AU2006235875A1 - Enzymes having dehalogenase activity and methods of use thereof - Google Patents

Enzymes having dehalogenase activity and methods of use thereof Download PDF

Info

Publication number
AU2006235875A1
AU2006235875A1 AU2006235875A AU2006235875A AU2006235875A1 AU 2006235875 A1 AU2006235875 A1 AU 2006235875A1 AU 2006235875 A AU2006235875 A AU 2006235875A AU 2006235875 A AU2006235875 A AU 2006235875A AU 2006235875 A1 AU2006235875 A1 AU 2006235875A1
Authority
AU
Australia
Prior art keywords
sequences
sequence
nucleic acid
polypeptide
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2006235875A
Other versions
AU2006235875B2 (en
AU2006235875B8 (en
Inventor
Kevin A. Gray
Toby Richardson
Dan E. Robertson
Jay M. Short
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Enzymes LLC
Original Assignee
Diversa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2001297671A external-priority patent/AU2001297671A1/en
Application filed by Diversa Corp filed Critical Diversa Corp
Priority to AU2006235875A priority Critical patent/AU2006235875B8/en
Publication of AU2006235875A1 publication Critical patent/AU2006235875A1/en
Assigned to VERENIUM CORPORATION reassignment VERENIUM CORPORATION Request for Assignment Assignors: DIVERSA CORPORATION
Publication of AU2006235875B2 publication Critical patent/AU2006235875B2/en
Priority to AU2011201053A priority patent/AU2011201053B2/en
Application granted granted Critical
Publication of AU2006235875B8 publication Critical patent/AU2006235875B8/en
Assigned to BASF ENZYMES LLC reassignment BASF ENZYMES LLC Request to Amend Deed and Register Assignors: VERENIUM CORPORATION
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y308/00Hydrolases acting on halide bonds (3.8)
    • C12Y308/01Hydrolases acting on halide bonds (3.8) in C-halide substances (3.8.1)
    • C12Y308/01005Haloalkane dehalogenase (3.8.1.5)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

P/00/011 Regulation 3.2
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Invention Title: Enzymes having dehalogenase activity and methods of use thereof The following statement is a full description of this invention, including the best method of performing it known to us: O ENZYMES HAVING DEHALOGENASE SACTIVITY AND METHODS OF USE THEREOF O RELATED APPLICATIONS The present application claims priority to U.S. Serial No. 60/250,897, filed tt December 1, 2000, now pending, the contents of which are hereby incorporated by 00 reference in their entirety.
SFIELD OF THE INVENTION This invention relates generally to enzymes, polynucleotides encoding the enzymes, the use of such polynucleotides and polypeptides, and more specifically to enzymes having haloalkane dehalogenase activity.
BACKGROUND
Environmental pollutants consist of a large quantity and variety of chemicals; many of these are toxic, environmental hazards that were designated in 1979 as priority pollutants by the U.S. Environmental Protection Agency. Microbial and enzymatic biodegradation is one method for the elimination of these pollutants.
Accordingly, methods have been designed to treat commercial wastes and to bioremediate polluted environments via microbial and related enzymatic processes.
Unfortunately, many chemical pollutants are either resistant to microbial degradation or are toxic to potential microbial-degraders when present in high concentrations and certain combinations.
Haloalkane dehalogenase belongs to the alpha/beta hydrolase fold family in which all of the enzymes share similar topology, reaction mechanisms, and catalytic triad residues (Krooshofet al., Biochemistry 36(31):9571-9580, 1997). The enzyme cleaves carbon-halogen bonds in haloalkanes and halocarboxylic acids by hydrolysis, thus converting them to their corresponding alcohols. This reaction is important for OD 2 O detoxification involving haloalkanes such as ethylchloride, methylchloride, and 1,2- Z dichloroethane, which are considered priority pollutants by the the Environmental Protection Agency (Rozeboom, Kingma, Janssen, Dijkstra, B.
Crystallization ofHaloalkane Dehalogenase from Xanthobacter autotrophicus GJ10 J t Mol Biol 200 611-612 (1988)).
00 The haloalkane dehalogenases are produced by microorganisms that can N grow entirely on chlorinated aliphatic compounds. No metal or oxygen is needed for Sactivity: water is the sole substrate.
Xanthobacter autotrophicus GJ10 is a nitrogen-fixing bacteria that utilizes 1,2-dichloroethane and a few other haloalkane and halocarboxylic acids for growth (Rozeboom et al., J Mol Biol 200 3:611-612, 1988; Keuning et al., J Bacteriol 163(2):635-639, 1985). It is the most well-studied dehalogenase because it has a known catalytic reaction mechanism, activity mechanism and crystal-structure (Schanstra et al., J Biol Chem 271(25):14747-14753, 1996).
The organism produces two different dehalogenases. One dehalogenase is for halogenated alkanes and the other for halogenated carboxylic acids. Most harmful halogenated compounds are industrially produced for use as cleaning agents, pesticides, and solvents. The natural substrate ofXanthobacter autotrophicus is 1,2dichloroethane. This haloalkane is often used in vinyl production.
Enzymes are highly selective catalysts. Their hallmark is the ability to catalyze reactions with exquisite stereo-, regio-, and chemo-selectivities that are unparalleled in conventional synthetic chemistry. Moreover, enzymes are remarkably versatile. They can be tailored to function in organic solvents, operate at extreme pH's and temperatures, and catalyze reactions with compounds that are structurally unrelated to their natural, physiological substrates Enzymes are reactive toward a wide range of natural and unnatural substrates, thus enabling the modification of virtually any organic lead compound.
Moreover, unlike traditional chemical catalysts, enzymes are highly enantio- and regio-selective. The high degree of functional group specificity exhibited by enzymes Z enables one to keep track of each reaction in a synthetic sequence leading to a new active compound. Enzymes are also capable of catalyzing many diverse reactions unrelated to their physiological function in nature. For example, peroxidases catalyze n the oxidation of phenols by hydrogen peroxide. Peroxidases can also catalyze OC hydroxylation reactions that are not related to the native function of the enzyme.
SOther examples are proteases which catalyze the breakdown of polypeptides. In Sorganic solution some proteases can also acylate sugars, a function unrelated to the Snative function of these enzymes.
The present invention exploits the unique catalytic properties of enzymes.
Whereas the use ofbiocatalysts purified or crude enzymes, non-living or living cells) in chemical transformations normally requires the identification of a particular biocatalyst that reacts with a specific starting compound, the present invention uses selected biocatalysts and reaction conditions that are specific for functional groups that are present in many starting compounds.
Each biocatalyst is specific for one functional group, or several related functional groups, and can react with many starting compounds containing this functional group.
The biocatalytic reactions produce a population of derivatives from a single starting compound. These derivatives can be subjected to another round of biocatalytic reactions to produce a second population of derivative compounds.
Thousands of variations of the original compound can be produced with each iteration of biocatalytic derivatization.
Enzymes react at specific sites of a starting compound without affecting the rest of the molecule, a process which is very difficult to achieve using traditional chemical methods. This high degree ofbiocatalytic specificity provides the means to identify a single active compound within the library. The library is characterized by the series of biocatalytic reactions used to produce it, a so called "biosynthetic history". Screening the library for biological activities and tracing the biosynthetic o history identifies the specific reaction sequence producing the active compound. The Z reaction sequence is repeated and the structure of the synthesized compound determined. This mode of identification, unlike other synthesis and screening approaches, does not require immobilization technologies, and compounds can be It synthesized and tested free in solution using virtually any type of screening assay. It is 00 important to note, that the high degree of specificity of enzyme reactions on ¢Cc functional groups allows for the "tracking" of specific enzymatic reactions that make IN up the biocatalytically produced library.
71 Many of the proceduial steps are performed using robotic automation enabling the execution of many thousands of biocatalytic reactions and screening assays per day as well as ensuring a high level of accuracy and reproducibility. As a result, a library of derivative compounds can be produced in a matter of weeks which would take years to produce using current chemical methods. (For further teachings on modification of molecules, including small molecules, See PCT/US94/09174, herein incorporated by reference in its entirety).
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
SUMMARY OF THE INVENTION The invention provides an isolated nucleic acid having a sequence as set forth in SEQ ID NO.: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 43, 45, 47 and variants thereof having at least 50% sequence identity to SEQ ID NO.: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 43, 45 or 47 and encoding polypeptides having dehalogenase activity.
One aspect of the invention is an isolated nucleic acid having a sequence as set forth in SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,23, 25, 27, 29, 31, 33,
\O
>37, 43, 45, 47 (hereinafter referred to as "Group A nucleic acid sequences"), Z sequences substantially identical thereto, and sequences complementary thereto.
Another aspect of the invention is an isolated nucleic acid including at least consecutive bases of a sequence as set forth in Group A nucleic acid sequences, sequences substantially identical thereto, and the sequences complementary thereto.
00 M€ In yet another aspect, the invention provides an isolated nucleic acid Iencoding a polypeptide having a sequence as set forth in SEQ ID NO.: 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 44, 46, 48 and variants thereof encoding a polypeptide having dehalogenase activity and having at least sequence identity to such sequences.
Another aspect of the invention is an isolated nucleic acid encoding a polypeptide or a functional fragment thereof having a sequence as set forth in SEQ ID NO: 4, 6, 8, 10, 12, 14, 16, 18, 20,22,24, 26,28, 30, 32, 34, 36, 38, 44, 46,48 (hereinafter referred to as "Group B amino acid sequences"), and sequences substantially identical thereto.
Another aspect of the invention is an isolated nucleic acid encoding a polypeptide having at least 10 consecutive amino acids of a sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto.
In yet another aspect, the invention provides a purified polypeptide having a sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto.
Another aspect of the invention is an isolated or purified antibody that specifically binds to a polypeptide having a sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto.
Another aspect of the invention is an isolated or purified antibody or binding fragment thereof, which specifically binds to a polypeptide having at least o consecutive amino acids of one of the polypeptides of Group B amino acid sequences, Z and sequences substantially identical thereto.
Another aspect of the invention is a method of making a polypeptide t having a sequence as set forth in Group B amino acid sequences, and sequences OC substantially identical thereto. The method includes introducing a nucleic acid 00 t encoding the polypeptide into a host cell, wherein the nucleic acid is operably linked Sto a promoter, and culturing the host cell under conditions that allow expression of the nucleic acid.
Another aspect of the invention is a method of making a polypeptide having at least 10 amino acids of a sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto. The method includes introducing a nucleic acid encoding the polypeptide into a host cell, wherein the nucleic acid is operably linked to a promoter, and culturing the host cell under conditions that allow expression of the nucleic acid, thereby producing the polypeptide.
Another aspect of the invention is a method of generating a variant including obtaining a nucleic acid having a sequence as set forth in Group A nucleic acid sequences, sequences substantially identical thereto, sequences complementary to the sequences of Group A nucleic acid sequences, fragments comprising at least consecutive nucleotides of the foregoing sequences, and changing one or more nucleotides in the sequence to another nucleotide, deleting one or more nucleotides in the sequence, or adding one or more nucleotides to the sequence.
Another aspect of the invention is a computer readable medium having stored thereon a sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto.
Another aspect of the invention is a computer system including a processor and a data storage device wherein the data storage device has stored thereon a
IO
>sequence as set forth in Group A nucleic acid sequences, and sequences substantially Z identical thereto, or a polypeptide having a sequence as set forth in Group B amino Sacid sequences, and sequences substantially identical thereto.
Another aspect of the invention is a method for comparing a first sequence r to a reference sequence wherein the first sequence is a nucleic acid having a sequence 00 tn as set forth in Group A nucleic acid sequences, and sequences substantially identical C thereto, or a polypeptide code of Group B amino acid sequences, and sequences substantially identical thereto. The method includes reading the first sequence and the Sreference sequence through use of a computer program which compares sequences; and determining differences between the first sequence and the reference sequence with the computer program.
Another aspect of the invention is a method for identifying a feature in a sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide having a sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, including reading the sequence through the use of a computer program which identifies features in sequences; and identifying features in the sequence with the computer program.
Another aspect of the invention is an assay for identifying fragments or variants of Group B amino acid sequences, and sequences substantially identical thereto, which retain the enzymatic function of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto. The assay includes contacting the polypeptide of Group B amino acid sequences, sequences substantially identical thereto, or polypeptide fragment or variant with a substrate molecule under conditions which allow the polypeptide fragment or variant to function, and detecting either a decrease in the level of substrate or an increase in the level of the specific reaction product of the reaction between the polypeptide and substrate thereby identifying a fragment or variant of such sequences.
In yet another aspect, the invention provides a method for synthesizing glycerol. The method includes contacting trichloropropane or dichloropropanol with INO 8 O a polypeptide having at least 70% homology to a sequence selected from the group Z consisting of Group B amino acid sequences and sequences substantially identical thereto, and having dehalogenase activity, under conditions to synthesize glycerol.
In yet another aspect, the invention provides a method for producing an C optically active halolactic acid. The method includes contacting a dihalopropionic 00 Sacid with a polypeptide having at least 70% homology to a sequence selected from the group consisting of Group B amino acid sequences and sequences substantially 0 identical thereto, and having dehalogenase activity, under conditions to produce C optically active halolactic acid.
In yet another aspect, the invention provides a method for bioremediation by contacting an environmental sample with a polypeptide having at least homology to a sequence selected from the group consisting of Group B amino acid sequences and sequences substantially identical thereto, and having dehalogenase activity.
In another aspect, the invention provides a method for removing a halogenated contaminant or halogenated impurity from a sample. The method includes contacting the sample with a polypeptide having at least 70% homology to a sequence selected from the group consisting of Group B amino acid sequences and sequences substantially identical thereto, and having dehalogenase activity.
In yet another aspect, the invention provides a method for synthesizing a diol, by contacting a dihalopropane or monohalopropanol with a polypeptide having at least 70% homology to a sequence selected from the group consisting of Group B amino acid sequences and sequences substantially identical thereto, and having dehalogenase activity, under conditions to synthesize the diol.
In yet another aspect, the invention provides a method for dehalogenating a halo-substituted cyclic hydrocarbyl. The method includes contacting the halosubstituted cyclic hydrocarbyl with a polypeptide having at least 70% homology to a sequence selected from the group consisting of Group B amino acid sequences and Osequences substantially identical thereto, and having dehalogenase activity, under Z conditions to dehalogenate the halo-substituted cyclic hydrocarbyl.
BRIEF DESCRIPTION OF THE DRAWINGS 00 OO Vt The following drawings are illustrative of embodiments of the invention C and are not meant to limit the scope of the invention as encompassed by the claims.
O
SFigure 1 is a block diagram of a computer system.
Figure 2 is a flow diagram illustrating one embodiment of a process for comparing a new nucleotide or protein sequence with a database of sequences in order to determine the homology levels between the new sequence and the sequences in the database.
Figure 3 is a flow diagram illustrating one embodiment of a process in a computer for determining whether two sequences are homologous.
Figure 4 is a flow diagram illustrating one embodiment of an identifier process 300 for detecting the presence of a feature in a sequence.
Figure 5 shows an alignment of the polypeptide sequences of the invention. A=SEQ ID NO:4; B=SEQ ID NO:2; C=SEQ ID NO:6; rhod2=SEQ ID myco4=SEQ ID NO:42.
Figure 6 shows sequences of the invention (SEQ ID Nos:9-38 and 43-48) Figure 7 shows an example of the formation of glycerol using the dehalogenases of the invention as well as the formation of 1,2-propanediol or 1,3propanediol using the dehalogenases of the invention.
Figure 8 shows an example of the dehalogenation of a halo-substituted cyclic hydrocarbyl using the dehalogenases of the invention.
0 SDETAILED DESCRIPTION OF THE INVENTION The invention relates to haloalkane dehalogenase polypeptides and l polynucleotides encoding them as well as methods of use of the polynucleotides and 00 polypeptides. As used herein, the terminology "haloalkane dehalogenase" Cc encompasses enzymes having hydrolase activity, for example, enzymes capable of I0 catalyzing the hydrolysis ofhaloalkanes via an alkyl-enzyme intermediate.
C1 The polynucleotides of the invention have been identified as encoding polypeptides having dehalogenase activity and in particular embodiments haloalkane dehalogenase activity.
The dehalogenases and polynucleotides encoding the dehalogenases of the invention are useful in a number of processes, methods, and compositions. For example, as discussed above, a dehalogenase can be used to remedy an environment contaminated with aliphatic organochlorine, degrade the herbicide dalapon, degrade halogenated organic acids as well as soil and water remediation, and treat by degradation halogenated organic acid in the soil and water. Furthermore, a dehalogenase of the invention can be used to remove impurities in industrial processes, in the environment, and in medicaments. For example, a dehalogenase can be used to decompose haloalkanoic acid impurities in various samples including, for example, surfactants, carboxymethyl cellulose or thioglycolic acid salts. In yet another aspect, the dehalogenases of the invention can be used in the formation of medicines, agrochemical and ferroelectric liquids by allowing oxidative dehalogenation of specific 1,2-diol or racemic halogenohydrins. For example, a dehalogenase can be used in the synthesis of optically active glycidic and lactic acids beta halolactic acid) by treating an a, P- dihalopropionic acid dichloropropionic acid) with a dehalogenase. The dehalogenases of the invention can also be used in the production of active (S)-(+)-3-halo-l,2-propanediol or halo-1,2 propanediol from 1,3-dihalo-2-propanol. halo-1,2-propanediol is useful as a raw material for physiological and medical treatments and medicaments.
>For example, a dehalogenase of the invention can be contacted trichloropropanediol Z (TCP) or dichloropropanediol (DCP) under conditions and for a time sufficient to allow oxidative dehalogenation to form, for example, glycerol DCP or TCP to glycerol) (See, for example, Figure Various diols can be produced using the Smethods of the invention and the enzymes of the invention. In addition, the methods 0 and compositions of the invention can be applied to halogenated aromatic compounds.
For example, the compositions of the invention can be used to dehalogenate a halosubstituted cyclic hydrocarbyl as depicted in Figure 8. Examples of cyclic hydrocarbyl compounds include cycloalkyl, cycloalkenyl, cycloalkadienyl, cycloalkatrienyl, cycloalkynyl, cycloalkadiynyl, aromatic compounds, spiro hydrocarbons wherein two rings are joined by a single atom which is the only common member of the two rings spiro[3,4]octanyl, and the like), bicyclic hydrocarbons wherein two rings are joined and have at least two atoms in common bicyclo[3.2.1]octane, bicyclo[2.2.1]hept-2-ene, and the like), ring assemblies wherein two or more cyclic systems single rings or fused systems) are directly joined to each other by single or double bonds, and the number of such ring junctions is one less than the number of cyclic systems involved biphenylyl, biphenylylene, radicals orp-terphenyl, cyclohexylbenzyl, and the like), polycyclics, and the like.
Haloalkane Dehalogenase Overall Structure Haloalkane dehalogenase from Xanthobacter autotrophicus is composed of 310 amino acids and consists of a single polypeptide chain with a molecular weight of 36,000. The monomeric enzyme is spherical and composed of two domains. The main domain has an alpha/beta hydrolase fold structure with a mixed beta sheet of 8 strands order 12435678; strand 2 is antiparallel to the rest. The second domain is an alphahelical cap which lies on top of the main domain. (Keuning et al., J Bacteriol 163(2):635-639, 1985) As described in further detail herein, mutagenesis have done to modify the activity of the enzyme, for example, by mutating specific residues of the Z cap domain (Krooshofet al., Biochemistry 36(31):9571-9580, 1997).
The active site of the enzyme in Xanthobacter autotrophicus, consisting of 3 catalytic residues (Asp 124, His 289, and Asp 260), is found between the two U domains in an internal hydrophobic cavity. Nucleophilic Asp 124 and the general 00 n) base His 289, located after beta-strands 5 and 8 respectively, are fully conserved in C1 the alpha/beta hydrolase family, while Asp 260 is not. The active site is lined with 0 hydrophobic residues: 4 phenylalanines; 2 tryptophans; 2 leucines; 1 valine; and 1 (N proline. (Schanstra et al., J Biol Chem 271(25):14747-14753, 1996).
During enzymatic hydolysis of a substrate, haloalkane dehalogenase forms a covalent intermediate formed by nucleophilic substitution with Asp124 that is hydrolyzed by a water molecule that is activated by His289. (Verschueren et al., Nature 363(6431):693-698, 1993). The role of Asp260, which is the third member of a catalytic triad common to dehalogenase enzymes, has been studied by site-directed mutagenesis. Mutation of Asp260 to asparagine resulted in a catalytically inactive D260N mutant, which demonstrates that the triad acid Asp260 is essential for dehalogenase activity in the wild-type enzyme. Furthermore, Asp260 has an important structural role, since the D260N enzyme accumulated mainly in inclusion bodies during expression, and neither substrate nor product could bind in the active-site cavity. Activity for brominated substrates was restored to D260N by replacing Asnl48 with an aspartic or glutamic acid. Both double mutants D260N+N148D and D260N+N148E had a 10-fold reduced kcat and 40-fold higher Km values for 1,2dibromoethane compared to the wild-type enzyme. Pre-steady-state kinetic analysis of the D260N+N148E double mutant showed that the decrease in kcat was mainly caused by a 220-fold reduction of the rate of carbon-bromine bond cleavage and a fold decrease in the rate of hydrolysis of the alkyl-enzyme intermediate. On the other hand, bromide was released 12-fold faster and via a different pathway than in the wild-type enzyme. Molecular modeling of the mutant showed that Glu148 indeed could take over the interaction with His289 and that there was a change in charge distribution in the tunnel region that connects the active site with the solvent.
Z (Krooshof et al., Biochemistry 36(31):9571-9580, 1997).
O The first step in degradation of the harmful halogenated compounds utilizes haloalkane dehalogenase. The dehalogenase catalysis occurs as a two step-mechanism involving an ester intermediate. No energy is required for hydrolytic dehalogenases; 00 Vin therefore, it is a simple way to detoxify organic matter since the halogen, which C causes the toxicity, is lost. A catalytic triad (Asp-His-Asp), along with an aspartate Scarboxylate (Asp 124), are the focal point of the reaction. The substrate binds to the C active site cavity and the Cl-alpha complex reacts with the side chain NH groups of Trp 172 and Trp 175. As a first step a halogen from the substrate is displaced by the nucleophilic aspartate, resulting in an intermediate covalent ester. His 289 then activates a water molecule which hydrolyzes the ester. As a result, an alcohol and halide are displaced from the active site. The two step mechanism involving nucleophilic Asp 124 and water hydrolysis of the ester intermediate is consistent with other alpha/beta hydrolase fold enzymes.
Haloalkane dehalogenase breaks carbon-halogen bonds in aliphatic compounds. Results show that the enzyme reaction with C-Cl bond is slower than that of other C-halide bonds, such as C-Br bonds. The ability of the leaving group is the explanation for the difference. The rate limiting step for 1,2-dichloroethane and 1,2dibromoethane reactions is not the cleavage of the carbon-halogen bond, but rather the ion release out of the active site.
Bioremediation The present invention provides a number of dehalogenase enzymes useful in bioremediation having improved enzymatic characterisitics. The polynucleotides and polynucleotide products of the invention are useful in, for example, groundwater treatment involving transformed host cells containing a polynucleotide or polypeptide of the invention the bacteria Xanthobacter autotrophicus) and the haloalkane 1,2-dichlorethane as well as removal ofpolychlorinated biphenyls (PCB's) from soil sediment.
NO 14 The haloalkane dehalogenase of the invention are useful in carbon-halide Z reduction efforts. The enzymes of the invention initiate the degradation ofhalalkanes.
SAlternatively, host cells containing a dehalogenase polynucleotide or polypeptide of the invention can feed on the haloalkanes and produce the detoxifying enzyme.
Definitions 00 C The phrases "nucleic acid" or "nucleic acid sequence" as used herein refer N0 to an oligonucleotide, nucleotide, polynucleotide, or to a fragment of any of these, to SDNA or RNA of genomic or synthetic origin which may be single-stranded or doublestranded and may represent a sense or antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material, natural or synthetic in origin. In one embodiment, a "nucleic acid sequence" of the invention includes, for example, a sequence encoding a polypeptide as set forth in Group B amino acid sequences and variants thereof. In another embodiment, a "nucleic acid sequence" of the invention includes, for example, a sequence as set forth in Group A nucleic acid sequences, sequences complemetary thereto, fragments of the foregoing sequences and variants thereof.
A "coding sequence of" or a "nucleotide sequence encoding" a particular polypeptide or protein, is a nucleic acid sequence which is transcribed and translated into a polypeptide or protein when placed under the control of appropriate regulatory sequences.
The term "gene" means the segment of DNA involved in producing a polypeptide chain; it includes regions preceding and following the coding region (leader and trailer) as well as, where applicable, intervening sequences (introns) between individual coding segments (exons).
"Amino acid" or "amino acid sequence" as used herein refer to an oligopeptide, peptide, polypeptide, or protein sequence, or to a fragment, portion, or subunit of any of these, and to naturally occurring or synthetic molecules. In one embodiment, an "amino acid sequence" or "polypeptide sequence" of the invention
IN
Sincludes, for example, a sequence as set forth in Group B amino acid sequences, Z fragments of the foregoing sequences and variants thereof. In another embodiment, an "amino acid sequence" of the invention includes, for example, a sequence encoded by a polynucleotide having a sequence as set forth in Group B nucleic acid sequences, I sequences complemetary thereto, fragments of the foregoing sequences and variants 00 thereof.
CK The term "polypeptide" as used herein, refers to amino acids joined to each
ID
Sother by peptide bonds or modified peptide bonds, peptide isosteres, and may N contain modified amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as post-translational processing, or by chemical modification techniques which are well known in the art.
Modifications can occur anywhere in the polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also a given polypeptide may have many types of modifications. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of a phosphytidylinositol, cross-linking cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation ofcysteine, formation ofpyroglutamate, formylation, gammacarboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristolyation, oxidation, pergylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, and transfer- RNA mediated addition of amino acids to protein such as arginylation. (See Creighton, Proteins Structure and Molecular Properties 2nd Ed., W.H.
Freeman and Company, New York (1993); Posttranslational Covalent Modification of Proteins, B.C. Johnson, Ed., Academic Press, New York, pp. 1-12 (1983)).
As used herein, the term "isolated" means that the material is removed from its original environment the natural environment if it is naturally occurring).
O 16 o For example, a naturally-occurring polynucleotide or polypeptide present in a living Z animal is not isolated, but the same polynucleotide or polypeptide, separated from some or all of the coexisting materials in the natural system, is isolated. Such polynucleotides could be part of a vector and/or such polynucleotides or polypeptides t could be part of a composition, and still be isolated in that such vector or composition 00 is not part of its natural environment As used herein, the term "purified" does not require absolute purity; rather,
INO
it is intended as a relative definition. Individual nucleic acids obtained from a library have been conventionally purified to electrophoretic homogeneity. The sequences obtained from these clones could not be obtained directly either from the library or from total human DNA. The purified nucleic acids of the invention have been purified from the remainder of the genomic DNA in the organism by at least 104-106 fold. However, the term "purified" also includes nucleic acids which have been purified from the remainder of the genomic DNA or from other sequences in a library or other environment by at least one order of magnitude, typically two or three orders, and more typically four or five orders of magnitude.
As used herein, the term "recombinant" means that the nucleic acid is adjacent to a "backbone" nucleic acid to which it is not adjacent in its natural environment. Additionally, to be "enriched" the nucleic acids will represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid backbone molecules. Backbone molecules according to the invention include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Typically, the enriched nucleic acids represent 15% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules.
More typically, the enriched nucleic acids represent 50% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. In a one embodiment, the enriched nucleic acids represent 90% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules.
(O
"Recombinant" polypeptides or proteins refer to polypeptides or proteins Z produced by recombinant DNA techniques; produced from cells transformed by an exogenous DNA construct encoding the desired polypeptide or protein.
"Synthetic" polypeptides or protein are those prepared by chemical synthesis. Solidy phase chemical peptide synthesis methods can also be used to synthesize the 00 polypeptide or fragments of the invention. Such method have been known in the art c since the early 1960's (Merrifield, R. J. Am. Chem. Soc., 85:2149-2154, 1963) \(See also Stewart, J. M. and Young, J. Solid Phase Peptide Synthesis, 2nd Ed., Pierce Chemical Co., Rockford, Ill., pp. 11-12)) and have recently been employed in commercially available laboratory peptide design and synthesis kits (Cambridge Research Biochemicals). Such commercially available laboratory kits have generally utilized the teachings ofH. M. Geysen et al, Proc. Natl. Acad. Sci., USA, 81:3998 (1984) and provide for synthesizing peptides upon the tips of a multitude of "rods" or "pins" all of which are connected to a single plate. When such a system is utilized, a plate of rods or pins is inverted and inserted into a second plate of corresponding wells or reservoirs, which contain solutions for attaching or anchoring an appropriate amino acid to the pin's or rod's tips. By repeating such a process step, inverting and inserting the rod's and pin's tips into appropriate solutions, amino acids are built into desired peptides. In addition, a number of available FMOC peptide synthesis systems are available. For example, assembly of a polypeptide or fragment can be carried out on a solid support using an Applied Biosystems, Inc. Model 431A automated peptide synthesizer. Such equipment provides ready access to the peptides of the invention, either by direct synthesis or by synthesis of a series of fragments that can be coupled using other known techniques.
A promoter sequence is "operably linked to" a coding sequence when RNA polymerase which initiates transcription at the promoter will transcribe the coding sequence into mRNA.
"Plasmids" are designated by a lower case preceded and/or followed by capital letters and/or numbers. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from 0 available plasmids in accord with published procedures. In addition, equivalent Z plasmids to those described herein are known in the art and will be apparent to the ordinarily skilled artisan.
"Digestion" of DNA refers to catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in the DNA. The various 00 tn restriction enzymes used herein are commercially available and their reaction CN conditions, cofactors and other requirements were used as would be known to the Sordinarily skilled artisan. For analytical purposes, typically 1 0 g of plasmid or DNA C fragment is used with about 2 units of enzyme in about 20 01 of buffer solution. For the purpose of isolating DNA fragments for plasmid construction, typically 5 to g of DNA are digested with 20 to 250 units of enzyme in a larger volume.
Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer. Incubation times of about 1 hour at 370C are ordinarily used, but may vary in accordance with the supplier's instructions. After digestion, gel electrophoresis may be performed to isolate the desired fragment.
"Oligonucleotide" refers to either a single stranded polydeoxynucleotide or two complementary polydeoxynucleotide strands which may be chemically synthesized. Such synthetic oligonucleotides have no 5' phosphate and thus will not ligate to another oligonucleotide without adding a phosphate with an ATP in the presence of a kinase. A synthetic oligonucleotide will ligate to a fragment that has not been dephosphorylated.
The phrase "substantially identical" in the context of two nucleic acids or polypeptides, refers to two or more sequences that have at least 50%, 55%, 70%, 75%, 80%, 85%, and in some aspects 90-95% nucleotide or amino acid residue identity, when compared and aligned for maximum correspondence, as measured using one of the known sequence comparison algorithms or by visual inspection. Typically, the substantial identity exists over a region of at least about 100 residues, and most commonly the sequences are substantially identical over at Sleast about 150-200 residues. In some embodiments, the sequences are substantially Z identical over the entire length of the coding regions.
Additionally a "substantially identical" amino acid sequence is a sequence that differs from a reference sequence by one or more conservative or nonr- conservative amino acid substitutions, deletions, or insertions, particularly when such 00 tt a substitution occurs at a site that is not the active site of the molecule, and provided C1 that the polypeptide essentially retains its functional properties. A conservative amino 0 acid substitution, for example, substitutes one amino acid for another of the same C class substitution of one hydrophobic amino acid, such as isoleucin, valine, leucine, or methionine, for another, or substitution of one polar amino acid for another, such as substitution of arginine for lysine, glutamic acid for aspartic acid or glutamine for asparagine). One or more amino acids can be deleted, for example, from an dehalogenase polypeptide, resulting in modification of the structure of the polypeptide, without significantly altering its biological activity. For example, amino- or carboxyl-terminal amino acids that are not required for dehalogenase biological activity can be removed. Modified polypeptide sequences of the invention can be assayed for dehalogenase biological activity by any number of methods, including contacting the modified polypeptide sequence with an dehalogenase substrate and determining whether the modified polypeptide decreases the amount of specific substrate in the assay or increases the bioproducts of the enzymatic reaction of a functional dehalogenase polypeptide with the substrate.
"Fragments" as used herein are a portion of a naturally occurring protein which can exist in at least two different conformations. Fragments can have the same or substantially the same amino acid sequence as the naturally occurring protein.
"Substantially the same" means that an amino acid sequence is largely, but not entirely, the same, but retains at least one functional activity of the sequence to which it is related. In general two amino acid sequences are "substantially the same" or "substantially homologous" if they are at least about 85% identical. Fragments which have different three dimensional structures as the naturally occurring protein are also included. An example of this, is a "pro-form" molecule, such as a low activity O zu Sproprotein that can be modified by cleavage to produce a mature enzyme with Z significantly higher activity.
"Hybridization" refers to the process by which a nucleic acid strand joins with a complementary strand through base pairing. Hybridization reactions can be Ssensitive and selective so that a particular sequence of interest can be identified even 00 t) in samples in which it is present at low concentrations. Suitably stringent conditions C can be defined by, for example, the concentrations of salt or formamide in the Sprehybridization and hybridization solutions, or by the hybridization temperature, and C are well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.
For example, hybridization under high stringency conditions could occur in about 50% formamide at about 37°C to 42 0 C. Hybridization could occur under reduced stringency conditions in about 35% to 25% formamide at about 30 0 C to In particular, hybridization could occur under high stringency conditions at 42°C in 50% formamide, 5X SSPE, 0.3% SDS, and 200 n/ml sheared and denatured salmon sperm DNA. Hybridization could occur under reduced stringency conditions as described above, but in 35% formamide at a reduced temperature of 35°C. The temperature range corresponding to a particular level of stringency can be further narrowed by calculating the purine to pyrimidine ratio of the nucleic acid of interest and adjusting the temperature accordingly. Variations on the above ranges and conditions are well known in the art.
The term "variant" refers to polynucleotides or polypeptides of the invention modified at one or more base pairs, codons, introns, exons, or amino acid residues (respectively) yet still retain the biological activity of an dehalogenase of the invention. The polynucleotides or polypeptides of the invention may also be modified by introduction of a modified base, such as inosine. Additionally, the modifications may, optionally, be repeated one or more times. Variants can be produced by any number of means including methods such as, for example, error-prone PCR, shuffling, oligonucleotide-directed mutagenesis, assembly PCR, sexual PCR Z mutagenesis, in vivo mutagenesis, cassette mutagenesis, recursive ensemble mutagenesis, exponential ensemble mutagenesis, site-specific mutagenesis, gene reassembly, GSSM and any combination, permutation or iterative process thereof.
Enzymes are highly selective catalysts. Their hallmark is the ability to 00 Vn catalyze reactions with exquisite stereo-, regio-, and chemo- selectivities that are C unparalleled in conventional synthetic chemistry. Moreover, enzymes are remarkably 0versatile. They can be tailored to function in organic solvents, operate at extreme pHs (N (for example, high pHs and low pHs) extreme temperatures (for example, high temperatures and low temperatures), extreme salinity levels (for example, high salinity and low salinity), and catalyze reactions with compounds that are structurally unrelated to their natural, physiological substrates.
Enzymes are reactive toward a wide range of natural and unnatural substrates, thus enabling the modification of virtually any organic lead compound.
Moreover, unlike traditional chemical catalysts, enzymes are highly enantio- and regio-selective. The high degree of functional group specificity exhibited by enzymes enables one to keep track of each reaction in a synthetic sequence leading to a new active compound. Enzymes are also capable of catalyzing many diverse reactions unrelated to their physiological function in nature. For example, peroxidases catalyze the oxidation of phenols by hydrogen peroxide. Peroxidases can also catalyze hydroxylation reactions that are not related to the native function of the enzyme.
Other examples are proteases which catalyze the breakdown ofpolypeptides. In organic solution some proteases can also acylate sugars, a function unrelated to the native function of these enzymes.
The present invention exploits the unique catalytic properties of enzymes.
Whereas the use ofbiocatalysts purified or crude enzymes, non-living or living cells) in chemical transformations normally requires the identification of a particular biocatalyst that reacts with a specific starting compound, the present invention uses selected biocatalysts and reaction conditions that are specific for functional groups 7Z that are present in many starting compounds.
O Each biocatalyst is specific for one functional group, or several related functional groups, and can react with many starting compounds containing this functional group.
00 C The biocatalytic reactions produce a population of derivatives from a single IN starting compound. These derivatives can be subjected to another round of biocatalytic reactions to produce a second population of derivative compounds.
Thousands of variations of the original compound can be produced with each iteration of biocatalytic derivatization.
Enzymes react at specific sites of a starting compound without affecting the rest of the molecule, a process which is very difficult to achieve using traditional chemical methods. This high degree of biocatalytic specificity provides the means to identify a single active compound within the library. The library is characterized by the series of biocatalytic reactions used to produce it, a so-called "biosynthetic history". Screening the library for biological activities and tracing the biosynthetic history identifies the specific reaction sequence producing the active compound. The reaction sequence is repeated and the structure of the synthesized compound determined. This mode of identification, unlike other synthesis and screening approaches, does not require immobilization technologies, and compounds can be synthesized and tested free in solution using virtually any type of screening assay. It is important to note, that the high degree of specificity of enzyme reactions on functional groups allows for the "tracking" of specific enzymatic reactions that make up the biocatalytically produced library.
Many of the procedural steps are performed using robotic automation enabling the execution of many thousands ofbiocatalytic reactions and screening assays per day as well as ensuring a high level of accuracy and reproducibility. As a result, a library of derivative compounds can be produced in a matter of weeks which would take years to produce using current chemical methods. (For further teachings on modification of molecules, including small molecules, see PCT/US94/09174, Z herein incorporated by reference in its entirety).
O In one aspect, the present invention provides a non-stochastic method termed synthetic gene reassembly, that is somewhat related to stochastic shuffling, save that the nucleic acid building blocks are not shuffled or concatenated or 00 lt/ chimerized randomly, but rather are assembled non-stochastically.
IsO The synthetic gene reassembly method does not depend on the presence of a high level of homology between polynucleotides to be shuffled. The invention can be used to non-stochastically generate libraries (or sets) of progeny molecules comprised of over 10100 different chimeras. Conceivably, synthetic gene reassembly can even be used to generate libraries comprised of over 101000 different progeny chimeras.
Thus, in one aspect, the invention provides a non-stochastic method of producing a set of finalized chimeric nucleic acid molecules having an overall assembly order that is chosen by design, which method is comprised of the steps of generating by design a plurality of specific nucleic acid building blocks having serviceable mutually compatible ligatable ends, and assembling these nucleic acid building blocks, such that a designed overall assembly order is achieved.
The mutually compatible ligatable ends of the nucleic acid building blocks to be assembled are considered to be "serviceable" for this type of ordered assembly if they enable the building blocks to be coupled in predetermined orders. Thus, in one aspect, the overall assembly order in which the nucleic acid building blocks can be coupled is specified by the design of the ligatable ends and, if more than one assembly step is to be used, then the overall assembly order in which the nucleic acid building blocks can be coupled is also specified by the sequential order of the assembly step(s).
In a one embodiment of the invention, the annealed building pieces are treated with an enzyme, such as a ligase T4 DNA ligase) to achieve covalent bonding of the building pieces.
OIn a another embodiment, the design of nucleic acid building blocks is Z obtained upon analysis of the sequences of a set of progenitor nucleic acid templates O that serve as a basis for producing a progeny set of finalized chimeric nucleic acid molecules. These progenitor nucleic acid templates thus serve as a source of t sequence information that aids in the design of the nucleic acid building blocks that 00 are to be mutagenized, i.e. chimerized or shuffled.
C In one exemplification, the invention provides for the chimerization of a family of related genes and their encoded family of related products. In a particular Sexemplification, the encoded products are enzymes. The dehalogenases of the present invention can be mutagenized in accordance with the methods described herein.
Thus according to one aspect of the invention, the sequences of a plurality of progenitor nucleic acid templates polynucleotides of Group A nucleic acid sequences) are aligned in order to select one or more demarcation points, which demarcation points can be located at an area of homology. The demarcation points can be used to delineate the boundaries of nucleic acid building blocks to be generated. Thus, the demarcation points identified and selected in the progenitor molecules serve as potential chimerization points in the assembly of the progeny molecules.
Typically a serviceable demarcation point is an area of homology (comprised of at least one homologous nucleotide base) shared by at least two progenitor templates, but the demarcation point can be an area of homology that is shared by at least half of the progenitor templates, at least two thirds of the progenitor templates, at least three fourths of the progenitor templates, and preferably at almost all of the progenitor templates. Even more preferably still a serviceable demarcation point is an area of homology that is shared by all of the progenitor templates.
In a one embodiment, the gene reassembly process is performed exhaustively in order to generate an exhaustive library. In other words, all possible ordered combinations of the nucleic acid building blocks are represented in the set of finalized chimeric nucleic acid molecules. At the same time, the assembly order (i.e.
\O
IND
>the order of assembly of each building block in the 5' to 3 sequence of each finalized 0 Z chimeric nucleic acid) in each combination is by design (or non-stochastic). Because of the non-stochastic nature of the method, the possibility of unwanted side products is greatly reduced.
In another embodiment, the method provides that the gene reassembly 00 t process is performed systematically, for example to generate a systematically compartmentalized library, with compartments that can be screened systematically, one by one. In other words the invention provides that, through the selective and judicious use of specific nucleic acid building blocks, coupled with the selective and judicious use of sequentially stepped assembly reactions, an experimental design can be achieved where specific sets of progeny products are made in each of several reaction vessels. This allows a systematic examination and screening procedure to be performed. Thus, it allows a potentially very large number of progeny molecules to be examined systematically in smaller groups.
Because of its ability to perform chimerizations in a manner that is highly flexible yet exhaustive and systematic as well, particularly when there is a low level of homology among the progenitor molecules, the instant invention provides for the generation of a library (or set) comprised of a large number of progeny molecules.
Because of the non-stochastic nature of the instant gene reassembly invention, the progeny molecules generated preferably comprise a library of finalized chimeric nucleic acid molecules having an overall assembly order that is chosen by design. In a particularly embodiment, such a generated library is comprised of greater than 10 3 to greater than 101000 different progeny molecular species.
In one aspect, a set of finalized chimeric nucleic acid molecules, produced as described is comprised ofa polynucleotide encoding a polypeptide. According to one embodiment, this polynucleotide is a gene, which may be a man-made gene.
According to another embodiment, this polynucleotide is a gene pathway, which may be a man-made gene pathway. The invention provides that one or more man-made Ogenes generated by the invention may be incorporated into a man-made gene Z pathway, such as pathway operable in a eukaryotic organism (including a plant).
In another exemplification, the synthetic nature of the step in which the building blocks are generated allows the design and introduction of nucleotides one or more nucleotides, which may be, for example, codons or introns or regulatory 00 t sequences) that can later be optionally removed in an in vitro process by CN mutagenesis) or in an in vivo process by utilizing the gene splicing ability of a Shost organism). It is appreciated that in many instances the introduction of these C nucleotides may also be desirable for many other reasons in addition to the potential benefit of creating a serviceable demarcation point.
Thus, according to another embodiment, the invention provides that a nucleic acid building block can be used to introduce an intron. Thus, the invention provides that functional introns may be introduced into a man-made gene of the invention. The invention also provides that functional introns may be introduced into a man-made gene pathway of the invention. Accordingly, the invention provides for the generation of a chimeric polynucleotide that is a man-made gene containing one (or more) artificially introduced intron(s).
Accordingly, the invention also provides for the generation of a chimeric polynucleotide that is a man-made gene pathway containing one (or more) artificially introduced intron(s). Preferably, the artificially introduced intron(s) are functional in one or more host cells for gene splicing much in the way that naturally-occurring introns serve functionally in gene splicing. The invention provides a process of producing man-made intron-containing polynucleotides to be introduced into host organisms for recombination and/or splicing.
A man-made gene produced using the invention can also serve as a substrate for recombination with another nucleic acid. Likewise, a man-made gene pathway produced using the invention can also serve as a substrate for recombination with another nucleic acid. In a preferred instance, the recombination is facilitated by, or occurs at, areas of homology between the man-made, intron-containing gene and a
\O
nucleic acid, which serves as a recombination partner. In a particularly preferred Z instance, the recombination partner may also be a nucleic acid generated by the invention, including a man-made gene or a man-made gene pathway. Recombination may be facilitated by or may occur at areas of homology that exist at the one (or t more) artificially introduced intron(s) in the man-made gene.
00 00 The synthetic gene reassembly method of the invention utilizes a plurality of nucleic acid building blocks, each of which preferably has two ligatable ends. The IDtwo ligatable ends on each nucleic acid building block may be two blunt ends (i.e.
Seach having an overhang of zero nucleotides), or preferably one blunt end and one overhang, or more preferably still two overhangs.
A useful overhang for this purpose may be a 3' overhang or a 5' overhang.
Thus, a nucleic acid building block may have a 3' overhang or alternatively a overhang or alternatively two 3' overhangs or alternatively two 5' overhangs. The overall order in which the nucleic acid building blocks are assembled to form a finalized chimeric nucleic acid molecule is determined by purposeful experimental design and is not random.
According to one preferred embodiment, a nucleic acid building block is generated by chemical synthesis of two single-stranded nucleic acids (also referred to as single-stranded oligos) and contacting them so as to allow them to anneal to form a double-stranded nucleic acid building block.
A double-stranded nucleic acid building block can be of variable size. The sizes of these building blocks can be small or large. Preferred sizes for building block range from 1 base pair (not including any overhangs) to 100,000 base pairs (not including any overhangs). Other preferred size ranges are also provided, which have lower limits of from 1 bp to 10,000 bp (including every integer value in between), and upper limits of from 2 bp to 100, 000 bp (including every integer value in between).
IO L6 >Many methods exist by which a double-stranded nucleic acid building Z block can be generated that is serviceable for the invention; and these are known in the art and can be readily performed by the skilled artisan.
According to one embodiment, a double-stranded nucleic acid building block is generated by first generating two single stranded nucleic acids and allowing 00 tt them to anneal to form a double-stranded nucleic acid building block. The two ¢€3 strands of a double-stranded nucleic acid building block may be complementary at every nucleotide apart from any that form an overhang; thus containing no mismatches, apart from any overhang(s). According to another embodiment, the two strands of a double-stranded nucleic acid building block are complementary at fewer than every nucleotide apart from any that form an overhang. Thus, according to this embodiment, a double-stranded nucleic acid building block can be used to introduce codon degeneracy. Preferably the codon degeneracy is introduced using the sitesaturation mutagenesis described herein, using one or more N,N,G/T cassettes or alternatively using one or more NN,N cassettes.
The in vivo recombination method of the invention can be performed blindly on a pool of unknown hybrids or alleles of a specific polynucleotide or sequence. However, it is not necessary to know the actual DNA or RNA sequence of the specific polynucleotide.
The approach of using recombination within a mixed population of genes can be useful for the generation of any useful proteins, for example, interleukin I, antibodies, tPA and growth hormone. This approach may be used to generate proteins having altered specificity or activity. The approach may also be useful for the generation of hybrid nucleic acid sequences, for example, promoter regions, introns, exons, enhancer sequences, 31 untranslated regions or 51 untranslated regions of genes. Thus this approach may be used to generate genes having increased rates of expression. This approach may also be useful in the study of repetitive DNA sequences. Finally, this approach may be useful to mutate ribozymes or aptamers.
SIn one aspect the invention described herein is directed to the use of 0 Srepeated cycles of reductive reassortment, recombination and selection which allow Sfor the directed molecular evolution of highly complex linear sequences, such as
O
DNA, RNA or proteins thorough recombination.
In vivo shuffling of molecules is useful in providing variants and can be 00 t performed utilizing the natural property of cells to recombine multimers. While Srecombination in vivo has provided the major natural route to molecular diversity, Sgenetic recombination remains a relatively complex process that involves 1) the Srecognition of homologies; 2) strand cleavage, strand invasion, and metabolic steps leading to the production of recombinant chiasma; and finally 3) the resolution of chiasma into discrete recombined molecules. The formation of the chiasma requires the recognition of homologous sequences.
In another embodiment, the invention includes a method for producing a hybrid polynucleotide from at least a first polynucleotide and a second polynucleotide. The invention can be used to produce a hybrid polynucleotide by introducing at least a first polynucleotide and a second polynucleotide which share at least one region of partial sequence homology 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 43, 45, 47, and combinations thereof) into a suitable host cell. The regions of partial sequence homology promote processes which result in sequence reorganization producing a hybrid polynucleotide. The term "hybrid polynucleotide," as used herein, is any nucleotide sequence which results from the method of the present invention and contains sequence from at least two original polynucleotide sequences. Such hybrid polynucleotides can result from intermolecular recombination events which promote sequence integration between DNA molecules. In addition, such hybrid polynucleotides can result from intramolecular reductive reassortment processes which utilize repeated sequences to alter a nucleotide sequence within a DNA molecule.
The invention provides a means for generating hybrid polynucleotides which may encode biologically active hybrid polypeptides hybrid haloalkane 030
O
0 dehalogenase). In one aspect, the original polynucleotides encode biologically active Z polypeptides. The method of the invention produces new hybrid polypeptides by utilizing cellular processes which integrate the sequence of the original polynucleotides such that the resulting hybrid polynucleotide encodes a polypeptide l t demonstrating activities derived from the original biologically active polypeptides.
00 For example, the original polynucleotides may encode a particular enzyme from C different microorganisms. An enzyme encoded by a first polynucleotide from one ND organism or variant may, for example, function effectively under a particular 0environmental condition, e.g. high salinity. An enzyme encoded by a second polynucleotide from a different organism or variant may function effectively under a different environmental condition, such as extremely high temperatures. A hybrid polynucleotide containing sequences from the first and second original polynucleotides may encode an enzyme which exhibits characteristics of both enzymes encoded by the original polynucleotides. Thus, the enzyme encoded by the hybrid polynucleotide may function effectively under environmental conditions shared by each of the enzymes encoded by the first and second polynucleotides, e.g., high salinity and extreme temperatures.
Enzymes encoded by the polynucleotides of the invention include, but are not limited to, hydrolases, dehalogenases and haloalkane dehalogenases. A hybrid polypeptide resulting from the method of the invention may exhibit specialized enzyme activity not displayed in the original enzymes. For example, following recombination and/or reductive reassortment of polynucleotides encoding hydrolase activities, the resulting hybrid polypeptide encoded by a hybrid polynucleotide can be screened for specialized hydrolase activities obtained from each of the original enzymes, i.e. the type of bond on which the hydrolase acts and the temperature at which the hydrolase functions. Thus, for example, the hydrolase may be screened to ascertain those chemical functionalities which distinguish the hybrid hydrolase from the original hydrolases, such as: amide (peptide bonds), proteases; ester bonds, esterases and lipases; acetals, glycosidases and, for example, the temperature, pH or salt concentration at which the hybrid polypeptide functions.
IN 31
O
O
O Sources of the original polynucleotides may be isolated from individual Z organisms ("isolates"), collections of organisms that have been grown in defined media ("enrichment cultures"), or, uncultivated organisms ("environmental samples").
The use of a culture-independent approach to derive polynucleotides encoding novel n bioactivities from environmental samples is most preferable since it allows one to 00 access untapped resources of biodiversity.
1 "Environmental libraries" are generated from environmental samples and Srepresent the collective genomes of naturally occurring organisms archived in cloning C1 vectors that can be propagated in suitable prokaryotic hosts. Because the cloned DNA is initially extracted directly from environmental samples, the libraries are not limited to the small fraction ofprokaryotes that can be grown in pure culture. Additionally, a normalization of the environmental DNA present in these samples could allow more equal representation of the DNA from all of the species present in the original sample.
This can dramatically increase the efficiency of finding interesting genes from minor constituents of the sample which may be under-represented by several orders of magnitude compared to the dominant species.
For example, gene libraries generated from one or more uncultivated microorganisms are screened for an activity of interest. Potential pathways encoding bioactive molecules of interest are first captured in prokaryotic cells in the form of gene expression libraries. Polynucleotides encoding activities of interest are isolated from such libraries and introduced into a host cell. The host cell is grown under conditions which promote recombination and/or reductive reassortment creating potentially active biomolecules with novel or enhanced activities.
The microorganisms from which the polynucleotide may be prepared include prokaryotic microorganisms, such as Eubacteria and Archaebacteria, and lower eukaryotic microorganisms such as fungi, some algae and protozoa.
Polynucleotides may be isolated from environmental samples in which case the nucleic acid may be recovered without culturing of an organism or recovered from one or more cultured organisms. In one aspect, such microorganisms may be O extremophiles, such as hyperthermophiles, psychrophiles, psychrotrophs, halophiles, Z barophiles and acidophiles. Polynucleotides encoding enzymes isolated from extremophilic microorganisms are particularly preferred. Such enzymes may function at temperatures above 100°C in terrestrial hot springs and deep sea thermal vents, at t temperatures below 0°C in arctic waters, in the saturated salt environment of the Dead 00 Sea, at pH values around 0 in coal deposits and geothermal sulfur-rich springs, or at ¢C pH values greater than 11 in sewage sludge. For example, several esterases and I0 lipases cloned and expressed from extremophilic organisms show high activity Sthroughout a wide range of temperatures and pHs.
Polynucleotides selected and isolated as hereinabove described are introduced into a suitable host cell. A suitable host cell is any cell which is capable of promoting recombination and/or reductive reassortment. The selected polynucleotides are preferably already in a vector which includes appropriate control sequences. The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or preferably, the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-Dextran mediated transfection, or electroporation (Davis et al., 1986).
As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli, Streptomyces, Sabnonella typhimuriumn; fungal cells, such as yeast; insect cells such as Drosophila S2 and Spodoptera Sf9; animal cells such as CHO, COS or Bowes melanoma; adenoviruses; and plant cells. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.
With particular references to various mammalian cell culture systems that can be employed to express recombinant protein, examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in transformed simian cells support the replication of early SV40 mutants" (Gluzman, 1981), and other cell lines capable of expressing a compatible vector, for example, the C 127, 3T3, CHO, HeLa and BHK cell lines. Mammalian expression vectors will Z comprise an origin of replication, a suitable promoter and enhancer, and also any Snecessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences.
t DNA sequences derived from the SV40 splice, and polyadenylation sites may be used 00 to provide the required nontranscribed genetic elements.
C1 Host cells containing the polynucleotides of interest can be cultured in 0conventional nutrient media modified as appropriate for activating promoters, C selecting transformants or amplifying genes. The culture conditions, such as temperature, pH and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan. The clones which are identified as having the specified enzyme activity may then be sequenced to identify the polynucleotide sequence encoding an enzyme having the enhanced activity.
In another aspect, it is envisioned the method of the present invention can be used to generate novel polynucleotides encoding biochemical pathways from one or more operons or gene clusters or portions thereof. For example, bacteria and many eukaryotes have a coordinated mechanism for regulating genes whose products are involved in related processes. The genes are clustered, in structures referred to as "gene clusters," on a single chromosome and are transcribed together under the control of a single regulatory sequence, including a single promoter which initiates transcription of the entire cluster. Thus, a gene cluster is a group of adjacent genes that are either identical or related, usually as to their function. An example of a biochemical pathway encoded by gene clusters are polyketides. Polyketides are molecules which are an extremely rich source ofbioactivities, including antibiotics (such as tetracyclines and erythromycin), anti-cancer agents (daunomycin), immunosuppressants (FK506 and rapamycin), and veterinary products (monensin).
Many polyketides (produced by polyketide synthases) are valuable as therapeutic agents. Polyketide synthases are multifunctional enzymes that catalyze the biosynthesis of an enormous variety of carbon chains differing in length and patterns Sof functionality and cyclization. Polyketide synthase genes fall into gene clusters and Z at least one type (designated type I) ofpolyketide synthases have large size genes and 0 enzymes, complicating genetic manipulation and in vitro studies of these genes/proteins.
Gene cluster DNA can be isolated from different organisms and ligated into 00 VIn vectors, particularly vectors containing expression regulatory sequences which can C"l control and regulate the production of a detectable protein or protein-related array Sactivity from the ligated gene clusters. Use of vectors which have an exceptionally C large capacity for exogenous DNA introduction are particularly appropriate for use with such gene clusters and are described by way of example herein to include the ffactor (or fertility factor) of E. coli. This f-factor of E. coli is a plasmid which affect high-frequency transfer of itself during conjugation and is ideal to achieve and stably propagate large DNA fragments, such as gene clusters from mixed microbial samples.
A particularly preferred embodiment is to use cloning vectors, referred to as "fosmids" or bacterial artificial chromosome (BAC) vectors. These are derived from E. coli f-factor which is able to stably integrate large segments of genomic DNA.
When integrated with DNA from a mixed uncultured environmental sample, this makes it possible to achieve large genomic fragments in the form of a stable "environmental DNA library." Another type of vector for use in the present invention is a cosmid vector. Cosmid vectors were originally designed to clone and propagate large segments of genomic DNA. Cloning into cosmid vectors is described in detail in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press (1989). Once ligated into an appropriate vector, two or more vectors containing different polyketide synthase gene clusters can be introduced into a suitable host cell. Regions of partial sequence homology shared by the gene clusters will promote processes which result in sequence reorganization resulting in a hybrid gene cluster. The novel hybrid gene cluster can then be screened for enhanced activities not found in the original gene clusters.
(O
STherefore, in a one embodiment, the invention relates to a method for Z producing a biologically active hybrid polypeptide and screening such a polypeptide for enhanced activity by: 1) introducing at least a first polynucleotide in operable linkage and a second polynucleotide in operable linkage, said at least first polynucleotide 00 t and second polynucleotide sharing at least one region of partial sequence C1 homology, into a suitable host cell;
NO
2) growing the host cell under conditions which promote sequence reorganization resulting in a hybrid polynucleotide in operable linkage; 3) expressing a hybrid polypeptide encoded by the hybrid polynucleotide; 4) screening the hybrid polypeptide under conditions which promote identification of enhanced biological activity; and isolating the a polynucleotide encoding the hybrid polypeptide.
Methods for screening for various enzyme activities are known to those of skill in the art and are discussed throughout the present specification. Such methods may be employed when isolating the polypeptides and polynucleotides of the invention.
As representative examples of expression vectors which may be used, there may be mentioned viral particles, baculovirus, phage, plasmids, phagemids, cosmids, fosmids, bacterial artificial chromosomes, viral DNA vaccinia, adenovirus, foul pox virus, pseudorabies and derivatives of SV40), Pi-based artificial chromosomes, yeast plasmids, yeast artificial chromosomes, and any other vectors specific for specific hosts of interest (such as bacillus, aspergillus and yeast). Thus, for example, the DNA may be included in any one of a variety of expression vectors for expressing a polypeptide. Such vectors include chromosomal, nonchromosomal and synthetic DNA sequences. Large numbers of suitable vectors are known to those of skill in the art, and are commercially available. The following vectors are provided by way of O example; Bacterial: pQE vectors (Qiagen), pBluescript plasmids, pNH vectors, Z (lambda-ZAP vectors (Stratagene); ptrc99a, pKK223-3, pDR540, pRIT2T (Pharmacia); Eukaryotic: pXT1, pSG5 (Stratagene), pSVK3, pBPV, pMSG, (Pharmacia). However, any other plasmid or other vector may be used so t long as they are replicable and viable in the host. Low copy number or high copy 00 number vectors may be employed with the present invention.
C The DNA sequence in the expression vector is operatively linked to an Sappropriate expression control sequence(s) (promoter) to direct RNA synthesis.
C Particular named bacterial promoters include lad, lacZ, T3, T7, gpt, lambda PR, PL and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.
The expression vector also contains a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression. Promoter regions can be selected from any desired gene using chloramphenicol transferase (CAT) vectors or other vectors with selectable markers.
In addition, the expression vectors preferably contain one or more selectable marker genes to provide a phenotypic trait for selection of transformed host cells such as dihydrofolate reductase or neomycin resistance for eukaryotic cell culture, or such as tetracycline or ampicillin resistance in E. coli.
In vivo reassortment is focused on "inter-molecular" processes collectively referred to as "recombination" which in bacteria, is generally viewed as a "RecAdependent" phenomenon. The invention can rely on recombination processes of a host cell to recombine and re-assort sequences, or the cells' ability to mediate reductive processes to decrease the complexity of quasi-repeated sequences in the cell by deletion. This process of "reductive reassortment" occurs by an "intra-molecular," RecA-independent process.
Therefore, in another aspect of the invention, novel polynucleotides can be generated by the process of reductive reassortment. The method involves the Sgeneration of constructs containing consecutive sequences (original encoding Z sequences), their insertion into an appropriate vector, and their subsequent O introduction into an appropriate host cell. The reassortment of the individual molecular identities occurs by combinatorial processes between the consecutive t sequences in the construct possessing regions of homology, or between quasi-repeated 00 units. The reassortment process recombines and/or reduces the complexity and extent Cc of the repeated sequences, and results in the production of novel molecular species.
IDVarious treatments may be applied to enhance the rate of reassortment. These could include treatment with ultra-violet light, or DNA damaging chemicals, and/or the use of host cell lines displaying enhanced levels of "genetic instability". Thus the reassortment process may involve homologous recombination or the natural property of quasi-repeated sequences to direct their own evolution.
Repeated or "quasi-repeated" sequences play a role in genetic instability.
In the present invention, "quasi-repeats" are repeats that are not restricted to their original unit structure. Quasi-repeated units can be presented as an array of sequences in a construct; consecutive units of similar sequences. Once ligated, the junctions between the consecutive sequences become essentially invisible and the quasirepetitive nature of the resulting construct is now continuous at the molecular level.
The deletion process the cell performs to reduce the complexity of the resulting construct operates between the quasi-repeated sequences. The quasi-repeated units provide a practically limitless repertoire of templates upon which slippage events can occur. The constructs containing the quasi-repeats thus effectively provide sufficient molecular elasticity that deletion (and potentially insertion) events can occur virtually anywhere within the quasi-repetitive units.
When the quasi-repeated sequences are all ligated in the same orientation, for instance head to tail or vice versa, the cell cannot distinguish individual units.
Consequently, the reductive process can occur throughout the sequences. In contrast when for example, the units are presented head to head, rather than head to tail, the inversion delineates the endpoints of the adjacent unit so that deletion formation will favor the loss of discrete units. Thus, it is preferable with the present method that the Ssequences are in the same orientation. Random orientation of quasi-repeated Z sequences will result in the loss of reassortment efficiency, while consistent orientation of the sequences will offer the highest efficiency. However, while having fewer of the contiguous sequences in the same orientation decreases the efficiency, it In may still provide sufficient elasticity for the effective recovery of novel molecules.
00 Constructs can be made with the quasi-repeated sequences in the same orientation to Cc allow higher efficiency.
Sequences can be assembled in a head to tail orientation using any of a C1 variety of methods, including the following: a) Primers that include a poly-A head and poly-T tail which when made single-stranded would provide orientation can be utilized. This is accomplished by having the first few bases of the primers made from RNA and hence easily removed RNAseH.
b) Primers that include unique restriction cleavage sites can be utilized.
Multiple sites, a battery of unique sequences, and repeated synthesis and ligation steps would be required.
c) The inner few bases of the primer could be thiolated and an exonuclease used to produce properly tailed molecules.
The recovery of the re-assorted sequences relies on the identification of cloning vectors with a reduced repetitive index The re-assorted encoding sequences can then be recovered by amplification. The products are re-cloned and expressed. The recovery of cloning vectors with reduced RI can be affected by: 1) The use of vectors only stably maintained when the construct is reduced in complexity.
2) The physical recovery of shortened vectors by physical procedures. In this case, the cloning vector would be recovered using standard plasmid isolation
\O
procedures and size fractionated on either an agarose gel, or column with a low Z molecular weight cut off utilizing standard procedures.
O 3) The recovery of vectors containing interrupted genes which can be selected when insert size decreases.
00 4) The use of direct selection techniques with an expression vector and Sthe appropriate selection.
Encoding sequences (for example, genes) from related organisms may r demonstrate a high degree of homology and encode quite diverse protein products.
These types of sequences are particularly useful in the present invention as quasirepeats. However, while the examples illustrated below demonstrate the reassortmnent of nearly identical original encoding sequences (quasi-repeats), this process is not limited to such nearly identical repeats.
The following example demonstrates a method of the invention. Encoding nucleic acid sequences (quasi-repeats) derived from three unique species are described. Each sequence encodes a protein with a distinct set of properties. Each of the sequences differs by a single or a few base pairs at a unique position in the sequence. The quasi-repeated sequences are separately or collectively amplified and ligated into random assemblies such that all possible permutations and combinations are available in the population of ligated molecules. The number of quasi-repeat units can be controlled by the assembly conditions. The average number of quasi-repeated units in a construct is defined as the repetitive index (RI).
Once formed, the constructs may, or may not be size fractionated on an agarose gel according to published protocols, inserted into a cloning vector, and transfected into an appropriate host cell. The cells are then propagated and "reductive reassortment" is effected. The rate of the reductive reassortment process may be stimulated by the introduction of DNA damage if desired. Whether the reduction in RI is mediated by deletion formation between repeated sequences by an "intramolecular" mechanism, or mediated by recombination-like events through "inter- Smolecular" mechanisms is immaterial. The end result is a reassortment of the Z molecules into all possible combinations.
Optionally, the method comprises the additional step of screening the library members of the shuffled pool to identify individual shuffled library members having the ability to bind or otherwise interact, or catalyze a particular reaction 00 tn such as catalytic domain of an enzyme) with a predetermined macromolecule, such as C1 for example a proteinaceous receptor, an oligosaccharide, viron, or other \0 0predetermined compound or structure.
The polypeptides that are identified from such libraries can be used for therapeutic, diagnostic, research and related purposes catalysts, solutes for increasing osmolarity of an aqueous solution, and the like), and/or can be subjected to one or more additional cycles of shuffling and/or selection.
In another aspect, it is envisioned that prior to or during recombination or reassortment, polynucleotides generated by the method of the invention can be subjected to agents or processes which promote the introduction of mutations into the original polynucleotides. The introduction of such mutations would increase the diversity of resulting hybrid polynucleotides and polypeptides encoded therefrom.
The agents or processes which promote mutagenesis can include, but are not limited to: (+)-CC-1065, or a synthetic analog such as (+)-CC-1065-(N3-Adenine (See Sun and Hurley, (1992); an N-acelylated or deacetylated 4'-fluro-4-aminobiphenyl adduct capable of inhibiting DNA synthesis (See, for example, van de Poll et al. (1992)); or a N-acetylated or deacetylated 4-aminobiphenyl adduct capable of inhibiting DNA synthesis (See also, van de Poll et al. (1992), pp. 751-758); trivalent chromium, a trivalent chromium salt, a polycyclic aromatic hydrocarbon (PAH) DNA adduct capable of inhibiting DNA replication, such as 7-bromomethyl-benz[a]anthracene tris(2,3-dibromopropyl)phosphate ("Tris-BP"), 1,2-dibromo-3chloropropane 2-bromoacrolein (2BA), benzo[a]pyrene-7,8-dihydrodiol- 9-10-epoxide a platinum(II) halogen salt, N-hydroxy-2-amino-3- ("N-hydroxy-IQ"), and N-hydroxy-2-amino-1- Smethyl-6-phenylimidazo[4,5-]-pyridine ("N-hydroxy-PhIP"). Especially preferred Smeans for slowing or halting PCR amplification consist of UV light (+)-CC-1065 and (+)-CC-1065-(N3-Adenine). Particularly encompassed means are DNA adducts or polynucleotides comprising the DNA adducts from the polynucleotides or Spolynucleotides pool, which can be released or removed by a process including 00 heating the solution comprising the polynucleotides prior to further processing.
CN In another aspect the invention is directed to a method of producing 0recombinant proteins having biological activity by treating a sample comprising C double-stranded template polynucleotides encoding a wild-type protein under conditions according to the invention which provide for the production of hybrid or re-assorted polynucleotides.
The invention also provides for the use of proprietary codon primers (containing a degenerate N,N,N sequence) to introduce point mutations into a polynucleotide, so as to generate a set of progeny polypeptides in which a full range of single amino acid substitutions is represented at each amino acid position (gene site saturated mutagenesis (GSSM)). The oligos used are comprised contiguously of a first homologous sequence, a degenerate N,N,N sequence, and preferably but not necessarily a second homologous sequence. The downstream progeny translational products from the use of such oligos include all possible amino acid changes at each amino acid site along the polypeptide, because the degeneracy of the N,N,N sequence includes codons for all 20 amino acids.
In one aspect, one such degenerate oligo (comprised of one degenerate N,N,N cassette) is used for subjecting each original codon in a parental polynucleotide template to a full range of codon substitutions. In another aspect, at least two degenerate N,N,N cassettes are used either in the same oligo or not, for subjecting at least two original codons in a parental polynucleotide template to a full range of codon substitutions. Thus, more than one N,N,N sequence can be contained in one oligo to introduce amino acid mutations at more than one site. This plurality of N,N,N sequences can be directly contiguous, or separated by one or more additional O nucleotide sequence(s). In another aspect, oligos serviceable for introducing additions Z and deletions can be used either alone or in combination with the codons containing an N,N,N sequence, to introduce any combination or permutation of amino acid additions, deletions, and/or substitutions.
In a particular exemplification, it is possible to simultaneously mutagenize two or more contiguous amino acid positions using an oligo that contains contiguous N,N,N triplets, i.e. a degenerate (N,N,N)n sequence.
SIn another aspect, the present invention provides for the use of degenerate cassettes having less degeneracy than the N,N,N sequence. For example, it may be desirable in some instances to use in an oligo) a degenerate triplet sequence comprised of only one N, where said N can be in the first second or third position of the triplet. Any other bases including any combinations and permutations thereof can be used in the remaining two positions of the triplet. Alternatively, it may be desirable in some instances to use in an oligo) a degenerate N,N,N triplet sequence, N,N,G/T, or an N,N, G/C triplet sequence.
It is appreciated, however, that the use of a degenerate triplet (such as N,N,G/T or an N,N, G/C triplet sequence) as disclosed in the instant invention is advantageous for several reasons. In one aspect, this invention provides a means to systematically and fairly easily generate the substitution of the full range of possible amino acids (for a total of 20 amino acids) into each and every amino acid position in a polypeptide. Thus, for a 100 amino acid polypeptide, the invention provides a way to systematically and fairly easily generate 2000 distinct species 20 possible amino acids per position times 100 amino acid positions). It is appreciated that there is provided, through the use of an oligo containing a degenerate N,N,G/T or an N,N, G/C triplet sequence, 32 individual sequences that code for 20 possible amino acids.
Thus, in a reaction vessel in which a parental polynucleotide sequence is subjected to saturation mutagenesis using one such oligo, there are generated 32 distinct progeny polynucleotides encoding 20 distinct polypeptides. In contrast, the use of a non- INO 43
O
O
Sdegenerate oligo in site-directed mutagenesis leads to only one progeny polypeptide Z product per reaction vessel.
This invention also provides for the use ofnondegenerate oligos, which can optionally be used in combination with degenerate primers disclosed. It is appreciated that in some situations, it is advantageous to use nondegenerate oligos to generate 00 tr) specific point mutations in a working polynucleotide. This provides a means to C1 generate specific silent point mutations, point mutations leading to corresponding 0amino acid changes, and point mutations that cause the generation of stop codons and CN the corresponding expression ofpolypeptide fragments.
Thus, in a preferred embodiment of this invention, each saturation mutagenesis reaction vessel contains polynucleotides encoding at least 20 progeny polypeptide molecules such that all 20 amino acids are represented at the one specific amino acid position corresponding to the codon position mutagenized in the parental polynucleotide. The 32-fold degenerate progeny polypeptides generated from each saturation mutagenesis reaction vessel can be subjected to clonal amplification cloned into a suitable E. coli host using an expression vector) and subjected to expression screening. When an individual progeny polypeptide is identified by screening to display a favorable change in property (when compared to the parental polypeptide), it can be sequenced to identify the correspondingly favorable amino acid substitution contained therein.
It is appreciated that upon mutagenizing each and every amino acid position in a parental polypeptide using saturation mutagenesis as disclosed herein, favorable amino acid changes may be identified at more than one amino acid position.
One or more new progeny molecules can be generated that contain a combination of all or part of these favorable amino acid substitutions. For example, if 2 specific favorable amino acid changes are identified in each of 3 amino acid positions in a polypeptide, the permutations include 3 possibilities at each position (no change from the original amino acid, and each of two favorable changes) and 3 positions. Thus, there are 3 x 3 x 3 or 27 total possibilities, including 7 that were previously examined 6 single point mutations 2 at each of three positions) and no change at any z position.
In yet another aspect, site-saturation mutagenesis can be used together with shuffling, chimerization, recombination and other mutagenizing processes, along with Sscreening. This invention provides for the use of any mutagenizing process(es), 00 l including saturation mutagenesis, in an iterative manner. In one exemplification, the C iterative use of any mutagenizing process(es) is used in combination with screening.
O
SThus, in a non-limiting exemplification, this invention provides for the use of saturation mutagenesis in combination with additional mutagenization processes, such as process where two or more related polynucleotides are introduced into a suitable host cell such that a hybrid polynucleotide is generated by recombination and reductive reassortment.
In addition to performing mutagenesis along the entire sequence of a gene, the instant invention provides that mutagenesis can be use to replace each of any number of bases in a polynucleotide sequence, wherein the number of bases to be mutagenized is preferably every integer from 15 to 100,000. Thus, instead of mutagenizing every position along a molecule, one can subject every or a discrete number of bases (preferably a subset totaling from 15 to.l O,Q0_0Q)to mutagenesis.
Preferably, a separate nucleotide is used for mutagenizing each position or group of positions along a polynucleotide sequence. A group of 3 positions to be mutagenized may be a codon. The mutations are preferably introduced using a mutagenic primer, containing a heterologous cassette, also referred to as a mutagenic cassette. Preferred cassettes can have from 1 to 500 bases. Each nucleotide position in such heterologous cassettes be N, A, C, G, T, A/C, A/G, A/T, C/G, C/T, G/T, C/G/T, A/G/T, A/C/T, A/C/G, or E, where E is any base that is not A, C, G, or T (E can be referred to as a designer oligo).
In a general sense, saturation mutagenesis is comprised of mutagenizing a complete set of mutagenic cassettes (wherein each cassette is preferably about 1-500 bases in length) in defined polynucleotide sequence to be mutagenized (wherein the sequence to be mutagenized is preferably from about 15 to 100,000 bases in length).
Z Thus, a group of mutations (ranging from 1 to 100 mutations) is introduced into each cassette to be mutagenized. A grouping of mutations to be introduced into one cassette can be different or the same from a second grouping of mutations to be Iintroduced into a second cassette during the application of one round of saturation 00 mutagenesis. Such groupings are exemplified by deletions, additions, groupings of Sparticular codons, and groupings of particular nucleotide cassettes.
(N
Defined sequences to be mutagenized include a whole gene, pathway, cDNA, an entire open reading frame (ORF), and entire promoter, enhancer, repressor/transactivator, origin of replication, intron, operator, or any polynucleotide functional group. Generally, a "defined sequences" for this purpose may be any polynucleotide that a 15 base-polynucleotide sequence, and polynucleotide sequences of lengths between 15 bases and 15,000 bases (this invention specifically names every integer in between). Considerations in choosing groupings of codons include types of amino acids encoded by a degenerate mutagenic cassette.
In a particularly preferred exemplification a grouping of mutations that can be introduced into a mutagenic cassette, this invention specifically provides for degenerate codon substitutions (using degenerate oligos) that code for 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, and 20 amino acids at each position, and a library of polypeptides encoded thereby.
One aspect of the invention is an isolated nucleic acid comprising one of the sequences of Group A nucleic acid sequences, and sequences substantially identical thereto, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of a Group A nucleic acid sequence (or the sequences complementary thereto). The isolated, nucleic acids may comprise DNA, including cDNA, genomic DNA, and synthetic DNA. The DNA may be double-stranded or single-stranded, and if single stranded may be the coding strand or non-coding (antisense) strand. Alternatively, the isolated nucleic acids may comprise RNA.
As discussed in more detail below, the isolated nucleic acids of one of the Z Group A nucleic acid sequences, and sequences substantially identical thereto, may be O used to prepare one of the polypeptides of a Group B amino acid sequence, and sequences substantially identical thereto, or fragments comprising at least 5, 10, In 20,25, 30, 35,40, 50, 75, 100, or 150 consecutive amino acids of one of the 00 polypeptides of Group B amino acid sequences, and sequences substantially identical Cc thereto.
(N
Accordingly, another aspect of the invention is an isolated nucleic acid Cwhich encodes one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 20,25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids of one of the polypeptides of the Group B amino acid sequences. The coding sequences of these nucleic acids may be identical to one of the coding sequences of one of the nucleic acids of Group A nucleic acid sequences, or a fragment thereof or may be different coding sequences which encode one of the polypeptides of Group B amino acid sequences, sequences substantially identical thereto, and fragments having at least 15, 20, 25, 30,35,40, 50, 75, 100, or 150 consecutive amino acids of one of the polypeptides of Group B amino acid sequences, as a result of the redundancy or degeneracy of the genetic code. The genetic code is well known to those of skill in the art and can be obtained, for example, on page 214 of B. Lewin, Genes VI, Oxford University Press, 1997, the disclosure of which is incorporated herein by reference.
The isolated nucleic acid which encodes one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, may include, but is not limited to: only the coding sequence of one of Group A nucleic acid sequences, and sequences substantially identical thereto, and additional coding sequences, such as leader sequences or proprotein sequences and non-coding sequences, such as introns or non-coding sequences 5' and/or 3' of the coding sequence. Thus, as used herein, the term "polynucleotide encoding a polypeptide" encompasses a polynucleotide which includes only the coding sequence for the
IO
polypeptide as well as a polynucleotide which includes additional coding and/or non- Z coding sequence.
SAlternatively, the nucleic acid sequences of Group A nucleic acid sequences, and sequences substantially identical thereto, may be mutagenized using conventional techniques, such as site directed mutagenesis, or other techniques 00 00 familiar to those skilled in the art, to introduce silent changes into the polynucleotides Sof Group A nucleic acid sequences, and sequences substantially identical thereto. As Sused herein, "silent changes" include, for example, changes which do not alter the Samino acid sequence encoded by the polynucleotide. Such changes may be desirable in order to increase the level of the polypeptide produced by host cells containing a vector encoding the polypeptide by introducing codons or codon pairs which occur frequently in the host organism.
The invention also relates to polynucleotides which have nucleotide changes which result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto. Such nucleotide changes may be introduced using techniques such as site directed mutagenesis, random chemical mutagenesis, exonuclease III deletion, and other recombinant DNA techniques. Alternatively, such nucleotide changes may be naturally occurring allelic variants which are isolated by identifying nucleic acids which specifically hybridize to probes comprising at least 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of Group A nucleic acid sequences, and sequences substantially identical thereto (or the sequences complementary thereto) under conditions of high, moderate, or low stringency as provided herein.
The isolated nucleic acids of Group A nucleic acid sequences, and sequences substantially identical thereto, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of Group A nucleic acid sequences, and sequences substantially identical thereto, or the sequences complementary thereto o may also be used as probes to determine whether a biological sample, such as a soil Z sample, contains an organism having a nucleic acid sequence of the invention or an organism from which the nucleic acid was obtained. In such procedures, a biological sample potentially harboring the organism from which the nucleic acid was isolated is t obtained and nucleic acids are obtained from the sample. The nucleic acids are 00 contacted with the probe under conditions which permit the probe to specifically M€ hybridize to any complementary sequences from which are present therein.
Where necessary, conditions which permit the probe to specifically r hybridize to complementary sequences may be determined by placing the probe in contact with complementary sequences from samples known to contain the complementary sequence as well as control sequences which do not contain the complementary sequence. Hybridization conditions, such as the salt concentration of the hybridization buffer, the formamide concentration of the hybridization buffer, or the hybridization temperature, may be varied to identify conditions which allow the probe to hybridize specifically to complementary nucleic acids.
If the sample contains the organism from which the nucleic acid was isolated, specific hybridization of the probe is then detected. Hybridization may be detected by labeling the probe with a detectable agent such as a radioactive isotope, a fluorescent dye or an enzyme capable of catalyziig tihe forma tion of a detectable product.
Many methods for using the labeled probes to detect the presence of complementary nucleic acids in a sample are familiar to those skilled in the art. These include Southern Blots, Northern Blots, colony hybridization procedures, and dot blots. Protocols for each of these procedures are provided in Ausubel et al. Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. (1997) and Sambrook el al., Molecular Cloning: A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press (1989), the entire disclosures of which are incorporated herein by reference.
Alternatively, more than one probe (at least one of which is capable of specifically hybridizing to any complementary sequences which are present in the \N 4Y Snucleic acid sample), may be used in an amplification reaction to determine whether Z the sample contains an organism containing a nucleic acid sequence of the invention 0 an organism from which the nucleic acid was isolated). Typically, the probes comprise oligonucleotides. In one embodiment, the amplification reaction may comprise a PCR reaction. PCR protocols are described in Ausubel and Sambrook, 00 supra. Alternatively, the amplification may comprise a ligase chain reaction, 3SR, or ¢C strand displacement reaction. (See Barany, "The Ligase Chain Reaction in a PCR \0 World", PCR Methods and Applications 1:5-16, 1991; E. Fahy et al., "Self-sustained 0Sequence Replication (3SR): An Isothermal Transcription-based Amplification System Alternative to PCR", PCR Methods and Applications 1:25-33, 1991; and Walker G.T. et al., "Strand Displacement Amplification-an Isothermal in vitro'DNA Amplification Technique", Nucleic Acid Research 20:1691-1696, 1992, the disclosures of which are incorporated herein by reference in their entireties). In such procedures, the nucleic acids in the sample are contacted with the probes, the amplification reaction is performed, and any resulting amplification product is detected. The amplification product may be detected by performing gel electrophoresis on the reaction products and staining the gel with an interculator such as ethidium bromide. Alternatively, one or more of the probes may be labeled with a radioactive isotope and the presence of a radioactive amplification product may be detected by autoradiography after gel electrophoresis.
Probes derived from sequences near the ends of the sequences of Group A nucleic acid sequences, and sequences substantially identical thereto, may also be used in chromosome walking procedures to identify clones containing genomic sequences located adjacent to the sequences of Group A nucleic acid sequences, and sequences substantially identical thereto. Such methods allow the isolation of genes which encode additional proteins from the host organism.
The isolated nucleic acids of Group A nucleic acid sequences, and sequences substantially identical thereto, the sequences complementary thereto, or a fragment comprising at least 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive bases of one of the sequences of Group A nucleic acid sequences, WO 02/068583 PCT/US01/45337 0 51
O
O
O By varying the stringency of the hybridization conditions used to identify Z nucleic acids, such as cDNAs or genomic DNAs, which hybridize to the detectable probe, nucleic acids having different levels of homology to the probe can be identified and isolated. Stringency may be varied by conducting the hybridization at varying l temperatures below the melting temperatures of the probes. The melting temperature, 00 Tm, is the temperature (under defined ionic strength and pH) at which 50% of the CM target sequence hybridizes to a perfectly complementary probe. Very stringent 0 conditions are selected to be equal to or about 5°C lower than the Tm for a particular Oprobe. The melting temperature of the probe may be calculated using the following formulas: For probes between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula: Tm=81.5+16.6(log (fraction G+C)-(600/N) where N is the length of the probe.
If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation: Tn=81.5+16.6(log (fraction formamide)-(600/N) where N is the length of the probe.
Prehybridization may be carried out in 6X SSC, 5X-Denhardt's reagent, SDS, 100pg denatured fragmented salmon sperm DNA or 6X SSC, Denhardt's reagent, 0.5% SDS, 100pg denatured fragmented salmon sperm DNA, formamide. The formulas for SSC and Denhardt's solutions are listed in Sambrook et al., supra.
Hybridization is conducted by adding the detectable probe to the prehybridization solutions listed above. Where the probe comprises double stranded DNA, it is denatured before addition to the hybridization solution. The filter is contacted with the hybridization solution for a sufficient period of time to allow the probe to hybridize to cDNAs or genomic DNAs containing sequences complementary thereto or homologous thereto. For probes over 200 nucleotides in length, the
O
o and sequences substantially identical thereto, or the sequences complementary thereto Z may be used as probes to identify and isolate related nucleic acids. In some embodiments, the related nucleic acids may be cDNAs or genomic DNAs from organisms other than the one from which the nucleic acid was isolated. For example, the other organisms may be related organisms. In such procedures, a nucleic acid 00 sample is contacted with the probe under conditions which permit the probe to Cc specifically hybridize to related sequences. Hybridization of the probe to nucleic I0 acids from the related organism is then detected using any of the methods described Sabove.
In nucleic acid hybridization reactions, the conditions used to achieve a particular level of stringency will vary, depending on the nature of the nucleic acids being hybridized. For example, the length, degree of complementarity, nucleotide sequence composition GC v. AT content), and nucleic acid type RNA v.
DNA) of the hybridizing regions of the nucleic acids can be considered in selecting hybridization conditions. An additional consideration is whether one of the nucleic acids is immobilized, for example, on a filter.
Hybridization may be carried out under conditions of low stringency, moderate stringency or high stringency. As an example of nucleic acid hybridization, a polymer membrane containing immobilized denatured nucleic acids is first prehybridized for 30 minutes at 45 0 C in a solution consisting of 0.9 M NaCI, 50 mM NaH 2
PO
4 pH 7.0, 5.0 mM Na 2 EDTA, 0.5% SDS, 10X Denhardt's, and 0.5 mg/ml polyriboadenylic acid. Approximately 2 X 10 7 cpm (specific activity 4-9 X 108 cpm/ug) of 3 2 P end-labeled oligonucleotide probe are then added to the solution.
After 12-16 hours of incubation, the membrane is washed for 30 minutes at room temperature in IX SET (150 mM NaCI, 20 mM Tris hydrochloride, pH 7.8, 1 mM Na 2 EDTA) containing 0.5% SDS, followed by a 30 minute wash in fresh IX SET at for the oligonucleotide probe. The membrane is then exposed to autoradiographic film for detection of hybridization signals.
O hybridization may be carried out at 15-25 0 C below the Tm. For shorter probes, such as oligonucleotide probes, the hybridization may be conducted at 5-10°C below the Tm. Typically, for hybridizations in 6X SSC, the hybridization is conducted at approximately 68 0 C. Usually, for hybridizations in 50% formamide containing solutions, the hybridization is conducted at approximately 42°C.
00 M All of the foregoing hybridizations would be considered to be under conditions of high stringency.
Following hybridization, the filter is washed to remove any nonspecifically bound detectable probe. The stringency used to wash the filters can also be varied depending on the nature of the nucleic acids being hybridized, the length of the nucleic acids being hybridized, the degree of complementarity, the nucleotide sequence composition GC v. AT content), and the nucleic acid type RNA v. DNA). Examples of progressively higher stringency condition washes are as follows: 2X SSC, 0.1% SDS at room temperature for 15 minutes (low stringency); 0.1X SSC, 0.5% SDS at room temperature for 30 minutes to 1 hour (moderate stringency); 0.1X SSC, 0.5% SDS for 15 to 30 minutes at between the hybridization temperature and 68 0 C (high stringency); and 0.15M NaCI for 15 minutes at 72°C (very high stringency). A final low stringency wash can be conducted in 0.1X SSC at room temperature. The examples above are merely illustrative of one set of conditions that can be used to wash filters. One of skill in the art would know that there are numerous recipes for different stringency washes. Some other examples are given below.
Nucleic acids which have hybridized to the probe are identified by autoradiography or other conventional techniques.
The above procedure may be modified to identify nucleic acids having decreasing levels of homology to the probe sequence. For example, to obtain nucleic acids of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments Sof 5 0 C from 68 0 C to 42°C in a hybridization buffer having a Na+ concentration of Z approximately 1M. Following hybridization, the filter may be washed with 2X SSC, O 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate" conditions above 50 0 C and "low" conditions below 50 0 C. A specific example of "moderate" hybridization conditions is when the above hybridization is 00 conducted at 55 0 C. A specific example of"low stringency" hybridization conditions
C
c is when the above hybridization is conducted at 45 0
C.
SAltematively, the hybridization may be carried out in buffers, such as 6X SSC, containing formamide at a temperature of 42 0 C. In this case, the concentration of formamide in the hybridization buffer may be reduced in 5% increments from to 0% to identify clones having decreasing levels of homology to the probe.
Following hybridization, the filter may be washed with 6X SSC, 0.5% SDS at 50 0
C.
These conditions are considered to be "moderate" conditions above 25% formamide and "low" conditions below 25% formamide. A specific example of "moderate" hybridization conditions is when the above hybridization is conducted at formamide. A specific example of "low stringency" hybridization conditions is when the above hybridization is conducted at 10% formamide.
For example, the preceding methods may be used to isolate nucleic acids having a sequence with at least about 97%, at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55% or at least 50% homology to a nucleic acid sequence selected from the group consisting of one of the sequences of Group A nucleic acid sequences, and sequences substantially identical thereto, or fragments comprising at least about 10, 15, 20, 25, 30, 35, 40, 100, 150, 200, 300, 400, or 500 consecutive bases thereof, and the sequences complementary thereto. Homology may be measured using the alignment algorithm.
For example, the homologous polynucleotides may have a coding sequence which is a naturally occurring allelic variant of one of the coding sequences described herein.
Such allelic variants may have a substitution, deletion or addition of one or more O nucleotides when compared to the nucleic acids of Group A nucleic acid sequences or Z the sequences complementary thereto.
Additionally, the above procedures may be used to isolate nucleic acids which encode polypeptides having at least about 99%, 95%, at least 90%, at least at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least t or at least 50% homology to a polypeptide having the sequence of one of Group B C amino acid sequences, and sequences substantially identical thereto, or fragments O comprising at least 5, 10, 15,20,25,30,35,40,50,75, 100, or 150 consecutive amino "1 acids thereof as determined using a sequence alignment algorithm such as the FASTA version 3.0t78 algorithm with the default parameters).
Another aspect of the invention is an isolated or purified polypeptide comprising the sequence of one of Group A nucleic acid sequences, and sequences substantially identical thereto, or fragments comprising at least about 5, 10, 15, 20, 35,40, 50, 75, 100, or 150 consecutive amino acids thereof. As discussed above, such polypeptides may be obtained by inserting a nucleic acid encoding the polypeptide into a vector such that the coding sequence is operably linked to a sequence capable of driving the expression of the encoded polypeptide in a suitable host cell. For example, the expression vector may comprise a promoter, a ribosome binding site for translation initiation and a transcription terminator. The vector may also include appropriate sequences for amplifying expression.
Promoters suitable for expressing the polypeptide or fragment thereof in bacteria include the E. coli lac or trp promoters, the lac promoter, the lacZ promoter, the T3 promoter, the T7 promoter, the gpt promoter, the lambda PR promoter, the lambda PL promoter, promoters from operons encoding glycolytic enzymes such as 3phosphoglycerate kinase (PGK), and the acid phosphatase promoter. Fungal promoters include the V factor promoter. Eukaryotic promoters include the CMV immediate early promoter, the HSV thymidine kinase promoter, heat shock promoters, the early and late SV40 promoter, LTRs from retroviruses, and the mouse
\O
(N
Smetallothionein-I promoter. Other promoters known to control expression of genes in
O
Z prokaryotic or eukaryotic cells or their viruses may also be used.
SMammalian expression vectors may also comprise an origin of replication, any necessary ribosome binding sites, a polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed 00 sequences. In some embodiments, DNA sequences derived from the SV40 splice and C0 polyadenylation sites may be used to provide the required nontranscribed genetic Selements.
Vectors for expressing the polypeptide or fragment thereof in eukaryotic cells may also contain enhancers to increase expression levels. Enhancers are cisacting elements of DNA, usually from about 10 to about 300 bp in length that act on a promoter to increase its transcription. Examples include the SV40 enhancer on the late side of the replication origin bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and the adenovirus enhancers.
In addition, the expression vectors typically contain one or more selectable marker genes to permit selection of host cells containing the vector. Such selectable markers include genes encoding dihydrofolate reductase or genes conferring neomycin resistance for eukaryotic cell culture, genes conferring tetracycline or ampicillin resistance in E. coli, and the S. cerevisiae TRP1 gene.
After the expression libraries have been generated one can include the additional step of"biopanning" such libraries prior to screening by cell sorting. The "biopanning" procedure refers to a process for identifying clones having a specified biological activity by screening for sequence homology in a library of clones prepared by selectively isolating target DNA, from DNA derived from at least one microorganism, by use of at least one probe DNA comprising at least a portion of a DNA sequence encoding an biological having the specified biological activity; and (ii) optionally transforming a host with isolated target DNA to produce a library of clones which are screened for the specified biological activity.
O The probe DNA used for selectively isolating the target DNA of interest Z from the DNA derived from at least one microorganism can be a full-length coding region sequence or a partial coding region sequence of DNA for an enzyme of known activity. The original DNA library can be preferably probed using mixtures of probes t comprising at least a portion of the DNA sequence encoding an enzyme having the 00 specified enzyme activity. These probes or probe libraries are preferably C€ single-stranded and the microbial DNA which is probed has preferably been O converted into single-stranded form. The probes that are particularly suitable are those derived from DNA encoding enzymes having an activity similar or identical to the specified enzyme activity which is to be screened.
The probe DNA should be at least about 10 bases and preferably at least bases. In one embodiment, the entire coding region may be employed as a probe.
Conditions for the hybridization in which target DNA is selectively isolated by the use of at least one DNA probe will be designed to provide a hybridization stringency of at least about 50% sequence identity, more particularly a stringency providing for a sequence identity of at least about In nucleic acid hybridization reactions, the conditions used to achieve a particular level of stringency will vary, depending on the nature of the nucleic acids being hybridized. For example, the length, degree of complementarity, nucleotide sequence composition GC v. AT content), and nucleic acid type RNA v.
DNA) of the hybridizing regions of the nucleic acids can be considered in selecting hybridization conditions. An additional consideration is whether one of the nucleic acids is immobilized, for example, on a filter.
An example of progressively higher stringency conditions is as follows: 2 x SSC/O. 1% SDS at about room temperature (hybridization conditions); 0.2 x SSC/0. 1% SDS at about room temperature (low stringency conditions); 0.2 x SSC/0.1% SDS at about 420C (moderate stringency conditions); and 0.1 x SSC at about 68CC (high stringency conditions). Washing can be carried out using only one of these conditions, high stringency conditions, or each of the conditions can be used, for 10-15 minutes each, in the order listed above, repeating any or all of the Z steps listed. However, as mentioned above, optimal conditions will vary, depending on the particular hybridization reaction involved, and can be determined empirically.
Hybridization techniques for probing a microbial DNA library to isolate target DNA of potential interest are well known in the art and any of those which are 00 t described in the literature are suitable for use herein, particularly those which use a solid phase-bound, directly or indirectly bound, probe DNA for ease in separation from the remainder of the DNA derived from the microorganisms.
Preferably the probe DNA is "labeled" with one partner of a specific binding pair a ligand) and the other partner of the pair is bound to a solid matrix to provide ease of separation of target from its source. The ligand and specific binding partner can be selected from, in either orientation, the following: an antigen or hapten and an antibody or specific binding fragment thereof; biotin or iminobiotin and avidin or streptavidin; a sugar and a lectin specific therefor; (4) an enzyme and an inhibitor therefor; an apoenzyme and cofactor; (6) complementary homopolymeric oligonucleotides; and a hormone and a receptor therefor. The solid phase is preferably selected from: a glass or polymeric surface; a packed column of polymeric beads; and magnetic or paramagnetic particles.
Further, it is optional but desirable to perform an amplification of the target DNA that has been isolated. In this embodiment the target DNA is separated from the probe DNA after isolation. It is then amplified before being used to transform hosts.
The double stranded DNA selected to include as at least a portion thereofa predetermined DNA sequence can be rendered single stranded, subjected to amplification and rearmnnealed to provide amplified numbers of selected double stranded DNA. Numerous amplification methodologies are now well known in the art.
The selected DNA is then used for preparing a library for screening by transforming a suitable organism. Hosts, particularly those specifically identified o herein as preferred, are transformed by artificial introduction of the vectors containing Z the target DNA by inoculation under conditions conducive for such transformation.
The resultant libraries of transformed clones are then screened for clones which display activity for the enzyme of interest.
00 00Having prepared a multiplicity of clones from DNA selectively isolated from an organism, such clones are screened for a specific enzyme activity and to IO identify the clones having the specified enzyme characteristics.
The screening for enzyme activity may be effected on individual expression clones or may be initially effected on a mixture of expression clones to ascertain whether or not the mixture has one or more specified enzyme activities. If the mixture has a specified enzyme activity, then the individual clones may be rescreened utilizing a FAGS machine for such enzyme activity or for a more specific activity.
Alternatively, encapsulation techniques such as gel microdroplets, may be employed to localize multiple clones in one location to be screened on a FAGS machine for positive expressing clones within the group of clones which can then be broken out into individual clones to be screened again on a FAGS machine to identify positive individual clones. Thus, for example, ifa clone mixture has hydrolase activity, then the individual clones may be recovered and screened utilizing a FAGS machine-to determine which of such clones has hydrolase activity. As used herein, Dsmall insert libraryO means a gene library containing clones with random small size nucleic acid inserts of up to approximately 5000 base pairs. As used herein, [large insert libraryD means a gene library containing clones with random large size nucleic acid inserts of approximately 5000 up to several hundred thousand base pairs or greater.
As described with respect to one of the above aspects, the invention provides a process for enzyme activity screening of clones containing selected DNA derived from a microorganism which process includes: screening a library for specified enzyme activity, said library including a plurality of clones, said clones having been prepared by recovering from genomic DNA of a microorganism selected DNA, which DNA is selected by hybridization to at least one DNA sequence which is NO D all or a portion ofa DNA sequence encoding an enzyme having the specified activity; Z and transforming a host with the selected DNA to produce clones which are screened Sfor the specified enzyme activity.
In one embodiment, a DNA library derived from a microorganism is subjected to a selection procedure to select therefrom DNA which hybridizes to one 00 tn or more probe DNA sequences which is all or a portion of a DNA sequence encoding C1 an enzyme having the specified enzyme activity by:
INO
rendering the double-stranded genomic DNA population into a single-stranded DNA population; contacting the single-stranded DNA population of(a) with the DNA probe bound to a ligand under conditions permissive of hybridization so as to produce a double-stranded complex of probe and members of the genomic DNA population which hybridize thereto; contacting the double-stranded complex of(b) with a solid phase specific binding partner for said ligand so as to produce a solid phase complex; separating the solid phase complex from the single-stranded DNA population of(b); releasing from the probe the members of the genomic population which had bound to the solid phase bound probe; forming double-stranded DNA from the members of the genomic population of(e); introducing the double-stranded DNA of into a suitable host to form a library containing a plurality of clones containing the selected DNA; and 0(h) screening the library for the specified enzyme activity.
O In another aspect, the process includes a preselection to recover DNA Z including signal or secretion sequences. In this manner it is possible to select from the genomic DNA population by hybridization as hereinabove described only DNA which includes a signal or secretion sequence. The following paragraphs describe the t protocol for this embodiment of the invention, the nature and function of secretion 00 signal sequences in general and a specific exemplary application of such sequences to Cc an assay or selection process.
O A particularly embodiment of this aspect further comprises, after but C before above, the steps of: (ai) contacting the single-stranded DNA population of(a) with a ligand-bound oligonucleotide probe that is complementary to a secretion signal sequence unique to a given class of proteins under conditions permissive of hybridization to form a double-stranded complex; (aii) contacting the double-stranded complex of (ai) with a solid phase specific binding partner for said ligand so as to produce a solid phase complex; (aiii) separating the solid phase complex from the single-stranded DNA population of (aiv) releasing the members of the genomic population which had bound to said solid phase bound probe; and (av) separating the solid phase bound probe from the members of the genomic population which had bound thereto.
The DNA which has been selected and isolated to include a signal sequence is then subjected to the selection procedure hereinabove described to select and isolate therefrom DNA which binds to one or more probe DNA sequences derived from DNA encoding an enzyme(s) having the specified enzyme activity.
01
O
SThis procedure is described and exemplified in U.S. Serial No. 08/692,002, Sfiled August 2, 1996, incorporated herein by reference.
In vivo biopanning may be performed utilizing a FACS-based machine.
Complex gene libraries are constructed with vectors which contain elements which stabilize transcribed RNA. For example, the inclusion of sequences which result in 00 t secondary structures such as hairpins which are designed to flank the transcribed CN regions of the RNA would serve to enhance their stability, thus increasing their half Slife within the cell. The probe molecules used in the biopanning process consist of oligonucleotides labeled with reporter molecules that only fluoresce upon binding of the probe to a target molecule. These probes are introduced into the recombinant cells from the library using one of several transformation methods. The probe molecules bind to the transcribed target mRNA resulting in DNA/RNA heteroduplex molecules.
Binding of the probe to a target will yield a fluorescent signal which is detected and sorted by the FACS machine during the screening process.
In some embodiments, the nucleic acid encoding one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least about 5, 10, 15, 20,25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof is assembled in appropriate phase with a leader sequence capable of directing secretion of the translated polypeptide or fragment thereof. Optionally, the nucleic acid can encode a fusion polypeptide in which one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 100, or 150 consecutive amino acids thereof is fused to heterologous peptides or polypeptides, such as N-terminal identification peptides which impart desired characteristics, such as increased stability or simplified purification.
The appropriate DNA sequence may be inserted into the vector by a variety of procedures. In general, the DNA sequence is ligated to the desired position in the vector following digestion of the insert and the vector with appropriate restriction endonucleases. Alternatively, blunt ends in both the insert and the vector may be I 62 O ligated. A variety of cloning techniques are disclosed in Ausubel et al. Current Z Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al., Molecular Cloning: A Laboratory Manual 2nd Ed., Cold Spring Harbor Laboratory Press (1989), the entire disclosures of which are incorporated herein by reference. Such tI procedures and others are deemed to be within the scope of those skilled in the art.
00 The vector may be, for example, in the form of a plasmid, a viral particle, N or a phage. Other vectors include chromosomal, nonchromosomal and synthetic 0 DNA sequences, derivatives of SV40; bacterial plasmids, phage DNA, baculovirus, C1 yeast plasmids, vectors derived from combinations of plasmids and phage DNA, viral DNA such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. A variety of cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, (1989), the disclosure of which is hereby incorporated by reference.
Particular bacterial vectors which may be used include the commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017), pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden), GEMI (Promega Biotec, Madison, WI, USA) pQE70, pQE60, pQE-9 (Qiagen), psiX174 pBluescript II KS, pNH8A, pNH16a, pNHI8A, pNH46A (Stratagene), ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia), pKK232- 8 and pCM7. Particular eukaryotic vectors include pSV2CAT, pOG44, pXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, and pSVL (Pharmacia). However, any other vector may be used as long as it is replicable and viable in the host cell.
The host cell may be any of the host cells familiar to those skilled in the art, including prokaryotic cells, eukaryotic cells, mammalian cells, insect cells, or plant cells. As representative examples of appropriate hosts, there may be mentioned: bacterial cells, such as E. coli, Streptomyces, Bacillus subtilis, Salmonella typhinmurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, fungal cells, such as yeast, insect cells such as Drosophila S2 and Spodoptera Sf9, animal cells such as CHO, COS or Bowes melanoma, and Z adenoviruses. The selection of an appropriate host is within the abilities of those skilled in the art.
The vector may be introduced into the host cells using any of a variety of techniques, including transformation, transfection, transduction, viral infection, gene 00 guns, or Ti-mediated gene transfer. Particular methods include calcium phosphate C transfection, DEAE-Dextran mediated transfection, lipofection, or electroporation
\N
S(Davis, Dibner, Battey, Basic Methods in Molecular Biology, (1986)).
Where appropriate, the engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes of the invention. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter may be induced by appropriate means temperature shift or chemical induction) and the cells may be cultured for an additional period to allow them to produce the desired polypeptide or fragment thereof.
Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract is retained for further purification.
Microbial cells employed for expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Such methods are well known to those skilled in the art The expressed polypeptide or fragment thereof can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography.
Protein refolding steps can be used, as necessary, in completing configuration of the polypeptide. If desired, high performance liquid chromatography (HPLC) can be employed for final purification steps.
Various mammalian cell culture systems can also be employed to express Z recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts (described by Gluzman, Cell, 23:175, 1981), and other cell lines capable of expressing proteins from a compatible vector, such as the It C127, 3T3, CHO, HeLa and BHK cell lines.
00 t The constructs in host cells can be used in a conventional manner to eC1 produce the gene product encoded by the recombinant sequence. Depending upon the 0host employed in a recombinant production procedure, the polypeptides produced by C host cells containing the vector may be glycosylated or may be non-glycosylated.
Polypeptides of the invention may or may not also include an initial methionine amino acid residue.
Alternatively, the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof can be synthetically produced by conventional peptide synthesizers. In other embodiments, fragments or portions of the polypeptides may be employed for producing the corresponding full-length polypeptide by peptide synthesis; therefore, the fragments may be employed as intermediates for producing the full-length polypeptides.
Cell-free translation systems can also be employed to produce one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof using mRNAs transcribed from a DNA construct comprising a promoter operably linked to a nucleic acid encoding the polypeptide or fragment thereof. In some embodiments, the DNA construct may be linearized prior to conducting an in vitro transcription reaction. The transcribed mRNA is then incubated with an appropriate cell-free translation extract, such as a rabbit reticulocyte extract, to produce the desired polypeptide or fragment thereof.
The invention also relates to variants of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids Z thereof. The term "variant" includes derivatives or analogs of these polypeptides. In Sparticular, the variants may differ in amino acid sequence from the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, by one Sor more substitutions, additions, deletions, fusions and truncations, which may be 00 present in any combination.
C The variants may be naturally occurring or created in vitro. In particular, Ssuch variants may be created using genetic engineering techniques such as site C directed mutagenesis, random chemical mutagenesis, Exonuclease III deletion procedures, and standard cloning techniques. Alternatively, such variants, fragments, analogs, or derivatives may be created using chemical synthesis or modification procedures.
Other methods of making variants are also familiar to those skilled in the art. These include procedures in which nucleic acid sequences obtained from natural isolates are modified to generate nucleic acids which encode polypeptides having characteristics which enhance their value in industrial or laboratory applications. In such procedures, a large number of variant sequences having one or more nucleotide differences with respect to the sequence obtained from the natural isolate are generated and characterized. Typically, these nucleotide differences result in amino acid changes with respect to the polypeptides encoded by the nucleic acids from the natural isolates.
For example, variants may be created using error prone PCR. In error prone PCR, PCR is performed under conditions where the copying fidelity of the DNA polymerase is low, such that a high rate of point mutations is obtained along the entire length of the PCR product. Error prone PCR is described in Leung, et al., Technique, 1:11-15, 1989) and Caldwell, R. C. Joyce PCR Methods Applic., 2:28-33, 1992, the disclosure of which is incorporated herein by reference in its entirety. Briefly, in such procedures, nucleic acids to be mutagenized are mixed with PCR primers, reaction buffer, MgC1 2 MnC12, Taq polymerase and an appropriate Sconcentration of dNTPs for achieving a high rate of point mutation along the entire Z length of the PCR product. For example, the reaction may be performed using fmioles of nucleic acid to be mutagenized, 30pmole of each PCR primer, a reaction buffer comprising 50mM KC1, 10mM Tris IIC1 (pH 8.3) and 0.01% gelatin, 7mM n MgC1 2 0.5mM MnClz, 5 units ofTaq polymerase, 0.2mM dGTP, 0.2mM dATP, 00 1mM dCTP, and ImM dTTP. PCR may be performed for 30 cycles of 940 C for 1 c min, 450 C for 1 min, and 720 C for 1 min. However, it will be appreciated that these O parameters may be varied as appropriate. The mutagenized nucleic acids are cloned O into an appropriate vector and the activities of the polypeptides encoded by the mutagenized nucleic acids is evaluated.
Variants may also be created using oligonucleotide directed mutagenesis to generate site-specific mutations in any cloned DNA of interest. Oligonucleotide mutagenesis is described in Reidhaar-Olson, J.F. Sauer, et al., Science, 241:53-57, 1988, the disclosure of which is incorporated herein by reference in its entirety. Briefly, in such procedures a plurality of double stranded oligonucleotides bearing one or more mutations to be introduced into the cloned DNA are synthesized and inserted into the cloned DNA to be mutagenized. Clones containing the mutagenized DNA are recovered and the activities of the polypeptides they encode are assessed.
Another method for generating variants is assembly PCR. Assembly PCR involves the assembly of a PCR product from a mixture of small DNA fragments. A large number of different PCR reactions occur in parallel in the same vial, with the products of one reaction priming the products of another reaction. Assembly PCR is described in U.S. Patent No. 5,965,408, filed July 9, 1996, entitled, "Method of DNA Reassembly by Interrupting Synthesis", the disclosure of which is incorporated herein by reference in its entirety.
Still another method of generating variants is sexual PCR mutagenesis. In sexual PCR mutagenesis, forced homologous recombination occurs between DNA molecules of different but highly related DNA sequence in vitro, as a result of random
O
fragmentation of the DNA molecule based on sequence homology, followed by Z fixation of the crossover by primer extension in a PCR reaction. Sexual PCR mutagenesis is described in Stemmer, PNAS, USA, 91:10747-10751, 1994, the disclosure of which is incorporated herein by reference. Briefly, in such procedures a plurality of nucleic acids to be recombined are digested with DNAse to generate 00 fragments having an average size of 50-200 nucleotides. Fragments of the desired ¢C average size are purified and resuspended in a PCR mixture. PCR is conducted under 0 conditions which facilitate recombination between the nucleic acid fragments. For 0example, PCR may be performed by resuspending the purified fragments at a concentration of 10-30ng/:l in a solution of 0.2mM of each dNTP, 2.2mM MgC12, KCL, 10mM Tris HCI, pH 9.0, and 0.1% Triton X-100. 2.5 units of Taq polymerase per 100:1 of reaction mixture is added and PCR is performed using the following regime: 940 C for 60 seconds, 940 C for 30 seconds, 50-550 C for seconds, 720 C for 30 seconds (30-45 times) and 720 C for 5 minutes. However, it will be appreciated that these parameters may be varied as appropriate. In some embodiments, oligonucleotides may be included in the PCR reactions. In other embodiments, the Klenow fragment of DNA polymerase I may be used in a first set of PCR reactions and Taq polymerase may be used in a subsequent set of PCR reactions.
Recombinant sequences are isolated and the activities of the polypeptides they encode are assessed.
Variants may also be created by in vivo mutagenesis. In some embodiments, random mutations in a sequence of interest are generated by propagating the sequence of interest in a bacterial strain, such as an E. coli strain, which carries mutations in one or more of the DNA repair pathways. Such "mutator" strains have a higher random mutation rate than that of a wild-type parent.
Propagating the DNA in one of these strains will eventually generate random mutations within the DNA. Mutator strains suitable for use for in vivo mutagenesis are described in PCT Publication No. WO 91/16427, published October 31, 1991, entitled "Methods for Phenotype Creation from Multiple Gene Populations" the disclosure of which is incorporated herein by reference in its entirety.
O Variants may also be generated using cassette mutagenesis. In cassette Z mutagenesis a small region of a double stranded DNA molecule is replaced with a 0 synthetic oligonucleotide "cassette" that differs from the native sequence. The oligonucleotide often contains completely and/or partially randomized native sequence.
00 Recursive ensemble mutagenesis may also be used to generate variants.
O Recursive ensemble mutagenesis is an algorithm for protein engineering (protein Smutagenesis) developed to produce diverse populations ofphenotypically related mutants whose members differ in amino acid sequence. This method uses a feedback mechanism to control successive rounds of combinatorial cassette mutagenesis.
Recursive ensemble mutagenesis is described in Arkin, A.P. and Youvan, D.C., PNAS, USA, 89:7811-7815, 1992, the disclosure of which is incorporated herein by reference in its entirety.
In some embodiments, variants are created using exponential ensemble mutagenesis. Exponential ensemble mutagenesis is a process for generating combinatorial libraries with a high percentage of unique and functional mutants, wherein small groups of residues are randomized in parallel to identify, at each altered position, amino acids which lead to functional proteins. Exponential ensemble mutagenesis is described in Delegrave, S. and Youvan, Biotechnology Research, 11:1548-1552, 1993, the disclosure of which incorporated herein by reference in its entirety. Random and site-directed mutagenesis are described in Arnold, Current Opinion in Biotechnology, 4:450-455, 1993, the disclosure of which is incorporated herein by reference in its entirety.
In some embodiments, the variants are created using shuffling procedures wherein portions of a plurality of nucleic acids which encode distinct polypeptides are fused together to create chimeric nucleic acid sequences which encode chimeric polypeptides as described in U.S. Patent No. 5,965,408, filed July 9, 1996, entitled, "Method of DNA Reassembly by Interrupting Synthesis", and U.S. Patent No.
I 69
O
O
O 5,939,250, filed May 22, 1996, entitled, "Production of Enzymes Having Desired Z Activities by Mutagenesis", both of which are incorporated herein by reference.
The variants of the polypeptides of Group B amino acid sequences may be variants in which one or more of the amino acid residues of the polypeptides of the Group B amino acid sequences are substituted with a conserved or non-conserved 00 n amino acid residue (preferably a conserved amino acid residue) and such substituted N1 amino acid residue may or may not be one encoded by the genetic code.
OConservative substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Typically seen as conservative substitutions are the following replacements: replacements of an aliphatic amino acid such as Alanine, Valine, Leucine and Isoleucine with another aliphatic amino acid; replacement of a Serine with a Threonine or vice versa; replacement of an acidic residue such as Aspartic acid and Glutamic acid with another acidic residue; replacement of a residue bearing an amide group, such as Asparagine and Glutamine, with another residue bearing an amide group; exchange of a basic residue such as Lysine and Arginine with another basic residue; and replacement of an aromatic residue such as Phenylalanine, Tyrosine with another aromatic residue.
Other variants are those in which one or more of the amino acid residues of the polypeptides of the Group B amino acid sequences includes a substituent group.
Still other variants are those in which the polypeptide is associated with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol).
Additional variants are those in which additional amino acids are fused to the polypeptide, such as a leader sequence, a secretory sequence, a proprotein sequence or a sequence which facilitates purification, enrichment, or stabilization of the polypeptide.
SIn some embodiments, the fragments, derivatives and analogs retain the Z same biological function or activity as the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto. In other embodiments, the fragment, derivative, or analog includes a proprotein, such that the fragment, derivative, or analog can be activated by cleavage of the proprotein portion to produce 00 an active polypeptide.
rC Another aspect of the invention is polypeptides or fragments thereof which 0have at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or more than about 95% homology to one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or a fragment comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. Homology may be determined using any of the programs described above which aligns the polypeptides or fragments being compared and determines the extent of amino acid identity or similarity between them. It will be appreciated that amino acid "homology" includes conservative amino acid substitutions such as those described above.
The polypeptides or fragments having homology to one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or a fragment comprising at least about 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof may be obtained by isolating the nucleic acids encoding them using the techniques described above.
Alternatively, the homologous polypeptides or fragments may be obtained through biochemical enrichment or purification procedures. The sequence of potentially homologous polypeptides or fragments may be determined by proteolytic digestion, gel electrophoresis and/or microsequencing. The sequence of the prospective homologous polypeptide or fragment can be compared to one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or a fragment comprising at least about 5, 10, 15, 20, 25, 30, 35, 40, 50, S100, or 150 consecutive amino acids thereof using any of the programs described Z above.
Another aspect of the invention is an assay for identifying fragments or variants of Group B amino acid sequences, and sequences substantially identical F thereto, which retain the enzymatic function of the polypeptides of Group B amino 00 In acid sequences, and sequences substantially identical thereto. For example the C fragments or variants of said polypeptides, may be used to catalyze biochemical Sreactions, which indicate that the fragment or variant retains the enzymatic activity of C the polypeptides in the Group B amino acid sequences.
The assay for determining if fragments of variants retain the enzymatic activity of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto includes the steps of: contacting the polypeptide fragment or variant with a substrate molecule under conditions which allow the polypeptide fragment or variant to function, and detecting either a decrease in the level of substrate or an increase in the level of the specific reaction product of the reaction between the polypeptide and substrate.
The polypeptides of Group B amino acid sequences, and sequences substantially identical thereto or fragments comprising at least 5, 10, 15, 20,25, 30, 50, 75, 100, or 150 consecutive amino acids thereof may be used in a variety of applications. For example, the polypeptides or fragments thereof may be used to catalyze biochemical reactions. In accordance with one aspect of the invention, there is provided a process for utilizing the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto or polynucleotides encoding such polypeptides for hydrolyzing glycosidic linkages. In such procedures, a substance containing a glycosidic linkage a starch) is contacted with one of the polypeptides of Group B amino acid sequences, or sequences substantially identical thereto under conditions which facilitate the hydrolysis of the glycosidic linkage.
The polypeptides of Group B amino acid sequences, and sequences substantially identical thereto or fragments comprising at least 5, 10, 15, 20, 25, 30, 0 40, 50, 75, 100, or 150 consecutive amino acids thereof, may also be used to generate Z antibodies which bind specifically to the polypeptides or fragments. The resulting antibodies may be used in immunoaffinity chromatography procedures to isolate or purify the polypeptide or to determine whether the polypeptide is present in a n biological sample. In such procedures, a protein preparation, such as an extract, or a 00 0 0 biological sample is contacted with an antibody capable of specifically binding to one c of the polypeptides of Group B amino acid sequences, and sequences substantially I identical thereto, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 0 100, or 150 consecutive amino acids thereof.
In immunoaffinity procedures, the antibody is attached to a solid support, such as a bead or other column matrix. The protein preparation is placed in contact with the antibody under conditions in which the antibody specifically binds to one of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragment thereof. After a wash to remove non-specifically bound proteins, the specifically bound polypeptides are eluted.
The ability of proteins in a biological sample to bind to the antibody may be determined using any of a variety of procedures familiar to those skilled in the art.
For example, binding may be determined by labeling the antibody with a detectable label such as a fluorescent agent, an enzymatic label, or a radioisotope. Alternatively, binding of the antibody to the sample may be detected using a secondary antibody having such a detectable label thereon. Particular assays include ELISA assays, sandwich assays, radioimmunoassays, and Western Blots.
Polyclonal antibodies generated against the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof can be obtained by direct injection of the polypeptides into an animal or by administering the polypeptides to an animal, for example, a nonhuman. The antibody so obtained will then bind the polypeptide itself. In this manner, even a sequence encoding only a fragment of the polypeptide can be used to generate antibodies which o may bind to the whole native polypeptide. Such antibodies can then be used to isolate Z the polypeptide from cells expressing that polypeptide.
For preparation of monoclonal antibodies, any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler and Milstein, Nature, 256:495-497, 1975, the 00 tn disclosure of which is incorporated herein by reference), the trioma technique, the CN human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72, 1983, Sthe disclosure of which is incorporated herein by reference), and the EBV-hybridoma C1 technique (Cole, et al., 1985, in Monoclonal Antibodies and Cancer Therapy, Alan R.
Liss, Inc., pp. 77-96, the disclosure of which is incorporated herein by reference).
Techniques described for the production of single chain antibodies (U.S.
Patent No. 4,946,778, the disclosure of which is incorporated.herein by reference) can be adapted to produce single chain antibodies to the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof. Alternatively, transgenic mice may be used to express humanized antibodies to these polypeptides or fragments thereof.
Antibodies generated against the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments comprising at least 5, 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, or 150 consecutive amino acids thereof may be used in screening for similar polypeptides from other organisms and samples.
In such techniques, polypeptides from the organism are contacted with the antibody and those polypeptides which specifically bind the antibody are detected. Any of the procedures described above may be used to detect antibody binding. One such screening assay is described in "Methods for Measuring Cellulase Activities", Methods in Enzynology, Vol 160, pp. 87-116, which is hereby incorporated by reference in its entirety.
As used herein the term "nucleic acid sequence as set forth in SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 43, 45 and 47" O encompasses the nucleotide sequences of Group A nucleic acid sequences, and Z sequences substantially identical thereto, as well as sequences homologous to Group A nucleic acid sequences, and fragments thereof and sequences complementary to all of the preceding sequences. The fragments include portions of SEQ ID NOS: 3, 5, 7, 9, S11, 13, 15, 17, 19, 21,23, 25, 27, 29, 31, 33, 35, 37, 43, 45 and 47 comprising at least 00 10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 150, 200, 300, 400, or 500 consecutive a nucleotides of Group A nucleic acid sequences, and sequences substantially identical I0 thereto. Homologous sequences and fragments of Group A nucleic acid sequences, and Ssequences substantially identical thereto, refer to a sequence having at least 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55% or 50% homology to these sequences. Homology may be determined using any of the computer programs and parameters described herein, including FASTA version 3.0t78 with the default parameters. Homologous sequences also include RNA sequences in which uridines replace the thymines in the nucleic acid sequences as set forth in the Group A nucleic acid sequences. The homologous sequences may be obtained using any of the procedures described herein or may result from the correction of a sequencing error. It will be appreciated that the nucleic acid sequences as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, can be represented in the traditional single character format (See the inside back cover of Stryer, Lubert.
Biochemiistry, 3rd Ed., W. H Freeman Co., New York.) or iiahy other format which records the identity of the nucleotides in a sequence.
As used herein the term "a polypeptide sequence as set forth in SEQ ID NOS: 4, 6, 8, 10, 12, 14, 16, 18, 20,22,24,26, 28, 30, 32, 34, 36, 38, 44,46 and 48" encompasses the polypeptide sequence of Group B amino acid sequences, and sequences substantially identical thereto, which are encoded by a sequence as set forth in SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37,43, and 47, polypeptide sequences homologous to the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto, or fragments of any of the preceding sequences. Homologous polypeptide sequences refer to a polypeptide sequence having at least 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 0 55% or 50% homology to one of the polypeptide sequences of the Group B amino O acid sequences. Homology may be determined using any of the computer programs and parameters described herein, including FASTA version 3.0t78 with the default parameters or with any modified parameters. The homologous sequences may be
OO
00 obtained using any of the procedures described herein or may result from the correction Sof a sequencing error. The polypeptide fragments comprise at least 5, 10, 15, 20, 25, 40, 50, 75, 100, or 150 consecutive amino acids of the polypeptides of Group B amino acid sequences, and sequences substantially identical thereto. It will be appreciated that the polypeptide codes as set forth in Group B amino acid sequences, and sequences substantially identical thereto, can be represented in the traditional single character format or three letter format (See the inside back cover of Stryer, Lubert.
Biochemistry, 3rd Ed., W. H Freeman Co., New York.) or in any other format which relates the identity of the polypeptides in a sequence.
It will be appreciated by those skilled in the art that a nucleic acid sequence as set forth in SEQ ID NOS: 3, 5, 7, 9, 11, 13, 15, 17, 19, 21,23, 25, 27, 29, 31, 33, 37, 43, 45 and 47, and a polypeptide sequence as set forth in SEQ ID NOS: 4, 6, 8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 44, 46 and 48 can be stored, recorded, and manipulated on any medium which can be read and accessed by a computer. As used herein, the words "recorded" and "stored" refer to a process for storing information on a computer medium. A skilled artisan can readily adopt any of the presently known methods for recording information on a computer readable medium to generate manufactures comprising one or more of the nucleic acid sequences as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, one or more of the polypeptide sequences as set forth in Group B amino acid sequences, and sequences substantially identical thereto. Another aspect of the invention is a computer readable medium having recorded thereon at least 2, 5, 10, 15, or 20 nucleic acid sequences as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto.
Another aspect of the invention is a computer readable medium having recorded thereon one or more of the nucleic acid sequences as set forth in Group A O nucleic acid sequences, and sequences substantially identical thereto. Another aspect Z of the invention is a computer readable medium having recorded thereon one or more of the polypeptide sequences as set forth in Group B amino acid sequences, and sequences substantially identical thereto. Another aspect of the invention is a computer t readable medium having recorded thereon at least 2, 5, 10, 15, or 20 of the sequences as 00 set forth above.
¢1Computer readable media include magnetically readable media, optically Sreadable media, electronically readable media and magnetic/optical media. For Sexample, the computer readable media may be a hard disk, a floppy disk, a magnetic tape, CD-ROM, Digital Versatile Disk (DVD), Random Access Memory (RAM), or Read Only Memory (ROM) as well as other types of other media known to those skilled in the art.
Embodiments of the invention include systems internet based systems), particularly computer systems which store and manipulate the sequence information described herein. One example of a computer system 100 is illustrated in block diagram form in Figure 1. As used herein, "a computer system" refers to the hardware components, software components, and data storage components used to analyze a nucleotide sequence of a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in the Group B amino acid sequences. The computer system 100 typically includes a processor for processing, accessing and manipulating the sequence data. The processor 105 can be any well-known type of central processing unit, such as, for example, the Pentium III from Intel Corporation, or similar processor from Sun, Motorola, Compaq, AMD or International Business Machines.
Typically the computer system 100 is a general purpose system that comprises the processor 105 and one or more internal data storage components 110 for storing data, and one or more data retrieving devices for retrieving the data stored on the data storage components. A skilled artisan can readily appreciate that any one of the currently available computer systems are suitable.
>In one particular embodiment, the computer system 100 includes a Z processor 105 connected to a bus which is connected to a main memory 115 (preferably implemented as RAM) and one or more internal data storage devices 110, such as a hard drive and/or other computer readable media having data recorded t thereon. In some embodiments, the computer system 100 further includes one or 00 more data retrieving device 118 for reading the data stored on the internal data storage Vt) devices 110.
\O
The data retrieving device 118 may represent, for example, a floppy disk r, drive, a compact disk drive, a magnetic tape drive, or a modem capable of connection to a remote data storage system via the internet) etc. In some embodiments, the internal data storage device 110 is a removable computer readable medium such as a floppy disk, a compact disk, a magnetic tape, etc. containing control logic and/or data recorded thereon. The computer system 100 may advantageously include or be programmed by appropriate software for reading the control logic and/or the data from the data storage component once inserted in the data retrieving device.
The computer system 100 includes a display 120 which is used to display output to a computer user. It should also be noted that the computer system 100 can be linked to other computer systems 125a-c in a network or wide area network to provide centralized access to the computer system 100.
Software for accessing and processing the nucleotide sequences of a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, (such as search tools, compare tools, and modeling tools etc.) may reside in main memory 115 during execution.
In some embodiments, the computer system 100 may further comprise a sequence comparison algorithm for comparing a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences N 78
O
O
O substantially identical thereto, stored on a computer readable medium to a reference Z nucleotide or polypeptide sequence(s) stored on a computer readable medium. A "sequence comparison algorithm" refers to one or more programs which are implemented (locally or remotely) on the computer system 100 to compare a Snucleotide sequence with other nucleotide sequences and/or compounds stored within 00 a data storage means. For example, the sequence comparison algorithm may compare C the nucleotide sequences of a nucleic acid sequence as set forth in Group A nucleic I0 acid sequences, and sequences substantially identical thereto, or a polypeptide Ssequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, stored on a computer readable medium to reference sequences stored on a computer readable medium to identify homologies or structural motifs. Various sequence comparison programs identified elsewhere in this patent specification are particularly contemplated for use in this aspect of the invention. Protein and/or nucleic acid sequence homologies may be evaluated using any of the variety of sequence comparison algorithms and programs known in the art. Such algorithms and programs include, but are by no means limited to, TBLASTN, BLASTP, FASTA, TFASTA, and CLUSTALW (Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85(8):2444-2448, 1988; Altschul et al., J. Mol. Biol. 215(3):403-410, 1990; Thompson et al., Nucleic Acids Res. 22(2):4673-4680, 1994; Higgins et al., Methods Enzymol. 266:383-402, 1996; Altschul et al. J. Mol. Biol. 215(3):403-410 1990; Altschul et al., Nature Genetics 3:266-272, 1993).
Homology or identity is often measured using sequence analysis software Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin Biotechnology Center, 1710 University Avenue, Madison, WI 53705). Such software matches similar sequences by assigning degrees of homology to various deletions, substitutions and other modifications. The terms "homology" and "identity" in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are the same when compared and aligned for maximum correspondence over a comparison window or Odesignated region as measured using any number of sequence comparison algorithms Z or by manual alignment and visual inspection.
For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison r algorithm, test and reference sequences are entered into a computer, subsequence 00 coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent CK1 sequence identities for the test sequences relative to the reference sequence, based on the program parameters.
A "comparison window", as used herein, includes reference to a segment of any one of the number of contiguous positions selected from the group consisting of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequence for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, by the local homology algorithm of Smith Waterman, Adv. Appl. Math. 2:482, 1981, by the homology alignment algorithm of Needleman Wunsch, J. Mol. Biol 48:443, 1970, by the search for similarity method of person Lipman, Proc. Nat'. Acad. Sci. USA 85:2444, 1988, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection. Other algorithms for determining homology or identity include, for example, in addition to a BLAST program (Basic Local Alignment Search Tool at the National Center for Biological Information), ALIGN, AMAS (Analysis of Multiply Aligned Sequences), AMPS (Protein Multiple Sequence Alignment), ASSET (Aligned Segment Statistical Evaluation Tool), BANDS, BESTSCOR, BIOSCAN (Biological Sequence Comparative Analysis Node), BLIMPS (BLocks IMProved Searcher), FASTA, Intervals Points, BMB, CLUSTAL V, CLUSTAL W, CONSENSUS, O LCONSENSUS, WCONSENSUS, Smith-Waterman algorithm, DARWIN, Las Vegas Z algorithm, FNAT (Forced Nucleotide Alignment Tool), Framealign, Framesearch, DYNAMIC, FILTER, FSAP (Fristensky Sequence Analysis Package), GAP (Global Alignment Program), GENAL, GIBBS, GenQuest, ISSC (Sensitive Sequence Comparison), LALIGN (Local Sequence Alignment), LCP (Local Content Program), 00 MACAW (Multiple Alignment Construction Analysis Workbench), MAP mc (Multiple Alignment Program), MBLKP, MBLKN, PIMA (Pattern-Induced Multi- \0 sequence Alignment), SAGA (Sequence Alignment by Genetic Algorithm) and SWHAT-IF. Such alignment programs can also be used to screen genome databases to identify polynucleotide sequences having substantially identical sequences. A number of genome databases are available, for example, a substantial portion of the human genome is available as part of the Human Genome Sequencing Project Roach, http://weber.u.Washington.edu/-roach/human genome progress 2.html) (Gibbs, 1995). At least twenty-one other genomes have already been sequenced, including, for example, M. genitalium (Fraser et al., 1995), M. jannaschii (Bult et al., 1996), H.
influenzae (Fleischmann et al., 1995), E. coli (Blattner et al., 1997), and yeast (S.
cerevisiae) (Mewes et al., 1997), and D. melanogaster (Adams et al., 2000).
Significant progress has also been made in sequencing the genomes of model organism, such as mouse, C. elegans, and Arabadopsis sp. Several databases containing genomic information annotated with some functional information are maintained by different organization, and are accessible via the internet, for example, http://wwwtigr.org/tdb; http://www.genetics.wisc.edu; http://genomewww.stanford.edu/-ball; http://hiv-web.lanl.gov; http://www.ncbi.nlm.nih.gov; http://www.ebi.ac.uk; http://Pasteur.fr/other/biology; and http:// www.genome.wi.mit.edu.
One example of a useful algorithm is BLAST and BLAST 2.0 algorithms, which are described in Altschul et al., Nuc. Acids Res. 25:3389-3402, 1977, and Altschul et al., J. Mol. Biol. 215:403-410, 1990, respectively. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of Z length W in the query sequence, which either match or satisfy some positive-valued Sthreshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul et al., tt~ supra). These initial neighborhood word hits act as seeds for initiating searches to find 00 longer HSPs containing them. The word hits are extended in both directions along Cc, each sequence for as far as the cumulative alignment score can be increased.
Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength of 11, an expectation of M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectations of 10, and the BLOSUM62 scoring matrix (see Henikoff Henikoff, Proc. Natl. Acad. Sci.
USA 89:10915, 1989) alignments of 50, expectation of 10, M=5, N= and a comparison of both strands.
The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, Karlin Altschul, Proc. Natl. Acad. Sci. USA 90:5873, 1993). One measure of similarity provided by BLAST algorithm is the smallest sum probability which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a references sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001.
O In one embodiment, protein and nucleic acid sequence homologies are Z evaluated using the Basic Local Alignment Search Tool ("BLAST") In particular, five specific BLAST programs are used to perform the following task: t BLASTP and BLAST3 compare an amino acid query sequence C against a protein sequence database; M BLASTN compares a nucleotide query sequence against a u nucleotide sequence database; BLASTX compares the six-frame conceptual translation products of a query nucleotide sequence (both strands) against a protein sequence database; TBLASTN compares a query protein sequence against a nucleotide sequence database translated in all six reading frames (both strands); and TBLASTX compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database.
The BLAST programs identify homologous sequences by identifying similar segments, which are referred to herein as "high-scoring segment pairs," between a query amino or nucleic acid sequence and a test sequence which is preferably obtained from a protein or nucleic acid sequence database. High-scoring segment pairs are preferably identified aligned) by means of a scoring matrix, many of which are known in the art. Preferably, the scoring matrix used is the BLOSUM62 matrix (Gonnet et al., Science 256:1443-1445, 1992; Henikoff and Henikoff, Proteins 17:49-61, 1993). Less preferably, the PAM or PAM250 matrices may also be used (see, Schwartz and Dayhoff, eds., 1978, Matrices for Detecting Distance Relationships: Atlas ofProtein Sequence and Structure, Washington: ONational Biomedical Research Foundation). BLAST programs are accessible through Z the U.S. National Library of Medicine, at www.ncbi.nlm.nih.gov.
The parameters used with the above algorithms may be adapted depending on the sequence length and degree of homology studied. In some embodiments, the parameters may be the default parameters used by the algorithms in the absence of 00
O
Sinstructions from the user.
IND Figure 2 is a flow diagram illustrating one embodiment of a process 200 for comparing a new nucleotide or protein sequence with a database of sequences in order to determine the homology levels between the new sequence and the sequences in the database. The database of sequences can be a private database stored within the computer system 100, or a public database such as GENBANK that is available through the Internet.
The process 200 begins at a start state 201 and then moves to a state 202 wherein the new sequence to be compared is stored to a memory in a computer system 100. As discussed above, the memory could be any type of memory, including RAM or an internal storage device.
The process 200 then moves to a state 204 wherein a database of sequences is opened for analysis and comparison. The process 200 then moves to a state 206 wherein the first sequence stored in the database is read into a memory on the computer. A comparison is then performed at a state 210 to determine if the first sequence is the same as the second sequence. It is important to note that this step is not limited to performing an exact comparison between the new sequence and the first sequence in the database. Well-known methods are known to those of skill in the art for comparing two nucleotide or protein sequences, even if they are not identical. For example, gaps can be introduced into one sequence in order to raise the homology level between the two tested sequences. The parameters that control whether gaps or other features are introduced into a sequence during comparison are normally entered by the user of the computer system.
O Once a comparison of the two sequences has been performed at the state Z 210, a determination is made at a decision state 210 whether the two sequences are the same. Of course, the term "same" is not limited to sequences that are absolutely identical. Sequences that are within the homology parameters entered by the user will t be marked as "same" in the process 200.
00 Ifa determination is made that the two sequences are the same, the process 200 moves to a state 214 wherein the name of the sequence from the database is Sdisplayed to the user. This state notifies the user that the sequence with the displayed "1 name fulfills the homology constraints that were entered. Once the name of the stored sequence is displayed to the user, the process 200 moves to a decision state 218 wherein a determination is made whether more sequences exist in the database. If no more sequences exist in the database, then the process 200 terminates at an end state 220. However, if more sequences do exist in the database, then the process 200 moves to a state 224 wherein a pointer is moved to the next sequence in the database so that it can be compared to the new sequence. In this manner, the new sequence is aligned and compared with every sequence in the database.
It should be noted that if a determination had been made at the decision state 212 that the sequences were not homologous, then the process 200 would move immediately to the decision state 218 in order to determine if any other sequences were available in the database for comparison.
Accordingly, one aspect of the invention is a computer system comprising a processor, a data storage device having stored thereon a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, a data storage device having retrievably stored thereon reference nucleotide sequences or polypeptide sequences to be compared to a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, and a \O e sequence comparer for conducting the comparison. The sequence comparer may Z indicate a homology level between the sequences compared or identify structural O motifs in the above described nucleic acid code of Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in t Group B amino acid sequences, and sequences substantially identical thereto, or it may 00 identify structural motifs in sequences which are compared to these nucleic acid codes Sand polypeptide codes. In some embodiments, the data storage device may have INDstored thereon the sequences of at least 2, 5, 10, 15, 20, 25, 30 or40 or more of the nucleic acid sequences as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or the polypeptide sequences as set forth in Group B amino acid sequences, and sequences substantially identical thereto.
Another aspect of the invention is a method for determining the level of homology between a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, and a reference nucleotide sequence. The method including reading the nucleic acid code or the polypeptide code and the reference nucleotide or polypeptide sequence through the use of a computer program which determines homology levels and determining homology between the nucleic acid code or polypeptide code and the reference nucleotide or polypeptide sequence with the computer program. The computer program may be any of a number of computer programs for determining homology levels, including those specifically enumerated herein, BLAST2N with the default parameters or with any modified parameters). The method may be implemented using the computer systems described above. The method may also be performed by reading at least 2, 5, 10, 15, 20, 25, 30 or 40 or moreofthe above described nucleic acid sequences as set forth in the Group A nucleic acid sequences, or the polypeptide sequences as set forth in the Group B amino acid sequences through use of the computer program and determining homology between the nucleic acid codes or polypeptide codes and reference nucleotide sequences or polypeptide sequences.
o Figure 3 is a flow diagram illustrating one embodiment of a process 250 in a computer for determining whether two sequences are homologous. The process 250 begins at a start state 252 and then moves to a state 254 wherein a first sequence to be compared is stored to a memory. The second sequence to be compared is then stored t to a memory at a state 256. The process 250 then moves to a state 260 wherein the 00 first character in the first sequence is read and then to a state 262 wherein the first Cc character of the second sequence is read. It should be understood that if the sequence IND is a nucleotide sequence, then the character would normally be either A, T, C, G or U.
If the sequence is a protein sequence, then it is preferably in the single letter amino acid code so that the first and sequence sequences can be easily compared.
A determination is then made at a decision state 264 whether the two characters are the same. If they are the same, then the process 250 moves to a state 268 wherein the next characters in the first and second sequences are read. A determination is then made whether the next characters are the same. If they are, then the process 250 continues this loop until two characters are not the same. If a determination is made that the next two characters are not the same, the process 250 moves to a decision state 274 to determine whether there are any more characters either sequence to read.
If there are not any more characters to read, then the process 250 moves to a state 276 wherein the level of homology between the first and second sequences is displayed to the user. The level of homology is determined by calculating the proportion of characters between the sequences that were the same out of the total number of sequences in the first sequence. Thus, if every character in a first 100 nucleotide sequence aligned with a every character in a second sequence, the homology level would be 100%.
Alternatively, the computer program may be a computer program which compares the nucleotide sequences of a nucleic acid sequence as set forth in the invention, to one or more reference nucleotide sequences in order to determine whether the nucleic acid code of Group A nucleic acid sequences, and sequences Osubstantially identical thereto, differs from a reference nucleic acid sequence at one or Z more positions. Optionally such a program records the length and identity of inserted, deleted or substituted nucleotides with respect to the sequence of either the reference polynucleotide or a nucleic acid sequence as set forth in Group A nucleic acid t sequences, and sequences substantially identical thereto. In one embodiment, the 00 computer program may be a program which determines whether a nucleic acid Cc sequence as set forth in Group A nucleic acid sequences, and sequences substantially IDidentical thereto, contains a single nucleotide polymorphism (SNP) with respect to a reference nucleotide sequence.
Accordingly, another aspect of the invention is a method for determining whether a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, differs at one or more nucleotides from a reference nucleotide sequence comprising the steps of reading the nucleic acid code and the reference nucleotide sequence through use of a computer program which identifies differences between nucleic acid sequences and identifying differences between the nucleic acid code and the reference nucleotide sequence with the computer program. In some embodiments, the computer program is a program which identifies single nucleotide polymorphisms. The method may be implemented by the computer systems described above and the method illustrated in Figure 3. The method may also be performed by reading at least 2, 5, 10, 15, 20,25, 30, or 40 or more of the nucleic acid sequences as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, and the reference nucleotide sequences through the use of the computer program and identifying differences between the nucleic acid codes and the reference nucleotide sequences with the computer program.
In other embodiments the computer based system may further comprise an identifier for identifying features within a nucleic acid sequence as set forth in the Group A nucleic acid sequences or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto.
o An "identifier" refers to one or more programs which identifies certain Z features within a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical t thereto. In one embodiment, the identifier may comprise a program which identifies 00 an open reading frame in a nucleic acid sequence as set forth in Group A nucleic acid Cc sequences, and sequences substantially identical thereto.
IND
Figure 5 is a flow diagram illustrating one embodiment of an identifier process 300 for detecting the presence of a feature in a sequence. The process 300 begins at a start state 302 and then moves to a state 304 wherein a first sequence that is to be checked for features is stored to a memory 115 in the computer system 100.
The process 300 then moves to a state 306 wherein a database of sequence features is opened. Such a database would include a list of each feature's attributes along with the name of the feature. For example, a feature name could be "Initiation Codon" and the attribute would be "ATG". Another example would be the feature name "TAATAA Box" and the feature attribute would be "TAATAA". An example of such a database is produced by the University of Wisconsin Genetics Computer Group (www.gcg.com). Alternatively, the features may be structural polypeptide motifs such as alpha helices, beta sheets, or functional polypeptide motifs such as enzymatic active sites, helix-turn-helix motifs or other motifs known to those skilled in the art.
Once the database of features is opened at the state 306, the process 300 moves to a state 308 wherein the first feature is read from the database. A comparison of the attribute of the first feature with the first sequence is then made at a state 310. A determination is then made at a decision state 316 whether the attribute of the feature was found in the first sequence. If the attribute was found, then the process 300 moves to a state 318 wherein the name of the found feature is displayed to the user.
The process 300 then moves to a decision state 320 wherein a Z determination is made whether move features exist in the database. If no more features do exist, then the process 300 terminates at an end state 324. However, if more features do exist in the database, then the process 300 reads the next sequence t' feature at a state 326 and loops back to the state 310 wherein the attribute of the next 00 feature is compared against the first sequence.
r It should be noted, that if the feature attribute is not found in the first sequence at the decision state 316, the process 300 moves directly to the decision state 320 in order to determine if any more features exist in the database.
Accordingly, another aspect of the invention is a method of identifying a feature within a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, comprising reading the nucleic acid code(s) or polypeptide code(s) through the use of a computer program which identifies features therein and identifying features within the nucleic acid code(s) with the computer program. In one embodiment, computer program comprises a computer program which identifies open reading frames. The method may be performed by reading a single sequence or at least 2, 5, 10, 15, 20, or 40 of the nucleic acid sequences as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or the polypeptide sequences as set forth in Group B amino acid sequences, and sequences substantially identical thereto, through the use of the computer program and identifying features within the nucleic acid codes or polypeptide codes with the computer program.
A nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in Group B amino acid sequences, and sequences substantially identical thereto, may be stored and manipulated in a variety of data processor programs in a variety of formats.
For example, a nucleic acid sequence as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or a polypeptide sequence as set forth in O Group B amino acid sequences, and sequences substantially identical thereto, may be Z stored as text in a word processing file, such as MicrosoftWORD or WORDPERFECT or as an ASCII file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE. In addition, many computer programs and l databases may be used as sequence comparison algorithms, identifiers, or sources of 0 0 reference nucleotide sequences or polypeptide sequences to be compared to a nucleic
C
c acid sequence as set forth in Group A nucleic acid sequences, and sequences 0O substantially identical thereto, or a polypeptide sequence as set forth in Group B amino Sacid sequences, and sequences substantially identical thereto. The following list is intended not to limit the invention but to provide guidance to programs and databases which are useful with the nucleic acid sequences as set forth in Group A nucleic acid sequences, and sequences substantially identical thereto, or the polypeptide sequences as set forth in Group B amino acid sequences, and sequences substantially identical thereto.
The programs and databases which may be used include, but are not limited to: MacPatter (EMBL), DiscoveryBase (Molecular Applications Group), GeneMine (Molecular Applications Group), Look (Molecular Applications Group), MacLook (Molecular Applications Group), BLAST and BLAST2 (NCBI), BLASTN and BLASTX (Altschul et al, J. Mol. Biol. 215: 403, 1990), FASTA (Pearson and Lipman, Proc. Natl. Acad. Sci. USA, 85: 2444, 1988), FASTDB (Brutlag et al.
Comp. App. Biosci. 6:237-245, 1990), Catalyst (Molecular Simulations Inc.), Catalyst/SHAPE (Molecular Simulations Inc.), Cerius 2 .DBAccess (Molecular Simulations Inc.), HypoGen (Molecular Simulations Inc.), Insight II, (Molecular Simulations Inc.), Discover (Molecular Simulations Inc.), CHARMm (Molecular Simulations Inc.), Felix (Molecular Simulations Inc.), DelPhi, (Molecular Simulations Inc.), QuanteMM, (Molecular Simulations Inc.), Homology (Molecular Simulations Inc.), Modeler (Molecular Simulations Inc.), ISIS (Molecular Simulations Inc.), Quanta/Protein Design (Molecular Simulations Inc.), WebLab (Molecular Simulations Inc.), WebLab Diversity Explorer (Molecular Simulations Inc.), Gene Explorer (Molecular Simulations Inc.), SeqFold (Molecular Simulations Inc.), the O MDL Available Chemicals Directory database, the MDL Drug Data Report data base, Z the Comprehensive Medicinal Chemistry database, Derwent's World Drug Index database, the BioByteMasterFile database, the Genbank database, and the Genseqn database. Many other programs and data bases would be apparent to one of skill in jI the art given the present disclosure.
00 Vt Motifs which may be detected using the above programs include sequences N encoding leucine zippers, helix-turn-helix motifs, glycosylation sites, ubiquitination Ssites, alpha helices, and beta sheets, signal sequences encoding signal peptides which direct the secretion of the encoded proteins, sequences implicated in transcription regulation such as homeoboxes, acidic stretches, enzymatic active sites, substrate binding sites, and enzymatic cleavage sites.
The present invention exploits the unique catalytic properties of enzymes.
Whereas the use ofbiocatalysts purified or crude enzymes, non-living or living cells) in chemical transformations normally requires the identification of a particular biocatalyst that reacts with a specific starting compound, the present invention uses selected biocatalysts and reaction conditions that are specific for functional groups that are present in many starting compounds, such as small molecules. Each biocatalyst is specific for one functional group, or several related functional groups, and can react with many starting compounds containing this functional group.
The biocatalytic reactions produce a population of derivatives from a single starting compound. These derivatives can be subjected to another round of biocatalytic reactions to produce a second population of derivative compounds.
Thousands of variations of the original small molecule or compound can be produced with each iteration of biocatalytic derivatization.
Enzymes react at specific sites of a starting compound without affecting the rest of the molecule, a process which is very difficult to achieve using traditional chemical methods. This high degree of biocatalytic specificity provides the means to identify a single active compound within the library. The library is characterized by the series of biocatalytic reactions used to produce it, a so called "biosynthetic 0 history". Screening the library for biological activities and tracing the biosynthetic Z history identifies the specific reaction sequence producing the active compound. The reaction sequence is repeated and the structure of the synthesized compound determined. This mode of identification, unlike other synthesis and screening t' approaches, does not require immobilization technologies, and compounds can be 00 synthesized and tested free in solution using virtually any type of screening assay. It is important to note, that the high degree of specificity of enzyme reactions on IND functional groups allows for the "tracking" of specific enzymatic reactions that make Sup the biocatalytically produced library.
Many of the procedural steps are performed using robotic automation enabling the execution of many thousands of biocatalytic reactions and screening assays per day as well as ensuring a high level of accuracy and reproducibility. As a result, a library of derivative compounds can be produced in a matter of weeks which would take years to produce using current chemical methods.
In a particular embodiment, the invention provides a method for modifying small molecules, comprising contacting a polypeptide encoded by a polynucleotide described herein or enzymatically active fragments thereof with a small molecule to produce a modified small molecule. A library of modified small molecules is tested to determine if a modified small molecule is present within the library which exhibits a desired activity. A specific biocatalytic reaction which produces the modified small molecule of desired activity is identified by systematically eliminating each of the biocatalytic reactions used to produce a portion of the library, and then testing the small molecules produced in the portion of the library for the presence or absence of the modified small molecule with the desired activity. The specific biocatalytic reactions which produce the modified small molecule of desired activity is optionally repeated. The biocatalytic reactions are conducted with a group ofbiocatalysts that react with distinct structural moieties found within the structure of a small molecule, each biocatalyst is specific for one structural moiety or a group of related structural moieties; and each biocatalyst reacts with many different small molecules which contain the distinct structural moiety.
IO 93
O
O
o The invention will be further described with reference to the following Z examples; however, it is to be understood that the invention is not limited to such examples.
EXAMPLES
00 SExample 1 CSite-Saturation Mutagenesis
O
C1 To accomplish site-saturation mutagenesis every residue (317) of a dehalogenase enzyme (SEQ ID NO:2) encoded by SEQ ID NO: 1 was converted into all 20 amino acids by site directed mutagenesis using 32-fold degenerate oligonucleotide primers, as follows: A culture of the dehalogenase expression construct was grown and a preparation of the plasmid was made.
Primers were made to randomize each codon they have the common structure X 2 0NN(G/T)X 2 0 wherein X 20 represents the 20 nucleotides of the nucleic acid sequence of SEQ ID NO:1 flanking the codon to by changed.
A reaction mix of 25 ptl was prepared containing -50 ng of plasmid template, 125 ng of each primer, IX native Pfu buffer, 200 pM each dNTP and 2.5 U native Pfu DNA polymerase.
The reaction was cycled in a Robo96 Gradient Cycler as follows: Initial denaturation at 95 0 C for 1 min; cycles of 95 0 C for 45 sec, 53°C for 1 min and 72 0 C for 11 min; and Final elongation step of 72 0 C for 10 min.
The reaction mix was digested with 10 U of Dpnlat 37 0 C for 1 hour to digest the methylated template DNA.
O Two pl of the reaction mix were used to transform 50 il of XL1-Blue Z MRF' cells and the entire transformation mix was plated on a large LB-Amp-Met plate yielding 200-1000 colonies.
Individual colonies were toothpicked into the wells of 384-well microtiter plates containing LB-Amp-IPTG and grown overnight.
n The clones on these plates were assayed the following day.
O
Example 2 Dehalogenase Thermal Stability This invention provides that a desirable property to be generated by directed evolution is exemplified in a limiting fashion by an improved residual activity an enzymatic activity, an immunoreactivity, an antibiotic acivity, etc.) of a molecule upon subjection to altered environment, including what may be considered a harsh enviroment, for a specified time. Such a harsh environment may comprise any combination of the following (iteratively or not, and in any order or permutation): an elevated temperature (including a temperature that may cause denaturation of a working enzyme), a decreased temperature, an elevated salinity, a decreased salinity, an elevated pH, a decreased pH, an elevated pressure, a decreassed pressure, and an change in exposure to a radiation source (including uv radiation, visible light, as well as the entire electromagnetic spectrum).
The following example shows an application of directed evolution to evolve the ability of an enzyme to regain or retain activity upon exposure to an elevated temperature.
Every residue (317) of a dehalogenase enzyme was converted into all amino acids by site directed mutagenesis using 32-fold degenerate oligonucleotide primers, as described above. The screening procedure was as follows:
O
SOvernight cultures in 384-well plates were centrifuged and the media removed. To each well was added 0.06 mL 1 mM Tris/S0 4 2 pH 7.8.
A robot made 2 assay plates from each parent growth plate consisting of 0.02 mL cell suspension.
00 C One assay plate was placed at room temperature and the other at elevated IN temperature (initial screen used 55 0 C) for a period of time (initially 30 minutes).
C After the prescribed time 0.08 mL room temperature substrate (TCP saturated 1 mM Tris/S0 4 2 pH 7.8 with 1.5 mM NaN 3 and 0.1 mM bromothymol blue) was added to each well. TCP trichloropropane.
Measurements at 620 nm were taken at various time points to generate a progress curve for each well.
Data were analyzed and the kinetics of the cells heated to those not heated were compared. Each plate contained 1-2 columns (24 wells) ofun-mutated 20F12 controls.
Wells that appeared to have improved stability were regrown and tested under the same conditions.
Following this procedure clones having mutations that conferred increased thermal stability on the enzyme were sequenced to determine the exact amino acid changes at each position that were specifically responsible for the improvement.
Mutants having a nucleic acid sequence as set forth in SEQ ID NO:5 and 7 and polypeptide sequences as set forth in SEQ ID NO:6 and 8, respectively, were identified. The thermal mutant at position G182V (SEQ ID NO:6) can also be a glutamate with similar increased thermal stability. Similarly, the P302A mutation could be changed to leucine serine lysine or arginine These variants (as well as those below) are encompassed by the present invention.
0 Z Following this procedure nine single site mutations appeared to confer increased thermal stability. Sequence analysis showed that the following changes were beneficial: 00 D89G; F91S; T159L; G182Q, G182V; I220L; N238T; W251Y; P302A, 00 t P302L, P302S, P302K; P302R/S306R. Only two sites (189 and 302) had more than ,1 one substitution. The first 5 on the list were combined (using G189Q) into a single Sgene.
Thermal stability was assessed by incubating the enzyme at the elevated temperature (55 0 C and 80 0 C) for some period of time and activity assay at 30 0
C.
Initial rates were plotted vs. time at the higher temperature. The enzyme was in mM Tris/S0 4 pH 7.8 for both the incubation and the assay. Product (C1) was detected by a standard method using Fe(N0 3 3 and HgSCN. The dehalogenase of SEQ ID NO:2 was used as the defacto wild type. The apparent half-life was calculated by fitting the data to an exponential decay function.
While the invention has been described in detail with reference to certain preferred embodiments thereof, it will be understood that modifications and variations are within the spirit and scope of that which-is described and claimiiled.

Claims (7)

  1. 2. A vector comprising a nucleic acid according to claim 1. C<
  2. 3. A haloalkane dchalogenase or fragment thereof encoded by a nucleic acid according to claim 1.
  3. 4. A haloalkane dehalogenase comprising: a sequence shown in SEQ ID NO: 44; a sequence that has at least about 50% homology to the sequence shown in SEQ ID NO: 44; or a fragment of a sequence shown in SEQ ID NO:44. A haloalkane dehalogenase according to any one of the preceding claims, substantially as described herein.
  4. 6. A host cell comprising a nucleic acid or dehalogenase according to any one of the preceding claims.
  5. 7. An antibody for binding to a dehalogenase according to any one of the preceding claims.
  6. 8. A computer system comprising a processor, a data storage device having stored thereon a sequence shown in SEQ ID NO:43 or 44 and a sequence comparison algorithm for comparing the sequence stored on the data storage device.
  7. 9. Use of a dehalogenase according to any one of the preceding claims for hydrolysing a carbon-halogen linkage.
AU2006235875A 2000-12-01 2006-11-01 Enzymes having dehalogenase activity and methods of use thereof Ceased AU2006235875B8 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2006235875A AU2006235875B8 (en) 2000-12-01 2006-11-01 Enzymes having dehalogenase activity and methods of use thereof
AU2011201053A AU2011201053B2 (en) 2000-12-01 2011-03-09 Enzymes having dehalogenase activity and methods of use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/250,897 2000-12-01
AU2001297671A AU2001297671A1 (en) 2000-12-01 2001-11-30 Enzymes having dehalogenase activity and methods of use thereof
AU2006235875A AU2006235875B8 (en) 2000-12-01 2006-11-01 Enzymes having dehalogenase activity and methods of use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001297671A Division AU2001297671A1 (en) 2000-12-01 2001-11-30 Enzymes having dehalogenase activity and methods of use thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2011201053A Division AU2011201053B2 (en) 2000-12-01 2011-03-09 Enzymes having dehalogenase activity and methods of use thereof

Publications (3)

Publication Number Publication Date
AU2006235875A1 true AU2006235875A1 (en) 2006-11-23
AU2006235875B2 AU2006235875B2 (en) 2010-12-16
AU2006235875B8 AU2006235875B8 (en) 2011-04-14

Family

ID=43806604

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2006235875A Ceased AU2006235875B8 (en) 2000-12-01 2006-11-01 Enzymes having dehalogenase activity and methods of use thereof
AU2011201053A Ceased AU2011201053B2 (en) 2000-12-01 2011-03-09 Enzymes having dehalogenase activity and methods of use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2011201053A Ceased AU2011201053B2 (en) 2000-12-01 2011-03-09 Enzymes having dehalogenase activity and methods of use thereof

Country Status (1)

Country Link
AU (2) AU2006235875B8 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL131209A0 (en) * 1997-02-13 2001-01-28 Dow Chemical Co Recombinant haloaliphatic dehalogenases
EP1319068A2 (en) * 2000-09-15 2003-06-18 Diversa Corporation Combinatorial screening of mixed populations of organisms

Also Published As

Publication number Publication date
AU2011201053B2 (en) 2013-05-16
AU2006235875B2 (en) 2010-12-16
AU2011201053A1 (en) 2011-03-31
AU2006235875B8 (en) 2011-04-14

Similar Documents

Publication Publication Date Title
US9453211B2 (en) Dehalogenases, nucleic acids encoding them and methods for making and using them
US7422876B2 (en) Methods for generating cellulases
US20080227132A1 (en) Hydrolase Enzymes and Their Use in Kinetic Resolution
US20050202494A1 (en) Catalases
US20050221364A1 (en) Enzymes having alpha-galactosidase activity and methods of use thereof
AU2006235875B2 (en) Enzymes having dehalogenase activity and methods of use thereof
US7288400B2 (en) Nucleic acids encoding esterases and methods of making and using them
US20020137185A1 (en) Enzymes having amidase activity and methods of use thereof
AU2001297671A1 (en) Enzymes having dehalogenase activity and methods of use thereof
US20020120118A1 (en) Enzymes having endoglucanase activity and methods of use thereof

Legal Events

Date Code Title Description
TC Change of applicant's name (sec. 104)

Owner name: VERENIUM CORPORATION

Free format text: FORMER NAME: DIVERSA CORPORATION

FGA Letters patent sealed or granted (standard patent)
TH Corrigenda

Free format text: IN VOL 24, NO 50, PAGE(S) 5882 UNDER THE HEADING APPLICATIONS ACCEPTED - NAME INDEX UNDER THE NAME VERENIUM CORPORATION, APPLICATION NO. 2006235875, UNDER INID (72) CORRECT THE CO-INVENTOR TO ROBERTSON, DAN E.

MK14 Patent ceased section 143(a) (annual fees not paid) or expired