AU2005239629B2 - Site Ultraviolet Radiation Exposure Planner - Google Patents

Site Ultraviolet Radiation Exposure Planner Download PDF

Info

Publication number
AU2005239629B2
AU2005239629B2 AU2005239629A AU2005239629A AU2005239629B2 AU 2005239629 B2 AU2005239629 B2 AU 2005239629B2 AU 2005239629 A AU2005239629 A AU 2005239629A AU 2005239629 A AU2005239629 A AU 2005239629A AU 2005239629 B2 AU2005239629 B2 AU 2005239629B2
Authority
AU
Australia
Prior art keywords
site
shade
user
planner
site planner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005239629A
Other versions
AU2005239629A1 (en
Inventor
John Stephen Greenwood
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Webshade Pty Ltd
Original Assignee
Webshade Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004906809A external-priority patent/AU2004906809A0/en
Application filed by Webshade Pty Ltd filed Critical Webshade Pty Ltd
Priority to AU2005239629A priority Critical patent/AU2005239629B2/en
Publication of AU2005239629A1 publication Critical patent/AU2005239629A1/en
Application granted granted Critical
Publication of AU2005239629B2 publication Critical patent/AU2005239629B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02E60/76
    • Y04S40/22

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

-27 A computer-enabled interactive site planner; said site planner adapted to the determination of solar radiation 5 exposure profiles in a shade audit for a user-specified location; said shade audit providing a determination of current risk of damage from ultraviolet radiation; said site planner further adapted to providing data on shade providing objects and strategies for reduction of exposure risk 10 appropriate to said user-specific location; said data including shade factors for assigning to shade providing objects, SHADE OBJECTS Tree - deciduous Tree - perenniaL Cover - shade cloth Cover - translucent Cover - opaque Dashed outline indicates new shade areas SHADE AUDIT SUMMARY Time .. Date . UVR intensity . Exposure Risk Area A Area B Area C Fig. 2

Description

PIo0G09 Regulation 3.10 AUSTRALIA Patents Act 1990 COMPLETE SPECIFICATION Invention Title SITE ULTRAVIOLET RADIATION EXPOSURE PLANNER The invention is described in the following statement, including the best method of performing it known to us Our Ref: 052043 -2 SITE ULTRAVIOLET RADIATION EXPOSURE PLANNER The present invention relates to interactive web and computer-based planning facilities and, more particularly, to a planning facility for the minimising of risk to health 5 through exposure to ultraviolet radiation (UVR). BACKGROUND There has been an increasing awareness in recent years of the deleterious effects of excessive exposure to UVR. 10 This is particularly so in Australia and New Zealand which have the highest incidence of skin cancer in the world. Unprotected exposure to UVR continues to be the single most important modifiable risk factor for skin cancer. Although strenuous efforts at education have achieved i5 changes in the behaviour of many groups, maximum protection from solar UVR can best be achieved through a combination of personal and environmental strategies, including the systematic modification of outdoor environments to provide solar-protective shade. 20 To be effective, shade-giving structures must adequately provide protection in a given location appropriate to the levels of solar radiation and to the use of that area. This involves expert analysis of the interplay of a range of factors, without which, measures 25 required to provide shade may well be ineffectual or not -3 taken at all, Competent and consistent expert analysis is however often difficult and expensive to obtain. It is an object of the present invention to address or at least ameliorate some of the above disadvantages. 5 Note: The term "comprising" (and grammatical variations thereof) is used in this specification in the inclusive sense of "having" or "including", and not in the exclusive sense of "consisting only of". 10 BRIEF DESCRIPTION OF INVENTION Accordingly, in a first broad form of the invention, there is provided a computer-enabled interactive site planner; said site planner adapted to the determination of solar 15 radiation exposure profiles in a shade audit for a user specified location; - said shade audit providing a determination of current risk of damage from ultraviolet radiation; said site planner further adapted to providing data on shade providing objects and strategies for reduction 20 of exposure risk appropriate to said user-specific location; said data including shade factors for assigning to shade providing objects.
-4 Preferably, said site planner comprises software for provision of said shade audit of said site at said user specified location. Preferably, said shade audit is adapted to assist a user of 5 said site planner to reduce said current risk. Preferably, said site planner provides to a remote user a solar radiation exposure profile for said user-specified location based on data input by said user over the internet, Preferably, elements of said site planner are down-loaded 10 via the internet by a user. Preferably, said site planner includes a database for retaining data relevant to said determination of solar radiation profiles and said shade structures; said data including solar radiation profile data, climatic data and 15 geographical site location data. Preferably, said databases include shade characteristics of vegetation and construction materials. Preferably, said characteristics includes details of use of said specific location. 20 Preferably, said site planner is adapted to providing a user with a site-planning template for a user-specified site, Preferably, said user is provided with scalable representations of a range of shade providing objects -5 arranged for "drag and drop" insertion into said site planning template. Preferably, said user is provided with a range of shade factors for assigning to said shade providing objects. 5 Preferably, said shade audit includes a protection level indicator based on configurations of said site planning template when submitted for evaluation by said user. Preferably, said protection level indicator includes protection levels for discreet areas identified within said 10 specific location, Preferably, said site planner provides data on placement of shade structures for said user-specified site. Preferably, said site planner provides links and information of suppliers of said shade providing objects. 15 Preferably, said site planner is adapted to provide an educational tool for conveying information on solar radiation effects and protection. Preferably, said educational tool includes interactive curriculum-based resources for school use. 20 Preferably, said site planner provides simulations of shade patterns cast by shade giving object at said use-specified site.
-6 Preferably, site planner is enabled to integrate factors including seasonal vegetation characteristics and slope of terrain in said. simulation. In another broad form of the invention, there is provided a 5 method for the determination by a user of levels of exposure to ultraviolet radiation associated with a user-specified site; said method including the steps of: a) providing a computer-enabled site planner to said user, 10 b) said user providing site location data to said site planner, c) said user providing data on existing structures and vegetation of said site to said site planner, wherein said site planner generates a shade audit 15 providing a determination of current risk of damage from ultraviolet radiation. Preferably, said site planner maintains databases with data relevant to ultraviolet radiation exposure as a function of characteristics of said user-specified site provided to said 20 site planner. Preferably, said site planner integrates data maintained in said databases with data provided for said user-specified site to produce a shade audit of said user-specified site.
-7 Preferably, a user of said site planner is provided with a virtual representation of said user-specified site and with means for modifying shade providing characteristics of said user-specified site. 5 BRIEF DESCRIPTION OF DRAWINGS Embodiments of the present invention will now be described with reference to the accompanying drawings 10 wherein: Figure 1 is a schematic representation of a web-enabled site planner according to a preferred embodiment of the invention. Figure 1A is a block diagram of hardware suitable for 15 implementing the planner of Fig 1. Figure 2 is an example of a display of a site planner template and shade audit. Figure 3 is an exemplary screen output of a first step in a planning sequence according to an embodiment of the 20 invention. Figure 4 is an exemplary screen output of a further step in a planning sequence according to an embodiment of the invention.
Figure 5 is an exemplary screen output of a further step in a planning sequence according to an embodiment of the invention. Figure 6 is an exemplary screen output of a further 5 step in a planning sequence according to an embodiment of the invention, Figure 7 is an exemplary screen output of a further step in a planning sequence according to an embodiment of the invention. 10 Figure 8 is a representation of a shade calendar according to a further embodiment of the present invention.. DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS An feature of embodiments of the present invention is 15 the provision of shade planning tools, which ultimately provide shade information and planning for shade providing structures which are both UVR protective and comfortable in use. There are four specific and measurable parts of climate 20 that influence human thermal comfort: (a) Air temperature. If the air temperature is too high for natural perspiration to provide cooling, it will cause discomfort from overheating, -9 (b) freeze can assist evaporation on the skin, conducive of providing comfort if a person is overheated, but discomfort if already cold. (c) Humidity. High humidity can prevent 5 perspiration so that even moderately high temperature combined with high humidity can lead to discomfort. (d) Direct sunlight or radiation can increase the perceived temperature by as much as 20 0 C, 10 thus leading to increased discomfort. Indirect radiation of reflective surfaces can also have this. To achieve shade protection from UVR yet still maintain a desired degree of human comfort, shade planning may be 15 divided into two categories of shade; "warm shade" and "cool shade". Warm shade needs to be provided when the temperature is cool, so that the sun's warmth and light are desirable while still requiring that UV radiation be excluded. This can be 20 achieved by various strategies, including the correct placement of clear polycarbonate sheeting, vegetation to create a north-facing courtyard and outdoor paving (with low UV reflectance) to absorb and radiate heat. Shelter screens can be used to block out cold winter winds - 10 Cool shade is required under hot conditions. Direct radiation may be blocked or reduced by blocking sunlight with woven cloth. Trees and plants evapotranspirate during the day, cooling the air around them as well as at least 5 partially blocking direct UV radiation. Shade structures may be required to shade paved areas and other surface which reflect UV radiation into an otherwise shaded area. Shade planning and shade structures should also take into account - the direction of prevailing summer breezes. 10 In many situations it will be required to plan shade - providing structures and features allowing a change over from warm shade to cool shade. First Preferred Embodiment 15 With reference to Fig. 1, a web-enabled site ultraviolet exposure planner 10 includes a site planner administering organization 11 maintaining databases 12 and server facilities 14 for the provision of a site planning service. The site planner may be accessed over the Internet 20 13 by users 16 for a fee. Users 16 may include individual home owners, schools, child minding centres, shade designers, shade suppliers, local government authorities and corporations as well as other public authorities overseeing public buildings and spaces.
-11 The site planning service 10 is directed at providing a user with analysis, educational and planning tools aimed at minimizing harm from UVR solar ultraviolet radiation (UVR), by promoting awareness of the risk, evaluating current risk 5 for a particular location or site, and providing tools for planning shade protection measures. For these purposes, the databases 12 maintained by the administering organization 11 include solar radiation profiles for the geographic area or areas for which the 10 service is provided. Solar radiation profiles will include such factors as radiation intensity and sun angles for a given set of geographical coordinates and for various times of the day and seasons of the year. The databases 12 will also contain climatic data for 15 integration with the solar profiles so as to provide estimates of comfort levels based on temporal, location and shade condition factors. Also maintained in databases 12, are shade providing characteristics of a range of shade providing objects. such 20 object will include specific types of tree and shrub species suited to particular areas together with the degree of shade offered at various times of the year. It may in conjunction contain data on best methods and times of planting and such -12 other information as may optimise the use of such shade providing vegetation. Characteristics of other shade providing objects may be maintained in databases 12, and may include details of 5 various types of shade cloth, translucent panelling and other shade providing construction materials. Information may also be held on the suppliers of these materials for a given locality of a user. An important component of a preferred embodiment of the 10 site planner 10, is an educational facility provided by the educational rodulesi. These are particularly adapted for school use and are structured where possible to reflect parts of the school curriculum as it addresses issues of climate and personal health and safety. In particular these 15 modules may provide interactive facilities where students can create situations of exposure, such as for example time spent at a beach in their area at a given time of the year. The module may then provide a risk factor in conjunction for example with statistical data on deleterious health effects 20 and strategies for exposure risk minimization. In at least one preferred form of the invention, the educational modules incorporate an inter-active shade planning game. Students, or other users such as workers in trades with high exposure risk, can simulate various -13 patterns of site usage and determine their cumulative UVR exposure. To use the site planner 10 for a shade audit or as a shade planning tool, a user 16 will firstly provide a number 5 of inputs 18 which will include the specific site location for which an audit or planning is required. This may be input to the site planner 10 in various ways. For example, the provision of an address in a city may be translated directly into its geographical coordinates by suitable 10 software resident on the administering organization server. Alternatively, a portion of a map of the user's locality may be displayed with the user invited to point and click on the building or space under consideration. This input is then converted by the site planner into geographical coordinates. 15 In at least one preferred form of the site planner, the planner uses the geographical coordinates -to call up a section of a satellite image from a satellite imagery provider 20, such as for example Google Earth, which will include the user's location. In this preferred embodiment 20 image processing software may be used to identify and delineate as a line drawing the outlines of built structures and major vegetation on the user's site.
-14 Alternatively, the user may be asked to trace such details on the satellite image displayed and the site planner software translate such tracing into a line drawing. In either process, the line drawing produced serves as 5 a site planning template for the audit or shade planning operation. Before a shade audit can be made, the user will be requested to input estimates of the heights of various features such as trees and built structures, and provide an indication of the slope of the site. Alternatively, as the 10 technology allows, altimetry data for these features may be extracted from the satellite imagery. Some additional data may be requested from the user, such as the nature of the trees, species if known, or whether deciduous or perennial, as well as the nature of any 15 light transmitting covered areas. Also, the user may be invited to nominate certain details of the use of the site, for example if it is a school, the outdoor areas occupied by students, and for what periods of time students are in those areas. 20 Once the site template is complete, the user can request a shade audit. The site planner then integrates the data provided with the sun radiation profile, climatic information, and shade characteristics of any trees and other shade giving items- maintained in the databases, to - 15 assess the various areas within the site for the degree -of UVR exposure. This information may be tabulated for various times of the day and for different seasons of the year. Risk assessment information based on lengths of exposure may also 5 be provided as well as a "comfort" rating based on the typical climatic conditions at a given time. Fig. 2 shows an example of a site template and shade audit displayed on a screen for viewing by a user. The audit then serves as a base line against which the 10 need for any introduction of shade providing objects may be assessed. The audit will assist the user to assess if additional shade is required. This allows the user to make planning decisions which would otherwise be in the domain of expert consultants. The site planner may set out a target 15 shade audit result to which a user may aspire in seeking to reduce the exposure risk of the site as revealed by the audit. For a site planning exercise following an audit, a user is again presented with the site planning template. Along 20 with a display of the site planning template, the user is presented with a pallet of shade providing objects. These will include representations of trees, pergolas and awnings for example. These objects will be scalable by the user and may be placed as desired within the template to create a - 16 virtual representation of shade-related modifications of the site. Thus modified, a new iteration of the audit can be performed and compared with the result of the base line audit. The user can continue to make changes to the template 5 until a shade audit is achieved such that all high risk areas are reduced to at least medium risk. The software of the site planner assists the user to reduce the risks of UVR damage to people by increasing shade at the site. Currently, this is the domain expert consultants who operate witho'Ut 10 specifically designed shade planning software tools. As well as providing a shade audit and shade planning tools, the software of the site planner enables a user to simulate the shade conditions of a site for a given time or over a time interval. The software can indicate the shadows 15 cast at a site on a daily or annual basis, taking into account the seasonal variation of the vegetation and the slope of the terrain. Second Preferred Embodiment In a second preferred embodiment of the invention, the 20 site planning exercise is primarily performed by means of site planning software resident on a local user's personal computer (PC). This software may be loaded to the PC either by downloading from the Administering Organization Internet web site on payment of a fee, or by purchasing a suitable -17 storage medium, for example a compact disc, to which the software has been written by the Organization. As shown in Figure 1A, the application program may be written to a compact disc 22 and loaded to memory 23 of a PC 24. 5 Two versions of the software are envisioned; firstly an interactive version which is enabled to access data from the Administering Organization Internet web site, and a somewhat more limited in flexibility version, being self contained without the facility to access the Organization's 10 web site. The two versions each provide interactive shade planning and information. Shade Design Module. The shade design module provides general information on the planning and design of a shade project including 15 information on built and natural shade providing elements as well as specific shade issues for particular areas, such as around the home, child care centres, parks, swimming pools. It also provides information on aspects of climate and how climatic factors affect comfort and how shade design can 20 ensure both protection from UV radiation and provide comfort. Shade Modeller -18 The shade modeller is an interactive tool which allows iterative testing of "virtual" shade options in relation to a particular site at various times of the day and year. The site location, which can be input either as an address or as 5 geographic coordinates, allows the software to display shade patterns from site details provided by a user. Figures 3 to 7 illustrate an example of an iterative shade planning sequence for a particular area, in this example, a proposed child's sand pit. 10 The software provides for a layout of a surface area, preferably as a grid with one metre intervals, and drawing tools allowing a user to superimpose on the grid area features relevant to the shade plan. Thus as can be seen in Figure 3, as well as an indication of true north 30 relative 15 to the site, an outline of the proposed sand pit 32 a path 34, the corner of a building 36 and two nearby trees 38 have been drawn approximately to scale. A dialogue box 40 is available for the user to add salient information of the tree cover. 20 As shown in Figure 4, the user is then invited to nominate the height of a cover over the sand pit 32. This could be entered as an average height for the whole of the cover in dialogue box or, various heights may be nominated by "clicking" on individual corners 44.
-19 In a next step, as shown in Figure 5, a dialogue box 46 invites entry of time of day and year, which then triggers the software to indicate the projected shade areas 50. It is then clear to the user if this shade is adequate to protect 5 the nominated area of the sand pit 32. The software analyses the shade area and provides advice 52 that the shade is inadequate. The user is then offered the option to modify the area 54 and heights of the shade structure until an, adequate shade result is achieved as shown in Figure 6. 10 The software further provides the option to now test how the proposed shade structure will function at other times of the day and year by changing the time of day and/or time of year in the provided dialogue box 46; for example in winter when it may be desirable to have at least some' 15 sunlight reaching the sand pit area, as shown in Figure 7. Shade Audit The shade audit module of the software allows a user to assess the shade needs of a particular site against site usage. It does this from a number of user-defined inputs 20 including any existing shade providing structures and vegetation together with usage patterns of the site. Usage patterns will include details of the timing, duration and location of outdoor activities. Use of the shade audit can help prevent dangerous levels of exposure to UV radiation by -20 changing the way the site is used, making better use of existing shade and by indicating where new or additional shade should be provided. User-supplied details for the shade audit module are 5 entered on a Site Observation guide, downloaded and printed from the Administering organization web site or made available from the stand-alone version of the software on a PC. The geographic location, relation to true north, physical layout and features of the site and details of 10 usage, including the times of day and year, and the outdoor areas used are recorded. Using drawing tools provided by the software, a detailed drawing of the site is prepared, showing in outline all existing structures, shade providing vegetation and 15 their heights, Also outlined on the drawing are particular areas of usage and activities, in particular areas where users spend significant periods in the open. The software can then be used to generate shade patterns for various selected times of the day and year and provide UV radiation 20 risk rating and the amount of extra shade required to reduce the risk to acceptable levels. Shade Calendar Figure 8 is a representation of a shade calendar for a selection of locations in the southern hemisphere. The shade -21 calendar is for use with the exposure planner of the invention showing the typical apparent air temperature for a given month and the related UV radiation index value. It serves to link a local climate to the shade requirements of 5 a user over the period of a calendar year, indicating the level of shade required to maintain TV radiation exposure within acceptable limits. In particular, the shade calendar distinguishes between periods requiring cool shade in which sunlight and UV 10 radiation are blocked, warm shade which allows exposure to sunlight but not to LV radiation, and no shade, when exposure to direct sunlight is not harmful. Periods of "no shade" are mainly restricted to the higher latitudes. The software determines the various categories of shade 15 indicated by the calendar based on a climate index of "apparent temperature", which combines the effects of temperature, humidity and prevailing wind patterns on human comfort with the UV radiation index. 20 The above describes only some embodiments of the present invention and modifications, obvious to those skilled in the art, can be made thereto without departing from the scope and spirit of the present invention.

Claims (23)

1. A computer-enabled interactive site planner; said site planner adapted to the determination of solar radiation exposure profiles in a shade audit for a user-specified location; said shade audit providing a determination of current risk of, damage from ultraviolet radiation; said site planner further adapted to providing data on shade providing objects and strategies for reduction of exposure risk appropriate to said user-specific location; said data including shade factors for assigning to shade providing objects.
2. The site planner of claim 1 wherein said site planner comprises software for provision of a said shade audit of a said site at said user-specified location.
3. The site planner of any previous claim wherein said shade audit is adapted to assist a user of said site planner to reduce said current risk.
4. The site planner of any previous claim wherein said site planner provides to a remote user a solar radiation exposure profile for said user- 23 specified location based on data input by said user over the internet.
5. The site planner of any previous claim wherein elements of said site planner are down-loaded via the internet by a user.
6, The site planner of any previous claim wherein said elements of said site planner are installed to a user's computer from media; said media including a compact disc.
7. The site planner of any previous claim wherein said site planner includes a database for retaining data relevant to said determination of solar radiation profiles and said shade structures; said data including solar radiation profile data, climatic data and geographical site location data,
8. The site planner of any previous claim wherein said databases include shade characteristics of vegetation and construction materials.
9. The site planner of any previous claim wherein said characteristics includes details of use of said specific location.
10. The site planner of any previous claim wherein said site planner is adapted to providing a user 24 with a site-planning template for a user specified site.
11. The site planner of any previous claim wherein said user is provided with scalable representations of a range of shade providing objects arranged for "drag and drop" insertion into said site planning template,
12. The site planner of any previous claim wherein said user is provided with a range of shade factors for assigning to said shade providing objects.
13. The site planner of any previous claim wherein said shade audit includes a protection level indicator based on configurations of said site planning template when submitted for evaluation by said user.
14. The site planner of any previous claim wherein said protection level indicator includes' protection levels for discreet -areas identified within said specific location.
15 . The site planner of any previous claim wherein said site planner provides links and information of suppliers of said shade providing objects. 25
16 . The site planner of any previous claim wherein said site planner is adapted to provide an educational tool for conveying information on solar radiation effects and protection; said educational tool including interactive curriculum-based resources for school use.
17. The site planner of any previous claim wherein said site planner provides simulations of shade patterns cast by shade giving object at said use specified site.
18 . The site planner of any previous claim wherein said site planner is enabled to integrate factors including seasonal vegetation characteristics and slope of terrain in said simulation.
19, A method for the determination by a user of levels of exposure to ultraviolet radiation associated with a user-specified site; said method including the steps of: a) providing a computer-enabled site planner to said user, b) said user providing site location data to said site planner, 26 c) said user providing data on existing structures and vegetation of said site to said site planner, wherein said site planner generates a shade audit providing a determination of current risk of damage from ultraviolet radiation.
20. The method of claim 20 wherein said site planner maintains databases with data relevant to ultraviolet radiation exposure as a function of characteristics of said user-specified site provided to said site planner.
21. The method of claim 20 wherein said site planner integrates data maintained in said databases with data provided for said user-specified site to produce a shade audit of said user-specified site.
22. The method of claim 20 wherein a user of said site planner is provided with a virtual representation of said user-specified site and with means for modifying shade providing characteristics of said user-specified site.
23. A site planner as hereinbefore particularly described with reference to what is shown in any one of Figs 1, 1A, 2 to 8.
AU2005239629A 2004-11-29 2005-11-28 Site Ultraviolet Radiation Exposure Planner Ceased AU2005239629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005239629A AU2005239629B2 (en) 2004-11-29 2005-11-28 Site Ultraviolet Radiation Exposure Planner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2004906809 2004-11-29
AU2004906809A AU2004906809A0 (en) 2004-11-29 Web Enabled Site Planner
AU2005239629A AU2005239629B2 (en) 2004-11-29 2005-11-28 Site Ultraviolet Radiation Exposure Planner

Publications (2)

Publication Number Publication Date
AU2005239629A1 AU2005239629A1 (en) 2006-06-15
AU2005239629B2 true AU2005239629B2 (en) 2011-08-18

Family

ID=36616568

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005239629A Ceased AU2005239629B2 (en) 2004-11-29 2005-11-28 Site Ultraviolet Radiation Exposure Planner

Country Status (1)

Country Link
AU (1) AU2005239629B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325321A (en) * 2000-05-15 2001-11-22 Sekisui House Ltd Method for sunshine evaluation by cg image and recording medium
JP2002139576A (en) * 2000-11-06 2002-05-17 Sekisui House Ltd Sun shadow display system and its display method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325321A (en) * 2000-05-15 2001-11-22 Sekisui House Ltd Method for sunshine evaluation by cg image and recording medium
JP2002139576A (en) * 2000-11-06 2002-05-17 Sekisui House Ltd Sun shadow display system and its display method

Also Published As

Publication number Publication date
AU2005239629A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
Liu et al. Heat mitigation benefits of urban green and blue infrastructures: A systematic review of modeling techniques, validation and scenario simulation in ENVI-met V4
Morello et al. Sunscapes:‘Solar envelopes’ and the analysis of urban DEMs
Bosselmann et al. Sun, Wind, and Comfort A Study of Open Spaces and Sidewalks in Four Downtown Areas
Masmoudi et al. Relation of geometry, vegetation and thermal comfort around buildings in urban settings, the case of hot arid regions
Liu et al. Evaluating the impact of tree morphologies and planting densities on outdoor thermal comfort in tropical residential precincts in Singapore
Othman et al. Field study of pedestrians’ comfort temperatures under outdoor and semi-outdoor conditions in Malaysian university campuses
Tseliou et al. Evaluating the effects of different mitigation strategies on the warm thermal environment of an urban square in Athens, Greece
Antoniadis et al. Evaluation of thermal perception in schoolyards under Mediterranean climate conditions
de Quadros et al. Urban green infrastructures to improve pedestrian thermal comfort: A systematic review
Yang et al. The impact of tree species and planting location on outdoor thermal comfort of a semi-outdoor space
Ghaffour et al. Analysis of urban thermal environments based on the perception and simulation of the microclimate in the historic city of Tlemcen
Yasumoto et al. Virtual city models for assessing environmental equity of access to sunlight: a case study of Kyoto, Japan
Tochaiwat et al. The potential of a tree to increase comfort hours in campus public space design
Peng et al. Identifying the optimal travel path based on shading effect at pedestrian level in cool and hot climates
Abaas et al. Towards local sustainability: A case study to evaluate outdoor urban spaces in Baghdad using physiological equivalent temperature index
US8396692B2 (en) Site ultraviolet radiation exposure planner
Klemm Clever and cool: generating design guidelines for climate-responsive urban green infrastructure
AU2005239629B2 (en) Site Ultraviolet Radiation Exposure Planner
Yang et al. High-Rise Urban Form and Microclimate
Yang et al. High-Rise Urban Form and Microclimate: Climate-Responsive Design for Asian Mega-Cities
Elshafei et al. Green building outdoor thermal comfort in hot-desert climatic region
Mutaz et al. Introduction to Methods for Simulating Urban Heat‎ Islands: Subject Review
Qi et al. Influence of university campus spatial morphology on outdoor thermal environment: A case study from Eastern China
Dhir Evaluation of urban heat island effect in Cybercity, New Delhi using a 3D urban microclimate model: Envi-Met
Aleksandrowicz et al. A Parametric Tool for Outdoor Shade Design: Harnessing Quantitative Indices and Visual Feedback for Effective and Efficient Climatic Design of Streets

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired