AU2006203057B2 - Thermostatic mixing valve - Google Patents

Thermostatic mixing valve Download PDF

Info

Publication number
AU2006203057B2
AU2006203057B2 AU2006203057A AU2006203057A AU2006203057B2 AU 2006203057 B2 AU2006203057 B2 AU 2006203057B2 AU 2006203057 A AU2006203057 A AU 2006203057A AU 2006203057 A AU2006203057 A AU 2006203057A AU 2006203057 B2 AU2006203057 B2 AU 2006203057B2
Authority
AU
Australia
Prior art keywords
fluid
piston
flow
mixing chamber
thermostatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2006203057A
Other versions
AU2006203057A1 (en
Inventor
Tony Mark Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reliance Worldwide Corp Australia Pty Ltd
Original Assignee
Reliance Worldwide Corp Australia Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2005903830A external-priority patent/AU2005903830A0/en
Application filed by Reliance Worldwide Corp Australia Pty Ltd filed Critical Reliance Worldwide Corp Australia Pty Ltd
Priority to AU2006203057A priority Critical patent/AU2006203057B2/en
Publication of AU2006203057A1 publication Critical patent/AU2006203057A1/en
Application granted granted Critical
Publication of AU2006203057B2 publication Critical patent/AU2006203057B2/en
Assigned to RELIANCE WORLDWIDE CORPORATION (AUST.) PTY. LTD. reassignment RELIANCE WORLDWIDE CORPORATION (AUST.) PTY. LTD. Request to Amend Deed and Register Assignors: GSA INDUSTRIES (AUST.) PTY LTD
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Multiple-Way Valves (AREA)

Description

AUSTRALIA Patents Act 1990 ORIGINAL COMPLETE SPECIFICATION STANDARD PATENT Invention Title: THERMOSTATIC MIXING VALVE Applicant: GSA Industries (Aust.) Pty. Ltd. The following statement is a full description of this invention, including the best method of performing it known to me: 1 2 THERMOSTATIC MIXING VALVE Field of the Invention 5 The present invention relates to a thermostatic mixing valve. Background of the Invention Thermostatic mixing valves enable hot and cold fluids, typically water, to be 10 accurately mixed so as to deliver fluid at a desired temperature to the valve outlet. Thermostatic mixing valves typically include separate inlets for ingress of hot and cold water and one outlet for egress of mixed water. Some thermostatic mixing valves include seats for cooperating with a piston for 15 respectively throttling or isolating the flow of hot and cold fluids through the valve. The need for isolation typically is for safety reasons and it normally is most important to provide for isolation of the hot fluid, so that, for example, a person showering is protected from scalding in the event of the failure of the cold water supply. In such valves, a hard edge of the piston can press firmly 20 against a flat face of the valve body to thereby prevent fluid flow therepast. This arrangement can be provided for one or each of the hot and cold inlets. The design of mixing valves of the kind described above has been complicated by the need to provide a mechanism for allowing for any continued expansion of 25 the thermostatic element after an adjustment in the flow of hot and cold fluids. If the thermostatic element cannot continue to expand when the piston has no further available movement, i.e. the piston is pressed firmly into engagement with one of the flat faces, then the thermostatic element can be damaged. This problem has been addressed in one arrangement by including a spring to 30 permit continued movement of the thermostatic element against the spring, such that the spring compresses as the thermostatic element expands. Unfortunately, the inclusion of such an arrangement has increased the part and production costs for the valve. W Juk\AndrewACompletes\The ostac Mixin Vave (AU) doc 3 The design of thermostatic mixing valves has been further complicated by the requirements for adequate responsiveness to changes in inlet temperatures and pressures, to maintain a set outlet temperature and to also provide for complete termination of the flow of hot water through the valve when necessary. Mixing 5 valves of the kind described above, which include a piston arranged for cooperation with one or two flat face seats, can provide a high degree of responsiveness, but under some circumstances the piston can oscillate undesirably. Also, while some mixing valves can substantially reduce fluid flow, not all such valves can provide complete termination of flow. 10 The above discussion is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed 15 before the priority date of each claim of this application. It is an object of the present invention to overcome or at least alleviate one or more of the foregoing problems. 20 Summary of the Invention According to the present invention there is provided a thermostatic mixing valve including a valve body having a first fluid inlet, a second fluid inlet and a mixed fluid outlet, a mixing chamber located between the respective fluid inlets and the 25 fluid outlet, a thermostatic element located in or adjacent to the mixing chamber for exposure to mixed fluid, a piston arranged for movement within the valve body in response to expansion or contraction of the thermostatic element, the piston being arranged to throttle flow of fluid through the first fluid inlet into the mixing chamber by varying its position relative to a first seat, the piston also 30 being arranged to throttle flow of fluid through the second fluid inlet into the mixing chamber by varying its position relative to a second seat, and wherein the piston includes an annular groove formed in the outer surface thereof and an 0-ring seal disposed in the groove, and the second seat includes a bore into which the piston can progressively enter, progression of the piston into the bore 4 initially results in a substantial throttling of the flow of fluid from the second fluid inlet into the mixing chamber, while further progression results in engagement between the O-ring seal and a facing inner surface of the bore to terminate the flow of fluid from the second fluid inlet into the mixing chamber. 5 A mixing valve according to the present invention advantageously provides an arrangement in which a substantial throttling of the flow of fluid from the second fluid inlet into the mixing chamber occurs prior to complete termination of that flow of liquid. This can be compared to earlier arrangements in which the hard 10 edge of the piston of a valve engages against a flat face of the valve body to terminate fluid flow. As discussed above, such a valve has a responsiveness to changes in temperature and/or pressure that can be too great in certain extreme conditions and which can result in the piston oscillating uncontrollably. In a valve according to an embodiment of the invention, the responsiveness can 15 be moderated by the entrance of the piston to within the bore to provide a substantial throttling effect, prior to actual termination of the fluid flow. Testing has shown that the moderated response still satisfies commercial requirements for responsiveness, but with the benefit of complete reduction, or at least a major reduction, in the propensity for the piston to oscillate undesirably. 20 The extent of throttling of the fluid flow through the second fluid inlet is in part a function of the dimensions of the bore relative to the piston. That is, the closeness of the fit between the piston and the bore has an effect on the extent to which fluid flow from the second fluid inlet into the mixing chamber is throttled 25 when the bore enters the piston. Put simply, the closer the fit, the greater the fluid flow is throttled. As an example, in one arrangement, the bore has an internal diameter of 27.1 mm while the piston has an external diameter of 27.0 mm. In this arrangement, a normal flow from the second fluid inlet can be throttled to a trickle or a slight leak. 30 While entry of the piston into the bore provides a substantial throttling effect, it does not fully terminate fluid flow from the second fluid inlet into the mixing chamber. Rather, hot fluid can still flow into the mixing chamber, but at a significantly reduced rate. Permitting a continued flow of this kind is sometimes 35 desirable, so that the thermostatic element is maintained exposed to hot fluid 5 and therefore is kept from cooling and contracting, and thereby possibly withdrawing the piston from the second seat. However it is also desirable in certain circumstances that flow of hot fluid from the second fluid inlet be terminated completely, so that there is no flow at all into the mixing chamber. 5 This safeguards against the possibility for example, of a person being exposed even to a very low flow of hot fluid when the cold fluid supply has failed. Engagement between the piston and the second seat is by radial engagement between the O-ring seal and the facing surface of the seat. The position of the 10 seal relative to the piston has an effect on when termination of flow of fluid from the second fluid inlet into the mixing chamber occurs. For example, the seal could be positioned close to the leading end of the piston relative to the bore, so that termination of flow occurs almost immediately when the piston enters the bore. Alternatively, the seal can be positioned rearwardly away from the 15 leading end, so that there is a greater delay between the substantial throttling of fluid flow that occurs upon entry of the piston within the bore and the termination of that flow. A further advantage of the present invention is that in one form entry of the 20 piston into the bore can allow for continued expansion of the thermostatic element, despite the piston being in engagement with the second seat. Engagement between the O-ring seal and the second seat can be maintained despite the thermostatic element continuing to expand and thus continuing to move the piston further into the bore. 25 An adjustment mechanism may be provided to adjust the set temperature of the fluid which passes through the mixed fluid outlet. Preferably, adjustment by the adjustment mechanism results in a change in the proportions of fluid from the respective hot and cold fluid inlets into the mixing chamber so that the set temperature of the fluid flowing through the mixed fluid outlet is adjusted. 30 In the preferred forms of the invention, a check valve is mounted adjacent each of the hot and cold fluid inlets to prevent back flow of fluid through the respective inlets. 35 Brief Description of the Drawings 6 Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings in which: 5 7 Figure 1 is a cross sectional view of a thermostatic mixing valve in accordance with an embodiment of the invention. Figure 2 is a detailed view of the circled section of Figure 1. 5 Detailed Description of the Preferred Embodiments Figure 1 illustrates in cross-section, a thermostatic mixing valve 10 in accordance with an embodiment of the invention. The valve 10 includes a valve 10 body 11, a hot fluid inlet 12, a cold fluid inlet 13 and a mixed fluid outlet 14. Each of the inlets 12 and 13 and the outlet 14 are arranged for connection to suitable piping. Disposed within the valve body 11 is a thermostatic element 15. The 15 thermostatic element 15 is disposed within a mixing chamber 16 and disposed about an upper end of the element 15 is a regulating piston 17. The piston 17 comprises a cylindrical member 18 and webs 19 which depend from the cylindrical member 18 and which extend to the element 15. In use, fluid can flow into the interior of the cylindrical member 18 for passage through the mixed 20 fluid outlet 14, and the webs 19 provide minimal resistance to that flow. The webs 19 are threadably connected to the element 15 and abut against a step 21 formed on the element 15. In an alternative arrangement, the threaded connection can be omitted and a biasing arrangement provided to maintain the element 15 and the piston 17 together. In that alternative arrangement the step 25 21 can be provided as an abutment against which the piston 17 is biased. The cooperation is such that the piston 17 is constrained to move with the element 15 when the element 15 moves in an upward direction toward the adjustment element 22. 30 A plunger 20 of the element 15 is mounted for contact with an adjustment element 22. The adjustment element 22 is a threaded element, which can be rotated so as to alter the gap G between the element 22 and the plunger 20. Alteration of the size of the gap G is the manner by which the set temperature of the mixed fluid which passes through the outlet 14 can be set. The adjustment W:Uuie\AndrewiCompletes\Thermostauc Mixing Vatve (AU).doc 8 element 22 is threadably mounted within a fixed element 24, while a removable cover 25 extends over both of the elements 22 and 24. The element 22 includes a recess 26 shaped for receipt of an Allen key or equivalent tool for rotating the element 22. 5 A spring 23 is seated against a step 27 formed in the valve body 11 at one end and at the other end within a recess 28 of a mixing tube 29. The mixing tube 29 and the thermostatic element 15 are in contact, such that the element 15 rests against the mixing tube 29. The mixing tube 29 includes radially inwardly 10 extending webs 30, while the element 15 includes a broadened section 31, which is of greater diameter than the sections which extend upwardly and downwardly from it. It is the broadened section 31 which rests upon and is supported by upper edges of the webs 30. The spring 23 is operable to urge the mixing tube 29 toward the adjustment element 22, and by the resting 15 connection between the tube 29 and the element 15, the element 15 is also urged in that direction. The arrows A 1 , A 2 show the path of fluid entering each of the inlets 12 and 13. In the illustrated orientation of the valve 10, fluid following the path of arrow A 1 20 enters the inlet 12 and flows downwardly, while fluid which enters the inlet 13 and follows the path A 2 flows upwardly. Referring first to the path of fluid that follows the arrow A 2 , that fluid is directed towards the upper end 32 of the piston 17 and that end 32 is movable toward and away from a first seat 33 formed by a flat face of the fixed element 24. In Figure 1, the position of the piston 17 is 25 such that the end 32 is in contact with the first seat 33. In that position, no fluid will flow past the seat 33. When the piston 17 moves away from the first seat 33, fluid flow through the inlet 13 along the path of arrow A 2 and into the mixing chamber 16 can commence. 30 The position of the piston 17 in Figure 1, is the position it is urged to indirectly by the spring 23 when there is no flow of hot fluid through the inlet 12. Upon flow being initiated, hot fluid flows along the path of arrow A, and into the mixing chamber 16. The thermostatic element 15 reacts to the temperature of the hot fluid and expands, causing the plunger 20 to take up the gap G. When the WiLuie\AndrewiCompletes\Tftnnsac Mixing Valve (AU) doc 9 plunger 20 engages the adjustment element 22, further expansion of the element 22 causes the element to move in a direction towards the outlet 14, against the bias of the spring 23. That movement permits the piston 17 to move in the same direction, releasing the piston end 32 from the seat 33 and 5 permitting flow of cold fluid past the seat 33 and into the mixing chamber 16. Expansion of the element 15 will cease, when the mixed fluid set temperature of the valve 10 has been reached. The thermostatic element 15 is operable normally to shift the piston 17 in small 10 amounts to compensate for slight variations in the supply temperatures and/or pressures of the hot or cold fluid supplies and thereby to maintain the set mixed outlet temperature. The thermostatic element 15 is operable to make larger shifts in the position of the piston 17, generally in circumstances where a major disruption or an actual failure of either the hot or cold fluid supply has occurred, 15 particularly the cold fluid supply. In such circumstances the piston 17 may be shifted to a position to substantially throttle or to terminate the flow of the fluid for which the supply has not failed. Referring now to the path of fluid that follows the path of the arrow A 1 , that fluid 20 flows towards a lower end 34 of the piston 17. Referring to Figure 2, the cylindrical member 18 of the piston 17 has an outer diameter which is slightly smaller than the inner diameter of the bore 35 formed in the valve body 11. Thus, the piston 17 can move into the bore 35 if there is sufficient movement of the piston 17 away from the first seat 33. As discussed earlier, the difference in 25 diameter can be about 0.1 mm. The bore 35 forms a second seat which cooperates with the piston 17 to throttle the flow of fluid from the inlet 12 into the mixing chamber 16. It will be appreciated, that as the piston 17 moves away from the first seat 33 and approaches entry into the bore 35, the available space for flow of fluid through the inlet 12 and into the mixing chamber 16 reduces. 30 When the piston 17 actually enters the bore 35, a substantial throttling of the flow of fluid through the inlet 12 occurs. However, complete termination of fluid flow through the inlet 12 is not achieved, because there is a slight gap between the outside of the cylindrical member 18 and the bore 35. Thus, fluid following the path A, can still leak or trickle past the piston 17. W: ule\nreW Completes'Thermostatic Ming Vave (AU).doc 10 For complete termination of flow through the inlet 12, the piston 17 includes an annular groove 36 which seats an O-ring 37. The outer diameter of the O-ring 37 extends radially slightly beyond the outer surface 38 of the cylindrical member 18 and in the embodiment shown, when the piston 17 enters the bore 5 35 a sufficient distance, the O-ring 37 engages and seals against the inner surface of the bore 35, providing complete termination of fluid flow from the inlet 12 and into the mixing chamber 16. Typically, this will occur when there has been a failure in the supply of cold fluid, so that only hot fluid is flowing into the mixing chamber 16. 10 It will be readily seen, that the above arrangement can provide for substantial throttling of fluid flow from each of the inlets 12 and 13 into the mixing chamber 16, and for complete termination of flow into the mixing chamber 16. In respect of the inlet 12, the substantial throttling that occurs prior to complete termination 15 of fluid flow, advantageously moderates the responsiveness of the valve 10 when compared to prior art arrangements which employ the throttling arrangement described above in relation to the inlet 13, also for the inlet 12. By moderating the throttling effect, undesirable piston oscillation can be eliminated or minimised. 20 The arrangement described above for the inlet 12 could also be provided for the inlet 13, although this is not considered necessary when the mixing valve 10 is employed for mixing hot and cold water, for delivery to showers and basins etc. In that use, it is usually only necessary for safety purposes, to throttle or 25 terminate flow of hot water when the supply of cold water fails, to prevent scalding. The invention described herein is susceptible to variations, modifications and/or additions other than those specifically described and it is to be understood that 30 the invention includes all such variations, modifications and/or additions which fall within the spirit and scope of the above description. W3Juhe\AdrewACompletesThemstatic Muung Valve (AU) dOC

Claims (2)

1. A thermostatic mixing valve including a valve body having a first fluid inlet, a second fluid inlet and a mixed fluid outlet, a mixing chamber located 5 between the respective fluid inlets and the fluid outlet, a thermostatic element located in or adjacent to the mixing chamber for exposure to mixed fluid, a piston arranged for movement within the valve body in response to expansion or contraction of the thermostatic element, the piston being arranged to throttle flow of fluid through the first fluid inlet into the mixing chamber by varying its 10 position relative to a first seat, the piston also being arranged to throttle flow of fluid through the second fluid inlet into the mixing chamber by varying its position relative to a second seat, and wherein the piston includes an annular groove formed in the outer surface thereof and an O-ring seal disposed in the groove, and the second seat includes a bore into which the piston can 15 progressively enter, progression of the piston into the bore initially results in a substantial throttling of the flow of fluid from the second fluid inlet into the mixing chamber, while further progression results in engagement between the O-ring seal and a facing inner surface of the bore to terminate the flow of fluid from the second fluid inlet into the mixing chamber. 20
2. A thermostatic mixing valve substantially as herein described with reference to the accompanying drawings.
AU2006203057A 2005-07-19 2006-07-18 Thermostatic mixing valve Active AU2006203057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2006203057A AU2006203057B2 (en) 2005-07-19 2006-07-18 Thermostatic mixing valve

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2005903830A AU2005903830A0 (en) 2005-07-19 Thermostatic mixing valve
AU2005903830 2005-07-19
AU2006203057A AU2006203057B2 (en) 2005-07-19 2006-07-18 Thermostatic mixing valve

Publications (2)

Publication Number Publication Date
AU2006203057A1 AU2006203057A1 (en) 2007-02-08
AU2006203057B2 true AU2006203057B2 (en) 2011-02-03

Family

ID=37764052

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2006203057A Active AU2006203057B2 (en) 2005-07-19 2006-07-18 Thermostatic mixing valve

Country Status (1)

Country Link
AU (1) AU2006203057B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115681569A (en) * 2021-07-22 2023-02-03 宁波万海阀门科技有限公司 Valve core seat and valve core module set

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109421A1 (en) * 2003-06-06 2004-12-16 Gsa Industries (Aust.) Pty. Ltd. Thermostatic mixing valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109421A1 (en) * 2003-06-06 2004-12-16 Gsa Industries (Aust.) Pty. Ltd. Thermostatic mixing valve

Also Published As

Publication number Publication date
AU2006203057A1 (en) 2007-02-08

Similar Documents

Publication Publication Date Title
US20070029395A1 (en) Thermostatic mixing valve
US6315210B1 (en) Thermostatic mixing valve
US5011074A (en) Thermostatic mixing valve with thermostat failure compensation
US4917294A (en) Shut-off valve for scald prevention
US6315209B1 (en) Mixing valve
JP4290200B2 (en) Pressure reducing valve
US20050116053A1 (en) Automatic compensating valve for individual shower and tub/shower combination fixtures
AU752103B2 (en) Fail-safe proportional mixing valve
US10221953B2 (en) Non chattering pressure relief valve
AU2001241781A1 (en) Mixing valve
US6694996B2 (en) Swing check backflow preventor having check valve with lever arm
AU2006203057B2 (en) Thermostatic mixing valve
JPH08338564A (en) Check valve device
JPS6139907Y2 (en)
US20090229684A1 (en) Temperature back flow control valve
AU767118B2 (en) Fail-safe proportional mixing valve
US7201181B1 (en) Mixing valve
JP4470218B2 (en) Backflow prevention device
JPH11257528A (en) Control mechanism for hot and cold water combination device
JPH0720454Y2 (en) Hot and cold water mixing valve with pressure reducing valve
JP2003269650A (en) Hot and cold water mixing device
JP3968336B2 (en) Backflow prevention device and canned multi-channel water heater
JP6500297B2 (en) Air release valve
JPH0567873U (en) Constant flow valve
JPH0579571A (en) Check valve equipped with pressure adjusting function

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
HB Alteration of name in register

Owner name: RELIANCE WORLDWIDE CORPORATION (AUST.) PTY. LTD.

Free format text: FORMER NAME(S): GSA INDUSTRIES (AUST.) PTY LTD

MK14 Patent ceased section 143(a) (annual fees not paid) or expired
NA Applications received for extensions of time, section 223

Free format text: AN APPLICATION TO EXTEND THE TIME FROM 18 JUL 2021 TO 18 AUG 2022 IN WHICH TO PAY A RENEWAL FEE HAS BEEN FILED

NB Applications allowed - extensions of time section 223(2)

Free format text: THE TIME IN WHICH TO PAY A RENEWAL FEE HAS BEEN EXTENDED TO 18 AUG 2022