AU2005337421B2 - Method of maintaining a printhead using air blast cleaning - Google Patents

Method of maintaining a printhead using air blast cleaning Download PDF

Info

Publication number
AU2005337421B2
AU2005337421B2 AU2005337421A AU2005337421A AU2005337421B2 AU 2005337421 B2 AU2005337421 B2 AU 2005337421B2 AU 2005337421 A AU2005337421 A AU 2005337421A AU 2005337421 A AU2005337421 A AU 2005337421A AU 2005337421 B2 AU2005337421 B2 AU 2005337421B2
Authority
AU
Australia
Prior art keywords
printhead
optionally
face
capper
ink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005337421A
Other versions
AU2005337421A1 (en
Inventor
David William Jensen
Vesa Karppinen
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Memjet Technology Ltd
Original Assignee
Memjet Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Memjet Technology Ltd filed Critical Memjet Technology Ltd
Publication of AU2005337421A1 publication Critical patent/AU2005337421A1/en
Application granted granted Critical
Publication of AU2005337421B2 publication Critical patent/AU2005337421B2/en
Assigned to ZAMTEC LIMITED reassignment ZAMTEC LIMITED Request for Assignment Assignors: SILVERBROOK RESEARCH PTY LTD
Assigned to MEMJET TECHNOLOGY LIMITED reassignment MEMJET TECHNOLOGY LIMITED Request to Amend Deed and Register Assignors: ZAMTEC LIMITED
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16517Cleaning of print head nozzles
    • B41J2/16552Cleaning of print head nozzles using cleaning fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16517Cleaning of print head nozzles
    • B41J2/1652Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head
    • B41J2/16526Cleaning of print head nozzles by driving a fluid through the nozzles to the outside thereof, e.g. by applying pressure to the inside or vacuum at the outside of the print head by applying pressure only

Landscapes

  • Ink Jet (AREA)
  • Accessory Devices And Overall Control Thereof (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

A method of maintaining a printhead (10) in an operable condition is provided. The method comprises the steps of: (a) flooding an ink ejection face (12) of the printhead (10) with ink; and (b) removing the ink by blasting air across the face (12).

Description

WO 2007/041749 PCT/AU2005/001566 1 METHOD OF MAINTAINING A PRINTHEAD USING AIR BLAST CLEANING Field of the Invention 5 This invention relates to a printhead maintenance assembly for an inkjet printhead. It has been developed primarily for facilitating maintenance operations, such as cleaning particulates from an ink ejection face of the printhead. Cross References to Related Applications 10 Various methods, systems and apparatus relating to the present invention are disclosed in the following US Patents/ Patent Applications filed by the applicant or assignee of the present invention: 09/517539 6566858 09/112762 6331946 6246970 6442525 09/517384 09/505951 6374354 09/517608 09/505147 10/203564 6757832 6334190 6745331 09/517541 10/203559 10/203560 10/636263 10/636283 10/866608 10/902889 10/902833 10/940653 10/942858 10/727181 10/727162 10/727163 10/727245 10/727204 10/727233 10/727280 10/727157 10/727178 10/727210 10/727257 10/727238 10/727251 10/727159 10/727180 10/727179 10/727192 10/727274 10/727164 10/727161 10/727198 10/727158 10/754536 10/754938 10/727227 10/727160 10/934720 11/212,702 10/296522 6795215 10/296535 09/575109 10/296525 09/575110 09/607985 6398332 6394573 6622923 6747760 10/189459 10/884881 10/943941 10/949294 11/039866 11/123011 11/123010 11/144769 11/148237 10/922846 10/922845 10/854521 10/854522 10/854488 10/854487 10/854503 10/854504 10/854509 10/854510 10/854496 10/854497 10/854495 10/854498 10/854511 10/854512 10/854525 10/854526 10/854516 10/854508 10/854507 10/854515 10/854506 10/854505 10/854493 10/854494 10/854489 10/854490 10/854492 10/854491 10/854528 10/854523 10/854527 10/854524 10/854520 10/854514 10/854519 10/854513 10/854499 10/854501 10/854500 10/854502 10/854518 10/854517 10/934628 PLT046US 10/728804 10/728952 10/728806 10/728834 10/729790 10/728884 10/728970 10/728784 10/728783 10/728925 10/728842 10/728803 10/728780 10/728779 10/773189 10/773204 10/773198 10/773199 10/773190 10/773201 10/773191 10/773183 10/773195 10/773196 10/773186 10/773200 10/773185 10/773192 WO 2007/041749 PCT/AU2005/001566 2 10/773197 10/773203 10/773187 10/773202 10/773188 10/773194 10/773193 10/773184 11/008118 11/060751 11/060805 11/188017 6623101 6406129 6505916 6457809 6550895 6457812 10/296434 6428133 6746105 10/407212 10/407207 10/683064 10/683041 6750901 6476863 6788336 11/097308 11/097309 11/097335 11/097299 11/097310 11/097213 11/210687 11/097212 11/212637 10/760272 10/760273 10/760187 10/760182 10/760188 10/760218 10/760217 10/760216 10/760233 10/760246 10/760212 10/760243 10/760201 10/760185 10/760253 10/760255 10/760209 10/760208 10/760194 10/760238 10/760234 10/760235 10/760183 10/760189 10/760262 10/760232 10/760231 10/760200 10/760190 10/760191 10/760227 10/760207 10/760181 10/815625 10/815624 10/815628 10/913375 10/913373 10/913374 10/913372 10/913377 10/913378 10/913380 10/913379 10/913376 10/913381 10/986402 11/172816 11/172815 11/172814 11/003786 11/003354 111003616 11/003418 11/003334 11/003600 11/003404 11/003419 11/003700 11/003601 11/003618 11/003615 11/003337 11/003698 11/003420 11/003682 11/003699 11/071473 11/003463 11/003701 11/003683 11/003614 11/003702 11/003684 11/003619 11/003617 10/760254 10/760210 10/760202 10/760197 10/760198 10/760249 10/760263 10/760196 10/760247 10/760223 10/760264 10/760244 10/760245 10/760222 10/760248 10/760236 10/760192 10/760203 10/760204 10/760205 10/760206 10/760267 10/760270 10/760259 10/760271 10/760275 10/760274 10/760268 10/760184 10/760195 10/760186 10/760261 10/760258 11/014764 11/014763 11/014748 11/014747 11/014761 11/014760 11/014757 11/014714 11/014713 11/014762 11/014724 11/014723 11/014756 11/014736 11/014759 11/014758 11/014725 11/014739 11/014738 11/014737 11/014726 11/014745 11/014712 11/014715 11/014751 11/014735 11/014734 11/014719 11/014750 11/014749 11/014746 11/014769 11/014729 11/014743 11/014733 11/014754 11/014755 11/014765 11/014766 11/014740 11/014720 11/014753 11/014752 11/014744 11/014741 11/014768 11/014767 11/014718 11/014717 11/014716 11/014732 11/014742 11/097268 11/097185 11/097184 09/575197 09/575195 09/575159 09/575132 09/575123 09/575148 09/575130 09/575165 09/575153 09/575118 09/575131 09/575116 09/575144 09/575139 09/575186 6681045 6728000 09/575145 09/575192 09/575181 09/575193 09/575156 09/575183 6789194 09/575150 6789191 6644642 6502614 6622999 6669385 WO 2007/041749 PCT/AU2005/001566 3 6549935 09/575187 6727996 6591884 6439706 6760119 09/575198 6290349 6428155 6785016 09/575174 09/575163 6737591 09/575154 09/575129 09/575124 09/575188 09/575189 09/575162 09/575172 09/575170 09/575171 09/575161 The disclosures of these applications and patents are incorporated herein by reference. Background of the Invention 5 Inkjet printers are commonplace in homes and offices. However, all commercially available inkjet printers suffer from slow print speeds, because the printhead must scan across a stationary sheet of paper. After each sweep of the printhead, the paper advances incrementally until a complete printed page is produced. It is a goal of inkjet printing to provide a stationary pagewidth printhead, whereby a 10 sheet of paper is fed continuously past the printhead, thereby increasing print speeds greatly. The present Applicant has developed many different types of pagewidth inkjet printheads using MEMS technology, some of which are described in the patents and patent applications listed in the above cross reference list. 15 The contents of these patents and patent applications are incorporated herein by cross-reference in their entirety. Notwithstanding the technical challenges of producing a pagewidth inkjet printhead, a crucial aspect of any inkjet printing is maintaining the printhead in an operational printing condition throughout its lifetime. A number of factors may cause an 20 inkjet printhead to become non-operational and it is important for any inkjet printer to include a strategy for preventing printhead failure and/or restoring the printhead to an operational printing condition in the event of failure. Printhead failure may be caused by, for example, printhead face flooding, dried-up nozzles (due to evaporation of water from the nozzles - a phenomenon known in the art as decap), or particulates fouling nozzles. 25 Particulates, in the form of paper dust, are a particular problem in high-speed pagewidth printing. This is because the paper is typically fed at high speed over a paper guide and past the printhead. Frictional contact of the paper with the paper guide generates large quantities of paper dust compared to traditional scanning inkjet printheads, where paper is fed much more slowly. Hence, pagewidth printheads tend to accumulate paper WO 2007/041749 PCT/AU2005/001566 4 dust on their ink ejection face during printing. This accumulation of paper dust is highly undesirable. In the worst case scenario, paper dust blocks nozzles on the printhead, preventing those nozzles from ejecting ink. More usually, paper dust overlies nozzles and partially 5 covers nozzle apertures. Nozzle apertures that are partially covered or blocked produce misdirected ink droplets during printing - the ink droplets are deflected from their intended trajectory by particulates on the ink ejection face. Misdirects are highly undesirable and may result in acceptably low print quality. One measure that has been used for maintaining printheads in an operational 10 condition is sealing the printhead, which prevents the ingress of particulates and also prevents evaporation of ink from nozzles. Commercial inkjet printers are typically supplied with a sealing tape across the printhead, which the user removes when the printer is installed for use. The sealing tape protects the primed printhead from particulates and prevents the nozzles from drying up during transit. Sealing tape also controls flooding of 15 ink over the printhead face. Aside from one-time use sealing tape on new printers, sealing has also been used as a strategy for maintaining printheads in an operational condition during printing. In some commercial printers, a gasket-type sealing ring and cap engages around a perimeter of the printhead when the printer is idle. A vacuum may be connected to the sealing cap and used 20 to suck ink from the nozzles, unblocking any nozzles that have dried up. However, whilst sealing/vacuum caps may prevent the ingress of particulates from the atmosphere, such measures do not remove particulates already built up on the printhead. In order to remove flooded ink from a printhead after vacuum flushing, prior art maintenance stations typically employ a rubber squeegee, which is wiped across the 25 printhead. Particulates are removed from the printhead by flotation into the flooded ink and the squeegee removes the flooded ink having particulates dispersed therein. However, rubber squeegees have several shortcomings when used with MEMS pagewidth printheads. A typical MEMS printhead has a nozzle plate comprised of a hard, durable material such as silicon nitride, silicon oxide, aluminium nitride etc. Moreover, the 30 nozzle plate is typically relatively abrasive due to etched features on its surface. On the one hand, it is important to protect the nozzle plate, comprising sensitive nozzle structures, from damaging exposure to the shear forces exerted by a rubber squeegee. On the other hand, it is equally important that a rubber squeegee should not be damaged by contact with the printhead and reduce its cleaning efficacy.
WO 2007/041749 PCT/AU2005/001566 5 Therefore, it would be desirable to provide an inkjet printhead maintenance station, which does not rely on a rubber squeegee wiping across the nozzle plate to remove flood ink and particulates. It would further be desirable to provide an inkjet printhead maintenance station, which removes flooded ink and particulates from the nozzle plate 5 without the nozzle plate coming into contact with any cleaning surface. It would further be desirable to provide an ink jet printhead maintenance station that is simple in design, does not consume large amounts power and can be readily incorporated into a desktop printer. 10 Summary of the Invention In a first aspect, there is provided a method of maintaining a printhead in an operable condition, said method comprising the steps of: (a) flooding an ink ejection face of said printhead with ink; and (b) removing said ink by blasting air across said face. 15 In a second aspect, there is provided a printhead maintenance station for maintaining a printhead in an operable condition, said maintenance station comprising: a capper sealingly engageable around said printhead, said capper comprising a constriction member for defining a blast channel adjacent an ink ejection face of said printhead; 20 an air inlet valve in fluid communication with said capper; a vacuum system in fluid communication with said capper; and an engagement mechanism for moving said capper between a first position in which said capper is sealingly engaged around said printhead and a second position in which said capper is disengaged from around said printhead. 25 In a third aspect, there is provided a method of maintaining a printhead in an operable condition, said method comprising the steps of: (i) providing a printhead maintenance station, said maintenance station comprising: a capper sealingly engageable around said printhead, said capper comprising a constriction member for defining a blast channel adjacent an ink ejection face 30 of said printhead; a vacuum system in fluid communication with said capper; an air inlet valve in fluid communication with said capper; and WO 2007/041749 PCT/AU2005/001566 .6 an engagement mechanism for moving said capper between a first position in which said capper is sealingly engaged around said printhead and a second position in which said capper is disengaged from around said printhead; (ii) moving said capper into said first position such that said constriction member is 5 spaced apart from said face, thereby defining said blast channel; (iii) generating a vacuum over said face using said vacuum system, thereby purging ink from printhead nozzles onto said face; and (iv) opening said air inlet valve, thereby blasting air through said blast channel and removing ink from said face. 10 In a fourth aspect, there is provided a printhead maintenance assembly comprising: a printhead; and a printhead maintenance station for maintaining said printhead in an operable condition, said maintenance station comprising: a capper sealingly engageable around said printhead, said capper comprising a 15 constriction member for defining a blast channel adjacent an ink ejection face of said printhead; an air inlet valve in fluid communication with said capper; a vacuum system in fluid communication with said capper; and an engagement mechanism for moving said capper between a first position in 20 which said capper is sealingly engaged around said printhead and a second position in which said capper is disengaged from around said printhead. In a fifth aspect, there is provided a capper for a printhead maintenance station, said capper comprising: a capping chamber sealingly engageable around a printhead; 25 a constriction member positioned in said capper chamber, said constriction member dividing said capper chamber into an air inlet channel and a vacuum channel, said constriction member also defining a blast channel adjacent an ink ejection face of said printhead when said capping chamber is sealingly engaged around said printhead; an air inlet defined in a wall of said capping chamber, said air inlet opening into 30 said air inlet channel; and a vacuum aperture defined in a wall of said capping chamber, said vacuum aperture opening into said vacuum channel.
WO 2007/041749 PCT/AU2005/001566 7 The maintenance station and method of the present application advantageously provide total maintenance of the printhead, including purging decapped nozzles and removing flooded ink on the ink ejection face after the purge. It is particularly advantageous that a separate squeegee-cleaning mechanism is not required to clean flooded 5 ink from the printhead face - both purging and cleaning are performed with the capper engaged around the printhead, which simplifies printhead maintenance operations. Moreover, the maintenance station and method of the present application advantageously avoid potentially damaging contact of the printhead with an external cleaning device. Hence, unlike prior art squeegee-cleaning methods, the air blasting 10 employed by the present invention does not impart significant shear forces across the printhead and does not damage sensitive MEMS nozzle structures. In some embodiments of the invention, the air blast is provided without the need for high-powered pumps. By providing a constricted blast channel adjacent the printhead, a high velocity of air flow is generated. Furthermore, the use of a vacuum reservoir, which is 15 charged during purging and discharged during air blasting, further reduces the power requirements of the vacuum system. With such low power requirements, the maintenance station of the present application may be readily incorporated into desktop printers, such as pagewidth inkjet printers. Optionally, the face is flooded by suction, which purges ink from nozzles in the 20 printhead. The suction purges nozzles which may have become blocked or decapped, flooding the ink onto the ink ejection face of the printhead. Typically, suction is provided via a capper, which is sealingly engaged around the printhead during printhead maintenance. A perimeter gasket (e.g. rubber gasket) on the capper may be provided for sealing engagement around the printhead. The capper typically 25 takes the form of an elongate capping chamber which can seal around the entire printhead. The capping chamber optionally has an air inlet and a vacuum aperture defined in a wall thereof. The air inlet communicates with an air inlet valve while the vacuum aperture communicates with the vacuum system. The vacuum system optionally comprises a vacuum pump, and is used to flood the ink ejection face by generating a vacuum above the 30 face. Optionally, air is blasted through a blast channel adjacent the ink ejection face. Typically, the blast channel is defined by a constriction member spaced apart from the face. The constriction member provides a constricted blast channel, which has the effect of accelerating air flow across the ink ejection face according to Bernoulli's law. Optionally, WO 2007/041749 PCT/AU2005/001566 8 air flow rates of 2 to 10, 3 to 8 or 5 to 7 litres per second may be provided. Optionally, the constriction member is spaced less than 2 mm, less than 1 mm, less than 0.5 mm or less than 0.3 mm from the ink ejection face. Optionally, the constriction member is substantially coextensive with the printhead, 5 ensuring that the whole length of the printhead receives an air blast across its width. Typically, the constriction member forms part of the capper so that the capper can perform the dual functions of suction purging and air blasting. Optionally, the constriction member divides the capping chamber into an air inlet channel and a vacuum channel. Optionally, air is blasted through the blast channel by releasing a vacuum above the 10 printhead to the atmosphere. This is usually achieved by opening an air inlet valve in fluid communication with the capper so that air rushes into the capper via an air inlet channel and blasts through the blast channel into a vacuum channel. Optionally, the vacuum system and the air inlet valve are arranged to control a direction of air flow through the blast channel. For example, by suitable positioning of an 15 air inlet valve connection and vacuum connection on the capper, the air flow through the blast channel may be varied. Optionally, air flows transversely across the printhead face. Optionally, the air flow buffets into a wire bond encapsulant bonded along a longitudinal edge of the printhead. An advantage of this arrangement is that it minimizes the risk of ink becoming trapped in a 'dead space' where the encapsulant meets the printhead. 20 Optionally, the vacuum system further comprises a vacuum reservoir. The reservoir is charged with a vacuum either before or during suction purging of the printhead nozzles. During air blasting the vacuum reservoir is discharged. Accordingly, the vacuum reservoir advantageously allows a high velocity air flow through the blast channel, without the need for a high-powered vacuum pump. 25 Optionally, the vacuum system further comprises an ink dump for receiving ink removed from the ink ejection face during air blasting. The vacuum system typically directs the removed ink into the ink dump during air blasting. In some embodiments, the ink dump may be contained in the vacuum reservoir. Optionally, the printhead is mounted on a support, which typically comprises an ink 30 manifold for supplying ink to the printhead. Optionally, the support may further comprise a wirebond encapsulant bonded to the ink manifold and/or a paper guide attached to the ink manifold. Optionally, the capper sealingly engages with the support. Optionally, the support and the capper comprise complementary alignment features for locating the capper into a printhead maintenance position. The alignment features WO 2007/041749 PCT/AU2005/001566 9 advantageously ensure proper alignment of the capper around the printhead and, in particular, proper positioning of the constriction member so as to define the blast channel. Optionally, the capper is disengaged from around the printhead after each maintenance cycle of purging and air blasting. Optionally, an area around the printhead is 5 dabbed after disengagement of the capper, using a dabbing device. The dabbing device may comprise, for example, a microfibre film or an absorbent block of wicking material. Dabbing may be used to remove any ink from around the printhead (e.g. on wire bond encapsulant or on a printhead support), which has not been removed by the air blasting. The invention has been developed primarily for use with a MEMS pagewidth inkjet 10 printhead. However, the invention is equally applicable to any type of printhead where remedial measures are required to maintain the printhead in an operable condition. For example, the invention may be used in connection with standard scanning inkjet printheads in order to avoid printhead damage during maintenance. 15 In a first aspect the present invention provides a printhead maintenance assembly for maintaining a printhead in an operable condition, said maintenance assembly comprising: (i) a printhead assembly comprising: a printhead having an ink ejection face, said face having a first edge portion and a second edge portion opposite said first edge portion; and 20 a film guide sealingly bonded to said first edge portion, said film guide being positioned to guide a film through a transfer zone, said transfer zone being defined by a plane spaced apart from said face; and (ii) an ink transport assembly comprising: 25 a film for transporting ink away from said printhead; and a transport mechanism for feeding said film through said transfer zone and away from said printhead, said transport mechanism feeding said film in a directional sense which is from said first edge portion to said second edge portion; wherein, in use, said film contacts with said film guide thereby forming a cavity 30 defined at least partially by said film, said film guide and said face. Optionally, said printhead is a pagewidth inkjet printhead. Optionally, said first and second edge portions are longitudinal edge portions.
WO 2007/041749 PCT/AU2005/001566 10 Optionally, said film guide is comprised of a solid polymeric material. Optionally, said film guide encapsulates wire bonds extending from said first edge portion 5 of said printhead. Optionally, said transfer zone is substantially parallel with said ink ejection face. Optionally, said transfer zone is less than 1 mm from said face. 10 Optionally, said film is wetting. Optionally, said film is an endless loop. 15 Optionally, a width of said film is substantially coextensive with a length of said printhead. Optionally, said ink transport assembly further comprises a film cleaner, said transport mechanism being configured to feed said film past said film cleaner. 20 Optionally, said film cleaner is an absorbent pad positioned remotely from said printhead. Optionally, said cavity is open-ended at said second edge portion. Optionally, said ink transport assembly is moveable between a first position in which said 25 film is positioned in said transfer zone and a second position in which said film is positioned remotely from said transfer zone. In a further aspect there is provided a maintenance assembly, further comprising: (iii) a face flooding system for flooding ink from said printhead onto said ink 30 ejection face. Optionally, said face flooding system comprises a pressure system for positively pressurizing an ink reservoir supplying ink to said printhead.
WO 2007/041749 PCT/AU2005/001566 11 Optionally, said pressure system comprises a control system for controlling an amount and/or a period of pressure applied to said ink reservoir. Optionally, said printhead assembly further comprises a print media guide for guiding print 5 media past said printhead. Optionally, said print media guide is moveable between a media-guiding position and a retracted position. 10 Optionally, said print media guide is positioned on an opposite side of said printhead to said film guide. In a second aspect the present invention provides a method of maintaining a printhead in an operable condition, said method comprising the steps of: 15 (i) providing a printhead assembly, said printhead assembly comprising: a printhead having an ink ejection face, said face having a first edge portion and a second edge portion opposite said first edge portion; and a film guide sealingly bonded to said first edge portion, said film guide being positioned to guide a film through a transfer zone, said transfer zone being defined by a 20 plane spaced apart from said face; (ii) positioning at least part of a film in said transfer zone and in contact with said film guide, thereby forming a cavity defined at least partially by said film, said film guide and said face; and (iii) feeding said film through said transfer zone and away from said printhead, thereby 25 removing ink from said cavity, said film being fed in a directional sense which is from said first edge portion to said second edge portion. Optionally, said printhead is a pagewidth inkjet printhead. 30 Optionally, said first and second edge portions are longitudinal edge portions. Optionally, said film guide is comprised of a solid polymeric material.
WO 2007/041749 PCT/AU2005/001566 12 Optionally, said film guide encapsulates wire bonds extending from said first edge portion of said printhead. Optionally, said transfer zone is substantially parallel with said ink ejection face. 5 Optionally, said transfer zone is less than 2mm from said face. Optionally, said film is wetting. 10 Optionally, said film is an endless loop. Optionally, a width of said film is substantially coextensive with a length of said printhead. Optionally, said film is fed past a film cleaner after being fed through said transfer zone. 15 Optionally, said film cleaner is an absorbent pad positioned remotely from said printhead. Optionally, said cavity is open-ended at said second edge portion. 20 Optionally, said film is moveable between a first position in which said film is positioned in said transfer zone and a second position in which said film is positioned remotely from said transfer zone Optionally, said face is flooded with ink from said printhead prior to feeding said film 25 through said transfer zone. Optionally, said face is flooded by positively pressurizing an ink reservoir supplying ink to said printhead. 30 Optionally, an amount and/or a period of pressure applied to said ink reservoir is controlled. Optionally, said printhead assembly further comprises a print media guide for guiding print media past said printhead.
WO 2007/041749 PCT/AU2005/001566 13 Optionally, said print media is guide is moved out of a media-guiding position prior to positioning said film in said transfer zone. 5 Optionally, said print media is guide is moved into a media-guiding position after feeding said film through said transfer zone. In a third aspect the present invention provides a method of removing flooded ink from an ink ejection face of a printhead, said method comprising transferring said ink onto a film 10 moving past said face, wherein said film does not contact said face. Optionally, said film is guided past said face using a film guide. Optionally, at least part of said face, said film and said film guide form a cavity for 15 containing said ink. Optionally, said cavity is open-ended. Optionally, said printhead is a pagewidth inkjet printhead. 20 Optionally, said film guide is comprised of a solid polymeric material. Optionally, said film guide encapsulates wire bonds extending from said printhead. 25 Optionally, said film is moved past said face substantially parallel therewith. Optionally, said film is less than 2mm from said face. Optionally, said film is wetting. 30 Optionally, a width of said film is substantially coextensive with a length of said printhead. Optionally, said film is fed past a fihn cleaner after being fed past said face.
WO 2007/041749 PCT/AU2005/001566 14 Optionally, said film cleaner is an absorbent pad positioned remotely from said printhead. Optionally, ink is flooded across said face prior to moving said film past said face 5 Optionally, said face is flooded by positively pressurizing an ink reservoir supplying ink to said printhead. Optionally, an amount and/or a period of pressure applied to said ink reservoir is 10 controlled. In a fourth aspect the present invention provides a method of removing particulates from an ink ejection face of a printhead, said method comprising the steps of: (a) flooding said face with ink from said printhead, thereby dispersing said 15 particulates into said flooded ink; and (b) transferring said flooded ink, including said particulates, onto a film moving past said face, wherein said film does not contact said face. 20 Optionally, said film is guided past said face using a film guide. Optionally, at least part of said face, said film and said film guide form a cavity for containing said ink. 25 Optionally, said cavity is open-ended. Optionally, said printhead is a pagewidth inkjet printhead. Optionally, said film guide is comprised of a solid polymeric material. 30 Optionally, said film guide encapsulates wire bonds extending from said printhead. Optionally, said film is moved past said face substantially parallel therewith.
WO 2007/041749 PCT/AU2005/001566 15 Optionally, said film is less than 2mm from said face. Optionally, said film is wetting. 5 Optionally, a width of said film is substantially coextensive with a length of said printhead. Optionally, said film is fed past a film cleaner after being fed past said face. Optionally, said film cleaner is an absorbent pad positioned remotely from said printhead. 10 Optionally, said face is flooded with ink by positively pressurizing an ink reservoir supplying ink to said printhead. Optionally, an amount and/or a period of pressure applied to said ink reservoir is 15 controlled. In a fifth aspect the present invention provides a method of maintaining a printhead in an operable condition, said method comprising the steps of: (a) flooding an ink ejection face of said printhead with ink; and 20 (b) removing said ink by blasting air across said face. Optionally, said face is flooded by suction. Optionally, said suction purges nozzles in said printhead. 25 Optionally, a capper is sealingly engaged around said printhead during printhead maintenance. Optionally, said capper is disengaged from around said printhead during printing. 30 Optionally, said capper comprises a perimeter gasket for sealing engagement around said printhead.
WO 2007/041749 PCT/AU2005/001566 16 Optionally, said capper is in fluid communication with a vacuum system, said vacuum system flooding said face by generating a vacuum above said face. Optionally, said vacuum system comprises a vacuum pump. 5 Optionally, air is blasted through a blast channel adjacent said face. Optionally, said blast channel is defined by a constriction member spaced apart from said face, said constriction member constricting air flow across said face. 10 Optionally, said constriction member is substantially coextensive with said printhead. Optionally, said capper comprises a constriction member, said constriction member defining a blast channel adjacent said printhead when said capper is engaged around said 15 printhead. Optionally, air is blasted through said blast channel by releasing said vacuum to atmosphere. 20 Optionally, said capper is in fluid communication with an air inlet valve, said vacuum system, said constriction member and said air inlet valve cooperating to blast air through said blast channel. Optionally, said vacuum system and said air inlet valve are arranged to control a direction 25 of air flow through said blast channel. Optionally, said vacuum system further comprises a vacuum reservoir, said reservoir being charged before flooding of said face. 30 Optionally, said reservoir is discharged during air blasting. Optionally, said vacuum system further comprises an ink dump for receiving ink removed from said face during said air blast.
WO 2007/041749 PCT/AU2005/001566 17 Optionally, said vacuum system directs said removed ink into said ink dump during air blasting. Optionally, said printhead is a pagewidth inkjet printhead. 5 In a sixth aspect the present invention provides a printhead maintenance station for maintaining a printhead in an operable condition, said maintenance station comprising: a capper sealingly engageable around said printhead, said capper comprising a constriction member for defining a blast channel adjacent an ink ejection face of said 10 printhead; an air inlet valve in fluid communication with said capper; a vacuum system in fluid communication with said capper; and an engagement mechanism for moving said capper between a first position in which said capper is sealingly engaged around said printhead and a second position in 15 which said capper is disengaged from around said printhead. Optionally, said capper comprises a perimeter gasket for sealing engagement around said printhead. 20 Optionally, said vacuum system comprises a vacuum pump. Optionally, said vacuum system is configured for generating a vacuum above said face, said vacuum purging ink from printhead nozzles onto said face. 25 Optionally, in said first position, said constriction member is spaced apart from said face, thereby defining said blast channel. Optionally, said constriction member is spaced less than 0.5 mm from said face. 30 Optionally, said constriction member is substantially coextensive with said printhead. Optionally, said capper comprises an air inlet port and a vacuum port.
WO 2007/041749 PCT/AU2005/001566 18 Optionally, said vacuum system, said air inlet valve and said constriction member cooperate for blasting air through said blast channel, thereby removing ink from said face. Optionally, said vacuum system and said air inlet valve are arranged to control a direction 5 of air flow through said blast channel. Optionally, said printhead comprises a wire bond encapsulant along one edge, and said air flow buffets into said encapsulant. 10 Optionally, said air flows transversely across said face. Optionally, said vacuum system further comprises a vacuum reservoir. Optionally, said vacuum system is configured for charging said vacuum reservoir before 15 purging of said printhead nozzles. Optionally, said vacuum system is configured for discharging said vacuum reservoir during air blasting. 20 Optionally, said vacuum system further comprises an ink dump for receiving ink removed from said face during said air blasting. Optionally, said vacuum system is configured for directing said removed ink into said ink dump during air blasting. 25 Optionally, said printhead is a pagewidth inkjet printhead. In a seventh aspect the present invention provides a method of maintaining a printhead in an operable condition, said method comprising the steps of: 30 (i) providing a printhead maintenance station, said maintenance station comprising: a capper sealingly engageable around said printhead, said capper comprising a constriction member for defining a blast channel adjacent an ink ejection face of said printhead; a vacuum system in fluid communication with said capper; 35 an air inlet valve in fluid communication with said capper; and WO 2007/041749 PCT/AU2005/001566 19 an engagement mechanism for moving said capper between a first position in which said capper is sealingly engaged around said printhead and a second position in which said capper is disengaged from around said printhead; (ii) moving said capper into said first position such that said constriction member is 5 spaced apart from said face, thereby defining said blast channel; (iii) generating a vacuum over said face using said vacuum system, thereby purging ink from printhead nozzles onto said face; and (iv) opening said air inlet valve, thereby blasting air through said blast channel and removing ink from said face. 10 Optionally, the method comprising the further step of: (v) moving said capper into said second position. Optionally, the method comprising the further step of: 15 (vi) dabbing ink from around said printhead. Optionally, said capper comprises a perimeter gasket for sealing engagement around said printhead. 20 Optionally, said vacuum system comprises a vacuum pump. Optionally, said constriction member is spaced less than 0.5 mm from said face in said first position. 25 Optionally, said constriction member is substantially coextensive with said printhead. Optionally, said vacuum system and said air inlet valve are arranged to control a direction of air flow through said blast channel. 30 Optionally, said printhead comprises a wire bond encapsulant along one edge, and said air flow buffets into said encapsulant. Optionally, said air flows transversely across said face.
WO 2007/041749 PCT/AU2005/001566 20 Optionally, said vacuum system further comprises a vacuum reservoir. Optionally, said vacuum reservoir is charged prior to said purging. 5 Optionally, said vacuum reservoir is discharged during said air blasting. Optionally, said vacuum system further comprises an ink dump for receiving ink removed from said face during said air blasting. 10 Optionally, said vacuum system directs said removed ink into said ink dump during air blasting. Optionally, said printhead is a pagewidth inkjet printhead. 15 In an eighth aspect the present invention provides a printhead maintenance assembly comprising: a printhead; and a printhead maintenance station for maintaining said printhead in an operable condition, 20 said maintenance station comprising: a capper sealingly engageable around said printhead, said capper comprising a constriction member for defining a blast channel adjacent an ink ejection face of said printhead; an air inlet valve in fluid communication with said capper; 25 a vacuum system in fluid communication with said capper; and an engagement mechanism for moving said capper between a first position in which said capper is sealingly engaged around said printhead and a second position in which said capper is disengaged from around said printhead. 30 Optionally, said capper comprises a perimeter gasket for sealing engagement around said printhead. Optionally, said vacuum system comprises a vacuum pump.
WO 2007/041749 PCT/AU2005/001566 21 Optionally, said vacuum system is configured for generating a vacuum above said face, said vacuum purging ink from printhead nozzles onto said face. Optionally, in said first position, said constriction member is spaced apart from said face, 5 thereby defining said blast channel. Optionally, said constriction member is spaced less than 0.5 mm from said face. Optionally, said constriction member is substantially coextensive with said printhead. 10 Optionally, said capper comprises an air inlet port and a vacuum port. Optionally, said vacuum system, said air inlet valve and said constriction member cooperate for blasting air through said blast channel, thereby removing ink from said face. 15 Optionally, said vacuum system and said air inlet valve are arranged to control a direction of air flow through said blast channel. Optionally, said printhead comprises a wire bond encapsulant along one edge, and said air 20 flow buffets into said encapsulant. Optionally, said vacuum system further comprises a vacuum reservoir. Optionally, said vacuum system is configured for charging said vacuum reservoir before 25 purging of said printhead nozzles. Optionally, said vacuum system is configured for discharging said vacuum reservoir during air blasting. 30 Optionally, said vacuum system further comprises an ink dump for receiving ink removed from said face during said air blasting. Optionally, said vacuum system is configured for directing said removed ink into said ink dump during air blasting.
WO 2007/041749 PCT/AU2005/001566 22 Optionally, said printhead is a pagewidth inkjet printhead. Optionally, said printhead is mounted on a support. 5 Optionally, said capper is sealingly engageable with said support. Optionally, said support and said capper comprise complementary alignment features for locating said capper into said first position. 10 In a ninth aspect the present invention provides a capper for a printhead maintenance station, said capper comprising: a capping chamber sealingly engageable around a printhead; a constriction member positioned in said capper chamber, said constriction member 15 dividing said capper chamber into an air inlet channel and a vacuum channel, said constriction member also defining a blast channel adjacent an ink ejection face of said printhead when said capping chamber is sealingly engaged around said printhead; an air inlet defined in a wall of said capping chamber, said air inlet opening into said air inlet channel; and 20 a vacuum aperture defined in a wall of said capping chamber, said vacuum aperture opening into said vacuum channel. Optionally, said capping chamber comprises a perimeter gasket for sealing engagement around said printhead. 25 Optionally, said air inlet is in fluid communication with an air inlet valve. Optionally, said vacuum aperture is in fluid communication with a vacuum system. 30 Optionally, said vacuum system is configured for generating a vacuum above said face, said vacuum purging ink from printhead nozzles onto said face. Optionally, said constriction member is spaced apart from said face, thereby defining said blast channel, when said capping chamber is engaged around said printhead. 35 WO 2007/041749 PCT/AU2005/001566 23 Optionally, said constriction member is spaced less than 0.5 mm from said face. Optionally, said constriction member is substantially coextensive with said printhead. 5 Optionally, said vacuum system, said air inlet valve and said constriction member cooperate for blasting air through said blast channel, thereby removing ink from said face. Optionally, said vacuum system and said air inlet valve are arranged to control a direction of air flow through said blast channel. 10 Optionally, said printhead comprises a wire bond encapsulant along one edge, and said air flow buffets into said encapsulant. Optionally, capper further comprising an air inlet port and a vacuum port. 15 Optionally, said printhead is a pagewidth inkjet printhead. Optionally, said printhead is mounted on a support. 20 Optionally, said capping chamber is sealingly engageable with said support. Optionally, said capping chamber comprises at least one first alignment feature complementary with at least one second alignment feature on said support, said alignment 25 features locating said capping chamber into sealing engagement around said printhead. Brief Description of the Drawings Specific forms of the present invention will be now be described in detail, with reference to the following drawings, in which: 30 Figure 1 is a front perspective view of a capper and engagement mechanism for a printhead maintenance station according to the present invention; Figure 2 is a rear perspective view of the capper and engagement mechanism shown in Figure 1; Figure 3 is a tranverse section of the capper engaged with a printhead assembly; 35 Figure 4 is an enlarged view of the capper and printhead assembly shown in Figure 3; WO 2007/041749 PCT/AU2005/001566 24 Figure 5 is a schematic diagram of a fluidics system for the printhead maintenance station; Figure 6 is a schematic side view of a dabbing device; and Figure 7 is a transverse section of an alternative capper engaged with a printhead 5 assembly. Detailed Description of Specific Embodiments Referring to Figures 1 and 2, there is shown part of a printhead maintenance station 1 comprising a capper 2 and an engagement mechanism 3. The capper 2 takes the form of 10 an elongate capping chamber 4 having a perimeter gasket 5 fixed around one end. The capping chamber 4 with gasket 5 is configured to fit and form a seal around a pagewidth printhead 10 (see Figures 3 and 4). In the embodiment shown, the engagement mechanism 3 takes the form of a pantograph 6, which raises and lowers the capper 2 into sealing engagement and out of 15 engagement from around the printhead 10. The pantograph 6 is actuated using a motor 7, which raises and lowers the pantograph via a cam arrangement (not shown). Other types of engagement mechanism suitable for raising and lowering the capper 2 will, of course, be readily apparent to the person skilled in the art. Referring to Figures 3 and 4, the capper 2, engaged around the printhead 10, is 20 shown in more detail. The printhead 10 is mounted on an ink manifold 11, which supplies ink to a backside of the printhead. A wirebond encapsulant 13 is bonded to the ink manifold 11 and extends from one side of the printhead 10. The encapsulant 13 protects wirebonds, which connect CMOS circuitry in the printhead 10 to an external microprocessor (not shown). On an opposite side of the printhead 10, a paper guide 14 is 25 attached to the ink manifold 11. During printing, paper is guided over the paper guide 14 and ink is ejected from an ink ejection face 12 of the printhead 10 onto the paper via a plurality of inkjet nozzles (not shown). The capper 2 is disengaged when the printhead 10 is being used for printing. As shown in Figure 4, with the capper 2 in its engaged position, the perimeter 30 gasket 5 forms a seal around the printhead 10. Longitudinal sides 5A and 5B of the perimeter gasket 5 sealingly engage with the paper guide 14 and wirebond encapsulant 13 respectively. A constriction member 15 extends from a base 16 of the capping chamber 4 towards the printhead 10. The constriction member 15 divides the capper chamber 4 into WO 2007/041749 PCT/AU2005/001566 25 an air inlet channel 17 and a vacuum channel 18. With the capper 2 engaged around the printhead 10, the air inlet channel 17 and the vacuum channel 18 are in fluid communication via a constricted blast channel 19. The constriction member 15 and the ink ejection face 12 together define the width of the blast channel 19 therebetween. Typically, 5 the blast channel 19 has a width of about 0.2 mm. An air inlet 20 and a vacuum aperture 21 are defined in the base 16 of the capping chamber 4 and are connected to an air inlet port 22 and vacuum port 23 respectively. The air inlet 20 and vacuum aperture 21 open into the air inlet channel 17 and vacuum channel 18 respectively. 10 The air inlet port 22 is connected via hose to an air inlet valve 30, while the vacuum port 23 is connected via a hose.to a vacuum system 31. The air inlet valve 30 and vacuum system 31 cooperate with the capper 2 to purge and clean the printhead 10. The purging and cleaning operations are described in further detail with reference to Figure 5. Referring to Figure 5, the vacuum system 31 comprises a vacuum pump 32 15 connected to a vacuum reservoir 33. A check valve 34 between the vacuum pump 32 and the reservoir 33 ensures that the reservoir remains charged after the pump is switched off. The vacuum reservoir 33 is connected to the vacuum channel 18 in the capping chamber 4 via a vacuum line 37 and the vacuum port 23 (not shown in Figure 5). A first solenoid valve 35 and an ink dump 36 are positioned in the vacuum line 37 between the vacuum 20 reservoir 33 and the capping chamber 4. The air inlet valve 30 takes the form of a second solenoid valve 38, which is connected to the air inlet channel 17 in the capping chamber 4 via the air inlet port 20 (not shown in Figure 5). The air inlet valve 30 has an air intake 39, which may receive unfiltered or filtered air from the atmosphere. 25 At the beginning of a typical printhead maintenance operation, the vacuum reservoir 33, having a volume of about I to 1.5 litres, is initially charged with a vacuum. The vacuum reservoir 33 may be charged independently of the capper 2 by switching the first solenoid valve 35 to a charging position (not shown). The vacuum reservoir 33 may, for example, be charged during idle periods or during active printing when the capper 2 is 30 disengaged. The time period for charging the vacuum reservoir 33 may vary, depending on the size of the reservoir and the power of the pump 32. Typically, charging will last for a maximum of about 45 seconds, ensuring that the printhead can be regularly maintained or remediated.
WO 2007/041749 PCT/AU2005/001566 26 With the vacuum reservoir 33 charged, the capper 2 is engaged around the printhead 10 and the first solenoid valve 35 is opened to the vacuum reservoir, as shown in Figure 5. Since the capper 2 is sealed around the printhead 10, a negative pressure is generated above the ink ejection face 12 and, as a result, ink floods from printhead nozzles 5 onto the ink ejection face. Immediately after subjecting the printhead 10 to vacuum (e.g. after about 50 to 500 ins), the second solenoid valve 38 is opened. As a result, air is drawn into the air intake 39 and rushes from the air inlet channel 17 through to the vacuum channel 18 and on into the vacuum system 31. Air is blasted through the blast channel 19 at high velocity due to the 10 small gap (about 0.2 mm) between the constriction member 15 and the ink ejection face 12. Typically, the air flow rate through the blast channel 19 is about 5 to 7 litres per second, which ensures complete removal of flooded ink from the ink ejection face 12 of the printhead 10. Ink removed from the ink ejection face 12 by the air blast is deposited into the ink dump 36. 15 With the ink purging and cleaning operation complete, the vacuum reservoir 33 is recharged by the vacuum pump 32 in preparation for the next printhead maintenance cycle. After air blasting, any ink remaining on areas surrounding the ink ejection face 12 may be removed by a simple dabbing device. Figure 6 shows a dabbing device 40 comprising a microfibre film 41, which is fed between a pair of spools 42. The film 41 is 20 used to dab the paper guide 14 and wirebond encapsulant 13 after disengagement of the capper 2. After dabbing, the film 41 is advanced so that a clean portion of film is ready for subsequent dabbing. The printhead maintenance station 1 as described above may be used for maintaining any type of printhead in an operable condition. It is especially suitable for use 25 with pagewidth MEMS inkjet printheads, where it is desirable to avoid physical contact of the printhead with a cleaning device. An important aspect of the invention is alignment of the capper 2 with the printhead 10, so that constriction member 15 is accurately positioned to define the blast channel 19. Figure 7 shows an alternative printhead maintenance assembly 50, wherein the capper 2 30 and the printhead support have complementary alignment features for aligning the capper into position. Specifically, a locating pin 51 extends from a roof of the capping chamber 4, and engages with a complementary slot 52 in the paper guide 14. It will be appreciated that a plurality of such complementary alignment features may be provided to assist in aligning the capper 2 into its optimum maintenance position.
WO 2007/041749 PCT/AU2005/001566 27 It will, of course, be appreciated that the present invention has been described purely by way of example and that modifications of detail may be made within the scope of the invention, which is defined by the accompanying claims.

Claims (19)

1. A method of maintaining a printhead in an operable condition, said method comprising the steps of: 5 (a) flooding an ink ejection face of said printhead with ink; and (b) removing said ink by blasting air across said face, wherein air is blasted through a blast channel adjacent said face.
2. The method according to claim 1, wherein said face is flooded by suction. 10
3. The method of claim 2, wherein said suction purges nozzles in said printhead.
4. The method of claim 1, wherein a capper is sealingly engaged around said printhead during printhead maintenance. 15
5. The method of claim 4, wherein said capper is disengaged from around said printhead during printing.
6. The method of claim 4, wherein said capper comprises a perimeter gasket for 20 sealing engagement around said printhead.
7. The method of claim 4, wherein said capper is in fluid communication with a vacuum system, said vacuum system flooding said face by generating a vacuum above said face. 25
8. The method of claim 7, wherein said vacuum system comprises a vacuum pump.
9. The method of claim 1, wherein said blast channel is defined by a constriction member spaced apart from said face, said constriction member constricting air flow across 30 said face.
10. The method of claim 9, wherein said constriction member is substantially coextensive with said printhead. FNE005 29
11. The method of claim 7, wherein said capper comprises a constriction member, said constriction member defining a blast channel adjacent said printhead when said capper is engaged around said printhead. 5
12. The method of claim 11, wherein air is blasted through said blast channel by releasing said vacuum to atmosphere.
13. The method of claim 11, wherein said capper is in fluid communication with an air inlet valve, said vacuum system, said constriction member and said air inlet valve 10 cooperating to blast air through said blast channel.
14. The method of claim 13, wherein said vacuum system and said air inlet valve are arranged to control a direction of air flow through said blast channel.
15 15. The method of claim 11, wherein said vacuum system further comprises a vacuum reservoir, said reservoir being charged before flooding of said face.
16. The method of claim 15, wherein said reservoir is discharged during air blasting. 20
17. The method of claim 11, wherein said vacuum system further comprises an ink dump for receiving ink removed from said face during said air blast.
18. The method of claim 17, wherein said vacuum system directs said removed ink into said ink dump during air blasting. 25
19. The method of claim 1, wherein said printhead is a pagewidth inkjet printhead. FNE005
AU2005337421A 2005-10-10 2005-10-10 Method of maintaining a printhead using air blast cleaning Ceased AU2005337421B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/AU2005/001566 WO2007041749A1 (en) 2005-10-10 2005-10-10 Method of maintaining a printhead using air blast cleaning

Publications (2)

Publication Number Publication Date
AU2005337421A1 AU2005337421A1 (en) 2007-04-19
AU2005337421B2 true AU2005337421B2 (en) 2009-10-08

Family

ID=37942189

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005337421A Ceased AU2005337421B2 (en) 2005-10-10 2005-10-10 Method of maintaining a printhead using air blast cleaning

Country Status (6)

Country Link
EP (1) EP1945459B1 (en)
AT (1) ATE477933T1 (en)
AU (1) AU2005337421B2 (en)
CA (1) CA2619862C (en)
DE (1) DE602005023073D1 (en)
WO (1) WO2007041749A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362897A2 (en) * 1988-10-07 1990-04-11 Canon Kabushiki Kaisha Recording apparatus
US5559536A (en) * 1987-03-31 1996-09-24 Canon Kabushiki Kaisha Recovery device having a protruding portion providing reduced pressure for improved recovery and method using same
EP1005997A1 (en) * 1998-12-04 2000-06-07 Eastman Kodak Company A self-cleaning ink jet printer with reverse flow and method of assembling the printer
EP1077133A2 (en) * 1995-08-10 2001-02-21 Seiko Epson Corporation Ink jet printer
JP2003001858A (en) * 2001-06-25 2003-01-08 Canon Inc Ink jet recorder and recovery system unit thereof
JP2003326739A (en) * 2002-05-13 2003-11-19 Canon Inc Imaging apparatus and printing head replacement method
JP2004058348A (en) * 2002-07-26 2004-02-26 Brother Ind Ltd Inkjet printer
DE20318248U1 (en) * 2003-11-24 2004-02-26 Francotyp-Postalia Ag & Co. Kg Suction device to remove air and debris from nozzles of ink jet print head while removing minimum ink
US20040041875A1 (en) * 2002-08-29 2004-03-04 Canon Kabushiki Kaisha Ink jet recording apparatus
EP1470922A2 (en) * 2003-04-24 2004-10-27 Konica Minolta Medical & Graphic, Inc. Image recording apparatus
JP2005225163A (en) * 2004-02-16 2005-08-25 Seiko Epson Corp Liquid jet device and method of cleaning therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02108549A (en) * 1988-09-26 1990-04-20 Tektronix Inc Method and device for washing ink-jet-head

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5559536A (en) * 1987-03-31 1996-09-24 Canon Kabushiki Kaisha Recovery device having a protruding portion providing reduced pressure for improved recovery and method using same
EP0362897A2 (en) * 1988-10-07 1990-04-11 Canon Kabushiki Kaisha Recording apparatus
EP1077133A2 (en) * 1995-08-10 2001-02-21 Seiko Epson Corporation Ink jet printer
EP1005997A1 (en) * 1998-12-04 2000-06-07 Eastman Kodak Company A self-cleaning ink jet printer with reverse flow and method of assembling the printer
JP2003001858A (en) * 2001-06-25 2003-01-08 Canon Inc Ink jet recorder and recovery system unit thereof
JP2003326739A (en) * 2002-05-13 2003-11-19 Canon Inc Imaging apparatus and printing head replacement method
JP2004058348A (en) * 2002-07-26 2004-02-26 Brother Ind Ltd Inkjet printer
US20040041875A1 (en) * 2002-08-29 2004-03-04 Canon Kabushiki Kaisha Ink jet recording apparatus
EP1470922A2 (en) * 2003-04-24 2004-10-27 Konica Minolta Medical & Graphic, Inc. Image recording apparatus
DE20318248U1 (en) * 2003-11-24 2004-02-26 Francotyp-Postalia Ag & Co. Kg Suction device to remove air and debris from nozzles of ink jet print head while removing minimum ink
JP2005225163A (en) * 2004-02-16 2005-08-25 Seiko Epson Corp Liquid jet device and method of cleaning therefor

Also Published As

Publication number Publication date
DE602005023073D1 (en) 2010-09-30
ATE477933T1 (en) 2010-09-15
CA2619862A1 (en) 2007-04-19
EP1945459B1 (en) 2010-08-18
WO2007041749A1 (en) 2007-04-19
AU2005337421A1 (en) 2007-04-19
CA2619862C (en) 2011-09-20
EP1945459A4 (en) 2009-01-14
EP1945459A1 (en) 2008-07-23

Similar Documents

Publication Publication Date Title
US7413281B2 (en) Capper for a printhead maintenance station
US7384119B2 (en) Printhead maintenance station configured for air blast cleaning of printhead
US7401888B2 (en) Method of maintaining a printhead using maintenance station configured for air blast cleaning
US7506952B2 (en) Method of removing particulates from a printhead using film transfer
US7387358B2 (en) Printhead maintenance assembly configured for air blast cleaning
US20100271442A1 (en) Printer with foaming system for cleaning ejecting face
US8398202B2 (en) Inkjet printer with maintenance station having non-contact film
US7891760B2 (en) Printhead maintenance station incorporating a dabbing device
US7806502B2 (en) Printer arrangement with printhead and ink transport assembly
US7832828B2 (en) Maintenance station for printhead with laminar ink flow cleaning methodology
AU2005337421B2 (en) Method of maintaining a printhead using air blast cleaning
AU2005337425B2 (en) Printhead maintenance assembly with film transport of ink
US20080024546A1 (en) Printhead maintenance system comprising foaming system and foam transport assembly
US20080024545A1 (en) Method of removing particulates from a printhead using a liquid foam

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: ZAMTEC LIMITED

Free format text: FORMER OWNER WAS: SILVERBROOK RESEARCH PTY LTD

MK14 Patent ceased section 143(a) (annual fees not paid) or expired