AU2007202368B2 - Activation method using modifying agent - Google Patents

Activation method using modifying agent Download PDF

Info

Publication number
AU2007202368B2
AU2007202368B2 AU2007202368A AU2007202368A AU2007202368B2 AU 2007202368 B2 AU2007202368 B2 AU 2007202368B2 AU 2007202368 A AU2007202368 A AU 2007202368A AU 2007202368 A AU2007202368 A AU 2007202368A AU 2007202368 B2 AU2007202368 B2 AU 2007202368B2
Authority
AU
Australia
Prior art keywords
coating
solvent
agent
additive
tetra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2007202368A
Other versions
AU2007202368A1 (en
Inventor
Stuart Arthur Bateman
Douglas H. Berry
Alexander Bilyk
Mark Paul Johnson
James F. Kirchner
Seana B. Kobak
Patrick James Mcmahon
Ranya Simons
Lori Clarice Straus
Dong Yang Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commonwealth Scientific and Industrial Research Organization CSIRO
Boeing Co
Original Assignee
Commonwealth Scientific and Industrial Research Organization CSIRO
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU14782/99A external-priority patent/AU730349B2/en
Application filed by Commonwealth Scientific and Industrial Research Organization CSIRO, Boeing Co filed Critical Commonwealth Scientific and Industrial Research Organization CSIRO
Priority to AU2007202368A priority Critical patent/AU2007202368B2/en
Publication of AU2007202368A1 publication Critical patent/AU2007202368A1/en
Application granted granted Critical
Publication of AU2007202368B2 publication Critical patent/AU2007202368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

5 The present invention relates to a method of activating an organic coating to enhance adhesion of the coating to a further coating and/or to other entities comprising applying a solvent and a surface chemistry and/or surface topography modifying agent to the organic coating. The invention also relates to a coated substrate having an activated coating, wherein the adhesion of the coating to a further coating and/or other entities has been enhanced by application of a solvent and a surface chemistry and/or 15 surface topography modifying agent to the coating. The invention further relates to an activation treatment for an organic coating to enhance adhesion of the coating to a further coating and/or to other entities comprising a 20 solvent and a surface chemistry and/or surface topography modifying agent and a method for the preparation of the activation treatment.

Description

AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Standard Patent Applicants: THE BOEING COMPANY and COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION Invention Title: ACTIVATION METHOD USING MODIFYING AGENT The following statement is a full description of this invention, including the best method for performing it known to me/us: - la ACTIVATION METHOD USING MODIFYING AGENT FIELD The present invention relates to a method of activating an organic coating, a coated substrate having 5 an activated coating and an activation treatment for an organic coating. In particular, the activation method improves the adhesion of the organic coating to further coating layers and/or to other entities. 10 BACKGROUND Organic coatings are generally used to protect the surface of materials from incidental damage, abrasion, chemical attack and from environmental or in-service degradation. Organic coatings are also used to enhance 15 the aesthetics and/or optical properties of an object or component. The surface properties of many coatings dramatically change on drying, curing and/or aging to become more inert than might be predicted based on the chemistry of their 20 individual components alone. Whilst this phenomenon in part provides the coating with chemical resistance, impact strength, abrasion resistance and durability, it also complicates the process of applying additional coating layers, particularly when they are not applied within a 25 predetermined reapplication window. The same problem arises with applying other entities such as sealants, pin hole fillers and surfacers such as those used on composite substrates, decals and logos applied with pressure sensitive adhesives and the like, to such coatings. In 30 cases which require the application of additional coating layers and/or other entities, a mechanical abrasion or stripping process of the coating is generally necessary before the re-application procedure can take place. In the specific example of aircraft coatings, it is 35 well known that adhesion will not meet in-service performance requirements when fresh layers of coating are -2 applied over layers which have aged beyond the acceptable reapplication window. The acceptable window may be of the order of days under ambient conditions or potentially hours under certain conditions of high temperature or 5 extreme humidity. Once the reapplication window has been exceeded, the standard practice for applying additional coating layers on aircraft involves mechanical abrasion of the aged coating. Both chemical stripping and mechanical abrasion have 10 limitations. Mechanical abrasion is labor intensive, the reproducibility is variable, and it is ergonomically costly due to the highly repetitive and vibratory nature of the work. As such there is a pressing need for the development of a surface treatment to improve the adhesion 15 of aged or inert industrial organic coatings towards additional coating layers or other entities, for example, adhesives, sealants, fillers, stickers and the like. Coating manufacturers have developed a method of improving the procedure of coating stripping through the 20 development of barrier layers and intermediate coats which, for example, protect the primer and conversion coating of metal structures from the chemical stripping agents (US 6,217,945). Although this procedure would reduce the amount of infrastructure down time, it still 25 relies on paint removal to provide a surface which will accept a fresh coating layer with acceptable adhesion. Haack (Surface and Interface Anal, (2000), 29, p829) investigated the interaction of automotive polyurethane coatings using UV light to generate ozone. Promising 30 results in terms of improved adhesion and reduced water contact angles were produced when paint formulations incorporating TiO 2 were subjected to H 2 0 2 and UV light. However, there are obvious practical difficulties associated with this strategy, particularly in terms of 35 its commercial viability for application in areas susceptible to corrosion and for treating larger surfaces.
-3 Also the occupational health and safety issues make it less suited to commercial application. In the biological field, Park et al. (Biomaterials, (1998), 19, p851) employed the surface urethane NH group 5 to graft chemical species onto polyurethane rubber, whilst Levy et al. (Biomaterials (2001) 22, p2683) employed a strong base to remove the surface urethane NH proton to accelerate such nucleophilic grafting reactions. Both strategies are unsuitable for activating organic coatings. 10 The chemical reaction kinetics of the first strategy would be too slow to be practical, particularly since, considering the low surface energy and inertness to bonding of such coatings, the urethane NH groups may not be oriented towards the air-coating interface. The use of 15 very strong bases, as per the second strategy, may degrade existing paint layers, resulting in a mechanically weak foundation for fresh coatings to adhere to. Furthermore, the latter strategy is also unacceptable for activating large areas due to corrosion and health and safety 20 considerations. Other strategies in the biological field have employed free radical techniques to graft molecules onto the surface of biomedical polyurethane surfaces (Matuda et al, J. Biomed. Res., (2002), 59, p386; Eaton et al, 25 Biomaterials, (1996), 17, p1977). Although commercially viable, the main difficulty with this strategy lies in promoting actual grafting of the substrate. Controlled glycolysis or aminolysis as described in Polymer Engineering & Science (1978), 18, p844, and J. 30 Applied Polymer Science (1994), 51, p675) has very slow kinetics at room temperature and as such is not a practical solution. The use of reagents such as dimethyl phosphonate (Polymer Degradation and Stability, (2000), 67, p159) is also not appropriate since they are highly 35 toxic and act too slowly at room temperature. The strategies disclosed above do not adequately address the need for the development of a surface - 4 treatment to improve the adhesion of aged or inert organic coatings to additional coating layers and/or other entities. The problems of commercial viability, health and safety considerations, viable kinetics, applicability to 5 small and large surface areas still remain and need to be resolved. It is to be understood that, if any prior art publication in the biological field is referred to herein, such reference does not constitute an admission of a known 10 application to the field of industrial and architectural coatings. SUMMARY We have now found a method which allows the 15 activation of organic coatings to improve their adhesive properties towards further coating layers of the same or different type, and/or other entities without compromising coating integrity, via the use of mild reagents and conditions. The process of activation on aged coatings 20 when they have exceeded the application window where adhesion will not meet in-service performance requirements when fresh layers of coating are applied over layers is also termed reactivation. Both activation and reactivation will be used interchangeably. 25 The term "mild" in this context refers to chemicals which are not known to be excessively corrosive, acidic, basic or toxic and are applicable for use in highly regulated industrial environments. One example of such an environment is a commercial aircraft paint hangar. 30 Additionally the mild reagents used in the preferred application methods do not adversely affect the bulk aircraft coatings, or underlying coatings, such as primers or selectively strippable coatings, or underlying substrates, such as aluminium and composite. 35 Advantageously, this method no longer requires the traditional methods of mechanical abrasion or chemical stripping of an organic coating to improve its adhesive -5 properties towards additional coatings and/or other entities. In a first aspect, the present invention provides a method of activating an organic coating to enhance adhesion of the coating to a further coating and/or to other entities selected from adhesives, sealants, pin hole fillers and pressure sensitive decals or logos, the 5 method comprising applying an activation treatment to the coating wherein the activation treatment consists of a solvent and a surface chemistry and/or surface topography modifying agent which facilitates surface reduction, surface exchange or transesterification, or light induced surface modification, and optionally an additive; wherein the agent which facilitates surface reduction is a reductant; the agent which facilitates surface exchange or 10 transesterification is a metal alkoxide or a chelate thereof; and the agent which facilitates light induced surface modification is a free radical initiator or a combination of a free radical initiator with a tertiary amine and/or a mono or multi-functional unsaturated species. In another aspect, the present invention provides a coated substrate having an activated coating, wherein the adhesion of the coating to a further coating and/or other 15 entities selected from adhesives, sealants, pin hole fillers and pressure sensitive decals or logos has been enhanced by coating method as described above. The solvent and the agent may be applied either simultaneously, sequentially or separately. Advantageously, the solvent and the agent are applied to the organic coating simultaneously in the form of an activation treatment. 20 The agent may act independently from the solvent or alternatively the combination of the solvent and the agent may be necessary to affect a change in coating surface chemistry and/or topography. In a further aspect, the present invention provides an activation treatment for an organic coating to enhance adhesion of the coating to a further coating and/or to other 25 entities selected from adhesives, sealants, pin hole fillers and pressure sensitive decals or logos, wherein the activation treatment consists of a solvent and a surface chemistry and/or surface topography modifying agent which facilitates surface reduction, surface exchange, or light induced surface modification, and optionally an additive. 2918221_1 (GHMaters) P63615.AU -6 The invention also provides a method for the preparation of the activation treatment described above comprising the step of mixing the solvent with the surface chemistry and/or surface topography modifying agent which facilitates surface reduction, surface exchange, or 5 light induced surface modification, and optionally an additive. DETAILED DESCRIPTION In this specification, except where the context requires otherwise due to express language or necessary implication, the word "comprise" or variations such as "comprises" or 10 "comprising" is used in an inclusive sense, i.e. to specify the presence of the stated features but not to preclude the presence or addition of further features in various embodiments of the invention. As used in the specification the singular forms "a" "an" and "the" include plural references unless the context clearly dictates otherwise. Thus, for example, reference to "a 15 solvent" includes mixtures of solvents, reference to "an agent" includes mixtures of two or more such agents, and the like. The method of the present invention involves activating an organic coating so as to enhance the adhesive properties of at least the surface of the coating towards additional coating layers and/or other entities, for example, adhesives, sealants, pin hole fillers, pressure 20 sensitive decal or logo adhesives and the like. The term 'activating' is used in this context to mean the 2918221_1 (GhMatters) P63615.AU -7 improvement of the adhesive properties of the organic coating relative to the adhesive properties of that coating, prior to application of the solvent and the agent. 5 The word "coating" is used herein its broadest sense and describes decorative topcoats; undercoats; intermediate coatings; primers; sealers; lacquers; coatings which are pigmented or clear; coatings designed for specific purposes, such as, corrosion prevention, 10 temperature resistance, or camouflage; coatings which are high gloss, matte, textured, or smooth in finish; or coatings containing specialty additives, such as metal flakes. In general, organic coatings which are cured, dried 15 or aged beyond a certain time period develop resistance to forming strong adhesive linkages towards other entities. Their surface properties become more inert than might be predicted, based on the chemistry of their individual components alone. Without wishing to be limited by theory, 20 it is believed that this phenomena may result from a reduction in coating surface energy and amount of reactive surface functional groups in conjunction with a higher cross-link density as a function of cure time/aging which makes chemical interaction and/or the formation of strong 25 adhesive linkages with other entities difficult. The organic coatings which may be activated include, but are not limited to, fully or partially cross-linked organic coatings. Examples of organic coatings include, polyurethane, epoxy, polyester, polycarbonate and/or 30 acrylic coatings, more preferably polyurethane and epoxy coatings. Due to their superior mechanical properties and resistance to abrasion, chemical attack, and environmental degradation, such organic coatings are widely used to protect infrastructure in the aerospace, marine, military, 35 automotive, and construction industries. Many of these coatings show a marked reduction in adhesion to other entities, such as additional coating layers, adhesives, -8 sealants, pressure sensitive decals or logos and the like, with increased time of curing and/or aging. The activation method involves applying the solvent and the agent to a surface of the organic coating. The 5 surface treatment is not a conventional coating such as a primer coating or tie-coat, but rather a chemical method of modifying the surface of the existing coating so that it is more receptive to forming adhesive interactions with further coatings and/or other entities. 10 Without wishing to be limited by theory it is believed that the interaction of the agent and/or solvent combination with the coating modifies the coating surface chemistry and/or surface topography to enable it to be more receptive towards other entities including but not 15 limited to additional coating layers. Such agents and/or solvents are chosen such that the bulk integrity of the coating and underlying coating and substrate structures are maintained. Suitable agents include those which facilitate 20 chemical and/or topographical modification of the coating surface such as but not limited to agents which facilitate surface reduction, surface hydrolysis, surface oxidation, surface exchange, light induced surface modification and/or add chemical functionality to the surface of the 25 coating. (a) Examples of agents capable of affecting surface reduction include: (i) Reductants such as sodium borohydride, potassium borohydride, lithium borohydride, zinc borohydride, 30 calcium borohydride and alkoxy, acetoxy and/or amino derivatives thereof such as sodium methoxy borohydride or lithium dimethylaminoborohydride; sodium cyanborohydride, borane and borane complexes; aluminium hydrides such as lithium aluminium hydride and diisobutyl aluminium 35 hydride; calcium hydride; sodium hydride; Red Al (sodium bis(2-methoxyethoxy)aluminiumhydride); selectrides such as K-selectride (potassium tri-sec-butylborohydride); -9 sodium dihydro-bis-(2-methoxy) aluminate; sodium borohydride mixed with aluminium trichloride; lithium triethylborohydride; and lithium tri-tert-butoxy aluminium hydride. 5 (b) Examples of agents capable of catalysing surface hydrolysis include: (i) Acids such as organic acids, for example, formic acid, acetic acid, benzoic acid, propanoic acid, malonic acid, oxalic acid and kemp's triacid; and inorganic acids, 10 for example, phosphoric acid. (c) Examples of agents capable of affecting surface oxidation include: (i) Oxidants such as trichloroisocyanuric acid, sodium hypochlorite, hydrogen peroxide, potassium 15 permanganate, potassium chromate, periodic acid and lead tetra acetate. (d) Examples of agents capable of affecting surface exchange or transesterification include: (i) metal alkoxides or chelates thereof, such as 20 those outlined in "Alkoxides and alkylalkoxides of metals and metalloids" Mehrotra, R.C., Inorganic Chemical Actia, Reviews, (1967) p99, including titanium or zirconium alkoxides or chelates thereof, for example those marketed by companies such as DuPont or Gelest, i.e.tetra 25 isopropyltitanate, tetra-n-propyl titanate, tetra-n butyltitanate, tetra-2-ethylhexyltitanate, tetraethyltitanate, triethanolamine titanate chelate, tetra-n-propylzirconate, tetra-n-butylzirconate and triethanolamine zirconate chelate. 30 (e) Examples of agents capable of affecting light induced surface modification include: (i) Free radical initiators such as initiators which are activated by the presence of light, preferably visible light induced free radical initiators or combinations of 35 free radical initiators with tertiary amines and/or mono or multi-functional unsaturated species.
- 10 Suitable light activated initiators include but are not limited to camphorquinone and derivatives thereof; benzophenone and derivatives thereof, such as, diethylaminobenzophenone; and phenylphosphineoxide 5 derivatives, such as, Irgacure (CIBA). Tertiary amine agents include species such as N,N dimethyl toluidine, N,N-dimethylamino ethylmethacrylate, methyl imidazole, NNN'N'tetramethyl-1,4-butane diamine and NNN'N'tetramethylphenylenediamine. 10 The multi-functional unsaturated species may be selected from acrylates, for example, hydroxyl ethyl acrylate; methacrylates, for example, polyethyleneglycol monomethacrylate, hydroxyl ethyl methacrylate, glycidyl methacrylate, N,N-dimethylamino ethylmethacrylate, 15 ethyleneglycol dimethacrylate and butane diol dimethacrylate; and acrylamides, for example, hydroxyethyl acrylamide and bis acrylamide. It will be appreciated that the agents may also be prepared in-situ from their constituent components. For 20 example, LiBH 4 may be prepared in-situ from NaBH 4 and LiCl and sodium methoxyborohydride from methanol and NaBH 4 . The agent(s) are generally present in an amount more than about 0.001%, preferably more than about 0.01%, and most preferably about 0.01% to about 20% based on the 25 total weight of the activation treatment, or the combination of solvent(s), agent(s) and any further optional additive(s). Preferably the solvent and/or agent only interact with the surface of the organic coating so that the 30 integrity of the coating is not compromised. The solvent may be a single solvent or a combination of two or more solvents. Preferably the solvent is an organic solvent. Suitable organic solvents or solvent combinations depend on the surface modifying agent 35 employed (e.g. (a) to (e) above) and include but are not limited to: - 11 (a) ester based solvents such as ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate, tertiary butyl acetate and glycol ether acetates; (b) ketones such as methyl ethyl ketone, methyl 5 propyl ketone, methyl amyl ketone, methyl isoamyl ketone, methyl isobutyl ketone and acetone; (c) alcohols such as aromatic alcohols, for example, benzyl alcohol; aliphatic alcohols, for example, tertiary butanol, n-butanol, secondary butanol, isopropanol, n 10 propanol, ethanol, methanol and cyclohexanol; and glycol ethers, for example, those marketed by Dow under the trade name Dowanol such as, ethylene glycol, polyethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, propylene glycol, dipropylene 15 glycol, tripropylene glycol and polypropylene glycol and their monoethers such as mono-C 1 6 alkyl ethers including but not limited to those marketed by Dow under the trade name Downanol E-series and P-series glycol ethers. (d) ethers such as glycol diethers, for example, the 20 di-C 1 6 alkyl ethers of glycols such as diethers of ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol polyethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol and polypropylene glycol including but not limited to 25 diethylene glycol dimethylether, dipropylene glycol dimethyl ether or diethylene glycol methyl butyl ether such as those marketed by Dow under the trade name Downanol E-series and P-series glycolethers; and cyclic ethers such as tetrahydrofuran; 30 (e) amides such as N-methyl pyrrolidinone; (f) aromatics such as toluene and xylene; (g) halogenated solvents such as dichloromethane and tetrachloroethylene; and (h) water 35 In view of the toxicity and negative environmental impact of halogenated solvents (g), it will be understood - 12 that they should be used within the constraints of environmental, health and safety regulations. Preferred solvents are ester based solvents such as ethyl acetate, ethoxyethyl acetate, isopropyl acetate 5 and/or tertiary butyl acetate; ketone solvents such as methyl propyl ketone, methyl amyl ketone, methyl isoamyl ketone and/or methyl ethyl ketone; alcohols such as ethanol, methanol, ethoxyethanol, n-propanol, isopropanol, butanol, tertiary butanol and secondary butanol; ether 10 solvents such as C 1 6 alkyl ethers or combinations thereof (i.e. mixed ethers) of ethylene glycols and propylene glycols including but not limited to glyme, diglyme, triglyme, tetraglyme and dipropylene glycol dimethyl ether and cyclic ethers, for example, tetrahydrofuran; amide 15 solvents such as N-methyl pyrrolidinone; and water. Preferred solvent combinations include glycol ether acetate combinations such as dipropylene glycol dimethyl ether : tertiary butyl acetate; ether: alcohol combinations such as diproplyene glycol dimethyl ether: 20 isopropanol, n-propanol, methanol, isobutanol, secondary butanol, tertiary butanol, ethoxy ethanol and/or ethylhexanol; ethylene glycol monomethyl ether: ethanol, methanol, ethoxyethanol and/or isopropanol; glycols and monoether combinations such as dipropylenegylcol 25 monomethylether, dipropylenegylcol-monobutylether, and/or dipropylenegylcol; ether combinations such as tetrahydrofuran: triglyme and tetrahydrofuran: dipropylene glycol dimethylether; ketones and acetate combinations such as methylethyl ketone: ethoxyethyl acetate and methyl 30 amyl ketone: ethoxyethyl acetate; N-methyl pyrrolidinone: ethyl acetate; ethyl acetate: benzyl alcohol; dipropylene glycol dimethyl ether: polyethylene; and methyl propyl ketone: methyl ethyl ketone. Typical solvent combinations include high and low boiling point solvent combinations. 35 The solvent(s) are generally present in an amount of less than about 99.999%, preferably greater than about 70%, most preferably in an amount of about 80% to about - 13 99.99W based on the total weight of the activation treatment or the combination of solvent(s), agent(s) and any further optional additive(s). One or more additives and/or inerts known in the art 5 of coatings may also be used in the method or activation treatment of the present invention. Examples include: (a) rheology modifiers such as hydroxypropyl methyl cellulose (e.g. Methocell 311, Dow), modified urea (e.g. Byk 411, 410) and polyhydroxycarboxylic acid amides (e.g. 10 Byk 405); (b) film formers such as esters of dicarboxylic acid (e.g. Lusolvan FBH, BASF) and glycol ethers (e.g. Dowanol, Dow); (c) wetting agents such as fluorochemical surfactants 15 (e.g. 3M Fluorad) and polyether modified poly-dimethyl siloxane (e.g. Byk 307, 333); (d) surfactants such as fatty acid derivatives (e.g. Bermadol SPS 2543, Akzo) and quaternary ammonium salts; (e) dispersants such as non-ionic surfactants based 20 on primary alcohols (e.g. Merpol 4481, Dupont) and alkylphenol-formaldehyde-bisulfide condensates (e.g. Clariants 1494); (f) anti foaming agents; (g) anti corrosion reagents such as phosphate esters 25 (e.g. ADD APT, Anticor C6), alkylammonium salt of (2 benzothiazolythio) succinic acid (e.g. Irgacor 153 CIBA) and triazine dithiols; (h) stabilizers such as benzimidazole derivatives (e.g. Bayer, Preventol BCM, biocidal film protection); 30 (i) leveling agents such as fluorocarbon-modified polymers (e.g. EFKA 3777); (j) pigments or dyes such as fluorescents (Royale Pigment and chemicals); (k) organic and inorganic dyes such as fluoroscein; 35 and - 14 (1) Lewis acids such as lithium chloride, zinc chloride, strontium chloride, calcium chloride and aluminium chloride. The additive(s) are usually present in an amount of 5 less than about 10% based on the total weight of the activation treatment or the combination of solvent(s), agent(s) and additive(s). Specific activation methods forming embodiments of the present invention (which may optionally be used in 10 combination) are as follows: 1. Surface reduction This method involves using a solvent and an agent such as a reductant, for example, lithium borohydride to cause surface reduction or break down of the organic 15 coating surface. While not wishing to be bound by any theory, it is believed that this method provides reactive entities or a suitable morphology to improve inter-coat adhesion with further coating layers and/or other entities. Suitable solvent or solvent combinations for 20 use in this method are, for example, ether or alcohol based solvents and their combinations such as dipropylene glycol dimethylether and isopropanol. 2. Surface hydrolysis This method involves using a solvent and an agent 25 such as a carboxylic acid, for example, acetic acid to cause surface hydrolysis or break down of the organic coating. While not wishing to be bound by any theory, it is believed that this method provides reactive entities or a suitable morphology to improve inter-coat adhesion with 30 further coating layers and/or other entities. Suitable solvent or solvent combinations for use in this method are, for example, ester or amide based solvents such as ethyl acetate or N-methyl pyrrolidinone. 3. Surface oxidation 35 This method involves using a solvent and an agent such as an oxidant, for example, trichloroisocyanuric acid to cause surface oxidation or break down of the organic - 15 coating. While not wishing to be bound by any theory, it is believed that this method provides reactive entities or a suitable morphology to improve inter-coat adhesion with further coating layers and/or other entities. Suitable 5 solvent or solvent combinations for use in this method are, for example, ester or amide based solvents such as ethyl acetate or N-methyl pyrrolidinone. 4. Surface Exchange This method involves exposure of the coating surface 10 with a reagent capable of interacting (via transesterification or otherwise) with suitable chemical functionality such as ester and/or urethane moities or otherwise to modify its chemistry or topography such that it improves the intercoat adhesion with subsequent coating 15 layers. Suitable solvent or solvent combinations for use in this method are, for example, ether or alcohol based solvents and their combinations such as dipropylene gylcol dimethylether and isopropanol or dipropylene glycol dimethylether and n-propanol. 20 5. Light induced photo-grafting This method involves applying an agent such as a visible light activated free radical initiator, for example, camphorquinone and an unsaturated species, for example, acrylate or methacrylate to the surface of the 25 organic coating in a solvent. The influence of visible light causes free radical reactions to occur which modify the surface of the coating to improve the inter-coat adhesion of the further coating and/or other entities. Suitable solvents for use in this method include ketone or 30 amide based solvents such as methyl amyl ketone and N methyl pyrrolidinone. The substrate for the above methods having an activated coating may be of any type including metals such as aluminum; composites such as carbon fibre reinforced 35 epoxy or glass reinforced epoxy; plastics such as polyimide; elastomers such as polysulfide elastomers; or materials containing glass, wood or fabric. There may - 16 also be various "sub" coating layers beneath the coating requiring reactivation such as other decorative coating layers, primers, intermediate layers, conversion or anticorrosion coating layers and the like. 5 Although polyurethane and epoxy based coatings, particularly polyurethane based coatings are typical, it will be understood that other organic coatings may be activated by the method of the invention. When the solvent and agent are combined and applied 10 in the form of an activation treatment this may take different physical forms such as solution, suspension, mixture, aerosol, emulsion, paste or combination thereof. Treatments which take the form of a solution or emulsion are preferred. 15 The activation treatment may be prepared by mixing the components together with any mixing equipment known to those skilled in the art such as but not limited to stirrers, shakers, high speed mixers, internal mixers, inline mixers such as static mixers, extruders, mills, 20 ultra-sound and gas dispersers. When the activation treatment is in the form of a solution, the solution may be prepared as a concentrate and diluted before use or prepared ready for use. The activation treatment or the application of the 25 individual components thereof may be applied via any method known to those skilled in the art such as but not limited to spray, brush, dip, knife, blade, hose, roller, wipe, curtain, flood, flow, mist, pipette or combinations thereof. Application by spray is typical. 30 The method of activation may be conducted at ambient temperatures or alternatively at higher temperatures if desirable. The activation treatment or individual components thereof may be applied to small or large areas, to sections of larger parts, components or full 35 infrastructure such as infrastructure associated with the aerospace (e.g. aircraft), automotive (e.g. vehicles), marine (e.g. ships), transportation (e.g. trains), - 17 military (e.g. helicopter, missile) or construction industries (e.g. buildings, factories, floors). The surface may have simple or complex geometry or may be at any orientation. Treatment may be conducted once or 5 multiple times prior to interaction with the separate entity. The exposure time of the activation treatment on the coating is more limited by the throughput and applications requirements. As such the exposure time may be short for example one minute or extended for example 24 10 hours with no detriment to the integrity of the organic coating or materials that may be found on the organic coating such as sealants, and underlying coating structures and substrates. The organic coating may remain activated in a non 15 contaminated environment for extended periods of time. In some circumstances, the activation treatment can remove contaminants from the surface in addition to activating the coating. It may also be preferable to remove excess agent 20 and/or treatment solution from the surface. This process may be conveniently carried out by techniques such as solvent or water rinsing; dry, water or solvent wiping; air or gas knife; vacuum application; removal by squeegee; and/or natural or forced convection evaporation. 25 Optionally the water or solvent used to remove excess agent and/or treatment solution from the surface of the coating undergoing reactivation can contain additives for example to enhance the removal process, modify the drying time, or reduce corrosion. Such additives include 30 but not limited to ionic and non-ionic surfactants, detergents, anticorrosion additives and wetting agents such as but not limited to those described above. The additives may also include cleaning agents commonly used to clean aircraft such as but not limited to those 35 marketed under the trade names Isoprep, Turco, CeeBee, Ridoline, Formula and Daraclean by companies such as - 18 Brulin, Elf Atochem North America, MacDermid, W.R. Grace, McGean-Rohco and Henkel. After the coating surface is activated, separate entities such as additional coating layers or coating 5 details, adhesives sealants, pressure sensitive decals or logos, and the like may be applied either immediately or at a later time, providing the surface remains predominantly uncontaminated during storage or that the contamination can be conveniently removed. The activation 10 solution may need to be reapplied in some cases. Any suitable method known to those skilled in the art may be used to assess whether the adhesive linkage between the organic coating and further coatings and/or other entities is fit for purpose. Such tests include but are 15 not limited to ASTM, ISO, and FAA standards, in-house test methods to simulate in-service performance, in-service performance itself, and durability testing either actual or accelerated. For the case of aerospace coatings, test methods based on water impact, such as whirling arm and 20 the Single Impact Jet Apparatus (SIJA) (MIJA Limited, Cambridge, UK), have been found to be particularly useful for assessing inter-coat adhesion. In these cases, the amount of overcoat removal is related to the level of inter-coat adhesion. 25 For aerospace applications the activation method of the present invention offers the advantages of improved flow time for the process of reactivation, greater reproducibility and consistency over larger areas and between operators, and improved ergonomics of the process 30 leading to reduced vibration or repetitive motion based injuries for completing the process of reactivation which added together provide a net cost saving. DETAILED DESRIPTION OF THE ABBREVIATIONS 35 In the Examples, reference will be made to the following abbreviations in which: - 19 AFM Atomic Force Microscopy APP Applications BAC Boeing Approved Color 5 BMS Boeing Material Specification C Celsius Cl Class [ ] Concentration DHS Desothane HS 10 F Fahrenheit F Fail FTIR Fourier Transform Infrared h Hour HH high humidity 15 HSS High strength Steel IC Intermediate Coating LH Low humidity IPA Isopropanol LiBH 4 Lithium borohydride 20 MAK Methyl amyl ketone MEK Methyl ethyl ketone MPK Methyl propyl ketone Mn Number average molecular weight Mw Weight average molecular weight 25 MW Molecular weight NBA n-butanol NPA n-propanol NPZ tetra-n-propylzirconate NBT tetra-n-butyl titanate 30 NPT tetra-n-propyltitanate OH&S Occupational Health and Safety P Pass PACCS Pre-Applied Composite Coating System Proglyde DMM (abbreviated, proglyde) dipropylene glycol 35 dimethyl ether RH Relative Humidity SEM Scanning Electron Microscopy SIJA Single Impact Jet Apparatus SOLO Spray On - Leave On 40 SOWO Spray On - Wipe Off SOHO Spray On - Hose off SS Stainless Steel tBAC t-butyl acetate TEAZ triethanolamine zirconate 45 THF Tetra hydrofuran TPT tetra-isopropyltitanate WARE Whirling Arm Rain Erosion Wt% weight percentage - 20 XPS X-Ray Photoelectron Spectroscopy DETAILED DESCRIPTION OF THE DRAWINGS In the Examples, reference will be made to the 5 accompanying drawings in which: Figure 1 is photographs showing the impact on different metal alkoxide modifying agents and concentration on inter-coat adhesion. (Base coat: DHS BAC70846, C2. Base 10 cure condition: 16h, 120F, -8%RH. Over-coat: BAC50103, C. Over-coat cure: 4 days, 120 F, 10% RH.); Figure 2 is photographs showing SIJA inter-coat adhesion. (Base coat: DHS BAC70846, C2. Base cure condition: 16h, 15 120F, -8%RH. Over-coat: BAC50103, C. Over-coat cure: 4 days 120F, 10%RH.); Figure 3 is photographs showing the impact of modifying agent dwell time on over-coat adhesion performance. 20 (Base coat: DHS BAC70846, C2. Base cure condition: 16h 120F, ~8%RH. Over-coat: BAC50103, C. Over-coat cure: 4 days 120F, 10%RH.); Figure 4 is photographs showing the preliminary stencil 25 interaction results and corresponding SIJA adhesion. (Base coat: DHS BAC70846, C2. Base cure condition: 16h, 120F, ~.8%RH. Modifying agent dwell time before overcoat ?h. Over-coat: BAC50103, C. Over-coat cure: 4 days, 120F, 10%RH.); 30 Figure 5 is photographs showing the preliminary stencil interaction results and corresponding SIJA adhesion. (Base coat: DHS BAC70846, C2. Base cure condition: 16h. 120F, -8%RH. Modifying agent dwell time before overcoat 35 ?h. Over-coat: BAC50103, C. Over-coat cure: 4 days, 120F, 10%RH); - 21 Figure 6 is photographs showing the preliminary water soak data: 3x applications each of modifying agent system in IPA. (Base coat: DHS BAC70846, C2. Base cure condition: 16h. 120F, -8%RH. Over-coat: BAC50103, C. Over-coat cure: 5 4 days, 120F, 10%RH.); Figure 7 is photographs showing: a) SOLO treatment solution application on stencil letter and premask diamond quality (Base coat: DHS BAC70846, C2. 10 Base cure condition: 16h 120F, -8%RH. Over-coat: 2 mil DHS BAC50103, C2. Over-coat cure before removal: 16hr, 120F.); b) Effect of solvent combination on stencil letter clarity employing, base coat (DHS BAC70846, C2 with cure condition: 16h, 120F, -8%RH), modifying agent(5wt% NPZ 15 SOLO with dwell time lh), and over-coat(l mil DHS BAC50103, C with cure condition before removal: 16 hr, ambient); c) Image quality employing no modification agent or 5WT% NPZ employing a 20:80 NPA:Proglyde combination.(Base coat: 20 DHS BAC70846,C. Base cure condition: 3 Cycles of 4hr, 120F, 9%RH & 8hr, 75F 36% RH. Stencil coat: DHS BAC701 Black, C2.); Figure 8 is photographs showing scribe adhesion. (Base 25 coat: DHS BAC70846, C2. Cure condition: 16h, 120F, 8%RH.); Figure 9 is photographs showing stencil pull & scribe adhesion base coat. (DHS BAC70846, C2. Cure conditions: 16h, 120F, 8%RH. Over-coat: DHS BAC50103, C2, 1mil. Over 30 coat cure: ambient.); Stencil Pull Time (min) Scribe Test Time (h) 5 1 30 2 60 3 90 4 - 22 Figure 10 is photographs showing SIJA inter-coat adhesion (DHS CA8000 paint); cure conditions as indicated. 5 Figure 11 is photographs showing corresponding WARE results to Figure 12; cure conditions as indicated. Figure 12 is photographs showing SIJA inter-coat adhesion (DHS CA8800 paint); cure conditions as indicated. 10 Figure 13 is photographs showing SIJA inter-coat adhesion (Eclipse paint); cure conditions as indicated. Figure 14 is photographs showing SIJA inter-coat adhesion 15 (DHS CA8000 paint); cure conditions as indicated. Figure 15 is photographs showing Whirling Arm Rain Erosion data: Modification agent (alkoxide): Swt% NPZ in 80%IPA: 20% 20 proglyde;. DHS CA8800: Basecoat - BAC70846, CTR Thinner, Overcoat - BAC70281, CTR Thinner. DHS CA8000: 25 Basecoat - BAC70846, C Thinner, Overcoat - BAC707, C Thinner. Eclipse: Basecoat - BAC70846, TR109 Thinner, Overcoat - BAC707, TR109 Thinner. 30 Base coat cure conditions as indicated. Overcoat cure conditions: 4 days at 120F; Figure 16 is photographs showing WARE data using DHS CA8800 paint. 35 a)Basecoat - BAC707 Gray w/ varied thinners, Cure conditions: 3 Cycle Cure - 4h, 120F, 18%RH + 8h, 75F 70%RH. Overcoat - BAC70846 White w/ CTR thinner, Cure conditions: 4 days, 120F.
- 23 b) Basecoat - BAC707 Gray w/ varied thinners, Cure conditions: 3 Cycle Cure - 4h, 120F, 18%-RH + 8 h, 75F, 70%-RH. Overcoat - BAC51265 Blue w/ CTR thinner, Cure conditions: 5 4 days, 120F; Figure 17 is photographs showing WARE data. a) Basecoat - DHS CA8800 BAC70846 White w/ CTR thinner, Cure Conditions: 3 Cycles of 4h, 120F, 18%-RH + 8h, 75F, 10 70%-RH. Modification agents (alkoxides) 5Z-60i: 5wt%- NPZ in 60wt% IPA and 40wt% proglyde, 5Z-60n: 5wt% NPZ in 60wt% NPA and 40wt% proglyde. Overcoat - DHS CA8800 BAC70281 Gray w/ CTR thinner, Cure 15 conditions: 4 days, 120F. b) Basecoat - DHS CA8000 BAC70846 White w/ C thinner, Cure conditions: 3 Cycles of 4h, 120F, 3%RH + 8h, 75F, 12%-RH. Modification agents (alkoxides) 5Z-60i: Swt% NPZ in 60wt% IPA and 40wt% proglyde, 20 5Z-60n: 5wt% NPZ in 60wt% NPA and 40wt% proglyde. Overcoat - DHS CA8000 BAC707 Gray w/ C thinner, Cure conditions: 4 days, 120F; Figure 18 is photographs showing WARE data. 25 a) Basecoat - Eclipse BAC70846 White w/ TR-109 thinner, Cure conditions: 3 Cycles of 4h, 120F, 18%-RH + 8h, 75F, 70%-RH. Modification agents (alkoxides) 5Z-60i: 5wt% NPZ in 60wt% IPA and 40wt% proglyde, 30 5Z-60n: 5wt% NPZ in 60wt% NPA and 40wt%- proglyde. Overcoat - Eclipse BAC707 Gray w/ TR-109 thinner, Cure conditions: 4 days, 120F; b) Basecoat - Eclipse BAC70846 White w/ TR-109 Thinner, Cure Conditions: LH or HH (See below). 35 Modification agents (alkoxides) 5Z-60i: Swt% NPZ in 60wt% IPA and 40wt% proglyde, 5Z-60n: 5wt% NPZ in 60wt% NPA and 40wt% proglyde.
- 24 Overcoat - Eclipse BAC707 Gray w/ TR-109 thinner, Cure conditions: 4 days, 120F. Basecoat Cure LH: 4h, 120F, 3%RH + 8h, 75F, 12% RH for 3 cycles, 5 Basecoat Cure HH: 4h, 120F, 18%RH + 8h, 75F 70%RH for 2 or 3 cycles; c) Basecoat - Eclipse BAC70846 White w/ TR-109 Thinner, Basecoat Cure - LH or HH (See below). Modification agents (alkoxides) 10 5Z-60i: 5wt% NPZ in 60wt% IPA and 40wt% proglyde, 5Z-60n: 5wt% NPZ in 60wt% NPA and 40wt% proglyde. Overcoat - Eclipse BAC707 Gray w/ TR-109 thinner, Cure conditions: 4 days, 120F. First TC Cure LH: 4h, 120F, 3%RH + 8h, 75F, 12%RH for 3 15 cycles, First TC Cure HH: 4h, 120F, 18%RH + 8h, 75F, 70%RH for 2 or 3 cycles; Figure 19 20 Basecoat - DHS CA8000 BAC70846 White w/ C thinner, Cure conditions as indicated. Modification agents (alkoxides) with 30 minute dwell: 5Z-60n: 5wt% NPZ in 60wt% NPA and 40wt% proglyde, 7Z-60n: 7wt% NPZ in 60wt% NPA and 40wt% proglyde, 25 9Z-60n: 9wt% NPZ in 60wt% NPA and 40wt% proglyde. Overcoat cure conditions: 4days, 120F. Overcoats: DHS CA8000 - BAC5004 Blue w/ C thinner, Eclipse - BAC5004 Blue w/ TR-109 thinner, 30 Sky-Hullo FLV-II - 900BL004 Blue w/ IS-900, Type III thinner; Figure 20 is photographs showing the shelf life of metal alkoxide reactivation treatment solutions on adhesion. 35 - 25 Figure 21 is graphs showing soak and recovery experiments using BMS5-142 (polysulfide) sealant: a) Weight change, b) Volume change and c) Hardness change; 5 Figure 22 is graphs showing soak and recovery experiments using BMSl-71, CL1 (EPR) elastomer: a) Weight change, b) Volume change, and c) Hardness change; Figure 23 is graphs showing soak and recovery experiments 10 using BMS1-71, CL2 (Silicone) elastomer: a) Weight change, b) Volume change, and c) Hardness change; Figure 24 is graphs showing soak and recovery experiments using BMS1-57 (Silicone) elastomer: a) Weight change, b) 15 Volume change and c) Hardness change; Figure 25 is photographs showing images of elastomers and sealants on recovery; 20 Figure 26 is a graph and photographs showing immersion results for titanium; Figure 27 is a graph and photographs showing immersion results for 2024T3 bare aluminium; 25 Figure 28 is a graph and photographs showing immersion results for 2024T3 clad aluminium; Figure 29 is a graph and photographs showing immersion 30 results for high strength steel; Figure 30 is a graph and photographs showing immersion results for stainless steel; 35 Figure 31 is photographs showing sandwich corrosion results a) 1x magnification and b) 10x magnification; - 26 Figure 32 is a graph and photograph showing immersion results for BMS8-79 composite material; Figure 33 is a graph and photograph showing immersion 5 results for BMS8-256 composite material; Figure 34 is a graph and photograph showing immersion results for BMS8-256 with Metlbond; 10 Figure 35 is a graph and photograph showing immersion results for BMS8-276 with SM905 composite material; Figure 36 is a drawing and photographs showing tapeline experiments: Untreated and treated with various 15 modification agent formulations. Figure 37 is a graph showing impact on colour shift for DHS BAC70846 treated with various modification agents & not over-coated following accelerated exposure according 20 to SAE J1960 relative to specimens left untreated and Figure 38 is a drawing showing the lab colour shift and system used to derive delta E. 25 Figure 39 is photographs showing WARE data. Basecoat - DHS CA8800 BAC900 clear with F thinner, Cure Conditions: 3 heat cycles (4h, 120F, 18% RH and 8h, 7SF, 70%RH). Modification agent - 5% NPZ, 80:20 NPA: Proglyde 30 Post treatment of Modification agent - none or tack rag Overcoat - DHS CA8800, white or blue cured for 2 weeks at ambient -72F, 35% RH; Figure 40 is pencil hardness data for specimens left 35 untreated prior to overcoat or treated with the modification agent prior to over-coating both prior to and following 30 day immersion into hydraulic fluid.
- 27 Figure 41 is Gardner Impact adhesion test results employing no modification agent or 5WT% NPZ alkoxide in isopropanol. (Base coat: DHS CA8800 BAC3613 Yellow, CTR 5 thinner. Base cure condition: 3 Cycles of 4hr, 120F, 12%RH & 8hr, 75F 36% RH. Over-coat: DHS CA8800 various colors, CTR thinner. Overcoat Cure condition: 2 weeks ambient); EXAMPLES 10 The invention will now be described with reference to the following non-limiting examples. Although the examples concentrate on coatings derived from polyurethane chemistries it will be understood that the same activation methodology could be applied to coatings such as but not 15 limited to those based on epoxy, acrylic, polycarbonate, or polyester coatings through the appropriate choice of solvent(s), agent(s) and optional additives under appropriate activation conditions. The specific "substrate" the polyurethane topcoat is 20 applied to is not relevant. Hence the substrate can be metal (eg. aluminium), plastic (eg. polyimide), composite (eg. carbon fibre reinforced epoxy or glass reinforced epoxy) or an elastomer (eg. polysulfide elastomer). The substrate may be finished with surfacing materials, films, 25 elastomers or coatings. The polyurethane topcoat layer which requires reactivation may have topcoat, intermediate or priming layers beneath it and again these layers are not relevant. Typical examples of build-ups employed in the aerospace 30 industry include: Aluminium substrate: cleaned, surface prepared with anodize or conversion coat, epoxy based primer(s), optionally selectively strippable intermediate coating layer, and polyurethane topcoat layers. 35 Epoxy based composite: surface prepared/cleaned, epoxy based primer(s), optionally selectively - 28 strippable intermediate coating layer, and polyurethane top-coating layers. The reactivation treatment solution is designed in 5 such a way that it can be applied under industrial conditions and the integrity of the "substrate" or coating layers beneath the polyurethane coating which is undergoing reactivation are not adversely effected to a point where they are unsuitable for their intended purpose 10 by interaction of treatment solution which may inadvertently come in contact with it for short periods. Example 1 : Hydrolysis Surface Activation Method The example demonstrates that improved SIJA inter 15 coat adhesion relative to untreated specimens results from activation of the coating prior to over-coating. Inter coat adhesion provided in this case is similar to specimens reactivated by sanding. 20 Example 2 : Oxidation Surface Activation Method The example demonstrates that improved SIJA inter coat adhesion relative to untreated specimens results from activation of the coating prior to over-coating. Inter coat adhesion provided in this case is similar to 25 specimens reactivated by sanding. Example 3 : Reduction Surface Activation Method The example demonstrates that improved SIJA inter coat adhesion relative to untreated specimens results from 30 activation of the coating prior to over-coating. Inter coat adhesion provided in this case is similar to specimens reactivated by sanding. Example 4 : Light induced photo-grafting Surface 35 Activation Method The example demonstrates that improved SIJA inter coat adhesion relative to untreated specimens results from - 29 activation of the coating prior to over-coating. Inter coat adhesion provided in this case is similar to specimens reactivated by sanding. 5 Example 5 : Reduction Surface Activation Method The example demonstrates that improved Scribe green adhesion (predictor of possible problems during masking tape removal) relative to untreated specimens results from activation of the coating prior to over-coating. Inter 10 coat adhesion provided in this case is similar to specimens reactivated by sanding. Example 6 : Reduction Surface Activation Method Stripping study indicated that coatings reactivated 15 by surface reduction methods strip quicker than specimens sanded prior to over-coating but slower than coatings over-coated without treatment. Example 7 and 8 : Evidence of Surface Chemistry Change 20 Results indicate that a higher Specific contribution to surface energy results (yP), particularly to surfaces activated with the reduction strategy. Examples 9 to 33 : Reduction Surface Activation Method 25 Examples 34 and 5: Surface Activation Method with Exchange Agents It is envisaged that suitable combinations of 30 components of the activation treatment will differ depending on the type of coating to be activated. The appropriate choice of solvent(s), agent(s), optional additives and inerts, and activation conditions will differ depending on the type of coating to be activated. 35 - 30 General Experimental Detail Painting Conditions and Protocol Spray painting of many flat panels was carried out employing a Yamaha robotic painting arm incorporating a 5 gravity fed Binks Mach 1A automatic spray gun configured with a 94 nozzle. Spray painting was conducted using an inlet pressure of 40 PSI, a scan rate of 100 mm/s and a specimen to gun distance of 300 mm. The coating thickness was controlled by the gun's fluid needle control position 10 and scan rates. These parameters were adjusted in line with paint thickness measurements and assessed using a Fischer Isoscope (MPOD) on aluminium substrates. When coating was completed on composite substrates, the coating layer thickness was estimated by calibration with the 15 isoscope readings from aluminium panels. An analogous strategy was employed for the application of the primers, optional intermediary and topcoat layers. For the majority of the examples, the painted films were over coated following taping through the middle of the coupon 20 with 3M vinyl tape (#471) to form a paint edge on its removal. This edge was the impact target for SIJA (Single Impact Jet Apparatus) analysis. Spray painting of curved or larger surfaces (eg: rain erosion foils) and some of the smaller flat panels was 25 typically conducted using a Binks Ml-H HVLP gun configured with a 94 nozzle. Occasionally, a similar gravity fed HVLP gun or a pressure pot fed HVLP gun was used. In these cases the aluminium or composite was prepared in the same manner as the flat plates prior to the first top-coat 30 being applied. Following cure of the first coating layer the front of the foils were masked (Intertape Polymer Group, PG-777 tape) prior to over-coating to form a leading edge once the over-coating was applied and tape removed. 35 Cure protocols were undertaken in a computer controlled temperature humidity chamber, such as a - 31 Thermoline Environmental chamber and/or a conventional curing oven. Table 1 : Paint Material Information 5 For the majority of the examples, the coatings used are listed in Table 1. In the examples, paint companies are generally abbreviated: PRC-DeSoto International: PRC-DeSoto 10 Akzo-Nobel Aerospace Coatings: Akzo-Nobel - 32 Table 1 Coating Epoxy based Intermediate coat that is PRC-DeSoto International: primers suitable for selectively strippable Desothane HS, composite or aluminium based Akzo-Nobel Aerospace aerospace Coatings: Eclipse, componenets Deft Chemical Coating Components Base: CA8000/BxxxxxX such as CA8000/B70846X Activator: CA8000B Thinner 1: CA8000C Thinner 3: CA8000C2 Or Base: CA8800/Byyyy Activator: CA8800Z Thinner 1:CA8800CTR Thinner 2: CA8800CT Thinner 3: CA8800CT2, Base: ECL-G-xxxx such as ECL-G-14 (BAC70846) Curing Sol: PC-233 Thinner TR-109 Thinner TR-l 12; Sky-Hullo FLV-11 Base: 900YYxxx such as 900BL004 (Blue) Curing Sol: 900X00 I CAT Thinner: IS-900, TylIl 5 Note: the thinner designation C and C2 are used to indicate the relative rate at which the paint cures. C thinners - standard cure rate with C2 producing a correspondingly faster cure rate (from incorporation of 10 high catalyst levels into the thinner). For Desothane CA8800 CTR is reduced rate, CT is standard rate and CT2 is fast rate cure thinner. For Akzo-Nobel - fast cure thinner is designated TR-112 and standard thinner TR-109. 15 - 33 Painting Conditions and Protocol Substrates were cleaned prior to priming and optionally where appropriate treated with an alodine type conversion coating or anodized. 5 Polyurethane topcoats, intermediate and primer layers were mixed and applied according to the paint manufacture instructions. Primer: Typical conditions: 10 * For Composite or aluminium: application of common aerospace epoxy based primer optionally incorporating additives to aide corrosion resistance at 0.5 mil (12.5 micron) dry film thickness (dft) per manufacturer instructions. 15 Intermediate coat: Optionally application of intermediate coat (IC) that is selectively strippable at 0.35 mils (10 microns) according to manufacturer instructions Polyurethane topcoat: 20 * Application of polyurethane topcoat (eg: Desothane HS topcoat containing CA8000/B70846X base (white color of this topcoat also designated as BAC70846. In examples it is typically designated as Desothane HS 70846X or DHS BAC70846) at 1.0 to 4.0 mil (typically 25 1.0 mil (25 micron)). Painted panels flash off for 1 hour prior to cure and accelerated aging. Standard cure / accelerated aging conditions employed for topcoats were: (i) Cure painted panels in oven at 30 120 0 F, 5-10% RH (Relative Humidity) for 40 hours, followed by (ii) post cure in a humidity chamber at 120 0 F (49 0 C) and 50% RH for 48 hours, and then (iii) - 34 oven cure at 160 0 F for 24 hours. Total cure time was 112 hours. Alternatively other "accelerated" aging protocols were employed as specified in the examples to render the polyurethane topcoat unreceptive to 5 additional coating layers as indicated by poor adhesion under standard adhesion tests eg: 120OF and 2-3% RH for 5 days or 120 0 F and 5% RH for 16 hours or as specified in the examples. 10 Surface Modification The solvents and agents used for surface modification were purchased from the MERK and Sigma-Aldrich or Dow Chemical Companies. Purity was of an Analytical or Laboratory Reagent grade purity. Isopropanol and n 15 propanol were generally of an anhydrous grade. However, alternative suppliers and grades of the reagents are known to be available.
- 35 Table 2 General Activation Protocol Treatment Spray application of the reactivation treatment solution employed a Binks MI-H HVLP gun with a 92 or 94 nozzle and 20 psi inlet pressure or, on occasion, a similar HVLP gravity or pressure fed gun or by a flood application where indicated. The active agent (eg: reducing agent such as LiBH- 4 ) was dissolved, dispersed or suspended in the solvent/s at a percentage based on weight and the hence prepared "reactivation treatment" applied to the substrate for a given period Post-Treatment Spray on leave on application (SOLO) Optionally the polyurethane surface may be "post" treated Washed with water (or solvent) a period following treatment - spray on-hose off (SOHO) or Wiped with an isopropanol, ketone (eg: methyl-propyl ketone) or water soaked cloth - spray on wipe off (SOWO) Re-coating Samples were over-coated with polyurethane topcoat either: * Same day (5 mins to 4 hours after treatment) e Some period following reactivation. Unless otherwise specified for SIJA or rain erosion adhesion testing, overcoat thickness was 100 micron employing Eclipse or Desothane HS coatings cured with standard thinners. Cure conditions were 120F under 8-20% RH for at least 48 hours unless specified. Scribe test overcoat paint thickness was typically 25 to 50 microns 5 Analysis Table 3 provides the equipment and conditions used for testing for analytical purposes.
- 36 Table 3 : Testing Equipment & Conditions Equipment Conditions SIJA Adhesion testing was completed using a Single Impact Jet Apparatus (SIJA, Cambridge). The initial equipment was typically configured using a 0.8 mm nozzle typically and employed 0.22 calibre 5.5 mm Crosman Accupell Pointed Pellets (#11246) . Testing was completed following immersion in water for 16 to 18 hours, employing a line laser to locate the impact position, and using a 450 specimen to impact droplet geometry. A single water jet was employed at each site to test adhesion with the pressure employed for the "shot" indicated below its impact. The velocity of each individual shot was recorded for future reference, but generally the pressure to velocity conversion is specified below (±25 m/s). Pressure (PSI) Velocity (m/s) L 350 50 610 100 725 200 895 Alternatively the impact was dictated by a "dot" or via the velocity employed - eg. 600 m/s. In some cases the amount of overcoat removed, and hence the inter-coat adhesion was assessed employing image analysis techniques to quantify the area of paint removed. However regardless of the impact velocity relative to the unmodified reference more overcoat removed corresponded with inferior inter-coat adhesion. Scribe Scribe adhesion was assessed according to Adhesion (BOEING Specification Standard) BSS7225, Class 5. This adhesion test is a five line cross hatch tape (3M tape, No. 250) pull test. Briefly: Heat aged polyurethane coatings were reactivated and then over-coated (25 - 80 micron thickness) curing the over-coat for 16 hours at room temperature and 50% RH. The coatings were then scribed according to BSS7225 (C15 scribe cross-hatch) and the adhesion test performed. The paint adhesion of specimens are rated on a scale of 10 to 1 with "10" being no paint removed and "1" being all paint removed.
- 37 Equipment Conditions Whirling Rain erosion testing was completed on a whirling Arm Rain arm rain erosion apparatus employing a 52 inch Erosion zero lift helicopter like propeller run at 3600 Testing rpm. Reference and activated polyurethane topcoat foils were over-coated (85 to 120 micron paint thickness) following masking to produce a leading edge. The foils were attached to the propeller at a distance along the propeller correlating to a velocity of 380 mile per hour at the mid point of the foil. The effective rain field density of 2 mm droplets used during the experiment was 1 inch per hour. After 30 min the impact of rain erosion on the inter-coat adhesion of the foils was evaluated according to a 0.5 to 5 rating correlating with the amount of paint removed or tear length. The impact of water droplets on the leading edge of the over coat formed on removal of the tape during the experiment erodes the over-coating layer relative to the strength of the inter-coat adhesion.(F or Fail or red markings indicate less then acceptable adhesion) Paint Procedure for the complete strip test is Stripping described in SAE MA4872, Annex A, pages 51 to 53. In this Stage an abbreviated version was completed using benzyl alcohol based paint strippers without thermal cycling to compare how the activated and over-coated specimens to untreated and reference specimens. ged specimens (Aluminium or composite substrate) were untreated, sanded, or activated, were over coated (60-75 micron), and cured for 40 hours at 120 0 F. The edges were taped with Aluminium tape (such as 3M Scotch Brand No, 425) prior to commencing the test. Stripper was applied every 2 hours until the coating was removed. Lifting paint was removed just prior to reapplication of the stripper using a plastic squeegee. Contact Contact angle analysis was completed using Angle "FIRST TEN ANGSTROMS" semi-automated video equipped contact angle analyser.
CH
2 1 2 and H 2 0 were employed as the reference solvents to calculate the dispersive (yd) and polar (yP) contributions to surface energy (y,) through the Young-Dupre relationship and Fowkes equation.
- 38 Equipment Conditions FTIR FTIR analysis was carried out on a BRUKER FTIR/NIR spectrometer or Nicolet Instruments, employing NaCl plates or an ATR KRS-5 TiBr / TiI mixed crystal associated with the microscope. Extent of surface contamination was assessed by swabbing the surface with a "Q-tip" soaked with hexane. Following evaporation of the hexane solution onto NaCl, powder NaCl plates suitable for FTIR analysis were prepared by compression moulding. SEM SEM analysis of the polyurethane cross sections were collected on a Oxford Pentafet detector controlled by an Oxford ISIS system. Cross-sections of the samples, prepared with a cut off saw appropriate for non-ferrous materials, were mounted in epoxy resin, ground and polished to a 1 micron finish and gold coated. Imaging and x-ray analysis was conducted using a 15 KV accelerating voltage and a 17 mm working distance. EDX analysis was specifically refined for carbon, nitrogen, oxygen, and chlorine. Hydrogen Activity of reducing agent was determined by Evolution employing Hydrogen Evolution techniques. The activity of the reducing agent solution (eg. LiBH 4 in Proglyde DMM) was determined by measuring the quantity of hydrogen evolved following interaction with dilute aqueous acid. Accelerated ' Equipment: Atlas (Xenon Arc) Weatherometer - Outer filter = borosilicate - Inner filter = quartz - Light intensity: 0.55 W/m 2 /nm @340nm * Operation Cycle (-SAE J1960): Panels: Desothane HS 70846 White ' Test for: - Colour shift of previously reactivated (but not over-coated) panels Reactivation potential of samples conditioned through aging protocol then a UV cycle.
- 39 Hydraulic Specimens were tested for coating pencil fluid hardness prior to immersion into the fluid exposure and rated in hardness according to the following protocol (soft to hard). After 30 days immersion the specimens were re-tested. Values reported are the softest pencil that would cut into the paint surface. Hardness Scale (soft to Hard) 6B 5B 4B 3B 2B B HB F H 2H 3H 4H 5H 6H 7H 8H 9H Gardner Impact Both sides of the test specimen were subject Adhesion to varying impact forces in 10 inch pound increments using a Gardner 160 inch pound capacity impact testing machine with a 0.625 inch diameter hemispherical indenter. Values reported are the highest force recorded that produced no cracking of paint in either the forward or reverse impact. Maximum impact tested was 80 inch pounds.
0 1 0 4-)
'
0 u 4-)
.
0 04 U) 0r 04 U 4 a) a ) H 4-)>, 04I H H0 0\ +1 +1 C0 0 H U) 0~04 4-) 0U 4.) U4 -1) 0 4 H .-- .' H U U Xa4) M E- 0\0 1111im iH M- H S0 M 'o 0 ~~4-)N 0H 4-) 0 U) 0 - -H 0 Q) C)' 44o .H to 0 U) U 4-) 414-0 UU o r0 0 fd H UH 'U -W 4J 4-1 H- -H (d M~ I-) ~4J -)4 HO Ul 0) 4-) :4 %:r mU( 4 00 00 C) 4 4 o4 r=jU >-4 0\ U4) 0 M ~ SH Q>. 0 oi - ) +I H 0 4 -H) 4 r C) oo U4 0c m 4 X 0 X~ C H0 4 Q) 0' J
U
0 4 0 00\ =LLf U*) +1 0 \ U)0 4 CN H H a 4j4 0 U) U 0O 0 0 44 4j) 4j4 U) 4 0 0 00 40 0 ) a,) 4 H H H4 H Q) 0 -) 0 +1 E H (1) 4 4C) 0 U) \ f O H E41V a, 41C zl- r_: > 1 (z , ) Ur) f H rl 0~ a, +1 0 ri i 4 4 4 J0 0 0\0 w VoIu r 4 4- 0
H
0 a, 41 rdcc) NH r H4 xe
X
4 4 >1 CO 0 I. ~l C) 4-) U)
N
0 I V1 x O z ~~>~~0\ aa), H 51 4 0 0 (o H 0 0a) 0 a,$ V> l 4- a, 0 1 -i ,ci u a a, 4 >1.~-4 r= (5 0rI4 4-4 V > ( 0 4-) . 4 0 -1H 4 U:: rlE> E 0 a,1 0 c 4 H)( 4 \O0 4J 0) U o 04 1 4- j 0 4-)H a, ~ 4M Sc S4 4)Q r0 4-) _ _H__ _ _ _ XN HO N0 o0 0 00 L~ M 0Q H En +1 Q) U)$ 0\0 H U) +I/ o OD Cl) 0 7$J oc cU) I) m 4) VJH )0 0~ x~ 00\- -C 0f ' H r0 - 4~ U) 0 4-J > 0rr 0 0 4 J m '1 1 4- r i 4-) 7H Hr j ;4, tU O 0 U)1 0)0 QI) o~ 2') 00DV - 0 0 0 0- 0 n 0D v~ WLn 104: r1 wl. m( D - ) LD mn m r4 EO 4-I rHU o q en 0 oD W U - mL w) 04~ Q) O__ _
C
1 2 4 U)0 a)UH 020 W 0
.
4-J'. 2~U U' :3 \ \ 0 0 0-IU 0 0 00 1 H H Vo U 0 u E 0 0r 0 'H f 41) 0 -1 0 4-) 000:JE a 4) (N(Nr 0U U 04 >1* H Ht H4 !Jo 0U~ 00(1 E- 4Q ) Q) 4 1 Q.~) 5 U)4 0) 0) tP 0 t F IM ri -'HrV Q) u ~ ~ * I~.0. fL t K,>4P F4IFr = 4 00 0 (4) ,. :1 ,rA U) 'bi W; -4 t) -IV' fH H~ LA in0 H U n 0tw w) '0r) , r Rq r LA) ai (N Oa N LAv rn eJ C1 CN * 0 N , v) rf ~ ' ai CN N 00 '0* r- t ; 'D wC U 4JH M-0 00 ~-1 4-4 4H 1 Cl0\ 00\0a' 44 , 4-4 H U) U) ~,(0\0W 0 0 U ~H0 0 El) U4 -4 H 0 uwEw 4-) CI1 ::l r.O U . 4 04 ) Q) 0 o\O \or Q4 > 1 r4 4-) HC4 0 ~ u I 00~'- W'o' H 0d0 U) <U) X ~ ) U) @3 ) U) W~o\~Cf~j~J ~ C) ~~~~ MJC 0- ('kU) ~~~ 4 o~ \ d Q Ja) ~U) ro 0 4-) () L) a) 0\ H 0 H _ 4-) 4-0 >1 H 0U 4 (1) W 0 H CO 4. . - *~7~: Z4 0 H 04 0 a) -H r H 0 oq a) U04 ro U U) ~ 0 H 44 4 00 H I 0 0 01 )E v) H Q) 0 4-) 4 Q) M~ E L ) 1 ro Q.4 -,i ' 1 (1) fa) 12 4-4~ 4-Q. (15 -Ha 44 0 '0 fl5 I (n I0 H ) U)12 4 -H a) H u 1 01 0) 4-) 0 -H U 1 0) 4- 12 ft -ia) U) a) a) 04 0 )1 ri 4 .0i .H C?) H 4 k o U) V4J) 0 0 0 >1 0 0 u 10
H
-0 0\O 04 U)H N 0 4. >11 W 04 0 4- V)~ r- rd
H
a) (1 ) a)-W m~ 0 0H .0V 0 0 U) (0 -q 0 k Q) E u Q (d >, 44 0 V0 H- H -I 4 ro~~~ [ A H a) 0 . 4 -W 4w(1 0 L) r a) E.. (1) 4 0-H V-H>~ rS U 04V 0 50w 41 - ) - H r-r- (d4-4zV 0 -14-4 (1 0 0-H 4-4 Ho 04 4w a) U) (1 a) 0 4 U) Q4 4 Hr ~U)0 d 4J 0 r. 41 > .".. . .
an) 0 -H 4J H -H V1 41 H - - 0444U S0 0 uH V *0 H U 0-r U 0 0 F14 4-4 H (L) 44 4-J -1- 0 a) 4 (1) 4 4 ra-I 0 ro~ 54 4 4 m4 04 W) ;JH M I ) P H 0) 0 rd U Q) ) Ha 4-) U)4) O\O 0 00 4 ' (1 4 U) co) E~ .1, Qo a) Q) >)~ 41 C) 0\ 0 0) (1)U) 4J. >E QU) 4-id 'd 0 01 (15 O\i 0 I U)) 1) Q) 0 H 4J1 '4-4 U) U1) 4-4 tr) 0 04 4 0 4- ( 0 0 4- 0 0 .- -1 00 U) 04- i CL - >1 ,Q4- 0 41 41I' 4-4 Q) (1) r15 4i *,- U) U)
Q.
4 M-. ft 442 -,A (1) 0 2 '0(2 2 (u 00 1 a) 4-4441 4 04 H (1 204 01 EO 0 - f 1 U 0 F_2 WHU) rd 0- -)0 Uf) H -m U) 4) O (1 r. 715 4- 4 u 0 U) r15U() r-II 04 4 0 -) 0 rd a) 0 -H H (z x>, U) Q)a 0 (N U)) U) ~4J 4 Q, ) 0 Q)U .I1 -1 ) UU) 0\0 Q) 4 ,c0 4r) 0 U)~- 0 -H 4.)U) U-) U)'0C 01 H 0 V- 0 4J 0) -H ma CL) 4J (Z 0 0 H- -:I a) 04 r Q r(d -H 41I U~ a) 1I-H -4 0 . 4-4 -H 0 -L) U (d4-4 -H Q) 04 1 'U) a VU) U)4 0l 0. 0 - 0 ~4-) ........... . / -H w C) -H *H 4J~ 4 m -V$ 4) a) 0 F_ -"I - -- -- --- -- -- -- u H 0 0 W D uU) H 4 a) 4-) m E H> 4-) -S- ~ -1( Q~ ) ru w 0 r4I 4 0 .H- 4~J 0 ftI 0)r rdO 4-)0 (zH 4 4-)
-H
0 -HW w4 W 4 0Or 00 C-. 0 EnJ a) ~ia) ,I,, HQ)r n: 0 M 4-4 0n 'U -r 4J E 41 oa ) U)4 U24 .. fH 4J 4-4 Xr -H 44. )Q rj Q) w) -H rlU 04 0 U) E-4O r4 00) Q) r-1-I S 04-4 -HA U) r=44 4-) 4-) V) .ri0 4. .i 41 0) 0D 0 uIn C) H 0) o r-( a) 4-) Vr 0)' 0 4 0 4 r0-4 tn . t U 4-)0)0) rd0 H o 0 0J 0H 0 L( dO 4( 4-4 co 4-) 44 H)O 0~~~r rd00Q) H -1 _\O fl5 0)0) Hl 0-i 4JU J) >1 4- -) U lr -H w (0 0 >1W 4-)-HO ) H -H0 H t34 04 U) 4-4 M0 -H rd 4 Vc H 4 41H> ()0 a) m 4rii CV 04 44~~ 0 0 4H cd jH 0)04~Qd () F- -) Wr) % -- ) 4 4 4) u 0 U- 04 4-o 00 ~rI
-
0)) 0 H 4 W4 .~0aU U) Q) 0 H f ) U 4-)4 >-HO ) . -H -A1. E- 4.
44 0 4-4O X 41 O O 0)) u4 0-H 4J ( 0 io o - 4 0)04 44' 4 - J( -H r 0JL~ ... 4 4 r U (1) fU -40 > V 0) 04 ,Q rl r-4U4J - -Hi JJ rd U) 0 .- 0 4-) H -C! U 4i Q) 4.)4 -H 0 w4 r- 0 0 >1 0) 0 4-) 0 U) my tn U) 0 U) Q U) 04 un m VU H 1 ,- - ~ -1i H) U-
U
U-) UH 0)r o) 4- 4-)4H U -- U)04-J4 U) 0 4 *r) r KlA ,/$7 V Cl 4-) a) 0 U) 4)-4 u 1 Q-Ia) O r r- ) a) rd Hr- 0 r 4 ~U) - 0 O\O m .) . .. ) 04 U) 4J r4cm r4 rc rci-) U 4-) 4-) r-4 ) Ec,4 0 4 4-1r fti - l 4-1 4- l) () S0 Z a) tn D 1: ccd 4 -) 0 WOD 4J4 a) 4 04
H
0 H Q) -4 4 4-4 4-4 C> ~4 -'-0\0 U-O 1\4 4-)) 0 4.4. 0.~'t.A U orj I rj I U) U 44 4-) J >1 0 0 4 E l ul U 0P 41 Q) r. U C!) 0 4-J 0 .
-i > H0I 0 >1 'd L)U 4 > 0 -> 1 ) - 4 4j 4-) H00 ..4 .H . .. 0 04 ~ H U 3 4J V 4 H. 0 4J L44 M- -- - ~~ U Q) 0 0 .--- -. 4-) r4J 04 H -) 0: 4it 4-)Q r-H H x~ T >1 4r) r 0 a~) a)4 rQ4 4-J I4 0 4 *H 0 )~ -W ~~~~~ 0 4...... ....... 4-) 0 4-) 011 -- rr r=H ~ '0 4J U)4 OD Q) -~0 CD .0 - ) . 0 11 0 Ui) U X 04 0 0 4 0 rl H c4-) 0 C/) cA E0 a) 00) ro 3:-0 r 4 ) Q)i 04 4J -1 4J )o-4 Z 4 -- >10 '11 I ) 4-4 0 )0.- U U1 U) 0 a) 4- ) 4 (15 4J 04 .H ) w) ri 40)l)a -i 'r) *H El) rd -W Umr 41 -Hi 0 U 0 0) 44:1-...,4- 0) 04 0 O\ 0 .0 E -i EU f ; j0 4-)m x rl0 .0 4 rlx0 U) 0 44 U) 1-.- 0 dI ro W - 4 U 4) 0 dO)4 ri 0 0 0 UJI 0 H4Jr (Ni U) -H U) m :r Vo0 r-i U)0 0 U : 4 40 U 4 PH 44 X U) 4 CQ rc U)I4 E~U U) -HE : 0 ~ ~4 tP(ri F r 4 0 04 (0 U )~ 4 4 0 IQ -H 0 0o 4rT 44 -H U U) Q 0,.' - r-10U 0 ) 41 41 U ) 0*--i -H U)- 0 44 U ) 01 04 a) (I) U) -H >1U 4 A li ~ ~ -4 . i a 041 i) -H 4 J) r rl 4) U Q > 0U M ) H dU .1i -4 4-) -i -H r E -H 4tn- 4 U) 4 -H-.4 U: U ft4-H ft U) a) (LV 0U) 4 4 U H~- 0) U)HU 4 4- 4 1 u u Q) 4-4 -r-I -1 u -A 41- ir 4 r$ Q.Q)- U) (1 4 E4-4U4 U)~~~ (1)4 H-H U F-: ul U 4-1 1U2 0)0 -H 4-4 0)H ''A 4U 04 H0) E (D U)0) -H 4~a ~4J U) F-: U) 0 0 4-4 -H 0 4 44 0\ < 2~ H1 4> U) U) a)H. 0nQC 0U 0dr 41~0 4 F_:0 0 A Vt a)Q cO I -4 O4 04 4 Q) W uu U)) 0 0 T
U)
'CD ci)o le C 0 000 '4 4)a C) 0< U)7 00 Cr4 FZ4 'Io U)4) 4-) 4 2 J4~ QU)Q u-4 0 Cl)l 4NJ u' <oDU) 044r- U) Q)4~ -H rd a~) U) 0 4-)) 00 040 U4 SH El U)n 4J~- r4 -i c Q) 0H 4-) 0 4-)r44 0 rn 0 Q)UH 4 H 4) a) rl 0 104 o 0 04 04 -4 rd 1 EWO 4-i 44 a) -H -Hr~a ) >- r A~ -H U) V Q~) tn W1 -H 0 r ) -H - 4 04H r U 0-H 04- W 04~ O4 00 0 U) 04 -rUW ) CL 0H -W C-i H E E 4) rd- -) H ri (L 41G 044 U ( 4 U) -Qk ro -H0 O 04~ i W0U f- 4 S U) -H 4-4 r4C: Q) ) 4C cl -i QU Y) -H.Q U U) O LU ol ) 1-1 04)U) 4J m -l0 04 4>4 ii 0 4-4 m) ( U 04 u 44 l 4-4 (LU 41 t 0 O r15~ U)0) -H r 4 Q)~~~ V4-i0r -H-iU)U) U (Z 04~ U) U) -HO' UU)) ) 4 44~ Q) -: U) 4 U0 U)Q rl 4- H U) 04 0~0 Q) 004 x Q) 4) 404 -A 04 M~- t Vo 4 a4 r 4-i r= 1 M 4 -En U) U .~rU U)- H-HH F- VQ 4 HI4 :: > ( Q) ro U) V-H (0 -H ~-i X4 04 U r1 Q)r-H E U) U) (d 04 >1 0 a0)H 41 X 04 (d W X. ) 0 w (dr-IU) WLU) z .r4 4 4Q . 044 Q4U 1 4 0H 0- 4 aH *~. > -- --- ow 4-) 4 C)) M 4-J4 o 0 04 4-J a)) W~ a) 0U 04 00 a) 4zz H 4 0 u U( 4-- 0- 0J 44 0or 0 -4 Q) Q) r40 or 12 4 U2U 04 H HR QQ) 00 0>1 -) 0 U))r UW ) U) QI) 4~04 U-1 0~ 4-) 4 E Q-I 4-) ro) W ro U 0 'U 0 0 :-4 00 UU 0 4-)4 a)) 4-) H 4 H4 H U)4) u 4-) 4-) H Iy H- ri0 r 4J.Ux x 4 0N -4 (N) -4 -1~ r 4) -H H4 4i-H J) 4-) P4 r 4.)~( 4. .J0,A ) 0Q) 04 P4 X4 rl 4 0 0 -HA 1L L) U) -CA 4-) U) H _rl H U H I H H H E x 0 4 -H x- x- 0) w w4-) rO 4-) 02ro 4.) q 4 Q) 4 -Hr 4-U r U V)02 a) W0. f -'- r= Hr -H -H 4- ) (
U)'
0 E : 0 U) 4- 02 k 00 arIti M4) *H 02-H u' 02-n '0 a)- .4--< 0D 4-) 0 0 C> ~ 0 0 S0 C1 4-) 41i Su) 44~ U) I .~ 4 U) 4-) U) 0 - 0 U)4 :>- 00 41 0 Q) El) 0U) 0~~~ '00OD ( 0- U) 40 H '00 ~ ) -) U) U) 02 0 0 U FQ 0 F- (0) -) 4 ft) 4- I ,0 02U4-) 0 a) 024 4- 4~ m-r r 4-) . . U)1) 4 ~-W Q) C)) 0 - '0 Hj 4-s4
U
0 \r 0 U)02z 1 U)' 4 o 4 r) Q) I ) S 4-) 4-a) ro 4 .- ) >)U U0 E\0 0 4-4 04 0
..
1 4 .H 4)0a, (1(N 0 a~r0 rj ~ 4-i "ZV 4-) 0\ 0 ro 4-)) Q) U p 4 a) r4 ro C V)' H F En Q ~ r 0 a 0'z a, H 4-) i-H 4 k M 0 0U)~Q ca a) Q) -- -I 1 J4 4r a)- r'Us 0- 4 XrHW HO 4) 0 4-1 >1 04 0) 4 4 >0 -) m 0 -4 >0 E -4 m04 rQ aN 0 S0 0) VH H -HH (dU H1 0 4-4 4j 4 0 Q) jj(d~ 0 0004 4 4J 4-) Lr'4) F0 V.H) 0 0 r UU0 0 o , 1 H~ M *0 H ) r-H Q) 0 4-i 4 404 -) -H-H 4-4 ra 0 0 < 0\0 U -i CL-) o HL HC) c) c1 P 00, C'4-I 0- .,Jt 4-) 4-) :j ) *Q U 0 0 4Jj C)-4 H ) U U) 0 E U) H u 0 Q) -H1 0 U) rA 4 >4 0E ~0 41~ 0l U) Q 404-' Q~ U4-4 co JU)V Q) .) 44 0d Q~C ) Er- 4J V (Zc~ r4-4 0) Q 4 0 EQ4- 4-) Q)T1 U)LO J ) -H 4 r=CT 0cG mJ S4- (1 o Nr ~4-4 44 COG) H U) 0 U ) U) (N U)~~U -H 2rO4 1 -H 0- 4L 4J 4J~ M -En> 4Q , -H U) .H - 4) J-) -H-H - 04 d 41 Lo4-) (i) A ) U)G4J En 4 4-) 4- E0 4 0 -i Q) .i)C U 00.- -H r r. 0. r U P- 4 ) E-U 0>) :4 xr 44 -r 0 Q) o 000 0) 4-J '10 0 0O Q) U) E () Q 4 ,c P U 0 4 41 4 1 Q) ) a) \ m 0 ) 4-) 4J U)H 0 (u 1-1 ) (1) HQ)E L)x -4 ca Q) 40 4J (n -4 71 (U 41 W)4 0U~ a) *J i -)- 4 EUH 4- 4 0)U E U -U 41 4J 4 U 40 M404) U ) A a1) :J - )44H I0), (UZ (U 4-)1 4-4 0 0 m a) 0 >1 1) uO C:la .. *rli 0441 0 10 u)~ (1'v 4- U r- 4 U Q t ru :J 44-4U 0 04 040 r 0 04 H 0 ( *4J E' 0I 10 si 200 0 0 j-' L) 40 4J H- 41) *0v_ _ _ __ _ _ _ _ _ __ _ _ _ _ _ (U -0 OJH 44 1)-H 4J 0 0 0 .- 'q 1 P4W 0)r 0-1 ~ ~ IiIr. H 4 .) 000 ft -'- 0~ 0 5ID42 X a3) '0 U H 4 ri U 0 -1 4J) 4-)
,
(U (UH (U (U 44 4 0i (U 'zV I - (1 P4 4 U 4 U) V4 :0 04 a 0)U ru 00 (0 E04 - -H * x 0 045--.
(U
4-) N 1. NI 04. r4 U) oJ - C -H 0 U 0 H 4) -H 4 C: a4 0 4 zU)0 4-H -H1 1)0 I>- 4-) H 4 rO0 -H r-I 4 0d - 1 0 0 0 -H 0 QL 0) -. 4Q -HO) Q1) ODr- U .H 41 En 4) Q) 0 'd 4) 0~U U 4 * (- 0)4 A' 04) E~ -HH (dU) o 4 41rd ) 0= 0 0 0 ___-.AJ41 4 1 0 U EQ =1 41 -H m~ 0ir UUU) 0 vU)U) -4 rl)0 -- T E a4) 0 U) r -4 m r4J *H4 0 0u E U) >1 0 Q) () 0 c 0(I 0 (v E 41 0 to ) 4 '0 r~Q44 4)01 4-)A .4 Q4J~4N 4) 414) 41 4)0 E) 0 '0 (J04 4.0 E0 to 0 0 0 to 4) 0 m 41 -ri . to1 00-HH4 )) 4J 1 .1 .0 4)4 W4 00 4J4H 0 0 WE 0 0 44-44 E 0 0 tnUr -H4 n 1 f- 0 rl U)4-)4 H dCr 4 00 U r-4 0 0 -1 En ) D /1 4-) 41 4 r'U 0 rO 124 H 0U r m 04 M 0 4 4 41 29Oi c; 0 020 0~O O u0o w0 I~~~~~ r~1**~l4fI ~.
u 0)) 0 0 00 u 0 L44 0) 0) '0 .340 1.3 4) >) 0r3 41 4) >- 0 0 3.4 34 u 4b 4.0 0 m0V0 00 9 0 '0 0) End 00 a 0 V a O ~ ~~~ En 0U 32 042 uos 41. 413 413 H 413 " a 91 r02. 3 to21 03. to JJ0 mo 0. 30 4.3H 0 .( 21 10 0 41 40 -40 to 0l1 E 0~ 0 0U 0443 43k 0 4 1) 0 \I 0 .4 0 44 0 0 0 m *41 0 ~ ~ M33 4-0 £32- ri M 0 (0 0- 0 6 6 . 0u oo e O O o z4 O 4J f 0 00) W)00 \ U) 0- g : 0 En 'a) 0 Q) 0 CU 4)1 04 -H -H > 4J -1 4- 5 -I -H _0 4.) M M > 4JC( F: 0 S4, 0CU kr 0 rj. p~ En0 H0) 0. jU E t~y r f0) (0. H 0 4 r 44 4- '0 (V, M0 -1~ U U U 4~J _1H 0)C0 '0 4-j ) 4-) 4-CU 0u w c E F 04U >'J :J (z (q /2 0 0 H ) 4 4j0 -I- Q) M_ - -4 U _ .,l 41 If) 4J 04 -(13-( En 0 4.) C. 4-)) a) U) Q) U)4-CV44C 0 4Q) x)00)> U 0 u0w 0 440 O'D 0) 04 :UJ 0) m~~ ~ ~ CU4 \C *H4 U 040E 0 1 44 )0M 41U 0) 0 >0 U- F: -H4-) V)C (d00 ~4- U4- 4- 0 ) H -) -r 0 - r 4- ()4J> fQ 4 4 Q)C 0. -) Q) J j 0-HU 0 -V H u0 4- H - -- 04 0) u 41) aI) * -H 0) 0H 0) - 04 u- 0) ( u1- w) x: i 44~ tO4 $4 4--JUE
U)
4-) 0 ( -1 -I ID z 4.J C 00o U) -ri 4-i 4-4 la. -4 '0-() u ti) 0 > rd 0 MU o: r0 44I 4Jr -4 *- x r. 0d 0) 0 U) 4rl -H 10 4-)erd (V U) E T3 t r H 4-1 U) 0- 04- 4) U 4-) 4) E)4~ -H 1) 4-iIO H -'0 w m 0 (f) 4J (1) 4 r.)0404r a- ) F- ft 0 Er- U) x 04 0 0 0) 04 E1) U) -) 4H X~ 004-iM -H 4-4 0 4-4 4-4 () 0 0 -1 a u u 'Q4 L4 4 M 0) 1- 4J 410 a) o4 Q)H 4 ,a 0)ro 4-i F: 41 4.) t- l U) (z0) 0 Q) >1 i (d1) 4-) r.a O 4 0 0 0 04 r o a) Q) ~ ~ 00 Q) la Q)'- r- 0~ C) r- U) 414 0a m )0 10 Un (d 0 A) r 4 0r ) ra ul w 0 4- -1 o) U2ot 4- Q) O4 0 4) U) X: 0 a rzH H Ua)Cf 4 4-)~~ 4-d -H 0 4) 4) El u r Ea ~) ri a)4 M > ro f r-4 (o o ( U '-I (L) r 0 *HA -2H'0t aI C) CI4 0 04-4 0 Q) 4 Ma H E 0 x (n) -H-H a) 0 )-4 -l a) 4) C a) H 4 E- HC) 0I y0 0 ~ 2 wL 0 0 0 tt~ C' 1 0
~
a.. A C A 0 I~) I - '~ 0 2~. A A 6 00)4 40 H U)04 V00 4) U 44 U)0U) U) H- 'Hi U) 10 -)0u In U)Q 0 Hr 0 4 0 04 0) U) O4 0 4-1 04)0 44 10 : ) 04 0 P44J *4J0 ILII 0 41Z '4 1n00 4 M 0 0 'A 0)100) 4J 4 ( H 4' H1 'H 0) 41 0E H -H r-J 4J rO x 0 m-. Q) 0 4J rn4- 0 1H0 H 4 >0 >04 0 )Q U)i 'H 0 0) 0~ H'H 4 -r- 40 >J 4J jj) 4-1
Q>
W44 ot U r- M2 Ell~4 4 JQ)U 0r *H 1 4 1r-i 4-J U) 4~ 4- U 4 U) -1 F:.d U a 1 4141 (d 0_ ) 0( 0 J., H4 040 040.Q 0 a4 H4 r-I C 44~ . U0. 4ii Q) ul 4~ 00 4Jfl 0~ 0 0 H4J 0) 44
-
4-) (Z H 0rcI a) ) ci4 U)0 :c 002 (1) ro~ 00 ~-4-H ri04 tU) U)i l0) r: 04 0 "1 4-4 4-) f4-J 0 ) H- U) :I :-:I- En u VJ U) 4) P - Q) F: U 4 r F 1 0 4-4 0 0ul k 0 o> d)HOG j)) 4 0. 0 -H0)n w(v 0 E4-) C) -H : rd0 Q) 4 H -r 0~ U) u ) H 4 (v__ _ a -- '-- ) r a) a0) HH U( 04c 0 4~41 ;j 0 0 a) a0 '00 0 40 2: ) .4 m 0 1j) 04-0 4 dC) H ~41 E a)
U)OD
0 V)) 4 4 0 >0 0 (d 41J '0 (n) 4-1 0- 0 41- 4-W 040 100 E 4 0>0 4-4 4-4 H4 H-E 0 >i 4Jr -1 10) -j 44-) '-' 0 m U 4JU rd (1) r w 00 4-)) HO HU E-0 4-) 4 41) 0 4 £4) a- 1 4-4 '0 w -4 00~ 0 uo o4 ro eU) >1 4 > X (V 4-4 0 4E r HU U X: U 0 441 I N 1-. -H (1/ ) o4 ) 40 41d U~ a. -4 (4) U)a 0 0 > ;:1 H - r U) a) Ea 04 M) 0 o 0O -H U- -H Hl LI) I a)) L 0 ' H '0 0.a)I2 -H JU) U 44 E 044-i F: 0 (4) 0) a) '-4 -H r-IH a)A 04 0 e;~ o 4 -HO i 0 rU04,-i -40 U )r 44 U) 0) rA W - U ) ,C: H- N 0 :j N4 - 44 0oic r) . > rd M a)8 11469L~IGM % - 4 1-> 21 ng, Ir lull I.A 1.0 04 N Wl ID Lo Lo t 4 j,: h,4 CN 7WI4 r4 _(4 K 00 Al 't m A. LO Ln U190)4610M % g 00 -j (00 ~ '~ .** CL ~ ,z- 0 Ie 7t~ 0 (L too 0I qOO 0 o IL 0 m m tw _j _j Nil I mv -Y. 1*24' T%4 o o 13 13 lo A CD 0 CL 0 CL I.R LO LO '7 '7 cn ai co CL 0 0 00 a) -i 'R ci < 0 - Tw4 Go 6 LA cl "T 2 ci 5 i LO (1) LO N LI) LO 0 LO 6 C-li ules ItiBlem % >1 4.) ~ H -H r= PJ EU-)uU) 4 .,I 4 M ) UJ F 4J U -i 04 -H U El) V _ _ _ _ U 4- r (U~ 44 ] HU U)U 1 0 H4U)' E/) ftu -H E EO--I r. r4 (dS4J 0 OU4-J 0) U4 0 -Hl U)) 4440 a 4JU) O H (-i r(d O > 0 W-H Q) -4-4 0 0 O4 E4 ) - H a 1-H r. Mr U) 4JflU Sa US d >1 0 0 U) 41 U)I r o- IN C14 m .3 r U) IU - ~ 1 U U) 0 0 041) -H w 0 w 4 d C r0-A 14 -I U4 0 ci04U) U) 0 E0 oo > (N r:)Ueo 10em %X -H V) U) -H ) tn 4 U) U) a - 95 Example 27. The following examples demonstrate the reactivation solution may be used in conjunction with materials such as stencils and design masks and tapes for the production of decorative painted finishes. (i) Reactivation (LiBH 4 in proglyde:IPA 40:60 SOLO application 30min) applied onto aged Desothane HS white 70846X topcoat (16h, 120F, 8%RH) with pre-applied vinyl based stencil prior to painting with Desothane HS S601X blue (C2) cured for 16h at ambient conditions. TEST PART CaNLY Untreated T1=% ST PAlRT CONLY 0.05% LiBH 4 TIST PAiT O$NLY 0.15% LiBH4 Example illustrates that crisp non-distorted letters are maintained even when the treatment solution is applied over the top of the stencil.
- 96 (ii) Reactivation (LiBH 4 in proglyde:IPA 40:60 SOLO application 30min) applied onto aged Desothane HS white 70846X topcoat (16h, 120F, 8%RH) with pre-applied vinyl based stencil prior to painting with Desothane HS S601X (C)blue at 120F for 16h. untreated 0.05% LiBH 4 0 .15% LiBH 4 Example illustrates that crisp non-distorted designs are maintained even when the treatment solution is applied over the top of the mask.
0 0 024. 0)W0 H ,Qr r ;fI w0 w~ w4 r-i Q 0H 4. 0 2 Q) ) -. -i ml 134 H H~ 0 u rX co0 E 0rd 00 0 >,'rd W~ 4-4 4 .H H 0 fli -1 -1 0 24 0 U) a,-H ml I w 4.) X 4 r= r4 ro 4 -i L) H2 0 0 Ul U -r-I 4 (4 .,-4 4 U , u) 0 HH IHH ~-H~<020 -Hm Ma IAP n-H-H 'Do 0 4 ro 0 4-)4 Ea 0 -f v 4 J ro 0H. 44~ 12 r~o CNU) 2 r. 0) irII 4-) >1 0 H 00 41 H - 0 0 04 H a) 0 -4 0 0\0 04 04 00 0 0 u 4-J Q) 44 -H U) I-i U) -H rl 0 a) H4 P~4U 4-) Q) V a) a 4 aa ai) rd~- 0 4 U) (d rA ( H r 4 M0 4-i 0 41 w~ H m) E 4 Hj 0 0 U - 0\ H F_:Q 0 0 0 ri 04 H 4 4 >e 40 u u ( Q)1H \ XN I n Q 0 E 1 0)U En-. r I H r- 4-4 4- I CUWrl 0 (d 4~4 4-) -r- 0 0 ( 04u M3 U M2 0 4 .J H U) U1) 0 -I H 4 .~ 0 4 0 Q) IJ I ~ J) H 04 4-4 4 Wo ul U) 4U C4l k~~ .4 u a) 4-) 41 r- HO) u r.(z ) ro L) U :J ( P. (. . r -Jr 0 4 Q) r4H F- 4 )0 M r )-i 04 U) Ic: r-I 4 :j4-)4- -J U Q)H-- r-i u 0H U) 'd , ciH *Huc ~ -~ 41 0 (1 o) L) 0 0 I rAEI:i CO r 4 Hr CU0kf i- x -H .. -H 0) 000 rI HJ~~.~ 04 0 0H -H I FzU 00k OD) U) (dH U)0 L Q H 4 0 r-4 - 4J Q)- - -I C)- U ) Cl L al) u - A 0 0 rd 414 CJrw (f C4 00 -H U -"--In '4-4 0 IC :J L) 0 0 10 U) 4- ) u-4~ 0 ~ -H 01 4-) V a)>a) 5639k-- 4 0 0 rd 4-) a) 04 :1 USULS r,~ 0 u-_ H 0o -r EI~-40 a) Q E-4 4-4 - Nr A 0 - r r0 4 4-3 4JJ~a 0 0 U) (d )4) a),~ U) r4 4--) U)_ 0) M (d-4O 4-) 4-J HU) J -) W 0 0 0 *H C -1 04) 044 (z~ .0 0 u ri U)-Q) rV U) Q rU)O u)c~ o0 0) -1- 4. t) 9 -H ) 0 U 0)
10 a) 0 4-) 0 LO 4-)'d Q) 13 4Jr. ~-)4 -J ~ 4-. (d 4J r.Q fW4dJU)i ) -f 0 m -1 1 I a ) : u () U Tc U2 *-H'to TI4-4 0Q( 0 0 U O H 0 4- 4 4 U ID 4 -H 0 rd . m 0 () E - r J -Wi r~ 0 (d 41-) 1 - U) U2 ) Q ) 04U MQ 0. U> r U E 1 41 U) 0 0 oUH X U) V) 4--) W U) '0 04 > 0 Ql ;U) H4-l li 0 Qr U4 Q) o1 U) 0c 0 4J4 02 0 0 4--o Q) x)~ Q)) OU 4J4- .,1 0-H ID. V H Q) 4-4 04 -J 0 0~~0 Lot r f 44U)) 0 0 :30 U) U)444 0.J rd ) U1 a) oH >r ft U) 44) r-- 4 0A 05 - rr U) 02) > 0- 0L U) 4 U)U 4-' -*--C, 0 04 a) E5~ 0 ) > a.~ la .H -) 0 a)~l rHD Q-d 4J 0 ro 41 r- 0 d HO 4- U tn 0 Ui d l 0 U U) 0 Q-) o\O 4 4-) (1) U) 0 rt 040 2 E -- - 0 0 0 0) U a) 4)J Q) Q) 4 -) U (1) 4 0 -ri 44~ r- U4) -H 00 r. 0 4-) -Hi 0 - H " I 0' cU) Q U) a) Q) U4 o o En a 0 O L) 0~ Q) 4J 4-) o 4 4-) ~UU) HO Cl)n 4 U) ft -H (d M 4-) -W 0 U 0 Q) (1) 0 ) ~4- 4 ) x rd 0 > 44 J(0 E)0 1 U) (1) Q Qd) Wlri r 04WQ 10 Q) a) Id 04 Q EH H -~00 04 Q) 0- 0 0d 0 -rxj :j 0 4J 000 4i U0 4-r10 Cd .......... ........ 0 \ WOO r r.
0d 1 W-H 4J HW) U)) 41 7J CdUa) XU4 M) 4-) U 0 a) 0 0 04J )04 > x Q) (0 0 04 4-) -H r-I 4J 4-) 4J H : ~r I Ua) 41rw o V)o 000 4-) 0 0 ) Q) 000 (12 4-1~ 4 Er H Ui CNNCN -4 (a U)U~r-l r- r_i m0u F) 000 0 -) 0 )4 -) -H (L) -H O0) 9 4 -I4J M ~i5 (120 4- 4) 4JJj 4 X U) Q) Q) a 0~ -H~ -H 00 M 0 ( 0 Q)* 4.- (n -q4) 4- M1 a-4) F-H 0 4 00( U44-) (OV 041- - rc 4 E H O- 0 U) 0 0I LO r~ U))H C HH 0 -H 44 ~ -~ H-H - 111 t = 120 min 1a 10 t 120min fter-crap . . .. ... w - 112 t = 150 min after scrape The example illustrates that the chemically reactivated samples strip in a similar time frame to the sanded and untreated references.
C12 Hl 0 4-4 41 o M U 0 Q) U -i U 0 (d 0 4J a) o -H 0 4 rd . 04 UU) En w ) 0 0 ad (d) P44 E 4' 0 rU) Q- 4 U)0 mrI 4-)) x- > W~ 020 m~2~ 0c 04 04 0 04c 4H to.
r-I 0 4.1. 00 U) 04 U4 4-) 00 0- 0 04 - 0 0 0 U 4-. 4w) '42 wI 10 0 0 -H 02 ci 04 0 4 oE U)H '-1 4E a-q ( ) 0 00 4-4 - 117 Example 33 Example demonstrates the paint adhesion and overcoat paint quality of rain erosion foils following simulation of typical paint masking hangar operations and heat cure. The examples show rain erosion foils, (incorporating primer, intermediate coating, and) topcoated with Desothane HS CA80OO/B70846X base with C thinner cured /aged for 5 days at 3% RH and 120F' which were reactivated for 1.5 hours using SOHO (prior to wash off) or the SOLO process indicated. Following reactivation the samples either underwent a 6 hour 120F thermal cycle directly (then left under ambient conditions overnight) or alternatively prior to the thermal treatment were wrapped with Kraft paper or had 4 bands of masking tape perpendicularly wrapped around the samples. After removal of the paper and tape (wiping the tape lines with IPA) the samples were painted with Desothane HS CA8000/B50103 base with C thinner and following cure tested for adhesion and paint appearance relative to unreactivated and sanded controls.
0,0 4 4-) UjJ >H 0 4J o4 aa) Cuo o < o 0,
UU
4-) CL 0 0-0 4 1 4 00 0 4-4 0 %.1) m4 4-4 00 -H rl H -rJ 0 ~0 D (y) 4n-)
Q).
120 Results indicate: - All the foils except for a random SOLO foil passed with good marks " Excellent paint appearance was noted: No ghosting seen from the tape being on the foil that was cured for 6 hours and then being solvent wiped with IPA and no deleterious effects from application of Kraft paper were noted " No significant difference from a 1 application situation and a 3 application situation 10 4) 0 10 1 4 (L) 0 4-)~ 0 Wrl 0)r 0) -H 4-) Q) U) 40 I4 Xd 0 M04 0~ 0) a V 4-) ) C) 4~ 41 E-0\0 H H- 0\0 M m 0 0) 40 4- ) H r -0 C ) ......... ... ) Q~ ) C14 M 0 0 r. 4OU) rl U r-I a p f. 0 4 4-)U) 4 1 rd a) 4 ) HE 41 0 (z U) a) ft
H~
Wa 0 0 m U- 04 44 WU) 4) M 4 4-) 44 Q) H a)Q) a 4-44 4-) 4J4f a) 4 J 0 41 E rW H) a) J 0 Ar'o~ niro a) 0o 0 H Q4 a) n-i a)) r4 UrH> T3) C W H44a) 44 E- - 0 13J) a r4 -rW -H H- f r , l E-404U - 44 - 123 5% tetraisopropyl titanate in IPA .,TEET PART (.1NIN The example illustrates that the use of the treatment solution based on tetraisopropyl titanate applied as a treatment solution for aged Desothane HS 70846X prior to over-coating with Desothane HS 5070X improved adhesion compared with the untreated reference and also provided minimal letter swelling or figure distortion, when it is applied SOLO directly over the design stencil prior to over-coating with polyurethane.
- 124 Example 35 Screening experiments assessed a variety of metal alkoxide modifying agents with different relative reactivities (moisture stabilities) as described in Table 4. Initial experiments employed SIJA methods to probe the change in inter-coat adhesion with (i) the type of metal alkoxide used in the activation treatment system and (ii) its concentration. Under all conditions a SOLO approach was employed. Figure 1 provides the SIJA data employing 0.5, 3 and 5wt% concentrations of modifying agent. It should be pointed out that (i) there was no true concentration parity in the experiment although given the large concentration range investigated trends in performance could be assessed and (ii) all solutions were prepared in the one solvent system (IPA) to simplify the experiment even though it is known that alcoholysis is possible to provide mixed alkoxides. However, to counter this effect to some degree each solution was prepared freshly and applied directly. Considering that NPZ has a high molecular weight and was supplied as a 70% NPA solution the actual concentration was much lower than for similar titanium based reagents. Metal alkoxides with small alkoxy groups (eg: TPT, NBT, NPZ - see Table 4) appeared to provide limited benefit at concentrations of 0.5wt% but under the reactivation conditions employed showed improved inter-coat adhesion at concentrations above 3wt%. A lower reactivity for TEAZ was observed probably due to its greater moisture stability (Table 4) . Closer investigation of concentration (Figure 2) indicated that around 6 - 7mmol of modifying agents per 100g was required to see paint removal comparable to sanded specimens with less paint removed as the concentration was increased. A preliminary investigation was also undertaken to assess the activity of the substrate over time considering that along with a standard reactivation time (eg 30 to 60 minutes) there may also be a requirement in the paint hangar for the activated surface to remain active after a heat cycle or for shorter or longer periods. Preliminary assessment results are provided in Figure 3. The salient points from this study were that (i) NPZ treatment solutions appear to build up adhesive forces faster than TPT, (ii) both versions provided about the same level of inter-coat adhesion after lh even though the respective molar concentration of NPZ was less, (iii) paint surfaces remain active after 24h at ambient conditions, and (iv) the surfaces remained active after a heat cycle. Point (i) may be explained by the relative reactivity of the materials as provided by their difference in hydrolysis rate (Table 4) . This type of activation window was considered commercially attractive and appeared to provide some flexibility for paint hangar scheduling.
0 H 0 4I~ 'o m U(Nnarrim r- E- -4N A A -) - 0 (C 34r H 4J 04 - 0 0 (00 0 k u 0 E4-i- N NnLr -) - - - -y - - _ _ _ _l HY '1 t 4 ' HH 4 0~ LA) I 00 N0 d I (Y rz H 0 LAN 00 I- H V 00 E-4 0 H 0 OD ODr 13 : x 0 k4 0J 0 4(Jw L 0 H oroL 0 k~L~ -H 4.J J~ *A m 00 0.. 0H0 44 / ID 0' H 4) N 0i"(1 1 0 dV H 0 >IP Hw 4r 4.) 4- a' ) 4-)- 44H 0 0 0) C1 ( 00 4-0 0 4., (d 0 0) 4 CH 0f 10 r 0 00 o4 *H4- H H H a4 ~ 0 >1. (0 0 0 CL40 1- ,o 0) H 4J - r0 H OH 0 -1 d ) 4 4JH > 4- H- H -H I ~ 0 H l00)H>0. -H 00~2 0) flIA ., XH1 4 '40 J0i ) elI H 4 mO 0\0 >I Q4LAc > I @0 4 04Ml H4 V4- OH-- 4P '.0 F ::I ) 0 -4 ) mro Q0 ) U) -H I )H 4 - 126 Based on the results provided for LiBH 4 based modifying agents stencil and pre-mask swelling appeared to be more related to the physical properties of the solvent system 5 employed rather than the low concentrations of the active agent. To confirm this with metal alkoxide modifying agents a brief study was undertaken with the results provided in Figures 4 and 5. As was shown for LiBH4 treatments in 100% Proglyde DMM extensively swelled the 10 vinyl mask whilst 100% IPA provided no swelling. Since slight swelling began at a ratio of approximately 60:40 IPA: proglyde this ratio was considered a reasonable upper limit for the amount of glycol ether in formulations to be used with stencils. The effect of modifying agent 15 concentration for NPZ in NPA or TPT in IPA was also undertaken (figure 5) with the results confirming that in 100% alcohol at least the concentration range (0.5 to 5.Owt%) did not appear to negatively impact letter quality. 20 Preliminary 30 day water soak experiments were also undertaken with specimens reactivated and then over coated. One to three applications of the modifying agent were investigated to simulate both thin and thick applications, over spray, multiple passes etc. Generally 25 good over-coat appearance was observed even with high concentrations of TPT or NPZ (5wt%) at 1 to 3 applications (Figure 6). 30 Pre-mask and Stencil Vinyl Swelling Based on the preliminary results for stencil swelling, full stencil and premask diamond studies were undertaken. Using 100% IPA or NPA in the solvent system did not appear to provide appreciable stencil or pre-mask 35 swelling and as such letter clarity was crisp even when the reactivation solution was applied over vinyl mask materials SOLO (Figure 7a). Following encouraging whirling arm rain erosion results (see later) additional stencil swelling experiments were undertaken employing 40 5wt% NPZ in a range of solvents and combinations (Figure 7b) . No negative impact was demonstrated by using a 20:80 ratio of proglyde DMM to IPA or NPA, although at a 40:60 ratio some slight wicking away from the edges of the stencil was noted. Considering the benefits provided by 45 using a slightly higher proglyde concentration in terms of adhesion on thicker paint layers, this degree of stencil swelling may be acceptable and probably not observed on pre-mask vinyl considering its lower susceptibility to swelling or when applied for short dwell times (15min).
- 127 Alternatively, different solvent formulations can be employed depending on whether the application is for stencils which typically uses paint layer thickness on the order of one mil or premask or large body area 5 applications where the paint layer thickness is typically two to five mils. Tests using a Swt% NPZ are provided in Figure 7C. It should be pointed out that using difficult to remove Chinese characters letter quality was significantly 10 improved compared to untreated specimens and there was no appearance of stencil swelling when a 5%-NPZ 20:80 proglyde:IPA solvent system was employed for reactivation. Adhesion 15 Leveraging the preliminary results provided in the initial screening experiments above, the majority of subsequent experiments were completed employing a 3wt% concentration of modifying agent in alcohol based solvents. Later, higher concentrations of modifying agent 20 and the addition of proglyde to the solvent system was found necessary to provide acceptable whirling arm rain erosion results on thick layers of paint in certain circumstances. It should also be emphasised that as indicated in Figure 2, concentration parity was not 25 maintained between TPT and NPZ with a 3wt% solution actually corresponding to a 10.5 and a 6.6 mmol/100g concentration respectively. Scribe Adhesion 30 Various scribe adhesion test results are provided in Figure 8. Although the 3.5h, 120F cure stencil results did not provide a reference material that failed BSS7225 (and as such it was not possible to discriminate between the reactivation treatments) the 12h ambient cure 35 overcoats did with the reactivated samples providing a "10" rating similar to sanded for in contract to untreated with a "0" rating. Stencil pull and scribe adhesion were also undertaken (Figure 9) and mirror that completed for LiBH 4 . Regardless 40 of the treatment dwell (30 or 90 min), the treatments provided excellent scribe results (10 in BSS 7225) after 60 min under ambient conditions superior to that of both sanded (8) and untreated (3). In terms of stencil pull: pull times of 90 min (more severe) did provide a "thinner" 45 letter for all the reactivations treatments. Results for TPT were somewhat superior to NPZ regardless of whether IPA or NPA was employed which might be attributed to the difference in effective concentration. However, stencil pull results were on the whole far better than untreated - 128 with effectively a full letter present at a stencil pull time of 60min (similar to sanded specimens) where as untreated specimens only provided a full letter at a pull time of 30min. 5 SIJA and Rain Erosion Adhesion Based on those strategies WARE foils were prepared with the main aim of (i) obtaining concentration parity between TPT and NPZ, (ii) employing Desothane CA8000 base 10 coat cured with standard "C" thinner, (iii) exploring the potential for using proglyde as a co-solvent, and (iv) probing the effect of multiple applications. In all the experiments a relatively long application time was employed (4h) to provide a sufficient time frame for the 15 metal alkoxide to firstly react and then condense with the aged paint surface. Subsequent tests demonstrated that much shorter dwell (application) times, e. g. 30 minutes, were feasible. The results from SIJA panels are provided in Figure 20 10 and the WARE results obtained from foils provided in Figure 11. Although reasonable paint removal was obtained for the untreated reference from the 16h, 120F heat cycle cure (at 8%-RH or 0.59wt% air moisture), the 72 hr basecoat ambient cure (at 60%-RH or 1.12wt% air moisture) provided 25 an untreated reference with only marginal paint loss. As such it was again difficult to compare the relative performance of the reactivation treatments. Table 6 provides tabular data for the WARE results given in Figure 11. All foils produced "passes" with the 30 "C" cured base coating under the 16h, 120F, 8%RH cure. For the ambient cured foils, all the NPZ foils had superior WARE compared to the TPT foils. Fot the TPT foils, multiple applications appeared to help, although incorporation of 20% proglyde provided the greatest 35 advantage with 2/3 foils passing the test (eg a marginal pass). The reason for this is complex: (i) the addition of proglyde assists in spraying a more uniform treatment film, (ii) proglyde has a much lower vapour pressure than IPA or NPA and as such the surface remained "wet" somewhat 40 longer which presumably also assisted in promoting surface chemical reactions, (iii) proglyde is known to soften the paint and as such probably promoted metal alkoxide penetration into the coating surface and hence chemical reactions with embedded chemical groups, and (iv) through 45 that process favors the formation of a surface/subsurface interpenetrating network during condensation of the alkoxide prior to or during cure of the over-coat.
(~ - t- H 02 0 H o\O K4 ~ E 4 0 Z 4) Ln Ww-wZ1:40 )a H 0) 5 (DH H Fo H 04 H Illz O4C.)l~ Lfl m x 0\ 04 H H 4 02 U) Er H0 4H0 04-4 Hr Q4 H 0 P4 H 4Jr4.1 Ea02 . 1- 4 0c () q j .. E- -'* -0o 0) 0 0 \0 0 . .0 14 0\ 0 * * C) 4 4 T (y "r 0q Y 2 'lr (d ) 0 Q41)-H 0 00 04~ r. 04 H 04 rz 0 -H u r40 1204 - 04 0 0 E-- %H Oo ODr- (N N Hn m ry)r- 0 -'4 (1 _ _ \0 c - -- -- , u \VI la44 H 0 H- H) > 4 4 Q) rN w- H E04 Hw 02 000 ot44c-- -H 4-)4-0 04 a4 V 0 -C) 0 p 00 0)0 M~ Ulp 0 r)(Y N4 0- ) -H 4)Q a-~0))) 04 04 4J 44 ~ 4 E04 4- N4) E F 4 0) H 4) d 0 t 0 )U Q)~_ -A m l0 r- . 0 CQ t 4- - - OC:04) I'U4 ) 0) 000) H LI 4 Lr) 0
H
- 130 (vi) Reactivation of high humidity cured specimens appeared to be more complex compared with low humidity cure (surface chem. related moisture present in coating etc) 5 Based on those findings a SIJA screening experiment was completed with Desothane CA8800 and Eclipse coatings employing the same two cure scenarios albeit that the ambient cure relative humidity was increased to 80%RH 10 (1.56wt%% air moisture). The results are provided in Figures 12 and 13. Reactivation employing either TPT or NPZ using a variety of solvent systems provided improved levels of inter-coat adhesion under both cure conditions. The extent of improvement was such that further 15 discrimination between the alkoxides and solvent systems employed was difficult to assess, although introduction of proglyde into the formulation as an 80:20 blend did appear to further enhance the performance. Further SIJA screening was also completed on Desothane CA8000 using 5wt% NPZ and 20 several proglyde to n-propanol and isopropanol solvent ratios as shown in Figure 14. Results using 5wt% NPZ in a solvent solution of proglyde and either IPA or NPA with 30 to 60 minute dwell time of the modifying agent prior to overcoat paint are provided in Figures 15 to 18. 25 Figure 15 shows the rain erosion results employing a 20:80 proglyde:IPA solution for different dwell times and for "high" humidity (1.31wt% air moisture) and "low" humidity (0.22wt% air moisture) cure scenarios. In all cases the modifying agent treatment provided excellent inter-coat 30 adhesion to both Desothane CA8000 and CA8800 coatings with just the high humidity cure Eclipse providing failures. Figure 16a explores the effect of Desothane CA8800 cure rates using reduced rate (CTR), standard rate (CT), and fast rate (CT2) cured overcoats and a CTR cured base coat 35 employing the same reactivation treatment. For BAC70846 white over BAC707 gray good passes were obtained for the CTR and CT thinners. The faster CT2 cured over-coat did not provide so good a performance (2/3 foils rated above 4) although it should also be noted that sanded also 40 failed under similar conditions. When BAC51265 Blue was used as the overcoat (CTR) and the BAC 707 gray base coat cured with the different thinners (Figure 16b), high passes were obtained for each of the cure rates. This suggests that reactivation of the basecoat is relatively 45 insensitive to the cure rate (thinner) employed in the basecoat. Figures 17a and b documents the effect of higher proglyde concentrations (40%) and the impact of NPA or IPA as the alcohol in the Swt% NPZ formulation using difficult - 131 to over-coat systems including Desothane CA8800 gray on white cured under high humidity and CA8000 cured under low humidity conditions. In both cases excellent passes were obtained with little differentiation between the two types 5 of alcohols employed. Given those results the treatments were applied to high humidity cured Eclipse base coats which had been previously shown to fail when exposed to 5wt% NPZ in 80:20 IPA:proglyde (Figure 18a). In the case of formulations 10 employing 60% IPA no passes were obtained when three cycles of the humidity protocol were used even when two application and longer adhesion promoter dwell times were employed although specimens cured at low humidity were successfully reactivated (Figure 18b). Two cycles of the 15 high humidity protocol, however, did provide good passes. In contrast the 60% NPA formulation provided passes with three cycles of the humidity cure protocol with 2/3 foils passing after only lx 30min application and with 2x 30 or 60min treatment solution applications 3/3 foils passed the 20 adhesion test (Figure 18c). From these results, NPA performed slightly better than IPA for intercoat adhesion. This difference in NPZ formulations could be due to (i) longer dwell time re: vapour pressure or (ii) mixed alkoxides from the interaction of IPA in the solvent 25 system not favouring reactivation of such materials. Intuitively one might predict that steric hindrance would be greater in the mixed alkoxide system which could reduce the reaction rate with the substrate surface or ability for it to interpenetrate into the coating. 30 To determine if higher concentrations of modifying agent would show even further improvements in WARE, NPZ formulations up to 9wt% (19.8 mmol/100g) with a solvent of 60wt% NPA / 40wt% proglyde were tested using CA8000 basecoat cured at 120F under low (3% RH, 0.22 wt% air 35 moisture) and moderately high humidity (13%RH, 0.95wt% air moisture) conditions for eight days. Various paint lines CA8000 (Figure 19A), Eclipse (Figure 19B) , and Sky-Hullo (Figure 19C) - were used as overcoats. All foils (18/18) passed using 5wt% NPZ, 13/18 foils passed using 7wt%, and 40 only 10/18 passed using 9 wt%. The Sky-Hullo overcoat was particularly discriminating with 6/6 foils passing using Swt%, 4/6 using 7wt%, and 1/6 using 9wt%. Overall, the results in Figures 19A to 19C suggested that the optimum NPZ concentration is near 5 wt% and the optimum alkoxide 45 concentration is near 0.11 mmol per gram. Preliminary shelf life SIJA data is provided in Figure 20 and suggested that the modifying agent was not negatively affected by storage under ambient conditions. After three months all of the solutions (stored in glass) - 132 were precipitate free indicating a low level of hydrolysis and hence polymerisation. Although the solutions were prepared in either NPA or IPA it was not anticipated that the addition of 20 to 40% proglyde would negatively impact 5 storage stability, particularly since proglyde can be obtained essentially moisture free. Other storage containers such as high density polyethylene could be used. The modifying solution could also be stored as a two part kit, similar to how many aerospace paints are 10 packaged, where one part would contain the NPZ either at 70wt% or at diluted concentration and the second part would contain a proglyde/alcohol solvent solution. Sealant & Elastomer Interaction 15 Sealant and elastomer immersion results are provided in Figures 21 to 24. In those tests BMS5-142 sealant was immersed in modifying agent solutions with IPA or NPA as the solvent for a period of 24h, whilst elastomers were immersed for 7 days and the change in weight, volume and 20 hardness monitored both during the immersion as well as on recovery relative to MPK and water reference solutions. Figure 25 provides images of the sample following recovery and illustrates that the samples were not obviously eroded or negatively impacted visually. Considering that MPK has 25 solubility parameters of [dispersion, polar, and H bonding] [16.0, 9.0 and 4.7 J/cm 3 ], NPA [16.0, 6.8 and 17.4 J/cm 3 ] and employing the rule of mixtures a 40:60 blend of Proglyde / NPA [15.6, 5.0 and 12.0 J/cm 3 ] , the proglyde / NPA solvent blend should not provide a substantial 30 interaction with these types of materials. In the case of BMS5-142 polysulfidee non-chromate sealant) weight gain reported in Figure 21A was more significant for MPK relative to the reactivation treatment solutions and correspondingly the volume change in Figure 35 21B was also greater. This result indicated a relatively low interaction between the treatments and the polysulfide sealant. After 7 days recovery all modifying agent treatment solution immersed samples were within 5% of their initial pre-treatment hardness, whilst both the 40 water and MPK immersed samples were less than 10% softer. BMS1-71, CL1 (EPR) elastomers provided the greatest weight gain in MPK and material appeared to be extracted by the reference solutions. Weight loss on recovery in MPK was about 12% after 7 days compared to less than 4% for 45 samples immersed in the treatments. Correspondingly shrinkage on recovery was greater for the MPK reference, whilst the 7 day recovery Shore A. hardness at -17% increase was slightly higher than the 9 to 12% increase for samples immersed in TPT or NPZ. Similar results in - 133 Figure 23 were provided by BMS1-71, CL2 (Silicone). During immersion, that material also showed a great uptake of MPK after 7 days (70% weight increase) compared to the treatment and water solutions (-15% ), but weight and 5 volume (<5%) and hardness changes (<10%) were all similar during recovery. BMS1-57 (Silicone) was also less susceptible to treatment solution uptake than MPK (-20% weight gain re: -90%) . Weight and volume loss during recovery were less 10 than 10% (typically < 5%) for all immersions, and presumably was caused by material extraction during immersion. Hardness increase for the treatment solutions upon recovery was about 20%, whilst for MPK it was 10%. The larger hardness increase could indicate a larger 15 sensitivity of this elastomer to the treatment solutions than to MPK, a commonly used cleaning component. However, the treatment solutions are typically sprayed on as thin films rather than flooded or wiped on as is typical for cleaning solutions so the 7 day soak of the treatment 20 solutions is an extreme condition. Metal Interaction Commonly used aerospace metals were also investigated for weight change and visual appearance following 30 day 25 immersion in the metal alkoxide solutions compared with water (Figures 26 to 30). As a general point weight loss or gain was very low (not much more than the resolution of the 4 decimal place balance) and generally much less than water which appeared for most substrates to be the most 30 aggressive. Weight gain for titanium was less than -0.07% for the treatment solutions re: 0.14% for water although samples in the reactivation solution did appear to be more "tarnished". This colour shift was reversed for 2024-T3 aluminium with water providing significant discolouration 35 and weight change of -1.2% compared with less then 0.1% for the treatments. 2024-T3 clad samples accumulated a dull finish following immersion in water and less weight gain compared with the bare Al at just 0.8% increase. However treatment solution samples produced less than a 40 0.05wt% increase. Weight gains for high strength and stainless steel immersed in treatment solutions were all less than 0.02 wt% and similar to or less than for water. Interestingly NPZ in IPA did not appear to tarnish high strength steel the way the other systems (inc. water) did 45 although this observation did not translate into a significant difference in weight gain. Sandwich corrosion was tested according to ASTM F1110 with the results provided in Figure 31. Without magnification both the reference water and treatment solutions appear to provide - 134 surface discolouration without pitting to most of the surface. Composite Interaction 5 Immersion results for several composite systems are provided in Figures 32 to 35 relative to MPK and CEEBEE paint stripper. Samples were cut and immersed without any edge taping and as such, considering the small sample size, represented a most severe immersion test since the 10 cut edges are regions for easy treatment penetration for example through pores / fibre-matrix de-bonding from the cutting process and more generally from the effective "cut" surface to volume ratio. As general comments (i) the CEEBEE paint stripper appeared to be the most 15 aggressive towards all systems resulting in weight gains in the 1.5 to 4% range after a month immersion (ii) generally immersion in the treatment solution also led to weight gain rather than loss (apart from BMS8-276 with SM905), although in such cases the weight change was 20 generally very low (less than 0.5% for all composites and about 0.1% for BMS8-276 with SM905. In several instances initial weight gain was larger (eg 24h / 7 days) with this reducing after longer periods of immersion which may be possible if some material was extracted from the system 25 over time or broke off. Interaction with Tapes Preliminary tape interaction studies are provided in Figure 36 and were considered of critical importance to 30 application of the modifying agent technology for decorative painting of aircraft. In this experiment the effect of tape line, tape ghosting, and IPA wipe to remove residue were evaluated. In general no more paint wicking was observed for samples reactivated prior to/following 35 taping with generally crisp lines present regardless of the modifying agent formulation applied. With TPT a larger amount of modifying agent residue was expected considering its effective concentration at 5wt% was larger than the NPZ examples (17.5 mmol/lOOg re: llmmol/100g) . 40 However no appreciable ghosting effects were obvious meaning that even a ~ 1 mil overcoat thickness was sufficient to hide the tape lines. Interaction with Coatings 45 During production there remains the potential for paints to be reactivated (eg through over-spray) but not over coated. Considering that the process of reactivation modifies the surface of the paint, there remains the - 135 potential for some accelerated aging brought about via environmental factors such as heat, water and UV irradiation. To assess this, coupons painted with a white basecoat were subjected to accelerated aging according to 5 SAEJ1960 protocols employing a weatherometer. Figure 37 provides the change in colour (delta E) over time for coupons treated with modifying agent, sanded, or untreated relative to an untreated, painted coupon stored in the dark and measured at each time increment. Both untreated 10 and sanded, UV exposed samples showed colour shift values in the range of one delta E unit during the experiment (see Figure 38) . As expected treated coupons at zero time show some colour shift compared the untreated coupon at zero time. Samples reactivated with titanium were 15 slightly lighter and had a yellow / green colour shift prior to exposure. On exposure residue treatment not well bonded to the surface would be anticipated to be removed (washed away) due to the SAE J1960 protocol. This can account for the rapid change in delta E after the 20 equivalent of three months exposure. However, in both 3/6 month cases the samples were shifted darker and after an initial drop in the yellow shift became more yellow at 6 months. Generally speaking colour shifts for Zr based modifying agents were less than the Ti based one. With 25 increasing exposure leading naturally to a slight darkening and yellowing of the coating not dissimilar in magnitude to untreated samples. Further performance 30 Further application of the modification agent is provided in Figures 39 to 41. Figure 39 provides WARE results for clear coated samples (eg paints without pigment) either treated or non-treated prior to over coating as well as the implication of the effects of any 35 post-treatment process such as wiping with a tack rag prior to over-coating. In all cases the specimens treated with the modification agent provided superior inter-coat adhesion and on some occasions superior to sanded. Figure 40 provides hardness measurements prior to and 40 following immersion in hydraulic fluid. The results indicated that the adhesion promoting mechanism is compatible with hydraulic fluid with pencil hardness values either approximately the same as or harder than specimens left untreated prior to over-coating thus 45 providing another benefit. Figure 41 provides Gardner impact test results for treated and untreated specimens of various paint thickness. The test is used for predicting the ability of organic coatings to resist cracking or peeling caused by - 136 impacts producing rapid deformation of the underlying (metal) substrate). The results show that the modifying agent does not increase the brittleness of the paint and could possibly reinfroce the some paint combinations at 5 lower thickness.
- 137 It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as 5 broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.

Claims (39)

1. A method of activating an organic coating to enhance adhesion of the coating to a further coating and/or to other entities selected from adhesives, sealants, pin hole fillers 5 and pressure sensitive decals or logos, the method comprising applying an activation treatment to the coating wherein the activation treatment consists of a solvent and a surface chemistry and/or surface topography modifying agent which facilitates surface reduction, surface exchange or transesterification, or light induced surface modification, and optionally an additive; wherein: 10 the agent which facilitates surface reduction is a reductant; the agent which facilitates surface exchange or transesterification is a metal alkoxide or a chelate thereof; the agent which facilitates light induced surface modification is a free radical initiator or a combination of a free radical initiator with a tertiary amine and/or a mono or 15 multi-functional unsaturated species.
2. A method according to claim 1, wherein the surface chemistry and/or surface topography modifying agent is a reductant. 20
3. A method according to claim 1 or claim 2, in which the reductant is selected from sodium borohydride, lithium borohydride, potassium borohydride, zinc borohydride, calcium borohydride and alkoxy, acetoxy and/or amino derivatives thereof; sodium cyanborohydride; borane and borane complexes; lithium aluminium hydride; diisobutyl aluminium hydride; calcium hydride; sodium hydride; sodium bis(2 methoxyethoxy) 25 aluminiumhydride);and selectrides such as K-selectride (potassium tri-sec-butylborohydride.
4. A method according to claim 1, wherein the surface chemistry and/or surface topography modifying agent is a metal alkoxide or a chelate thereof. 2918221_1 (GHMatters) P63615.AU - 139 5. A method according to claim 1 or claim 4, in which the metal alkoxide or chelate thereof contains a metal selected from Groups 4A, 5A, 3A, 4B, 5B and 6B, Li Be, Mg, La, Fe, Zn, Nd and Gd.
5
6. A method according to claim 5, in which the metal alkoxide or chelate thereof contains a Group 4B metal.
7. A method according to claim 6, in which the Group 4B metal alkoxide is a 10 titanium alkoxide or a zirconium alkoxide.
8. A method according to claim 7, in which the titanium alkoxide or zirconium alkoxide is a tetra-C 1 . 8 alkyltitanate or a tetra-C 1 .salkylzirconate. 15
9. A method according to claim 8, in which the tetra-C 1 . 8 alkyl titanate or tetra-C 1 . 8 alkyl zirconate is tetra-propylzirconate or tetra-n-propyltitanate.
10. A method according to claim 9, in which the tetra-propyltitanate or tetra propylzirconate is tetra-n-propyltitanate or tetra-n-propylzirconate. 20
11. A method according to claim 1, wherein the surface chemistry and/or surface topography modifying agent is a free radical initiator or a combination of a free radical initiator with a tertiary amine and/or a mono or multi-functional unsaturated species. 25
12. A method according to claim 1 or claim 11, in which the free radical initiator is a visible light activated initiator selected from camphorquinone and derivatives thereof; 2918221_1 (GHMatters)P63615.AU - 140 benzophenone and derivatives thereof; diethylaminobenzophenone; and phenylphosphineoxide derivatives.
13. A method according to claim 12, in which the tertiary amine agent is selected 5 from N,N-dimethyl toluidine, N,N-dimethylamino ethylmethacrylate, methyl imidazole, NNN'N'tetramethyl-1,4-butane diamine and NNN'N'tetramethylphenylenediamine, and in which the multi-functional unsaturated species is selected from acrylates, methacrylates and acrylamides. 10
14. A method according to any one of claims 1 to 13, in which the modifying agent is present in an amount of at least 0.001% based on the total weight of the combination of solvent and agent.
15. A method according to claim 14, in which the modifying agent is present in an 15 amount in the range of 0.01% to 20% based on the total weight of the combination of solvent and agent.
16. A method according to any one of claims 1 to 15, in which the modifying agent is prepared in-situ from its constituent components. 20
17. A method according to any one of claims 1 to 16, in which the solvent is an organic solvent selected from at least one of ester based solvents, ketones, alcohols, ethers, amides, aromatics and halogenated solvents. 25
18. A method according to claim 17, in which the solvent is selected from ethyl acetate, ethoxyethyl acetate, isopropyl acetate, tertiary butyl acetate; methyl propyl ketone, methyl amyl ketone, methyl isoamyl ketone, methyl ethyl ketone; ethanol, methanol, ethoxyethanol, n-propanol, isopropanol, butanol, tertiary butanol, secondary butanol, 2918221_1 (GHMatters) P63615.AU - 141 ethylene and propylene glycols and C 1 . 6 alkyl ethers thereof, tetrahydrofuran, N-methyl pyrrolidinone and water.
19. A method according to claim 17, in which the solvent is a combination of 5 dipropylene glycol dimethyl ether: tertiary butyl acetate; diproplyene glycol dimethyl ether: isopropanol, n-propanol, methanol, ethanol, n-butanol, isobutanol, secondary butanol, tertiary butanol, ethoxy ethanol and/or ethylhexanol; ethylene glycol monomethyl ether: ethanol, methanol, ethoxyethanol, isopropanol and/or n-propanol; dipropyleneglycol monomethylether, dipropyleneglycol-monobutylether, and/or dipropylenegylcol; 10 combinations tetrahydrofuran: triglyme; tetrahyd rofura n: dipropylene glycol dimethylether; methylethyl ketone: ethoxyethyl acetate; methyl amyl ketone: ethoxyethyl acetate; N-methyl pyrrolidinone: ethyl acetate; ethyl acetate: benzyl alcohol; dipropylene glycol dimethyl ether: polyethylene; and methyl propyl ketone: methyl ethyl ketone. 15
20. A method according to claim 17, in which the solvent is an alcohol or ether or combination thereof.
21. A method according to claim 20, in which the alcohol is selected from an alcohol having a molecular weight of less than about 150 and the ether is selected from an 20 ether having a molecular weight of less than about 300.
22. A method according to claim 20 or claim 21, in which the alcohol is selected from isopropanol or n-propanol and the ether is dipropylene glycol dimethyl ether. 25
23. A method according to claim 20, in which the solvent is a combination of isopropanol or n-propanol and dipropylene glycol dimethyl ether.
24. A method according to claim 23, in which the dipropylene glycol dimethyl 2918221_1 (GHMatters) P63515.AU - 142 ether is present in an amount of less than 50% based on the total weight of the combination of isopropanol or n-propanol and dipropylene glycol dimethyl ether.
25. A method according to any one of claims 1 to 24, in which the solvent is 5 present in an amount in the range of 80% to 99.99% based on the total weight of the combination of solvent and agent.
26. A method according to any one of claims 1 to 25, in which an additive is also applied to the organic coating. 10
27. A method according to claim 26, in which the additive is selected from at least one of rheology modifiers, film formers, wetting agents, surfactants, dispersants, anti foaming agents, anti corrosion reagents, stabilizers, levelling agents, pigments, dyes and Lewis acids. 15
28. A method according to claim 27, in which the additive is selected from at least one of rheology modifiers, surfactants, dispersants, anti foaming agents, anti corrosion reagents, stabilizers, levelling agents, pigments and dyes.
29. A method according to claim 28, in which the additive is selected from at least 20 one of surfactants, anti foaming agents, anti corrosion reagents, stabilizers, pigments and dyes.
30. A method according to claim 29, in which the additive is selected from at least one of stabilizers, pigments and dyes. 25
31. A method according to any one of claims 26 to 30, in which the additive is 2918221_1 (GHMatters) P63615.AU - 143 present in an amount of less than about 10% based on the total weight of the combination of solvent, agent and additive.
32. A method according to any one of claims 26 to 31, in which the solvent, agent 5 and additive when present are applied either simultaneously, sequentially or separately.
33. A method according to any one of claims 26 to 32, in which the solvent, agent and additive when present are applied simultaneously in the form of an activation treatment. 10
34. A method according to any one of claims 26 to 33, in which the solvent, agent and additive when present are applied via a spray, brush, dip, knife, blade, hose, roller, wipe, curtain, flood, flow, mist, pipette or combinations thereof.
35. A method according to any one of claims 1 to 34, in which the organic coating 15 is a polyurethane, epoxy, polyester, polycarbonate and/or acrylic coating.
36. A method according to any one of claims 1 to 35, in which excess solvent and/or agent are removed by solvent or water rinsing; dry, water or solvent wiping; air or gas knife; vacuum application; squeegee; and/or natural or forced convection evaporation. 20
37. A coated substrate having an activated coating, wherein the adhesion of the coating to a further coating and/or other entities selected from adhesives, sealants, pin hole fillers and pressure sensitive decals or logos has been enhanced by application of a coating method according to any one of claims 1 to 36. 25
38. A substrate according to claim 37, in which the substrate is a metal, 2918221_1 (GHManers) P63615.AU - 144 composite, plastic, elastomer or a material containing, glass, wood or fabric.
39. A method for activating an organic coating to enhance adhesion of the coating to a further coating and/or to other entities selected from adhesives, sealants, pin hole fillers 5 and pressure sensitive decals or logos, a coated substrate having a coating activated by the method, substantially as herein described with reference to the Examples and Figures thereof.
2918221.1 (GHMatters) P63615.AU
AU2007202368A 1998-12-14 2007-05-22 Activation method using modifying agent Active AU2007202368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007202368A AU2007202368B2 (en) 1998-12-14 2007-05-22 Activation method using modifying agent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU14782/99A AU730349B2 (en) 1998-04-20 1998-12-14 Acceleration protection suit
US60/646,204 2005-01-21
AU2007202368A AU2007202368B2 (en) 1998-12-14 2007-05-22 Activation method using modifying agent

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2006/000070 Division WO2006086828A1 (en) 2005-01-21 2006-01-20 Activation method using modifying agent

Publications (2)

Publication Number Publication Date
AU2007202368A1 AU2007202368A1 (en) 2007-06-14
AU2007202368B2 true AU2007202368B2 (en) 2011-12-08

Family

ID=38197528

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007202368A Active AU2007202368B2 (en) 1998-12-14 2007-05-22 Activation method using modifying agent

Country Status (1)

Country Link
AU (1) AU2007202368B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840649B2 (en) 2018-11-07 2023-12-12 Eastman Performance Films, Llc Tack solutions and their use in applying films to substrates
CN111180599B (en) * 2020-01-03 2023-01-24 宁波卢米蓝新材料有限公司 Mixture, organic electroluminescent device containing mixture and application of mixture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607473A (en) * 1968-03-04 1971-09-21 Macdermid Inc Compositions for and method of pretreating plastic surfaces to improve adhesion of coating materials
US5212017A (en) * 1990-12-14 1993-05-18 General Electric Company Aminopropyltrimethoxy silane primer composition and coated articles made therewith
US5922161A (en) * 1995-06-30 1999-07-13 Commonwealth Scientific And Industrial Research Organisation Surface treatment of polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607473A (en) * 1968-03-04 1971-09-21 Macdermid Inc Compositions for and method of pretreating plastic surfaces to improve adhesion of coating materials
US5212017A (en) * 1990-12-14 1993-05-18 General Electric Company Aminopropyltrimethoxy silane primer composition and coated articles made therewith
US5922161A (en) * 1995-06-30 1999-07-13 Commonwealth Scientific And Industrial Research Organisation Surface treatment of polymers

Also Published As

Publication number Publication date
AU2007202368A1 (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US10888896B2 (en) Activation method using modifying agent
EP1732707B1 (en) Activation method
Du et al. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates
RU2415169C2 (en) Sol for applying sol-gel coating on surface, method of applying sol-gel coating, preparation method thereof and use
US7811374B2 (en) Colored coating and formulation
US20070092739A1 (en) Treated Aluminum article and method for making same
US20100015339A1 (en) Silane-containing corrosion protection coatings
EP2850139B1 (en) Radiation radically and cationically curable composition, and method for preparing a hybrid sol-gel layer on a surface of a substrate using said composition
Neuder et al. Molecular design of in situ phosphatizing coatings (ISPCs) for aerospace primers
AU2007202368B2 (en) Activation method using modifying agent
AU2012350354B2 (en) Coating systems
Fedel Environmentally friendly hybrid coatings for corrosion protection: silane based pre-treatments and nanostructured waterborne coatings
AU2005223685B2 (en) Activation method
Chizari et al. Silane films on galvanized surfaces: A review on the sol-gel deposition methods, influential parameters and characterization methods
US20210130626A1 (en) Polymer coating compositions
Blohowiak et al. Development and implementation of sol-gel coatings for aerospace applications
Mugada Superprimer: Chromate Free Coating System for DoD Applications
CN113292891A (en) Coating composition
He Comprehensive corrosion resistance and durability evaluation for aircraft coatings on aluminum alloy substrates

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)