AU2005229687B2 - Tartrate salts of thiazolidinedione derivative - Google Patents

Tartrate salts of thiazolidinedione derivative Download PDF

Info

Publication number
AU2005229687B2
AU2005229687B2 AU2005229687A AU2005229687A AU2005229687B2 AU 2005229687 B2 AU2005229687 B2 AU 2005229687B2 AU 2005229687 A AU2005229687 A AU 2005229687A AU 2005229687 A AU2005229687 A AU 2005229687A AU 2005229687 B2 AU2005229687 B2 AU 2005229687B2
Authority
AU
Australia
Prior art keywords
tartrate
solvate
methyl
accordance
ethoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
AU2005229687A
Other versions
AU2005229687A1 (en
Inventor
Bernadette Marie Choudary
Andrew Simon Craig
Tim Chien Ting Ho
Donald Colin Mackenzie
Deirdre O'keeffe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SmithKline Beecham Ltd
Original Assignee
SmithKline Beecham Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SmithKline Beecham Ltd filed Critical SmithKline Beecham Ltd
Priority to AU2005229687A priority Critical patent/AU2005229687B2/en
Publication of AU2005229687A1 publication Critical patent/AU2005229687A1/en
Application granted granted Critical
Publication of AU2005229687B2 publication Critical patent/AU2005229687B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

P/00/011 Regulation 3.2
AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT
(ORIGINAL)
Name of Applicant: Actual Inventors: Address for Service: Invention Title: SmithKline Beecham of 980 Great West Road, Brentford, Middlesex TW8 9GS, UNITED KINGDOM Bernadette Marie CHOUDARY, Andrew Simon CRAIG, Tim Chien Ting HO, Donald Colin MACKENZIE, and Deirdre
O'KEEFFE
DAVIES COLLISON CAVE, Patent Trademark Attorneys, of 1 Nicholson Street, Melbourne, 3000, Victoria, Australia Ph: 03 9254 2777 Fax: 03 9254 2770 Attorney Code: DM "Tartrate salts of thiazolidinedione derivative" The following statement is a full description of this invention, including the best method of performing it known to us:t TARTRATE SALTS OF THIAZOLIDINEDIONE
DERIVATIVE
This is a divisional of Australian Patent Application No. 2001276502, the entire O contents of which are incorporated herein by reference.
SThis invention relates to a novel pharmaceutical, to a process for the preparation 0 of the pharmaceutical and to the use of the pharmaceutical in medicine.
European Patent Application, Publication Number 0,306,228 relates to certain thiazolidinedione derivatives disclosed as having hypoglycaemic and hypolipidaemic 00 IND activity. The compound of example 30 of EP 0,306,228 is 5-[4-[2-(N-methyl-N-(2- N pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (hereinafter also referred to as I-f "Compound International Patent Application, Publication Number W094/05659 discloses CI certain salts of the compounds of EP 0,306,228 one of which is the tartrate salt. The preferred salt of W094/05659 is the maleic acid salt.
It has now been discovered that Compound forms a novel tartrate salt (hereinafter also referred to as the Tartrate") that is particularly stable and hence is suitable for bulk preparation and handling. The Tartrate also has a high melting point and possesses good bulk flow properties. The Tartrate is therefore surprisingly amenable to large scale pharmaceutical processing and especially to large scale milling.
The novel form can be prepared by an efficient, economic and reproducible process particularly suited to large-scale preparation.
The novel tartrate also has useful pharmaceutical properties and in particular it is indicated to be useful for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
Accordingly, the present invention provides 5-[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate salt or a solvate thereof.
Suitably, the Tartrate is a mono-tartrate salt.
Mono tartrate salts also optionally comprise another monovalent salting ion such as an alkali metal or ammonium cation.
In one favoured aspect, the tartrate provides an infrared spectrum substantially in accordance with Figure 1.
In one favoured aspect, the tartrate provides a Raman spectrum substantially in accordance with Figure 2.
In one favoured aspect, the Tartrate provides an X-Ray powder diffraction pattern (XRPD) substantially in accordance with Table 1 or Figure 3.
In one favoured aspect, the tartrate provides a Solid State 13 C NMR spectrum substantially in accordance with Figure 4.
In one favoured aspect, the Tartrate provides a melting point in the range of S from 180 to 185 0 C, such as 180 to 183 OC, for example 182.1 oC SIn a preferred aspect, the invention provides 5-[4-[2-(N-methyl-N-(2- O pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione, Tartrate salt, characterised in that it provides: an infrared spectrum substantially in accordance with Figure 1; and N (ii) a Raman spectrum substantially in accordance with Figure 2;and CN (iii) an X-Ray powder diffraction pattern (XRPD) substantially in accordance with Table tI 1 or Figure 3;and 0(iv) a Solid State 13 C NMR spectrum substantially in accordance with Figure 4.
The present invention encompasses the Tartrate or solvate thereof isolated in pure form or when admixed with other materials. Thus in one aspect there is provided the Tartrate or solvate thereof in isolated form.
In a further aspect there is provided the Tartrate or solvate thereof in a purified form.
In yet a further aspect there is provided the Tartrate or solvate thereof in crystalline form.
Also, the invention provides the Tartrate or solvate thereof in a solid pharmaceutically acceptable form, such as a solid dosage form, especially when adapted for oral administration.
Moreover, the invention also provides the Tartrate or solvate thereof in a pharmaceutically acceptable form, especially in bulk form, such form being particularly capable of being milled. The invention therefore also provides the Tartrate or solvate thereof in a milled form.
Furthermore, the invention provides the Tartrate or solvate thereof in a pharmaceutically acceptable form, especially in bulk form, such form having good flow properties, especially good bulk flow properties.
A suitable solvate is a hydrate.
The invention also provides a process for preparing the Tartrate or a solvate thereof, characterised in that 5-[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (Compound or a salt thereof, preferably dispersed or dissolved in a suitable solvent, is reacted with a source of tartrate ion and thereafter, if required, a solvate of the resulting Tartrate is prepared; and the Tartrate or a solvate thereof is recovered.
A suitable reaction solvent is an alkanol, for example propan-2-ol, or a hydrocarbon, such as toluene, a ketone, such as acetone, an ester, such as ethyl acetate, an ether such as tetrahydrofuran, a nitrile such as acetonitrile, or a halogenated hydrocarbon N such as dichloromethane or water, or an organic acid such as acetic acid; or a mixture thereof.
Conveniently, the source of tartrate ion is tartaric acid. The tartaric C acid is preferably added as a solid or in solution, for example in water or a lower alcohol such as methanol, ethanol, or propan-2-ol, or a mixture of solvents. An alternative source of tartrate ion is provided by a suitably soluble base salt of tartaric acid for 0 example ammonium tartrate, or the tartaric acid salt of an amine, for example Sethylamine or diethylamine.
SThe concentration of Compound is preferably in the range 2 to weight/volume, more preferably in the range 5 to 20%. The concentration of tartaric acid solutions are preferably in the range of 5 to 130% weight/volume.
The reaction is usually carried out at ambient temperature or at an elevated temperature, for example at the reflux temperature of the solvent, although any convenient temperature that provides the required product may be employed.
Solvates, such as hydrates, of the Tartrate are prepared according to conventional procedures.
Recovery of the required compound generally comprises crystallisation from an appropriate solvent, conveniently the reaction solvent, usually assisted by cooling. For example, the tartrate may be crystallised from an alcohol such as ethanol or propan-2-ol or a nitrile such as acetonitrile or a mixture thereof. An improved yield of the salt may be obtained by evaporation of some or all of the solvent or by crystallisation at elevated temperature followed by controlled cooling, preferably in stages. Careful control of precipitation temperature may be used to improve the reproducability of the product form.
Crystallisation can also be initiated by seeding with crystals of the Tartrate or a solvate thereof but this is not essential.
When the mono tartrate salt comprises another monovalent salting ion such as an alkali metal or ammonium cation the said ion is conveniently formed by reacting the mono tartrate salt with a solution of the chosen monovalent salting ion for example a metal or ammonium ion. Alternatively Compound may be treated with a mono tartrate salt of the said monovalent salting ion.
Compound is prepared according to known procedures, such as those disclosed in EP 0,306,228 and W094/05659. The disclosures of EP 0,306,228 and W094/05659 are incorporated herein by reference.
tartaric acid is a commercially available compound.
When used herein the term "Tonset" is generally determined by Differential Scanning Calorimetry and has a meaning generally understood in the art, as for example expressed in Pharmaceutical Thermal Analysis, Techniques and 0 Applications", Ford and Timmins, 1989 as "The temperature corresponding to the Z intersection of the pre-transition baseline with the extrapolated leading edge of the transition".
When used herein in respect of certain compounds the term "good flow r properties" is suitably characterised by the said compound having a Hausner ratio of less 00 than or equal to 1.5, especially of less than or equal to 1.25.
S"Hausner ratio" is an art accepted term.
C When used herein the term 'prophylaxis of conditions associated with diabetes mellitus' includes the treatment of conditions such as insulin resistance, impaired glucose NC1 tolerance, hyperinsulinaemia and gestational diabetes.
Diabetes mellitus preferably means Type II diabetes mellitus.
Conditions associated with diabetes include hyperglycaemia and insulin resistance and obesity. Further conditions associated with diabetes include hypertension, cardiovascular disease, especially atherosclerosis, certain eating disorders, in particular the regulation of appetite and food intake in subjects suffering from disorders associated with under-eating, such as anorexia nervosa, and disorders associated with over-eating, such as obesity and anorexia bulimia. Additional conditions associated with diabetes include polycystic ovarian syndrome and steroid induced insulin resistance.
The complications of conditions associated with diabetes mellitus encompassed herein includes renal disease, especially renal disease associated with the development of Type II diabetes including diabetic nephropathy, glomerulonephritis, glomerular sclerosis, nephrotic syndrome, hypertensive nephrosclerosis and end stage renal disease.
As mentioned above the compound of the invention has useful therapeutic properties: The present invention accordingly provides the Tartrate or a solvate thereof for use as an active therapeutic substance.
More particularly, the present invention provides the Tartrate or a solvate thereof for use in the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
The Tartrate or a solvate thereof may be administered per se or, preferably, as a pharmaceutical composition also comprising a pharmaceutically acceptable carrier.
Suitable methods for formulating the Tartrate or a solvate thereof are generally those disclosed for Compound in the above mentioned publications.
Accordingly, the present invention also provides a pharmaceutical composition comprising the Tartrate or a solvate thereof and a pharmaceutically acceptable carrier therefor.
The Tartrate or a solvate thereof is normally administered in unit dosage form.
z The active compound may be administered by any suitable route but usually by 3 the oral or parenteral routes. For such use, the compound will normally be employed in the form of a pharmaceutical composition in association with a pharmaceutical carrier, diluent and/or excipient, although the exact form of the composition will naturally depend 00 on the mode of administration.
SCompositions are prepared by admixture and are suitably adapted for oral, Sparenteral or topical administration, and as such may be in the form of tablets, capsules, oral liquid preparations, powders, granules, lozenges, pastilles, reconstitutable powders, Sinjectable and infusable solutions or suspensions, suppositories and transdermal devices.
Orally administrable compositions are preferred, in particular shaped oral compositions, since they are more convenient for general use.
Tablets and capsules for oral administration are usually presented in a unit dose, and contain conventional excipients such as binding agents, fillers, diluents, tabletting agents, lubricants, disintegrants, colourants, flavourings, and wetting agents. The tablets may be coated according to well known methods in the art.
Suitable fillers for use include cellulose, mannitol, lactose and other similar agents. Suitable disintegrants include starch, polyvinylpyrrolidone and starch derivatives such as sodium starch glycollate. Suitable lubricants include, for example, magnesium stearate. Suitable pharmaceutically acceptable wetting agents include sodium lauryl sulphate.
Solid oral compositions may be prepared by conventional methods of blending, filling, tabletting or the like. Repeated blending operationi may be used to distribute the active agent throughout those compositions employing large quantities of fillers. Such operations are, of course, conventional in the art.
Oral liquid preparations may be in the form of, for example, aqueous or oily suspensions, solutions, emulsions, syrups, or elixirs, or may be presented as a dry product for reconstitution with water or other suitable vehicle before use. Such liquid preparations may contain conventional additives such as suspending agents, for example sorbitol, syrup, methyl cellulose, gelatin, hydroxyethylcellulose, carboxymethyl cellulose, aluminium stearate gel or hydrogenated edible fats, emulsifying agents, for example lecithin, sorbitan monooleate, or acacia; non-aqueous vehicles (which may include edible oils), for example, almond oil, fractionated coconut oil, oily esters such as esters of glycerine, propylene glycol, or ethyl alcohol; preservatives, for example methyl or propyl p-hydroxybenzoate or sorbic acid, and if desired conventional flavouring or colouring agents.
For parenteral administration, fluid unit dose forms are prepared containing a 0 compound of the present invention and a sterile vehicle. The compound, depending on Z the vehicle and the concentration, can be either suspended or dissolved. Parenteral solutions are normally prepared by dissolving the active compound in a vehicle and filter sterilising before filling into a suitable vial or ampoule and sealing. Advantageously, adjuvants such as a local anaesthetic, preservatives and buffering agents are also S dissolved in the vehicle. To enhance the stability, the composition can be frozen after filling into the vial and the water removed under vacuum.
SParenteral suspensions are prepared in substantially the same manner except that Sthe active compound is suspended in the vehicle instead of being dissolved and sterilised cN by exposure to ethylene oxide before suspending in the sterile vehicle. Advantageously, a surfactant or wetting agent is included in the composition to facilitate uniform distribution of the active compound.
As is common practice, the compositions will usually be accompanied by written or printed directions for use in the medical treatment concerned.
As used herein the term 'pharmaceutically acceptable' embraces compounds, compositions and ingredients for both human and veterinary use: for example the term 'pharmaceutically acceptable salt' embraces a veterinarily acceptable salt.
The present invention further provides a method for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof, in a human or non-human mammal which comprises administering an effective, non-toxic, amount of Tartrate or a solvate thereof to a human or non-human mammal in need thereof.
Conveniently, the active ingredient may be administered as a pharmaceutical composition hereinbefore defined, and this forms a particular aspect of the present invention.
In a further aspect the present invention provides the use of Tartrate or a solvate thereof for the manufacture of a medicament for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
In the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof the Tartrate or a solvate thereof may be taken in amounts so as to provide Compound in suitable doses, such as those disclosed in EP 0,306,228, W094/05659 or W098/55122.
No adverse toxicological effects are indicated in the above mentioned treatments for the compounds of the invention.
The following examples illustrate the invention but.do not limit it in any way.
EXAMPLES
zExample 1 5-4[-NmthlN(-yiy~mn~toybnyjhaoiie24 dione L-(+)-tartrate A mixture of 5 4 2 -{N-methyl-N-(2-pyridYl)amino)ethoxy] benzyl~thazolidine- 2,4-dione (3.82 g) and denatured ethanol (120 ml) was stirred and heated to reflux, to 00 give a clear solution. The solution was cooled to 70 0 C and L-(+)-tartaric acid (1.6 g) NOwas added. After heating to reflux for 10 minutes the mixtrwacoldo21Cve a period of approximately 1 hour. The product was collected by filtration and dried under vacuum at 21 *C for 3 hours to give 5 -[4-[2-(N-methyl-N-(2pyridyl)amino)ethoxy] benzyl~thiazolidine-2,4-dione L-(+)-tartrate (4.93 g) as a white crystalline solid.
Example 2 5-4[-Nmty--2prdlain~toybnylhaoiie24 dione )-tartrate A mixture of 5-[ 4 2 -(N-methyl-N-(2-pyridyl)aniino)ethoxy] benzyl]tbiazolidjne- 2,4-dione (2.0 L-(+)-tartaric acid (0-84g), acetone (90 ml) and deionised water ml) was stirred and heated to reflux to give a clear solution. The reaction mixture was then cooled to 21 *C and solvent was evaporated under reduced pressure. Toluene (100 ml) was added and the mixture stirred and the solvent evaporated under reduced pressure. Denatured ethanol (20 Ml) and acetonitrile (20 nml) were added to the residue and the mixture stirred and warmed to 60 0 C and then cooled to 210C. The product was collected by filtration and dried under vacuum to give 5 -[4-[2-(N-methyl-N-(2pyiy~mn~toybny~zldn-,-in +)-tartrate as a white crystalline solid.
IH NMR (d 6 DMS0) :consistent with the L-(+)-Tartrate.
Example 3 5-4[-Nmty--2prdlain~toybnylbaoiie24 dione L-(+)-tartrate A mixture of 5 -[4-[2-(N-methyl-N-(2-.
pyridyl)amnino)ethoxr] benzy1]thiazolidine..2,4-dione (5.0 g) and propan-2-ol (100 ml) was stirred heated to reflux for ten minutes at which point a clear solution was -observed. A solution of L-(+)-tartaric acid (2.1 g) in propan-2-ol (30 ml), at 60 700C, was added to the reaction mixture, stirred and heated to reflux for 5 minutes.
The mixture was cooled to 21 *C over a period of 90 minutes. The product was collected by filtration, washed with propan-2-ol (50 ml) and dried under vacuum to 0 provide 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxybenzyl]thiazolidine-2,4-dione
L-
S(+)-tartrate as a white crystalline solid (6.7 g).
O
Example 4 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazoidine-2,4dione L-(+)-tartrate 00 o0 A solution of L-(+)-tartaric acid (8.4 g) in propan-2-ol (70 ml) was added to a stirred suspension of 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4- Sdione (20.0 g) in propan-2-ol (400 ml) at reflux. The reaction mixture was stirred at reflux until a clear solution was observed, then cooled to 21 0 C. The white solid was CN collected by filtration, washed with propan-2-ol (100 ml) then dried under vacuum for 2 hours at 21°C to provide 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl] thiazolidine-2,4-dione L-(+)-tartrate (27.0 g, 95%) as a white crystalline solid.
Characterising data recorded for the product of Example 2 The infrared absorption spectrum of a mineral oil dispersion of the product was obtained using a Nicolet 710 FT-IR spectrometer at 2 cm-1 resolution (Figure Data were digitised at 1 cm- 1 intervals. Bands were observed at: 3384, 1751, 1699, 1646, 1621, 1544, 1512, 1465, 1415, 1377, 1357, 1304, 1267, 1233, 1168, 1076, 1059, 1032, 998, 927, 901, 835, 773, 752, 716, 688, 618, 589, 556, 527, 506 cm- 1 The infrared spectrum of the solid product was recorded using Perkin-Elmer Spectrum One FT-IR spectrometer fitted with a universal ATR accessory. Bands were observed at: 3385, 3133, 2935, 2786, 1750, 1692, 1645, 1619, 1609, 1544, 1510, 1466, 1415, 1384, 1357, 1303, 1267, 1232, 1210, 1167, 1153, 1141, 1074, 1058, 1032, 998, 926, 898, 830, 750, 714, 685, 658 cm- 1 The Raman spectrum of the product (Figure 2) was recorded with the sample in an NMR tube using a Nicolet 960 E.S.P. FT-Raman spectrometer, at 4 cm- 1 resolution with excitation from a Nd:V04 laser (1064 nm) with a power output of 400mW.
Bands were observed at: 3101, 3065, 3042, 2920, 1747, 1699, 1610, 1584, 1545, 1471, 1439, 1389, 1357, 1319, 1293, 1235, 1207, 1176, 1146, 1035, 982, 930, 901, 828, 773, 741, 659, 637, 620, 604, 506, 468, 431, 397, 348, 281, 99 cm-l.
The X-Ray Powder Diffractogram pattern of the product (Figure 3) was recorded using the following acquisition conditions: Tube anode: Cu, Generator tension: 40 kV, Generator current: 40 mA, Start angle: 2.0 020, End aigle: 35.0 *20, Step size: 0.02 020, Time per step: 2.5 seconds. Characteristic XRPD angles and relative intensities are recorded in Table 1.
Table 1 Angle Rel. Intens4t 200% 6.4 8.8 7.8 11.6 9.7 3.3 10.6 12.2 12.5 12.8 11.3 13.1 7.4 14.0 14.7 15.9 24.4 16.5 100 17.5 31.5 17.9 10.6 18.2 11.9 18.6 39.7 19.4 26.4 21.3 20.4 21.6 23.2 22.6 23.3 23.7 24.3 25.2 25.7 26.4 27.2 27.4 28.3 29.2 29.7 30.4 30.7 31.1 76.3 16.7 49.5 32.6 40.5 11.9 24.8 21.3 13.3 28 10.3 9 14.9 13.7 31.6 12.9 32.2 10.9 33.3 15.7 33.9 16.2 The solid-state NMR spectrum of the product (Figure 4) was recorded on a Bruker AMX360 instrument operating at 90.55 MHz: The solid was packed into a 4 mm zirconia MAS rotor fitted with a Kel-F cap and rotor spun at ca.10 kHz. The 3C MAS spectrum was acquired by cross-polarisation from Hartmann-Hahn matched protons (CP contact time 3ms, repetition time 15 s) and protons were decoupled during acquisition using a two-pulse phase modulated (TPPM) composite sequence. Chemical shifts were externally referenced to the carboxylate signal of glycine at 176.4 ppm relative to TMS and were observed at: 181.0, 179, 177.2, 174.7, 173.0, 158.2, 150.3, 144.7, 141.6, 139.2, 136.1, 131.7, 118.1, 113.8, 111, 110, 74.6, 73.7, 73.0, 64.6, 55.8, 50.7, 40.5, 38.7, 36.7, 34.9 ppm.
Properties of the tartrate, recorded for the product of Example 4 Solid State Stability of the Tartrate The solid state stability of the drug substance was determined by storing approximately g of the material in a glass bottle at i) 40 0 C 75% Relative Humidity open exposure, for 1 month and b) at 500C, closed, for 1 month. The material was assayed by HPLC for final content and degradation products in both cases.
a) 40 0 C 75% RH: No significant degradation observed (HPLC assay 97% initial).
b) 50 0 C: No significant degradation observed (HPLC assay 98% initial).
Flow Properties of the Tartrate: The ratio between the bulk density and the tapped bulk density (Hausner Ratio) of the Tartrate was determined using standard methods ("Pharmaceutics The Science of Dosage Form Design", editor M. Aulton, 1988, published by:Churchill Livingstone).
Hausner Ratio: 1.2 Melting Point of the Tartrate The melting point of the Tartrate was determined, according to the method described in the U.S. Pharmacopoeia, USP 23, 1995, <741> "Melting range or temperature, Procedure for Class la", using a Buchi 545 melting point instrument.
Melting Point: 182.1oC Tonset of the Tartrate The Tonset of the drug substance was determined by Differential Scanning Calorimetry using a Perkin-Elmer DSC7 apparatus.
PXOPERWALU008I682480 Isp doc251V208 00
O
O Tonset (10 0 C/minute, closed pan): 187 0
C
SThe reference in this specification to any prior publication (or information derived from it), NO or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of 00 DO endeavour to which this specification relates.
l Throughout this specification and the claims which follow, unless the context requires O 10 otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

Claims (13)

1. A compound 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine- 00 1o 2,4-dione tartrate salt or a solvate thereof. CK
2. A compound according to claim 1, characterised in that it provides: S(i) an infrared spectrum substantially in accordance with Figure 1; (ii) a Raman spectrum substantially in accordance with Figure 2; (iii) an X-Ray powder diffraction pattern (XRPD) substantially in accordance with Table 1 or Figure 3; or (iv) a Solid State "C NMR spectrum substantially in accordance with Figure 4.
3. A compound according to claim 1, characterised in that it provides two or more of: an infrared spectrum substantially in accordance with Figure 1; and (ii) a Ramen spectrum substantially in accordance with Figure 2; and (iii) an X-Ray powder diffraction pattern (XRPD) substantially in accordance with Table 1 or Figure 3; and (iv) a Solid State 13C NMR spectrum substantially in accordance with Figure 4.
4. A compound according to any one of claims 1 to 3, in purified form.
A compound according to any one of claims 1 to 3, in a solid dosage form.
6. A compound according to any one of claims 1 to 3, in a pharmaceutically acceptable form capable of being milled.
7. A compound according to any one of claims 1 to 3, in a pharmaceutically acceptable form having good flow properties.
8. A process for preparing the 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate salt or a solvate thereof, P Oper\MailxOOi 61 1050041 doc.1402~05 -13- g wherein 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione (Compound or a salt thereof is reacted with a source of tartrate ion and thereafter, r- if required, a solvate of the resulting tartrate is prepared; and the tartrate or a 00 1,O solvate thereof is recovered. C
9. A pharmaceutical composition comprising 5-[4-[2-(N-methyl-N-(2- pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate or a solvate thereof and a pharmaceutically acceptable carrier therefor.
10. A compound 5[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine- 2,4-dione tartrate or a solvate thereof for use as an active therapeutic substance.
11. Use of 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4- dione tartrate or a solvate thereof, in the manufacture of a medicament for the treatment and/or prophylaxis of diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof.
12. Method of treating or preventing diabetes mellitus, conditions associated with diabetes mellitus and certain complications thereof including the step of administering to a patient 5-[ 4 2 -(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl]thiazolidine-2,4-dione tartrate or a solvate thereof.
13. A process according to claim 8 substantially as hereinbefore described with reference to the Examples. DATED this 3 rd day of November, 2005 SmithKline Beecham p.l.c. By DAVIES COLLISON CAVE Patent Attorneys for the Applicants
AU2005229687A 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative Ceased AU2005229687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005229687A AU2005229687B2 (en) 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0019223 2000-08-04
AU2001276502 2001-08-03
AU2005229687A AU2005229687B2 (en) 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001276502 Division 2000-08-04 2001-08-03

Publications (2)

Publication Number Publication Date
AU2005229687A1 AU2005229687A1 (en) 2005-11-24
AU2005229687B2 true AU2005229687B2 (en) 2008-03-13

Family

ID=35465406

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005229687A Ceased AU2005229687B2 (en) 2000-08-04 2005-11-03 Tartrate salts of thiazolidinedione derivative

Country Status (1)

Country Link
AU (1) AU2005229687B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005659A1 (en) * 1992-09-05 1994-03-17 Smithkline Beecham Plc Substituted thiazolidinedione derivatives

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994005659A1 (en) * 1992-09-05 1994-03-17 Smithkline Beecham Plc Substituted thiazolidinedione derivatives

Also Published As

Publication number Publication date
AU2005229687A1 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
EP1305312B1 (en) Tartrate salts of thiazolidinedione derivative
AU2001284284B2 (en) The hydrochloride salt of 5-[4-[2-(N-methyl-N-(2-pyridyl)amino)ethoxy]benzyl] thiazolidine-2,4-dione
EP1315721B1 (en) A thiazolidinedione derivative and its use as antidiabetic
EP1305311B1 (en) Tartrate salt of thiazolidinedione derivative
AU2005229687B2 (en) Tartrate salts of thiazolidinedione derivative
AU2001262550B2 (en) 5-(4-(2-(n-methyl-n-(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2,4-dione hydriodide as pharmaceutical
EP1305310B1 (en) Tartrate salts of thiazolidinedione derivative
AU2001292034B2 (en) A thiazolidinedione derivative and its use as antidiabetic
AU2005229688B2 (en) Tartrate salts of thiazolidinedione derivative
AU2005229694B2 (en) Tartrate salt of thiazolidinedione derivative
ZA200300962B (en) Tartrate salts of thiazolidinedione derivative.
AU2001262550A1 (en) 5-(4-(2-(n-methyl-n-(2-pyridyl)amino)ethoxy)benzyl)thiazolidine-2,4-dione hydriodide as pharmaceutical
AU2001292034A1 (en) A thiazolidinedione derivative and its use as antidiabetic
WO2003050111A1 (en) Toluenesulfonate salts of a thiazolidinedione derivative

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired