AU2006335102B2 - A method and apparatus for routing emergency calls in a VoIP system - Google Patents

A method and apparatus for routing emergency calls in a VoIP system Download PDF

Info

Publication number
AU2006335102B2
AU2006335102B2 AU2006335102A AU2006335102A AU2006335102B2 AU 2006335102 B2 AU2006335102 B2 AU 2006335102B2 AU 2006335102 A AU2006335102 A AU 2006335102A AU 2006335102 A AU2006335102 A AU 2006335102A AU 2006335102 B2 AU2006335102 B2 AU 2006335102B2
Authority
AU
Australia
Prior art keywords
range
call
mobile wireless
emergency
location information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2006335102A
Other versions
AU2006335102A1 (en
Inventor
Leland Scott Bloebaum
William Camp
Daniel Homiller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Mobile Communications AB
Original Assignee
Sony Ericsson Mobile Communications AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Ericsson Mobile Communications AB filed Critical Sony Ericsson Mobile Communications AB
Publication of AU2006335102A1 publication Critical patent/AU2006335102A1/en
Application granted granted Critical
Publication of AU2006335102B2 publication Critical patent/AU2006335102B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M7/00Arrangements for interconnection between switching centres
    • H04M7/006Networks other than PSTN/ISDN providing telephone service, e.g. Voice over Internet Protocol (VoIP), including next generation networks with a packet-switched transport layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/90Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/50Connection management for emergency connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2207/00Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place
    • H04M2207/18Type of exchange or network, i.e. telephonic medium, in which the telephonic communication takes place wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2242/00Special services or facilities
    • H04M2242/04Special services or facilities for emergency applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2242/00Special services or facilities
    • H04M2242/30Determination of the location of a subscriber

Description

WO 2007/081563 PCT/US2006/049420 A METHOD AND APPARATUS FOR ROUTING EMERGENCY CALLS IN A VOIP SYSTEM CROSS REFERENCE TO RELATED APPLICATIONS This application claims the benefit of U.S. Provisional Application No. 60/755,926, filed 5 January 3, 2006, and U.S. Application No. 11/608,583, filed December 8, 2006, which are incorporated herein by reference in their entirety. BACKGROUND OF THE INVENTION The present invention relates to converged cellular and wireless broadband networks, and particularly relates to routing emergency calls in converged networks. 10 The convergence of cellular and wireless broadband networks allows subscribers to move between the networks with seamless voice and data session continuity, just as subscribers move between cells within a cellular network. Wireless network convergence effectively creates a dual radio access network. When it is efficient to route information such as data or voice over a cellular network, a mobile device utilizes the cellular network for 15 communication. Conversely, when it is more efficient to route information over a wireless broadband network, the mobile device utilizes the wireless broadband network for communication. One issue relating to the convergence of cellular and wireless broadband networks is the routing of emergency calls to the appropriate local emergency personnel. Various governments 20 require communication service providers to support emergency calls made from cellular handsets, e.g., the E-911 mandate issued by the Federal Communications Commission (FCC) in.the United States. Additionally, the FCC will require Voice-over-IP (VoIP) service providers to comply with the E-911 mandate in the near future. For example, VolP providers will be required to deliver all 911 calls to the customer's local emergency operator and provide emergency 25 operators with the call back number and location information of their customers. Location-based services are widely used in cellular networks for identifying caller location when handling emergency calls placed by cellular handsets. For example, device centric technologies such as the Global Positioning System (GPS) can pinpoint the location of a mobile device to an accuracy of ten meters or less. Network-assisted technologies such as 30 assisted-GPS (AGPS) for Code Division Multiple Access (CDMA) cellular networks and Enhanced Observed Time Difference (EOTD) for Global System for Mobile communications (GSM) networks can pinpoint the location of a mobile device to an accuracy of one hundred meters or less. However, location identification technology for mobile devices that access wireless 35 broadband networks is less mature. Further, the nature of broadband communication, e.g., the use of Internet Protocol (IP) bearers for communicating between remote devices, removes all information associated with the location of a caller. As such, the convergence of cellular and wireless broadband networks presents a new challenge for identifying the location of mobile 1 wireless devices when the devices communicate over a wireless broadband network. For example, as a mobile wireless device seamlessly transitions from a cellular network to a wireless broadband network, the device may no longer be capable of determining and/or communicating its position when connected to the wireless broadband network. VolP service 5 providers face a particularly daunting task if mandated to support E-91 1 for mobile devices placing VolP calls using wireless broadband access technology. SUMMARY OF THE INVENTION According to one aspect of the present invention there is provided a method of routing emergency calls in a Voice-over-IP (VolP) system, including: 0 receiving an incoming emergency call originated from a mobile wireless device connected to the VolP system through a wireless access point (WAP); establishing a communication link with a device in range of the mobile wireless device; acquiring location information from the in-range device using the communication link by receiving a device identifier associated with the in-range device, connecting to the in-range 5 device using the device identifier, and acquiring the location information from the in-range device while connected to the in-range device; and directing the emergency call to an emergency answering point (EAP) that services a geographic area corresponding to the location information acquired from the in-range device. According to another aspect of the present invention there is provided a voice-over-lP 0 (VolP) system, including a call processing server configured to receive an incoming emergency call originated from a mobile wireless device connected to the VolP system through a wireless access point (WAP), said call processing server configured to establish a communication link with a device in range of the mobile wireless device, acquire location information from the in range device using the communication link by receiving a device identifier associated with the 25 in-range device, connecting to the in-range device using the device identifier, and acquiring the location information from the in-range device while connected to the in-range device, and to direct the emergency call to an emergency answering point (EAP) that services a geographic area corresponding to the location information acquired from the in-range device. According to another aspect of the present invention there is provided a mobile wireless 30 device, including: a wireless broadband radio configured to connect the mobile wireless device to a wireless broadband network; and a communication processor configured to establish a call connection with a voice-over IP (VolP) system-via the wireless broadband network for placing an emergency call, and 35 provide a device identifier of one or more in-range devices to said VolP system. According to another aspect of the present invention there is provided a mobile wireless device, including: a wireless broadband radio configured to connect the mobile wireless device to a wireless broadband network and to an in-range; and a communication processor configured to establish a call connection with a voice-over IP (VoIP) system via the wireless broadband network for placing an emergency call, establish 5 communication with an in-range device, and relay communications between the VoIP system and the in-range device, wherein the communication processor is further configured to place a new emergency call to a cellular network responsive to a call redirection instruction. The methods and apparatuses taught herein provide a method of routing emergency 0 calls originated from mobile wireless devices in a Voice-over-IP (VoIP) system. In one example, the method comprises receiving incoming emergency calls originated from dual-mode mobile devices connected to the VoIP system through wireless access points (WAPs), determining locations associated with the incoming emergency calls, and redirecting callers to a cellular network. Corresponding to the above emergency call routing method, a complementary VolP 5 system comprises a call processing server configured to receive incoming emergency calls originated from dual-mode mobile devices connected to the VoIP system through WAPs. The call processing server is further configured to determine locations associated with the incoming emergency calls, and redirect callers to a cellular network. Several embodiments described herein enable VolP systems to acquire location 0 information associated with mobile wireless devices accessing VoIP systems and to use the acquired location information to route emergency calls to appropriate emergency answering points (EAPs). In one example, WAP identifiers are mapped to EAPs. As such, when an incoming emergency call is received from an originating WAP, an EAP relating to the originating WAP is identified and the emergency call is directed to the identified EAP. 25 In another example, an incoming emergency call originated from a mobile wireless device connected to a VoIP system through a WAP is received by the VoIP system. Location information associated with the mobile wireless device is acquired from the mobile wireless device and the emergency call is directed to an EAP that services a geographic area corresponding to the location information acquired from the mobile wireless device. 30 In yet another example, an incoming emergency call originated from a mobile wireless device connected to a VoIP system through a WAP is received by the VoIP system. Location information derived by a device in-range of the mobile wireless device is acquired. The emergency call is directed to an EAP that services a geographic area corresponding to the location information acquired from the in-range device. 35 Of course, the present invention is not limited to the above features and advantages. Those skilled in the art will recognize additional features and advantages upon reading the following detailed description, and upon viewing the accompanying drawings. 9?2P WO 2007/081563 PCT/US2006/049420 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of an embodiment of a Voice-over-IP (VolP) system. FIG. 2 is a logic flow diagram of an embodiment of processing logic for identifying wireless access points to a VolP system. 5 FIG. 3 is a logic flow diagram of an embodiment of processing logic for relating wireless access points to emergency answering points. FIG. 4 is a block diagram of an embodiment of a database included in or associated with the VoIP system of Figure 1. FIG. 5 is a block diagram of an embodiment of a VoIP system that acquires location 10 information from a device in-range of a mobile wireless device. FIG. 6 is a logic flow diagram of an embodiment of processing logic for providing a wireless access point identifier to a VolP system during an emergency call. FIG. 7 is a logic flow diagram of one embodiment of processing logic for routing emergency calls in a VolP system. 15 FIG. 8 is a logic flow diagram of an embodiment of processing logic for providing mobile wireless device location information to a VolP system during an emergency call. FIG. 9 is a logic flow diagram of an embodiment of processing logic for providing location information associated with a mobile wireless device to a VoIP system during an emergency call. 20 FIG. 10 is a logic flow diagram of another embodiment of processing logic for routing emergency calls in a VolP system. FIG. 11 is a logic flow diagram of yet another embodiment of processing logic for routing emergency calls in a VolP system. FIG. 12 is a logic flow diagram of an embodiment of processing logic for redirecting 25 emergency calls received by a VoIP system over a cellular network. FIG. 13 is a logic flow diagram of an embodiment of processing logic for redirecting an emergency call by a dual-mode mobile device over a cellular network. DETAILED DESCRIPTION OF THE INVENTION Figure 1 illustrates an embodiment of a Voice-over-IP (VolP) system 10 that provides 30 packet-based voice and data services to mobile wireless devices such as a dual-mode mobile communication device 12. The dual-mode mobile device 12 gains access to the VolP system 10 via a Wireless Access Point (WAP) 14, e.g., an IEEE 802.11 (WiFi), IEEE 802.16 (WiMax), or IEEE 802.20 (Mobile Broadband Wireless Access) compatible WAP. The dual mode mobile device 12 is directly or indirectly coupled to the VolP system 10, e.g., through a 35 Packet-Switched Data Network (PSDN) 16 such as the Internet. The VolP system 10 comprises a call processing server 18 for managing VoIP connections traversing the VolP system 10, including emergency calls.
WO 2007/081563 PCT/US2006/049420 The dual-mode mobile device 12 and the VoIP system 10 communicate both control information and packet-based communication data. To establish and control packet-based calls, the dual-mode mobile device 12 and the VolP system 10 use a signaling protocol, e.g., Session Initiation Protocol (SIP) or H.323. For example, the call processing server 18 of the 5 VolP system 10 and a communication processor 20 of the dual-mode mobile device 12 use SIP in conjunction with client code such as Java to control handling of emergency calls initiated by the device 12. The communication processor 20 manages network communication for the dual-mode mobile device 12, including establishing and maintaining communication channels, initiating and 10 managing calls, and acquiring the location of the dual-mode mobile device 12. The communication processor 20 may comprise one or more general or special purpose microprocessors, digital signal processors, application specific integrated circuits, field programmable gate arrays, and/or other types of digital processing circuits, configured according to computer program instructions implemented in software (or firmware). 15 Likewise, the call processing server 18 manages packet-based communication for the VolP system 10. The call processing server 18.comprises hardware and/or software and can be deployed as a single server, cluster of servers, or a server farm having distributed functionality. The call processing server 18 manages device communication, maintains various mappings and translations, and opens and closes communication channels between devices. 20 For example, the call processing server 18 includes a call agent 22 for providing VoIP call signaling and control functions. The call agent 22 manages signaling and control flows associated with devices that access the VolP system 10, e.g., by originating, terminating or forwarding calls. In a non-limiting example, the call agent 22 may include a SIP server (not shown) for providing SIP call signaling and control functions, e.g., by routing and forwarding SIP 25 requests. Further, the call processing server 18 includes an application server 24 for executing one or more applications or services not managed by the call agent 22, e.g. voice mail, conference calling, and emergency call handling. The call processing server 18 interfaces with a media gateway controller / media gateway (MGC/MG) 26. The MGC/MG 26 contains call 30 control logic and hardware for interfacing with the Public-Switched Telephone Network (PSTN) 28. As such, the call processing server 18 gains access to the PSTN 28 via the MGC/MG 26. As part of managing packet-based connections in the VoIP system 10, the call processing server 18 processes emergency calls received from various devices connected to 35 the system 10, including mobile wireless devices such as the dual-mode mobile device 12. Emergency calls received by the VolP system 10 may include proprietary emergency voice calls, 911 emergency voice calls, emergency text messages, emergency instant messages or the like. The call processing server 18 routes received emergency calls to Emergency
A
WO 2007/081563 PCT/US2006/049420 Answering Point (EAPs) 30, i.e., designated statewide default answering points such as Public Service Answering Points (PSAPs), appropriate local emergency authorities or other emergency answering points or proprietary emergency answering points such as Onstar. To route an emergency call to an appropriate EAP, the call processing server 18 acquires information 5 associated the location of the packet-based call, e.g., geospacial or civic location information such as latitude, longitude, altitude, street address, phone number, building name, etc. The call processing server 18 uses such location information to identify an appropriate EAP for receiving a particular emergency call. The VolP system 10 routes emergency calls to the EAPs 30 via either the PSTN 28 or 10 an emergency services network 32 such as the wireline E91 1 network or a proprietary emergency call handling network capable of routing emergency calls and related information to the EAPs 30. To route an emergency call via the PSTN 28, the call processing server 18 uses location information associated with the call to identify an address of an appropriate EAP and then forwards the call to the EAP address over the PSTN 28 via the MGC/MG 26. When routing 15 calls via the emergency services network 32, the call processing server 18 forwards the emergency call along with acquired location information to the emergency services network 32 directly via a gateway (not shown) or indirectly via the PSDN 16 or the PSTN 28. The emergency services network 32 uses the location information to identify an address of an appropriate EAP for responding to the emergency call. 20 Several embodiments are described herein that enable the VolP system 10 to acquire location information associated with mobile wireless devices accessing the system 10 and to use the acquired location information to route emergency calls to an appropriate EAP. In one embodiment, the call processing server 18 populates and manages a database 34 that relates WAPs to the EAPs 30 using location information associated with mobile wireless devices. 25 Particularly, the call processing server 18 uses location information associated with mobile wireless devices as an approximation of WAP location and relates one or more of the EAPs 30 to particular WAPs using the location information. Thus, when the VoIP system 10 receives an emergency call from a known WAP, i.e., a WAP having an entry in the database, the call processing server 18 identifies an EAP associated with the WAP and routes the emergency call 30 to the identified EAP. Figure 2 illustrates an embodiment of processing logic for identifying WAPs and providing location information associated with identified WAPs to the VolP system 10. Prior to connecting to the VoIP system 10, a mobile wireless device gains wireless broadband access, e.g. to a wireless Local Area Network (WLAN) (Step 100). For example, the dual-mode mobile 35 device 12 gains wireless broadband access via the WAP 14 using a WLAN radio 36 included in the device 12. The WAP 14 implements a network access authentication procedure for determining whether the dual-mode mobile device 12 is an authorized device. 4; WO 2007/081563 PCT/US2006/049420 After gaining access to a wireless broadband network, the mobile wireless device logs into or is otherwise authenticated by the VolP system 10 (Step 102). After authentication is completed, or alternatively, as part of the authentication process, the mobile wireless device sends to the VolP system 10 an identifier associated with the originating WAP, i.e., the WAP 5 through which the device gains access to the VoIP system 10 (Step 104). For example, the dual-mode mobile device 12 provides an identifier associated with the originating WAP 14. Each identifier uniquely identifies a particular WAP to the VolP system 10, e.g., a media access control (MAC) address, a service set identifier (SSID), or an internet protocol (IP) address. Upon request from the VolP system 10 or automatically, the mobile wireless device sends 10 location information associated with the mobile device to the VolP system 10 (Step 106). Figure 3 illustrates an embodiment of processing logic for populating the database 34 with WAP information provided by mobile wireless devices. When a mobile wireless device accesses the VoiP system 10 via a wireless broadband connection, e.g., during non-emergency calls, the device logs into or otherwise authenticates itself to the VolP system 10 (Step 108). As 15 part of the login process, the mobile wireless device sends to the VoIP system 10 an identifier associated with a WAP through which the device communicates with the VoIP system 10. For example, the dual-mode mobile device 12 provides an identifier associated with the originating WAP 14 to the VolP system 10. The call processing server 18 verifies whether the originating WAP 14 is known to the 20 VoIP system 10 (Step 110). If the originating WAP 14 is known, the call processing server 18 processes the incoming call (Step 112). Conversely, if the originating WAP 14 is unknown, the VolP system 10 acquires location information from the dual-mode mobile device 12 (Step 114). The acquired location information serves as an approximation of the location of the originating WAP 14. The database 34 is then updated with the acquired location information (Step 116). 25 Particularly, the database 34 maps the new WAP identifier with one or more of the EAPs 30 that service a geographic area corresponding to location information associated with the newly identified WAP, as illustrated by Figure 4. Further, the VolP system 10 may acquire location information from multiple mobile wireless devices that access the system 10 through the same WAP. The call processing server 18 may use the plurality of acquired location information to 30 refine or pinpoint the location of a particular WAP. The dual-mode mobile device 12 can acquire its location in various ways. For example, the dual-mode mobile device 12 may include a GPS device (not shown) for determining its location. Alternatively, the dual-mode mobile device 12 may communicate with a cellular network 38 to acquire its location. For example, a cellular radio 40 included in the dual-mode 35 mobile device 12 can establish a radio connection to the cellular network 38. Once connected, the dual-mode mobile device 12 acquires its location by cellular network-derived techniques such as Enhanced Observed Time Difference (EOTD), assisted GPS, or Time Difference of Observed Arrival (TDOA). In yet another example, a user of the dual-mode mobile device 12 WO 2007/081563 PCT/US2006/049420 inputs location information into the device, e.g., by inputting alphanumeric characters into a keypad of the device 12 or by voice command. Figure 5 illustrates an embodiment where a mobile wireless device such as the dual mode mobile device 12 or the VoiP system 10 acquires location information from an in-range 5 device 42, i.e., a device in sufficient proximity with the mobile wireless device such that a wireless connection can be established between the devices. The location information acquired from the in-range device 42 can be used to approximate the location of the dual-mode mobile device 12 when the device 12 is unable to ascertain its own location. The dual-mode mobile device 12 either obtains location information from the in-range device 42 and provides the 10 location information to the VolP system 10 or initiates a connection between the VolP system 10 and the in-range device 42. In one example, the dual-mode mobile device 12 acquires location information from the in-range device 42 and provides it to the VolP system 10. As such, the in-range device 42 is unknown to the VolP system 10. During an emergency call, a SIP signaling connection is 15 established between the communication processor 20 of the dual-mode mobile device 12 and the call processing server 18 of the VolP system 10. In addition, a media connection is also established between the VoiP system 10 and the dual-mode mobile device 12 for exchanging information between the communication processor 20 and the call processing server 18. Upon determining that the location of the dual-mode mobile device 12 is not known or cannot be 20 approximated, the dual-mode mobile device 12 establishes a SIP connection with a communication processor 44 of the in-range device 42. As part of the SIP connection with the in-range device 42, a media connection is also established. The dual-mode mobile device 12 then requests location information from the in-range device 42. The dual-mode mobile device 12 acquires the location information from the in-range device 42 via the media 25 connection between the two devices. The dual-mode mobile device 12 then provides the location information to the Vol P system 10 via the media connection between the dual-mode device 12 and the VolP system 10. In another non-limiting example, the call processing server 18 establishes new SIP and media connections with the communication processor 44 of the in-range device 42. Using the 30 preexisting media connection with the in-range device 42, the dual-mode mobile device 12 may acquire a device identifier from the in-range device 42, e.g., a MAC address, SSID, IP address, or phone number. The dual-mode mobile device 12 then forwards the device identifier acquired from the in-range device 42 to the VolP system 10 via the preexisting media connection between the system 10 and the dual-mode device 12. The call processing server 18 uses the 35 device identifier to establish new SIP and media connections between the VolP system 10 and the in-range device 42. As such, the call processing server 18 can then acquire location information from the in-range device 42 over the newly established media channel. Those skilled in the art will appreciate that the -call processing server 18 can contact one or more in- WO 2007/081563 PCT/US2006/049420 range devices while maintaining an emergency call connection with the dual-mode mobile device 12. In yet another non-limiting example, the call processing server 18 communicates with the in-range device 42 through the dual-mode device 12. Particularly, the dual-mode device 12 5 routes or passes information between the VolP system 10 and the in-range device 42 using the SIP and media connections established between the dual-mode device 12 and the VolP system1O and between the dual-mode device 12 and the in-range device 42. That is, the dual mode mobile device 12 can function as a relay to establish communication between the in range device 42 and the VoIP system 10. As such, the dual-mode mobile device 12 functions 10 as a router or pass-through device, enabling the call processing server 18 to use the preexisting connections with the dual-mode mobile device 12 to acquire location information from the in range device 42. Figure 6 illustrates an embodiment of processing logic for placing an emergency call to the VolP system 10 by a mobile wireless device via a WAP. The mobile wireless initiates an 15 emergency call with the VoIP system 10 via a wireless broadband connection (Step 200). For example, the dual-mode mobile device 12 initiates an emergency call via a wireless broadband connection established by the WAP 14. The mobile wireless device sends to the VoIP system 10 an identifier associated with a WAP through which the device communicates with the VoIP system 10 (Step 202). For example, the dual-mode mobile device 12 provides an 20 identifier associated with the originating WAP 14. Figure 7 illustrates an embodiment of processing logic for routing an emergency call received by the VolP system 10 to an appropriate EAP using the WAP/EAP relationships provided by the database 34. For example, after the dual-mode mobile device 12 is authenticated by the originating WAP 14, the device 12 initiates an emergency call via the 25 wireless broadband connection established by the WAP 14 (Step 204). The VoIP system 10 receives from the dual-mode mobile device 12 an identifier associated with the originating WAP 14 (Step 206). The call processing server 18 then queries or mines the database 34 using the WAP identifier received from the dual-mode mobile device 12 to identify an EAP associated with the originating WAP 14 (Step 208). The call processing server 18 directs the 30 emergency call to the identified EAP (Step 210), e.g., via the PSTN 28 or the emergency services network 32. Figure 8 illustrates an embodiment of processing logic for placing an emergency call to the VolP system 10 by a mobile wireless device that provides its location to the system 10 as part of the emergency call. The mobile wireless initiates an emergency call with the VolP 35 system 10 via a wireless broadband connection (Step 300). For example, the dual-mode mobile device 12 initiates an emergency call via a wireless broadband connection established by the WAP 14. The mobile wireless device provides to the VoIP system 10 location information associated with the mobile wireless device (Step 302). For example, the dual-mode mobile
Q
WO 2007/081563 PCT/US2006/049420 device 12 provides to the VoIP system 10 GPS-derived, cellular network-derived, or user derived location information each as previously described. Alternatively, Figure 9 illustrates an embodiment of processing logic for placing an emergency call to the VolP system 10 by a mobile wireless device that provides the location of 5 an in-range device to the system 10 as an'approximation of the mobile wireless 'device's location. The mobile wireless initiates an emergency call with the VoIP system 10 via a wireless broadband connection (Step 304). If the mobile wireless device cannot identify its own location, the mobile wireless device establishes a connection with an in-range device (Step 306). For example, the communication processor 20 of the dual-mode mobile device 12 establishes SIP 10 and- media connections with the communication processor 44 of the in-range device 42. The mobile wireless device then acquires location information from the in-range device via the connection between the two devices (Step 308). The mobile wireless device provides the acquired in-range device location information to the VoIP system 10 via the connection established between the system 10 and the mobile wireless device resulting from the 15 emergency call (Step 310). Figure 10 illustrates an embodiment of processing logic for routing an emergency call received by the VolP system 10 to an appropriate EAP using location information received from a mobile wireless device placing the emergency call. For example, after the dual-mode mobile device 12 is authenticated by the originating WAP 14, the device 12 places an emergency call 20 via the wireless broadband connection established by the WAP 14 (Step 312). In addition to receiving the emergency call, the VolP system 10 also receives from the dual-mode mobile device 12 solicited or unsolicited location information acquired by the device 12 (Step 314). In one example, the device 12 acquires the location information after a user initiates an emergency call via the device 12, but before the device 12 places the call to the 25 VolP system 10. In another example, the device 12 provides location information previously acquired and stored by the device 12. Regardless of when the device 12 acquires its location, the location information may be automatically provided to the Vol P system 10 as part of the emergency call or may be provided by the device 12 upon request by the VoIP system 10. The call processing server 18 then directs the emergency call to an EAP that services the 30 geographic area corresponding to the unsolicited location information (Step 316), e.g., via the PSTN 28 or the emergency services network 32. Figure 11 illustrates an embodiment of processing logic for routing an emergency call received by the Vol P system 10 to an appropriate EAP using location information received from a device in-range of a mobile wireless device placing the emergency call. According to this 35 particular embodiment, a mobile wireless device is unable to acquire its location, but is in-range of a device that has or can obtain location information. During an emergency call, the call processing .server 18 uses location information acquired from an in-range device as an approximation of the location of the mobile wireless device that placed the emergency call. For a WO 2007/081563 PCT/US2006/049420 example, the processing logic "begins" with the dual-mode mobile device 12 placing an emergency call to the VoIP system 10 via a wireless broadband connection established by the originating WAP 14 (Step 400). In addition to receiving the emergency call, the VoIP system 10 also receives from the dual-mode mobile device 12 address information associated with the in 5 range device 42 and uses the address information to establish a connection with the in-range device 42 (Step 402). The VolP system 10 then acquires location information from the in-range device 42 via the newly established connection between the system 10 and the in-range device 42 (Step 404). The call processing server 18 directs the emergency call to an EAP that services the geographic area corresponding to the in-range device location information 10 (Step 406), e.g., via the PSTN 28 or the emergency services network 32. Figure 12 illustrates an embodiment of processing logic for re-directing an incoming emergency call received by the VolP system 10 when the system 10 is unable to acquire location information associated with the emergency call. The processing logic "begins" with the VoIP system 10 receiving an emergency call placed by a mobile device capable of both cellular 15 and wireless communication such as the dual-mode mobile device 12 (Step 500). Upon receiving the emergency call, the call processing server 18 determines whether a location associated with the emergency call is identifiable (Step 502), e.g., by one or more of the embodiments described herein. If a location is identifiable, the call processing server 18 routes the emergency call to an appropriate EAP (Step 504). 20 - If the location is unidentifiable, i.e., the call processing server 18 is not able to determine the location or an approximate location of the dual-mode mobile device 12, the emergency call is re-directed to an alternate carrier such as a cellular carrier associated with the cellular network 38 (Step 506). In one example, the call processing server 18 provides a call redirection instruction to the dual-mode mobile device 12 after the server 18 determines that the location of 25 the device 12 is unidentifiable, thus instructing the dual-mode device 12 to re-direct the emergency call. In another example, the dual-mode mobile device 12 recognizes that it cannot acquire its location, and in doing so, re-directs the call to the cellular network 38 without instruction from the call processing server 18. The communication processor 20 manages emergency call redirection in the dual-mode 30 mobile device 12. When the location of the dual-mode mobile device 12 is unidentifiable, the communication processor 20 establishes a cellular communication channel with the cellular network 38, as illustrated by Step 508 of Figure 13. In one example, the call processing server 18 of the Vol P system 10 provides a call redirection instruction to the dual-mode mobile device 12, causing the communication processor 20 to "re-direct" the emergency call by placing 35 a subsequent emergency call over the cellular network 38. In another example, the communication processor 20 recognizes that it cannot acquire the location of the dual-mode mobile device 12, and in doing so, generates an internal call redirection instruction causing the dual-mode device 12 to "re-direct" the call without instruction from the call processing server 18. 1iA WO 2007/081563 PCT/US2006/049420 Regardless of how a call redirection instruction is generated, the communication processor 20 "re-directs" the emergency call by placing a subsequent emergency call over the cellular network 38 in response to a call redirection instruction, as illustrated by Step 510 of Figure 13. As such, the emergency call is serviced by a cellular-based system (not shown) when the 5 location of the dual-mode mobile device 12 is unidentifiable. Those skilled in the art will appreciate that the communication processor 20 can establish a cellular communication channel while maintaining a call connection with the VolP system 10 if the WLAN and cellular radios 36, 40 do not substantially interfere with each other. With the above embodiments in mind, it should be understood that emergency call 10 routing in VolP systems as taught herein provides for a VolP system, e.g., the system 10 that is configured to route an emergency call placed by a mobile wireless device to an EAP that services a geographic area corresponding to an approximate location of the mobile wireless device. The VolP system is also configured to re-direct emergency calls received from dual mode mobile devices over a cellular network when the calls lack location information sufficient 15 for the VoIP system to route the calls to appropriate EAPs. Thus, while the invention has been described in terms of specific embodiments, it should be understood that the present invention is not limited by the foregoing description, nor is it limited by the accompanying drawings. Instead, the present invention is limited only by the following claims and their legal equivalents. 20 11

Claims (16)

1. A method of routing emergency calls in a Voice-over-IP (VoIP) system, including: receiving an incoming emergency call originated from a mobile wireless device connected to the VoIP system through a wireless access point (WAP); 5 establishing a communication link with a device in range of the mobile wireless device; acquiring location information from the in-range device using the communication link by receiving a device identifier associated with the in-range device, connecting to the in-range device using the device identifier, and acquiring the location information from the in-range device while connected to the in-range device; and 0 directing the emergency call to an emergency answering point (EAP) that services a geographic area corresponding to the location information acquired from the in-range device.
2. The method of claim 1, wherein the mobile wireless device functions as a relay in the communication link between the WAP and the in-range device. 5
3. The method of claim 1 or 2, further including maintaining a call connection with the mobile wireless device while connected to the in-range device.
4. The method of any one of claims 1 to 3, further including initiating redirection of the 0 emergency call to a cellular network if no location information is acquired.
5. A voice-over-IP (VoIP) system, including a call processing server configured to receive an incoming emergency call originated from a mobile wireless device connected to the VolP system through a wireless access point (WAP), said call processing server configured to 25 establish a communication link with a device in range of the mobile wireless device, acquire location information from the in-range device using the communication link by receiving a device identifier associated with the in-range device, connecting to the in-range device using the device identifier, and acquiring the location information from the in-range device while connected to the in-range device, and to direct the emergency call to an emergency answering point (EAP) that 30 services a geographic area corresponding to the location information acquired from the in-range device.
6. The VoIP system of claim 5, wherein the call processing server establishes a communication link with the in-range device using the mobile wireless device as a relay. 35 12?
7. The VoIP system of claim 5 or 6, wherein the call processing server is further configured to maintain a call connection with the mobile wireless device while connected to the in-range device. 5
8. The VoIP system of any one of claims 5 to 7, wherein the call processing server is further configured to initiate redirection of the emergency call to a cellular network if no location information is acquired.
9. A mobile wireless device, including: 0 a wireless broadband radio configured to connect the mobile wireless device to a wireless broadband network; and a communication processor configured to establish a call connection with a voice-over IP (VoIP) system via the wireless broadband network for placing an emergency call, and provide a device identifier of one or more in-range devices to said VoIP system. 5
10. The mobile wireless device of claim 9, wherein the device identifier includes one of: an Internet Protocol address; a media access control address; a service set identifier; and 0 a phone number.
11. The mobile wireless device of claim 9 or 10, wherein the communication processor is further configured to place a new emergency call to a cellular network responsive to a call redirection instruction. 25
12. A mobile wireless device, including: a wireless broadband radio configured to connect the mobile wireless device to a wireless broadband network and to an in-range; and a communication processor configured to establish a call connection with a voice-over 30 IP (VoIP) system via the wireless broadband network for placing an emergency call; establish communication with an in-range device; and relay communications between the VoIP system and the in-range device, wherein the communication processor is further configured to place a new emergency call to a cellular network responsive to a call redirection instruction. 35
13. A method of routing emergency calls in a VoIP system substantially according to claim 1 and any one of the embodiments herein described with reference to the accompanying figures. 112
14. A VolP system substantially according to claim 5 and any one of the embodiments herein described with reference to the accompanying figures.
15. A mobile wireless device substantially according to claim 9 and any one of the 5 embodiments herein described with reference to the accompanying figures.
16. A mobile wireless device substantially according to claim 12 and any one of the embodiments herein described with reference to the accompanying figures. 0 SONY ERICSSON MOBILE COMMUNICATIONS AB WATERMARK PATENT & TRADE MARK ATTORNEYS P30634AU00 14
AU2006335102A 2006-01-03 2006-12-28 A method and apparatus for routing emergency calls in a VoIP system Ceased AU2006335102B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US75592606P 2006-01-03 2006-01-03
US60/755,926 2006-01-03
US11/608,583 2006-12-08
US11/608,583 US20070153984A1 (en) 2006-01-03 2006-12-08 Method and Apparatus for Routing Emergency Calls in a VoIP System
PCT/US2006/049420 WO2007081563A2 (en) 2006-01-03 2006-12-28 A method and apparatus for routing emergency calls in a voip system

Publications (2)

Publication Number Publication Date
AU2006335102A1 AU2006335102A1 (en) 2007-07-19
AU2006335102B2 true AU2006335102B2 (en) 2010-04-01

Family

ID=38224419

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2006335102A Ceased AU2006335102B2 (en) 2006-01-03 2006-12-28 A method and apparatus for routing emergency calls in a VoIP system

Country Status (5)

Country Link
US (1) US20070153984A1 (en)
EP (1) EP1977619A2 (en)
JP (1) JP2009522927A (en)
AU (1) AU2006335102B2 (en)
WO (1) WO2007081563A2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070178939A1 (en) * 2006-01-31 2007-08-02 Sbc Knowledge Ventures Lp Method for reducing radio interference between wireless access points
US8175802B2 (en) 2007-06-28 2012-05-08 Apple Inc. Adaptive route guidance based on preferences
US8332402B2 (en) 2007-06-28 2012-12-11 Apple Inc. Location based media items
US8774825B2 (en) 2007-06-28 2014-07-08 Apple Inc. Integration of map services with user applications in a mobile device
US8275352B2 (en) 2007-06-28 2012-09-25 Apple Inc. Location-based emergency information
US8180379B2 (en) 2007-06-28 2012-05-15 Apple Inc. Synchronizing mobile and vehicle devices
US9066199B2 (en) 2007-06-28 2015-06-23 Apple Inc. Location-aware mobile device
US8385946B2 (en) 2007-06-28 2013-02-26 Apple Inc. Disfavored route progressions or locations
US8290513B2 (en) 2007-06-28 2012-10-16 Apple Inc. Location-based services
US8762056B2 (en) 2007-06-28 2014-06-24 Apple Inc. Route reference
US8204684B2 (en) 2007-06-28 2012-06-19 Apple Inc. Adaptive mobile device navigation
US8311526B2 (en) * 2007-06-28 2012-11-13 Apple Inc. Location-based categorical information services
US8108144B2 (en) 2007-06-28 2012-01-31 Apple Inc. Location based tracking
US9109904B2 (en) 2007-06-28 2015-08-18 Apple Inc. Integration of map services and user applications in a mobile device
US8463238B2 (en) 2007-06-28 2013-06-11 Apple Inc. Mobile device base station
GB0716246D0 (en) 2007-08-20 2007-09-26 Nec Corp IP Based emergency services solution in WiMax
US8130663B2 (en) * 2007-09-14 2012-03-06 At&T Intellectual Property I, L.P. Methods and apparatus to route emergency communication sessions
US8127246B2 (en) 2007-10-01 2012-02-28 Apple Inc. Varying user interface element based on movement
US8977294B2 (en) 2007-10-10 2015-03-10 Apple Inc. Securely locating a device
US8355862B2 (en) 2008-01-06 2013-01-15 Apple Inc. Graphical user interface for presenting location information
US8452529B2 (en) 2008-01-10 2013-05-28 Apple Inc. Adaptive navigation system for estimating travel times
ES2787251T3 (en) * 2008-02-06 2020-10-15 Nokia Solutions & Networks Oy Device location-based server identifier acquisition
US9250092B2 (en) 2008-05-12 2016-02-02 Apple Inc. Map service with network-based query for search
US8644843B2 (en) 2008-05-16 2014-02-04 Apple Inc. Location determination
US8369867B2 (en) 2008-06-30 2013-02-05 Apple Inc. Location sharing
US8359643B2 (en) 2008-09-18 2013-01-22 Apple Inc. Group formation using anonymous broadcast information
CN102356650B (en) 2009-03-17 2016-01-20 阿尔卡特朗讯 Cellular radio and method of operation
US8660530B2 (en) 2009-05-01 2014-02-25 Apple Inc. Remotely receiving and communicating commands to a mobile device for execution by the mobile device
US8666367B2 (en) 2009-05-01 2014-03-04 Apple Inc. Remotely locating and commanding a mobile device
US8670748B2 (en) 2009-05-01 2014-03-11 Apple Inc. Remotely locating and commanding a mobile device
US8542611B1 (en) * 2010-09-20 2013-09-24 Sprint Communications Company L.P. Wireless communication system for routing emergency calls from a VoIP network
KR102170178B1 (en) * 2013-03-14 2020-10-26 삼성전자주식회사 Method and device for controlling use of external data network via mobile access point
FR3052011A1 (en) * 2016-05-27 2017-12-01 Orange METHOD OF FALLING IN A TELECOMMUNICATION NETWORK

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203567A1 (en) * 2002-11-22 2004-10-14 Jeffrey Berger Apparatus and method for providing emergency information in a signpost location system
US20040239498A1 (en) * 2003-05-29 2004-12-02 Miller John D. System and method for signaling emergency responses
US20050135569A1 (en) * 2003-12-19 2005-06-23 Richard Dickinson Enhanced E911 location information using voice over internet protocol (VoIP)
WO2005112488A2 (en) * 2004-05-07 2005-11-24 Interdigital Technology Corporation Supporting emergency calls on a wireless local area network

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801777B2 (en) * 2001-11-27 2004-10-05 Intel Corporation Device and method for intelligent wireless communication selection
US7369859B2 (en) * 2003-10-17 2008-05-06 Kineto Wireless, Inc. Method and system for determining the location of an unlicensed mobile access subscriber
US7640008B2 (en) * 2002-10-18 2009-12-29 Kineto Wireless, Inc. Apparatus and method for extending the coverage area of a licensed wireless communication system using an unlicensed wireless communication system
US7260186B2 (en) * 2004-03-23 2007-08-21 Telecommunication Systems, Inc. Solutions for voice over internet protocol (VoIP) 911 location services
US7123693B2 (en) * 2004-03-13 2006-10-17 Intrado Inc. Method and apparatus for increasing the reliability of an emergency call communication network
US7200207B2 (en) * 2004-03-13 2007-04-03 Intrado Inc. Communication network for providing emergency services
US8145182B2 (en) * 2004-05-07 2012-03-27 Interdigital Technology Corporation Supporting emergency calls on a wireless local area network
US20060274729A1 (en) * 2005-06-03 2006-12-07 Michael Self Apparatus and method for connecting a voice over IP telephone subscriber to the 911 emergency network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203567A1 (en) * 2002-11-22 2004-10-14 Jeffrey Berger Apparatus and method for providing emergency information in a signpost location system
US20040239498A1 (en) * 2003-05-29 2004-12-02 Miller John D. System and method for signaling emergency responses
US20050135569A1 (en) * 2003-12-19 2005-06-23 Richard Dickinson Enhanced E911 location information using voice over internet protocol (VoIP)
WO2005112488A2 (en) * 2004-05-07 2005-11-24 Interdigital Technology Corporation Supporting emergency calls on a wireless local area network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHULZRINNE C. et al. "Emergency Services for Internet Telephony Systems" IETF STANDARD-WORKING-DRAFT, INTERN'ET ENGINEERING TASK FORCE, IETF, CH, no. 2, 18 October 2004 *

Also Published As

Publication number Publication date
EP1977619A2 (en) 2008-10-08
WO2007081563A3 (en) 2007-11-29
US20070153984A1 (en) 2007-07-05
AU2006335102A1 (en) 2007-07-19
WO2007081563A2 (en) 2007-07-19
JP2009522927A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
AU2006335102B2 (en) A method and apparatus for routing emergency calls in a VoIP system
AU2006332940B2 (en) A method and apparatus for routing emergency calls in a VoIP system
AU2006335113B2 (en) A method and apparatus for routing emergency calls in a VoIP system
US20070153982A1 (en) Method and Apparatus for Routing Emergency Calls in a VoIP System
US7564838B2 (en) Emergency call methodology for VoIP communications
US8693454B2 (en) Mobile computing device geographic location determination
US7433673B1 (en) Method and system for providing location information for a wireless local area network (WLAN)
US20080304487A1 (en) Enhancing subscriber location tracking mechanism for voice over internet protocol services
US20060153172A1 (en) Emergency call system and emergency call method
US8761718B2 (en) Verification of communications network-derived location information
US20130065550A1 (en) Method and System for Routing a Voice-Over-Packet Emergency Services Call to an Appropriate Public Safety Answering Point (PSAP)
US20080153455A1 (en) System, method and program for managing voip calls such as 911 calls from mobile devices
CN108432333B (en) Method, system and apparatus for providing enhanced call setup via wireless local area network
CN101352058A (en) Method and apparatus for routing emergency calls in a VoIP system
US20200146080A1 (en) Method, System and Device for Providing a Setup of an Enhanced Call via a Wireless Local Area Network
EP3062483B1 (en) System and method for providing location based services, especially emergency calls, for voice calls originating from a data network

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired