O PNNNRSAQSRJVSB-UHFFFAOYSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 235000005135 Micromeria juliana Nutrition 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- 241000144542 Pentamera Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 229920001100 Polydextrose Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 240000002114 Satureja hortensis Species 0.000 description 1
- 235000007315 Satureja hortensis Nutrition 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 235000000336 Solanum dulcamara Nutrition 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- 244000228451 Stevia rebaudiana Species 0.000 description 1
- 239000004376 Sucralose Substances 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 241000219161 Theobroma Species 0.000 description 1
- 244000237562 Theobroma cacao f. pentagonum Species 0.000 description 1
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 1
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098345 Triticum durum Species 0.000 description 1
- 235000007264 Triticum durum Nutrition 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- ZCLSQRQRWNDNLV-UHFFFAOYSA-N acetic acid;dichloromethane;methanol Chemical compound OC.ClCCl.CC(O)=O ZCLSQRQRWNDNLV-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000019409 alitame Nutrition 0.000 description 1
- 108010009985 alitame Proteins 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 235000010208 anthocyanin Nutrition 0.000 description 1
- 239000004410 anthocyanin Substances 0.000 description 1
- 229930002877 anthocyanin Natural products 0.000 description 1
- 150000004636 anthocyanins Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000000259 anti-tumor effect Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 235000015155 buttermilk Nutrition 0.000 description 1
- 235000001046 cacaotero Nutrition 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- 235000012839 cake mixes Nutrition 0.000 description 1
- 235000012970 cakes Nutrition 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-L calcium bis(dihydrogenphosphate) Chemical compound [Ca+2].OP(O)([O-])=O.OP(O)([O-])=O YYRMJZQKEFZXMX-UHFFFAOYSA-L 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000019947 caprenin Nutrition 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229940095710 chewable product Drugs 0.000 description 1
- 229940112822 chewing gum Drugs 0.000 description 1
- 235000020434 chocolate syrup Nutrition 0.000 description 1
- 239000010500 citrus oil Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000005860 defense response to virus Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 230000000916 dilatatory effect Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 235000019820 disodium diphosphate Nutrition 0.000 description 1
- GYQBBRRVRKFJRG-UHFFFAOYSA-L disodium pyrophosphate Chemical compound [Na+].[Na+].OP([O-])(=O)OP(O)([O-])=O GYQBBRRVRKFJRG-UHFFFAOYSA-L 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 244000013123 dwarf bean Species 0.000 description 1
- 210000003278 egg shell Anatomy 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 210000003038 endothelium Anatomy 0.000 description 1
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 description 1
- 235000012734 epicatechin Nutrition 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 235000013572 fruit purees Nutrition 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 229940113087 geraniol Drugs 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- LPLVUJXQOOQHMX-UHFFFAOYSA-N glycyrrhetinic acid glycoside Natural products C1CC(C2C(C3(CCC4(C)CCC(C)(CC4C3=CC2=O)C(O)=O)C)(C)CC2)(C)C2C(C)(C)C1OC1OC(C(O)=O)C(O)C(O)C1OC1OC(C(O)=O)C(O)C(O)C1O LPLVUJXQOOQHMX-UHFFFAOYSA-N 0.000 description 1
- UYRUBYNTXSDKQT-UHFFFAOYSA-N glycyrrhizic acid Natural products CC1(C)C(CCC2(C)C1CCC3(C)C2C(=O)C=C4C5CC(C)(CCC5(C)CCC34C)C(=O)O)OC6OC(C(O)C(O)C6OC7OC(O)C(O)C(O)C7C(=O)O)C(=O)O UYRUBYNTXSDKQT-UHFFFAOYSA-N 0.000 description 1
- 229960004949 glycyrrhizic acid Drugs 0.000 description 1
- 235000019410 glycyrrhizin Nutrition 0.000 description 1
- LPLVUJXQOOQHMX-QWBHMCJMSA-N glycyrrhizinic acid Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@H](O[C@@H]1O[C@@H]1C([C@H]2[C@]([C@@H]3[C@@]([C@@]4(CC[C@@]5(C)CC[C@@](C)(C[C@H]5C4=CC3=O)C(O)=O)C)(C)CC2)(C)CC1)(C)C)C(O)=O)[C@@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O LPLVUJXQOOQHMX-QWBHMCJMSA-N 0.000 description 1
- 235000011868 grain product Nutrition 0.000 description 1
- 235000014168 granola/muesli bars Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 235000021331 green beans Nutrition 0.000 description 1
- 238000003621 hammer milling Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XSEOYPMPHHCUBN-FGYWBSQSSA-N hydroxylated lecithin Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC(COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCC[C@@H](O)[C@H](O)CCCCCCCC XSEOYPMPHHCUBN-FGYWBSQSSA-N 0.000 description 1
- 230000000260 hypercholesteremic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000905 isomalt Substances 0.000 description 1
- 235000010439 isomalt Nutrition 0.000 description 1
- HPIGCVXMBGOWTF-UHFFFAOYSA-N isomaltol Natural products CC(=O)C=1OC=CC=1O HPIGCVXMBGOWTF-UHFFFAOYSA-N 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-JVCRWLNRSA-N lactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-JVCRWLNRSA-N 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- 229910000150 monocalcium phosphate Inorganic materials 0.000 description 1
- 235000019691 monocalcium phosphate Nutrition 0.000 description 1
- ITVGXXMINPYUHD-CUVHLRMHSA-N neohesperidin dihydrochalcone Chemical compound C1=C(O)C(OC)=CC=C1CCC(=O)C(C(=C1)O)=C(O)C=C1O[C@H]1[C@H](O[C@H]2[C@@H]([C@H](O)[C@@H](O)[C@H](C)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 ITVGXXMINPYUHD-CUVHLRMHSA-N 0.000 description 1
- 229940089953 neohesperidin dihydrochalcone Drugs 0.000 description 1
- 235000010434 neohesperidine DC Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000005426 pharmaceutical component Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 230000006461 physiological response Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000001259 polydextrose Substances 0.000 description 1
- 235000013856 polydextrose Nutrition 0.000 description 1
- 229940035035 polydextrose Drugs 0.000 description 1
- 229920000223 polyglycerol Chemical class 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002953 preparative HPLC Methods 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- HELXLJCILKEWJH-NCGAPWICSA-N rebaudioside A Chemical compound O([C@H]1[C@H](O)[C@@H](CO)O[C@H]([C@@H]1O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)O[C@]12C(=C)C[C@@]3(C1)CC[C@@H]1[C@@](C)(CCC[C@]1([C@@H]3CC2)C)C(=O)O[C@H]1[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O1)O)[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HELXLJCILKEWJH-NCGAPWICSA-N 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000011012 sanitization Methods 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229930004725 sesquiterpene Natural products 0.000 description 1
- 150000004354 sesquiterpene derivatives Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 235000020374 simple syrup Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical class [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000008279 sol Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 235000020354 squash Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000019408 sucralose Nutrition 0.000 description 1
- BAQAVOSOZGMPRM-QBMZZYIRSA-N sucralose Chemical compound O[C@@H]1[C@@H](O)[C@@H](Cl)[C@@H](CO)O[C@@H]1O[C@@]1(CCl)[C@@H](O)[C@H](O)[C@@H](CCl)O1 BAQAVOSOZGMPRM-QBMZZYIRSA-N 0.000 description 1
- 150000003445 sucroses Chemical class 0.000 description 1
- 235000012094 sugar confectionery Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 235000010436 thaumatin Nutrition 0.000 description 1
- 239000000892 thaumatin Substances 0.000 description 1
- 229960004559 theobromine Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 230000024883 vasodilation Effects 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 235000015099 wheat brans Nutrition 0.000 description 1
- 235000019222 white chocolate Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229920001285 xanthan gum Polymers 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Landscapes
- Confectionery (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Description
POO Section 29 Regulation 3.2(2) AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Application Number: Lodged: Invention Title: Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses The following statement is a full description of this invention, including the best method of performing it known to us: 1 TITLE OF THE INVENTION COCOA COMPONENTS, EDIBLE PRODUCTS HAVING ENHANCED POLYPHENOL CONTENT, MBhMODS OF MAKING SAME AND MEDICAL USES 5 CROSS-REFERENCE TO RELATED APPLICATIONS Reference is made to copending U.S. applications Serial No. 08/317,226, filed October 3, 1994 10 (allowed, now U.S. Patent No. 5,554,645), Serial No. 08/631,661, filed April 2, 1996, Serial No. 08/709,406, filed September 6, 1996, and Serial No. 08/831,245, filed April 2, 1997, incorporated herein by reference. BACKGROUND OF THE INENTION 15 Field of the Invention The invention relates to cocoa components having enhanced levels of cocoa polyphenols, processes for producing the same, methods of using the same and compositions containing the same. More specifically, the 20 invention provides a method of producing cocoa components having an enhanced content of cocoa polyphenols, in particular procyanidins. The cocoa components include partially and fully defatted cocoa solids, cocoa nibs and fractions derived therefrom, cocoa polyphenol extracts, 25 cocoa butter, chocolate liquors, and mixtures thereof. The invention also relates to versatile novel processes for extracting fat from cocoa beans and/or processing cocoa beans to yield a cocoa component having a conserved level of polyphenols, in particular 30 procyanidins. The invention provides a significantly less complex process with respect to total cost of process equipment, maintenance, energy and labor, with the concomitant benefit of obtaining components having conserved concentrations of polyphenols relative to the 35 starting materials. Description of the Related Art Documents are cited in this disclosure with a full citation for each. These documents relate to the state-of-the-art to which this invention pertains, and 2 each document cited herein is hereby incorporated by reference. Confections and other edible compositions containing cocoa components have a very distinct taste 5 and mouthfeel that have been enjoyed by individuals for many years. The unique flavor and mouthfeel of chocolate, for example, is a result of the combinations of its numerous components as well as its process of manufacture. It is well known that the mouthfeel and 10 aroma/flavor of a chocolate are factors which greatly influence the desirability of the final chocolate product. Accordingly, the primary focus of conventional processes using cocoa components is the development of the distinctive chocolate mouthfeel and flavor/aroma. 15 Throughout- the entire chocolate manufacturing process, from the selection of the cocoa beans as a commodity at the country of origin to the tempering and solidification of the final chocolate, the development of the appropriate mouthfeel and/or aroma/flavor of the final 20 product dictates the selections made and the process parameters used. Chocolate contains solid particles dispersed throughout a fat matrix. Factors that influence the mouthfeel of a chocolate include the particle size 25 distribution of the solids, the properties of the fat matrix material and how the chocolate is made. Cocoa butter is typically the predominant fat in the chocolates. Cocoa butter is solid at room temperature (21 0 -24 0 C) and thus most chocolates are firm 30 and solid at room temperature providing good "snap" at initial bite. Above room temperature, the fat phase melts progressively until it is completely melted at about 36 0 C. This rapid melting in the mouth, at body temperature, provides the smooth, creamy mouthfeel which 35 results in a strong flavor impact. The flavor/aroma characteristics of the cocoa product are dependent on the combination of numerous .,U I . -&?.I 3 solid and fat components as well as the process of manufacture. The flavor/aroma characteristics are dependent on (1) initial cocoa bean selection (i.e, level of fermentation, genotype, origin, etc.), (2) method of 5 processing the beans (i.e., cleaning, roasting, shell removal, etc.) (3) processing of the cocoa components (i.e., milling) and (4) final processing to form the final product (i.e., selection of cocoa component and other ingredients, conching, etc.). 10 The several roles of selecting beans, fermenting them, cleaning them and processing them to obtain good flavor and other desirable characteristics is well known and is described below. 1. The Cocoa Bean 15 Cocoa beans are derived from cocoa trees which are found in warm, moist climates in areas about 20 degrees latitude north and south of the Equator. In general, the seeds of the Theobroma cacao (of the order Sterculiacae) are known chiefly in two varieties: 20 Criollo and Forastero, with Forastero divided into several varieties. A third group, called Trinitario, is essentially a cross between Criollo and Forastero and is not found in the wild. Freshly harvested raw Criollo beans are pale brown in color while Forastero beans are a 25 purple hue. The cocoa bean is comprised of an inner nib portion covered by an outer shell. After conventional drying, the shell of the bean comprises about 12 to 15% of the weight of the bean, while the nib and residual 30 moisture amounts to approximately 85 to 88%. Typical analytical data ranges for chemical components of cocoa nib are: fat content of 48 to 57%; theobromine content of 0.8 to 1.3%; caffeine content of 0.1 to 0.7%; total nitrogen content of 2.2 to 2.5%; ash content of 2.6 to 35 4.2%; and water content of 2.3 to 3.2% (see Pearson's Composition and Analysis of Foods, 9th Ed., 1991).
4 2. Fermentation of the Bean Fermentation, an early step in the processing of cocoa beans, is important to the development of suitable flavors and/or flavor precursors. It was 5 previously believed that fermentation and drying of the cocoa beans were "of vital importance as no subsequent processing of the bean will correct that practice at this stage" (Chocolate. Cocoa and Confectionery: Science and Technology, 3rd Ed., by Bernard W. Minifie, p. 13 10 (1989)). During the fermentation and drying processes, the unfermented wet beans taken from the pod lose about 65 percent of their weight, assuming the final optimum moisture content of 6 percent is attained (Minifie, p. 14). The level of fermentation in the dried cocoa bean 15 is typically determined by the "cut test" (defined further below). It is well known in the art that flavor in the final cocoa or chocolate is closely related to fermentation. For example, if the beans are cleaned and 20 separated from the pulp and dried without any fermentation, the nib will not be the brown or purple brown color of fermented dry cocoa beans but instead a slaty grey color (Industrial Chocolate Manufacture and Use, 2nd Ed., by S. T. Beckett, p. 13). Chocolate made 25 from slaty, unfermented beans typically tastes very bitter and astringent without any apparent chocolate flavor (Beckett, p. 13). Accordingly, fully fermented cocoa beans are more desirable than underfermented cocoa beans from a 30 flavor/aroma standpoint and typically sell at a higher price. The fermented cocoa beans are usually used to produce chocolate liquors. Underfermented beans are conventionally processed for their cocoa butter. The quality of the 35 cocoa butter is not affected by underfermentation. The quality of the cocoa solids, however, is affected since they do not contain sufficient color, flavor/aroma and 5 are therefore either discarded or sold for low-value uses. Although chocolate liquors and/or partially defatted cocoa solids are sometimes produced from a nonhomogeneous mass of beans containing a portion of 5 underfermented beans, the resultant liquor or solids require subsequent treatment or processing. Since unfermented beans are not conventionally processed commercially, they are not typically available. 3. Bean cleaning 10 Once the cocoa beans are selected, they are cleaned to remove extraneous matter and then processed. The initial step consists of cleaning the beans to remove extraneous non-cocoa materials. Conventional bean cleaning separates beans from extraneous non-cocoa 15 materials by either size or density using a cleaning machine which is a gravity, vibratory or aspiration table (see Minifie, p. 35; Chocolate Production and Use. 3rd Ed-, by L. Russell Cook, pp. 144-146; and Beckett, p. 55). 20 current cocoa bean cleaning technology is typically limited in separation ability to a minimum density difference of 10-15%. This reduces the efficiency of achieving an accurate separation of bean and extraneous non-cocoa materials and therefore reduces 25 the clean bean yield of the process. Additionally, conventional cleaning machines become easily clogged and require frequent cleaning. This also reduces the cleaning efficiency and the clean bean yield of the overall process. 30 Moreover, conventional cleaning machines have a tendency to fracture the beans during cleaning which reduces the percentage of whole beans available after cleaning. These broken bean pieces can later give rise to problems during roasting and winnowing. For instance, 35 small bean pieces will burn readily at the elevated temperatures used during roasting and may result in burnt and ashy flavored liquors which are unacceptable from a 6 flavor standpoint. Small bean pieces may also decrease the efficiency of the winnowing process because they can be lost during the aspiration of the shells and result in overall yield efficiency losses. 5 4. Bean Roasting In most conventional processes, roasting of the whole bean or nib is an essential step in the manufacture of chocolate liquor or partially defatted cocoa solids. Whole bean roasting was previously believed to be 10 critical for developing the natural flavor and aroma of the cocoa beans and reducing the moisture content of the bean to below about 2% by weight. Whole bean roasting also loosens the shell so that it can be readily removed during the winnowing process. The degree of cocoa roast 15 is a time/temperature dependent relationship, where the time can vary from 5 to 120 minutes and the temperature of the whole bean can typically vary from 120 0 C to 150*C. In the pre-roasting of whole beans, an initial heating step can be performed at just below 1000C, followed by 20 roasting of the nibs at elevated temperatures up to about 1306C (see Minifie, especially pp. 37 and 45-46; Cook, pp. 146-152; Beckett, pp. 55-64; and U.S. Patent No. 5,252,349 to Carter, Jr.). 5. Winnowing - Shell Removal 25 The winnowing operation serves to separate the beans into the desired inner portion of the bean (nib) and the outer portion of the bean (shell). The principle of separation by a winnowing process depends on the difference in the apparent density of the nib and of the 30 shell. Standard winnowing machines make use of the combined action of sieving and air aspiration. The shell is loosened during the conventional roasting and/or other heating steps. After loosening, the beans are typically broken between rollers to shatter the cocoa 35 beans along natural fracture lines of the cocoa nib to facilitate shell removal during winnowing (see U.S. Patent No. 2,417,078 to Jones; U.S. Patent No. 5,252,349 7 to Carter, Jr.; Minifie, pp. 47-51; Cook, pp. 152-153; and Beckett, pp. 67-68). Some cocoa bean processing techniques include a heat pre-treatment step to aid in the separation of the 5 shell from the nib. This involves giving the beans a thermal shock by hot air, steam or infra-red heat (see U.S. Patent No. 4,322,444 to Zuilichem et al.; British Patent No. 1,379,116 to Newton; Minifie, pp. 44-43; Cook, p. 155; and Beckett, pp. 60-62). 10 Infra-red heat pre-treatment uses infra-red heating to rapidly heat and expand the beans. This loosens the shells. The method consists of exposing the beans to infra-red radiation for a period of between one half and two minutes, during which time the beans are 15 typically heated to a temperature of about 100 to 110*C. The infra-red radiation used has a wavelength between 2 and 6 microns which corresponds to a frequency in the range of 0.7 to 1.2 x 108 megacycles per second. 6. Formation of Chocolate Liquor and other Cocoa 20 Components The next step in conventional cocoa processing, after winnowing, involves nib grinding. Nib grinding is typically performed in two stages, an initial grinding stage to convert the solid nibs into a fluid paste and a 25 final grinding stage to achieve the desired particle size. Both of these stages are equipment, maintenance, and energy intensive. The cleaned roasted cocoa nibs typically vary in cocoa butter content from 50-58% by weight. During 30 the grinding, the nib is ground, for instance by milling, into a fluid, dark brown "liquor". The fluidity is due to the breakdown of the cell walls and the release of the cocoa butter during the processing. Ground particles of partially defatted cocoa solids are suspended in the 35 cocoa butter. This liquor is sometimes commercially sold as a product useful in the confectionery and baking industries where machinery for processing the cocoa beans is not available.
8 Other conventional cocoa processing includes separating cocoa butter from liquor. This is accomplished by using a batch hydraulic pot press ("hydraulic press") to separate the cocoa butter from the 5 cocoa solids. The resultant cocoa butter is subsequently filtered to yield a clear, solid-free cocoa butter. Butter can also be produced by a continuous screw press to extract the butter from whole bean with shell or less frequently, from nibs (see U.S. Patent No. 5,252,349 to 10 Carter, Jr.; and Minifie, especially pp. 71-72). The resulting cocoa cake from either hydraulic presses or screw presses may be milled into cocoa powder. Cocoa cake typically contains either 10-12% cocoa fat or 20-22% cocoa fat (see Minifie, pp. 72-76; Cook, pp. 169 15 172; and Beckett, pp. 78-82). Cocoa powder from cocoa cake obtained by hydraulic pressing is usually produced by milling the cocoa cake. If natural cocoa powder is desired, cocoa cake is fed directly to the cocoa cake mill. If alkalized cocoa powder is desired, the cake 20 from an alkalizing process is fed to the mill. Hydraulic pressing produces a cocoa cake which is an agglomerate of previously milled cocoa particles. Cocoa cake mills for cocoa cake from hydraulic pressing are therefore designed to reduce the size of these agglomerates. 25 The natural cocoa cake or natural cocoa powder can be further processed by alkalizing to modify the color and flavor qualities of the cake (see U.S. Patent No. 3,997,680 to Chalin; U.S. Patent No. 5,009,917 to Wiant, et al.; Minifie, pp. 61-67; Cook, pp. 162-165; and 30 Beckett, pp. 71-72). The alkalizing process can be used at any of several different stages of processing and includes the treatment of either the beans, liquor, nib, cake or powder with solutions or suspensions of alkali, usually, but not limited to, sodium or potassium 35 carbonate. After alkalizing, the cocoa solids are dried and cooled. The dried cocoa solids are subsequently 9 milled to produce alkalized cocoa powder, and thereafter cooled and packaged. 7. Polyphenola in Cocoa Beans and Their utility 5 Cocoa beans contain polyphenols. These polyphenols have recently been extracted and screened for biological activity. It has been discovered that cocoa polyphenol extracts, particularly procyanidins, have significant biological utility. The extracts or 10 compounds further separated therefrom have generally been prepared, on a laboratory scale, by reducing cocoa beans to a powder, defatting the powder, and extracting and purifying the active compound(s) from the defatted powder. The powder is generally prepared by freeze 15 drying the cocoa beans and pulp, depulping and deshelling the freeze-dried beans and grinding the deshelled beans or nibs. The extraction of active compound(s) has been accomplished by solvent extraction techniques, and the extracts have been purified by gel permeation 20 chromatography, preparative High Performance Liquid Chromatography (HPLC) techniques, or by a combination of such methods (see U.S. Patent No. 5,554,645 to Romancyzk et al.). It has now been determined that the recovery of 25 polyphenols appears to be inversely proportional to the degree of fermentation of the cocoa beans. Accordingly, the use of fermented beans as a feedstock material, which is important for good chocolate flavor, reduces the amount of polyphenols available in the cocoa component(s) 30 derived from the beans. It has also been determined that higher processing temperatures and/or longer processing times, e.g. in the roasting step, reduces the amount of polyphenols available in the cocoa components derived 35 from the feedstock beans. Cocoa components have not, heretofore, been produced having substantial quantities of polyphenols. These problems in the art have not heretofore been recognized.
10 OBJECTS OF THE INVENTION It is an object of the invention to overcome the above-mentioned difficulties and/or deficiencies in the prior art. 5 More specifically, it is an object of the invention to provide methods of selecting and/or processing cocoa beans for producing cocoa components having enhanced levels of cocoa polyphenols. It is a further object of the invention to 10 provide a method of processing cocoa beans, wherein a significant amount of cocoa polyphenols present in the pre-processed bean is conserved in the processed bean. It is yet another object of the invention to provide cocoa components, including cocoa nibs or 15 portions thereof, chocolate liquor and partially or fully defatted cocoa solids, each having enhanced levels of cocoa polyphenols, and products containing the cocoa components. It is an additional object of the invention to 20 provide a method of manufacturing chocolates, chocolate flavored confections, chocolate-flavored compositions, edible compositions, supplements, and combinations thereof having enhanced levels of cocoa polyphenols or derivatives thereof. 25 It is a further object of the invention to provide a method of improving the health of a mammal using the products of the invention. It is a still further object of the invention to provide a method of improving the flavor/aroma 30 characteristics of cocoa components, particularly chocolate liquor, containing enhanced levels of cocoa polyphenols. It is a still further object of the invention to provide a method of producing cocoa butter and cocoa 35 solids having a high yield of cocoa butter per amount of cocoa beans processed.
It is another object of the invention to provide a method of winnowing beans to remove the shell portion from the inner portion using an air fluidized bed density separation system. It is another object of the invention to provide a method of producing high quality 5 cocoa butter without requiring a bean roasting step or a liquor milling step. These and other objects and advantages of the invention will become further apparent from the teachings hereinafter provided by the detailed description, test data, and examples. However in relation to the invention, the subject of the presently claimed 10 application, it is intended to overcome or achieve at least one of the prior art disadvantages or objects refered to herein. SUMMARY OF THE INVENTION The invention, the subject of the presently claimed application, is directed to: * a chocolate comprising a cocoa component, wherein said chocolate contains at 15 least 5,500 pLg cocoa procyandins per gram of the chocolate and wherein the cocoa component is selected from chocolate liquor, partially defatted cocoa solids, fully defatted cocoa solids, cocoa extracts and cocoa nib; e a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 15,000 jig cocoa procyanidins per gram of fat; 20 * a chocolate comprising chocolate liquor and at least one fat, and further containing at least 10,200 pg cocoa procyanidins per grain of chocolate liquor; I a chocolate liquor produced from fair average quality cocoa beans having a fermentation factor greater than 375, said chocolate liquor containing at least 9,000 Rg cocoa procyanidins per gram of chocolate liquor; and 25 e a chocolate liquor produced from cocoa beans having a fermentation factor less than 375, said chocolate liquor containing at least 16,500 pg cocoa procyanidins per gram of chocolate liquor. The invention relates to novel versatile methods of processing cocoa beans to form cocoa components having improved properties or characteristics, products made 30 from those methods and methods of using the same. More specifically, the invention relates to methods of producing cocoa components having enhanced levels of cocoa - 11a polyphenols, Parameters of the several cocoa processing steps, including the selection of the cocoa bean feedstock, are controlled and/or manipulated to result in a valuable cocoa component while conserving a significant amount of the cocoa polyphenol content present in the cocoa bean. Thus, the invention relates to methods of obtaining cocoa 5 components having conserved levels of cocoa polyphenols relative to the starting materials, and to the products of those processes produced thereby. The invention avoids the significant and detrimental losses of cocoa polyphenols that occur during conventional processing. The invention also relates to novel cocoa components having enhanced levels of 10 cocoa polyphenols produced by the methods of the invention. More specifically, the invention relates to novel cocoa components including cocoa nibs or portions thereof, chocolate liquors, partially or fully defatted cocoa 12 solids, cocoa polyphenol extract, and combinations thereof having higher levels of cocoa polyphenols in comparison with conventionally produced cocoa components. The invention also relates to novel 5 compositions containing the novel cocoa components including edible products, chocolates, chocolate-flavored confections, chocolate-flavored compositions, ingestible products, digestible products, chewable compositions and combinations thereof. The invention is thus in novel 10 products having enhanced levels of cocoa polyphenols and novel products containing a cocoa polyphenol additive or a derivative thereof. The additive may be an extract from cocoa beans or a cocoa component thereof, or may be synthetic. 15 The invention further relates to the treatment of cocoa components, particularly chocolate liquors, to provide a cocoa component having high levels of cocoa polyphenols with acceptable aroma/flavor characteristics. The treatment includes the removal of undesirable and/or 20 off flavors that may be present in a cocoa component, the manipulation of the aroma/flavor profile using additives or the blending of cocoa components having varying levels of cocoa polyphenols and varying degrees of aroma/flavor. The invention also relates to methods for the 25 production of cocoa polyphenol extract from cocoa beans or components thereof and to the use of the extract as an additive to edible compositions. The invention also relates to novel methods of improving the health of a mammal, particularly humans, 30 using the products containing cocoa polyphenols, particularly products containing elevated levels of cocoa polyphenols. These methods include the use of the cocoa polyphenols to provide one or more of the following activities: reducing periodontal disease, 35 antigingivitis, antiperiodontis, reducing atherosclerosis, LDL oxidation inhibitor, reducing hypertension, antineoplastic, antioxidant, DNA 13 topoisomerase II enzyme inhibitor, cyclo-oxygenase modulator, lipoxygenase modulator, nitric oxide (NO) or NO-synthase modulator, non-steroidal anti-inflammatory, apoptosis modulator, platelet aggregation modulator, 5 blood or in vivo glucose modulator, antimicrobial and inhibitor of oxidative DNA damage activity. BRIEF DESCRIPTION OF THE DRAWINGS Figs. 1 (a) - (d) illustrate the change in the surface of the cut bean half during the fermentation of 10 the cocoa bean: Fig. 1 (a) depicts the cut bean half of an unfermented cocoa bean; Figs. 1 (b) - (d) depict the cocoa bean as it is fermented, with Fig. 1 (d) illustrating the fully fermented cocoa bean; Fig. 2 is a graphical representation of cocoa 15 polyphenols level/fermentation relationship for five cocoa bean samples, wherein the vertical axis represents the level of cocoa polyphenol pentamer (ug/g) from chocolate liquors derived from these cocoa beans defatted and the horizational axis is the degree of fermentation 20 using the fermentation factor (as defined below); Fig. 3 shows an overview of the method of the present invention, and the various products which can be produced by the process (process options dependent upon economics of products, and/or by-products); 25 Fig. 4 is a graphical representation illustrating the levels of total cocoa polyphenols present in the cocoa bean or portion thereof during conventional chocolate liquor processing (line A ) and during processing according to one embodiment of the 30 invention (line B); Fig. 5 is a graphical representation of cocoa polyphenols level/heating temperature/heating time relationship for chocolate liquor samples heat treated at three different temperatures, wherein the vertical axis 35 represents the level of cocoa polyphenol pentamer (ug/g) from defatted chocolate liquors and the horizational axis is the time of heat treatment.
14 DESCRIPTION OF THE PREFERRED EMBODIMENTS DefinitiOng: 1. The term "chocolate" refers to a solid or semi plastic food and is intended to refer to all chocolate or 5 chocolate-like compositions containing a dispersion of solids within a fat phase. The term is intended to include compositions conforming to the U.S. Standards Of Identity (SOI), CODEX Alimentarius and/or other international standards and compositions not conforming 10 to the U.S. Standards Of Identity or other international standards. The term includes sweet chocolate, bittersweet or semisweet chocolate, milk chocolate, buttermilk chocolate, skim milk chocolate, mixed dairy product chocolate, sweet cocoa and vegetable fat coating, 15 sweet chocolate and vegetable fat coating, milk chocolate and vegetable fat coating, vegetable fat based coating, pastels including white chocolate or coating made with cocoa butter or vegetable fat or a combination of these, nutritionally modified chocolate-like compositions 20 (chocolates or coatings made with reduced calorie ingredients) and low fat chocolates, unless specifically identified otherwise. In the United States, chocolate is subject to a standard of identity established by the U.S. Food and 25 Drug Administration (FDA) under the Federal Food, Drug and Cosmetic Act. Definitions and standards for the various types of chocolate are well established in the U.S. Nonstandardized chocolates are those chocolates which have compositions that fall outside the specified 30 ranges of the standardized chocolates. The fat phase of the chocolate of the invention can include cocoa butter, milkfat, anhydrous milkfat, butteroil, and other vegetable fat and other modifications of these fats (CBR, CBE and CBS, referring 35 to cocoa butter replacers, equivalents and substitutes) and synthetic fats or mixtures of cocoa butter with these fats. See Minifie, pp. 100-109.
15 The chocolate may contain a sugar syrup/solids, invert sugar, hydrolyzed lactose, maple sugar, brown sugar, molasses, honey, sugar substitute and the like. The term "sugar substitute" includes bulking agents, 5 sugar alcohols (polyols such as glycerol), or high potency sweeteners or combinations thereof. Nutritive carbohydrate sweeteners with varying degrees of sweetness intensity may be any of those typically used in the art and include, but are not limited to, sucrose, e.g. from 10 cane or beet, dextrose, fructose, lactose, maltose, glucose syrup solids, corn syrup solids, invert sugar, hydrolyzed lactose, honey, maple sugar, brown sugar, molasses and the like. Sugar substitutes may partially replace the nutritive carbohydrate sweetener. High 15 potency sweeteners include aspartame, cyclamates, saccharin, acesulfame-K, neohesperidin dihydrochalcone, sucralose, alitame, stevia sweeteners, glycyrrhizin, thaumatin and the like and mixtures thereof. The preferred high potency sweeteners are aspartame, 20 cyclamates, saccharin, and acesulfame-K. Examples of sugar alcohols may be any of those typically used in the art and include sorbitol, mannitol, xylitol, maltitol, isomalt, lactitol and the like. The chocolates may also contain bulking agents. 25 The term "bulking agents" as defined herein may be any of those typically used in the art and include polydextrose, cellulose and its derivatives, maltodextrin, gum arabic, and the like. The chocolate products may contain emulsifiers. 30 Examples of safe and suitable emulsifiers may be any of those typically used in the art and include lecithin derived from vegetable sources such as soybean, safflower, corn, etc., fractionated lecithins enriched in either phosphatidyl choline or phosphatidyl ethanolamine, 35 or both, mono- and digylcerides, diacetyl tartaric acid esters of mono- and diglycerides (also referred to as DATEM), monosodium phosphate derivatives of mono- and 16 diglycerides of edible fats or oils, sorbitan monostearate, hydroxylated lecithin, lactylated fatty acid esters of glycerol and propylene glycol, polyglycerol esters of fatty acids, propylene glycol 5 mono- and di-esters of fats and fatty acids, or emulsifiers that may become approved for the US FDA defined soft candy category. In addition, other emulsifiers that can be used include polyglycerol polyricinoleate (PGPR), ammonium salts of phosphatidic 10 acid, (e.g. YN) sucrose esters, oat extract, etc., any emulsifier found to be suitable in chocolate or similar fat/solid system or any blend. 2. The term "chocolate-flavored confection" refers to food products, excluding "chocolate", having a 15 chocolate flavor/aroma and comprising a cocoa fraction. These products are stable at ambient temperatures for extended periods of time (e.g., greater than 1 week) and are characterized as microbiologically shelf-stable at 18-3 0 0C under normal atmospheric conditions. Examples 20 include chocolate-flavored hard candies, chewables, chewing gums, etc. 3. The term "chocolate-flavored compositions" refers to chocolate-flavored compositions, excluding "chocolate", containing a cocoa fraction and having a 25 chocolate flavor/aroma. Examples include chocolate flavored cake mixes, ice creams, syrups, baking goods, etc. 4. The term "fats", as used herein, refer to triglycerides, diglycerides and monoglycerides that can 30 normally be used in chocolates and chocolate-like products. Fats include the naturally occurring fats and oils such as cocoa butter, pressed cocoa butter, expeller cocoa butter, solvent extracted cocoa butter, refined cocoa butter, milkfat, anhydrous milkfat, fractionated 35 milkfat, milkfat replacers, butterfat, fractionated butterfat, cocoa butter equivalents (CBE), cocoa butter substitutes (CBS), cocoa butter replacers (CBR), reduced 17 calorie fats and/or synthetically modified fats such as Caprenins. An example of a reduced calorie fat is Caprocaprylobehein (commonly known as CapreninS) as described in U.S. Pat. No. 4,888,196 to Ehrman, et al., 5 which is incorporated herein by reference. 5. The term "food product" includes any food product, for example, those set forth in 21 CFR S 101.12. The term includes chocolate-flavored compositions (e.g., cakes, nougats, puddings, etc.), as well as compositions 10 not having a chocolate-flavor (e.g., caramels, etc.) 6. The term "fermentation factor" is a numerical quantification of the level of fermentation of a batch of cocoa beans. Fermentation factors range from 100 (under/unfermented) to 400 (fully fermented). 15 In order to assess the degree of fermentation, cocoa beans are typically subjected to a standard cut test for assessing quality as defined in industry grade standards. The bean halves are laid out on a board for visual inspection of color as well as defects which can 20 arise during bean fermentation, drying and/or storage. Beans can be divided into four fermentation categories according to their color and appearance: (a) fully fermented, e.g., predominantly a brown hue; (b) partially fermented, e.g., purple/brown; (c) purple 25 (underfermented); and (d) slaty (very underfermented and/or unfermented beans). Purple/brown beans include all beans showing any blue, purple or violet color on the exposed surface, whether suffused or as a patch. Purple beans should 30 include all beans showing a completely blue, purple or violet color over the whole exposed surface. This should also include, irrespective of color, any beans which are slaty, but not predominantly so (wherein predominantly, in this context, means more than half). 35 The "fermentation factor" is determined using a grading system for characterizing the fermentation of the cocoa beans. Slaty, being under/unfermented, is 18 designated as 1, purple as 2, purple/brown as 3 and brown as 4. The percentage of beans falling within each category is multiplied by the weighted number. Thus, the "fermentation factor" for a sample of 100% brown beans 5 would be 100 x 4 or 400, whereas the fermentation factor for a sample of 100% purple beans would be 100 x 2 or 200. A sample of 50% slaty beans and 50% purple beans would have a fermentation factor of 150 [(50 x 1) + (50 x 2)]. 10 Cut tests applicable to cocoa beans derived from the Trinitario and Forastero types may or may not be applicable to cocoa beans derived from the Criollo type, for example, where bean color variation ranging from fully purple to light tan can be encountered. 15 Accordingly, the cut test based on color would not be applicable to specific cocoa genotypes lacking the anthocyanin pigments responsible for the purple color, such as the Catango (or Catongo) type whose beans are light tan in color. Other exceptions include "cocoa 20 beans" derived from other Theobroma species, the Herrania species and their inter- and intra-specific crosses. The beans from these species are "tan" in color. For these types of beans the level of fermentation may be determined using a modified standard cut test. Using the 25 modified test, the surface of the bean (halved) is inspected for the degree of lines, fissures or cracks which form during fermentation, rather than the change of color. Figs. 1 (a) - (d) illustrate the change in the 30 surface of the cut bean half during the fermentation of the cocoa bean. As can be seen from Figs. 1 (a) - (d), the number of lines/fissures and the extent to which they extend across the entire surface of the cut bean half increases as the bean is fermented. Fig. 1 (a) depicts 35 the cut bean half of an unfermented cocoa bean where the surface is relatively smooth. Figs. 1 (b) - (d) depict the cocoa beans as it is fermented, with Fig. 1 (d) 19 illustrating the fully fermented cocoa bean. As the cocoa bean is fermented, the surface develops small branch-like lines or fissures. This modified test can also be used to approximate the fermentation factor 5 wherein a cocoa bean corresponding to Fig. 1 (a) is designated as 100, Fig. 1 (b) as 200, Fig. 1 (c) as 300 and Fig. 1 (d) as 400. While the definitions of the aforementioned categories are a general guide, the assessment according 10 to these categories is well within the skill of the ordinary skilled artisan well versed in chocolate and cocoa processing (see Wood et al., Cocoa, 4th Ed. (1985), incorporated herein by reference, especially pages 511 to 513). 15 7. The numerical terms or qualitative characteristics of the level of cocoa polyphenols in beans or in components refer to the amount detectable and measurable using the method of evaluating the levels set forth in Example 5. 20 8. The term "significant amount" means an amount which maintains the basic characteristics of the specified ingredients or composition or product. 9. The term "chocolate liquor" refers to the dark brown fluid "liquor" formed by grinding a cocoa nib. The 25 fluidity is due to the breakdown of the cell walls and the release of the cocoa butter during the processing resulting in a suspension of ground particles of cocoa solids suspended in cocoa butter (See, Chocolate. Cocoa and Confectionery: Science and Technology, 3rd Ed., by 30 Bernard W. Minifie). 10. The term "fair average quality cocoa beans" refers to cocoa beans that have been separated from the pulp material and dried and are relatively free of mold and infestation. Such beans are a commercial commodity 35 and form the feedstock for the next step in the production processes, i.e. infra-red heating, roasting, 20 pressing, etc. The term includes any such bean that has been genetically modified or produced. 11. The term "raw freshly harvested cocoa beans" refers to seeds or beans freshly harvested from the cocoa 5 pod and which have not been subjected to processing other than separation from the pulp. The term includes any such bean that has been genetically modified or produced. 12. The term "partially defatted cocoa solids" refers to the solid portion(s) derived from shell-free 10 partially defatted cocoa nibs, including cocoa powders, cocoa cake, cocoa polyphenol extracts, alkalized powders or cakes, etc. (excluding chocolate liquor and cocoa butter). 13. The term "cocoa polyphenol" refers to the 15 polyphenol compounds present in cocoa beans and derivatives thereof. The term cocoa polyphenol is intended to include polyphenols extracted from cocoa beans and derivatives thereof, as well as structurally similar synthetic materials. 20 The term polyphenols includes the proanthocyanidins extracted from cocoa beans and derivatives thereof, as well as structurally similar synthetic materials and includes the procyanidins extracted from cocoa beans and derivatives thereof as 25 well as structurally similar synthetic materials. More specifically, the term "cocoa polyphenol" includes monomers (notwithstanding the term polyphenol) of the formula An (where n is 1) or oligomers of the formula An (where n is an integer from 2 to 18, and 30 higher), wherein A has the formula: OH OH HO8 35 61| 3 Z R OH X 21 5 and R is 3-(a)-OH, 3-(B)-OH, 3-(a)-O-sugar, or 3-(B)-O sugar; bonding between adjacent monomers takes place at positions 4, 6 or 8; a bond to a monomer in position 4 has alpha or 10 beta stereochemistry; X, Y and Z are selected from the group consisting of A, hydrogen, and a sugar, with the provisos that as to at least one terminal monomer, bonding of the adjacent monomer thereto is at position 4 and optionally 15 Y = Z = hydrogen; the sugar is optionally substituted with a phenolic moiety; and salts, derivatives and oxidation products thereof. 20 Advantageously, the sugar is selected from the group consisting of glucose, galactose, xylose, rhamnose and arabinose. The sugar of any or all of R, X, Y, and Z can optionally be substituted at any position with a phenolic moiety via an ester bond. The phenolic moiety 25 is selected from the group consisting of caffeic, cinnamic, coumaric, ferulic, gallic, hydroxybenzoic and sinapic acids. one or more of the cocoa polyphenol compounds may be used simultaneously, e.g., in "combinations" in 30 formulation(s) comprising one or more of such compounds. The term "oligomer", as used herein, refers to any compound of the formula presented above, wherein n is 2 through 18, and higher. When n is 2, the oligomer is termed a "dimer"; when n is 3, the oligomer is termed a 35 "trimer"; when n is 4, the oligomer is termed a "tetramer"; when n is 5, the oligomer is termed a "pentamer"; and similar recitations may be designated for 22 oligomers having n up to and including lB and higher, such that when n is 18, the oligomer is termed an "octadecamer". The term "cocoa polyphenols" is further defined 5 in U.S. applications Serial No. 08/317,226, filed October 3, 1994 (allowed, now U.S. Patent No. 5,554,645), Serial No. 08/631,661, filed April 2, 1996, Serial No. 08/709,406, filed September 6, 1996, and Serial No. 08/831,245, filed April 2, 1997, incorporated herein by 10 reference. 14. The term "treating" is intended to refer to methods of processing the cocoa beans including drying, heating (e.g., roasting, infra-red heating, etc.), chemical treatment (e.g., with anti-microbial agents), 15 rehydrating, pressing, solvent extraction, microwave assisted extraction, etc. 15. The term "cocoa component" is intended to refer to a fraction derived from shell-free cocoa nib and includes chocolate liquor, partially or fully defatted 20 cocoa solids (e.g., cake or powders), cocoa extracts, cocoa butter, cocoa nib or portions thereof, etc. DETAILED DESCRIPTION OF THE INVENTION A. Cocoa Bean Selection As set forth above, conventional processes 25 utilize fermented cocoa beans to form cocoa components. Applicants have discovered that the level of cocoa polyphenols in the cocoa beans decreases dramatically during fermentation. Fig. 2 shows the pentamer content of liquors derived from cocoa beans of different origins 30 with varying degrees of fermentation. The data represented in this graph were collected by visually color sorting the beans. Categories used in grading were slaty, purple, purple brown, and brown -- the standard categories used by the industry to grade fermentation 35 levels of beans during a cut test. Each sample (300g) was roasted for 15 minutes at 150*C in a convection oven. The roasted beans were then cracked and winnowed. A 23 liquor was produced using a Melange milling apparatus with a one hour cycle time. To make the fermentation a continuous scale (x-axis) the different colors were given a weighted number. 5 These results demonstrated that underfermented beans have higher polyphenol levels than fermented beans. By processing underfermented beans it is possible to make liquors with higher polyphenol contents. Accordingly, one aspect of the invention 10 relates to methods of producing cocoa components containing enhanced levels of cocoa polyphenols from underfermented cocoa beans. The use of underfermented cocoa beans or a blend of underfermented cocoa beans with fermented cocoa beans provides a cocoa component having 15 enhanced levels of cocoa polyphenols. Therefore, one embodiment of the invention relates to the use of cocoa beans having a fermentation factor less than 375, preferably less than 325, advantageously less than 275, even more advantageously 20 less than 225, desirably less than 175 and most desirably less than 150. In another preferred embodiment underfermented cocoa beans having a fermentation factor less than 125 and even about 100 are used. B. Methods of Producing Cocoa components Having 25 Enhanced Levels of Polyphenols An outline of one embodiment of the invention is shown in Fig. 3. The method of the invention includes modifications of certain steps of the process to produce 30 three types of products. One process modification (Modification A) enables the production of cocoa solids containing conserved levels of polyphenols relative to the level of polyphenols in the cocoa bean feedstocks. Polyphenols are conserved in the product at higher levels 35 than in conventional processes. Modification B enables the production of cocoa butter without necessarily the concomitant conservation of polyphenols. Modification C enables the production of cocoa solids and fat products 24 with enhanced contents of polyphenols relative to conventional solid/fat separation processes. In a broad embodiment of the invention a cocoa component having an enhanced content of cocoa polyphenol, 5 is produced in a process comprising the steps of: (a) treating cocoa beans containing cocoa polyphenols while conserving a significant amount of the cocoa polyphenols content thereof to form treated cocoa beans; and 10 (b) producing the cocoa component from the treated cocoa beans. A significant amount of the cocoa polyphenols is conserved using the inventive methods. The cocoa beans may be fair average quality 15 cocoa beans, raw freshly harvested cocoa beans or combinations thereof. The cocoa beans may be unfermented, underfermented, fully fermented or mixtures thereof, with fermentation factors ranging from 100 to 400. Preferably, the cocoa beans are underfermented to 20 enable the production of a cocoa component having the highest levels of cocoa polyphenols. I One embodiment of the invention relates to methods of processing cocoa beans which are fair average quality cocoa beans wherein the cocoa polyphenols content 25 of the cocoa component produced is from 25 to 100 % by weight of the cocoa polyphenols content of the fair average quality cocoa beans. Preferably, the cocoa polyphenols content of the cocoa component produced is greater than 35% by weight of the cocoa polyphenols 30 content of the fair average quality cocoa beans, advantageously greater than 45% by weight, even more advantageously greater than 55% by weight, and most advantageously greater than 65% by weight. According to other preferred embodiments, more than 75% by weight is 35 conserved, desirably more than 85% by weight, more desirably more than 95% by weight and most desirably more than 99% by weight.
25 Another embodiment of the invention relates to methods of processing raw freshly harvested cocoa beans wherein the cocoa polyphenols content of the cocoa component produced is from 5 to 100 % by weight of the 5 cocoa polyphenols content of the raw freshly harvested cocoa beans. Preferably, the cocoa polyphenols content of the cocoa component produced is greater than 10% by weight of the cocoa polyphenols content of the raw freshly harvested cocoa beans, advantageously greater 10 than 15%. More advantageously greater than 20%, and still more advantageously greater than 25%. According to one preferred embodiment, greater than 30% is conserved, advantageously greater than 35%, more advantageously greater than 40% and most preferred greater than 45%. 15 According to a still further preferred embodiment, greater than 50% is conserved, advantageously greater than 55%, even better greater than 60% and most preferred greater than 65%. According to an even further preferred embodiment, greater than 70% is conserved, advantageously 20 greater than 75%, even better greater than 80% by weight and most preferred greater than 85%. The processing steps include heat-treating (e.g., roasting, infra-red heating, etc.), drying, chemical treatments, etc. Preferably, the treatment 25 steps develop chocolate flavor without significantly reducing the cocoa polyphenols content of the feedstock thereof to form heat-treated cocoa beans. According to one embodiment of the invention the step of treating the cocoa beans comprises heat 30 treating the cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenols content thereof to form heat-treated cocoa beans. The heat-treating includes roasting, infra-red 35 heating, drying at elevated temperatures and combinations thereof. According to one embodiment of the invention, 26 the heating of the cocoa bean is to an IBT (internal bean temperature) greater than 120*C for at least 1 minute and the content of cocoa polyphenols in the heat-treated beans is at least 75% by weight (fullfat) of the cocoa 5 polyphenols content in the pre-treated cocoa beans, advantageously greater than 80% by weight, more desirable greater than 85% by weight, even better greater than 90% by weight and most preferred greater than 95% by weight. According to another embodiment of the 10 invention, the heating of the cocoa bean is to an IBT (internal bean temperature) above 140 0 C for at least 1 minute and the content of cocoa polyphenols in the heat treated beans is at least 60% (fullfat) by weight of the cocoa polyphenols content in the pre-treated cocoa beans, 15 advantageously greater than 65% by weight, more desirable greater than 70%, even better greater than 75% and most preferred greater than 80%. According to yet another embodiment of the invention, the heating of the cocoa bean is to an IBT 20 (internal bean temperature) above 160*C for at least 1 minute and the content of cocoa polyphenols in the heat treated beans is at least 40% by weight (fullfat) of the cocoa polyphenols content in the pre-treated cocoa beans, advantageously greater than 45%, more desirable greater 25 than 50% by weight, even better greater than 55% by weight and most preferred greater than 60%. According to a still further embodiment of the invention, the heating of the cocoa bean is to an IBT (internal bean temperature) above 1200C for at least 1 30 minute and the content of cocoa polyphenol pentamer (fullfat) in the heat-treated beans is at least 60% by weight of the cocoa polyphenol pentamer content in the pre-treated cocoa beans, advantageously greater than 65%, more desirable greater than 70%, even better greater than 35 75% and most preferred greater than 80%. According to another embodiment of the invention, the heating of the cocoa bean is to an IBT 27 (internal bean temperature) above 14 0 "C for at least 1 minute and the content of cocoa polyphenol pentamer (fullfat) in the heat-treated beans is at least 25% by weight of the cocoa polyphenol pentamer content in the 5 pre-treated cocoa beans, advantageously greater than 30%, more desirable greater than 35%, even better greater than 40% and most preferred greater than 50%. According to another embodiment of the invention, the heating of the cocoa bean is to an IBT 10 (internal bean temperature) above 1600C for at least 1 minute and the content of cocoa polyphenol pentamer (fullfat) in the heat-treated beans is at least 15% by weight of the cocoa polyphenol pentamer content in the pre-treated cocoa beans, advantageously greater than 20%, 15 more desirable greater than 25%, even better greater than 30% and most preferred greater than 35%. Roasting comprises applying external heat to the cocoa bean or nib by a combination of conduction and convection. With conventional roasting conditions, 20 moisture and volatile substances diffuse from the inner parts of the nib pieces. According to one embodiment of the invention, roasting is preferably conducted at an internal bean temperature of from 95 to 1600 C for from 30 seconds to 5 25 hours, advantageously from 95 to 1500 C for from 1 minute to 3 hours, even better from 95 to 1400 C for from 1 minute to 1 hour and most preferred from 95 to 1200 C for from 1 minute to 1 hour. Infra-red heating comprises applying infra-red 30 heat so that the shells of the beans are rapidly heated. The shells dry, expand and loosen themselves from the nibs. Preferably, the infra-red heating is conducted at an internal bean temperature of from 95 to 135 "C for 35 from 1 to 5 minutes, advantageously from 95 to 1250C, even better from 95 to 115 0 C and most preferred from about 95-110 *C.
28 Preferably, the infra-red heating step is for a period of time less than 8 minutes, advantageously less than 7 minutes, even better less than 6 minutes and most preferred less than 5 minutes. According to a preferred 5 embodiment, the period of time is less than 4 minutes, advantageously less than 3 minutes, even better less than 2 minutes and most preferably less than 1 minute. According to one embodiment, the treating comprises drying the cocoa beans to form dried cocoa 10 beans. The drying may be at ambient temperature or at an elevated temperature, preferably for a time and to an extent sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenols content thereof. The drying typically reduces the 15 moisture of the cocoa bean to less than 7% by weight. Preferably, the drying decreases the moisture content of the cocoa bean to less than 4% by weight, advantageously to less than 3% by weight, even better to less than 2% by weight and most preferred to less than 1% by weight. 20 This embodiment of the invention may further comprise the step of producing chocolate liquor containing an enhanced content of cocoa polyphenols from the dried cocoa beans. The chocolate liquor may be produced by conventional grinding methods. Preferably, 25 the chocolate liquor is cooled during grinding to reduce further losses of cocoa polyphenols. According to another embodiment, the cocoa beans are raw freshly harvested cocoa beans containing a cocoa polyphenols content and the treating comprises: 30 (i) at least partially fermenting the raw freshly harvested cocoa beans to form at least partially fermented cocoa beans; and (ii) heat-treating the at least partially fermented cocoa beans at an elevated temperature for a 35 time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenols content thereof to form heat-treated cocoa beans.
29 Preferably, the cocoa beans are raw freshly harvested cocoa beans having a fermentation factor less than about 125. According to another embodiment, the treating 5 comprises: (i) drying cocoa beans containing a cocoa polyphenols content to form dried cocoa beans; and (ii) infra-red heating the dried cocoa beans at an elevated temperature for a time sufficient to 10 form infra-red heated cocoa beans while conserving a significant amount of the cocoa polyphenols content thereof. According to yet another embodiment, the cocoa beans have shells and the treating comprises: 15 (i) infra-red heating the cocoa beans at an elevated temperature for a time sufficient to loosen the shells while conserving a significant amount of the cocoa polyphenols content thereof to form infra-red heated cocoa beans; and 20 (11) roasting the infra-red heated cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while further conserving a significant amount of the cocoa polyphenols content thereof to form roasted cocoa beans. 25 According to a still further embodiment, the treating comprises: (i) infra-red heating the cocoa beans at an elevated temperature for a time sufficient to reduce their moisture to less than 5 % by weight while 30 conserving a significant amount of the cocoa polyphenols content thereof to form infra-red heated cocoa beans; and (ii) roasting the infra-red heated cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while further conserving a 35 significant amount of the cocoa polyphenols content thereof to form roasted cocoa beans.
30 According to another embodiment of the invention, the treating comprises: (i) drying cocoa beans containing a cocoa polyphenols content to form dried cocoa beans; 5 (ii) infra-red heating the dried cocoa beans at an elevated temperature for a time sufficient to develop chocolate flavor while conserving a significant amount of the cocoa polyphenols content thereof to form infra-red heated cocoa beans; and 10 (iii) roasting the infra-red heated cocoa beans at an elevated temperature for a time sufficient to further develop chocolate flavor while further conserving a significant amount of the cocoa polyphenols content thereof to form roasted cocoa beans. 15 surprisingly, it has been discovered that the polyphenols content of the cocoa bean may be maintained or conserved by controlling the treatment of the beans. Referring to Fig. 4, a graphical representation illustrates the levels of total cocoa polyphenols present 20 in the cocoa bean or portion thereof during conventional chocolate liquor processing (line A) and processing according to one embodiment of the invention (line B). As can be seen by the graph, an initial loss in polyphenols content occurs during fermentation, 25 additional loss occurs during roasting and further loss occurs during liquor, nib, cake or powder alkalizing (during the manufacture of chocolate). According to the invention, the cocoa polyphenols content of the cocoa component produced is 30 from 25 to 100% by weight of the cocoa polyphenols content in the fair average quality cocoa beans, advantageously from 35 to 100% by weight, more desirable from 45 to 100% by weight, even better from 55 to 100% by weight and more preferred from 65 to 100% by weight. 35 The invention permits the retention of higher levels of the cocoa polyphenols content not only with respect to the fair average quality cocoa beans, but also 31 with respect to raw freshly harvested cocoa beans. Using the method of the invention, the cocoa polyphenols content of the cocoa component produced is from 5 to 100% by weight of the cocoa polyphenols content in the raw 5 freshly harvested cocoa beans, advantageously from 10 to 75% by weight of the cocoa polyphenols content in the raw freshly harvested cocoa beans, preferably from 15 to 50% by weight, even better from 20 to 45% by weight and most preferred greater than 30% by weight. 10 According to one embodiment, the cocoa polyphenols content of the infra-red heated cocoa beans is at least 55% by weight of the cocoa polyphenols content of the fair average quality cocoa beans, preferably at least 65%, advantageously at least 75%, 15 even better at least 85% and most preferred at least 95%. The cocoa polyphenol pentamer content of the infra-red heated cocoa beans may be at least 30% by weight of the cocoa polyphenol pentamer content of the fair average quality cocoa beans, preferably at least 20 35%, advantageously at least 40%, even better at least 45% and most preferred at least 50%. When infra-red heating and roasting steps are used in combination, the cocoa polyphenols content of the roasted cocoa beans is preferably at least 75% by weight 25 of the cocoa polyphenols content of the infra-red heated cocoa beans, advantageously at least 80%, even better at least 85% and most preferred at least 90%. Alternatively, the cocoa polyphenol pentamer content of the roasted cocoa beans is at least 40% by weight of the 30 cocoa polyphenol pentamer content of the infra-red heated cocoa beans, advantageously at least 50%, even better at least 60% and most preferred at least 70%. One preferred aspect of the invention relates to the production of chocolate liquors containing 35 enhanced levels of cocoa polyphenols. Therefore, the cocoa components produced by the inventive methods preferably include chocolate liquor.
32 Accordingly, one embodiment of the invention relates to a method for the production of chocolate liquor having an enhanced content of cocoa polyphenols comprising the steps of: 5 (a) treating cocoa beans, containing cocoa polyphenols, while conserving a significant amount of the cocoa polyphenols content thereof to form treated cocoa beans; and (b) producing chocolate liquor containing 10 an enhanced content of cocoa polyphenols from the treated cocoa beans. Preferably, the cocoa polyphenols content in the chocolate liquor is at least 65% by weight of the cocoa polyphenols content of the cocoa beans, 15 advantageously at least 75%, even better at least 85% and most preferred greater than 90%. Preferably, the cocoa polyphenol pentamer content in the chocolate liquor is at least 45% by weight of the cocoa polyphenol pentamer content of the cocoa 20 beans, advantageously at least 55%, even better at least 60% and most preferred greater than 75%. The invention also relates to the treatment of cocoa components, particularly chocolate liquors, to provide a cocoa component having high levels of cocoa 25 polyphenols with acceptable aroma/flavor characteristics. The treatment includes the removal of undesirable or off flavors present in a cocoa component. The flavor may also be modified using additives or the blending of cocoa components having varying levels of cocoa polyphenols and 30 varying degrees of aroma/flavor. The chocolate liquor or cocoa component may be subsequently heat-treated to remove any undesirable or off flavors. The subsequent heat-treating is preferably to a 35 temperature between 65 and 1400C for from 5 minutes to 24 hours, advantageously between about 75 and 1300C for from 5 minutes to 2 hours, even better between about 85 and 33 120 0 C for from 5 minutes to 1 hour and most preferred between about 95 and 110 0 C for from 5 minutes to 30 minutes. Preferably, the subsequent heat-treating 5 includes agitation to facilitate the removal of off flavors. The heating may be under a vacuum to assist in the removal of off-flavors, preferably wherein the pressure is less than 26 inches (660 mm) mercury. The chocolate liquor or cocoa component may also be aerated 10 during the heat-treatment. Fig. 5 illustrates the effect of different heat treatment temperatures (75 0 C, 950C, 125 0 C) on pentamer level vs. time of heating in a chocolate liquor. Fig. 5 shows that long treatments at temperatures greater than 100 0 C should be avoided. 15 According to one embodiment, the liquor or cocoa component is subsequently directly heated with steam. Preferably, the cocoa polyphenols content of the chocolate liquor is at least 55% by weight of the 20 cocoa polyphenols content of the cocoa beans, advantageously at least 65%, even better at least 75% and most preferred at least 85%. Preferably, the cocoa polyphenol pentamer content of the chocolate liquor is at least 45% by weight 25 of the cocoa polyphenol pentamer content of the cocoa beans, advantageously at least 55%, even better at least 65% and most preferred at least 75%. Another aspect of the invention relates to methods of making chocolate liquors without the use of an 30 alkalization step and/or without the use of a conventional roasting step. One embodiment of the invention relates to methods of making a non-alkalized chocolate liquor comprising the steps of: 35 (a) heating cocoa beans using infra-red radiation; and 34 (b) producing a chocolate liquor from the heated cocoa beans; wherein the chocolate liquor is not subsequently alkalized. 5 Another embodiment of the invention relates to a method of making a chocolate liquor comprising the steps of: (a) heating cocoa beans using infra-red radiation to loosen their shell; and 10 (b) producing a chocolate liquor from the heated cocoa beans without a subsequent heating step. According to this embodiment of the invention, the heating is achieved by the use of an infra-red heater. A suitable infra-red heater is manufactured by 15 Micronizer Company (U.K.) Ltd. The infra-red heating is performed at elevated temperatures as compared to conventional processing conditions to not only assist in removing the strongly adhering shells from the cocoa nibs, but also to lightly roast the raw beans. The level 20 of thermal processing achieved with the infra-red heating eliminates the need for a conventional bean roaster. The infra-red heating puffs and loosens the shells from the beans to facilitate removal in the winnowing process. Preferably, the infra-red heating is performed at 25 elevated temperatures to give a sufficient roast to the raw beans and thereby eliminate the need for an additional bean roaster. The elimination of the conventional bean roasting step greatly simplifies and reduces the cost of the method or process. 30 Preferably, the heating reduces the cocoa bean moisture content to less than 7% by weight, preferably less than 5% by weight, advantageously less than 4%, even better less than 3%, and most preferred less than 2%. As set forth above, the cocoa polyphenols 35 content of the cocoa beans decreases dramatically during fermentation. One aspect of the invention relates to the use of underfermented or unfermented cocoa beans in the 35 production of the cocoa component. Preferably, the cocoa beans have a fermentation factor less than 375, advantageously less than 350, even better less than 325, and most preferred less than 300. 5 According to yet another embodiment, highly underfermented cocoa beans are used. Preferably, the cocoa beans have a fermentation factor less than 275, advantageously less than 250, even better less than 225, and most preferred less than 200. Cocoa beans having a 10 fermentation factor less than 150 or even unfermented beans (i.e., a fermentation factor of about 100) may also be used. According to another aspect of the invention, the method comprises the step of at least partially 15 fermenting raw freshly harvested cocoa beans containing a cocoa polyphenols content to form at least partially fermented cocoa beans and subsequently treating the at least partially fermented cocoa beans. Preferably, the at least partially fermented cocoa beans have a 20 fermentation factor less than 375, even better less than 200 and most preferred less than 150. Another aspect of the invention relates to methods for the commercial production of cocoa polyphenols, for use as an edible, ingestible or 25 pharmaceutical component, from cocoa beans comprising the steps of: (a) processing cocoa beans to separate cocoa butter from cocoa solids; and (b) extracting cocoa polyphenols from the 30 cocoa solids, wherein the processing comprises the steps of pressing, microwave assisted extraction (see U.S. Patent No. 5,002,784 to Pare et al.), solvent extraction or combinations thereof. Another embodiment of the invention relates to 35 methods for the commercial production of cocoa polyphenols from cocoa beans comprising the sequential steps of: 36 (a) extracting cocoa polyphenols from the cocoa beans; and (b) separating a cocoa component from cocoa shell. 5 According to one preferred embodiment, the cocoa beans are underfermented to enhance the amount of cocoa polyphenols. Preferably, the cocoa beans have a fermentation factor less than 375, even better less than 350 and most preferred less than 325. 10 C. Cocoa Components having Enhanced Levels of Cocoa Polyphenols 1. Chocolate Liquors 15 Using the above-described methods, chocolate liquors having enhanced levels of cocoa polyphenols are obtained. When characterizing an inventive product by relating the amount of cocoa polyphenols per gram 20 ingredient in the inventive product, that ingredient does not necessarily contain the cocoa polyphenols, but rather it is the product that contains the cocoa polyphenols. One embodiment relates to a chocolate liquor produced from fair average quality cocoa beans having a 25 fermentation factor greater than 375, the chocolate liquor containing at least 5500 pg, preferably at least 6000 pg, advantageously at least 7000 pg, even better at least 8000 yg and most preferred at least 9000 pg cocoa polyphenols per gram chocolate liquor. Preferably, the 30 chocolate liquor contains at least 500 pg cocoa polyphenols pentamer per gram chocolate liquor, advantageously at least 600 pg, even better at least 700 pg and most preferred at least 800 pg per gram chocolate liquor. 35 Another embodiment relates to a chocolate liquor produced from cocoa beans having a fermentation factor less than 375, the chocolate liquor containing at least 16,500 pg cocoa polyphenols per gram chocolate 37 liquor, advantageously at least 20,000 pg, even better at least 25,000 yg and most preferred at least 30,000 pg cocoa polyphenols per gram chocolate liquor. Preferably, the chocolate liquor contains at least 1,500 pg cocoa 5 polyphenol pentamer per gram chocolate liquor, more preferably at least 1,750 pg, advantageously at least 2,000 pg, even better at least 2,500 pg and most preferred at least 3,000 Mg per gram chocolate liquor. Yet another embodiment relates to a chocolate 10 liquor comprising cocoa butter, partially defatted cocoa solids and cocoa polyphenols, wherein the partially defatted cocoa solids contain at least 33,000 pg cocoa polyphenols per gram defatted cocoa solids, advantageously at least 40,000 Mg, even better at least 15 50,000 pg and most preferred at least 60,000 Mg cocoa polyphenols per gram defatted cocoa solids. Preferably, the chocolate liquor contains at least 3,000 pg cocoa polyphenol pentamer per gram defatted cocoa solids, preferably at least 3,500 Mg, advantageously at least 20 4,000 pg, even better at least 5,000 pg and most preferred at least 6,000 pg per gram per gram defatted cocoa solids. Preferably, the chocolate liquor is derived substantially from underfermented cocoa beans having a fermentation factor less than 375, 25 advantageously less than 350, even better less than 300 and most preferred less than 250. 2. Partially Defatted Cocoa solids Having Enhanced Levels of Cocoa Polyphenols 30 One embodiment of the invention relates to partially defatted cocoa solids having elevated levels of cocoa polyphenols. Preferably, the cocoa solids contain at least 33,000 Mg cocoa polyphenols per gram defatted cocoa solids, advantageously at least 40,000 pg, even 35 better at least 50,000 Mg and most preferred at least 60,000 pg cocoa polyphenols per gram defatted cocoa solids. Preferably, the cocoa solids contain at least 3,000 pg cocoa polyphenol pentamer per gram defatted 38 cocoa solids, advantageously at least 3,500 pg, even better at least 4,000 pg, more preferably at least 5,000 Mg, and most preferred at least 6,000 yg per gram defatted cocoa solids. 5 Preferably, the partially defatted cocoa solids are derived substantially from underfermented cocoa beans having a fermentation factor less than 375, advantageously less than 350, even better less than 300 and most preferred less than 250. 10 The partially defatted cocoa solids may be in cake or powder form. D. Methods of Making Novel Edible Products Containing Cocoa Polyphenols One embodiment of the invention relates to a 15 method of making an edible product containing a cocoa component having an enhanced content of cocoa polyphenols comprising the steps of: (a) treating cocoa beans containing a cocoa polyphenols content while conserving a significant 20 amount of the cocoa polyphenols content thereof to form treated cocoa beans; (b) producing the cocoa component from the treated cocoa beans; and (c) including the component in the edible 25 product. The cocoa component may be selected from the group consisting of cocoa nib, chocolate liquor, partially or fully defatted cocoa solids, cocoa polyphenol extract and mixtures thereof. 30 Another embodiment of the invention relates to a method of making an edible product having an enhanced content of cocoa polyphenols comprising adding a cocoa polyphenol additive or a derivative thereof. The cocoa polyphenol additive may be mixed with the other 35 ingredients of the edible composition at any time during the processing or added to the edible product after processing (i.e., spraying cocoa polyphenols onto the product).
39 Preferably, the cocoa polyphenol additive is an extract from cocoa beans or a cocoa component thereof. The cocoa polyphenol additive may either be substantially pure (e.g., greater than 95% by weight pure) or mixed 5 with other components. The cocoa polyphenol additive may either be synthetic or derived naturally. E. Methods of Making Chocolates Having Enhanced 10 Levels of Cocoa Polyphenols The cocoa components having enhanced levels of cocoa polyphenols may be used to form chocolates by conventional methods. One aspect of the invention relates to the 15 manipulation of the flavor of the final chocolate product. The use of a cocoa component having higher levels of cocoa polyphenols typically affects the flavor/aroma of the final product. The higher cocoa polyphenols content is typically associated with a 20 bitter, astringent flavor. Various methods may be used to reduce the bitter, astringent note in the cocoa component. According to one embodiment of the invention, flavor additives are used to mask or reduce the flavor/aroma of the product. 25 This aspect of the invention relates to the use of at least two chocolate liquors having varying levels of cocoa polyphenols. For example, a first chocolate liquor derived from fermented cocoa beans (having a low cocoa polyphenols level) and a second chocolate liquor 30 derived from underfermented beans (having a higher cocoa polyphenols level) are advantageously used. The use of such a blend allows for the production of a chocolate having strong flavor/aroma characteristics as well as enhanced levels of cocoa polyphenols. 35 one preferred aspect of the invention uses a two step heat treatment (split hot conching) in the processing of the chocolate. The first chocolate liquor having the lower levels of cocoa polyphenols is subjected 40 to a heat treatment at elevated temperatures to develop flavor. Since the first chocolate liquor has lower levels of cocoa polyphenols, it may be subjected to the higher temperature. The heat treated first chocolate 5 liquor is subsequently combined with the second chocolate liquor having the enhanced levels of cocoa polyphenols and further processed into the final chocolate product. Using this method, the chocolate liquor containing the enhanced levels of cocoa polyphenols is not necessarily 10 exposed to the elevated temperatures, thereby preventing a significant reduction in the polyphenols. One embodiment of the invention relates to a method of making a chocolate comprising the steps of: (a) combining chocolate liquor from cocoa 15 beans having a fermentation factor greater than 375 with at least one additive selected from the group consisting of: (i) at least one fat; (ii) at least one sugar; 20 (iii) milk solids; and (iv) mixtures thereof; to form an initial mixture; (b) heating the initial mixture to a temperature less than about 2000 C for 5 minutes to 24 25 hours; (c) cooling the initial mixture; (d) combining the initial mixture with a second chocolate liquor from cocoa beans having a fermentation factor less than 375 and any remaining 30 ingredients to form a secondary mixture; and (e) conching the secondary mixture. Preferably, the milk solids are in an amount greater than or equal to 12 % by weight. Accordingly, one embodiment of the invention 35 relates to a method of making a chocolate composition comprising the steps of: 41 (a) combining a first chocolate liquor from cocoa beans having a fermentation factor greater than 375, cocoa butter and sugar to form an initial mixture; 5 (b) heating the initial mixture to a temperature less than about 2000 C for 5 minutes to 24 hours; (c) cooling the initial mixture; (d) combining the initial mixture with a 10 second chocolate liquor from cocoa beans having a fermentation factor less than 375 and any remaining ingredients to form a secondary mixture; and (e) conching the secondary mixture. Another embodiment of the invention relates to 15 a method comprising the steps of: (a) combining a chocolate liquor high in cocoa polyphenols (preferably having a fermentation factor less than 375) with at least one ingredient and heating to a temperature preferably less than 1400C, more 20 preferably less than 100*C for a period of time between 5 minutes to 24 hours; (b) cooling the mixture; (c) combining the remaining ingredients; and 25 (d) conching the second mixture. Another embodiment of the invention relates to a method comprising the steps of: (a) heating a chocolate liquor high in cocoa polyphenols, preferably a fermentation factor less 30 than 375, to a temperature preferably less than 140*C for 5 minutes to 24 hours; (b) combining the heated chocolate liquor with other chocolate ingredients; and (c) conching. 35 Another embodiment of the invention relates to a method for the production of a chocolate comprising the steps of:
C
42 (a) heating a first chocolate liquor from cocoa beans having a fermentation factor greater than 375 and any remaining ingredients to a temperature less than about 2000 C for 5 minutes to 24 hours; 5 (b) cooling the first chocolate liquor; (c) combining the cooled first chocolate liquor with a second chocolate liquor from cocoa beans having a fermentation factor less than 375 to produce a secondary mixture; and 10 (d) conching the secondary mixture. Preferably, the fermentation factor of the second chocolate liquor is less then 350, advantageously less than 300, even better less than 275, and most preferred less than 250. According to a preferred 15 embodiment, the fermentation factor of the second chocolate liquor is less than 225, advantageously less than 200, even better less than 150, and most preferred less than 125. F. Methods of Producing Cocoa Butter and 20 Partially Defatted Cocoa Solids Yet another aspect of the invention relates to the production of cocoa butter without necessarily the concomitant conservation of polyphenols. This aspect of 25 the invention relates to a method for processing cocoa beans to make cocoa butter and cocoa powder. In particular, the method comprises the steps of cleaning and preparing the cocoa beans, infra-red heating of the cocoa beans, shell removal, screw pressing of nibs to 30 extract the cocoa butter from the cocoa solids, milling the natural cocoa cake and/or alkalizing the natural cocoa cake and milling the alkalized cake. The method delivers both natural cocoa butter and powders (natural and/or value added alkalized powders) from the screw 35 pressed nibs. The invention provides a method for processing cocoa beans to produce cocoa butter and cocoa powder that requires lower total assets since bean roasting and liquor milling are not required and a 43 significantly less complex process with respect to maintenance, energy and labor. One embodiment of the invention relates to a method of producing cocoa solids and cocoa butter 5 comprising the steps of: (a) heating cocoa beans having an outer cocoa shell and inner cocoa nib using infra-red radiation to an internal temperature greater than 115*C; 10 (b) separating the shell from the nib; and (c) subsequently extracting the cocoa butter by screw pressing the nibs. One preferred embodiment comprises the steps of (a) air fluidized bed density separation to clean the 15 cocoa beans, (b) infra-red heating of the cleaned cocoa beans at elevated temperatures exceeding 115 0 C, (c) shell removal, (d) screw pressing of the nibs to produce cocoa butter and cocoa cake, (e) alkalizing the cocoa cake, and (f) air-classified hammer milling of the natural and/or 20 alkalized cocoa cake to produce cocoa powder. A still further embodiment of the invention relates to a method of producing cocoa butter and cocoa cake solids comprising the steps of: (a) cleaning a mixture comprising cocoa beans 25 to separate cocoa beans from non-cocoa solids; (b) heating cocoa beans having an outer cocoa shell and an inner cocoa nib using infra red radiation to an internal temperature 30 greater than 125*C; (c) removing the outer cocoa shell from the nib; (d) screw pressing the nibs to extract the cocoa butter leaving cocoa cake solids; 35 and (e) cooling the cocoa butter to room temperature.
44 Preferably, the heating is to an IBT (internal bean temperature) greater than 120 0 C, advantageously greater than 1250C, even better greater than 130*C and most preferred greater than 135 0 C. The heating 5 preferably results in cocoa beans having a moisture content of about 3 percent by weight. Another preferred embodiment of the invention relates to the use of infra-red heating of the cocoa beans at temperatures up to or exceeding 125*C to result 10 in a light roast and loosening of the shell and subsequently using a screw press to extract cocoa butter from the lightly roasted bean. According to one embodiment, the surface temperature of the bean is heated from about 160 to about 15 1700C, while the internal temperature of the bean is preferably heated to about 130 to about 140 0 C. The resultant nibs should have a reduced moisture content of about 3% prior to pressing. The time of exposure to the infra-red heating is preferably about 0.5 to 4 minutes, 20 however this may be varied depending on the amount of moisture in the nib. The bean height through the infra red heater should be about two beans high. According to another preferred embodiment of the invention, the infra-red heated beans are cooled to 25 ambient temperature after the infra-red heating step. This is to avoid continued loss of moisture resulting from the infra-red heating prior to the screw pressing step. The nibs subjected to the screw press preferably have a moisture content of about 3% with a normal 30 operating moisture range of between 2-6%. The cocoa beans may be cooled to room temperature after the heating and subsequently pre-heated to a temperature between about 80 0 C and about 90 0 C prior to the step of screw pressing. 35 According to one preferred embodiment, prior to the step of heating, the beans are cleaned using a fluidized-bed separator. Preferably, the cocoa beans are 45 subjected to a pre-cleaning step prior to cleaning in the air fluidized bed density separator. Preferably, the step of separating includes a winnowing step to separate the shell from cocoa nibs 5 prior to the pressing step. Preferably, the screw pressing forms cocoa butter and cocoa cake solids. According to one embodiment, the cocoa cake solids are subsequently treated by alkalizing to form alkalized cocoa cake 10 solids. The alkalized cocoa cake solids may be subsequently milled to produce fine cocoa powders. Yet another embodiment of the invention relates to a method of winnowing cocoa beans comprising separating shells from an inner bean portion of the cocoa 15 beans using an air fluidized-bed density separator. Preferably, the air fluidized-bed density separator comprises a means for homogenizing material introduced therein and at least one vibratory screen, advantageously the air fluidized-bed density separator comprises three 20 vibratory screens. surprisingly, greater than 99.5% of the shells are removed by the inventive method, preferably wherein less than 1.1% of the inner bean portion by weight are removed with the shell. G. Novel Edible Products Containing 25 Cocoa Polyphenols Using the methods described above, novel edible compositions containing cocoa polyphenols, particularly enhanced levels of cocoa polyphenols, are made. The novel compositions are distinguishable from conventional 30 compositions either because (1) the inventive compositions contain elevated levels of cocoa polyphenols relative to comparative conventional product (i.e., chocolates, chocolate-flavored confections, etc.) and/or (2) the inventive compositions contain cocoa polyphenols 35 in contrast to the comparative composition which does not contain cocoa polyphenols (i.e., rice cakes, edible compositions without chocolate flavor/aroma, etc.).
46 1. Standard of Identity Chocolate One embodiment of the invention relates to a standard of identity chocolate comprising at least 3,600 pg cocoa polyphenol per gram chocolate, preferably at 5 least 4,000 pg, advantageously at least 4,500 pg, even better at least 5,000 pg, and most preferred at least 5,500 jg cocoa polyphenols per gram chocolate. According to one preferred embodiment, the standard of identity chocolate contains least 6,000 Mg cocoa polyphenols per 10 gram chocolate, advantageously at least 6,500 Mg, even better at least 7,000 Mg, and most preferred at least 8,000 pg cocoa polyphenols per gram chocolate. Another embodiment of the invention relates to a standard of identity chocolate comprising at least 200 15 Mg cocoa polyphenol pentamer per gram chocolate, advantageously at least 225 Mg, even better at least 275 Mg, and most preferred at least 300 mg cocoa polyphenol pentamer per gram chocolate. According to one preferred embodiment, the standard of identity chocolate contains 20 at least 325 Mg cocoa polyphenol pentamer per gram chocolate, advantageously at least 350 Mg, even better at least 400 Mg, and most preferred at least 450 Mg cocoa polyphenol pentamer per gram chocolate. 2. Standard of Identity Chocolate 25 Containing Milk Solids Yet another embodiment of the invention relates to a standard of identity chocolate containing milk solids and comprising at least 1,000 Mg cocoa polyphenols per gram chocolate, advantageously at least 1,250 pg, 30 even better at least 1,500 pg, and most preferred at least 2,000 Mg cocoa polyphenols per gram chocolate. According to one preferred embodiment, the standard of identity chocolate contains at least 2,500 pg cocoa polyphenols per gram chocolate, advantageously at least 35 3,000 Mg, even better at least 4,000 Mg, and most preferred at least 5,000 pg cocoa polyphenols per gram chocolate. Another embodiment of the invention relates to a standard of identity chocolate containing milk solids 47 and comprising at least 85 pg cocoa polyphenol pentamer per gram chocolate, advantageously at least 90 pg, even better at least 100 pg, and most preferred at least 125 pg cocoa polyphenol pentamer per gram chocolate. 5 According to one preferred embodiment, the standard of identity chocolate contains at least 150 pg cocoa polyphenol pentamer per gram chocolate, advantageously at least 175 pg, even better at least 200 pg, and most preferred at least 250 pg cocoa polyphenol pentamer per 10 gram chocolate. Preferably the standard of identity milk chocolate contains milk solids in an amount greater than or equal to 12% by weight. 3. Chocolates Comprising a cocoa component 15 Another embodiment of the invention relates to chocolates comprising a cocoa component, wherein the chocolate contains at least 3,600 pg, preferably at least 4,000 pg cocoa polyphenols per gram chocolate, advantageously at least 4,500 Mg, even better at least 20 5,000 pg, and most preferred at least 5,500 pg cocoa polyphenols per gram chocolate. According to one preferred embodiment, the chocolate contains least 6,000 pg cocoa polyphenols per gram chocolate, advantageously at least 6,500 pg, even better at least 7,000 Mg, and 25 most preferred at least 8,000 pg cocoa polyphenols per gram chocolate. Another embodiment of the invention relates to a chocolate comprising at least 200 Mg cocoa polyphenol pentamer per gram chocolate, advantageously at least 225 30 Mg, even better at least 275 pg, and most preferred at least 300 yg cocoa polyphenol pentamer per gram chocolate. According to one preferred embodiment, the chocolate contains at least 325 Mg cocoa polyphenol pentamer per gram chocolate, advantageously at least 350 35 Mg, even better at least 400 Mg, and most preferred at least 450 Mg cocoa polyphenol pentamer per gram chocolate.
48 4. chocolates Comprising Milk Solids Yet another embodiment of the invention relates to a chocolate containing milk solids (e.g., a milk chocolate) and comprising at least 1,000 pg cocoa 5 polyphenols per gram chocolate, advantageously at least 1,250 pg, even better at least 1,500 pg, and most preferred at least 2,000 pg cocoa polyphenols per gram chocolate. According to one preferred embodiment, the chocolate contains at least 2,500 pg cocoa polyphenols 10 per gram chocolate, advantageously at least 3,000 pg, even better at least 4,000 pg, and most preferred at least 5,000 pg cocoa polyphenols per gram chocolate. Another embodiment of the invention relates to a chocolate containing milk solids and comprising at 15 least 85 pg cocoa polyphenol pentamer per gram chocolate, advantageously at least 90 pg, even better at least 100 pg, and most preferred at least 125 pg cocoa polyphenol pentamer per gram chocolate. According to one preferred embodiment, the chocolate contains at least 150 yg cocoa 20 polyphenol pentamer per gram chocolate, advantageously at least 175 pg, even better at least 200 pg, and most preferred at least 250 pg cocoa polyphenol pentamer per gram chocolate. Preferably, the chocolate contains milk solids 25 in an amount greater than or equal to 12% by weight. S. Chocolates Comprising a cocoa component Yet another embodiment of the invention relates to a chocolate comprising a fat phase and a cocoa component containing a cocoa polyphenols content from 30 fair average quality cocoa beans, wherein the cocoa component contains at least 25% of the cocoa polyphenols content of the fair average quality cocoa beans, preferably at least 35%, advantageously at least 50%, even better at least 60% and most preferred at least 75% 35 by weight. A still further embodiment of the invention relates to a chocolate comprising a fat phase and a cocoa 49 component containing a cocoa polyphenols pentamer content from fair average quality cocoa beans, wherein the cocoa component contains at least 15% of the cocoa polyphenols content of the fair average quality cocoa beans, 5 preferably at least 20%, advantageously at least 25%, even better at least 35% and most preferred at least 50% by weight. Yet another embodiment of the invention relates to a chocolate comprising a cocoa component and at least 10 one fat, and further containing at least 7,300 pg cocoa polyphenols per gram cocoa component, preferably at least 8,000 pg, advantageously at least 9,000 pg, even better at least 10,000 pg, and most preferred at least 12,000 pg cocoa polyphenols per gram cocoa component. 15 Another embodiment of the invention relates to a chocolate comprising a cocoa component and at least one fat, and further containing at least 360 gg cocoa polyphenol pentamer per gram cocoa component, preferably at least 480 pg, advantageously at least 600 Mg, even 20 better at least 720 pg, and most preferred at least 800 pg cocoa polyphenol pentamer per gram cocoa component. 6. chocolates Comprising Cocoa solids Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids 25 and at least one fat, and further containing at least 23,100 gg cocoa polyphenols per gram defatted cocoa solids, preferably at least 24,000 Mg, advantageously at least 26,000 pg, even better at least 28,000 Mg, and most preferred at least 30,000 Mg cocoa polyphenols per gram 30 defatted cocoa solids. Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 1,000 yg cocoa polyphenol pentamer per gram defatted 35 cocoa solids, preferably at least 1,200 pg, advantageously at least 1,400 pg, even better at least 50 1,600 pg, and most preferred at least 1,800 pg cocoa polyphenol pentamer per gram defatted cocoa solids. Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids 5 and at least one fat, and further containing at least 10,500 pg cocoa polyphenols per gram fat, advantageously at least 15,000 pg, even better at least 17,500 Mg, and most preferred at least 20,000 Mg cocoa polyphenols per gram fat. 10 Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 520 pg cocoa polyphenol pentamer per gram fat, advantageously at least 750 pg, even better at least 900 Mg, and most 15 preferred at least 1,200 Mg cocoa polyphenol pentamer per gram fat. A still further embodiment of the invention relates to a chocolate comprising cocoa solids and at least one fat, and further containing at least 630 Mg 20 cocoa polyphenols per calorie, advantageously at least 750 Mg, even better at least 900 pg, and most preferred at least 1,000 Mg cocoa polyphenols per calorie. Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids 25 and at least one fat, and further containing at least 32 Mg cocoa polyphenol pentamer per calorie, preferably at least 50 pg, advantageously at least 60 Mg, even better at least 72 Mg, and most preferred at least 100 pg cocoa polyphenol pentamer per calorie. 30 A still further embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 1,200,000 pg cocoa polyphenols per gram emulsifier, advantageously at least 1,500,000 pg, even 35 better at least 1,800,000 pg, and most preferred at least 2,200,000 pg cocoa polyphenols per gram emulsifier.
51 Another embodiment of the invention relates to a chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 58,000 pg cocoa polyphenol pentamer per gram emulsifier, 5 advantageously at least 78,000 pg, even better at least 100,000 pg, and most preferred at least 120,000 pg cocoa polyphenol pentamer per gram emulsifier. 7. Chocolates Comprising chocolate Liquor A still further embodiment of the invention 10 relates to a chocolate comprising chocolate liquor and at least one fat, and further containing at least 10,200 pg cocoa polyphenols per gram chocolate liquor, preferably at least 12,000 pg, advantageously at least 14,000 pg, even better at least 16,000 pg, and most preferred at 15 least 18,000 yg cocoa polyphenols per gram chocolate liquor. Another embodiment of the invention relates to a chocolate comprising chocolate liquor and at least one fat, and further containing at least 500 pg cocoa 20 polyphenol pentamer per gram chocolate liquor, preferably at least 525 pg, advantageously at least 550 pg, even better at least 575 gg, and most preferred at least 600 pg cocoa polyphenol pentamer per gram chocolate liquor. a. Additional Chocolates 25 A still further embodiment of the invention relates to a chocolate comprising at least one milk component and at least one fat, and further containing at least 8,400 pg cocoa polyphenols per gram milk component, advantageously at least 9,000 pg, even better at least 30 10,000 pg, and most preferred at least 12,000 pg cocoa polyphenols 'per gram milk component. Another embodiment of the invention relates to a chocolate comprising at least one milk component and at least one fat, and further containing at least 465 pg 35 cocoa polyphenol pentamer per gram milk component, preferably at least 1,000 pg, advantageously at least 2,000 pg, even better at least 3,000 pg, and most 52 preferred at least 3,500 pg cocoa polyphenol pentamer per gram milk component. A still further embodiment of the invention relates to a chocolate comprising at least one sugar and 5 at least one fat, and further containing at least 7,100 pg cocoa polyphenols per gram sugar, preferably at least 10,000 pg, advantageously at least 13,000 pg, even better at least 16,000 pg, and most preferred at least 18,000 Mg cocoa polyphenols per gram sugar. 10 Another embodiment of the invention relates to a chocolate comprising at least one sugar and at least one fat, and further containing at least 350 pg cocoa polyphenol pentamer per gram sugar, preferably at least 550 Mg, advantageously at least 850 Mg, even better at 15 least 1,100 pg, and most preferred at least 1,350 pg cocoa polyphenol pentamer per gram sugar. 9. Chocolate-Flavored Confections A still further aspect of the invention relates to chocolate-flavored confections (e.g., a chocolate 20 flavored hard candy) comprising a cocoa component, wherein the chocolate-flavored confection contains an effective amount of cocoa polyphenols per gram chocolate flavored confection to provide a health benefit. Preferably, the chocolate-flavored confection (excluding 25 chocolate) comprises at least 1 pg cocoa polyphenols per gram chocolate-flavored confection, advantageously at least 2 Mg, even better at least 5 Mg, and most preferred at least 10 pg cocoa polyphenols per gram chocolate flavored confection. According to one preferred 30 embodiment, the chocolate-flavored confection comprises at least 25 pg cocoa polyphenols per gram chocolate flavored confection, advantageously at least 50 Mg, even better at least 100 Mg, and most preferred at least 150 Mg cocoa polyphenols per gram chocolate-flavored 35 confection. The cocoa component may be selected from the group consisting of: (a) chocolate liquor; (b) partially 53 defatted or fully defatted cocoa solids; (c) cocoa nib or fractions thereof; (d) cocoa polyphenol extract; and (e) mixtures thereof. Another embodiment of the invention relates to 5 chocolate-flavored confections comprising a cocoa component, wherein the chocolate-flavored confection contains an effective amount of cocoa polyphenol pentamer per gram chocolate-flavored confection to provide a health benefit. Preferably, the chocolate-flavored 10 confection (excluding chocolate) comprises at least 1 pg cocoa polyphenol pentamer per gram chocolate-flavored confection, advantageously at least 2 pg, even better at least 5 pg, and most preferred at least 10 pg cocoa polyphenol pentamer per gram chocolate-flavored 15 confection. According to one preferred embodiment, the chocolate-flavored confection comprises at least 25 pg cocoa polyphenol pentamer per gram chocolate-flavored confection, advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa 20 polyphenol pentamer per gram chocolate-flavored confection. A still further aspect of the invention relates to chocolate-flavored confections (excluding chocolate) comprising a cocoa component, wherein the chocolate 25 flavored confection contains an effective amount of cocoa polyphenols per gram cocoa component to provide a health benefit. Preferably, the chocolate-flavored confection comprises at least 1 pg cocoa polyphenols per gram cocoa component, advantageously at least 2 yg, even better at 30 least 5 pg, and most preferred at least 10 pg cocoa polyphenols per gram chocolate-flavored confection. According to one preferred embodiment, the chocolate flavored confection comprises at least 25 pg cocoa polyphenols per gram cocoa component, advantageously at 35 least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa polyphenols per gram cocoa component.
54 Another embodiment of the invention relates to chocolate-flavored confections (excluding chocolate) comprising a cocoa component, wherein the chocolate flavored confection contains an effective amount of cocoa 5 polyphenol pentamer per gram cocoa component to provide a health benefit. Preferably, the chocolate-flavored confection comprises at least 1 pg cocoa polyphenol pentamer per gram chocolate-flavored confection, advantageously at least 2 Mg, even better at least 5 sg, 10 and most preferred at least 10 pg cocoa polyphenol pentamer per gram cocoa component. According to one preferred embodiment, the chocolate-flavored confection comprises at least 25 Mg cocoa polyphenol pentamer per gram cocoa component, advantageously at least 50 Mg, even 15 better at least 100 Mg, and most preferred at least 150 Mg cocoa polyphenol pentamer per gram cocoa component. 10. Chocolate-Flavored Compositions A still further aspect of the invention relates to a chocolate-flavored composition (excluding chocolate, 20 e.g, a chocolate-flavored ice cream, etc.) comprising a cocoa component, wherein the chocolate-flavored composition contains an effective amount of cocoa polyphenols per gram chocolate-flavored composition to provide a health benefit. Preferably, the chocolate 25 flavored composition comprises at least 1 pg cocoa polyphenols per gram chocolate-flavored composition, advantageously at least 2 Mg, even better at least 5 sg, and most preferred at least 10 Mg cocoa polyphenols per gram chocolate-flavored composition. According to one 30 preferred embodiment, the chocolate-flavored composition comprises at least 25 pg cocoa polyphenols per gram chocolate-flavored composition, advantageously at least 50 yg, even better at least 100 pg, and most preferred at least 150 pg cocoa polyphenols per gram chocolate 35 flavored composition. Another embodiment of the invention relates to a chocolate-flavored composition comprising a cocoa 55 component, wherein the chocolate-flavored composition contains an effective amount of cocoa polyphenol pentamer per gram chocolate-flavored composition to provide a health benefit. Preferably, the chocolate-flavored 5 composition comprises at least 1 pg cocoa polyphenol pentamer per gram chocolate-flavored composition, advantageously at least 2 pg, even better at least 5 pg, and most preferred at least 10 pg cocoa polyphenol pentamer per gram chocolate-flavored composition. 10 According to one preferred embodiment, the chocolate flavored composition comprises at least 25 pg cocoa polyphenol pentamer per gram chocolate-flavored composition, advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa 15 polyphenol pentamer per gram chocolate-flavored composition. A still further aspect of the invention relates to a chocolate-flavored composition comprising a cocoa component, wherein the chocolate-flavored composition 20 contains an effective amount of cocoa polyphenols per gram cocoa component to provide a health benefit. Preferably, the chocolate-flavored composition comprises at least 1 pg cocoa polyphenols per gram cocoa component, advantageously at least 2 pg, even better at least 5 pg, 25 and most preferred at least 10 pg cocoa polyphenols per gram chocolate-flavored composition. According to one preferred embodiment, the chocolate-flavored composition comprises at least 25 pg cocoa polyphenols per gram cocoa component, advantageously at least 50 pg, even better at 30 least 100 pg, and most preferred at least 150 pg cocoa polyphenols per gram cocoa component. Another embodiment of the invention relates to a chocolate-flavored composition comprising a cocoa component, wherein the chocolate-flavored composition 35 contains an effective amount of cocoa polyphenol pentamer per gram cocoa component to provide a health benefit. Preferably, the chocolate-flavored composition comprises 56 at least 1 pg cocoa polyphenol pentamer per gram chocolate-flavored composition, advantageously at least 2 psg, even better at least 5 pg, and most preferred at least 10 pg cocoa polyphenol pentamer per gram cocoa 5 component. According to one preferred embodiment, the chocolate-flavored composition comprises at least 25 yg cocoa polyphenol pentamer per gram cocoa component, advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 Mg cocoa polyphenol 10 pentamer per gram cocoa component. 11. Additional Products Another aspect of the invention relates to an edible or ingestible or chewable product containing a cocoa polyphenols additive or a derivative thereof. 15 According to one embodiment, the cocoa polyphenol additive is an extract from cocoa beans or a cocoa component thereof or the cocoa polyphenol additive is a synthetic compound structurally similar or identical to the cocoa polyphenols. Preferably, the product comprises 20 at least 1 Mg cocoa polyphenols per gram product, advantageously at least 2 pg, even better at least 5 pg, and most preferred at least 10 yg cocoa polyphenols per gram product. According to one preferred embodiment, the product comprises at least 25 Mg cocoa polyphenols per 25 gram product, advantageously at least 50 Mg, even better at least 100 Mg, and most preferred at least 150 Mg cocoa polyphenols per gram product. According to another embodiment, the product comprises at least 1 Mg cocoa polyphenol pentamer per 30 gram product, advantageously at least 2 Mg, even better at least 5 Mg, and most preferred at least 10 Mg cocoa polyphenol pentamer per gram product. According to one preferred embodiment, the product comprises at least 25 Mg cocoa polyphenol pentamer per gram cocoa component, 35 advantageously at least 50 pg, even better at least 100 pg, and most preferred at least 150 pg cocoa polyphenol pentamer per gram product.
57 Accordingly, one embodiment of the invention relates to an ingestible product containing the cocoa polyphenols additive or a derivative thereof and a second ingestible component. 5 Another embodiment of the invention relates to a chewable composition (e.g., chewing gum) comprising a cocoa polyphenol additive or a derivative thereof. Another embodiment of the invention relates to an edible composition comprising a cocoa component 10 containing a cocoa polyphenols content from fair average quality cocoa beans, wherein the cocoa component contains at least 25% of the cocoa polyphenols content of the fair average quality cocoa beans, advantageously at least 35%, even better at least 50% and most preferred at least 65% 15 by weight. A still further object of the invention relates to an edible composition comprising a cocoa component containing a cocoa polyphenols content from raw freshly harvested cocoa beans, wherein the cocoa component 20 contains at least 5% of the cocoa polyphenols content of the raw freshly harvested cocoa beans, preferably at least 10%, advantageously at least 15%, even better at least 20% and most preferred at least 25% by weight. Yet another embodiment of the invention relates 25 to an edible product comprising an edible composition and at least 1 pg cocoa polyphenols, wherein the edible product is substantially free of chocolate flavor and chocolate aroma (i.e., a rice cake coated with cocoa polyphenol extract). Preferably, the product comprises 30 at least 2 pg cocoa polyphenols per gram product, advantageously at least 5 Mg, even better at least 10 pg, and most preferred at least 20 pg cocoa polyphenols per gram product. According to one preferred embodiment, the product comprises at least 50 Mg cocoa polyphenols per 35 gram cocoa component, advantageously at least 100 pg, even better at least 150 pg, and most preferred at least 200 pg cocoa polyphenols per gram product.
58 According to another embodiment, the product free of chocolate aroma/flavor comprises at least 2 pg cocoa polyphenol pentamer per gram product, advantageously at least 5 pg, even better at least 10 pg, 5 and most preferred at least 20 Mg cocoa polyphenol pentamer per gram product. According to one preferred embodiment, the product comprises at least 50 yg cocoa polyphenol pentamer per gram cocoa component, advantageously at least 100 pg, even better at least 150 10 Mg, and most preferred at least 200 pg cocoa polyphenol pentamer per gram product. A still further object of the invention relates to an edible composition comprising a nonalkalized chocolate liquor substantially derived from cocoa beans 15 having a fermentation factor less than 375, preferably, advantageously less than 350, even better less than 325, and most preferred less than 300. According to a preferred embodiment, the fermentation factor is less than 275, preferably less than 250, advantageously less 20 than 225, even better less than 200, and most preferred less than 175. According to a particularly preferred embodiment, the fermentation factor is less than 150, advantageously less than 125, and most preferred about 100. 25 H. Methods of Using Using the cocoa components and the products containing cocoa polyphenols described above, novel methods of improving the health of a mammal, particularly a human, may be practiced. The products of the invention 30 can be used in any of the uses discussed in copending U.S. application Serial No. 08/831,245, filed April 2, 1997. Another embodiment of the invention relates to a method of improving the health of a mammal by 35 administering an effective amount of cocoa polyphenols to the mammal each day for an effective period of time. Advantageously, the effective period of time is greater 59 than sixty days. In one aspect, the mammal's health is improved by ingesting an edible composition containing cocoa polyphenols each day for a period of time greater than sixty days. Preferably, the edible composition 5 contains at least 1 pg of cocoa polyphenols, advantageously at least 5 pg, even better at least 10 pg, more preferred at least 25 pg, and most preferred at least 50 pg. In another aspect, the mammal's health is improved by ingesting a chocolate containing cocoa 10 polyphenols each day for a period of time greater than sixty days. Preferably, the chocolate contains at least 1 pg of cocoa polyphenols, advantageously at least 5 pg, even better at least 10 pg, more preferred at least 25 pg, and most preferred at least 50 pg. 15 one embodiment of the invention relates to a method of improving the health of a mammal by administering an effective amount of cocoa polyphenol pentamer to the mammal each day for an effective period of time. Advantageously, the effective period of time is 20 greater than sixty days. In one aspect, the mammal's health is improved by ingesting a non-chocolate edible composition containing cocoa polyphenol pentamer each day for a period of time greater than sixty days. Preferably, the edible composition contains at least 1 pg 25 of cocoa polyphenol pentamer, advantageously at least 5 pg, even better at least 10 pg, more preferred at least 25 pg, and most preferred at least 50 pg. In another aspect, the mammal's health is improved by ingesting a chocolate containing cocoa polyphenol pentamer each day 30 for a period of time greater than sixty days. Preferably, the chocolate contains at least 1 pg of cocoa polyphenol pentamer, advantageously at least 5 pg, even better at least 10 pg, more preferred at least 25 pg, and most preferred at least 50 pg. 35 The cocoa polyphenols or cocoa polyphenol pentamer has an activity selected from the group consisting of reducing periodontal disease, 60 antigingivitis, antiperiodontis, reducing atherosclerosis, LDL oxidation inhibitor, reducing hypertension, antineoplastic, antioxidant, DNA topoisomerase II enzyme inhibitor, cyclo-oxygenase 5 modulator, lipoxygenase modulator, NO or NO-synthase modulator, non-steroidal anti-inflammatory, apoptosis modulator, platelet aggregation modulator, blood or in vivo glucose modulator, antimicrobial and inhibitor of oxidative DNA damage activity. 10 In yet another embodiment of the invention, a physiological response is elicited in a mammal by administering an effective amount of cocoa polyphenols or cocoa polyphenol pentamer to the mammal. The elicited response is sustained for a period 15 of time, or the elicited response provides a benefit to the mammal in need thereof, advantageously to modulate the effects of an internal or external stress factor. The elicited responses include lowering the oxidative stress index (such as increasing in vivo 20 oxidative defense indices or decreasing in vivo oxidative stress), anti-viral response, anti-bacterial response, lowering cytokine level, increasing T-cell production level, lowering hypertension and dilating blood vessels, and the stress factors include oxidative stress, viral 25 stress, bacterial stress, elevated level of cytokine, diminished level of T-cell production, hypertension and constricted blood vessels. The compounds of the invention or compositions containing the compounds of the invention have utility 30 for reducing periodontal disease, antigingivitis, antiperiodontis, reducing atherosclerosis, LDL oxidation inhibitor, reducing hypertension, anti-cancer, anti-tumor or antineoplastic, antioxidant, DNA topoisomerase II enzyme inhibitor, inhibit oxidative damage to DNA, 35 antimicrobial, cyclooxygenase and/or lipoxygenase modulator, NO or NO-synthase modulator, apoptosis, 61 platelet aggregation and blood or in vivo glucose modulating and nonsteroidal anti-inflammatory activities. In addition to the physiological activities elicited by the compounds of the invention or 5 compositions containing the compounds, other compounds present in cocoa or compositions containing other compounds from noncocoa, natural sources can be combined to produce a synergistic effect to the naturally occurring cocoa polyphenols, in particular cocoa 10 procyanidins. One embodiment of a synergistic effect on NO and/or NO synthase modulation, for example, follows. Many foods contain appreciable amounts of L-arginine, but not necessarily the compounds of the invention. Given 15 that L-arginine is a substrate for NO synthase, and No dependent vasodilation is significantly improved in hypercholesterolemic animals receiving L-arginine supplementation (Cooke et al., Circulation 83, 1057-1062, 1991), and the compounds of the invention can modulate NO 20 levels, a synergistic improvement in endothelium dependent vaBodilation is expected. L-arginine levels of 1.0 to 1.1 g/100g have been reported in unsweetened cocoa powder. From this basis, other natural products rich in L-arginine, such as peanuts, would be incorporated into 25 recipes for maximal benefit related to NO and NO synthase modulation. Another embodiment relates to the use of a noncocoa source containing procyanidins. Cinnamon, for example, has been analytically examined for procyanidins 30 and related compounds (Moritomo et al., Chem. Pharm. Bull. 33:10, 4338-4345, 1985; Moritomo et al., Chem. Pharm. Bull. 33:10, 2281-2286, 1985; Moritomo et al., Chem. Pharm. Bull. 34:2, 633-642, 1986; and Moritomo et al., Chem. Pharm. Bull. 3412, 643-649, 1986), some of 35 which are structurally related to the cocoa procyanidins. Moreover, cinnamon has been reported (Coe, S.D. and Coe, M.D., The True History of Chocolate, Thames and Hudson 62 Ltd., London, 1996) to be a part of chocolate drink recipes since 1692. Thus, the inclusion of cinnamon (containing procyanidins) to cocoa (containing procyanidins) to prepare any cocoa snack, SOI or non SOI 5 chocolate, beverage or edible food stuff would be expected to elicit a synergistic physiological effect. Similarly, the addition of various citrus essential oils, would be expected to produce a synergistic effect with the indigenous cocoa procyanidins. Naturally expressed 10 citrus essential oils contain numerous bioflavonoids and complex terpenoids, some of which have physiological properties such as geraniol (Burke et al., Lipids 32:2, 151-156, 1997). It is noteworthy that distilled citrus oils lack the bioflavonoids and that folded oils would 15 contain different proportions of the terpene hydrocarbons, including the sesquiterpenes and their oxygenated forms, all of which can be manipulated to synergize with the numerous physiological utilities of the cocoa procyanidins. 20 The skilled artisan will recognize many variations from these examples to cover a wide range of formulas, ingredients (e.g. wine or tea solids), processing and mixtures to rationally take advantage of the synergistic effects of naturally occurring levels and 25 distribution of cocoa procyanidins used in combination with other natural products containing identical or different phytochemicals. Further, the skilled artisan will recognize the inclusion of noncocoa phytochemicals in various combinations can be added as recipe 30 ingredients to prepare SOI or non SOI chocolate, any cocoa based snack, beverage, syrup, cocoa, flavoring or supplement. EKAMPL3S The following examples are illustrative of some 35 of the products and methods of making the same falling within the scope of the present invention. They are, of course, not to be considered in any way limitative of the 63 invention. Numerous changes and modification can be made with respect to the invention. That is, the skilled artisan will recognize many variations in these examples to cover a wide range 5 of formulas, ingredients, processing, and mixtures to rationally adjust the naturally occurring levels of the compounds of the invention for a variety of chocolate applications.
64 TABLE 1A: COCOA Polyphenol. CONTENT OF FINISHED PRODUCTS IN EXAMPLES (micrograms/gram) 5 SMULE THEORETICAL ACTUAL THEOETICAL ACTUAL PENTAMER PENTANER POLYPHEMOL POLYPHENOL Chocolate Cookie Control 181 37 2,482 1,9 8 Cookie 50:50 278 39 3,973 2,698 Cookie 100% 376 46 5,464 3,841 10 Cocoa PolyphenoLs Choco Power Bar NA trace NA 100 V02 control NA trace NA 209 Vo2 175 22 2,548 1,710 cocoa polyphenol 15 Cocoa Puffs NA trace NA 27 Cereal 286 23 4,157 3,453 Fruit Bar 408 105 5,153 5,851 Fruit Bar Filling 1,488 349 18,758 12,771 Jetlo-choco pudding NA trace NA trace 20 Pudding (stove) 352 70 18,758 1,559 Pudding (microwave) 352 67 18,758 1,406 Pudding (skim) 352 42 18,758 1,215 Mole control 1.5 trace 44 79 Mole 50:50 14.4 trace 188 155 25 Mote 100% 27.4 trace 332 213 cocoa polyphenot Quaker Choc puff rice NA trace NA trace Sprayed rice cake 251.5 38 3,655 4,842 Brownie (control) 9.9 12 295 645 30 Brownie (50:50) 96.9 70 1,252 2,099 Brownie (100% 183.9 97 2,225 2,981 cocoa polypherot) ChocoLate-Flavored 2.4 18 34.2 776 Nougat 35 Cinnamon Caramel 43 27 621 1,037 NA: Not Available 65 TABLE 1B: COCOA POLYPHENOL INGREDIENTS USED IN EXAMPLES Cocoa Polyphenols TOTAL MEDIUM PENTAMER POLYPHENOL 5 Extract 29,767pg 375,170pg Cocoa Powder 2,138yg 31,072pg Liquor 1,957pg 23,673yg EXAMPLE I - Cocoa Source and Method of preparation 10 Several Theobroma cacao genotypes which represent the three recognized horticultural races of cocoa (Enriquez et al., Cocoa Cultivars Register IICA, Turrialba, Costa Rica 1967; Engels, Genetic Resources of Cacao: A Catalogue of the CATIE Collection, Tech. Bull. 7, Turrialba, Costa Rica 1981) 15 were obtained from the three major cocoa producing origins of the world. A list of those genotypes used in this study are shown in Table 2. Harvested cocoa pods were opened and the beans with pulp were removed for freeze drying. The pulp was manually removed from the freeze dried mass and the beans were 20 subjected to analysis as follows. The unfermented, freeze dried cocoa beans were first manually dehulled, and ground to a fine powdery mass with a TEKMAR Mill. The resultant mass was then defatted overnight by Soxhlet extraction using redistilled hexane as the solvent. Residual solvent was 25 removed from the defatted mass by vacuum at ambient temperature. Table 2: Description of Theobroma cacao Source Material GENOTYPE ORIGIN HORTICULTURAL RACE UIT-1 Malaysia Trinitario 30 Unknown West Africa Forastero ICS-100 Brazil Trinitario (Nicaraguan Criollo ancestor) ICS-39 Brazil Trinitario (Nicaraguan Criollo ancestor) UF-613 Brazil Trinitario EEG-48 Brazil Forastero 66 UF-12 Brazil Trinitario NA-33 Brazil Forastero EXAMPLE 2 - Cocoa Polyphenol Extraction 5 Procedures A. Method I Cocoa polyphenols were extracted from the defatted, unfermented, freeze dried cocoa beans of Example 1 using a modification of the method described by 10 Jalal and Collin, Phytochemistry 6 1377-1380 (1978). Cocoa polyphenols were extracted from 50 gram batches of the defatted cocoa mass with 2X 400 mL 70% acetone/deionized water followed by 400 mL 70% methanol/deionized water. The extracts were pooled and 15 the solvents removed by evaporation at 45 0 C with a rotary evaporator held under partial vacuum. The resultant aqueous phase was diluted to 1L with deionized water and extracted 2X with 400 mL CHCl 3 . The solvent phase was discarded. The aqueous phase was then extracted 4X with 20 500 mL ethyl acetate. Any resultant emulsions were broken by centrifugation on a Sorvall RC 28S centrifuge operated at 2,000 xg for 30 min. at 10 0 C. To the combined ethyl acetate extracts, 100-200 mL deionized water was added. The solvent was removed by evaporation 25 at 45"C with a rotary evaporator held under partial vacuum. The resultant aqueous phase was frozen in liquid
N
2 followed by freeze drying on a LABCONCO Freeze Dry System. The yields of crude procyanidins that were obtained from the different cocoa genotypes are listed in 30 Table 3. Table 3: Crude Procyanidin Yields GWIOTYfl 0511 1OS UT- Mumysh 3.91 Uknown Wes Afrca 2.55 35 ICS-1OO Brail 3.42 ICS-39 BMIU 3.45 UF-413 Braud 2.91 67 ahorPE OWGIN YOMD) EEG-41 Brail 3.15 UF-12 B"iI 1.21 NA-33 8, 1 i 2.23 5 S. Method 2 Alternatively, cocoa polyphenols may also be extracted from the defatted, unfermented, freeze dried cocoa beans of Example 1 with 70% aqueous acetone. Ten grams of defatted material is slurried with 100 mL 10 solvent for 5-10 min. The slurry is centrifuged for 15 min. at 4 0 C at 3000 xg and the supernatant passed through glass wool. The filtrate is subjected to distillation under partial vacuum and the resultant aqueous phase frozen in liquid N 2 , followed by freeze drying on a 15 LABCONCO Freeze Dry System. The yields of crude procyanidins range from 15-20% of the starting material. Without wishing to be bound by any particular theory, it is believed that the differences in crude yields reflected variations encountered with different 20 genotypes, geographical origin, horticultural race, and method of preparation. EXAMPLE 3 - Varying the Levels of Cocoa Polyphenols Via Manipulating the Degree of Fermentation 25 Cocoa beans (T. cocoa, SIAL 659) were subjected to varying degrees of fermentation by removing and analyzing samples of beans taken from a mass of fermenting beans at varying periods of time of fermentation ranging from tO (time = zero hours) to t120 30 (time = 120 hours). The results are shown in Table 4.
68 to 0 0 44 30 00 so , 4 V >0 20 0> V 04 Lo 69 EXAMPLE 4 - Method of obtaining Cocoa Polyphenol Defatted Cocoa Solids from Cocoa Beans utilizing the Inventive Process 5 Commercially available cocoa beans having an initial moisture content of from about 7 to 8 percent by weight were pre-cleaned using an 11" x 56" Scalperator 10 (manufactured by Carter Day International, Minneapolis, MN, USA). Approximately 600 bags of cocoa beans (39,000 kg) were pre-cleaned over a 6.5 hour time period. The beans were fed into the inlet hopper where the flow rate was regulated by a positive feed roll. The beans were 15 fed onto the outside of a rotating wire mesh scalping reel. The beans passed through the wire mesh reel and subsequently through an air aspiration chamber where light dirt, dust and strings were aspirated out of the product stream. The beans that did not pass through the 20 scalping reel were conveyed to the reject stream. This reject stream consisted of large clumps of beans, sticks, stones, etc. The amount of resultant reject was approximately 150 kg, or 0.38% of the starting material. The resulting pre-cleaned product weighed about 38,850 kg 25 and was passed to the bean cleaning step. The pre-cleaned bean products from the Scalperator were then further cleaned using a camas International SV4-5 Air Fluidized Bed Density Separator (AFBDS, manufactured by Camas International, Pocotello, 30 ID, USA). About 38,850 kg of cocoa bean products were fed into the AFBDS over a time period of about 6.5 hours. The apparatus removed substantially all heavy impurities such as stones, metal, glass, etc. from the beans, as well as lighter unusable materials such as moldy and 35 infested cocoa beans, resulting in a cleaned bean product which contained substantially only usable cocoa beans. The resulting heavy impurities removed weighed about 50 kg and the light unusable materials weighed about 151 kg. A total of about 38,649 kg of cleaned beans was obtained 70 after both the pre-cleaning and cleaning steps described hereinabove (99.1% yield after cleaning). The cleaned cocoa beans were then passed through a infra-red heating apparatus. The apparatus 5 used was the Micro Red 20 electric infra-red vibratory Micronizer (manufactured by Micronizing Company (U.K.) Limited, U.K.). The Micronizer was run at a rate of about 1,701 kilograms per hour. The depth of beans in the vibrating bed of the Micronizer was about 2 inches or 10 about 2-3 beans deep. The surface temperature of the Micronizer was set at about 165*C, resulting in an IBT of about 135 0 C, for a time ranging from 1 to 1.5 minutes. This treatment caused the shells to dry rapidly and separate from the cocoa nib. Since substantially all of 15 the cocoa beans fed into the Micronizer were whole beans and were substantially free of small broken pieces of bean or shell, no sparks or fires were observed during the infra-red heating step. The broken pieces separated by the vibrating screen prior to the Micronizer were re 20 introduced into the product stream prior to the winnowing step. The beans after the Micronizer had a moisture content of about 3.9% by weight. The beans emerged from the Micronizer at an IBT of about 135 0 C and were 25 immediately cooled to a temperature of about 90 0 C in about three minutes to minimize additional moisture loss. The total beans available after the heating step was about 36,137 kg. The beans were then subjected to winnowing 30 using a Jupiter Mitra Seita winnower (manufactured by Jupiter Mitra Seita, Jakarta, Indonesia). The winnowing step cracked the beans to loosen the shells and separated the lighter shells from the nibs while at the same time minimizing the amount of nib lost with the shell reject 35 stream. The feed rate into the winnower was about 1,591 kg per hour. The resultant products included about 31,861 kg of usable nibs and 4,276 kg of reject shells.
71 The overall yield of usable nibs from starting material was about 81.7%. The resulting cocoa nibs were pressed using a Dupps 10-6 Pressor (manufactured by The Dupps Company, 5 Germantown, Ohio, USA). A steady, consistent feed of about 1,402 kg per hour of nibs was fed into two screw presses to extract butter. The press produced about 16,198 kg of cocoa butter which contained about 10% cocoa solids, and about 15,663 kg of cocoa solids which 10 contained about 10% butter. The cocoa butter was further processed using a Sharples P3000 decanting centrifuge (manufactured by Jenkins Centrifuge Rebuilders, N. Kansas City, MO, USA). The centrifugation resulted in the removal of the solids 15 from the butter by centrifugal forces. The centrifuging reduced the 10% solids in the butter to about 1-2% solids, and resulted in about 13,606 kg of butter and 2,592 kg of cocoa solids containing about 40 to 45% butter. 20 The butter containing 1-2% solids was further processed using a plate and frame filter (manufactured by Jupiter Mitra Seita) which removed the remaining solids from the butter and resulted in about 13,271 kg of clear cocoa butter and about 335 kg of cocoa solids containing 25 40-45% butter. The cocoa solids removed from the centrifuge and the filter press contained about 40-45% fat and were pressed in a batch hydraulic press to produce 10% fat cocoa cake. This material produced about 1,186 kg of 30 clear butter and 1,742 kg of cocoa solids. The total clear butter yield from the incoming beans was 14,456 kg, or 37.1%. The total cocoa solids produced from the incoming beans was 17,405 kg, or 44.6%. The butter was subsequently tempered and packaged. 35 EXAMPLE 5 - Method for Quantifying Cocoa Polyphenol Levels in Various Samples Processed by conventional and Inventive Methods 72 Cocoa polyphenol extracts were prepared from a variety of cocoa sources (shown in Table 5) by grinding 6-7 g of sample using a Tekmar A-10 Analytical Mill for 5 min, or, in the case of liquors, from 6-7g of chocolate 5 liquor sample without additional grinding. The sample was then transferred to a 50 mL polypropylene centrifuge tube, approximately 35 mL of hexane was added, and sample was shaken vigorously for 1 min. Sample was spun at 3000 RPM for 10 min using an International Equipment Company 10 IECPR-7000 Centrifuge. After decanting the hexane layer, the fat extraction process was repeated two more times. Approximately 1 g of the defatted material was weighed into a 15 mL polypropylene centrifuge tube and 5 mL of a 70% acetone: 29.5% water: 0.5% acetic acid solution was 15 added. The sample was vortexed for about 30 sec using a Scientific Industries Vortex Genie 2 and spun at 3000 RPM for 10 min in the IECPR-7000 Centrifuge. The liquor was then filtered into a 1 ml hypovial through a Millex-HV 0.45 y filter. 20 Cocoa polyphenol extracts were analyzed by a Hewlett Packard 1090 Series II HPLC system equipped with a HP Model 1046A Programmable Fluorescence detector and Diode Array detector. Separations were effected at 37 0 C on a 5 y Supelco Supelcosil LC-Si column (250 x 4.6 mm) 25 connected to a Supelco Supelguard LC-Si 5 ym guard column (20 x 2.1 mm). Procyanidins were eluted by linear gradient under the following conditions: (time %A, %B, %C); (0, 82, 14, 4), (30, 67.6, 28.4, 4), (60, 46, 50, 4), (65, 10, 86, 4), followed by a 5 minute re 30 equilibration. Mobile phase composition was A = dichloromethane, B=methanol, and C=acetic acid:water at a volume ratio of 1:1. A flow rate of 1 mL/min was used. Components were detected by fluorescence, where 1.,= 276 nm and Aem = 316 nm, or by UV at 280 nm. Epicatechin in 35 the concentration of approximately 1 mg/ml was used as an external standard. HPLC conditions: 73 250 x 4.6 mm Supelco Supelcosil LC-Si column (5 pm) 20 x 2.1 mm Supelco Supelguard LC-Si (5 p4m) guard column Detectors: Photodiode Array at 280 nm 5 Fluorescence Xex = 276 nm; Aem = 316 na Flow rate: 1 mL/min Column temperature: 37*C 74 Gradient CH 2 Cl 2 methanol acetic acid/ water (1:1) 0 76 20 4 25 46 50 4 30 10 86 4 5 75 I .CI ~ ~ . ~ O C 0000 r u 11. 03 I 4) U Li an C 3 *nC)t H ~ -1 C.4 (1 76 A sample set containing 9 pressed cocoa cakes, 3 cocoa meals, 3 pressed cocoa powder samples, 3 liquor samples, 3 bean samples and 2 nib samples were analyzed for procyanidin levels by the aforementioned procedure. 5 The results are shown in Table 5. Procyanidin levels were compared to those previously reported for Sulawesi samples defatted by the inventive process. The screw pressed cocoa cake from Sanchez beans (comparative Sample No. E2) contained procyanidin levels closest to that 10 found in the inventive processed samples, but 30% less total procyanidins. Moreover, the inventive process retained the highest level of higher oligomers, i.e., the level of pentamers from the E2 sample was 1983 ug/g as compared to 3,168 ug/g (sample #937-59) from the 15 inventive process. Additionally, a sample set of the following cocoa sources (a) through (d) were analyzed for cocoa polyphenols levels by the aforementioned procedure: (a) Sulawesi raw beans prior to processing by the 20 inventive process (RB-l), (b) cocoa bean nibs obtained from the inventive process, according to Example 4, except as modified at the infra-red heating stage by adjusting the temperature to that which 25 polyphenols would be conserved, i.e., approximately 100-110 0 C (MN-l), (c) two samples of cocoa solids nonfat obtained from the inventive process (MS-120 and MS-150), (d) conventionally processed, Sulawesi raw nibs 30 prior to processing (RN-b and Ry-2), and (e) Sulawesi, conventionally processed partially defatted cocoa solids (CS- and CS-2). The results are shown in Table 6.
77 = * = * _ _=' C - - -~Al -~z IN ell 78 Polyphenols extracted from inventive solids such as RB-1 and MS-120 can be purified by preparative normal phase chromatography by modifying the method of Rigaud et al., (1993) J. Chrom. 654: 255-260. 5 Separations are affected at ambient temperature on a 5u Supelcosil LC-Si 100A column (50 x 2cm), with an appropriate guard column. Procyanidins are eluted by a linear gradient under the following conditions: (time, %A, %B, flow rate); (0, 92.5, 7.5, 10); (10, 92.5, 7.5, 10 40); (30, 91.5, 18.5, 40); (145, 88, 22, 40); (150, 24, 86, 40); (155, 24, 86, 50); (180, 0, 100, 50). Prior to use, the mobile phase components can be mixed by the following protocol: Solvent A preparation (82% methylene chloride, 14% 15 methanol, 2% acetic acid, 2% water): 1. Measure 80 ml of water and dispense into a 4L bottle. 2. Measure 80 ml of acetic acid and dispense into the same 4L bottle. 20 3. Measure 560 ml of methanol and dispense into the same 4L bottle. 4. Measure 3280 ml of methylene chloride and dispense into the same 4L bottle. 5. Cap the bottle and mix well. 25 6. Purge the mixture with high purity Helium for 5 to 10 minutes to degas. Repeat 1 to 6 two times to yield 8 volumes of solvent A. Solvent B preparation (96% methanol, 2% acetic acid, 30 2% water): 1. Measure 80 ml of water and dispense into a 4L bottle. 2. Measure 80 ml of acetic acid and dispense into the same 4L bottle. 35 3. Measure 3840 ml of methanol and dispense into the same 4L bottle. 4. cap the bottle and mix well.
79 5. Purge the mixture with high purity helium for 5 to 10 minutes to degas. Steps 1 to 5 can be repeated to yield four (4) volumes of solvent B. Mobile phase composition can be A 5 = methylene chloride with 2% acetic acid and 2% water; B = methanol with 2% acetic acid and 2% water. The column load can be 0.7g in 7ml. Components can be detected by UV at 254nm. By this method, procyanidins can be obtained 10 from the inventive solids. As evidenced by the total polyphenol compositions obtained from RB-1, MN-1, MS-120 and MS-150, the inventive process affords at least 70% conservation, even at least 85% conservation (e.g., 85-89% see MS-150) 15 and as much as at least 95% conservation (e.g., 95-100%; see MS-120) of the polyphenols concentration; whereas, the conventional processes result in approximately (less than 50%) to less than 70% conservation of the polyphenols concentration (see CS-1, CS-2). 20 Further, RN-1 and RN-2 represent varying concentrations of brown beans (or well fermented beans) in the composition starting material, such that, RN-1 was derived from a bean stock containing approximately 25% brown beans, and RN-2 was derived from a bean stock 25 containing approximately 10% brown beans. As evidenced by the total polyphenol concentrations obtained from each of these sources, it is evident that the concentration of brown beans present in the starting bean stock is inversely proportional to the total polyphenols 30 concentration that may be obtained from such a source, such that those samples derived from bean stocks containing a high percentage of brown beans will yield a relatively low amount of polyphenols (and conversely, slaty and/or purple beans which are less fermented will 35 yield a relatively high amount of polyphenols). The percentage fat of each composition in Table 6 was also determined. The inventive process obtained so levels of fat which are comparable to that derived from conventional methods. EXAMPLE 6 - Cocoa Dean Winnowing Using An Air Fluidised-Bed Density Senarator 5 An air fluidized bed density separator (AFBDS) manufactured by Camas International was tested to determine its effectiveness as a cocoa bean winnower. A blend of beans from West Africa and Central America were heated at about 150*C for about 4 minutes to loosen the 10 shell and were cracked with a centrifugal bean breaker. The cracked beans were separated by the AFBDS which resulted in a shell in nib level of between 0.29 to 0.99% and a nib in shell level of between 6.7 to 8.7%. Although the shell in nib level was acceptable, it was 15 observed that a significant portion of the nibs in the shell was a result of pieces of nib which remained in the large pieces of shell. The large pieces of shell, resembling cracked eggshells, were conveyed on the top of the separation chamber. These shells typically had large 20 pieces of nib entrapped within them which conveyed the nibs into the shell stream. To reduce this nib loss, a system for decreasing the size of the shell pieces was required which did not also decrease the size of the nibs. 25 A follow-up trial consisted of screening the flow of material between the second and third chamber of the AFBDS. This material was separated with a vibrating screen with a 0.375 inch screen opening. The screen successfully removed the large pieces of shell from the 30 material with virtually no loss of nibs. The material which passed through the screen was introduced back into the third separation chamber and the shells and nibs were subsequently separated in the chamber. The amount of shell in nib was found to be very low, however there 35 remained a loss of small nib in the shell stream. To reclaim the nib in shell from the third chamber, another vibrating screen was utilized with a 81 0.11 inch screen opening size. This screen successfully separated the remaining nib from the shell. The fourth chamber is typically used to remove heavy impurities such as rocks, stones, etc. As a 5 winnower, this chamber would not be required as the winnower will typically receive material which is free of these materials. In practice, the 5% flow into the fourth chamber would be passed through chamber one and onto chamber two and three. 10 Table 7 is a summary of the performance of the AFBDS as a winnower: Table 7. Air Fluidized Bed/Vibratory Screen Winnowing Results 15 % of %Shell in %Nib in Shell Flow Nib Chamber 1 65 0.020 0 Chamber 2 20.0 0.002 0 0.375 in. screen I <0.1 Chamber 3 9.5 0.020 0.0 20 0.11 inch screen 0.5 0.075 0.99 Chamber 4 5.0 0 0 TOTAL 100 0.117 <1.09 CONVENTIONAL 1.75 max, range of 4-8% WINNOWING 1.00 typical 25 4 of Nib refers to the amount of the clean nib that was taken out in each chamber As can be seen from the results above, the 30 AFBDS can be used as a winnower and provide separations much finer than conventional winnowing processes. The use of an AFBDS surprisingly meets the FDA requirements for the amount of shell in the nib product, and has a very high yield of nib. 35 82 EKhMPLE 7 - Method of Obtaining Chocolate Liquor from Underfermented Cocoa Beans According to One Embodiment of the Invention 5 Commercially available Sanchez cocoa beans having an initial moisture content of 7.9% by weight were used for processing. A cut test was performed on 300 of the beans and categorized the beans as 43.7% slaty, 13.0% 10 purple, 22.0% purple-brown, and 17.7% brown. The beans had a fermentation factor of about 210. The beans were heat treated using an FMC Link Belt Roaster. Three batches of approximately 50 kg of the beans were separately fed at a rate of 1.5 kg/min 15 through the roaster with a residence time of 22 minutes. The degree of roast was varied in the three 50 kg batches by controlling the air temperature in the Link Belt at 127"C, 159*C, and 181 0 C. The resulting internal bean temperatures (IBTs) as well as the final bean moistures 20 for each batch are listed in Table 8. The roasted beans were cracked and winnowed in a Bauermeister Cracker/Fanner (Machine # 37100) to separate the cocoa nibs from the shells. A sample of the nibs collected was analyzed for oligomer content, as also shown in Table 8. 25 The roasted Sanchez cocoa nibs were then fed through a Carle & Montanari Mill at a rate of 2.9 kg/min to grind the nibs into chocolate liquor. In the mill, nibs dropped from a feed hopper into a narrow space between stationary and rotating grinding plates, reducing 30 the particle size to a few hundred microns and releasing the fat contained within the nib. The pre-milled liquor was collected for analysis and subjected to further processing. The process temperature, moisture, and oligomer content of the pre-milled liquor were measured 35 and are reported in Table 8. The pre-milled liquor was then processed in 10 kg batches in a Szegvari Ql Circulation Attritor Ball Mill for 20 minutes per batch to further reduce the particle size and effect fat release. The pre-milled 83 liquor was pumped through the milling chamber. The milling chamber overflowed into an agitated recirculation tank, from which liquor was continuously pumped back into the milling chamber. The finished liquor was collected 5 for analysis. The process temperature, moisture, and oligomer contents of the finished liquor were measured and are shown in Table 8.
84 A 0 0' 0' 10 %' to 0' %D C4c oq %a N C4 N4 m ('4 1- ('4 14 cm 5- 0) m t 9-4 %4 -4 i c i UO 0-~ a'0 ' a ' a a% Im a' ('1 0 n r'- N Mi co 9 n c-a W in 0, o n m in %a (' (4 0 0n u 4 4 in a 0 o0 r 0 4T1 * c a 0% 0' c 0% 0' m' 0' 0' tp4 a' a1 a' a' a' a' m ' :' a 4' 4j - 0' c- 14 m0 r m40 01 o- a ci H in -4 o n -4 11 in4 qr ci co 1- n V0 ID to E-4 04 4 8 M ' fn0 (4 0 0 0 c U C W4 - 3 do1 a' a' a' a' a' a' a' a' 4 u4 0 t0 OD4 Om t Di 0 ' co .- ) 0 n .4 in 00 Out.
4 *1* 9-4 4 C; i 0 0 ci- 41 0) .- 9 9 m w0 4 )4 I-. O ) - 4 U U U U U U G ' o o 0' in Gow V) .4 -- 0' N(4 0 *14~ V-4 E-4 -4 I-4 6 H -.4 4 .14 14 .4 1 .4 14 CU r. 0 0 0 U4 0 to0 U 43 90 0 0*r4 . e66.A w-4 -i 4 in s 1411 -. A 1~. 04z 40 CW 0 @s4. Sz P. 00 C0 0) 0 .9 --4 LE) 0 I)0 tn (4'4 85 to 1620C), the level of total procyanidin decreases from 24,618 pg/g to 12,786 pg/g. The decrease is particularly pronounced with the higher oligomers, e.g. the pentamer level decreases from 1,953 sg/g to 425 pg/g. 5 Accordingly, the roasting temperature is an important factor in the retention of cocoa polyphenols, especially the higher oligomers. EXAMPLE 8 - Method of Obtaining Chocolate Liquor from Fermented Cocoa Beans Utilizing 10 Another Embodiment of the Invention Process Commercially available West African cocoa beans having an initial moisture content of 6.7% by weight were 15 heat treated using an FMC Link Belt Roaster. A cut test performed on 300 of the beans categorized them as 2.7% slaty, 1.6% purple, 25.7% purple-brown, and 70.0% brown. The beans had a fermentation factor of 363. Three batches of approximately 50 kg of the beans were fed at a 20 rate of 1.5 kg/min through the roaster with a residence time of 22 minutes. The degree of roast was varied in three 50 kg batches by controlling the air temperature in the Link Belt at 1310C, 1560C, and 1830C. The resulting internal bean temperatures (IBTs) as well as the final 25 bean moisture for each batch are listed in Table 9. The roasted beans were cracked and winnowed in a Bauermeister Cracker/Fanner (Machine 1 37100) to separate the cocoa nibs from the shells. A sample of the nibs collected was analyzed for oligomer content, as shown in Table 9. 30 The roasted West African cocoa nibs were then fed through a Carle & Montanari Mill at a rate of 2.9 kg/min to grind the nibs into liquor. In the mill, the nibs dropped from a feed hopper into a narrow space between stationary and rotating grinding plates, reducing 35 the particle size to few hundred microns and releasing the fat contained within the nib. The pre-milled liquor was collected for analysis and subjected to further processing. The process temperature, moisture, and 86 oligomer content of the pre-milled liquor were measured and are reported in Table 9. The West African pre-milled liquor was then processed in 10 kg batches in a Szegvari 01 Circulation 5 Attritor Ball Mill for 20 minutes per batch to further reduce the particle size and effect fat release. The pre-milled liquor was fed through the milling chamber. The milling chamber overflowed into an agitated recirculation tank, from which liquor was continuously 10 pumped back into the milling chamber until a conventional particle size was reached. The finished liquor was collected for analysis. The process temperature, moisture, and oligomer content of the finished liquor were measured and are shown in Table 9.
87 ~~c CN fn H ' ~U14 ~ oo IP In Ln M m N ' I) N N N ' ' 0- lfl 'D Wn ( C4' a 18 0a 'a.LH - 1-4 41 S- w co -T* S5 S _ Ss N0 110 C 0 a% m' *-4 'a m) N N C4 n N4 %D v 00 to U to 0 on, 0 .-4 H r- r% 11 m 'a 'a 43 z~ *- S 5. 5*. z - Z. m 5 S. 0 4 J 'ai 0j Vf &n fn ) vt Va N S 0 0 'D H- t'- Nf N N4 V Go 0% No M. H4 m (4 N4 91 d' OP O go dp o in H M' a N 0' %D 'a (4 N o co r 4 H- .-4 H H 0 0 H 0 a.4 d u u u u S. 0 0 0 0 0 0 0a 0 to 0 'a0 o 10 .O 1 o0 wO U 9 4 VZ A I CD ,- 9 4Z A a.1 H .. = ~ ~ -r -4 A 1zN0w0 z a H H N 88 As shown in Table 9, as the temperature of the roast is increased from 1310C to 183*C (or the IBT from 121*C to 163*C), the level of total procyanidin decreases from 8,181 pg/g to 2,815 Mg/g. The decrease is particularly 5 pronounced at with the higher oligomers, e.g. the pentamer level decreases from 402 pg/g to 62 pg/g. Accordingly, the roasting temperature is an important factor in the retention of cocoa polyphenols, especially the higher oligomers, when roasting both underfermented 10 (Example 7) and fermented (Example 8) cocoa beans. The liquor produced in Example 8 could be further processed into cocoa butter and cocoa powder. The cocoa solids would contain a high level of the procyanidins. Processing the liquor to butter and powder 15 could be accomplished using a hydraulic press such as manufactured by Carle and Montanari. The liquor from Example 8 could be heated to 200 to 2150 C. The liquor is then pumped into the press pots. When the pots are filled with liquor, the hydraulic ram is activated. 20 cocoa butter is squeezed through very fine mesh screens. The resultant products are cocoa cake and cocoa butter. The nonfat cocoa solids contained in the cocoa cake would have the same amount of procyanidins as were present in the initial liquor. The cocoa cake produced via this 25 process could be used in edible products. EXAMPLE 9 - A Method of Infra-red Heating Cocoa Beans to Produce a Chocolate Liquor Containing Increased Levels of Cocoa 30 Polyphenol Fair average quality (FAQ) Sulawesi cocoa beans having an initial moisture content 7.4% by weight and a fermentation factor level of 233 (31% slaty, 29% purple, 22% purple brown and 17% brown) were selected as the 35 starting material. The cocoa beans were then passed through an infra-red heating apparatus. The apparatus used was an infra-red gas vibrating micronizer (manufactured by Micronizer Company (U.K.) Limited, U.K.). The feed rate of beans through the infra-red 89 heater and the infra-red heater bed angle were varied to control the amount of heat treatment the beans received. The amount of time the beans spent in the infra-red heater (residence time) was determined by the bed angle 5 and the feed rate. The times used to prepare the example material are listed in the Table 10 below. At the outlet of the micronizer the IBT of the beans was measured, these values are also shown in Table 10. The surface temperature of the beans exiting the infra-red heater are 10 higher than the IBT. Rapid surface cooling brings the surface temperature close to the IBT in less than 1 minute. The traditional purpose of infra-red heating is to heat the whole beans and loosen the shell from the nib. In the example, the micronizer was used to roast 15 the Sulawesi beans in a novel fashion by increasing the thermal load on the beans, i.e., high temperature short time (HTST). No fires were observed in the Micronizer during the infra-red heating. A total of 25 kg of raw beans were infra-red heated at each set point. 20 The infra-red heated beans were further processed into chocolate liquor. This liquor was produced using lab scale liquor processing equipment. The same processing could be done using the plant size equipment referenced in Example 7. A 1 kg sample of 25 infra-red heated beans collected off the infra-red heater at different IBTs were cracked into smaller pieces. This is done to facilitate the separation of the nib from the shell. The laboratory piece of equipment used to remove the shell was the Limiprimita Cocoa Breaker made by the 30 John Gordon Co. LTD. of England. The cracked beans were next passed through a laboratory scale winnowing system. The piece of equipment used was the Catador CC-1 made by the John Gordon Co. LTD of England. The result of this processing was that the shells and nibs were separated. 35 The cocoa nibs were next milled into a coarse liquor. This was accomplished using a Melange made by Pascall Engineering Co. LTD England. This device crushes 90 and grinds the nibs into a chocolate liquor. The normal operating temperature for the liquor in the Melange in approximately 50 0 C. This same process of taking nibs to a coarse liquor could be done on a larger production 5 scale using the Carle & Montanari Mill mentioned in Example 7. The cocoa nibs were ground in the Melange for one hour in each experiment. This cycle time was sufficient to convert the nibs to a liquor. The content of cocoa polyphenols was measured for the samples 10 relating to the infra-red heated temperatures. These values are contained in the Table 10 below. TABLE 10 IBT*C Residence pg/g pg/g Of Time in Moisture Pentamer Total Microniser, in in Polyphenola Seconds Finished Defatted in Defatted Liquor Liquor Liquor 15 107 42 3.9 3,098 39,690 126 82 1.87 1,487 28,815 148 156 1.15 695 23,937 As shown in Table 10, as the internal bean 20 temperature of the cocoa bean is increased from 1070C to 148*C, the level of total procyanidin decreases from 39,690 pg/g to 23,937 pg/g. The decrease is particularly pronounced at with the higher oligomers, e.g. the pentamer level decreases from 3,098 pg/g to 695 Mg/g. 25 Accordingly, the internal bean temperature of the cocoa bean resulting from any heating is an important factor in the retention of cocoa polyphenols, especially the higher oligomers. EXAMPLE 10 - Standard of Identity (80I) and Non 30 Standard of Identity (non-SOI) Dark and Milk Chocolate Formulations Formulations of the compounds of the invention or combination of compounds derived by methods embodied in the invention can be prepared into SOI and non-SOI 35 dark and milk chocolates as a delivery vehicle for human 91 and veterinary applications. The cocoa polyphenol solids of Example 4 are used as a powder or liquor to prepare SOI and non-SOI chocolates, beverages, snacks, baked' goods, and as an ingredient for culinary applications. 5 The following describes the processing steps used in preparing these chocolate formulations. Process for non-SOI Dark Chocolate 1. Batch all the ingredients excluding 40% of the free fat (cocoa butter and anhy. milk fat) maintaining 10 temperature between 30-35*C. 2. Refine to 20 microns. 3. Dry conche for 1 hour at 35 0 C. 15 4. Add full lecithin and 10% cocoa butter at the beginning of the wet conche cycle; wet conche for 1 hour. 5. Add all remaining fat, standardize if necessary and 20 mix for 1 hour at 35 0 C. 6. Temper, mould and package chocolate. Process for S0I Dark Chocolate 25 1. Batch all ingredients excluding milk fat at a temperature of 60 0 C. 2. Refine to 20 microns. 30 3. Dry conche for 3.5 hours at 60 0 C. 4. Add lecithin and milk fat and wet conche for 1 hour at 60 0 C. 35 5. Standardize if necessary and mix for 1 hour at 35 0 C. Temper, mould and package chocolate. Process for non-SOI Milk Chcolate 40 1. Batch sugar, whole milk powder and 66% of the cocoa butter, conche for 2 hours at 75 0 C. 2. Cool batch to 35*C and add cocoa powder, vanillin, 45 chocolate liquor and 21% of cocoa butter, mix 20 minutes at 35 0 C. 3. Refine to 20 microns. 50 4. Add remainder of cocoa butter, dry conche for 1.5 hour at 35 0
C.
92 5. Add anhydrous milk fat and lecithin, wet conche for 1 hour at 35 C. 6. Standardize, temper, mould and package the chocolate. 5 Process for SOI Milk Chocolate 1. Batch all ingredients excluding 65% of cocoa butter and milk fat at a temperature of 60 0 C. 10 2. Refine to 20 microns. 3. Dry conche for 3.5 hours at 60 0 C. 15 4. Add lecithin, 10% of cocoa butter and anhydrous milk fat; wet conche for 1 hour at 60 0 C. 5. Add remaining cocoa butter, standardize if necessary and mix for 1 hour at 35 0 C. 20 6. Temper, mould and package the chocolate. The cocoa polyphenols cocoa solids and commercial chocolate liquors used in the formulations 25 were analyzed for the content of total cocoa polyphenols and cocoa polyphenol pentamer according to the method of Example 5 prior to incorporation in the formulations. These values were then used to calculate the expected levels in each chocolate formula. In the cases for the 30 non-SOI dark chocolate and non-SOI milk chocolate, the products were similarly analyzed for the content of total cocoa polyphenols and cocoa polyphenol pentamer. The results are shown in Tables 11 and 12.
93 Table 11. Dark Chocolate Formias Prepared with non-ALkalized Cocoa ingredients Non-SOI Dark Chocolate SOI Dark Chocolate Using Cocoa SO Dark Chocolate Using Cocoa Polyphenols Polyphenot Cocoa Solids Nonfat Using Connercial Cocoa Part. Defat Cocoa Solids Solids Nonfat 5 Forulatio Formlatinn: Foriation: 41.49 % Sugar 41.49% sugar 41.49% sugar 3% whole milk powder 3% whole milk powder 31 whole milk powder 26% cocoa 52.65% cocoa polypheno 52.65% chocolate liquor polyphenot cocoa powder liquor 2.35% ardy. milk fat 10 4.5% chocolate liquor 2.35% anhy. milk fat 0.01% vanitlin 21.75% cocoa butter 0.01% vanillin 0.51 lecithin 2.751 anhy. milk fat 0.51 lecithin 0.01% vanillin 0.5% lecithin 15 Total fat: 31% Total fat: 311 Total fat: 31% Particle size: 20 microns Particle size: 20 microns Particle size: 20 microns Expected Levels of pentamer and total oLigoiseric procyanidins (monomers and n -2-12; uits of Pentamer: 1205 Pen-tamer: 1300 fPentauser: 185 Total: 13745 Total: 14646 cotal: 3948 Actual Levels of pentamer and total oligomeric procyanidins (monomers and n 2-12: un~its of 25 Hg/g) Pnae:561 ~ Not performd Not performed Tftl:: 31%9 94 able 12. Milk Chocolate Formulas P -pared with non-Alkatized Cocoa nqredients Man-Sol Milk Chocolate Using 501 Milk Chocolate Using Cocoa 01 Milk Chocolate Cocoa Polyphenot Cocoa Solids Polyphenot Cocoa Solids Using Coamercial Cocoa Solida 5 formutation, Formu latio: ormulation: 46.9965 % Sugar 46.9965% sugar 46.9965% sugar 19.5% whole milk powder 19.5% whole milk powder 19.5% whole milk powder 4.5% cocoa polyphenol cocoa 13.9% cocoa polyphenol liquor 13.9% chocolate liquor powder 1.6% nhy. milk fat 1.60% anhy. milk fat 10 5.5% chocolate liquor 0.0035% vanillin 0.0035% vaniltin 21.4% cocoa butter 0.5% lecithin 0.5% lecithin 1.6% anhy. milk fat 17.5% cocoa butter 17.5% cocoa butter 0.035% vanillin 0.5% lecithin 15 Total fat: 31.75% Total fat: 31.75% Total fat: 31.75% Particle size: 20 microns Particle size: 20 microns Particle size: 20 microns Expected Levels of pentamer and total oligomeric procyanidins monomerss and n - 2-12; units of 20 &yg/u) Pentamer: 225 Pentamer: 343 Pentamer: 49 Total: 2734 Total: 3867 Total: 1042 Actual Levels of pentamer and total oligomeric procyanidins (monmrs and n = 2-12; units of 25 gg/g) Pentamer: 163 Not performed Not performed Total: 2399 1 30 EXAMPLE 11 - Dry Drink Mix with Cocoa Powder Containing Enhanced Levels of Cocoa PolyDhenol A dry drink mix containing the cocoa powder of Example 4 having enhanced levels of cocoa polyphenols was made according to the following formulation: 35 Ingredient Sucrose 65.0667 Malt Powder 11.9122 Cocoa Polyphenol Rich Cocoa Powder 18.0185 40 Alkalized Cocoa Powder 4.0041 Vanillin 0.0025 Lecithin 0.9960 100.00 45 The dry ingredients were batched according to the above formulation and mixed for one hour in a Kitchen 95 Aid Professional Mixer (Model KSM50P) using a wire whip at #2 speed. The lecithin was agglomerated prior to use in the recipe in a Niro-Aeromatic Agglometer (Model STREA/1). 5 The dry drink mix was evaluated according to the method of Example 5 and found to have the following cocoa polyphenol content: Pentamer Content: 221 pg/g Total Polyphenolic Content: 4325 sg/g 10 Two tablespoons of the dry drink mix (30 g) were added to milk (8 ounces, 2 % fat) to form a chocolate flavored drink. EXAMPLE 12 - Savory Sauce with Chocolate Liquor Containing Enhanced Levels of Cocoa 15 PolY~h*-- A mole 'sauce containing the chocolate liquor of Example 7 containing enhanced levels of cocoa polyphenol was made according to the following formulation: Ingredient _ 20 Chili Powder 2.4 Olive Oil 4.8 Cumin 0.39 Cinnamon 0.21 Stewed Tomatoes 90.8 25 Chocolate Liquor (from 1.4 Example 7) 100.00 The oil and spices were heated in a MAGNALite 30 saucepan (41/4.5 qt.) on a HOTPOINT stove (Model RS744GON1BG) over medium high heat (product temperature 102 0 C) for about 20 seconds. The stewed tomatoes and liquor were added to the oil/spice mixture and cooked at a product temperature of 856C for 5 minutes. 35 The sauce was evaluated according to the method of Example 5 and found to have the following cocoa polyphenol content: Pentamer Content: Trace 96 Total Polyphenolic Content: 213 pg/g one skilled in the art would readily appreciate how to modify the recipe, for example by adding more chocolate liquor, to obtain a product with higher cocoa 5 polyphenol content, particularly a higher pentamer content. EXAMPLE 13 - Cereal Product with Cocoa Powder Containing Enhanced Levels of Cocoa Polyphenol 10 A cereal was made according to the following formulation: Ingredient Soft Wheat Flour 37.09 Hard Wheat Flour 16.64 15 Sugar, Granulated 30.33 Sodium bicarbonate 0.19 Monocalcium Phosphate 0.19 Glycerol Monostearate 0.43 Salt 1.73 20 Cocoa Powder (from Ex. 4) 13.40 100.00 All of the ingredients except the cocoa powder were combined in a small ribbon blender and blended 3 25 minutes. At the end of the mixing cycle, all of the blended materials were pneumatically conveyed to an AccuRate Feeder. The dry blend was fed through the AccuRate Feeder at 40 kg/hr, along with the cocoa polyphenol cocoa powder, which was fed through the K-tron 30 Feeder at 6.18 kg/hr, into a WernerPfleiderer Twin Screw Extruder (Model ZSK57 with Bullet Tips). Water was added at a rate of 1.2 1/hr. The extruder was started up using standard operating procedures. Feed rates for dry blend and water were adjusted to targets. The screw RPM was 35 set to 200. The cocoa feeder was adjusted to target and cereal tubes were collected. Empty cereal tubes were fed 97 through the crimper and collected in 2 foot lengths. Separate pillows were made by snapping at crimped edges. Results: Pentamer Content: 23 sg/g 5 Total Polyphenolic Content: 3453 sg/g EXAMPLE 14 - Cooked Vanilla Pudding made with Cocoa Polyphenol Extract A standard cooked vanilla pudding was made 10 according to the following formulation: Ingredient JELL-0 Vanilla Pudding Mix 95.00 Cocoa Polyphenol Extract 5.00 15 100.00 The pudding was cooked according to the following procedure: The cocoa polyphenol extract was made according to the extraction process of Example 2 (method 1) and 20 finely ground using a Hamilton Beach Blendmaster blender (Model #50100, type B12). Five percent of the extract was added to the dry pudding mix and blended using a wire whip. Two cups of whole milk were added to the pudding mixture in a MAGNA Lite saucepan. The dry mixture and 25 milk were cooked and stirred constantly using a wire whip over medium heat on a HOTPOINT stove (Model RS744GON1BG) until the mixture came to a full boil. The pudding was removed from the heat, poured into a storage container, and stored in the refrigerator. 30 Results: Pentamer Content: 70 pg/g Total Polyphenolic Content: 1559 Ag/g EXAMPLE 15 - Brownies with Chocolate Liquor Containing 35 Enhanced Levels of Cocoa Polvphenol Brownies were made using the chocolate liquor of Example 7 to replace the unsweetened chocolate of a conventional recipe, according to the following formulation: 98 Ingredient % Shortening 12.50 Chocolate Liquor 9.41 Sugar 37.60 5 All Purpose Flour 23.48 Baking Powder .14 Salt .14 Eggs 16.60 Vanilla .13 10 100.00 The following procedure was used to make the brownies: Cocoa polyphenol chocolate liquor and 15 shortening were placed into a Kitchen Aid K45 bowl. The bowl was then placed on top of a MAGNA Lite Saucepan (4 1 / 4.5 qt.), which had 345 grams of boiling (100-C) water in it. This double boiler was then heated on a HOTPOINT stove (Model I RS744GONlBG) over low heat until 20 melted, and was removed from heat. The sugar, eggs and vanilla were mixed into the melted mixture. The remaining dry ingredients were mixed in and the dough spread into a greased 13" x 9" x 2" baking pan. The brownies were baked at 350*F in a HOTPOINT oven (Model # 25 RS744GON1BG) for about 30 minutes until the brownies pulled away from the sides of the pan. Results: Pentamer Content: 97 pg/g Total Polyphenolic Content: 2981 yg/g 30 EXAMPLE 16 - Chocolate Cookies with Cocoa Powder Containing Enhanced Levels of Cocoa polyphenol Chocolate cookies were made using the cocoa 35 powder of Example 4 according to the following formulation: Ingredient % 99 Soft Butter 30.50 Confectioner's Sugar 7.60 Unsifted Flour 45.80 Cocoa Polyphenol Cocoa Powder 15.30 5 Water .35 Vanilla Extract .45 100.00 The process outlined below was used to make the 10 cookies: The oven was pre-heated to 3250F. The butter and one-fourth of the sugar were creamed in a Kitchen Aid Model KSM90 for about 2 minutes. The remaining ingredients were added and mixed well (approx. 3 15 minutes). The dough was shaped into small balls and put on an ungreased cookie sheet. Cookies were baked at 325 0 F for 15-17 minutes. Results (After Baking): Pentamer Content: 46 pg/g 20 Total Polyphenolic Content: 3841 pg/g EXAMPLE 17 - Rice and Sauce Mix with Cocoa Polyphenol Extract A rice and sauce mix is prepared using the 25 formulation below: Ingredient % Seasoning Mix w/Cheese 11.00 Dried Vegetables 2.00 Dry Rice 83.00 30 Cocoa Polyphenol Extract 4.00 100.00 All of the ingredients are combined in a saucepan on the stove, and are brought to a boil. Once 35 the mixture is boiling, the heat is reduced and the mixture is simmered for about 10 minutes.
100 Theoretical results assuming no loss during processing: Pentamer Content: 1190 pg/g Total Polyphenolic Content: 15,000 pg/g 5 A rice and cheese sauce mix is prepared using the formulation below: Ingredient % Seasoning Mix w/Cheese 22.00 Dried Vegetables 3.00 10 Dry Rice 71.00 Cocoa Polyphenol Extract 4.00 100.00 All of the ingredients are combined in a 15 saucepan with 2 1/4 cups water and 1 to 2 tablespoons of butter. The mixture is brought to a boil and then is allowed to simmer for about 10 minutes, until most of the water is absorbed. The rice mix is then allowed to sit for about 5 minutes to allow the cheese sauce to thicken. 20 Theoretical results assuming no loss during processing: Pentamer Content: 1190 #g/g Total Polyphenolic Content: 15000 yg/g 25 EXAMPLE 10 - Extruded Energy Bar Process with Cocoa Powder Having Enhanced Levels of Cocoa Polyphonol Energy Bars were made using the cocoa powder of Example 4 having enhanced levels of cocoa polyphenol in 30 place of natural cocoa powder, according to the following recipe: Ingredient % Carbohydrate Syrup 20-30 35 Fruit/Fruit Preparation 10-15 Protein Powder (milk or soy 5-20 origin) Micronutrients 4-5 101 Simple Sugars 10-20 Maltodextrin 10-15 Crisp Rice/Rice 10-13 Cocoa Polyphenol Cocoa Powder 8-12 5 Fat 2-5 Flavor 0.1-1.5 The ingredients were mixed in a JH Day 50 gallon jacketed stainless steel double arm sigma blade 10 mixture. The mixer jacket was set to 50 0 C. The carbohydrate syrup, fat, and fruit/fruit preparation was combined in the mixer and mixed at 50 rpm until homogenous, about 5 minutes. With the mixer running, the remaining ingredients were gradually added in the 15 following order and blended until homogenous; micronutrients, flavor, cocoa powder, simple sugars, maltodextrin, protein powder, and crisp rice/rice. The blended energy bar mass was transferred to the hopper of the Werner Lehara Continuous Rope Extruder. The extruder 20 was jacketed at 409C to keep the mass soft and pliable for forming. The mass was extruded through the nozzle block onto a conveyor belt that transferred the strips through a cooling tunnel. A guillotine was used to cut the bars to length upon exiting the cooling tunnel at 15 25 20*C. Results: Pentamer Content: 22 pg/g Total Polyphenolic Content: 1710 g/g EXAMPLE 19 - Baby Food containing Cocoa Polyphenol 30 Extract A vegetable baby food containing cocoa polyphenol extract is prepared using the following formulation: 35 102 Example 19A Example 19B Ingredient (%) (%) VegetableA 73 60 LiquidB 22 35 5 Cocoa 5 5 Polyphenol Extract Ingredient (A): Potatoes, green beans, peas, carrots, and yellow squash. 10 Ingredient (B): Cooking liquid, formula, or water. Vegetables are cooked by steaming, microwave oven, or boiling (using small amounts of water which are 15 retained for thinning the pureed food). After cooking, all ingredients are mixed together, placed in a blender and pureed until a smooth consistency is reached. Theoretical results assuming no loss during processing: 20 Total Pentamer Content: 1488 pg/g Total Polyphenolic Content: 18758 pg/g EXAMPLE 20 - Pet Food with Cocoa Powder Having Enhanced Levels of Cocoa Polyphenol 25 A canned dog/cat food is prepared with cocoa powder having enhanced levels of cocoa polyphenol using the following formulation: Example 20A Example 20D 30 Ingredients (%) (%) Meat/meat by-products 68 52 Water 24 35 Cereals and grains 0 5 Colors, vitamins, 3 3 35 minerals, gums, emulsifiers, flavorings, and preservatives Cocoa Polyphenol Cocoa 5 5 Powder 40 103 The mixture of meats, animal by-products, cereal components and cocoa polyphenol cocoa powder are hermetically sealed in metal or plastic containers and processed at temperatures and pressures sufficient to 5 render them commercially sterile. The product is heat treated in hermetically sealed containers with an F. value of 3.0 or more, for canned pet food. Theoretical results assuming no loss during processing: 10 Pentamer Content: 107 pg/g Total Polyphenolic Content: 1554 pg/g EXAMPLE 21 - Dry Pet Food With Cocoa Powder Having Enhanced Levels of Cocoa Polyphenol A dry extruded dog/cat food is prepared with 15 cocoa powder having enhanced levels of cocoa polyphenols using the following formulation: Ingredient Grains, meat/meat by- 57-66 20 products, meat meals Dairy by-products 24-33 Colors, vitamins, minerals, 3 gums, emulsifiers, flavorings, and preservatives 25 Cocoa Polyphenol Cocoa Powder 5 The meal is processed in a continuous cooking extruder for approximately 20 seconds reaching 1450C for approximately 10 seconds. The wet-formed pieces of pet 30 food are dried by means of a conventional belt dryer subjected to air temperatures of 1256C for approximately 10 minutes. The product is then coated with animal fat and/or emulsified, hydrolyzed animal tissue. Theoretical results assuming no loss during 35 processing: Pentamer Content: 107 pg/g Total Polyphenolic Content: 1554 pg/g EXAMPLE 22 - Chocolate Syrup With Cocoa Polyphenol Cocoa Powder 104 A chocolate variegating and sundae topping syrup containing the cocoa polyphenol cocoa powder are prepared using the following formula: 5 Ingredients Economy Premium Formula (%) Formula (%) Water 30.74 31.56 Corn syrup 35.07 30.91 solids Sucrose 22.20 20.94 10 Cocoa 8.88 7.98 Polyphenol Cocoa Powder Hydrogenated 0 5.98 vegetable 15 fat Milk solids 2.22 1.99 non-fat CC-801* 0.72 0.49 CC-280 0.17 0.15 20 (emulsifier) 100.00 100.00 *CC-801 (Pectin, Dextrose, Sodium citrate) is added at 0.20% in the above formulas for chocolate sundae topping syrup; remainder 25 replaced with water to 100%. For each pound of CC-801, one gallon of water from the formula is heated to 180*F in a small vat. The CC-801 is stirred in and is set aside until ready to 30 homogenize the complete batch. The balance of the water is added to a steam-jacketed vat. In the following order, the sucrose, milk solids non-fat, and corn-syrup solids are incorporated. The balance of the ingredients are then added in any order. The mixture is heated to 35 185*F and held for 5 minutes. The CC-801 solution is added and mixed thoroughly. The batch is at 1000 psi (if not homogenizing, increase the stabilizer 35%). The product is pumped into sanitized containers and stored in a cooler at 40*F to allow the product to set up.
105 Theoretical results assuming no loss during processing: Pentamer Content: 171 pg/g Total Polyphenolic Content: 2486 pg/g 5 EXAMPLE 23 - Hard Can4Y Formed and deposited types of hard candy are prepared using the formulation below by the methods described in Lees & Jackson, 1st Edition, Sugar Confectionery and Chocolate Manufacture, pages 176-186 10 (1995). Hard candy Formula Sugar 42.85% High Maltose Corn Syrup 38.09% 15 Water 12.19% Buffered Lactic Acid 1.90% Flavoring 0.19% Coloring 6.0057% Cocoa Polyphenol Cocoa Powder 4.77% 20 Theoretical results assuming no loss during processing: Pentamer Content: 102 pg/g Total Polyphenolic Content: 1482 pg/g 25 EXAMPLE 24 - Rice Cake with Cocoa Polyphenol Cocoa IPowder A cocoa polyphenol cocoa powder covered rice cake was prepared using the following ingredients: 30 Puffed Rice Cake (made by a method similar to that set forth in U.S. Patent No. 4,888,180) N-Tack (corn syrup solids in 30% solution) Cocoa Polyphenol Cocoa Powder Mix A prepared rice cake was coated with a thin 35 layer of N-Tack solution. The coated rice cake was immediately placed in a bag containing the cocoa polyphenol mix and coated. The cake was then shaken to 106 remove excess cocoa polyphenol mix. The cake was given a second application of N-Tack and mix resulting in approximately 4 grams of cocoa polyphenol mix being applied to the puffed rice cake. 5 Theoretical Actual Pentamer Content 252 38 (pg/g) Total 3655 4842 Polyphenolic 10 Content (pg/g) I I EXAMPLE 25 - Fruit and Grain Pastry Bar with Cocoa Polyphenol Extract A strawberry fruit filling was made according 15 to the following formulation: Ingredient wet wt% amount (g) Xanthan gum, 1.0 5.0 extra fine 20 Hydrogenated 1.25 6.25 soybean oil Water 10.0 50.0 Glycerin USP or 7.0 35.0 food grade 25 Corn syrup solids 56.23 281.2 Maltrin M250 (78% solids with 61.9 g water) Low moisture 5.0 25.0 30 apple flake powder Natural 2.0 10.0 strawberry flavor Strawberry puree 12.0 60.0 35 concentrate Malic acid, fine 0.5 2.5 granular Red #40 0.02 0.1 strawberry color 40 Cocoa Polyphenol 5.0 25.0 Extract 100.00 500.00 107 For making the fruit filling, the gum was hydrated in cold water using a blender. The corn syrup solids, water, fruit puree, cocoa polyphenol extract and glycerin were cooked on a stove top using medium to high 5 heat to a temperature of 230"F measured with a Wahl thermocouple thermometer. The mixture was removed from the heat and allowed to cool. Hydrated gum was added to the mixture and the mixture was heated to 216 0 F. The mixture was again removed from the heat and allowed to 10 cool for at least 5 minutes. Acid, color, apple powder and melted fat were added to the mixture, and the mixture was allowed to cool for 2 additional minutes. Flavor was added to the mixture with thorough mixing. Results: 15 Pentamer Content: 349 pg/g Total Polyphenolic Content: 12,771 g/g The pastry wrapper was made according to the following formulation: Ingredient wet Vt % amount (g) 20 Blended flour 36.5 182.5 30% hard flour (54.75 g) 70% soft flour (127.75 g) 25 Brown sugar 14.6 73.0 roasted oats Wheat bran 7.3 36.5 Gum arabic 0.6 3.0 (Acacia FCC) 30 Kelco gum 0.6 3.0 (Kelite CM) Soy lecithin 0.8 4.0 Sodium 0.6 3.0 bicarbonate 35 Sodium acid 0.4 2.0 pyrophosphate Brown sugar, 6.3 31.5 granulated 108 Hydrogenated 5.2 26.0 soybean oil Water 21.22 106.1 Flour salt 1.0 5.0 5 Glycerin USP or 4.1 20.5 food grade Kelco GFS, 0.78 3.9 prehydrated 100.00 500.00 10 For making the pastry wrapper, the gum arabic, Kelite CM, sodium bicarbonate, sodium acid pyrophosphate, salt, Kelco GFS and glycerin were hydrated in water using a blender. Lecithin was stirred into melted fat. The 15 remaining dry ingredients were added to a mixing bowl. The fat blend was added to the dry ingredients using a Kitchen Aid mixer on speed 2. The gum blend was slowly added into the mixing bowl. After mixing, the dough was worked by hand into a ball. The dough was proofed for 15 20 minutes covered with a wet paper towel to decrease stickiness. A Rondo Sheeter (Sewer Rondo, Inc. STE533) was used to achieve a dough thickness of 2.5 mm. The dough was cut into 4" x 4" squares weighing 33 g. Using a pastry bag, 19.5 g of the fruit filling 25 was applied on top of each dough square. The dough was folded over to make a bar and the ends of the bar were sealed shut with crimping. Using a knife, holes were poked in the top of the bar to help heat escape and to prevent bar explosion. 30 The bars were baked for 6 1/2 minutes at 3750F. The weight of the final, baked bar was 45.5 g. Results: Pentamer Content: 105 pg/g 35 Total Polyphenolic Content: 5,851 pg/g EXAMPLE 26 - Caramel Chew with Cocoa Powder Containing Enhanced Levels of Cocoa PolvDhenol Bample A: Cocoa Polyphenol Caramel Chew 15 109 Final Caramel Cocoa/Sugar Chocolate portion Premix Chew Ingredients (67.00%) (33.00%) After Cooking (Dry wt. basis) 5 63 DE Corn 56.70 35.00 syrup Salt 0.60 0.44 Sweetened 34.20 17.70 Condensed 10 Skim Milk Partially 8.50 6.30 Hydrogenated Soy Bean Oil 6016 15 Cocoa 45.5 14.66 Polyphenol Cocoa 011797B Fondant Sugar 54.5 18.00 (Redi-Fond 20 from Domino Sugar) Water 7.90 100.00 100.00 100.00 25 The caramel portion was batched according to the above formulation and combined with agitating and steam in a Groen kettle. The mixture was heated slowly with agitation to 235"F and cooled to 200*F or lower. For making the finished chocolate chew, the 30 cocoa polyphenol cocoa powder and fondant sugar were blended. The caramel portion (67.0% of the final formula) was placed in a Hobart Mixer. While mixing, the cocoa/sugar premix (33.0% of the final formula) was slowly added. The formulation was slabbed to the desired 35 thickness (10 mm). After cooling and setting up (about 2 hours), the formulation was cut to the desired size (20 mm squares). Results: Pentamer Content (cocoa added at 140 0 F): 95 pg/g
SUB,
110 Total Polyphenolic Content (cocoa added at 140 0 F): 2195 Ag/g Sample B: Cocoa Polyphenol Caramel Chew 22 5 Final Caramel Cocoa/Su Chocolate portion gar Chew After Ingredients (67.00%) Premix Cooking (33.00%) (Dry wt. basis) 63 DE Corn Syrup 56.70 35.20 10 Salt 0.60 0.44 sweetened 34.20 17.70 Condensed Skim Milk Partially 8.50 6.29 15 Hydrogenated Soy Bean Oil 6016 Cocoa Polyphenol 66.7 21.34 Cocoa 011797B Fondant Sugar 33.3 10.95 20 (Redi-Fond from Domino Sugar) Water 8.08 1 100.00 100.00 100.00 25 The caramel portion was batched according to the above formulation and combined with agitating and steam in a Groen kettle. The mixture was heated slowly with agitation to 235*F and cooled to 200*F or lower. For making the finished chocolate chew, the 30 cocoa polyphenol cocoa powder and fondant sugar were blended. The caramel portion (67.0% of the final formula) was placed in a Hobart Mixer. While mixing, the cocoa/sugar premix (33.0% of the final formula) was slowly added. The formulation was slabbed to the desired 35 thickness (10 mm). After cooling and setting up (about 2 hours), the formulation was cut to the desired size (20 mm squares). Results: Pentamer Content (cocoa added at 140 0 F): 178 pg/g 111 Pentamer Content (cocoa added at 200 0 F): 178 pg/g Total Polyphenolic Content (cocoa added at 140*F): 4036 pg/g Total Polyphenolic Content (cocoa added at 200"F): 5 3941 pg/g EXAMPLE 27 - Bugar. Tablets with Cocoa Powder Containing Enhanced Levels of Cocoa Polyphenol Wet process tablets were made according to the following formulation: 10 Final Cocoa Tablet Wet Cocoa Tablet After Drying (Dry wt. basis) Sucrose - 6X 41.30 51.19 Cocoa 35.00 42.08 Polyphenol Cocoa Powder 15 Water 21.06 4.50 Gum Arabic 1.26 1.41 Gelatin 200 0.62 0.73 Bloom Vanilla 4X 0.76 0.09 20 100.00 100.00 The gelatin was soaked in water and the sucrose was premixed with the cocoa polyphenol cocoa powder. After the gelatin is hydrated, it was heated to 900C and 25 gum arabic was added with high shear. This solution, with flavor, was mixed into 1/4 of the sucrose/cocoa mixture, and the remaining sucrose/cocoa was slowly added while mixing (in a Hobart or Kitchen Aid Ultra Power mixer). The formulation was mixed for 10-15 minutes and 30 slabbed to the desired thickness (-5 mm). After drying and punching out in the desired shape (discs), the pieces were dried further to a final moisture of approximately 3-6%. Analytical results: 35 112 Total Sample Procyanidin Pentamera misture microgram/ microgram percent notes gram /gram Tablet #5 with 13618 689 4.4 ambient Cocoa Polyphenol dried 5 112696M Tablet #5 with 7602 215 6.2 ambient Cocoa Polyphenol dried 011797B Tablet #5 Cocoa 8186 209 4.5 dried at 10 Polyphenol 011792B 120"F for 60 hours 113 EXAMPLE 28 - GranolaBar A granola bar was made according to the following formulation: 5 BINDER 63 D.E. Corn Syrup 64.11 Partially Hydrogenated Soybean oil 7.9 (6034) Cocoa Polyphenol Cocoa Powder 10 10 Calcium Carbonate 7.4 Glycerin 7 Brown Sugar (Granulated) 1 Flour Salt 1.5 Soy Lecithin 0.3 15 Propylgallate Solution 0.04 Vanilla Extract 0.75 100% 20 For making the binder, the hydrogenated soybean oil and chocolate liquor were melted in a microwave oven at 55-64 0 C. The soy lecithin was dispersed into the melted oil, and the mixture was poured into a Cuisinart Mixer. The corn syrup and glycerin were preheated in a 25 microwave to 70 0 C to reduce the viscosity and added to the Cuisinart mixture along with oil, lecithin, and liquor. The ingredients were mixed in the Cuisinart for approximately 30 seconds. The dry blended ingredients were slowly added to the Cuisinart and mixed for 30 approximately 1-2 minutes or until well blended.
114 A fudge formulation using cocoa polyphenol cocoa powder was made according to the following recipe: FUDGE TOPPING % Powdered Sugar (6X) 27.4 5 High Fructose Corn Syrup (55%) 20.0 Partially Hydrogenated Soybean Oil 10.75 (6034) Lactose (Alpha Mono) 9.25 Powdered Lactose (Alpha Mono) 11.0 10 Cocoa Polyphenol Cocoa Powder 10.0 Glycerin 2.0 Non-Fat Dry Milk (Low-Heat) 5.0 Water 2.0 Calcium Carbonate 1.35 15 Soy Lecithin 0.5 Salt 0.25 Vanilla 0.5 100% 20 For making the fudge topping, the dry ingredients according to the above recipe were blended in a Kitchen Aid mixer on low speed for approximately 3-4 minutes or until well blended. The hydrogenated soybean oil was melted in a microwave oven at 55-64*C. The soy 25 lecithin was dispersed in the melted oil. The oil/lecithin mixture was poured into the blended dry ingredients in a Hobart Mixer running on slow speed. The speed of the mixture was gradually increased and the water, glycerin, and high fructose corn syrup was added 30 into the mix. The resulting fudge topping was mixed for 2-3 minutes or until thoroughly blended. The finished bars were made according to the following formulations: 35 115 Granola Recipe: Crisp Rice 30.2 Mini Wheat Flakes 33.7 5 Brown Sugar Oats 36.1 100% Finished Product Profile: 10 Chocolate 37 (5% Cocoa Polyphenol Cocoa Powder) Granola/Rice 21 Binder 21 15 Fudge 21 100% 20 The finished product was made according to the following: The granola was blended with the binder and slabbed onto wax paper with a rolling pin to about 15 mm 25 high. The fudge topping was slabbed onto the granola base and allowed to set for about an hour. The bars were cut to the following dimensions: Heigiht 15 mm Width 25 mm 30 Lengith 84mm Cut bars were then enrobed in Cocoa Polyphenol chocolate. Results: 35 Pentamer: 104 pg/g Total Polyohenolics: 2215 pg/g EXAMPLE 29 - Cocoa Polyphenol Milk Chocolate with Cinnamon Caramel 40 Cocoa polyphenol milk chocolate was hand tempered at 86 0 F-880F. The tempered chocolate was then used to make shells in various shaped molds. 965 grams of standard Caramel was warmed to 550C. 20 grams of 45 cocoa polyphenol cocoa powder and 15 grams of cinnamon 116 were added to the warmed caramel and mixed well. The caramel was allowed to cool and was then pastry bagged into chocolate shells. The shells were then bottomed with tempered chocolate and removed from the molds. The 5 molded piece consisted of 6 grams of cocoa polyphenol milk chocolate and 4 grams of caramel containing 2.0% cocoa polyphenol cocoa powder. Finished Product: 10 Ingredient Usage Level % Cocoa Polyphenol Milk Chocolate 60 15 Cocoa Pol'phenol Caramel 40 100% 20 Results: Pentamer: 79.8 pg/g 25 EXAMPLE 30 - Cocoa Polyphenol Milk Chocolate with Chocolate-Flavored Nougat Cocoa polyphenol milk chocolate was hand tempered at 86 0 F-88 0 F. The tempered chocolate was then 30 used to make shells in various shaped molds. The formula for chocolate-flavored nougat was used to make frappe. 5 grams of cocoa polyphenol cocoa powder was added to 104 grams of slurry which was folded into the frappe at a ratio of 92.40% frappe to 7.60% slurry. The finished 35 chocolate-flavored nougat was then slabbed onto the cooling table and cut to fit the molded shells. The shells were then bottomed with tempered cocoa polyphenol chocolate and removed from the molds. The molded piece consisted of 22.5 grams of cocoa polyphenol milk 40 chocolate and 12.5 grams of chocolate-flavored nougat.
117 Cocoa Polyphenol Nougat Piece Wt. - 35q Choc/Center = 22.5g/12.5g Ingredient Usage Level Chocolate-Flavored Nougat 35.71% 17 Cocoa Polyphenol 64.29% 5 Milk Chocolate Results: Pentamer: 80.3 pg/g 10 EXAMPLE 31 - Cocoa Polyphenol Dark Chocolate with Chogolate-Flpvored Nougqat Cocoa polyphenol milk chocolate was hand tempered at 86 0 F-8B*F. The tempered chocolate was then 15 used to make shells in various shaped molds. The formula for chocolate-flavored nougat was used to make frappe. 5 grams of cocoa polyphenol cocoa powder and 75 grams of cocoa polyphenol dark chocolate was added to 104 grams slurry which was folded into the frappe at a racial of 20 92.40% frappe to 7.60% slurry. The finished chocolate flavored nougat was then slabbed onto the cooling table and cut to fit the molded shells. The shells were then bottomed with tempered cocoa polyphenol chocolate and removed from the molds. The molded piece consisted of 25 22.5 grams of cocoa polyphenol dark chocolate and 12.5 grams of chocolate-flavored nougat. Cocoa Polyphenol Chocolate-Flavored Nougat Ingredient Usage Level # of Samples 30 Chocolate-Flavored Nougat 84.89% 20 Cocoa Polyphenol Dark Chocolate 15.0% Cocoa Polyphenol Cocoa Powder 0.11% Results: Pentamer: 43.2 pg/g - 118 Comprises/comprising and grammatical variations thereof when used in this specification are to be taken to specify the presence of stated features, integers, steps or components or groups thereof, but do not preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
Claims (17)
1. A chocolate comprising a cocoa component, wherein said chocolate contains at least 5,500 jig cocoa procyandins per grain of the chocolate and wherein the cocoa 5 component is selected from chocolate liquor, partially defatted cocoa solids, fully defatted cocoa solids, cocoa extracts and cocoa nib.
2. A chocolate comprising partially defatted cocoa solids and at least one fat, and further containing at least 15,000 pg cocoa procyanidins per gram of fat. 10
3. A chocolate comprising chocolate liquor and at least one fat, and further containing at least 10,200 gg cocoa procyanidins per gram of chocolate liquor.
4. A chocolate liquor produced from fair average quality cocoa beans having a 15 fermentation factor greater than 375, said chocolate liquor containing at least 9,000 pig cocoa procyanidins per gram of chocolate liquor.
5. A chocolate liquor produced from cocoa beans having a fennentation factor less than 375, said chocolate liquor containing at least 16,500 jig cocoa procyanidins 20 per gram of chocolate liquor.
6. A chocolate liquor according to claim 5, which contains at least 20,000 jig cocoa procyanidins per gram of chocolate liquor. 25
7. A chocolate liquor according to claim 5, which contains at least 25,000 jig cocoa procyanidins per gram of chocolate liquor.
8. A chocolate liquor according to claim 5, which contains at least 30,000 jig cocoa procyandins per gram of chocolate liquor. 30
9. A chocolate according to claim I which contains at least 6000 jig cocoa -120 procyanidins per gram of chocolate,
10. A chocolate according to claim 1 which contains at least 6,500 jg cocoa procyanidins per gram of chocolate. 5
11. A chocolate according to claim 1 which contains at least 7,000 jig cocoa procyanindins per gram of chocolate.
12. A chocolate according to claim 1 which contains at least 8,000 pig cocoa 10 procyanidins per gram of chocolate.
13. A chocolate according to claim 3 which contains at least 12,000 Rg cocoa procyanidins per gram of the chocolate liquor. 15
14. A chocolate according to claim 3 which contains at least 14, 000 pg cocoa procyanidins per gram of the chocolate liquor.
15. A chocolate according to claim 3 which contains at least 16 000 ptg cocoa procyanidins per gram of chocolate liquor. 20
16. A chocolate according to any one of claims I to 3 and 9 to 15, and substantially as hereinbefore described.
17. A chocolate liquor according to any one of claims 4 to 8 and substantially as 25 hereinbefore described. MARS, INCORPORATED WATERMARK PATENT AND TRADE MARKS ATTORNEYS 30 P7454AU02
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2007203454A AU2007203454B2 (en) | 1996-09-06 | 2007-07-25 | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/709406 | 1996-09-06 | ||
AU2002301733A AU2002301733B8 (en) | 1996-09-06 | 2002-10-23 | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses |
AU2007203454A AU2007203454B2 (en) | 1996-09-06 | 2007-07-25 | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002301733A Division AU2002301733B8 (en) | 1996-09-06 | 2002-10-23 | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2007203454A1 AU2007203454A1 (en) | 2007-08-16 |
AU2007203454B2 true AU2007203454B2 (en) | 2010-12-02 |
Family
ID=38430024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2007203454A Expired AU2007203454B2 (en) | 1996-09-06 | 2007-07-25 | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2007203454B2 (en) |
-
2007
- 2007-07-25 AU AU2007203454A patent/AU2007203454B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
AU2007203454A1 (en) | 2007-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6599553B2 (en) | Dry drink mix and chocolate flavored drink made therefrom | |
US6312753B1 (en) | Cocoa components, edible products having enriched polyphenol content, methods of making same and medical uses | |
CA2795629C (en) | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses | |
US8541045B2 (en) | Process for extracting cocoa polyphenols from cocoa beans | |
RU2476075C2 (en) | Food products with high content of cocoa polyphenols, improved taste and aroma, containing milled cocoa extracts | |
CA2615046C (en) | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses | |
AU2007203454B2 (en) | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses | |
AU2002301733B2 (en) | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses | |
AU2003236474B2 (en) | Food products having enhanced cocoa polyphenol content and processes for producing same | |
MXPA99002178A (en) | Cocoa components, edible products having enhanced polyphenol content, methods of making same and medical uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4 | Application lapsed section 142(2)(d) - no continuation fee paid for the application | ||
NA | Applications received for extensions of time, section 223 |
Free format text: AN APPLICATION TO EXTEND THE TIME FROM 08 MAR 2008 TO 08 MAY 2008 IN WHICH TO PAY A CONTINUATION FEE HAS BEEN FILED . |
|
CB | Opposition filed |
Opponent name: BARRY CALLEBAUT AG |
|
CC | Opposition dismissed |
Opponent name: BARRY CALLEBAUT AG |
|
NB | Applications allowed - extensions of time section 223(2) |
Free format text: THE TIME IN WHICH TO PAY A CONTINUATION FEE HAS BEEN EXTENDED TO 08 MAY 2008. |
|
FGA | Letters patent sealed or granted (standard patent) | ||
MK14 | Patent ceased section 143(a) (annual fees not paid) or expired |