AU2005232275B2 - Telescope with integral printer - Google Patents

Telescope with integral printer Download PDF

Info

Publication number
AU2005232275B2
AU2005232275B2 AU2005232275A AU2005232275A AU2005232275B2 AU 2005232275 B2 AU2005232275 B2 AU 2005232275B2 AU 2005232275 A AU2005232275 A AU 2005232275A AU 2005232275 A AU2005232275 A AU 2005232275A AU 2005232275 B2 AU2005232275 B2 AU 2005232275B2
Authority
AU
Australia
Prior art keywords
telescope
image
printhead
pct
print
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005232275A
Other versions
AU2005232275A1 (en
Inventor
Janette Faye Lee
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silverbrook Research Pty Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPS1752A external-priority patent/AUPS175202A0/en
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Publication of AU2005232275A1 publication Critical patent/AU2005232275A1/en
Application granted granted Critical
Publication of AU2005232275B2 publication Critical patent/AU2005232275B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Description

TELESCOPE WITH INTEGRAL PRINTER FIELD OF THE INVENTION The following invention relates to a device having an in-built image sensor and an internal print engine, and, more particularly, to a telescope having an internal printer.
BACKGROUND OF INVENTION Conventional telescopes include a lens or sequence of lenses and an eyepiece through which a person can view a remote object. It is known to attach a camera to a telescope in order to take a photograph of a remote object Moreover, it would be beneficial for amateur astronomers, bird watchers, mariners and any other person wishing to use a telescope if a permanent printed record of what has been viewed could be made, instantaneously and inexpensively.
CO-PENDING APPLICATIONS Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending applications filed by the applicant or assignee of the present invention simultaneously with the present application: PCTIAU03/00 154 PCT/AU03/00 153 PCT/AU03OO 170 PCT/AU03/00 171 147 PCT/AUO3/00 165 PCT/AU03/00156 PCT/AUO3/001 51 PCT/AUO3/00 152 PCT/AUO3/00 162 PCT/AUO3/00 149 PCT/AUO3/00 166 PCT/AUO3/00 160 PCT/AUO3/00 155 PCT/AU03/00 150 PCT/AU03/00 168 PCT/AUO3/0146 PCT/AUO3/00 167 PCT/AU03/00 164 PCT/AU03/00 157 PCT/AU03/00145 PCTVAU03/00 169 PCT/AU03100 159 PCT/AUO3/00 158 PCT/AUO3/0O 163 PCT/AUO3/00148 The disclosures of these co-pending applications are incorporated herein by cross-reference. Each application is temporarily identified by its file reference.
RELATED PATENT APPLICATIONS AND PATENTS US6,227,652 US6,2 13,588 US6,2 13,589 US6,247,795 US6,394,58 1 US6,244,69 1 US6,416,168 US6,220,694 US6,257,705 US6,234,610 US6,247,793 US6,264,306 US6,247,792 US6,264,307 US6,254,220 US6,302,528 US6,283,582 US6,239,82 1 US6,247,796 US6,557,977 US6,390,603 US6,293,653 US6,3 12,107 US6,227,653 US6,23 8,040 US6, 188,415 US6,22 7,654 US6,247,79 1 US6,336,7 10 US6,2 17,153 US6,243,1 13 US6,283,581 US6,247,790 US6,23 1,163 US6,25 7,704 US6,247,794 US6,24 1,342 US6,234,61 1 US6,338,547 US6,362,843 US6,234,609 US6,209,989 US6,416, 167 US6,260,953 APi 38-AU US6,267,469 US6,443,558 US6,634,735 US6,604,8 10 US6,457,810 US6,246,970 US6,578,832 USO9/607,985 US6,238,044 US6,612,110 US6,426,014 US09/556,2 18 US6,328,43 1 US6,464,332 US6,322,194 US09/608,780 US6,854,825 US6,609,787 PCT/AU00/005 16 PCT/AUOO/00755 PCT/AUOO/00 172 PCT/AUOO/00341 PCT/AU00/00587 PCT/AUOO/00593 PCT/AU0O/00584 PCT/AUOO/00750 PCT/AU01/01318 PCT/AUOO/0 1516 PCT/AUO2/01 120 PCT/AUO1/00140 PCT/AUO 1/01323 PCT/AUOO/00597 US6,273,544 US6,439,689 US6,755,513 US 6,318,920 US6,485,135 US6,442,525 US6,795,215 US6,398,332 US6,425,661 US6,480,089 US6,364,453 US6,3 15,399 US6,328,425 US6,390,591 US6,382,779 US6,428,139 US6,428,142 US6,439,908 PCT/AUOO/005 17 PCT/AU0O/00756 PCT/AUOO/00338 PCT/AUOO/0058 1 PCT/AU0O/00588 PCT/AUOO/00590 PCT/AUOO/00585 PCT/AUOO/0075 1 PCT/AU0O/0 1513 PCT/AUOO/01 517 PCT/AUOO/00333 PCT/AUOO/00753 PCT/AU0O/00594 PCT/AUOO/00598 US6,309,048 US6,378,989 US6,409,323 US6,488,422 US6,566,858 USO9/505,95 1 US09/575, 109 US6,394,573 US6,390,605 US6,460,778 US6,457,795 US6,338,548 USO9/575,127 US09/575,152 US6,629,745 US6,575,549 US6,565,193 US6,684,503 PCT/AUOO/005 11 PCT/AUOO/00757 PCT/AUOO/00339 PCT/AUOO/00580 PCT/AUO0/00589 PCT/AUOO/0059 1 PCT/AUOO/00586 PCT/AUOO/00752 PCT/AUOO/01514 PCT/AUOO/0 1512 PCT/AUO1/00141 PCT/AUO1/01321 PCT/AUOO/00595 PCT/AUOO/00741 US6,420, 196 US6,848,181 US6,28 1,912 US6,655,786 US6,33 1,946 US 6,816,968 US6,859,289 US6,622,923 US6,322,195 US6,305,788 US6,595,624 US 6,540,319 US6,383,833 US6,328,417 US6,417,757 USO9/693,079 US6,609,786 PCT/AU98/00550 PCT/AUOO/00754 PCT/AUOO/00095 PCT/AUOO/00340 PCT/AUOO/00582 PCT/AUOO/00583 PCT/AUOO/00592 PCT/AUOO/00749 PCT/AUO1/01332 PCT/AUOO/01 515 PCT/AUO 1/00502 PCT/AUO 1/00139 PCT/AUO1/01322 PCT/AUOO/00596 PCT/AUOO/00742 DICLOSURE OF THE RNVENTON In accordance with the invention, there is provided a telescope having an image sensor for sensing an optical image received optically by the telescope, a built-in printer for receiving the sensed image and printing a graphic image corresponding to the optical image and a display for receiving the sensed image and displaying an image corresponding to the optical image to a user.
Preferably, the telescope includes a print engine controller for receiving the sensed image data and controlling a printhead of the printer to print the graphic data based on the sensed image.
APi 38-AU In a preferred embodiment, the telescope includes: (71 a micro-control circuit operatively connected to the print engine controller to control a motor driver Sfor print media transportation; and Z a motor driver for operating a guillotine motor to sever a printed image from a roller of print media.
Preferably, the telescope includes image memory associated with the print engine controller.
It is also preferred that the telescope further include image enhancement circuitry for enhancing the image data prior to printing.
V' Preferably, the printhead is a pagewidth printhead, and more preferably is an inkiet printhead.
~In a preferred embodiment, the printer includes a print engine assembly comprising first and second S 10 sub-assemblies, the first sub-assembly incorporating an ink source and print media, and the second sub- Sassembly incorporating a printhead.
In a preferred form, the telescope includes a longitudinal body through which passes at least some of K the optical path of light entering the telescope, and a slot extending along the body through which the graphic image is, in use, dispensed.
In a particularly preferred embodiment, the printer includes a source of print media, configured such that the print media moves in a print path that is generally orbital about an axis of the body of the printer.
BRIEF DESCRIPTION OF THE DRAWINGS A preferred and exemplary embodiment of the invention will now be described with reference to the accompanying drawings, in which:- Figure 1 shows a three dimensional view of a print engine, including components in accordance with the invention; Figure 2 shows a three dimensional, exploded view of the print engine; Figure 3 shows a three dimensional view of the print engine with a removable print cartridge used with the print engine removed; Figure 4 shows a three dimensional, rear view of the print engine with the print cartridge shown in dotted lines; Figure 5 shows a three dimensional, sectional view of the print engine; Figure 6 shows a three dimensional, exploded view ofa printhead sub-assembly of the print engine; Figure 7 shows a partly cutaway view of the printhead sub-assembly; Figure 8 shows a sectional end view of the printhead sub-assembly with a capping mechanism in a capping position; Figure 9 shows the printhead sub-assembly with the capping mechanism in its uncapped position; Figure 10 shows an exploded, three dimensional view of an air supply arrangement of the print engine; Figure 11 is a schematic block diagram of components incorporated into a telescope having a built-in printer; and Figure 12 is a schematic perspective view of a telescope having an in-built printer.
AP138-AU DESCRIPTION OF THE PREFERRED EMBODIMENT In Figures 1 to 10 of the accompanying drawings, reference numeral 500 generally designates a print engine, in accordance with the invention. The print engine 500 includes a print engine assembly 502 on which Z a print roll cartridge 504 is removably mountable.
The print cartridge 504 is described in greater detail in our co-pending applications entitled "A Print Cartridge" (docket number CA02) and "An Ink Cartridge" (docket number CA04) filed as International Patent Application numbers PCT/AU00/00741 and PCT/AU00/00742 respectively, the contents of which are specifically incorporated herein by cross reference.
The print engine assembly 502 comprises a first sub-assembly 506 and a second, printhead sub- (cf 10 assembly 508.
t The sub-assembly 506 includes a chassis 510. The chassis 510 comprises a first molding 512 in which ink supply channels 514 are molded. The ink supply channels 514 supply inks from the print cartridge (Ni 504 to a printhead 516 (Figures 5 to 7) of the printhead sub-assembly 508. In the preferred embodiment, the printhead 516 prints in four colors or three colors plus ink which is only visible in the infrared spectrum (hereinafter referred to as 'infrared ink'). Accordingly, four ink supply channels 514 are defined in the molding 512 together with an air supply channel 518. The air supply channel 518 supplies air to the printhead 516 to inhibit the build up of foreign particles on a nozzle guard of the printhead 516.
The chassis 510 further includes a cover molding 520 that supports a pump 522. The pump 522 is a suction pump, configured to draw air through an air filter in the print cartridge 504 via an air inlet pin 524 and an air inlet opening 526. Air is expelled through an outlet opening 528 into the air supply channel 518 of the chassis 510.
The chassis 510 further supports a first drive motor in the form of a stepper motor 530 that drives the pump 522 via a first gear train 532. The stepper motor 530 is also connected to a drive roller 534 (Figure 5) of a roller assembly 536 of the print cartridge 504 via a second gear train 538. The gear train 538 engages an engageable element 540 (Figure 2) carried at an end of the drive roller 534. The stepper motor 530 thus controls the feed of print media 542 to the printhead 516 of the sub-assembly 508 to enable an image to be printed on the print media 542 as it passes beneath the printhead 516. It also to be noted that, as the stepper motor 530 is only operated to advance the print media 542, the pump 522 is only operational to blow air over the printhead 516 when printing takes place on the print media 542.
The molding 512 of the chassis 510 also supports a plurality of ink supply conduits in the form of pins 544 which are in communication with the ink supply channels 514. The ink supply pins 544 are received through an elastomeric collar assembly 546 of the print cartridge 504 for drawing ink from ink chambers or reservoirs 548 (Figure 5) in the print cartridge 504 to be supplied to the printhead 516.
A second motor 550, which is a DC motor, is supported on the cover molding 520 of the chassis 510 via clips 552. The motor 550 is provided to drive a separating means in the form of a cutter arm assembly 554 to part a piece of the print media 542, after an image has been printed thereon, from a remainder of the print media. The motor 550 carries a bevelled gear 556 on an output shaft thereof. The bevelled gear 556 meshes with a bevelled gear 558 carried on a worm gear 560 of the cutter assembly 554. The worm gear 560 is rotatably supported via bearings 562 in a chassis base plate 564 of the printhead sub-assembly 508.
AP1 38-AU The cutter assembly 554 includes a cutter wheel 566, which is supported on a resiliently flexible arm 568 on a mounting block 570. The worm gear 560 passes through the mounting block 570 such that, when the O worm gear 560 is rotated, the mounting block 570 and the cutter wheel 566 traverse the chassis base plate Z 564. The mounting block 570 bears against a lip 572 of the base plate 564 to inhibit rotation of the mounting S 5 block 570 relative to the worm gear 560. Further, to effect cutting of the print media 542, the cutter wheel 566 bears against an upper housing or cap portion 574 of the printhead sub-assembly 508. This cap portion 574 is a metal portion. Hence, as the cutter wheel 566 traverses the capped portion 574, a scissors-like cutting action is imparted to the print media to separate that part of the print media 542 on which the image has been printed.
The sub-assembly 506 includes an ejector mechanism 576. The ejector mechanism 576 is carried on Cc 10 the chassis 510 and has a collar 578 having clips 580, which clip and affix the ejector mechanism 576 to the tn chassis 510. The collar 578 supports an insert 582 of an elastomeric material therein. The elastomeric insert 582 defines a plurality of openings 584. The openings 584 close off inlet openings of the pins 544 to inhibit the ingress of foreign particles into the pins 544 and, in so doing, into the channels 514 and the printhead 516.
In addition, the insert 584 defines a land or platform 586 that closes off an inlet opening of the air inlet pin 524 for the same purposes.
A coil spring 588 is arranged between the chassis 510 and the collar 578 to urge the collar 578 to a spaced position relative to the chassis 510 when the cartridge 504 is removed from the print engine 500, as shown in greater detail in Figure 3 of the drawings. The ejector mechanism 576 is shown in its retracted position in Figure 4 of the drawings.
The printhead sub-assembly 508 includes, as described above, the base plate 564. A capping mechanism 590 is supported displaceably on the base plate 564 to be displaceable towards and away from the printhead 516. The capping mechanism 590 includes an elongate rib 592 arranged on a carrier 593. The carrier is supported by a displacement mechanism 594, which displaces the rib 592 into abutment with the printhead 516 when the printhead 516 is inoperative. Conversely, when the printhead 516 is operational, the displacement mechanism 594 is operable to retract the rib 592 out of abutment with the printhead 516.
The printhead sub-assembly 508 includes a printhead support molding 596 on which the printhead 516 is mounted. The molding 596, together with an insert 599 arranged in the molding 596, defines a passage 598 through which the print media 542 passes when an image is to be printed thereon. A groove 700 is defined in the molding 596 through which the capping mechanism 590 projects when the capping mechanism 590 is in its capping position.
An ink feed arrangement 702 is supported by the insert 599 beneath the cap portion 574. The ink feed arrangement 702 comprises a spine portion 704 and a casing 706 mounted on the spine portion 704. The spine portion 704 and the casing 706, between them, define ink feed galleries 708 which are in communication with the ink supply channels 514 in the chassis 510 for feeding ink via passages 710 (Figure 7) to the printhead 516.
An air supply channel 711 (Figure 8) is defined in the spine portion 704, alongside the printhead 516.
Electrical signals are provided to the printhead 516 via a TAB film 712, which is held captive between the insert 599, and the ink feed arrangement 702.
AP138-AU The molding 596 includes an angled wing portion 714. A flexible printed circuit board (PCB) 716 is supported on and secured to the wing portion 714. The flex PCB 716 makes electrical contact with the TAB O film 712 by being urged into engagement with the TAB film 712 via a rib 718 of the insert 599. The flex PCB Z 716 supports busbars 720 thereon. The busbars 720 provide power to the printhead 516 and to the other S 5 powered components of the print engine 500. Further, a camera print engine control chip 721 is supported on the flex PCB 716 together with a QA chip (not shown) which authenticates that the cartridge 504 is compatible and compliant with the print engine 500. For this purpose, the PCB 716 includes contacts 723, which engage contacts 725 in the print cartridge 504.
SAs illustrated more clearly in Figure 7 of the drawings, the printhead itself includes a nozzle guard Cc 10 722 arranged on a silicon wafer 724. The ink is supplied to a nozzle array (not shown) of the printhead 516 Svia an ink supply member 726. The ink supply member 726 communicates with outlets of the passages 710 of the ink feed arrangement 702 for feeding ink to the array of nozzles of the printhead 516, on demand.
rIn Figure 10, the air supply path for supplying air to the printhead 516 is shown in greater detail. As illustrated, the pump 522 includes an impeller 728 closed off by an end cap 730. The cover molding 520 of the chassis forms a receptacle 732 for the impeller 728. The cover molding 520 has the air inlet opening 734 and the air outlet opening 736. The air inlet opening 734 communicates with the pin 524. The air outlet opening 736 feeds air to the air supply channel 518, which, in Figure 10, is shown as a solid black line. The air fed from the air supply channel 518 is blown into the printhead 516 to effect cleaning of the printhead. The air drawn in via the pump 522 is filtered by an air filter 738, which is accommodated in the print cartridge 504. The air filter 738 has a filter element 740 which may be paper based or made of some other suitable filtering media. The filter element 740 is housed in a canister, having a base 742 and a lid 744. The lid 744 has an opening 746 defined therein. The opening 746 is closed off by a film 748, which is pierced by the pin 524. The advantage of having the air filter 738 in the print cartridge 504 is that the air filter 738 is replaced when the print cartridge 504 is replaced.
It is an advantage of the invention that an air pump 522 is driven by the stepper motor 530, which also controls feed of the print media to the printhead 516. In so doing, fewer components are required for the print engine 500 rendering it more compact. In addition, as the same motor 530 is used for operating the air pump 522 and for feeding the print media 542 to the printhead 516, fewer power consuming components are included in the print engine 500 rendering it more compact and cheaper to produce.
It is also to be noted that, in order to make the print engine 500 more compact, the size of the print engine assembly 502 is such that most of the components of the assembly 502 are received within a footprint of an end of the print cartridge 504.
In Figure 11 there is schematically depicted in block diagram form the key internal components of a telescope having an internal printer. The printer would typically utilize a monolithic printhead 814 which could be the same as described above with reference to Figures 1 to 10, but could alternatively be another compact printhead capable of printing on photograph-sized print media. An image sensor 806 receives images from a lens 802 (Figure 12) of the telescope. Image data from the image sensor 806 is fed to a print engine controller 813 that controls the printhead 814. A memory 815 is associated with the print engine controller AP138-AU and stores an image memory. This image memory might be stored upon depression of a trigger 817 for example.
O A micro-controller 807 associated with the image sensor and print engine controller controls a motor Z driver 809, which in turn drives a media transport device 810. This might be the same as stepper motor 530 described earlier.
The micro-controller 807 also controls a motor driver 811 which in turn controls a guillotine motor 812 to sever a printed sheet from an in-built roll of print media after an image is printed. A sheet being driven by media transport device 810 is shown in dotted lines at 816 in Figure 12. The guillotine might be of the form of cutter wheel 566 described earlier.
10 Figure 12 depicts a particular embodiment of a telescope incorporating an in-built printer. The Stelescope 800 includes a printer body portion 803 from which there extends telescopic lens components 802 and 805. Component 802 might rotate with respect to component 802 to effect extension or retraction of the N telescope for focusing on an object. An image sensor might be provided within portion 805 and might relay information electronically to the eyepiece 802 in which there might be provided an electronic display unit.
That is, the printer might be located between the image sensor and the display unit. The printer body portion 803 includes a slot 804 through which paper 816 having an image printed thereon can be dispensed. A trigger 817 can be positioned on the body portion 803 or any other part of the telescope to initiate a printing operation.
In use, a person holding the telescope 800 would use eyepiece 801 to view a remote object. When ready, the trigger 817 can be depressed to activate the print engine controller to print an image stored in memory 815. This would in turn activate the micro-controller 807 to activate the media transport 810 and guillotine 812. A printed image 816 having passed out of slot 804 would then be available as a permanent record.
While particular embodiments of this invention have been described, it will be evident to those skilled in the art that the present invention may be embodied in other specific forms without departing from the essential characteristics thereof. The present embodiments and examples are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein. It will further be understood that any reference herein to known prior art does not, unless the contrary indication appears, constitute an admission that such prior art is commonly known by those skilled in the art to which the invention relates.
AP138-AU

Claims (9)

1. A telescope having an image sensor for sensing an optical image received optically by the telescope, a built-in printer for receiving the sensed image and printing a graphic image corresponding to the optical image and a display for receiving the sensed image and displaying an image corresponding to the optical image to a user.
2. The telescope of claim 1, including a print engine controller for receiving the sensed image and controlling a printhead of the printer to print the graphic data based on the sensed image.
3. The telescope of claim 2, including: a micro-control circuit operatively connected to the print engine controller to control a motor driver for print media transportation; and a motor driver for operating a guillotine motor to sever a printed image from a roller of print media.
4. The telescope of claim 2, including image memory associated with the print engine controller.
The telescope of claim 1, further including image enhancement circuitry for enhancing the image data prior to printing.
6. The telescope of claim 2, wherein the printhead is a pagewidth printhead.
7. The telescope of claim 2 wherein the printhead is an inkjet printhead.
8. The telescope of claim 1, wherein the printer includes a print engine assembly comprising first and second sub-assemblies, the first sub-assembly incorporating an ink source and print media, and the second sub-assembly incorporating a printhead.
9. The telescope of claim 2, including a longitudinal body through which passes at least some of the optical path of light entering the telescope, and a slot extending along the body through which the graphic image is, in use, dispensed. The telescope of claim 9, wherein the printer includes a source of print media, configured such that the print media moves in a print path that is generally orbital about an axis of the body of the printer. AP 138-AU
AU2005232275A 2002-04-16 2005-11-10 Telescope with integral printer Ceased AU2005232275B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AUPS1752 2002-04-16
AUPS1752A AUPS175202A0 (en) 2002-04-16 2002-04-16 An apparatus (AP36)
AU2003202639A AU2003202639A1 (en) 2002-04-16 2003-02-12 Telescope with integral printer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2003202639A Division AU2003202639A1 (en) 2002-04-16 2003-02-12 Telescope with integral printer

Publications (2)

Publication Number Publication Date
AU2005232275A1 AU2005232275A1 (en) 2005-12-01
AU2005232275B2 true AU2005232275B2 (en) 2006-09-21

Family

ID=34117064

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2003202639A Abandoned AU2003202639A1 (en) 2002-04-16 2003-02-12 Telescope with integral printer
AU2005232275A Ceased AU2005232275B2 (en) 2002-04-16 2005-11-10 Telescope with integral printer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
AU2003202639A Abandoned AU2003202639A1 (en) 2002-04-16 2003-02-12 Telescope with integral printer

Country Status (1)

Country Link
AU (2) AU2003202639A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6305770B1 (en) * 1997-09-23 2001-10-23 Silverbrook Research Pty Ltd Digital photograph storage using ink jet printing
US6357135B1 (en) * 1997-07-15 2002-03-19 Silverbrook Research Pty Ltd Binocular glasses with an integral printer device
WO2002056757A1 (en) * 2001-01-17 2002-07-25 Silverbrook Research Pty Ltd Ophthalmoscope with integral printer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6357135B1 (en) * 1997-07-15 2002-03-19 Silverbrook Research Pty Ltd Binocular glasses with an integral printer device
US6305770B1 (en) * 1997-09-23 2001-10-23 Silverbrook Research Pty Ltd Digital photograph storage using ink jet printing
WO2002056757A1 (en) * 2001-01-17 2002-07-25 Silverbrook Research Pty Ltd Ophthalmoscope with integral printer

Also Published As

Publication number Publication date
AU2005232275A1 (en) 2005-12-01
AU2003202639A1 (en) 2003-11-03

Similar Documents

Publication Publication Date Title
US7059720B2 (en) Ophthalmoscope
US7841689B2 (en) Air supply arrangement for a print engine
AU2005232275B2 (en) Telescope with integral printer
US7137678B2 (en) Telescope with integral printer
US8313429B2 (en) Handheld printing device for optical medical examinations
AU2004233552B2 (en) Medical image sensor with internal printer
AU2002214850B2 (en) Otoscope with internal printer
AU2002218875B2 (en) Ophthalmoscope with integral printer
AU2004202950B2 (en) Hand-Held Ophthalmoscope with Built-In Printer
AU2004220743B2 (en) A printer assembly for use with a detachable print cartridge
AU2002218875A1 (en) Ophthalmoscope with integral printer

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired