AU2007202111B2 - System and method for the production and use of hydrogen on board a marine vessel - Google Patents

System and method for the production and use of hydrogen on board a marine vessel Download PDF

Info

Publication number
AU2007202111B2
AU2007202111B2 AU2007202111A AU2007202111A AU2007202111B2 AU 2007202111 B2 AU2007202111 B2 AU 2007202111B2 AU 2007202111 A AU2007202111 A AU 2007202111A AU 2007202111 A AU2007202111 A AU 2007202111A AU 2007202111 B2 AU2007202111 B2 AU 2007202111B2
Authority
AU
Australia
Prior art keywords
hydrogen
production
utilization
water
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2007202111A
Other versions
AU2007202111A1 (en
Inventor
Craig H. Schmitman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Have Blue LLC
Original Assignee
Have Blue LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Have Blue LLC filed Critical Have Blue LLC
Priority to AU2007202111A priority Critical patent/AU2007202111B2/en
Publication of AU2007202111A1 publication Critical patent/AU2007202111A1/en
Application granted granted Critical
Publication of AU2007202111B2 publication Critical patent/AU2007202111B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • B63H2021/202Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system
    • Y02T70/5218Less carbon-intensive fuels, e.g. natural gas, biofuels
    • Y02T70/5236Renewable or hybrid-electric solutions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Description

flegulanon 32 AUSTRA1.IA Patents A ct 1990 COMPLETE SPECIFICATION STANDARD PATENT Invention Title: System and method for the production and use of hydrogen on board a marine vessel The following statement is a full description of this invention, including the best method of performing it known to us: SYSTEM AND METHOD FOR THE PRODUCTION AND USE OF HYDROGEN ON BOARD A MARINE VESSEL 5 FIELD OF THE INVENTION The present invention relates to the production and use of hydrogen onboard a marine vessel and, more particularly, to systems and methods to convert water supplied to a vessel into hydrogen (H 2 ) for later use as an energy carrier for vessel power or propulsion. 10 BACKGROUND OF THE INVENTION Presently, the vast majority of marine vessels use onboard fossil fuel engines, such as diesel, fuel oil or gasoline for power and propulsion. These onboard fossil fuel propulsive systems and electrical generators are large sources of both air and water pollution. Existing 15 fossil fuel technologies also generate noise pollution, vibrations and foul smells. Further, fuel quality and bacterial growth are problems for users of diesel and fuel oils, while explosions from trapped vapors concern operators of gasoline systems. A need has arisen, therefore, for the development of alternative fuels which reduce or eliminate some of the problems associated with fossil-fuel technologies. There exist known 20 technologies for reducing pollution, vibration and noise in land based vehicles, such as the use of gasoline or diesel-electric hybrid power systems, battery and fuel cell electric drives, metal hydride storage technologies, compressed natural gas, methanol, and hydrogen burning internal combustion engines. For example, a gas-hybrid system, in which H 2 is added to the fuel/air intake system or combustion chamber of a fossil fuel engine prior to combustion, can 25 reduce polluting emissions. It is also known that a fuel cell power system consuming H 2 stored in a metal hydride tank can provide safe (relative to fire and explosion hazards), ecologically "clean" power. However, while many developments in the "alternative" fuels industry are aimed at land based transportation systems, which reduce or eliminate some of the above referenced 30 problems in land vehicles, these same technologies and systems show great promise for adaptation to the marine environment. For example, it is known that the most energy efficient, vibration free and quiet method of propelling a large marine vessel is via an electric motor. One additional advantage of some electric motors is that they may also be used as a generator to produce electrical energy. For example, on some gas turbine powered aircraft 35 the starter motor reverts to a generator once the gas turbine engine has started. For all of these systems, however, the single most significant obstacle facing implementation, with the exception of the gasoline-fueled hybrid, is the absence of a national retail "alternative" fueling infrastructure. Developing such an infrastructure would require a multi-billion dollar, decade-long commitment, and even with the advent of gasoline fueled hybrids, the danger posed by explosion of vapors and the non-renewable nature of gasoline result in a less than optimum long term solution. Thus, a further need has developed for a system which would reduce the polluting 5 effects of fossil-fuel engines in maritime vessels, while also eliminating the need for a new refueling infrastructure. While presently it is known to desalinate and otherwise purify ocean or fresh water through reverse osmosis, for example, and to generate H 2 from that water by electrolysis, i.e., with electrical energy, and while it is also known that the most cost-effective and environmentally benign method of electrolysis uses electricity 10 from renewable sources, such as solar (photo voltaic or PV), wind and water drag electricity generators; and while it is also known that electrical energy suitable for use in onboard electrolysis is also available from engine and auxiliary and shore power sources, these technologies have never been assembled onboard a marine vessel in such a way as to provide a ready source of energy for electrical power or propulsion without the need 15 for the creation of a new external infrastructure. Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common general knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected to be ascertained, understood and regarded as relevant by a person 20 skilled in the art. SUMMARY OF THE INVENTION In one aspect the present invention provides a system for the production and utilization of hydrogen in marine applications comprising: a source of water; a source of 25 electrical power; a water to hydrogen converter for converting said water into hydrogen gas and oxygen gas, said converter in fluid communication with said water source and in electrical communication with said electrical power source; a hydrogen power plant in fluid communication with said converter for converting said hydrogen gas into utilizable energy; and a power distribution device in electrical communication with the electrical 30 power source, the converter, and the power plant. In a second aspect the present invention provides a system for the continuous production and utilization of hydrogen in marine applications comprising: a source of purified water; a source of electrical power; an energy storage device for storing electrical power; a water to hydrogen converter for converting said water into hydrogen gas and 35 oxygen gas, said converter in fluid communication with said water source and in electrical communication with said electrical power source; a power plant in fluid communication with said converter for converting said hydrogen and oxygen gas into utilizable energy; a hydrogen storage device having an inlet and an outlet, wherein the inlet is in fluid communication with the converter and the outlet is in fluid communication 40 with the hydrogen power plant; a oxygen storage device having an inlet and an outlet, wherein the inlet is in fluid communication with the converter and the outlet is in fluid communication with the hydrogen power plant; and a power distribution device in electrical communication with the electrical power source, the energy storage device, the converter, and the power plant. 45 In a further aspect the present invention provides a method for producing and utilizing hydrogen in marine applications comprising: providing a source of purified water; generating electrical power; storing the electrical power; converting said water into -2hydrogen gas and oxygen gas utilizing the generated electrical power; converting said hydrogen and oxygen gas into utilizable energy; and distributing the energy to at least one power consuming component. Briefly, aspects of the present invention are directed to a system and method for 5 producing and utilizing H 2 entirely onboard marine vessels eliminating the need for new refueling infrastructure. In one embodiment, the system utilizes the H 2 produced by the invention as an energy carrier for propulsion and non-propulsion power requirements. In this system,
H
2 0 is obtained from the sea or other water source and then conducted to an onboard 10 water purification device. The purified H 2 0 is then converted via any efficient H 2 0 to H 2 conversion device into hydrogen (H 2 ) and oxygen. The gaseous H 2 produced is either used directly by the onboard power plant(s) or stored. In another embodiment, a method is provided so that the system may use electricity for H 2 0 to H 2 conversion and other invention processes (e.g., water 15 purification) from multiple renewable and non-renewable sources. In another embodiment of the invention, the system eliminates the trapped vapor explosion danger of gasoline fueled power and propulsion systems by using solid state metal hydride tanking technologies for H 2 storage whenever possible. In another illustrative embodiment of the present invention a system is provided to 20 improve the efficiency of the system by recycling fuel cell waste heat and condensation of steam exhaust for re-use by the electrolysis components. In yet another embodiment the invention is directed to a method for the production and utilization of H 2 onboard a marine vessel utilizing the systems described above. 25 Preferred examples of certain advantageous embodiments of the processes in accordance with the present invention are set forth in the accompanying illustrations and tables together with preferred embodiments of the specific elements of this invention required to properly carry out this invention. In the illustrations and tables and in the following text describing the process and 30 embodiments, the elements of the apparatus and the general features of the procedures are shown and described in relatively simplified and generally symbolic manner. Appropriate structural details and parameters for actual operation are available and known to those skilled in the art with respect to the conventional aspects of the process. 35 BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a process flow chart of the principal process methods and steps according to one embodiment of the invention. FIG. 2 is a process flow chart of the principal process methods and steps according to another illustrative embodiment of the invention in which the primary means 40 of H2 energy conversion is provided by one or more fuel cells. FIG. 3 is a process flow chart of the principal process methods and steps according to another illustrative embodiment of the invention in which H 2 energy conversion is provided by a H 2 consuming internal combustion engine which powers an electrical generator. -3- FIG. 4 is a process flow chart of the principal process methods and steps according to another illustrative embodiment of the invention in which H 2 energy conversion is provided by a H2 consuming internal combustion engine which powers a 5 mechanical means of power transmission to one or more propulsive systems. FIG. 5 is a process flow chart of the principal process methods and steps according to another illustrative embodiment of the invention in which propulsive power is produced by a fossil fuel consuming internal combustion engine in which H 2 is added into the fuel/air intake system or combustion chamber prior to combustion. 10 FIG. 6 is a process flow chart of the principal process methods and steps according to another illustrative embodiment of the invention in which the primary means of H2 energy conversion for non-propulsive power is provided by one or more fuel cells. FIG. 7 is a process flow chart of the principal process methods and steps according to another illustrative embodiment of the invention in which the primary means 15 of H 2 energy conversion for non-propulsive power is provided by a H 2 consuming internal combustion engine which powers an electrical generator. - 3A - DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a system and method for the production and utilization of hydrogen gas (H2) on-board a marine vessel. 5 One embodiment of the hydrogen production and utilization system 10 of the present invention is shown in FIG. 1. Water is obtained from a water source 12, e.g., sea, river, lake, estuary, municipal supply etc. Intake of water into the system may be accomplished via any standard method, such as, for example, via a standard seacock, hose attachment or other opening. In one embodiment the water supply is in fluid communication with a pre-filter 14 10 which filters the water, i.e., strains the water to remove debris. The source water is then conducted to an additional onboard water purification device 16, commonly called a "watermaker," which is in fluid communication with the water supply 12. The water purification device 16 further treats the water and then conducts the water to the water-to-hydrogen conversion device 18. The amount of supplementary treatment is 15 variable and based on specifications provided by the manufacturer of the water-to-hydrogen conversion device 18. Some supplementary water treatments may include, for example, desalinization, demineralization, and/or deionization. Any suitable water purification device 16 may be utilized in the system, such as, for example, reverse osmosis, submerged tube, multiple effect, two stage and multi stage, and vacuum vapor compression types. The 20 resulting water is referred to hereafter as "product water," which is stored in a product water tank 20 in fluid communication with the water purification device 16. Alternatively, pre filtered and purified water could be introduced directly into the product water storage tank 20 through an external valve 15. The product water then passes into a water-to-hydrogen conversion device 18 and is 25 converted via any efficient H 2 0-to-H 2 conversion technology into hydrogen and oxygen (02). Any suitable H 2 0 to H 2 conversion technology may be utilized in the present system as a conversion device 18, such as, for example, an electrolyzer (alkaline, polymer membrane, steam {using solid oxide electrolytes}, or any other method), a multiphoton photoelectrochemical device, a multiple-band-gap photoelectrochemical cell, or a 30 photoelectrolysis device. A system may have one or more of the above devices and systems may include a mix of these technologies. The gaseous H 2 produced by the conversion device 18 is either directly utilized by the onboard power plant(s)22, which is/are adapted to permit the H2 gas to flow therein, or the
H
2 gas is stored in a tank 24 for later use by the power plant(s) 22, where the tank 24 is in 35 fluid communication with the conversion device 18 and the power plant 22. The H 2 can be either directly stored in the tank 24, or it can be compressed by a compressor (not shown) and stored, or compressed, liquified via a liquification system (not shown), and stored as liquid hydrogen (LH2)or "slush" in the onboard tank 24. Storage tanks used may include any -4suitable technology, such as, for example, metal hydride tank technology, composite tank technology, vacuum insulated composite tank technology, carbon nanotubes, or any other efficient H 2
LH
2 or "slush" storage technology. Alternatively hydrogen gas could be 5 introduced directly into the hydrogen storage tank 24 from an external source through a valve (not shown). The oxygen produced during the H,0-to-H 2 conversion can be vented into the atmosphere or stored in an oxygen storage tank 26. The stored oxygen can then be consumed to enhance the performance of the power plant(s) 22 or utilized for any other suitable purpose. 10 The 0 can be either directly stored in the tank 26, or it can be compressed by a compressor (not shown) and stored, or compressed, liquified by a liquification system (not shown), and stored as liquid oxygen (L0 2 )in the onboard tank 26. Alternatively oxygen gas could be introduced directly into the oxygen storage tank 26 from an external source through a valve (not shown). 15 The electrical components of the system 10, such as the water purification device 16 and the conversion device 18, used in the H 2 0-to-H 2 conversion steps may be powered by one or more electrical source supplies 28 via a power distribution device 30. The electrical source supply 28 can comprise any suitable technology, including, one or more of the following devices: solar electric systems (Photo Voltaic); solar furnace steam generators; wind 20 generators; water drag generators (hydro-electric); human-powered generators (e.g., attached to an "exercycle"); electrical power from the vessel's main or auxiliary engines; nuclear power generators; or onshore electrical power (shore power or utility provided shore power). Conventional renewable energy sources, such as those listed above, generally generate low voltage DC current. This power may not be directly suitable for use via the other components 25 of the system, such as, for example, the conversion device 18 or the purification device 16. In such cases a power conditioner (not shown) may be installed between the power source 28 and the distribution device 30, between the distribution device 30 and at least one power utilizing component or may be included as an integral part of either the power source 28 or distribution device 30. Any power conditioning device suitable for conditioning the power 30 generated by the power source 28 for use by the other power consuming components of the system may be utilized, such as, for example, a step-up transformer and an AC inverter. The energy supplied via the power plant(s) 22 and the electrical source supply 28 may be utilized immediately, either directly or after appropriate conditioning, or can be stored in an energy storage device 32 in electrical communication with the power distribution device 35 30. The energy storage device 32 can utilize any known energy storage technology, such as, for example, commercially available deep-cycle marine batteries or other efficient electrical storage devices. There may be one or more of these energy storage devices 32, or any other electrical energy storage technology in any embodiment of the invention. The energy storage -5device 32 can be utilized for buffer storage of electrical energy from the electrical source supply 28 and the energy stored therein may be used to provide power to the invention components (e.g., the water purification device 16 and the conversion device 18) and on 5 demand power for propulsion or other requirements via the power distribution device 30. The hydrogen produced in the conversion device 18 either directly or via a hydrogen storage device 24 passes into the power plant(s) 22 where it is suitably consumed and converted in utilizable energy. Any power plant 22 may be utilized which is capable of converting the energy potential of H 2 into mechanical or electrical energy for propulsion and 10 or non-propulsion utilization onboard a marine vessel. Hydrogen use may include the addition of H 2 to the fuel/air intake system of any fossil fuel or alternative fuel power plant 22, such as, gasoline, diesel, compressed natural gas, methanol, ethanol, etc. to improve performance and reduce undesirable emissions. The power plants 22 contemplated for use under this invention include, but are not 15 limited to: electrical power plants, such as a fuel cell or any direct or alternating current electrical motor whose power is provided by electricity created by a hydrogen consuming fuel cell; mechanical power plants, such as hydrogen or fossil fuel consuming or burning ("powered") internal combustion piston engine, hydrogen or fossil fuel powered lean-bum spark-ignited engine, hydrogen or fossil fuel powered steam piston engine, hydrogen or fossil 20 fuel powered steam turbine engine, hydrogen or fossil fuel powered gas (jet) turbine engine, hydrogen or fossil fuel powered rotary engine, and any other hydrogen or fossil fuel powered mechanical engines not listed; electrical/mechanical "hybrid" power plants, such as direct or alternating current electrical motors whose electricity is provided by a generator powered in turn by a hydrogen or fossil fuel consuming or burning mechanical power plant such as any 25 of the ones listed above. Propulsive power is provided to propellers, water-jets, inboard/outboard transmissive drives, or any other water propelling system 34. There may be no propulsion system (as on a barge), or one or more such propulsion system in any example of the invention. These propulsive systems 34 can derive propulsive power from any of the power plants 22 described 30 above. For example, electrical power plants 22 will derive propulsive power from the direct conversion of H 2 by a fuel cell into electricity which in turn will power an electric propulsive system 34 (e.g., electrical motor). The available electrical energy may be fed directly to the electrical propulsive system 34 from the power plant 22 via the power distribution device 30 or may be fed to the propulsive system 34 from a energy storage device 32 such as a battery 35 or set of batteries via the power distribution device 30. Mechanical power plants 22 will either directly drive propulsive systems 34 or by way of transmissions (not shown). The power will come from conversion of fuel energy into mechanical energy and then into propulsive energy. -6- 1 Electricalhnechanical (hybrid) power plants 22 derive propulsive power from the conversion of H2 into mechanical energy by a "mechanical" power plant 22 which consumes
H
2 . This power plant in turn will drive a generator (not shown) creating either alternating 5 current or direct current electrical energy which in turn is consumed by an electric propulsive system 34 (e.g., electrical motor) via the power distribution device 30 to move the vessel. Schematics of several alternative embodiments of the above inventive system and method are depicted in FIGs. 2 to 7. FIG. 2 shows a schematic representation of an alternative embodiment of the system 10 and method of arrangement as described above in a typical sail or power vessel whose primary means of H2 energy conversion is provided by one or more fuel cell power plants 22 in electrical communication with the power distribution device 30. In this alternative embodiment, waste heat and water vapor exhausting from the fuel cell power plant(s) 22 are recycled via a heat exchanger 36 to reduce the energy required to produce additional product 15 water and or heat other shipboard water (shower, sink, etc.) or for any other purpose requiring heat including, but not limited to, heating and ventilation, metal hydride H2 storage tank(s) disassociation or steam needed for steam electrolysis. Any fuel cell power plant 22 configuration may feature a "closed H,0 loop" system, as shown in FIG. 2, in which the fuel cell "exhaust" (steam H 2 0 vapor) is re-condensed into 20 product H20 for the H 2 0-to-H 2 conversion device 18 and waste heat is captured in a heat exchanger 36 for useful work. In this closed loop system, product H 2 0 is converted into H2 and 02 in the conversion device 18, the H2 is then either stored in a hydrogen storage device 24 and consumed by the fuel cell power plant 22 or directly consumed by the fuel cell power plant 22. During consumption by the fuel cell power plant 22, the H2 is combined with 02 25 to make H 2 0 vapor in the form of steam. This steam is then condensed into liquid H20 in the heat exchanger 36 and the process is begun again. FIG. 3 shows a schematic representation of the invention components and method of arrangement in a typical sail or power vessel whose primary means of H 2 energy conversion is provided by a H2 consuming internal combustion engine power plant 22 which powers an 30 electrical generator 38 in electrical communication with the power distribution device 30. This configuration also illustrates a fuel cell power plant 22a in use as an auxiliary source of ship power for non-propulsive requirements in electrical communication with the power distribution device 30 and a heat exchanger 36 to provide a "closed H20 loop" system. FIG. 4 shows a schematic representation of the invention components and method of 35 arrangement in a typical sail or power vessel whose primary means of H2 energy conversion is provided by a H 2 consuming internal combustion engine power plant 22 which powers an alternator 39 in electrical communication with the power distribution device 30 and a mechanical means of power transmission to one or more propulsive systems 34. This -7- 1 configuration also illustrates a fuel cell power plant 22a in use as an auxiliary source of ship power for non-propulsive requirements in electrical communication with the power distribution device 30 and a heat exchanger 36 to provide a "closed H 2 0 loop" system. 5 FIG. 5 shows a schematic representation of the invention components and method of arrangement in a typical sail or power vessel whose primary means of power to the propulsive system 34 is produced by a fossil fuel consuming internal combustion engine power plant 22 in mechanical communication with the propulsive system 34. The fossil fuel is supplied by a separate fuel tank 40 in fluid communication with the internal combustion engine power 10 plant 22. The internal combustion engine power plant also powers an alternator 39 in electrical communication with the power distribution device 30. This embodiment reduces the polluting emissions from the internal combustion engine power plant 22 by the addition of H 2 into the fuel/air intake system or combustion chamber of the power plant 22 prior to combustion. The power plant 22 fuel/air intake system and mechanical power transmission 15 system are not a part of the present invention and thus omitted for clarity. This configuration also illustrates a fuel cell power plant 22a in use as an auxiliary source of ship power for non - propulsive requirements in electrical communication with the power distribution device 30 and a heat exchanger 36 to provide a "closed H 2 0 loop" system. FIG. 6 shows a schematic representation of the invention components and method of 20 arrangement in a typical sail or power vessel whose primary means of H 2 energy conversion for non-propulsive power is provided by one or more fuel cell power plant(s) 22 in electrical communication with the power distribution device 30. FIG. 7 shows a schematic representation of the invention components and method of arrangement in a typical sail or power vessel whose primary means of H 2 energy conversion 25 for non-propulsive power is provided by a H 2 consuming internal combustion engine power plant 22 which powers an electrical generator 38 in electrical communication with the power distribution device 30. While any of the above embodiments might be utilized in the present invention, a preferred embodiment is based on the embodiment shown in FIG. 2, in which a fuel cell 30 power plant 22 is utilized, in a sailing vessel, with several modifications. Metal hydride hydrogen storage tank(s) 24 would be used to store the H 2 thus reducing tank storage volume and the need for a compressor. The electrical source supply 28 would comprise a mixture of on-board water drag, solar power and wind power generators. Preferably, this vessel would also feature a "dual mode" electrolysis H 2 0-to-H 2 conversion device 18 to allow for efficient 35 low power conversion (while underway) and high power conversion (when connected to shore power) operation. Most current water drag generators are single purpose stand alone systems. The water drag generators utilized in the electrical source supply 28 of the preferred embodiment, would -8preferably use electric motors in the dual role of propulsive power source and water drag generator. This reduces the total number of components onboard, increases the electrical output of the water drag generator, simplifies operation and reduces system cost. However, 5 the invention also anticipates some applications where single purpose water drag generators are the preferred configuration and anticipates the optimization and improvement of such single purpose components. The photo voltaic (PV) solar panels of the electrical source supply 28 of the preferred embodiment, can either be "built in" to marine vessels or added as "after market" items 10 mounted in the "least inconvenient" manner. For example, PV systems can be mounted along the hull, masts, windows or portholes, superstructure, deck, and, even in "hard sails" and incorporated into sail cloth. These marine "solar arrays" could also be constructed in a manner similar to those on spacecraft. Most preferably, the current embodiment would make extensive use of "built in" solar power. In this example, photo voltaic materials would be 15 installed along the hull, on the mast, on deck, and built into the sails. The wind generators of the electrical power supply source 28 would mount on mizzen masts if available. If not, to increase their output, telescoping poles would mount on the vessel's after rails. These poles would extend upward and aft exposing the wind generators to the greater amounts of potential wind energy available with increasing height above the 20 water and clear of the ship's rigging by means of their rearward orientation. The data in Table 1 reflects the operating characteristics of a re-fit 30' long sailboat using H 2 compressed to 5000 psi and commercially available non-optimized components. It is assumed by this example that the original configuration offered an internal combustion engine of approximately 25 horsepower mounted internally to the hull. Fuel tank capacity 25 is limited in this example to the volumetric equivalent of 100 gallons. It is assumed that a 20 kW fuel cell is onboard. Fuel cell efficiency is conservatively estimated at 50% when it may be much higher. If the vessel were a new build, even using compressed H 2 , one could store more than the 100 gallons illustrated herein and increase the useful range. 30 By changing the storage technology to metal hydrides, current metal hydride tank technology would reduce the required volume for the same amount of H, by weight by 50%. Using metal hydride tanks would also reduce the energy required to compress the H 2 . This would reduced the kW of energy per hour of production from the illustrated figure of 7.5 kW to approximately 2-3 kW per hour of electrolysis. However, using a metal hydride tank 35 technology would increase system weight and complexity since a source of heat energy is required by metal hydrides to disassociate hydrogen for use. The use of metal hydrides may also require a small tank of compressed H 2 for immediate fuel cell or other power plant use. -9- Table 1. Operational Parameters for 30' Sailboat Amount of Product Water Consumed 5 456.00 L Hours of RO Watermaker Operation to Purify Water 35.43 hrs. RO Watermaker Energy Use 10 3.40 kW Rate of H 2 Production/hour 40 Standard Cubic Feet Time to Fill Tank 114 hrs. 15 Energy Required to Fill Tank 852 kW @ 7.5 kW/hr Fuel Cell Power Conversion of Stored H 2 193 kW 20 Running Time Provided by Stored H 2 10 hrs @ 18.64 kW/hr usage Speed Through Water @ Maximum Load 5.5 knots Range Provided by Stored H 2 @ Maximum Load 25 57 nautical miles In an additional preferred embodiment, a power boat or ship would be based on the embodiment illustrated in FIG. 2, utilizing a fuel cell power plant 22, with several modifications. Metal hydride hydrogen storage tank(s) 24 would be used to store the H 2 thus 30 reducing tank storage volume and the need for a compressor. Instead of a single purpose motor and separate water drag generator for use as an electrical supply source 28, as previously mentioned, a dual use motor/water drag generator electrical supply source 28 would be employed. The preferred embodiment would also make extensive use of "built in" solar power and wind power electrical supply sources 28. Photo voltaic materials would be 35 installed along the hull, on the superstructure, on the mast(s), on deck, and covering windows or portholes with transparent PV film materials. The wind generators would mount on radar masts if available, and possibly embedded in the superstructure for efficient high speed use. This vessel would also feature a "dual mode" H 2 0-to-H 2 conversion device 18 to allow for -10- 1 efficient low power conversion (while underway) and high power conversion (when connected to shore power) operation. The data in Table 2 reflects the operating characteristics of a new build, 30' long, 5 hydrodynamically efficient, high speed powerboat using H 2 compressed to 5000 psi and commercially available non-optimized components. It is assumed by this example that a fossil fueled version would require 550 horsepower mounted internally to the hull. Fuel tank capacity is limited in this example to the volumetric equivalent of 1,250 gallons. It is assumed that a 410 kW fuel cell is onboard. Fuel cell efficiency is conservatively estimated 10 at 50% when it may be much higher. By changing the storage technology to metal hydrides, current metal hydride tank technology would reduce the required volume for the same amount of H 2 by weight by 50%. Using metal hydride tanks would also reduce the energy required to compress the H 2 this would reduced the kW of energy per hour of production from the illustrated figure of 30 kW 15 to approximately 8-12 kW per hour of electrolysis. However, as discussed previously, using a metal hydride tank technology would increase system weight and complexity by requiring an additional source of heat energy and potentially a small tank of compressed H 2 for immediate use. It is expected that this invention will also be used as a source of non-propulsion power 20 both in conjunction with its use for propulsive power and alone as a Ship Service Generator (SSG) supplying the needs of traditional "Hotel Loads" and other onboard power requirements. Table 2. 25 Operational Parameters for 30' Powerboat Amount of Product Water Consumed 1,420 L Hours of RO Watermaker Operation to Purify Water 110 hrs. 30 RO Watermaker Energy Use 10.59 kW Rate of H 2 Production/hour 160 Standard Cubic Feet 35 Time to Fill Tank 355 hrs. Energy Required to Fill Tank 10,654 kW @ 7.5 kW/hr -1l- 1 Amount of Product Water Consumed 1,420 L Hours of RO Watermaker Operation to Purify Water 5 110 hrs. RO Watermaker Energy Use 10.59 kW Fuel Cell Power Conversion of Stored H 2 10 2,415 kW Running Time Provided by Stored H 2 6 hrs @ 410 kW/hr usage Speed Through Water @ Maximum Load 35 knots 15 Range Provided by Stored H 2 @ Maximum Load 206 nautical miles The data in Table 3 reflects the operating characteristics of a Ship Service Generator system sized for a 30' long boat using H 2 compressed to 5000 psi and commercially available 20 non-optimized components. It is assumed by this example that a 2 kW capacity for non propulsion use is adequate. Fuel tank capacity is limited in this example to the volumetric equivalent of 20 gallons. It is assumed that a 20 kW fuel cell is onboard. Fuel cell efficiency is conservatively estimated at 70%. 25 Table 3. Operation Parameters for SSG on 30' Boat Amount of Product Water Consumed 92 L 30 Hours of RO Watermaker Operation to Purify Water 7.15 hrs. RO Watermaker Energy Use 0.69 kW Hydrogen (H 2 ) Tank Size 35 20 gal Capacity @ 5,000 psi. 25,754 L -12- Table 3. Operation Parameters for SSG on 30' Boat Amount of Product Water Consumed 5 92 L Hours of RO Watermaker Operation to Purify Water 7.15 hrs. RO Watermaker Energy Use 10 0.69 kW Hydrogen (H2) Tank Size 20 gal Rate of H 2 Production/hour 1132 L 15 Time to Fill Tank. 23 hrs. Energy Required to Fill Tank 170 kW @ 7.5 kW/hr 20 Fuel Cell Power Conversion of Stored H 2 54 kwh Running Time Provided by Stored H 2 27 hrs @ 2 kwh/hr usage 25 As discussed above, using metal hydride tanks would also reduce the energy required to compress the H 2 this would reduced the kW of energy per hour of production from the illustrated figure of 7.5 kW to approximately 2-3 kW per hour of electrolysis. However, as discussed previously, using a metal hydride tank technology would increase system weight and complexity by requiring an additional source of heat energy and potentially a small tank 30 of compressed
H
2 for immediate use. An illustrative example of the average non-propulsive energy usage and production for a 30' sailboat at anchor and underway is shown in Table 4, below. It will be realized that these values are only meant to be a rough calculation for a standard vessel containing the equipment listed and is not meant to confine the scope of the current invention in anyway. 35 One skilled in the art would be able to calculate a similar power usage chart for any vessel using the method shown. -13- Table 4 Schedule of Power Consumption and Onboard Production for a 30' Sailboat 5 Onboard Power Consumption Equipment Current in Hours of Total Amp Hrs./Day Amps use/day Anchor light 1 10 10 Trolor nisthead 1.5 10 15 Running lights 2 10 20 10 -5 025 1.25 VH-F -receive 0.5 1 0.5 VHF - transmit 4.5 0.07 0.315 ran 1.5 1 3 4.5 ........ es ..... ......................... i... ........................ e e se ................. ........................................... .. .es e e e s .. e e e e s~e ~ .e . . e. e e. e - ee . ..... ...... . e ... .. .....e .. e .....eee ee.... ......... .. ..... ... e .... e..e . e.. . e. s... ... . ... . . ...... 6 e ......... 20 aMarn 1tro2 2 24 Hadioy 750w*e300.1 4 0.4 15 Bndio 312 0 07 0.84 d ph s ou r 0.4 15 0.6 Autopo 1 7 24 24 1/4"hdrll* 20 0.06 1.2 Cabin light 15w 1.25: 5 6.25 30light 25w 2.1 3 6.3 20 Mare er 8 2 5 Pressure wan A2.8C v 034 0.952 EetirergrTora nryUedy 1,7. 6 mp12 s 173kW Mcr owave 501 0.3 15 C ff e ~ m~ ak 5er* -f------e--- .,UUO.UUX 42if 0 r04 1.68 HPirodyeer r50w 63Ue 0 04 2. 52 25 leArn 63Ud 0e01 0.63 Fo..o*d. resso1 34 002 0.68 Color... TV................... IFt 51 2 10 CoorV(9"*8.251 2 16.5 VC*1.75: 2 3.5 1/" rll'12: 0.1 1.2 30 1.1:Mfa 31313 Waemaker 8: 3 24 (May require an AC inverter) ____________ Total Energy Us/a: 227. m s 147.3 kWH 35 Elcrlser Po6wer 'Use:: 1"'****2,000"*.*O*OA*m .p .,Hr's 14'4.* 0 kW H Other Power Use:: 277.9 Amp. firs.: 3.3 kWHI-I'**66'6* Onboard Power Productio n On boa rd Power Production Anchored jUnderwa -14- Solar Panels 1.2 k WH Solar Panels 1.2 kWH (4 x 120 W) (4 x 120 W) Wind Power 2.8 kWH Wind Power 1.4 kWH 5 (2 x 7.6 A @ 15 knots) (2 x 7.6 A @ 15) 1 A/knot Water Drag 0 kWH 1 A/knot Water Drag 1.8 kWH Total Production 4.0 kWH Total Production 4.0 kWIT Standard Hotel Load 3.3 kWH Standard Hotel Load 3.3 kWH Excess Production 0.7 kWH Excess Production 1.1 kWH For clarity and simplicity the present invention is described in the above example with 10 a proton exchange membrane (PEM) fuel cell in every instance. The invention may make use of any H 2 consuming fuel cell technology. Further, for clarity and simplicity the present invention is described with commercially available water conversion components. It is anticipated by the present invention that water conversion technology will continue to improve and that suppliers will offer technologies optimized for use in the present invention. Specifically, the invention anticipates the advent of highly efficient steam electrolysis water conversion systems and low power electrolysis water conversion systems which are optimized for use with renewable energy supply sources. The invention anticipates that some configurations may use dual mode or more than one conversion device or technology: one for low power and low rates of production, the other for use with shore power and offering higher rates of production. Further yet, for clarity and simplicity the present invention is described with commercially available renewable energy supply sources. However, it is anticipated that significant improvements will be forthcoming in the key renewable electrical production technologies which will improve the practicality, cost effectiveness and total system efficiency of the present invention. For the purposes of clarity, these examples only illustrate hydrogen production with electrical energy provided by utility shore power. A unique feature of this invention is the ability to partially replenish expended H 2 or LH, or "slush" supplies while underway. Sailboats or motor-sail boats and sailing ships could produce more "slush," H 2 or LH 2 than consumed if traveling in sunny and windy conditions. H 2 can also be produced exclusively by using renewable energy systems or in combination with energy provided by these renewable components, which would reduce the cost of such H 2 accordingly. This is accomplished by operation of the conversion equipment while at anchor or while tied to a dock (with or without shore power) using the power supplied by the electrical supply source(s). It should also be noted that the actual range of any vessel equipped with the present invention would be extended to the extent that the renewable electrical supply source while underway provides for the non-propulsion requirements of the vessel avoiding the consumption of H 2 for that purpose. -15- The examples set out in this application are merely illustrative, other uses will become obvious to one of skill in the art after reviewing this disclosure. This system may be utilized on any potential maritime vessel including: government vessels, such as military watercraft, 5 submarines, oceanic research vessels, law enforcement vessels, search & rescue vessels, harbor pilot ships, environmental clean-up boats/ships, etc.; commercial vessels, such as passenger transports, water bus/tax, cruise ships, ferries, charter boats, scenic vessels, party boats, scuba-diving boats, cargo transports, container ships, coastal freighters, auto carriers, oil and other bulk carriers, tugs, oil rig work/support boats, fishing vessels and support 10 (processing and factory) ships, etc.; recreational boats, such as power boats 15 feet and greater, small watercraft less than 15 feet (JetSkis, SeaDoo, etc.), sail boats, etc.; and all other sea, lake and river marine vehicles. The elements of the apparatus and the general features of the components are shown and described in relatively simplified and generally symbolic manner. Appropriate structural 15 details and parameters for actual operation are available and known to those skilled in the art with respect to the conventional aspects of the process. 20 25 30 35 -16-

Claims (45)

  1. 2. The system for the production and utilization of hydrogen described in claim 1, wherein the source of water further comprises: 15 a source of unpurified water; a water purifier for purifying said unpurified water in fluid communication with said unpurified water source and in electrical communication with said power distribution device.
  2. 3. The system for the production and utilization of hydrogen described in 20 claim 1, further comprising a hydrogen storage device having an inlet and an outlet, wherein the inlet is in fluid communication with the converter and the outlet is in fluid communication with the hydrogen power plant.
  3. 4. The system for the production and utilization of hydrogen described in claim 1, further comprising an energy storage device for storing the energy produced by 25 at least one of the power plants and the electrical power source, said energy storage device in electrical communication with the power distribution device.
  4. 5. The system for the production and utilization of hydrogen described in claim 1, further comprising: a water storage tank having an inlet in fluid communication with the water source and an outlet in fluid communication with the converter. -17-
  5. 6. The system for the production and utilization of hydrogen described in claim 1, further comprising a propulsion device for providing motive force to the marine vessel, said propulsion device in electrical communication with the power distribution device. 5 7. The system for the production and utilization of hydrogen described in claim 2, wherein the water purifier is a reverse osmosis water purifier in electrical communication with the power distribution device.
  6. 8. The system for the production and utilization of hydrogen described in claim 2, further comprising a pre-filter adapted to allow water to pass therethrough 10 positioned between the source of unpurified water and the water purifier.
  7. 9. The system for the production and utilization of hydrogen described in claim 1, wherein the water to hydrogen converter is selected from a group including: an electrolyzer; a multiphoton photochemical device; multi-band-gap photoelectrochemical cell; and a photoelectrolysis device. 15 10. The system for the production and utilization of hydrogen described in claim 1, wherein the water to hydrogen convertor is an electrolyzer, and wherein the electrolyzer is one of either a solid oxide electrolyzer or a steam electrolyzer.
  8. 11. The system for the production and utilization of hydrogen described in claim 3, wherein the hydrogen storage device further comprises a compressor and a 20 storage tank.
  9. 12. The system for the production and utilization of hydrogen described in claim 11, wherein the storage tank is selected from a group including: a composite tank; a metal hydride tank; and a carbon nanotube tank.
  10. 13. The system for the production and utilization of hydrogen described in 25 claim 11, wherein the hydrogen storage device further comprises a liquification system.
  11. 14. The system for the production and utilization of hydrogen described in claim 13, wherein the storage tank is selected from a group including: a vacuum insulated composite tank; and a slush storage tank. - 18-
  12. 15. The system for the production and utilization of hydrogen described in claim 1, wherein the electrical power source is selected from a group including: a solar electrical device; a solar furnace steam source; a wind power source; a water drag power source; a nuclear power source; a human-power source; and an on-shore power source. 5 16. The system for the production and utilization of hydrogen described in claim 1, wherein the power plant is a hydrogen consuming fuel cell.
  13. 17. The system for the production and utilization of hydrogen described in claim 28, further comprising an electrical motor in electrical communication with the power distribution device. 10 18. The system for the production and utilization of hydrogen described in claim 1, wherein the power plant comprises: a hydrogen burning mechanical engine for converting the hydrogen into mechanical energy; and a generator for converting the mechanical energy of the mechanical engine into 15 electrical energy, said generator in mechanical communication with the mechanical engine and in electrical communication with the power distribution device.
  14. 19. The system for the production and utilization of hydrogen described in claim 18, wherein the mechanical engine is selected from a group including; a hydrogen burning internal combustion engine; a hydrogen burning steam engine; a mixed hydrogen 20 fossil fuel burning engine; and a mixed, hydrogen/biodiesel fuel burning engine.
  15. 20. The system for the production and utilization of hydrogen described in claim 1, wherein the power plant comprises both a hydrogen consuming fuel cell and a hydrogen consuming mechanical engine.
  16. 21. The system for the production and utilization of hydrogen described in 25 claim 6, wherein the propulsion device is selected from a group including: an electrical motor in electrical communication with the power distribution device; and a mechanical transmission in mechanical communication with the power plant.
  17. 22. The system for the production and utilization of hydrogen described in claim 16, further comprising a heat exchanger for removing excess heat and thereby -19- condensing vaporized water into liquid water, said heat exchanger having an inlet in fluid communication with the outlet of the fuel cell and an outlet in fluid communication with the inlet of the converter.
  18. 23. The system for the production and utilization of hydrogen described in 5 claim 22 further comprising a product water storage tank arranged between the heat exchanger outlet and the converter inlet.
  19. 24. The system for the production and utilization of hydrogen described in claim 4, wherein the energy storage device is at least one deep-cycle marine battery.
  20. 25. The system for the production and utilization of hydrogen described in 10 claim 1, wherein the converter further comprises an oxygen storage device in fluid communication with converter for storing the oxygen gas produced from the conversion of water to hydrogen gas and oxygen gas.
  21. 26. The system for the production and utilization of hydrogen described in claim 1, wherein the electrical power source is the power plant. 15 27. A method for producing and utilizing hydrogen in marine applications comprising utilizing the hydrogen utilization and production system described in claim 1.
  22. 28. A system for the continuous production and utilization of hydrogen in marine applications comprising: a source of purified water; 20 a source of electrical power; an energy storage device for storing electrical power; a water to hydrogen converter for converting said water into hydrogen gas and oxygen gas, said converter in fluid communication with said water source and in electrical communication with said electrical power source; 25 a power plant in fluid communication with said converter for converting said hydrogen and oxygen gas into utilizable energy; a hydrogen storage device having an inlet and an outlet, wherein the inlet is in fluid communication with the converter and the outlet is in fluid communication with the hydrogen power plant; - 20 - a oxygen storage device having an inlet and an outlet, wherein the inlet is in fluid communication with the converter and the outlet is in fluid communication with the hydrogen power plant; and a power distribution device in electrical communication with the electrical power 5 source, the energy storage device, the converter, and the power plant.
  23. 29. The system for the production and utilization of hydrogen described in claim 28, wherein the source of purified water further comprises: a source of unpurified water; a water purifier for purifying said unpurified water in fluid communication with 10 said unpurified water source.
  24. 30. The system for the production and utilization of hydrogen described in claim 28, further comprising: a water storage tank having an inlet in fluid communication with the water source and an outlet in fluid communication with the converter. 15 31. The system for the production and utilization of hydrogen described in claim 28, further comprising a propulsion device for providing motive force to the marine vessel, said propulsion device in electrical communication with the power distribution device.
  25. 32. The system for the production and utilization of hydrogen described in 20 claim 29, wherein the water purifier is a reverse osmosis water purifier in electrical communication with the power distribution device.
  26. 33. The system for the production and utilization of hydrogen described in claim 29, further comprising a pre-filter adapted to allow water to pass therethrough positioned between the source of unpurified water and the water purifier. 25 34. The system for the production and utilization of hydrogen described in claim 28, wherein the water to hydrogen converter is selected from a group including: an electrolyzer; a multiphoton photochemical device; multi-band-gap photoelectrochemical cell; and a photoelectrolysis device. - 21 -
  27. 35. The system for the production and utilization of hydrogen described in claim 28, the water to hydrogen converter is an electrolyzer, and wherein the electrolyzer is one of either a solid oxide electrolyzer or a steam electrolyzer.
  28. 36. The system for the production and utilization of hydrogen described in 5 claim 28, wherein the hydrogen storage device further comprises a compressor and a storage tank.
  29. 37. The system for the production and utilization of hydrogen described in claim 36, wherein the storage tank is selected from a group including: a composite tank; a metal hydride tank; and a carbon nanotube tank. 10 38. The system for the production and utilization of hydrogen described in claim 36, wherein the hydrogen storage device further comprises a liquification system.
  30. 39. The system for the production and utilization of hydrogen described in claim 38, wherein the storage tank is selected from a group including: a vacuum insulated composite tank; and a slush storage tank. 15 40. The system for the production and utilization of hydrogen described in claim 28, wherein the electrical power source is selected from a group including: a solar electrical device; a solar furnace steam source; a wind power source; water drag power source; a nuclear power source; a human-power source; and an on-shore power source.
  31. 41. The system for the production and utilization of hydrogen described in 20 claim 28, wherein the power plant is a hydrogen consuming fuel cell.
  32. 42. The system for the production and utilization of hydrogen described in claim 41, further comprising an electrical motor in electrical communication with the power distribution device.
  33. 43. The system for the production and utilization of hydrogen described in 25 claim 28, wherein the power plant comprises: a hydrogen burning mechanical engine for converting the hydrogen into mechanical energy; and a generator for converting the mechanical energy of the mechanical engine into - 22 - electrical energy, said generator in mechanical communication with the mechanical engine and in electrical communication with the power distribution device.
  34. 44. The system for the production and utilization of hydrogen described in claim 43, wherein the mechanical engine is selected from a group including: a hydrogen 5 burning internal combustion engine; a hydrogen burning steam engine; a mixed hydrogen fossil fuel burning engine; and a mixed, hydrogen/biodiesel fuel burning engine.
  35. 45. The system for the production and utilization of hydrogen described in claim 28, wherein the power plant comprises both a hydrogen consuming fuel cell and a hydrogen consuming mechanical engine. 10 46. The system for the production and utilization of hydrogen described in claim 31, wherein the propulsion device is selected from a group including: an electrical motor in electrical communication with the power distribution device; and a mechanical transmission in mechanical communication with the power plant.
  36. 47. The system for the production and utilization of hydrogen described in 15 claim 41, further comprising a heat exchanger for removing excess heat and thereby condensing vaporized water into liquid water, said heat exchanger having an inlet in fluid communication with the outlet of the fuel cell and an outlet in fluid communication with the inlet of the converter.
  37. 48. The system for the production and utilization of hydrogen described in 20 claim 47 further comprising a product water storage tank arranged between the heat exchanger outlet and the converter inlet.
  38. 49. The system for the production and utilization of hydrogen described in claim 28, wherein the energy storage device is at least one deep-cycle marine battery.
  39. 50. The system for the production and utilization of hydrogen described in 25 claim 28, wherein the electrical power source is the power plant.
  40. 51. The system for the production and utilization of hydrogen described in claim 28 further comprising an electrical power conditioner for conditioning the electrical power in electrical communication with the power distribution device. -23-
  41. 52. The system for the production and utilization of hydrogen described in claim 51, wherein the electrical power conditioner comprises an inverter/transforner.
  42. 53. A method for producing and utilizing hydrogen in marine applications comprising: 5 providing a source of purified water; generating electrical power; storing the electrical power; converting said water into hydrogen gas and oxygen gas utilizing the generated electrical power; converting said hydrogen and oxygen gas into utilizable energy; and 10 distributing the energy to at least one power consuming component.
  43. 54. A method for producing and utilizing hydrogen in marine applications comprising utilizing the hydrogen utilization and production system described in claim 1.
  44. 56. The system for the production and utilization of hydrogen described in claim 17, wherein the electrical motor also functions as a water drag power source in 15 electrical communication with the power distribution device.
  45. 57. The system for the production and utilization of hydrogen described in claim 42, wherein the electrical motor also functions as a water drag power source in electrical communication with the power distribution device. - 24 -
AU2007202111A 2000-08-18 2007-05-11 System and method for the production and use of hydrogen on board a marine vessel Ceased AU2007202111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2007202111A AU2007202111B2 (en) 2000-08-18 2007-05-11 System and method for the production and use of hydrogen on board a marine vessel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/226,367 2000-08-18
US09/836,399 2001-04-17
AU2001290542 2001-08-17
AU2007202111A AU2007202111B2 (en) 2000-08-18 2007-05-11 System and method for the production and use of hydrogen on board a marine vessel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001290542 Division 2000-08-18 2001-08-17

Publications (2)

Publication Number Publication Date
AU2007202111A1 AU2007202111A1 (en) 2007-05-31
AU2007202111B2 true AU2007202111B2 (en) 2010-03-04

Family

ID=38164505

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2007202111A Ceased AU2007202111B2 (en) 2000-08-18 2007-05-11 System and method for the production and use of hydrogen on board a marine vessel

Country Status (1)

Country Link
AU (1) AU2007202111B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922545A1 (en) * 2020-06-08 2021-12-15 G.M.S. Global Maritime Services Ltd. Sea-borne vessel producing hydrogen on-board from renewable resources

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113428334B (en) * 2021-08-16 2022-04-22 广西师范大学 Marine fuel cell push boat-barge hybrid power system and control method thereof
CN114435575B (en) * 2022-03-01 2023-04-11 深圳国氢新能源科技有限公司 Ship hybrid power system, energy management control method, equipment and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922545A1 (en) * 2020-06-08 2021-12-15 G.M.S. Global Maritime Services Ltd. Sea-borne vessel producing hydrogen on-board from renewable resources
WO2021250036A1 (en) * 2020-06-08 2021-12-16 G.M.S. Global Maritime Services Ltd. Sea-borne vessel producing hydrogen on-board from renewable resources

Also Published As

Publication number Publication date
AU2007202111A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US6610193B2 (en) System and method for the production and use of hydrogen on board a marine vessel
Nguyen et al. The electric propulsion system as a green solution for management strategy of CO2 emission in ocean shipping: A comprehensive review
Nuchturee et al. Energy efficiency of integrated electric propulsion for ships–A review
US8664795B2 (en) Structure and method for capturing and converting wind energy at sea
US7146918B2 (en) Wind-powered linear motion hydrogen production systems
EP3626598B1 (en) A zero emission power generation sailing ship
KR20150052737A (en) Power plant using a ro-ro ship and power generation method
CN113300422A (en) Ship hybrid power supply system, ship and power supply control method thereof
US10577067B1 (en) Zero emission power generation sailing ship
JP2005145218A (en) Hydrogen manufacturing facility and hydrogen manufacturing transportation system on ocean
EP3919369A1 (en) Vessel for desalinating salt water, converting same into drinking water and generating electrical energy
AU2007202111B2 (en) System and method for the production and use of hydrogen on board a marine vessel
Ouchi et al. Hydrogen generation sailing ship: conceptual design and feasibility study
Tuswan et al. Current research outlook on solar-assisted new energy ships: representative applications and fuel & GHG emission benefits
Coppola et al. Concept design and feasibility study of propulsion system for yacht: innovative hybrid propulsion system fueled by methanol
CN109436271A (en) It is a kind of for driving the hydrogen dynamic power device and method of dynamical system on hull
Guarnieri et al. Electrifying Water Buses: A Case Study on Diesel-to-Electric Conversion in Venice
Eastlack et al. Zero emission super-yacht
CN214958725U (en) Ship hybrid power supply system and ship
JP3119959U (en) Small vessels equipped with fuel cells and solar cells (business boats, pleasure boats, fishing boats, etc.)
JP2024514581A (en) Electric drivetrains for water vehicles
Micheli et al. Energy systems on board ships
RU158607U1 (en) TRIMARAN WITH HYBRID ENVIRONMENTAL POWER PLANT
Rutkowski Study of Green Shipping Hybrid Diesel-Electric New Generation Marine Propulsion Technologies
Roa Green Environmentally Friendly Technologies for Shipping and Offshore Industries

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired