AU2005221470B2 - Inhibitors of extracellular hsp90 - Google Patents

Inhibitors of extracellular hsp90 Download PDF

Info

Publication number
AU2005221470B2
AU2005221470B2 AU2005221470A AU2005221470A AU2005221470B2 AU 2005221470 B2 AU2005221470 B2 AU 2005221470B2 AU 2005221470 A AU2005221470 A AU 2005221470A AU 2005221470 A AU2005221470 A AU 2005221470A AU 2005221470 B2 AU2005221470 B2 AU 2005221470B2
Authority
AU
Australia
Prior art keywords
cells
antibody
hsp90
inhibitor
cancer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2005221470A
Other versions
AU2005221470A1 (en
Inventor
Brenda K. Eustace
Daniel G. Jay
Takashi Sakurai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tufts University
Original Assignee
Tufts University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tufts University filed Critical Tufts University
Priority to AU2005221470A priority Critical patent/AU2005221470B2/en
Publication of AU2005221470A1 publication Critical patent/AU2005221470A1/en
Application granted granted Critical
Publication of AU2005221470B2 publication Critical patent/AU2005221470B2/en
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • A61K31/366Lactones having six-membered rings, e.g. delta-lactones
    • A61K31/37Coumarins, e.g. psoralen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans

Description

-1 Inhibitors of Extracellular Hsp9O BACKGROUND OF THE INVENTION 5 The reference to any prior art in this specification is not, and should not be taken as an acknowledgement or any form of suggestion that the referenced prior art forms part of the common general knowledge in Australia. In the specification the term "comprising" shall be understood to have a broad 10 meaning similar to the term "including" and will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. This definition also applies to variations on the term "comprising" such as "comprise" and "comprises". 15 Malignant tumors shed cells, which migrate to new tissues and create secondary tumors. The process of generating secondary tumors is called metastasis and is a complex process in which tumor cells colonize sites distant from the primary tumor. Liotta ((1986) Cancer Res. 46, 1-7) has 20 proposed a three-step hypothesis for the process of metastasis: The first step is tumor cell attachment via cell surface receptors. The anchored tumor cell next secretes hydrolytic enzymes or induces host cells to secrete enzymes, which can degrade the matrix locally. Matrix lysis most likely takes place in a highly localized region close to the tumor cell surface. The third step is tumor 25 cell locomotion into the region of the matrix modified by proteolysis. Thus, invasion of the matrix is not merely due to passive growth pressure but requires active biochemical mechanisms. Degradation of the surrounding normal tissue is a central feature of invasiveness of malignant tumors. The process of metastasis formation depends on the invasiveness of tumor cells. It 30 would, therefore, be useful to develop drugs, which inhibit invasiveness and therewith prevent metastasis of primary tumors.
-2 Recently, research has been focused on identifying specific proteins involved in metastasis, which can be used as a basis for better diagnostic or improved therapeutic strategies. A protein that has been identified as a molecular 5 chaperone molecule and that is essential for the stability and function of several oncogenic proteins is heat shock protein 90 (Hsp90). This name is a generic term used to describe two isoforms termed Hsp90 a and p. The structure and the function of the isoforms of Hsp90 is described in Csermely et al.: Pharmacol. Ther. Vol. 79, 1998, No. 2, The 90-kDa Molecular Chaperone 10 Family: Structure, Function, and Clinical Applications. A Comprehensive Review, p. 131, p. 146. Hsp9O is one of the most abundant chaperones in the cytosol of eukaryotic cells and constitutes approximately 1-2 % of all proteins in the cell. The intracellular functions of Hsp90 include stabilization of proteins (steroid receptors) and maturation of proteins such as kinases and other 15 signalling proteins. Hsp9O has been implicated, however, in a wide variety of functions including evolutionary stability of mutated proteins, cytoskeletal rearrangements, nuclear transport, cell proliferation and apoptosis, protein degradation, antigen presentation and lipopolysaccharide recognition. Being very abundant in the cell Hsp9O has also been linked to many diseases, from 20 cancer to autoimmune disease to cardiovascular disease. For example, a monoclonal antibody to the immunodominant LKVIRK epitope of Hsp9O showed therapeutic activity in a treatment against fungal infection and was used in a clinical trial by the firm Neutec under the trade name Mycogrip®. 25 It has also been shown that Hsp9O is secreted from the cells in response to stress (Liao et al. (2000) J. Biol. Chem. 275, 189-96), but no known function has been associated with this secretion. While Hsp90 has well-established functions intracellularly, reports of 30 extracellular occurrence and its function are scarce. Hsp9O has been found to be an effective antigenic peptide presenter to receptors on antigen presenting cells. It has also been found to be one of four proteins associated in lipid rafts on the extracellular surface of cells, which bind to lipopolysaccharide and initiate intracellular responses (Triantafilou et al. (2002) Trends in Immunology -3 23, 301-4). Hsp9O has also been found overexpressed on the surface of some tumor cells: microcitomas, melanoma, and hepatoma cell lines (Ferrarini et al. (1992) Int. J. Cancer 51, 613-19). It has been hypothesized that expression of Hsp90 on the surface of these cell lines is connected to antigen presentation, 5 but clear evidence is not yet available. Hsp9O is also currently being assessed as an intracellular target in anti cancer drug development, due to its involvement in regulating several signalling pathways that are of importance in driving the phenotype of a tumor. Inhibition 10 of Hsp90 function has been shown to cause selective degradation of signalling protein involved in cell proliferation, cell cycle regulation and apoptosis. Several known antibiotics (e.g. geldanamycin, radicicol, and coumermycin Al) have been shown recently to be inhibitors of Hsp90 and are described in WO 00/53169. In this document a method of inhibiting binding of a chaperone 15 protein with its client is proposed, wherein the method proposes contacting a chaperone protein with coumarin or a coumarin derivative. However, the teaching of WO 00/53169 is directed merely to the inhibition of intercellular Hsp90 protein. 20 Inhibitors such as the geldanamycin analogue 17-AAG are already being tested in clinical trials but there are concerns about toxicity resulting from non specific inhibition of the protein across all cellular compartments (Dunn (2002) J. Natl. Cancer Inst 94, 1194-5). Furthermore, the lack of understanding of the interaction of Hsp9O with client proteins in various cell signalling processes 25 bears potential risks of inhibiting intracellular Hsp9O with toxic inhibitors. The determination of the physiological role of a protein is a prerequisite for deciding whether interference with this protein function might be a possible avenue for the treatment of disease or not. It must be kept in mind that in a 30 physiological setting, i.e. in a naturally occurring tumor cell of a patient, Hsp90 acts together with other proteins, which can modulate and interfere with each other. It is the functional interplay between Hsp90 and interacting proteins that determines its physiological role.
-4 Hsp90 has also been reported to act as a molecular chaperone for transmembrane protein transport in the nucleus (Schlatter et al. (2002) Biochem. J. 362, 675-84), and has been implicated in drug efflux in leukemia, lung and ovarian carcinoma cells (Rappa et al (2002) Oncol. Res. 12, 113-9 5 and Rappa, et al (2000) Anticancer Drug Des 15, 127-34). The present invention demonstrates for the first time that the inhibition of extracellular Hsp9O leads to a reduction of the invasiveness of the tumor cells. The present invention shows a novel avenue to inhibit extracellular Hsp90 10 whereby side effects associated with attacking the intracellular Hsp9O can be prevented. The present invention also shows an interrelationship between Hsp90 inhibition and the secretion of matrix metalloproteases (MMPs). MMPs act in 15 invasion by digesting surrounding extracellular matrix to allow cells to migrate through dense tissues. Our results showed that Hsp90 is critical for invasion of cancer cells by increasing secretion or activity of MMPs, when overexpressed in fibrosarcoma cells. We further showed that Hsp90-dependent invasion can be inhibited by using the molecules of the invention. 20 The present invention relates to the use of molecules interfering with the function of extracellular Hsp9O on tumor cells for the treatment of specific cancers. Compounds, compositions and methods are provided that are useful for reducing or inhibiting the invasiveness and/or the metastatic potential of 25 specific tumor cells. Furthermore, a method is provided that allows to determine whether a tumor cell depends on functional extracellular Hsp90 for its invasiveness and/or metastatic potential. The present invention relates to molecules, which can specifically bind to the 30 extracellular Hsp90. Furthermore, the molecules of the invention can be labeled with detectable groups, if desired, or can be part of a bioconjugate. The invention further relates to pharmaceutical compositions comprising an inhibitor of extracellular Hsp90.
-5 In a further embodiment the invention relates to nucleic acid molecules encoding inhibitors of extracellular Hsp9O, if the inhibitors are selected from a group comprising polypeptides, antibodies or antibody fragments as well as to vectors comprising such a nucleic acid and to host cells comprising such a 5 vector. In a further embodiment the invention relates to the use of molecules inhibiting extracellular Hsp9O function for the manufacture of a medicament for the treatment or prevention of invasion and/or metastatic potential of cancer cells. 10 In a further embodiment the invention relates to a method of treating or preventing invasion and/or metastatic potential of cells in a patient, wherein the method comprises administering to a person in need thereof a therapeutically effective amount of the molecules, and/or the pharmaceutical 15 composition according to the invention. In a further embodiment the invention relates to a method to determine the dependency of the invasiveness of cancer cell on the functionality of extracellular Hsp90. 20 The present specification also describes a method for the identification of molecules useful for inhibiting the invasiveness of a cancer cell, particularly the identification of such ligands that bind to Hsp90. 25 In a further embodiment the invention relates to the use of classes of molecules for reducing the activity of matrix metalloprotease (MMP). DEFINITIONS 30 As used herein, the following definitions shall apply unless otherwise indicated. A "polypeptide" as used herein is a molecule comprising more than 10, preferably more than 20, most preferably more than 30, and less than 10000, -6 more preferably less than 2500, most preferably less than 1000 aminoacids. Also polypeptides containing modified or non-natural amino acids are encompassed. 5 The terms "antibody" and "immunoglobulin", as used herein refer to any immunological binding agent, including polyclonal and monoclonal antibodies. Depending on the type of constant domain in the heavy chains, antibodies are assigned to one of five major classes: IgA, IgD, IgE, IgG, and IgM. Several of these are further divided into subclasses or isotypes, such as IgG1, IgG2, 10 IgG3, igG4, and the like. Antibodies may be also selected from modified immunoglobulins, for example chemically or recombinantly produced antibodies, CDR grafted antibodies or humanized antibodies, site directed mutagenized antibodies that exhibit 15 substantial amino acid sequence identity in their CDR regions, particularly in their CDR3 region, to the corresponding antibody fragments of the invention and retain substantially the same affinity for Hsp9O binding as the corresponding antibody fragments. 20 The CDRs (complementary determining region) of an antibody are the parts of these molecules that determine their specificity and make contact with specific ligands. The CDRs are the most variable parts of the molecule and contribute to the diversity of these molecules. 25 Substantial amino acid sequence identity as used herein means that at least 70%, preferably at least 75%, 80%, 85%, 90%, more preferably all but 5, still more preferably all but 3 and even more preferably all but 1 of the amino acids of two aligned amino acid sequences, particularly of aligned CDRs, are identical. 30 The term "antibody fragment" is used to refer to any fragment of an antibody like molecule that has an antigen binding region, and this term includes antibody fragments such as scFv, dsFv, Fab', Fab, F(ab') 2 , Fv, single domain antibodies (DABs), diabodies, and the like. The techniques for preparing and -7 using various antibody-based constructs and fragments are well known in the art (see Kabat et at (1991) J. Immunol. 147, 1709-19), specifically incorporated herein by reference. 5 "scFv" antibody fragments comprise the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the scFv to form the desired structure for antigen binding. 10 A "Fv" fragment is the smallest antibody fragment that retains an intact antigen binding site. A "dsFv" is a disulfide stabilized Fv. 15 A "Fab" fragment, is an antigen binding fragment, containing complete light chains paired with the VH and CHI domains of the heavy chain. A "Fab"' fragment, is a reduced F(ab') 2 fragment. 20 A "F(ab')2' fragment, is a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region. A "single domain antibody (DAB)" is an antibody with only one (instead of two) 25 protein chain derived from only one of the domains of the antibody structure. Dabs exploit the finding that, for some antibodies, half of the antibody molecule binds to its target antigen almost as well as the whole molecule (Davies et al. (1996) Protein Eng. 9: 531-537. 30 "Diabodies" are bivalent or bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and -8 creating two antigen binding sites (Holliger et al. (1993) Proc. Natl. Acad. Sci. USA, 90, 6444-6448). The term "biogonjugate" as used herein means that an inhibitor of extracellular 5 Hsp9O is covalently or non-covalently linked and/or coupled to or with, respectively, another protein, a solid matrix (e.g. like a bead), with itself to form multimers, a cytotoxic agent further enhancing the toxicity to targeted cells, a cytostatic agent, a prodrug, or an effector molecule, which is able to modify the cell expressing Hsp9O or to recruit immune cells. 10 The terms "label" or "labeled" refers to a detectable marker or the incorporation of such, respectively, e.g., by incorporation of a fluorophore-, chromophore- or radio-labeled amino acid or the attachment of a fluorophore-, chromophore- or radiolabel to a ligand or the attachment of moieties that can 15 be detected by a labeled second molecule containing a fluorescent marker or enzymatic activity that can be detected by an optical or a colorimetric method. An example for such a two-step detection system is the well known biotin avidin system. Various methods of labeling polypeptides and glycoproteins are known in the art (for example, see LobI et al. (1988) Anal. Biochem., 170, 502 20 511) and may be applied for different classes of molecules. An "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or an antibody fragment. Epitopic determinants usually consist of chemically active surface groupings of molecules such as exposed 25 amino acids, aminosugars, or other carbohydrate side chains and usually have specific three-dimensional structural characteristics, as well as specific charge characteristics. "Treating metastatic tumors" or "treating micro-metastases", as used herein 30 means that the metastasis of the tumor is stabilized, prevented, delayed, or inhibited by the molecule of the invention, either as a single medicament or in combination with other medicaments. Stable disease or "No Change" (NC) is a description for the course of the disease with either no change of the metastases or a reduction of less than 50% or an increase of less than 25 % -9 over at least 4 weeks. Prevention can be, for example, that no new metastases are detected after the treatment is initiated. This can lead to a two- to three-fold median and/or a %-year survival rate of treated patients compared with untreated patients. A delay can signify a period of at least 8 5 weeks, 3 months, 6 months or even one year in which no new metastases are detected after the treatment is initiated. Inhibition can mean that the average size or the total number of new metastases is at least 30%, 40%, 50%, 60%, 70%, 80% or even 90% lower in a group treated with the molecule of the invention in comparison with an untreated group. Number, size and 10 prevalence of metastases can be detected by a skilled practitioner in the field of oncology following generally accepted practice and diagnostic procedures for the detection of metastases, for example as outlined in Harrisons Principles of Internal Medicine 15 th ed 2001 Mc Graw Hill. 15 "Metastatic tumors" as used herein include both tumors at the primary site capable of metastasizing and metastasized tumors at a secondary site. "A micro-metastase" is an accumulation of tumor cells with a size smaller than 2 mm, which can usually only be detected by histological methods. 20 "Invasiveness" as used herein is the ability of a cell to migrate through a layer of other cells or to migrate through the extracellular matrix. Invasiveness can be assessed by the Matrigel assay described in the Examples. Invasion is measured as the percentage of cells that reach the lower surface of the filter 25 during a certain incubation period. "Metastatic potential" as used herein is the ability of a tumor cell to form a new tumor at a site distant from the primary tumor of which the tumor cell was derived (a metastase). "Therapeutically effective amounts" are amounts which 30 eliminate or reduce the patient's tumor burden, or which prevent, delay or inhibit metastasis. The dosage will depend on many parameters, including the nature of the tumor, patient history, patient condition, the possible co-use of cytotoxic agents, and methods of administration. Methods of administration include injection (e.g., parenteral, subcutaneous, intravenous, intraperitoreal, -10 etc), for which the molecule inhibiting extracellular Hsp9O function is provided in a nontoxic pharmaceutically acceptable carrier. In general, suitable carriers and diluents are selected so as not to significantly impair biological activity of the binding agent (e.g., binding specificity, affinity or stability), such as water, 5 saline, Ringer's solution, dextrose solution, 5% human serum albumin, fixed oils, ethyloleate, or liposomes.). Acceptable carriers can include biocompatible, inert or bio-absorbable salts, buffering agents, oligo- or polysaccharides, polymers, viscoelastic compound such as hyaluronic acid, viscosity-improving agents, preservatives, and the like. In addition, the 10 pharmaceutical composition or formulation may also include other carriers, adjuvants, or nontoxic, non-therapeutic, non-immunogenic stabilizers and the like. Typical dosages may range from about 0.01 to about 20 mg/kg, or more particularly from about 1 to about 10 mg/kg. 15 Therapeutic methods employing molecules inhibiting Hsp9O function may be combined with chemotherapy, surgery, and radiation therapy, depending on type of the tumor, patient condition, other health issues, and a variety of factors. The molecules inhibiting Hsp90 function may also be used as the single effective medicament of a therapeutic composition. 20 A "molecule inhibiting extracellular Hsp90 ", is a molecule resulting in inhibition of the biological activity of extracellular Hsp9O. This inhibition of the biological activity of extracellular Hsp9O can be assessed by measuring one or more indicators of extracellular Hsp9O's biological activity, such as Hsp90 25 dependent invasiveness. These indicators of Hsp90's biological activity can be assessed by one or more of several in vitro or in vivo assays (see Examples). Preferably, the ability of a molecule to inhibit Hsp9O activity is assessed by inhibition of Hsp90-induced invasiveness of invasive human cells, particularly the cells used in the Examples. 30 A "molecule inhibiting extracellular Hsp9O function" of the invention is not a molecule which is a general inhibitor of protein function, like a protease, like a denaturing agent, e.g.urea or guanidinium hydrochloride, like heavy metal atoms or like small molecules (e.g. aldehydes or isocyanates) reacting -11 covalently and non-specifically with biomolecules (lipids, proteins, sugars). Inhibition is understood as a decrease in function, when compared to a negative control with the same experimental conditions, but without the molecule of the invention. 5 Additionally, in the case of a polypeptide of the invention, particularly an antibody or antibody fragment of the invention, the polypeptide of the invention is considered to inhibit the biological function of extracellular Hsp9O if it reduces the invasiveness of cancer cells in an experiment as described in the 10 Examples by more than 30%, preferably more than 60%, when said antibody fragment is present at a concentration of 1nM to 50pM, preferably around 20pM. Additionally, with regard to the inhibitors of extracellular Hsp9O, such inhibitor 15 is encompasses by the present invention if it reduces the invasiveness of invasive cancer cells in an experiment as described in the Examples by more than 30%, preferably by more than 60%, when present at a concentration of 1OnM to 100pM, preferably at around 1pM. 20 "Extracellular Hsp90" as used herein is Hsp90 that is loosely associated with the cell membrane and outside of the cell and is not to be understood to encompass isolated Hsp9O. This can include Hsp90 insertion in the membrane by post-translational modifications or physical integration so as to expose it to the extracellular face of the cell or secretion of Hsp90 to the 25 extracellular space. The term "inhibitor" of extracellular Hsp90 is any entity, which binds extracellular Hsp9O and decreases its function, especially with regard to the cells properties such as invasiveness and/or metastatic potential. Such an 30 entity can be an ionic or a non-ionic organic or non-organic small molecule (i.e. preferably having a molecular weigh of less than 150ODa), naturally and non-naturally occurring macromolecules, a polypeptide which can be modified, in particular with naturally and non-naturally occurring sugar moieties or -12 otherwise chemically modified, an antibody, in particular a monoclonal antibody, antibody fragments etc. The term "a" is not to be construed to mean "one" and can also mean "one 5 and/or more than one", if not otherwise stated. DETAILED DESCRIPTION OF THE INVENTION In order that the invention described herein may be more fully understood, the 10 following detailed description is provided. The present invention relates to inhibitors, which can specifically bind extracellular Hsp9O and more particularly can inhibit Hsp9O function related to the invasiveness and/or metastatic potential of cancer cells. The inhibitor of 15 extracellular Hsp9O is preferably either essentially unable to enter into the cell or is modified in such a manner that the modification essentially prohibits its cellular uptake. The modification of the inhibitors of the present invention can be achieved by conjugating the inhibitors to naturally occurring macromolecules such as polypeptides, sugars or to an artificially made, 20 biologically compatible polymers. Preferably, the inhibitor of the present invention is a bioconjugate with, respectively, another protein, a solid matrix (e.g. like a bead), with itself to form multimers, a cytotoxic agent further enhancing the toxicity to targeted 25 cells, a cytostatic agent, a prodrug, or an effector molecule, which is able to modify the cell expressing Hsp9O or to recruit immune cells. The inhibitors of the present invention for inhibiting extracellular Hsp90 can be, thus, already known inhibitors of (intracellular Hsp90) such as 30 geldanamycin and its analogues such as 17 AAG, radicicol, coumarin antibiotics such as novobiocin or purine based Hsp90 inhibitors such as PU3, when there are used to inhibit extracellular Hsp9O. However, it is preferred that the known inhibitors are modified such that the cellular uptake is -13 essentially prohibited so that any side effects associated with the possible toxicity of the inhibitors of (intracellular) Hsp9O are eliminated. A list of cytotoxic agents include, but is not limited to, daunorubicin, taxol, 5 adriamycin, methotrexate, 5 FU, vinblastin, actinomycin D, etoposide, cisplatin, doxorubicin, genistein, andribosome inhibitors (e.g., trichosantin), or various bacterialtoxins (e.g., Pseudomonas exotoxin; Staphylococcus aureus protein A). 10 The inhibitor of the present invention is preferably selected from a group comprising polypeptides, antibodies, antibody fragments, coumarin and/or purine based Hsp9O inhibitors and their analogs. Bioconjugates comprising the polypeptides of the invention, particularly the 15 antibody fragment or antibody of the invention, together with a cytotoxic moieties are made using a variety of bifunctional protein coupling agents. Some examples of such reagents are N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP), bifunctional derivatives of imidoesters such a dimethyl adipimidate HCI, active esters such as disuccinimidyl suberate, aldehydes 20 such as glutaraldehyde, bisazido compounds such as his (R-azidobenzoyl) hexanediamine, bisdiazonium derivatives such as bis-(R diazoniumbenzoyl)ethylenediamine, diisocyanates such as tolylene 2,6 diisocyanate, and bis-activated fluorine compounds such as 1,5-difluoro-2,4 dinitrobenzene. Methods useful for the production of bioconjugates are 25 described in detail in March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 5th Edition, Wiley-Interscience; or Bioconjugate Techniques, Ed. Greg Hermanson, Academic Press. In another preferred embodiment the polypeptide of the invention is an 30 antibody, in one preferred embodiment an antibody derived from a scFv antibody fragment, in another preferred embodiment a polyclonal or a monoclonal antibody, particularly a human monoclonal antibody.
-14 Anti-human Hsp9O antibodies binding to extracellular Hsp9O may be selected from modified immunoglobulins, for example chemically or recombinantly produced antibodies or humanized antibodies, site directed mutagenized antibodies, that exhibit substantial amino acid sequence identity in their CDR 5 regions, particularly in their CDR3 region, to the corresponding antibody fragments of the invention and retain substantially the same affinity for Hsp90 binding as the corresponding antibody fragments. In another preferred embodiment the anti-human Hsp9O antibody is selected 10 from the group consisting of IgA, IgD, IgE, IgG, and igM, in particular IgG and IgM, more particularly IgG1, IgG2a, IgG2b, IgG3, IgG4. In another preferred embodiment of the invention the inhibitor of the invention is particularly an antibody fragment. 15 Preferably the inhibitor of the invention is an antibody fragment, in particular a scFv, dsFv, Fab', Fab, F(ab')2, Fv, single domain antibody or diabody, more particularly a scFv, dsFv, Fv, single domain antibody or diabody, still more particularly a scFv, single domain antibody or diabody and even more 20 preferably a scFv. In another embodiment, the antibody fragment of the invention specifically recognizes one or more epitopes of Hsp9O, or epitopes of conserved variants of Hsp9O, or peptide fragments of the Hsp9O. 25 As an example, one way to increase the biological activity of the molecules of the invention is to use the molecules (or ligands) in combination with CALI (Chromophore-assisted Laser/Light Inactivation). 30 The principle of CALI (Chromophore-assisted Laser/Light Inactivation) is based on the local initiation of a photochemical reaction that leads to the generation of short-lived reactive species, which in turn selectively modify the . target molecule and cause its functional inactivation. Highly specific but non inhibitory ligands (e.g. antibodies, antibody fragments, small molecules) are -15 labeled with a suitable fluorophore (e.g. fluorescein isothiocyante). After complex formation between the target molecule (e.g. proteins) and the ligand, the complex is irradiated with laser light or white light to excite the chromophore or fluorophore, respectively. The excitation triggers a 5 photochemical reaction that initiates the generation of short-lived reactive species (e.g. hydroxyl radicals or highly reactive oxygen species). These reactive species modify the protein within a small radius around their site of generation. The distance that a reactive species can travel is very short due to its short lifetime. Therefore, the modifications of amino acid residues within the 10 protein occur in close proximity to the binding site of the ligand. The damaging effect is restricted to a radius of 15-40A, which is well below the average distance of two proteins within a cell, which is at about 80A, (assuming an average cytosolic protein concentration of 300mg/ml and an average protein size of 50kDa) ensuring a high spatial resolution of the process. This principle 15 is shown in Figure 12. In cases where the binding site of the ligand is close or within an important functional domain of the protein, these induced modifications lead to permanent inactivation of the protein. The functional inactivation of the protein is measured in an appropriate readout assay and evaluated in the context of disease relevant physiological functions like cell 20 invasion, cell adhesion, cell signaling or apoptosis. Inactivation of proteins with CALI was shown to be very specific to the respective protein. Linden et al showed that p-galactosidase could be efficiently inactivated with a malachite-green labeled anti-p-galactosidase 25 antibody even in the presence of alkaline phosphatase in the same solution. p-galactosidase was inactivated by 95 % after 10 min of laser irradiation whereas alkaline was not effected at all (Linden et al. (1992) Biophys. J. 61, 956-962). Jay also demonstrated that a dye-labeled antibody bound to a single epitope of a protein was sufficient to inactivate acetylcholinesterase 30 (Jay (1988) Proc. NatI. Acad. Sci. USA, 85, 5454-58). Henning et al. described that CALI was successfully used against a diverse array of proteins (Henning et al. Drug Discovery 62-71). These proteins include membrane proteins (eg. a-, p-, s-chains of T cell receptor, p1 integrins, -16 ephrin A5 or FAS receptor), signal transduction molecules (eg. Calicineurin, cyclophillin A or PKC), cytoskeletal proteins (eg. Actin, ezrin or kinesin) or transcription factors. Henning et al. further described that CALI can be used for identification of novel proteins as drug targets and at the same time the 5 elucidation of their function in the biological context of interest (Henning et a. (2002) Current Drug Discovery May, 17-19). Several application examples of CALI show that this technique is able to convert specific but non-inhibitory ligands into blocking reagents. Therefore, 10 these ligands can be used to modulate the action of inhibitory ligands. CALI can also be used to further enhance the inhibitory effect of a ligand that has already an inhibitory effect by itself. The experimental part shows Examples where CALI is integrated in an invasion or an adhesion assay. 15 The chemical modification of the molecule can be the addition of chromophores or fluorophores. A chromophore is that part of a molecule that possesses high optical activity due to mobile electrons that interact with light. Chromophores are called fluorophores, if they absorb light in the visible range of the spectrum. Some examples of chromophores are, e.g., fluorescein 20 derivatives, rhodamine derivatives, coumarin derivatives, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanines derivatives eosin derivatives, triphenylmethane derivatives or acridine derivatives. A list of chromophores and useful derivatives for chemically modifying biomolecules is disclosed in The Sigma Aldrich Handbooks of Stains and Dyes, Ed., F.J. 25 Green (1990) ISBN No. 0-941633-22-5. In another aspect of the present invention the inhibitor is labeled with a detectable label. Particularly, examples for detectable labels are radioisotopes, chromophores, fluorophores or enzymes. 30 The expression of a cancer-associated Hsp90 antigen can be detected by using a bioconjugate or a polypeptide of the invention, particularly an antibody or an antibody fragment of the invention. A sample is taken from the subject, e.g., a biopsy specimen taken from tissue suspected of having a tumor.
-17 Generally, the sample is treated before an assay is performed. Assays, which can be employed include ELISA, RIA, EIA, Western Blot analysis, immunohistological staining and the like. Depending upon the assay used, the antigens or the antibodies can be labeled by an enzyme, a fluorophore or a 5 radioisotope. (See, e.g., Coligan et al. (1994) Current Protocols in Immunology, John Wiley & Sons Inc., New York, New York; and Frye et al. (1987) Oncogene 4, 1153-1157.) In another embodiment the modified polypeptide or the bioconjugate of the 10 invention, binds to human, extracellular Hsp9O and reduces the invasiveness and/or metastatic potential of cancer cells. One method to measure a degree of the invasiveness of human cancer cells is given in the Examples. The present invention also relates to a pharmaceutical composition 15 comprising effective amounts of an inhibitor of extracellular Hsp90 particularly for reducing the invasiveness and/or metastatic potential of cancer cells. Preferably, the inhibitor is either essentially unable to enter into a cell or is modified in such a way that the cellular uptake of the inhibitor is essentially prohibited. The pharmaceutical composition of the present invention can be 20 used for the preparation of a medicament for the prevention and/or the treatment of the proliferative disorders such as cancer or metastasis. The present invention also relates to a pharmaceutical composition comprising effective amounts of at least one inhibitor, particularly one antibody 25 or an antibody fragment and the use of the antibody or an antibody fragment for the preparation of a medicament for the prevention and/or treatment of proliferative disorders, cancer or metastasis. In another embodiment, the present invention encompasses a diagnostic kit. 30 Such a kit comprises at least one bioconjugate and/or at least one inhibitor or a labeled version of these, and consists additionally of the reagents and materials necessary to carry out a standard competition or sandwich assay. Said diagnostic kit may be used for the determination of the invasive potential -18 of biological samples, in particular of certain cancer cell types. A kit will further typically comprise a container. In another aspect, the present invention encompasses a method for screening 5 or testing the invasion and/or the metastatic behavior of the cells ex vivo, comprising the steps of: a) contacting the cell with one or more Hsp9O inhibitors under the conditions which essentially prohibit a cellular uptake of said Hsp9O inhibitor; 10 b) analyzing the migration of cells treated according to step a); c) comparing the migration of the cells treated according to step a) with untreated the cells and optionally d) determining the percentage of migration of the cells treated according to step a) with untreated cells. 15 in a preferred embodiment of this aspect of the present invention the screening is performed such that the cells are contacted with a gel-like matrix under the conditions suitable for the growth of the cells and step b) comprises, thus, analyzing the migration of the cells through the matrix. 20 The term "gel-like matrix" as used herein is understood to be a semi-solid substance with a water content of at least 90%, which allows cultivation of cancer cells in contact with the matrix and allows migration of invasive cancer cells through a slab of said "gel-like matrix" of 0,1mm to 1mm, preferably 25 0,3mm thickness, but not migration of non-invasive cells. Examples for such a "gel-like matrix" are substances resembling the extracellular matrix in protein and carbohydrate composition, particularly the commercially available "Matrigel". Particularly the "gel-like matrix" comprises one of the proteins selected from the group consisting of the proteins collagen type IV, fibronectin 30 and laminin. More particularly the gel-like matrix comprises the proteins collagen type IV, fibronectin and laminin. More preferable the gel-like matrix comprises the proteins collagen type IV, laminin, entactin, nidogen and heparan sulfate proteoglycans or collagen type IV, fibronectin, laminin, nidogen, entactin, and vitronectin.
-19 The present specification further describes a method of identifying an inhibitor binding specifically to Hsp9O, by screening a library of ALDUs, wherein these inhibitors are capable of inhibiting Hsp90 related invasiveness, adhesiveness 5 and/or metastatic potential of cancer cells. Said method comprises the steps of: a) contacting a library of amplifiable ligand-displaying units (ALDU) with a cancer cell, e.g. a sarcoma cell; b) separating said cancer cell and the ALDUs bound thereto from 10 ALDUs not bound to said cancer cell; c) amplifying the ALDUs bound to said cancer cell; d) identifying an ALDU or a ligand derived from an ALDU after step c), which affects said biological activity of Hsp9O by a functional screening assay; 15 e) identifying an ALDU or a ligand derived from an ALDU after step d) capable of binding to Hsp9O f) determining the chemical identity of the ligand. The preferred - but not the only possible - order of the steps is a, b, c, d, e and optionally f. 20 As used herein "amplifiable ligand-displaying units" (ALDUs) are molecules or collections of molecules with dual function: they can bind to a target cell via a ligand; and they carry physically associated with the ligand an information about its identity, which allows individual units to be identified, and amplified. 25 Examples of ALDUs are oligonucleotides, particularly RNAs, useful for the process of selection-amplification (SELEX), phages of phage displa libraries, viruses of viral display libraries, ribosomes of ribosome-display techniques, but also individualized beads carrying an identifiable molecule or ligand, particularly chemical entities, e.g. small molecules bound to beads, which are 30 recognizable by inert chemical tags. Preferred are such ALDUs, which comprise a nucleic acid as the identifiable component. Such ALDUs can be either amplified in vitro, e.g., by nucleic-acid amplification methods like RT PCR, PCR, LCR and the like, or they can be amplified in vivo, for example an individual phage can infect a bacterium and yield, after several cycles of -20 infection, millions of virtually identical progeny. A library of ALDUs is a collection of similar, but in general non-identical ALDUs, for example phages of a phage library that display different scFvs in the context of an otherwise identical phage surface. 5 A ligand "derived from an ALDU" as mentioned herein is a ligand, which had been displayed by such an ALDU, which had been selected by binding to the surface of a target cell. As an example, if the ALDU is a phage of a phage library displaying scFvs the "ligand derived from an ALDU" in this case is a 10 polypeptide, here a scFv. As another example, in the case of ribosomal display the ligand "derived from an ALDU" is the polypeptide, which was presented by the complex comprising the ribosome, the RNA and the polypeptide. 15 The method advantageously combines a screening step based on binding to the surface of a cancer cell with a screening step based on a functional assay. Therefore a library of ALDUs is brought in contact with a cancer cell in such a way that those ALDUs of the library with specificity for a surface antigen of the cancer cell can bind to structures associated with the surface of e.g. the 20 cancer cell. For example phages of a phage library displaying antibodies or antibody fragments can be allowed to bind to cultured cancer cells or, as another example, RNA of an RNA-oligonucleotides library can be allowed to bind to such cancer cells. 25 The identity of ALDUs representing the antibody or the antibody fragment obtained with step d) can be determined by, e.g., sequencing the DNA encoding the antibody or the antibody fragment, or, in the case of a commercial library with gridded or numbered phages, by determining the grid position or the number of the phage. The grid position or the number then can 30 reveal the identity of the antibody or the antibody fragment represented by the
ALDU.
-21 A "ligand" as used herein is a molecule displayable by an amplifiable ligand displaying unit (ALDU). A ligand can be any entity that binds extracellular Hsp9O and inhibits its function. A ligand is that part of an ALDU through which 5 the ALDU can bind to a target. A ligand "binding specifically to extracellular Hsp90" as mentioned herein can be a ligand, which binds to Hsp90 under the buffer conditions given in the Examples. The dissociation constant between the ligand and Hsp90 can be 10 measured, e.g. by use of the so-called BIACORE System (see, for example, Fivash et al. Curr Opin Biotechnol. (1998) 9, 97-101) and "binding specifically" can then be understood to mean that the dissociation constant between the ligand and Hsp90 is lower than 10 pM, preferably lower than 1 pM, more preferably lower than 500, 400, 300, 200, 100, 50, 20 nM, most preferably 15 from 0,1 nM to 20 nM if measured under standard conditions, for example at 20 0 C, ambient pressure and in a suitable buffer, e.g. 20 mM Tris, 100 mM NaCl, 0,1 mM EDTA at an overall pH of 7.0. As used herein "contacting" of two components means allowing the two 20 components to physically associate with one another and bind to one another. "Separating" as used herein means the physical separation of two or more components, for example a cell with an ALDU bound thereto can be separated from a free ALDU by centrifugation, wherein the cell with the ALDU bound 25 thereto is pelleted and the free ALDU is still in the supernatant. "Amplifying" as used herein is any process that increases the number of ALDUs or ligands derived from ALDUs by at least a factor of two, preferably by a factor of 10, 100, 1.000, 10.000, 100.000, 1.000.000, 10.000.000 or even 30 a billion. For example a single phage can be amplified by infecting a bacterium and the infected bacterium then produces several mostly identical copies of the infecting phage, or a DNA-molecule can be amplified by the process of PCR to yield 104 or more mostly identical daughter DNA-molecules.
-22 "Identifying" as used herein means locating or recognizing an individual component, for example an ALDU, with special properties and isolating said individual component. 5 "Determining the chemical identity of a ligand" as used herein means determining the structural composition of a ligand. For example, if the ALDU library is a phage library displaying scFvs, then "determining the chemical identity of a ligand" would mean to determine the sequence of the scFv polypeptide, for example by sequencing the region encoding the scFv of the 10 phage from which it was derived. "A screening assay" as used herein is aimed at detecting an individual, e.g. an ALDU, with special properties among other similar individuals with slightly different properties. In order to qualify for a screening assay at least 3, 4, 5, 6, 15 7, 8, 9, 10, 20, 30, 40, 50 or even 100 individuals must be tested in a certain functional assay to find an individual/individuals with the desired function detected among them. In the separating step (b.) the cancer cell and the ALDUs bound thereto are 20 separated from unbound ALDUs, in order to select for those ALDUs with specificity for the cancer cell. The separation can be achieved, e.g., by removing the solution, in which the contacting step has been performed from cultured cancer cells grown adhesively in a culture flask and together with the solution the unbound ALDUs; or, as another example, cancer cells with RNAs 25 of a SELEX library bound thereto can be pelleted by centrifugation, while the unbound RNAs remain in the supernatant as part of the solution, in which the contacting step had been performed. Alternatively, separation can be achieved by centrifugation, density centrifugation, filtration, FACS sorting, immunoprecipitation or immobilization onto a solid support. For example an 30 ALDU bound to a cancer cell can be separated from unbound ALDUs making use of the fact that the complex of an ALDU bound to a target has different biochemical properties compared to an unbound ALDU. Those changed biochemical properties can be size, specific binding, charge density, density or the like.
-23 Filtration can separate the bound ALDUs from the unbound ALDUs, e.g. if the size of the filter is such that ALDUs bound to the cancer cell are retained by the pores of the filter, while the unbound ALDUs can pass through the pores 5 of the filter. Filtration by size is therefore useful if the target is large, like the cancer cell, and the ALDU is small, e.g. a phage, a virus, a nucleic acid or a ribosome displaying a ligand. Density centrifugation separates biomolecules according to their density. 10 Density centrifugation can be applied if the density of an ALDU bound to a target is different from that of an unbound ALDU. For example, the density centrifugation can be applied if an ALDU is dense, e.g. a ribosome displaying a ligand, and the target is not as dense, like a sarcoma cell or vehicles derived from the membrane of a cancer cell. 15 FACS can separate the complex of ALDU bound to a cancer cell from unbound ALDUs based on fluorescence of the target. FACS can be performed by labeling the cancer cell with a fluorescent dye and then passing the labeled cancer cell in suspending medium through a narrow dropping nozzle so that 20 each cancer cell is in a small, separate droplet. A laser-based detector system is often used to excite the fluorescent dye and droplets with e.g. fluorescence positive cancer cells are given an electric charge. Charged and uncharged droplets can then be separated as they pass charge plates and can be collected in two different tubes. In this way small droplets containing ALDUs 25 that are bound to a cancer cell are separated from bulk solution containing unbound ALDUs. Immobilization of the cancer cell onto solid support can be performed in order to separate ALDUs bound to the immobilized cancer cell from unbound 30 ALDUs. Immobilization of the cancer cell onto solid support is often performed by using a surface activated solid support or specific binding of the solid support surface with the cancer cell using e.g. biomolecules with specific binding properties towards the cancer cell. In order to separate ALDUs that are bound to the immobilized cancer cell from unbound ALDUs, the -24 immobilized cancer cell is separated from the bulk solution containing unbound ALDUs. Separation of ALDUs bound to the immobilized cancer cells from the bulk 5 solution containing unbound ALDUs can be performed by removing the bulk solution containing the unbound ALDUs from the immobilized cancer cells. For example, if the cancer cell is immobilized onto e.g. the well of a plastic micro titer plate via covalent interactions then the bulk solution containing the unbound ALDUs can be separated by removing the solution and washing the 10 wells with washing solution. In the amplification step (c.) the ALDUs bound to the target are amplified, in order to obtain high enough concentrations of the ALDUs so that they are useful for being applied in a functional screen. This amplifying step makes use 15 of the ALDUs' intrinsic property to be amplifiable. For example phages displaying, e.g., an antibody or antibody fragment, which have been separated from the non-bound phages in step b), but are still bound to the cancer cell, can be amplified by first recovering the bound phages, for example by eluting the phages from the cancer cells and then using the recovered phage eluate 20 to infect bacteria, e.g. Escherichia coli. The amplification of the phages in Escherichia coli then leads to a significant increase in total phage number, but in such a way, that the concentration of those individual phages, which were capable of binding to the cancer cells, is dramatically increased. According to a preferred embodiment the step of amplification is realized by either eluting 25 the ALDU bound to a cancer cell, or by lysing a caner cell under conditions where the ALDU remains amplifiable, and subsequent amplification. ALDUs bound to a cancer cells can be eluted from the cancer cells first, e.g. by use of solutions with low pH and/or high salt, as demonstrated in the Examples, and subsequently amplified, e.g. such that the eluted phages are used to infect 30 Escherichia coli in order to produce large numbers of progeny phages. However, the elution step from the target, while it may be convenient, is not necessary, as, e.g., in the case of phage libraries even the phages still bound to a cancer cell, are capable of infecting Escherichia coli and thus capable of producing large numbers of identical progeny, and thus are amplifiable even -25 when still bound to the cancer cell. Accordingly, the phages need not necessarily be removed from the target cell, as a phage still bound to a target cell can infect added bacteria and thus be amplified. 5 As another example, the mRNA of a ribosomal-display library, which is associated with the surface of a cancer cell by its attachment to a ribosome displaying the polypeptide corresponding to the mRNA can be directly used for RT-PCR, without the need of removing the intact ALDU from the target before amplifying the target. Thus, a step in which the ALDU bound to a target 10 is recovered from the target before amplifying the ALDU is an optional step. Amplifying the ALDU can also consist in determining the chemical identity of the ligand of such ALDUs, which are bound to the cancer cell and then amplifying the ligands. That is to say, e.g., that in the case of a phage library, 15 displaying an antibody or an antibody fragment, DNA encoding those ligands can be cloned from phages, which are bound to the cancer cell, e.g., by PCR, and the ligand, e.g., the antibody or antibody fragment, can then be produced recombinantly to yield sufficient amounts of the ligand to be useful for a functional screening assay. In such a way, not the ALDU itself is amplified, but 20 the ligand displayed by the ALDU. This, however, is within the scope of the invention, as the aim of the amplification step is the generation of a ligand concentration high enough to be useful for a functional screening assay and this can be achieved by either amplifying the ligand or the ALDU displaying it. 25 In the identifying step (d.) an ALDU or a ligand derived from an ALDU, which had bound to a cancer cell is identified based on its effects on a biological function of Hsp90 to be tested in a functional screening assay. For such a functional screening assay, the ALDUs or ligands derived from them are advantageously individualized, such that a signal or a pattern from the 30 functional screening assay is relatable to an individual ALDU or an individual type of ligand. This can be done, e.g. by filling separate wells of a multi-well plate with individual ligands each and then performing an assay for a desired biological function of Hsp9O in those individual wells.
-26 In another example phages, which had bound to a cancer cell, and had been separated from unbound phages, can be individualized by infecting bacteria and plating the infected bacteria in, e.g. soft agar, so that individual plaques form, which represent clones of individual phages. Those individual plaques 5 can then be tested for their effects in a biological screening assay for Hsp9Q function. In such an assay, an individual plaque with an effect in the functional screening assay for Hsp9O function is identifiable. The ligand displayed by the phages of the plaque can then be identified, e.g. by sequencing the phage DNA of an isolated plaque, which represent a clone of a single phage, initially 10 selected by its ability to bind to the cancer cell. Thus, in those cases where an ALDU itself is used in the functional screening assay, the identity of the ligand displayed by the ALDU can be determined, if desired. In a preferred embodiment the ligand is capable to inhibit a biological function 15 of Hsp9O. For example, the biological function of Hsp9O can be invasion, or adhesion. In another embodiment the ALDU or the ligand derived from an ALDU and used for the functional screening assay as in step d) of the method according 20 the invention identifying an unmodified ligand according to the invention. In still another embodiment of the invention the ALDUs or the ligands derived from an ALDU which are used for the functional screening assay according to step d) of the method of identifying a ligand according to the invention are 25 chemically modified to increase their biological activity or endow the ALDU or the ligand with biological activity. As an example, one way to increase the biological activity of an ALDU or a ligand or to endow the ALDU or the ligand with biological activity is to use the ALDU or the ligand in combination with Chromophore-Assisted Laser Inactivation (CALI) as described earlier. CALI 30 can also be used to further enhance the inhibitory effect of a ligand that has already a neutralizing and inhibitory effect by itself. This makes also clear that the nature of the ligand displayed on the ALDU is not critical to identify suitable molecules, it is more the ability of the ALDU to -27 be identifiable and amplifiable, which has influence on a successful screening for Hsp90 inhibiting molecules according to the invention. However, as explained before, amplification of the ALDU can be achieved by 5 increasing the number of an individual ALDU, but also by increasing the number of a ligand displayed by an individual ALDU. Since this can in principle also be achieved by an individual bead displaying a small chemical in combinatorial chemical libraries (see Ohimeyer et al. (1993) Proc. Natl. Acad. Sci USA 90, 10922-26; Liu et al. J. Am. Chem. Soc. (2002) 124, 7678-80; 10 Liang et al Science (1996) 274, 1520-2) such bead-format libraries are also libraries of ALDUs. Small molecules can be synthesized on microsphere beads, which can be indexed with inert chemical tags. During each step of the synthetic scheme a tag molecule that encodes the step number and the chemical reagent used in that step is attached to the bead. This array of tags 15 can then be used as a binary code to record the reaction history of each bead. The identified compound can then easily be synthesized in a bigger scale. An ALDU used according to the methods described herein is a biological ALDU whereby the information about its identity is stored as a nucleic acid, 20 e.g. RNA or DNA. In a preferred embodiment the ALDU is selected from the group consisting of viruses useful for viral display, phages useful for phage display, bacteria useful for bacterial display, ribosomes useful for ribosome display, yeasts useful for yeast display and oligonucleotides useful for selection and amplification. 25 Phages useful for phage display can be all phages that can be obtained from culture and that are amenable to genetic engineering techniques and are capable of displaying a foreign ligand on their surface. Phage display has been disclosed in Smith et al. (1985) Science, 228, 1315-17, phage display of 30 an antibody has been disclosed in WO 91/17271. Bacteria useful for bacterial display are bacteria, which can be kept in culture, which are amenable to genetic engineering techniques and which are able to display a ligand on their surface. Examples for bacteria useful for bacterial -28 display are disclosed in Dougherty et al., (1999) Protein Eng. 12,613-21; and Westerlund-Wickstrom B. (2000) Int. J. Meth. Microbiol. 290, 223-30. Ribosomes useful for ribosomal display have been disclosed in Shaffizel et al., 5 (1999) J. Immunol. Methods 231, 119-35; and Willson et al., (2001) Proc. NatI. Acad. Sci. USA 98, 3750-5. Oligonucleotides useful for selection/amplification (Selex) have been disclosed in Tuerk and Gold (1990) Science 249, 505-10, and Tuerk et al., (1992) Proc. 10 NatI. Acad. Sci. USA 89, 6988-92. However, also lower eukaryotes which can be cultured and are amenable for genetic engineering techniques and, thus, able to display a foreign ligand on their surface are useful as ALDUs, e.g. genetically modified yeast, as 15 disclosed in Boder and Wittrup (2000) Methods Enzymol. 328, 430-44. The method of identifying a ligand of the invention comprises as the identification step d) a spatial separation of the different ALDUs of a pool of ALDUs and then the screening of the spatially separated ALDUs for their 20 effect on a biological function of Hsp90 in such a way that the result obtained can be assigned to an individual ALDU. Spacial separation of the different ALDUs of a pool of ALDUs can be done, e.g., by filling separate wells of a multi-well plate with individual ligands each and then use those multi-well plates in a functional screening assay. If, e.g., in one well the biological 25 function of Hsp9O is inhibited, then a ligand inhibiting said biological function of Hsp90 is identified, as the experimentator knows the identity of each ligand he put into each individual well. In another preferred embodiment the method of identifying a ligand can 30 comprise the step of determining the identity of the ligand, wherein this determination step is achieved by sequencing the DNA of an identified ALDU, taking a PCR fingerprint of the nucleic acid of an identified ALDU or also, in the case of a ligand derived from an ALDU, by mass spectrometry of such a ligand. PCR fingerprinting of, e.g., phages is disclosed in Marks et al. (J. Mol.
-29 Biol. (1991) 222, 581-97). Mass spectrometrical analysis of a ligand, e.g. a polypeptide, is disclosed in Shevchenko et al. ((1996) Anal. Chem. 68, 850 58) or Spengler et al ((1992) Rapid. Commun. Mass. Spectrom. 6, 105-8.) 5 The method of identifying a ligand as described herein may further comprise at least one additional step of screening ALDUs, e.g. wherein the screening is based on biochemical properties of the ALDUs. Such an additional screening step may comprise a method selected from the group consisting of flow cytometry, ELISA, immunoprecipitation, binding assays, immunohistochemical 10 experiments, affinity studies, immunoblots and protein arrays. Biochemical properties can be determined by the size, the shape, the density, the charge density, the hydrophobicity, or the binding specificity of an ALDU or the ligand derived from an ALDU. The biochemical properties of the ALDU or the ligand derived from an ALDU form the basis of the applicability of the above 15 mentioned methods for screening the ALDUs. Flow cytometry is usually performed by labeling cells with a fluorescent dye and then passing those labeled cells in suspending medium through a narrow dropping nozzle so that each cell is in a small, separate droplet. A laser-based detector system is often used to excite the fluorescent dye and droplets with e.g. fluorescence 20 positive cells are registered. The method of identifying a ligand of the invention can further comprise a substractive selection step. A substractive selection step is a step, which removes ALDUs with an undesired property. For example a substractive 25 selection step can be affected by removing the ALDUs capable of binding to a control cell, if the property of binding to a control cell is undesired. By way of example, if one wants to select for ALDUs specific for cancer cells one could first select those ALDUs which bind to cancer cells, elute the bound ALDUs, e.g. phages, and then remove those ALDUs, which are capable of binding to 30 non-cancer-cells, by for example contacting the pool of eluted ALDUs with non-cancer-cells and removing those ALDUs bound to the non-cancer-cells. The ALDUs remaining in the supernatant are then ALDUs specific for cancer cells and can then be used in functional screening assays according to the method of identifying a ligand of the invention.
-30 In step e) the pool of ALDUs, e.g. phages, is enriched in ALDUs binding to Hsp90. Those ALDUs binding to Hsp9O can finally be identified in step f) by numerous methods known in the art. 5 Preferably, the above method comprises instead of steps e) and f) the further steps of: contacting ALDUs, e.g. isolated phages with recombinant Hsp9O; 10 washing said Hsp90 with a buffered detergent and/or high salt solution; and eluting ALDUs, e.g. phages bound to Hsp9O; and 15 determining the identity of the ligand, e.g. an antibody or antibody fragment represented by said eluted ALDU, e.g. a phage. The "detergent" used can be a detergent solution, preferably buffered, and can be Tween in a concentration of 0.001- 0.5%, particularly 0.01-0.1 %. "High 20 salt" as used herein means a high salt solution, preferably buffered, and has an ionic strength of 10 mM-1M, particularly 20-500 mM, more particularly 50 350 mM, even more preferably 80-250 mM. Typical useful anions are, for example, chloride, citrate, phosphate, hydrogen phosphate or borate. Typical useful cations are, for example, sodium, potassium, lithium, calcium or 25 magnesium. buffered solution in the above paragraph typically has a pH of 7-8. For example, DMEM or PBS, particularly with 1-20%, more particularly 5-15%, even more preferably about 10% FCS, can be used as buffers. 30 Isolation of cells with phages bound to them is effected by gentle centrifugation at g values from 200 to 300 for 3 to 20 minutes, particularly 5 to 10 minutes. Elution of bound phages, both to cells and to immobilized Hsp9O, is effected by a wash with 2-100 mM, particularly 4-50 mM, more particularly -31 5-20 mM, even more preferably around 10 mM Glycine at a pH of from 0 to 2.5, particularly from 1 to 2.5, more particularly from 1.5 to 2.5. Furthermore all the inhibitors of extracellular Hsp90 can be used according to 5 the present invention to modulate and especially to reduce the activity and/or reduce the secretion of matrix metalloprotease (MMP). The following examples, including experiments conducted and results achieved, are provided for illustrative purposes only and are not to be 10 construed as limiting upon the present invention. DESCRIPTION OF THE DRAWINGS Figure 1 shows the invasion of stained HT-1080 cells through a Matrigel 15 coated 8pm filter (left picture). The right picture shows invasion of stained HS 27 cells as a control. Fluorescence was quantified after six hours incubation at 370C. Data presented are the mean of n = 3 wells +/- SD. Figure 2 shows the inhibitory effect of mAbl.5.1 on the invasion of HT 20 1080 cells. Invasion was determined in a chemotaxis assay with a Matrigel coated cell migration chamber after light irradiation (with CALI). The invasion of HT-1080 cells in the absence of any inhibitory molecule was used as a control (left bar). mAb 1.5.1 inhibited the invasion of HT-1080 cells by about 35% (p-value < 0.001). 25 Figure 3 shows the inhibitory effect of scFv1 on the invasion of HT-1080 cells. Invasion was determined in a chemotaxis assay with a Matrigel coated cell migration chamber after light irradiation (with CALI). The invasion of HT 1080 cells in the absence of any inhibitory molecule was used as a control 30 (left bars). scFv1 inhibited the invasion of HT-1080 cells by about 46% (p value < 0.05). Figure 4 shows a correlation of the inhibition of invasion with the antibody concentration. Antibodies specific for Hsp90, Hsp90ax, Hsp90p, (all -32 Stressgen), alpha-actinin-4 (Martin R. Pollak, Children's Hospital, Boston, MA) and mAb 1.5.1 were FITC-labelled and tested in the invasion assay after light irradiation at 3 concentrations (10pg/mL, 20pg/mL, and 40pg/mL). Positive control p1-integrin (Chemicon, 20pg/mL) and negative control (0, no antibody) 5 are also shown. mAb 1.5.1, Hsp90, and Hsp90a antibodies all demonstrated concentration-dependent inhibition of invasion, while Hsp90p and alpha actinin-4 did not. Each bar is normalized to dark control and represents the mean +s.e.m of at least 2 experiments in triplicate. 10 Figure 5 shows the result of immunoprecipitation experiments. mAb 1.5.1 or an anti-Hsp90 antibody (Stressgen #SPA-830) was incubated with lysates of HT-1080 cells. The immuno-complexes were separated by SDS-PAGE and immunoblotted with mAbl.5.1 or the anti-Hsp90 antibody. The same specific band is recognized by both antibodies, indicating that both antibodies bind the 15 same protein. Figure 6 shows co-immunocytochemistry of Hsp90 and mAb 1.5.1. The first panel shows localization of Hsp90c/ (Affinity Bioreagents #PA3012 & PA3-013) near the leading edge of HT-1080 cells. The second panel shows 20 the same localization near the leading edge using mAb 1.5.1. Complete protein co-localization can be seen when the images are overlapped (right picture). This demonstrates that mAb 1.5.1 and Hsp90 recognize the same protein. Images were collected (Zeiss Axiovert 10 using a Neofluar 40-x/0.75 numerical aperture lens) using excitation filter sets at 546 and 480 and 25 emission filter sets at 590 and 535 for rhodamine (red, Hsp90a/p) and F1TC (green, mAb 1.5.1). Scale bars in images represent 10pm. Figure 6.1 Surface immunocytochemistry on HT-1080 cells using antibodies against P1-integrin (c), and Hsp90a (e) show distinct surface 30 staining. Negative controls [mouse secondary alone (a) and rabbit secondary alone (b)], a-actinin-4 (d), and Hsp90P (f) show no detectible surface staining. Images were visualized using an Olympus BH-3, and collected using a SPOT digital camera (Digital Instruments).
-33 Figure 6.2Surface immunocytochemistry on MD-MDA231 adenocarcinoma cells using antibodies against p1-integrin (c), and Hsp90a (e) show distinct surface staining. Negative controls [mouse secondary alone (a) and rabbit secondary alone (b)], a-actinin-4 (d), and Hsp90s (f) show no detectible 5 surface staining. Images were visualized using an Olympus BH-3, and collected using a SPOT digital camera (Digital Instruments). Figure 6.31mmunoblotting of HT-1080 conditioned media with Hsp9Oa and Hsp90p specific antibodies shows the extracellular location of Hsp90a, but not 10 Hsp90p. Hsp9Oa is present in serum-free conditioned media from HT-1080 cells, but Hsp90 is absent. Figure 7 shows a surface protein biotinylation experiment that was performed with live HT-1080 cells as previously described. Both, the surface 15 biotinylated proteins and the unbiotinylated intracellular proteins were separated by SDS-PAGE. Hsp90 and alpha-actinin-4 antibodies were used for immunoblot analysis. Hsp9O shows both surface (S) and intracellular (IC) localization, but alpha-actinin is found only in the intracellular pool. 20 Figure 8 shows a result of FACS analysis. The binding activity of scFv1 to HT-1080 cells (bold line) and to HS-27 cells (thin line) as control is illustrated. Figure 9 shows peptide matches from mass spectrometry analysis. Trypsinized peptide fragments from the mAb 1.5.1 immunoprecipitation were 25 run on a Survevor HPLC and LCO Deca Ion Trap mass spectrometer (ThermoFinnigan) with a 75pM nanospray C18 column (New Objectives). The obtained PMF (peptide mass fragments) were used to search all entries for the species Homo sapiens in the NCBI and Swiss-Prot databases. The matched peptides cover 24% (172/732 residues) of Hsp90a and 33% 30 (241/724 residues) of Hsp900. Figure 10 shows the concentration-dependent effect of novobiocin on invasion of HT-1080 cells. HT-1080 cells were pre-treated for 1 hour with novobiocin or nalidixic acid and an invasion assay was performed. Novobiocin -34 shows a dose-dependent inhibition of invasion (p < 0.01 at > 0.05mM by ANOVA). Nalidixic acid has no effect on invasion. Viability of cells in this assay was not affected (data not shown). Each data point is normalized to the no drug control and represents the mean +s.e.m. of 2 experiments in triplicate. 5 Figure 11 shows that MMP secretion is decreased after addition of novobiocin. 40,000 HT-1080 cells were treated for 6 hours with novobiocin or nalidixic acid (as a control) at the given concentrations. MMP activity was decreased by >75 % at the highest concentration of novobiocin tested and no 10 reduction of enzyme activity was seen with nalidixic acid. Two bands (A and B) correspond to unidentified MMPs. (Image inverted for clarity.) Figure 12 shows the principle of Chromophore Assisted Laser/Light Inactivation (CALI) 15 Figure 13 shows the vector map of the scFv display vector pXP10 and corresponding sequence Figure 14 shows the vector map of the scFv expression vector pXP14 and 20 corresponding sequence Figure 15 shows the sequences for the construction primers for a mouse library. 25 Figure 16 shows the amino acid sequences (SEQ ID NO.: 1) (CDR3 region is underlined) and nucleotide sequence (SEQ ID NO.: 2) of scFvl Figure 17 shows that an anti-Hsp9oa antibody co-immunoprecipitates MMP2 from HT-1080 conditioned media. Immunoprecipitated proteins were 30 immunoblotted with anti-MMP2 or Hsp9oa. Inhibition of Hsp90 inhibits MMP2 secretion. . Figure 18 shows the MMP2 content in conditioned media after geldanamycin (GA) treatment. HT-1080 cells were treated with 20pM -35 geldanamycin (GA) in serum-free media and assayed by zymography. MMP2 (72kDa gelatinase) activity was decreased by -35% after GA treatment. Total protein content was visualized by silver staining to ensure equal loading. 5 Figure 19 shows a correlation between the MMP2 content and the hsp90ct content. HT-1080 cells were treated with geldanamycin-conjugated agarose beads (GA-beads) or control beads (beads) or left untreated (0). Conditioned media was immunoblotted for MMP2 or Hsp90a. Active MMP2 levels were decreased by 80%, and pro-MMP2 levels were decreased by 15% after GA 10 bead treatment. Figure 20 shows the decrease of invasiveness of tumor cells after treatment with different amounts of geldanamycin-conjugated agarose beads (GA-beads). HT-1 080 cells were treated either with no beads, 5% or 10% (vlv) 15 of GA-beads or control beads and assayed for invasiveness. GA-bead treated cells show a 45% reduction, whereas control bead treated cells only show a 15% reduction in invasiveness (p<0.01, t-test). Each data point is normalized to the no treatment control and represents the mean ± standard error of two triplicate assays. 20 EXAMPLES Example 1: Generation of monoclonal antibodies (e.g. mAbl.5.1) 25 Mice were immunized with either fixed or lysed HT-1 080 cells twice over three months. For fixation, confluent (1x10 7 /75cm2 flask) HT-1080 cells were washed once with PBS, then removed with PBS and scraping. Cells were resuspended by pipeting, centrifuged for 5 minutes at 220Xg, and fixed with 1 OmL of 2 % paraformaldehyde for 10 minutes at 4*C. Cells were washed with 30 PBS, then resuspended in 1ML of PBS. Lysed cells were generated by trypsinizing confluent HT-1080 cells, washing once with PBS, then pelleting for 1 minute at 12000xg. Cells were then lysed in lysis buffer (0.67 Triton-X 100 in 0,33M Tris-HCI, pH 7.5) at room temperature for 5 minutes. Lysate was then centrifuged for 5 minutes at 12000xg. Triton-X-100 was removed by -36 adding the lysate to PD-10 columns and eluting protein with 3.5mL PBSI Protein was quantitated using Micro-BCA kit (Pierce), and 150pg/mL/mouse was used for immunization. 5 Generation of hybridomas was performed as described previously (Harlow and Lane, 1988). Hybridoma supernatants were first screened by fixing a confluent monolayer of HT-1080 cells (40,000 per well of a 96-well clear thin bottom plate) in 4% 10 paraformaldehyde/PBS for 30 minutes at room temperature and then permeabilizing in 0.2% Triton-X-100 for 5 minutes. Following incubation with undiluted hybridoma supernatant, three 5 min 0.1% bovine serum albumin (BSA) in phosphate buffered saline (PBS) washes done. A FITC-labelled rabbit-anti-mouse secondary antibody was added for 1 hour at room 15 temperature. The same 0.1%BSA/PBS washes were repeated and a tertiary FITC-labelled, goat-anti-rabbit antibody was added for 1 hour at room temperature. After a final round of washes, the cells were stored in PBS at 4*C until imaging. Images were collected (Zeiss Axiovert 10 using a Neofluar 40X/0.75 numerical aperture lens) using excitation filter set at 480 and 20 emission filter set at 535 for FITC. Cells were scored for staining compared to positive controls (anti-p1 integrin, Chemicon #MAB1963 and anti-gelsolin, Sigma #G4896) and negative controls (no primary antibody). The hybridomas that tested positive for HT-1 080 binding were then tested for 25 surface expression by surface immunocytochemistry. For surface protein immunocytochemistry, a confluent monolayer of HT-1080 cells (40,000 per well of a 96-well clear thin bottom plate) were incubated with hybridoma supernatant for 1 hour at 37*C/5%CO 2 . After three 5 min 0.1% bovine serum albumin (BSA) in phosphate buffered saline (PBS) washes, the cells were 30 fixed in 2% paraformaldehyde for 2 min. Another round of 0.1%BSA/PBS washes was performed, and a FITC-labelled rabbit-anti-mouse secondary antibody was added for 1 hour at room temperature. The same washes were repeated and a tertiary FITC-labelled goat-anti-rabbit antibody was added for 1 hour at room temperature. After a final round of washes, the cells were -37 stored in PBS at 4 0 C until imaging. Surface staining was visualized by microscopy on a Zeiss Axiovert 10 using a Neofluar 40X/0.75 numerical aperture lens. Images were collected using excitation filter set at 480 and emission filter set at 535 for FITC. Cells were scored for surface staining 5 compared to a positive control (anti-p1 integrin, Chemicon #MAB1963 and anti-gelsolin, Sigma #G4896) and negative controls (no primary antibody). Example 2: Construction of an immune library 10 Two BALB/c mice were each immunized intradermally with 2 x 10 7 paraformaldehyde fixed HT-1080 cells (human fibrosarcoma cell line; ATCC, CCL-121). Following the first immunization, the injections were repeated twice in a period of 39 days, the mice sacrificed and the spleens isolated and frozen in liquid nitrogen. 15 Total RNA was isolated using the RNeasy Midi Kit (QIAGEN #75142) as described by the manufacturer using half of each spleen preparation. The RNA concentration and purity was determined by a denaturing formaldehyde gel and photometric measurement. 20 cDNA was synthesized using 8.9 pg of freshly prepared RNA and 10 pmol of a primer mix IgGl-c, IgG2a-c, IgG2b-c, IgG3-c, VLL-c, VLK-c) using the Superscript TM II Kit (GibcoBRL Life Technologies #18064-014). These primers anneal to the RNA encoding the IgG heavy-chain (VH) genes and the light 25 chain (VL) genes of the kappa and lambda family. VH genes were PCR amplified from 1 pl of cDNA using 36 individual combinations of 9 forward primers (M-VH1, M-VH2, M-VH3, M-VH4, M-VH5, M-VH6, M-VH7, M-VH8, M VH9) and 4 backward primers (M-JH1, M-JH2, M-JH3, M-JH4) without restriction sites. VL genes were PCR amplified with one primer mix (M-VK1, 30 M-VK2, M-VK3, M-VK4, M-VL1, M-JK1, M-JK2, M-JK3, M-JL1) without restriction sites. PCR products were gel-purified (QlAquick Gel Extraction Kit, #28706) and reamplified using individual combinations of 9 forward primers (MVH1. Sfil MVH2 Sfil MVH3 Sfil, MVH4 Sfil, MVH5 Sfil, MVH6 Sfil, MVH7 Sfil, MVH8 Sfil, MVH9 Sfil) and 4 backward primers (M-JH1 Sall, M-JH2 Sall, -38 M-JH3 Sall, M-JH4 Sall) with restriction sites for VH and one primer mix (M VK1 ApaLl, M-VK2 ApaLl, M-VK3 ApaLl, M-VK4 ApaLl, M-VL1 ApaLl, M-JK1 Noti, M-JK2 Noti, M-JK3 Noti, M-JL1 Notl) with restriction sites for VL. PCR products were gel-purified (QlAquick Gel Extraction Kit, #28706) and cloned 5 into the phage display vector pXP1O using the restriction sites Sfil/Sall for VH and ApaLl/Notl for VL. The ligation mix was transfected into E.coli TG-1 by electroporation resulting in a library size of 107 independent clones (phages) expressing different single chain antibody fragments (scFv). 10 Example 3: Selection and Screening of scFv (Selection on fixed cells) Single chain Fv were selected from a phage display library generated from mice immunized with fixed HT-1080 cells. The library was generated using the phage display vector pXP10. 15 Phages expressing scFv with high affinity to tumor cells were selected as follows: HT-1080 cells were harvested with 0.05% EDTA, fixed with paraformaldehyde, diluted to 1x107 cells/ml in PBS and immobilized onto wells of a 96 well UV cross-link plate (Corning Costar). The wells of the UV cross 20 link plate were blocked with 5% Skim Milk Powder (#70166, Fluka) in PBS (MPBS). 1012 cfu (colony forming units) of phage library/10 6 cells were pre blocked for 1 hour at 25*C with MPBS and subsequently incubated for 1.5 hour at room temperature (RT) with the cells. The wells of the UV cross-link plate were washed six times with PBS + 0.05% Tween-20 followed by six 25 washes with PBS. Bound phage were eluted by the addition of 10 mM Glycine pH 2.2, and neutralized with 1 M Tris/HCI pH 7.4. Typically, between 103 and 106 cfu were eluted in the 1 't round of selection, thus the diversity of the enriched repertoire is decreased compared to the original repertoire. The eluate containing the enriched repertoire was amplified by infecting 30 exponentially growing E. coli TG1. Phagemid containing E. coli were selected and propagated by overnight (o/n) growth at 30*C on LB agar plates supplemented with 100jg/ml ampicillin and 1% glucose. Following this step, the enriched repertoire can either be amplified as a polyclonal pool and used for further rounds of selection in an iterative manner until convergence to -39 desired properties is achieved or be spatially separated and screened on a single clone level. Phage particles for the next round of selection were produced by super-infecting exponentially growing cultures of the previous round of selection with helper phage VCS-M13 (Stratagene, La Jolla, CA) and 5 growing the cultures overnight at 20"C in 2xTY supplemented with 100g/ml ampicillin (amp) and 50 Fig/ml kanamycin (kan). Selection ready phage were precipitated with 0.5 M NaCI/4% PEG-6000 from the cleared bacterial supernatant and re-suspended in PBS. One round of selection was performed, followed by screening on a single clone level as described in 10 Example 4. Example 4: Selection and Screening of scFv (Screening on fixed cells) For screening, the genes encoding the selected scFv, contained in the phage 15 display vector, were re-cloned to the expression vector pXP14. This vector directs the expression of scFv in fusion with a Strep-tag and E-tag and does not contain a filamentous phage gene-3. Expression vector containing E. coli TG1 from single colonies were grown in individual wells of a micro titer plate so that each well contains only one scFv clone. The bacteria were grown at 20 30 0 C in 2xTY supplemented with 100ig/ml ampicillin and 0.1% glucose in 96 well micro titer plates (#9297, TPP) until an OD 6 0 o of 0.7. Expression was induced with IPTG at a final concentration of 0.5 mM and continued at 25*C overnight. Single chain Fv containing cleared lysates were prepared by addition of hen-egg lysozyme (#L-6876, Sigma) to a final concentration of 50 25 jag/mI for 1 hour at 25*C and centrifugation for 15 minutes at 3000 x g. Prior to the screening ELISA, the cleared lysates were blocked by the addition of an equal volume of DMEM + 10% FCS for 1 hour. For the screening ELISA, HT 1080 cells were harvested with 0.05% EDTA, fixed with paraformaldehyde, diluted to 1x107cells/ml in PBS and immobilized onto wells of a 96 well UV 30 cross-link plate (Corning Costar). The wells of the UV cross-link plate were blocked with MPBS and the scFv containing blocked cleared lysates added for 1.5 hours at 250C. The plates were washed 2x with PBS + 0.1% Tween-20 and 1x with PBS, incubated with HRP conjugated a-E-tag (#27-9413-01, Pharmacia Biotech; diluted 1:5000 in MPBS with 0.1 % Tween-20) for 1 hour, -40 washed 3x with PBS + 0.1% Tween-20 and 3x with PBS, developed with POD (#1 484 281, Roche) and signals read at 370 nm. Positive clones were retested against HT-1080 cells and control human 5 fibroblasts Hs-27 (ATCC CRL-1634) using the ELISA screening procedure described above and preserved in glycerol stocks. In a typical screen, 2760 (30x92) clones were screened for binding to HT-1080 cells with 5 % positives defined as clones giving a background subtracted signal > 0.1. 155 positive clones were retested for specific binding to HT-1080 cells compared to the Hs 10 27 control cells with 28 % positives defined as clones giving a background subtracted signal on HT-1 080 of at least twice the value of the signal on Hs-27 control cells. Example 5: Sequencing and large scale expression 15 Sequencing of scFv1 and its genes was performed by Sequiserve GmbH, Vaterstetten, Germany using the primer pXP2 Seq2 (5' CCCCACGCGGTTCCAGC-3' and pXP2 Seq1 (5'TACCTATTGCCTACGGC 3'. The amino acid sequence and nucleotide sequence are shown in the 20 Figures. Unique clones identified by sequencing were streaked out from glycerol stocks onto LB/Amp(100pg/ml)/1% Glucose Agar plates and incubated o/n at 30 0 C. 10 ml LB/Amp/Glu (1%) media were inoculated with a single colony and grown 25 o/n at 30*C and 200 rpm shaking. The next morning the overnight cultures were placed on ice until inoculation of 1L 2xTY media supplemented with 100pg/ml Ampicillin and 0.1% Glucose in 2L Erlenmeyer-flasks. The cultures were grown at 25*C shaking until an OD 600 0.5 - 0.6 was reached and then induced with IPTG 0.1 mM final concentration. Fresh ampicillin was added to 30 50 pg/ml and incubation was proceeded at 220C o/n shaking. In the morning the cultures were centrifuged at 5000 x g for 15 minutes at 4*C, supernatants discarded and the pellets re-suspended carefully on ice with a pipette in 10 ml pre-cooled PBS-0.5 M Na buffer containing protease inhibitors complete (#1697498, Roche). After re-suspension was completed, bacterial -41 suspensions were transferred to 20 ml oakridge centrifuge tubes and hen-egg lysozyme (#L-6876, Sigma) added to a final concentration of 50 pg/ml for 1 hour on ice. The lysed bacteria were centrifuged at 20000 x g for 15 minutes at 4*C and the supernatants (lysate) transferred to a 15 ml plastic tube. For 5 affinity purification the lysates were loaded with 1 ml/min onto 1ml StrepTactin (# 2-1505-010, IBA) columns equilibrated with 10 column volumes (CV) PBS 0.5 M Na buffer via a parallel protein purification system. After a 10 CV wash with PBS the elution was done with 5 CV PBS/5mM Desthiobiotin (#D-1411, Sigma) and 1 ml fractions collected. The fractions were measured at UV 280 , 10 protein containing fractions were pooled and concentrated with Amicon Ultra Centrifugal Filter Devices 10.000 MWCO (#UFC801024, Millipore) at 4700 x g. The concentrated scFv were checked on 12% Bis-Tris SDS-PAGE gels 15 stained with Coomassie Blue for purity and frozen in aliquots with 20 % glycerol at -80*C. Example 6: FACS analysis for tumor cell specific binding 20 To test the ability of purified anti HT-1080 scFv to bind specifically to target cells, we performed a fluorescence-activated cell sorter (FACS) analysis using HT-1080 cells (ATCC CCL-121) and Hs-27 cells (106 cells/ml) as control cell line (see Figures). Cells were incubated with 10 pg/ml of pure scFv in CellWash (BD (Becton, Dickinson and Company) #349524) for 20 min at 4*C, 25 washed, and bound scFv's were detected with a secondary FITC labeled anti E-tag mab (Amersham #27-9412-01). Samples were washed and analyzed on a Becton Dickinson FACSscan. Figure 8 shows the log fluorescence intensity (FL1-H; x-axis) versus the relative cell numbers (counts; y-axis) for cells reacting with scFv1. The thin line represents the control cell line (HS-27) and 30 the bold line the HT-1080 cells. scFv1 specifically stains the tumor cell lines with up to 10 fold higher signal compared to the control cell line. Example 7: Labeling of scFv with FITC -42 scFv were labeled with fluorescein isothiocyante (FITC) (Molecular Probes, Eugene, USA #F1906) by the following method: Aliquots of a 10mg/mi solution of FITC in dry dimethyl sulfoxide were added to 100pg of scFv1 dissolved in PBS/0.5M NaHCO 3 , pH 9.5 in a ratio of 30:1 (FITC:scFvl). The 5 sample was incubated for two hours at room temperature with agitation, free FITC was separated using desalting columns (2 Micro Spin G-25, Pharmacia 27-5325-01). The ratio of labeling was determined via mass spectrometry and via UVNIS spectroscopy, whereby the protein concentration was calculated at 280nm and the FITC concentration at 494nm. 10 Example 7.1: Labeling of mAbl.5.1 with FITC A solution of freshly made 10mg/mL FITC (Molecular Probes, Eugene, USA #F1906) in dry dimethyl sulfoxide was added in a 1:5 ration with purified mAb 15 1.5.1 antibody (T-gel Absorbant, Pierce Biotechnology #20500). An equal volume of 0.5M NaHCO 3 , pH 9.5 was added to the reaction, and the reaction was incubated with rocking for two hours at room temperature. Free FITC was separated using a desalting column (PD-10, Amersham #17-0851-01). The ratio was determined by calculating the FITC concentration by VIS 20 spectroscopy at 494nm and assuming complete protein recovery from the labeling. Example 8: Invasion assay for identification of inhibitory antibody fragments 25 The ChemoTx* system (Neuro Probe Inc.#106-8, Gaithersburg) is used as a disposable chemotaxis/cell migration chamber in a 96 well format with an 8pm filter Track etched Polycarbonate pore size, 5.7 mm diameter/site. 13,3pl of 0.3mg/mi Matrigel (Matrigel is a solubilized basement membrane 30 preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrix proteins. Its major component is laminin, followed by collagen IV, heparan sulfate proteoglycan, entactin and nidogen. It also contains TGF-p fibroblast growth factor, tissue plasminogen activator, and other growth factors which occur naturally in the EHS tumor) -43 (Becton Dickenson, BD #356234) diluted in Dulbeccos PBS (Gibco #14040 091) is applied on the membrane filter of the 96-well plate on row B-H and on row A 1,2 pg/site of collagen S type I (Roche #10982929) is diluted in 0,05 M HCl (Sigma #945-50) and is incubated over night at 20*C in a desiccator for 5 gelation. HT-1080 cells are grown to 70-80% confluence in DMEM supplemented with Glutamaxl (862mg/I (Gibco #31966-021) with 10% FCS (Gibco #10270106). The cells are washed 2x with DMEM/Glutamaxl/0.1 % BSA (Sigma #A-7030) then labeled in situ with Bisbenzimide H 33342 (Sigma #B-2261) are diluted 1:100 in DMEM/Glutamaxl/0.1 % BSA for 15 min at 10 37"C, 7,5% CO 2 . Cells are washed 2x with DMEM/Glutamaxl/0.1 % BSA and are loaded with DMEM/Glutamaxl/0.1 % BSA for 15 min at 37"C, 7,5% CO 2 for recovering. After washing 2x with PBS w/o Ca2+, Mg 2 + (Gibco, 10010-015), the cells are detached with 0.5mM EDTA (Sigma #E8008), are collected with Dulbeccos PBS/0.1% BSA/1OmM Hepes (Gibco #15630-056), are washed 2x 15 with Dulbeccos PBS/0.1% BSA/1OmM Hepes, are suspended in Dulbeccos PBS/0.1% BSA/1OmM Hepes and are diluted to 6,7 x 10 cells/ml with Dulbeccos PBS/0.1% BSA/1OmM Hepes. 6,7 x 106 cells/ml are incubated 1:1 with 40pg/ml of a control scFv as a negative control for inhibition of invasion and with HT-1080 specific scFv for 1h on ice. After dilution to 6,7 x 10 5 cells/ml 20 with DMEM/Glutamaxl/0.1 % BSA, HT-1080 cells and HT-1080 cell/scFv dilutions are pipetted in triplicate onto the chemotaxis chamber (row B-H) at a density of 3,4 x 10 4 cells/well and are incubated for 6 h at 37*C, 7,5% CO 2 . DMEM/Glutamaxl with 5% FCS is used as a chemo attractant in the lower chamber. A standard curve from 1x10 4 to 4x10 4 cells/site is performed on 25 collagen S type I coated row A of the chemotaxis chamber. DMEM/Glutamaxl/0.1% BSA is used in the lower chamber (cells are not migrating). After scraping the non-migrating cells from the top of the membrane (except the Standard curve on row A) fluorescence of cells, which migrated through the membrane (not migrated in case of the Standard curve), 30 is measured on the Fluostar Galaxy (bMG) microplate reader using excitation/emission wavelengths of 370/460nm. Example 9: Invasion assay for target identification with CALI -44 This Example is in general identical to Example 8, except for the use of FITC labeled scFv (see, Example 7 for labeling) and the integration of the CALI process within the invasion assay. 5 The ChemoTx* system (Neuro Probe lnc.#106-8, Gaithersburg) was used as a disposable chemotaxis/cell migration chamber in a 96 well format with an 8pm filter Track etched Polycarbonate pore size, 5.7 mm diameter/site. 13,3pl of 0.3mg/mi Matrigel (see Example 8) diluted in Dulbeccos PBS (Gibco 10 #14040-091) was applied on the membrane filter of the 96-well plate on row B-H and on row A 1,2 pg/site of collagen S type I (Roche #10982929) was diluted in 0,05 M HCI (Sigma #945-50) and was incubated over night at 200C in a desiccator for gelation. HT-1080 cells were grown to 70-80% confluence in DMEM supplemented with Glutamaxi (862mg/I (Gibco #31966-021) with 15 10% FCS (Gibco #10270106). The cells were washed 2x with DMEM/Glutamaxl/0.1 % BSA (Sigma #A-7030) then labeled in situ with Bisbenzimide H 33342 (Sigma #B-2261) and were diluted 1:100 in DMEM/Glutamaxl/0.1 % BSA for 15 min at 37*C, 7,5% C02. Cells were washed 2x with DMEM/Glutamaxl/0.1 % BSA and loaded with 20 DMEM/Glutamaxl/0.1 % BSA for 15 min at 37"C, 7,5% CO 2 for recovering. After washing 2x with PBS w/o Ca 2 +, Mg 2 + (Gibco, 10010-015), the cells were detached with 0.5mM EDTA (Sigma #E8008), collected with Dulbeccos PBS/0. 1% BSA/1 0mM Hepes (Gibco #15630-056), washed 2x with Dulbeccos PBS/0.1% BSA/10mM Hepes, suspended in Dulbeccos PBS/0.1% BSA/10mM 25 Hepes and diluted to 6,7 x 106 cells/ml with Dulbeccos PBS/0.1% BSA/10mM Hepes. 6,7 x 106 cells/ml were incubated 1:1 with 40pg/ml of FITC-labelled anti-betal integrin monoclonal antibody (JB1, Chemicon #MAB1963) as a control for inhibition of invasion after CALI and with HT-1080 specific FITC labelled scFv for 1h on ice. 1,3x10 5 HT-1080 cells/well or HT-1080 cell/scFv or 30 Ab dilution were pipetted in triplicate in two 96-well plate, black, ultra thin clear flat bottom special optics (Costar #3615). One plate was kept on ice in the dark while the other plate was irradiated on an ice block with continuous wave laser at 488nm (0.5W, 30 sec). After dilution to 6,7 x 105 cells/ml with DMEM/Glutamaxl/0.1 % BSA, HT-1080 cells and HT-1080 cell/scFv dilutions -45 were pipetted in triplicate (non irradiated triplicate beside irradiated triplicate) onto the chemotaxis chamber (row B-H) at a density of 3,4 x 104 cells/well and incubated for 6 h at 370C, 7,5% CO2. DMEM/Glutamaxl with 5% FCS was used as a chemo attractant in the lower chamber. A standard curve from 5 1x104 to 4x10 4 cells/site was performed on collagen S type I coated row A of the chemotaxis chamber. DMEM/Glutamaxl/0.1% BSA was used in the lower chamber (cells were not migrating). After scraping the non-migrating cells from the top of the membrane (except the Standard curve on row A) fluorescence of cells, which had migrated through the membrane (not migrated in case of 10 the Standard curve), was measured on the Fluostar Galaxy (bMG) microplate reader using excitation/emission wavelengths of 370/460nm. In a general experiment, a value of 45000 corresponded to 100% migrated cells. The invasion phenotype of HT-1080 cells was assessed by comparing their 15 relative ability to invade tumor extracellular matrix (Matrigel) using the Transwell culture system described above. scFv1 showed after CALI an inhibitory effect of 46% on the invasion of the HT-1080 cells. The result of the invasion assay with CALI is shown in Figure 3. Figure 3 shows that CALI converts scFv1 in an inhibitory antibody fragment. 20 Example 9.1: Invasion assay with antibodies (e.g. mAb 1.5.1) for target identification with CALI The ChemoTx@ system (Neuro Probe Inc. #106-8, Gaithersburg) was used as 25 a disposable chemotaxis/cell migration chamber in a 96 well format with an 8pm filter Track etched Polycarbonate pore size, 5.7 mm diameter/site. 13.3pl of 0.3mg/mi Matrigel (see Example 8) diluted in cold Dulbeccos PBS (Gibco #14040-091) was applied on the membrane filter of the 96-well plate 30 on row B-H and on row AO.3pg/site of mouse collagen, type IV (Becton Dickenson #354233) was diluted in 0.05 M HCL (Sigma #945-50) and was incubated over night at 20*C in a desiccator for gelation, HT-1080 cells were grown to 70-80% confluence in DMEM supplemented with MEM non-essential amino acids (IX, Gibco #11140050) and Penicillin/Streptomycin (1X, Gibco -46 #15140122) with 10% FBS (Hyclone #SH30070.03). The cells were washed 1x with DMEM/MEM non-essential amino acids /0.1 % BSA/MEM amino acids /Penicillin-Streptomycin (BSA, Sigma #A-7030) then labeled in situ with 3pM Cell Tracker Orange (Molecular Probes #C-2927) in DMEM/MEM non 5 essential amino acids /0.1 % BSA/MEM amino acids/Penicillin-Streptomycin for 15 min at 370C, 7.5% CO 2 . Cells were washed 1x with DMEM/MEM non essential amino acids /0.1 % BSA/MEM amino acids /0.1 % BSA/MEM amino acids/Penicillin-Streptomycin for 15 min at 370C, 7.5% C02 for recovering. After washing 1x with Hanks Bal-anced Salt Solution (HBSS) w/o Ca 2 +, Mg 2 + 10 (Gibco #14170112), the cells were detached with Versene (Gibco #15040066), collected with HBSS/MEM non-essential amino-acids /0.1 % BSA/MEM amino acids/Penicillin-Streptomycin (HBSS, Gibco +14025092), washed 2x with HBSS/MEM non-essential amino acids /0.1 % BSA/MEM amino acids/Penicillin-Streptomycin, suspended in HBSS/MEM non-essential 15 amino acids /0.1 % BSA/MEM amino acids/Penicillin-Streptomycin and diluted to 8 x 106 cells/ml with HBSS/MEM non-essential amino acids /0.1 % BSA/MEM amino acids/Penicillin-Streptomycin. 8 x 106 cells/ml were incubated 1:1 with 40pg/ml of FITC-labeled anti-betal integrin monoclonal antibody (JB1, Chemicon #MAB1963) as a control for inhibition of invasion 20 after CALI and with mAbs for 1h on ice. 3x10 5 HT-1080 cells/well or HT-1080 cell/ mAbs were pipetted in triplicate in two clear 96-well plates (Costar #3370). One plate was kept on ice in the dark while the other plate was irradiated on ice block with 300W blue-filtered light (Roscolux, #69, Brilliant Blue) for one hour. After dilution to 8 x 10 cells/ml with DMEM/MEM non 25 essential amino acids /0.1 % BSA/MEM amino acids/Penicillin-Streptomycin, HT-1080 cells and HT-1080 cells/mAbs dilutions were pipetted in triplicate (non-irradiated triplicate be-side irradiated triplicate) onto the chemotaxis chamber (row B-H) at a density of 4 x 10 4 cells/well and incubated for 6 h at 37"C, 7.5% C02, DMEM with 5% FCS was used as a chemoattractant in the 30 lower chamber. A standard curve from 1x10 4 to 4x10 4 cells/site was performed on mouse collagen IV coated row A of the chemotaxis chamber. DMEM/MEM non-essential amino acids/0.1 % BSA/MEM amino acids/Penicillin Streptomycin was used in the lower chamber (cells were not migrating). After scraping the non-migrating cells from the top of the membrane (except the -47 Standard curve on row A) fluorescence of cells, which had migrated through the membrane (not migrated in case of the Standard curve), was measured on the Tecan Spectrafluor Plus fluorescence plate reader (excitation: 544, emission: 590nm). A positive control which recognizes P1 integrin (data not 5 shown) and mAb 1.5.1 both showed a significant (p < 0.01, unpaired t-test) reduc-tion of invasion after exposure to light (data shown in Figure 2). The negative control (no antibody) showed no reduction. Each bar is normalized to the negative control and represents the mean + s.e.m. of two experiments in triplicate. 10 Example 10: Cell-matrix adhesion assay 96-well plates (TPP #9296) (cell culture treated) were coated in Row B-H with collagen S type I 1 pg/well (Roche #10982929) in Dulbeccos PBS (Gibco 15 #14040-091) and in Row A well 10-12 were coated with 2% BSA (Sigma #A 7030)/Dulbeccos PBS at 4*C over night. The plate was washed with Dulbeccos PBS, blocked Row B-H and Row A well 10-12 with 2% BSA/Dulbeccos PBS for 1h at 37*C and washed again with Dulbeccos PBS. HT-1080 cells were grown to 70-80% confluence in DMEM supplemented with 20 Glutamaxl (862 mg/I (Gibco #31966-021) with 10% FCS (Gibco #10270106). The cells were washed 2x with DMEM/Glutamaxl/0.1 % BSA (Sigma #A-7030) then labeled in situ with Bisbenzimide H 33342 (Sigma #B-2261) were diluted 1:100 in DMEM/Glutamaxl/0.1 % BSA for 15 min at 370C, 7,5% C02. Cells were washed 2x with DMEM/Glutamaxl/0.1 % BSA and loaded with 25 DMEM/Glutamaxl/0.1 % BSA for 15 min at 370C, 7,5% C02 for recovering. After washing 2x with PBS w/o Ca 2 +, Mg 2 + (Gibco, 10010-015), the cells were detached with 0.5 mM EDTA (Sigma #E8008), collected with Dulbeccos PBS/0.1% BSA/1OmM Hepes (Gibco #15630-056), washed 2x with Dulbeccos PBS/0.1% BSA/1OmM Hepes, suspended in Dulbeccos PBS/0.1% BSA/1OmM 30 Hepes and diluted to 6,7 x 10 6 cells/ml with Dulbeccos PBS/0.1% BSA/1OmM Hepes. 6,7 x 106 cells/mI were incubated 1:1 with 40 pg/ml of FITC-labeled anti-betal integrin monoclonal antibody (JB1, Chemicon #MAB1963) as a control for inhibition of adhesion after CALI and with HT-1080 specific FITC labeled scFv for 1h on ice. 1,3x10 5 HT-1080 cells/well or HT-1080 cell/scFv or -48 Ab dilution were pipetted in triplicate in two 96-well plate, black, ultra thin clear flat bottom special optics (Costar #3615). One plate was kept on ice in the dark while the other plate was irradiated on an ice block with continuous wave laser at 488 nm (0.5W, 30 sec). After dilution to 6,7 x 10 5 cells/mi with 5 DMEM/Glutamaxl/0.1 % BSA, HT-1080 cells and HT-1080 cell/scFv dilutions were pipetted in triplicate (non irraditated triplicate beside irradiated triplicate) onto the coated and blocked plate. In Row A well 10-12 6,7 x 10 cells/mi with DMEM/Glutamaxl/0.1 % BSA were pipetted as a background control. Plate was incubated for 1h at 37"C, 7,5% CO 2 and washed 2x with Dulbeccos PBS, 10 where non-adherent cells were washed away. In Row A well 1-9 a standard curve from 1x10 4 to 4x10 4 cells/well was performed, in all other wells 50 pl Dulbeccos PBS was pipetted. Fluorescence of cells, which had adhered to the Collagen S type 1 (not adhered in case of the Standard curve), was measured on the Fluostar Galaxy (bMG) microplate reader using excitation/emission 15 wavelengths of 370/460 nm. scFv1 inhibited the adhesion of HT-1080 cells to Collagen S type 1 by 50%. (Data not shown). Example 11: Immunoprecipitation 20 For immunoprecipitation of mAbs, confluent monolayers of HT-1080 cells were lysed using 1mM Tris-CI, pH 8.0 containing protease inhibitor cocktail (Bohrenger Mannheim) for 15 minutes at 4 0 C. Cells were further lysed using a dounce homogenizer for 5 minutes. Lysates were pre-adsorbed for 1 hour at 4*C with anti-mouse IgG-agarose (Sigma) Ascities fluid from the target 25 hybridoma clone (10pL/1 mg cell extract) was incubated overnight at 4*C. Antibody-protein complexes were isolated using anti-mouse IgG-agarose beads for 1 hour at 4 0 C. Immunoprecipitated proteins were analyzed by SDS PAGE and Coomassie staining, and mAb immunoprecipitates were further analyzed by immunoblots with the target ascities. 30 For scFv immunoprecipitations, HT-1080 specific scFvs were coupled to StrepTactin Sepharose (50pg/50pl resin) and the washed scFv-beads added to the cleared lysates (1mg total protein) for 2-3 h at 4 0 C. The scFv-target complexes were eluted with 50pl 10mM D-desthiobiotin in PBS 0.1% Tween -49 20. Immunoprecipitated proteins were analyzed by SDS-PAGE and silver staining. Example 12: Protein identification via mass spectroscopy 5 For mAb target identification, coomassie-stained bands from the immunoprecipitates separated by SDS-PAGE were next subjected to in-gel digestion. The trypsinized peptide fragments were run on a Surveyor HPLC and LCQ Deca Ion Trap mass spectrometer (ThermoFinnigan) with a 75pM 10 nanospray C18 column (New Objectives). The obtained PMF (peptide mass fragments) were used to search all entries for the species Homo sapiens in the NCBI and SwissProt databases. For scFv target identification, stained bands were cut out and subjected to in 15 gel digestion with trypsin. The peptide fragments were extracted from the gel pieces, desalted on ZipTip pC18 and the eluted peptides spotted on a Teflon coated MALDI target (Applied Biosystems). The samples were analyzed on a STR-DE Voyager MALDI mass spectrometer (Applied Biosystems) and the obtained peptide masses were used for protein identification via PMF (peptide 20 mass fingerprint), searching all entries for the species Homo sapiens in the NCBI and Swiss-Prot databases. Example 13: Immunocytochemistry 25 For surface protein immunocytochemistry, a confluent monolayer of HT-1080 cells (40,000 per well of a 96-well clear thin bottom plate) were incubated with hybridoma supernatant for 1 hour at 370C/7%CO2. After three 5 minute 0.1% bovine serum albumin (BSA) in phosphate buffered saline (PBS) washes, the cells were fixed in 2% paraformaldehyde for 2 minutes. Another round of 0.1% 30 BSA/PBS washes was performed and a FITC-rabbit-anti-mouse secondary antibody was added for 1 hour at room temperature. The same washes were repeated and a tertiary FITC-goat-anti-rabbit antibody was added for 1 hour at room temperature. After a final round of washes, the cells were stored in PBS at 4*C until imaging. Surface staining was visualized by microscopy on a Zeiss -50 Axiovert 10 using a Neofluar 40X/0.75 numerical aperture lens. Images were collected using excitation filter set at 480 and emission filter set at 535 for FITC. Results are shown in Figures 6, 6.1 and 6.2. 5 Example 14: Biotinylation of cell surfaces Biotinylation of cell surface proteins was performed as described in Hanwell at al (J Biol Chem 277:9772). The surface biotinylated pool and the unbiotinylated intracellular pool were separated on a SDS-PAGE gel, and 10 transferred for immunoblotting with anti-Hsp90 (Stressgen #SPA-830) or alpha-actinin-4 (Martin A. Pollak, Childrens Hospital, Boston, MA). Results are shown in Figure 7. Hsp90 shows both surface (S) and intracelluar (IC) localization, but alpha-actinin is found only in the intracellular pool. mAb 1.5.1 also shows surface and intracellular localization (data not shown). 15 Example 15: Concentration dependency of Novobiocin or Nalidixic acid on the invasion of HT-1 080 cells 8x10 6 HT-1080cells/mL were pretreated for 1 hour with novobiocin or nalidixic 20 acid at the concentrations shown and an invasion assay was performed as described in Example 9.1. Novobiocin shows a dose-dependent inhibition of invasion (p < 0.01 at >0.5mM). Nalidixic acid has no effect on invasion. Viability of novobiocin-treated cells in this assay was not affected (data not shown). Each data point is normalized to the no drug control and represents 25 the mean + s.e.m. of 2 experiments in triplicate. Results are shown in Figure 10. Example 16: Inhibition of MMP secretion 30 40,000 HT-1080 cells were treated for 6 hours with novobiocin or nalidixic acid at the given concentrations. The conditioned media from treated cells was separated using a SDS-PAGE gel containing 10mg/mL gelantin. SDS was removed from the gel using 2.5% Triton-X-100 for 30 minutes at room temperature. Proteins were allowed to digest the gelatine in digestion buffer -51 (0.1M Tris-C1 2 , pH 8.0, 5mM CaCI 2 , 0.04% NaN 3 ) for 48 hours at 37CC. Gels were coomassie-stained and dried for densitometry. Parallel gels were silver stained to show equal loading of protein (data not shown). MMP activity was decreased by >75% at the highest concentration of novobiocin tested and no 5 reduction of enzyme activity was seen with nalidixic acid. Results are shown in Figure 11. Example 17: Covalent coupling of novobiocin to sepharose and inhibition of MMP activity 10 This example demonstrates inhibition of Hsp90 function on the surface of HT 1080 cells. It has been shown that treatment of HT-1080 fibrosarcoma cells with novobiocin, a coumarin antibiotic, reduces the cell's ability to invade a basement membrane barrier and also significantly reduces matrix 15 metalloprotease (MMP) activity/secretion. Since the experiment is performed on a short timescale (6 hours), significant depletion of intracellular Hsp90 targets can not take place. The covalent coupling of novobiocin to a macromolecular carrier like 20 sepharose prohibits cellular uptake of novobiocin and consequently any intracellular inhibition of Hsp90. Marcu et al described a protocol for novobiocin conjugation to sepharose (Marcu et al. (2000) J Natl Cancer Inst 92, 242-8; Staudenbauer and Orr (1981) Nucleic Acids Res. 9, 3589-603). In this procedure epoxy-activated Sepharose 6B (Sigma Chemical Co) is first 25 washed and swollen with distilled water. The swollen beads are washed further with a coupling buffer (0.3M sodium carbonate, pH 9.5). Novobiocin is formally conjugated to the beads by incubation with the swollen beads in coupling buffer for 20 hours at 37"C, Unconjugated novobiocin is washed away using coupling buffer, and the remaining unbound epoxy-active groups 30 are blocked with 1M ethanolamine for 12 hours at 30 0 C. Extensive washing of the beads using 0.5M NaCI in coupling buffer, distilled water, 0.5M NaCI in 0.1M sodium acetate (pH4.0) is done to remove any excess novobiocin and ethanolamine. The novobiocin-sepharose beads are then equilibrated in -52 25mM HEPES (pH 8.0) with 1mM EDTA, 10% ethylene glycol, and 200mM KCI at 4*C in the dark. Before proceeding to the gelatinase experiment, efficient binding of the 5 novobiocin-sepharose conjugate to Hsp90 is demonstrated by an in vitro binding assay. HT-1080 cells are lysed in TNESV (1% Nonidet P-40, 2mM EDTA, and 100mM NaCI, and 1mM sodium orthovanadate) with protease inhibitors (tablet. Boehringer Mannheim). 300pg of this lysate are incubated with 100pL of the novobiocin-sepharose conjugate for 1 hour at 4"C. After 10 extensive washing with TNESV, proteins bound to the beads are eluted with 2x SDS-PAGE loading buffer (125mM Tris-HCI pH6.8, 10% 2 mercaptoethanol, 10 SDS, 10% glycerol, and trace bromophenol blue) and boiling for 5 minutes. The proteins are run on 10% SDS-PAGE gels. These gels are either silver stained or transferred to nitrocellulose for immunoblotting 15 with an anti-Hsp90 antibody (AC88, Stressgen, Inc.) For the gelatinase assay, adherent HT-1080 cells are first gently removed from tissue culture dishes with Versene. 5x10 4 cells in serum-free DMEM are combined with 0.1pL, 1pL or 1OpL of the novobiocin-sepharose conjugate and 20 incubated at room temperature for one hour in siliconized eppendorf tubes with gentle rocking. Control samples containing sepharose beads not conjugated to novobiocin are done in parallel. After this incubation, the cells are transferred to a tissue culture treated 96-well plate and incubated further for 6 hours at 370C/5% C02. Conditioned media from these samples are then 25 combined with 2x SDS-PAGE loading buffer (without 2-mercaptoethanol). These samples are run on a 10% SDS-PAGE gel containing 10mg/mL gelatine. SDS is then removed from the gel by incubating with 2.5% Triton-X 100 for 30 minutes at room temperature. Proteins are allowed to digest the gelatine in digestion buffer (0.1M Tris-HCI, pH 8.0, 5mM CaCI 2 , 0.04% NaN 3 ) 30 for 48 hours at 38*C. Gels will be coomassie-stained and dried for densitometry. Parallel gels are silver stained to show equal loading of protein. MMP activity decreases with increasing amounts of novobiocin-sepharose.
-53 Example 18: Inhibition of MMP activity by geldanamycin and immobilized geldanamycin (GA-beads) It could be shown that the matrix metalloproteinase MMP2 co 5 immunoprecipitated with Hsp90a from HT-1080 conditioned media (Figure 17). We then applied a known Hsp90 inhibitor, geldanamycin, to HT-1080 cells to test whether inhibition of Hsp9O reduced MMP2 activity. HT-1080 cells were treated with 20pM geldanamycin (GA) in serum-free media and secreted MMP2 was assayed by zymography. MMP2 (72 kDa gelatinase) 10 activity was decreased by -35%; p<0.01 after GA treatment. Total protein content in conditioned media was visualized by silver staining to ensure equal loading. (See, Figure 18). Geldanamycin is a well-known cell-permeant inhibitor of Hsp90. Treatment 15 with 10 pM geldanamycin (GA) for 1 hour caused a significant -35% decrease (p < 0.05, t-test) of invasion of HT-1080 cells that was eliminated when activated MMP2 (100ng) was added. (Data not shown). Due to its cell permeability, geldanamycin cannot segregate the intracellular and extracellular localization of Hsp90. In order to show Hsp9O's extracellular role 20 in tumor cell invasion, geldanamycin was immobilized on agarose beads (GA beads) to prevent crossing of the plasma membrane. (See, Whitesell et al, Proc Natl Acad Sci U S A 91, 8324-8 (1994)) for experimental details). After treatment of HT-1080 cells with the GA-beads, an 80% reduction of active MMP2 was seen in conditioned media, but only a 15% reduction of pro-MMP2 25 (Figure 19). HT-1080 cells treated with GA-beads showed a significant 45% reduction of invasiveness (p<0.01, t-test) using an in vitro invasion assay (see, Example 8). Untreated beads also inhibited invasion to a limited extent (<15%), likely due to physical blocking of pores by the beads. (See, Figure 20). All of these results together suggest a mechanism where extracellular 30 Hsp90a binding to pro-MMP2 assists in activation of the protease, leading to an invasive phenotype. Inhibition of Hsp90c leads to a reduction of active MMP-2 and a reduced invasiveness of tumor cells.

Claims (20)

1. An inhibitor of human extracellular Hsp90 selected from antibodies or antibody fragments that can bind extracellular Hsp90 when used for administration to a subject for the prevention or treatment of proliferative disorders, cancers or metastasis in the subject which express extracellular Hsp90.
2. The inhibitor according to claim 1, wherein the inhibitor is a monoclonal antibody.
3. The inhibitor according to claim 1, wherein the inhibitor is labelled with a detectable label.
4. A nucleic acid molecule encoding an inhibitor of human extracellular Hsp90, wherein the inhibitor is an antibody or a fragment of an antibody.
5. A kit comprising an inhibitor according to any of the claims 1 - 3 and suitable testing containers.
6. The kit according to claim 5, wherein the inhibitor is labelled.
7. A method for screening or testing the invasion and/or metastatic behavor of the cells ex vivo, comprising the steps of: a) contacting the cell with one or more human Hsp90 inhibitors under the conditions which essentially prohibit a cellular uptake of the said Hsp90 inhibitor; b) analysing the migration of cells treated according to step a); c) comparing the migration of the cells according to step a) with untreated cells and optionally; d) determining the percentage of migration in comparison with untreated cells.
8. A method according to claim 7, wherein step a) further comprises step of contacting the cells with a gel-like matrix under the conditions suitable for the growth 55 of the cells and step b) comprises the step of analysing the migration of the cells through the gel-like matrix.
9. Use of an inhibitor according to any one of claims 1 to 3 for modulating and especially for reducing the activity and/or reducing the secretion matrix metalloprotease (MMP).
10. A method for preventing and/or treating proliferative disorders, cancer or metastasis in a mammal, the method comprising selectively inhibiting human extracellular Hsp90 by administering to the mammal a prophylatically or therapeutically effective amount of an inhibitor of human extracellular Hsp9O selected from antibodies or antibody fragments that can bind extracellular Hsp9O.
11. A method for modulating and especially for reducing the activity and/or reducing the secretion matrix metalloprotease (MMP), in a mammal, the method comprising administering to the mammal an effective amount of an inhibitor of human extracellular Hsp90 selected from antibodies or antibody fragments that can bind extracellular Hsp90.
12. A method of treating cancer or metastasis expressing extracellular Hsp90 comprising; (i) obtaining a sample from the subject and measuring the expression of human extracellular Hsp90 in the sample; (ii) administering to the subject an antibody or antibody fragment which binds to human extracellular Hsp90 where the sample from the subject expresses human extracellular Hsp90.
13. The method of claim 12, wherein the sample is a biopsy sample.
14. The method of claim 13, wherein the biopsy sample is taken from a subject suspected of having cancer.
15. The method of claim 13, wherein the biopsy sample is a tumor sample. 56
16. The method of any one of claims 12 to 15, wherein the expression of human extracellular Hsp90 is measured using the method selected from any of the group consisting of; ELISA, RIA, EIA, sandwich assay, Western Blot analysis, immunostaining, flow cytometry and immunohistological staining.
17. The method of any one of claims 12 to 16, wherein the expression of human extracellular hsp90 is measured using an antibody or antibody fragment which binds to human extracellular Hsp90.
18. The method of any one of claims 10 to 17, wherein the antibody or antibody fragment is a monoclonal antibody.
19. The method of any one of claims 10 to 17, wherein the antibody or antibody fragment which binds to human extracellular Hsp90 is labeled with a detectable label.
20. A method comprising administering to a subject for the treatment of cancer or metastasis an effective amount of an antibody or antibody fragment which binds to human extracellular Hsp90 indicated by the presence of expression of human extracellular Hsp90 in the cancer or metastasis.
AU2005221470A 2003-03-12 2005-10-11 Inhibitors of extracellular hsp90 Expired AU2005221470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005221470A AU2005221470B2 (en) 2003-03-12 2005-10-11 Inhibitors of extracellular hsp90

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60/454,813 2003-03-12
EP03015115.3 2003-07-03
AU2004220394 2004-03-08
AU2005221470A AU2005221470B2 (en) 2003-03-12 2005-10-11 Inhibitors of extracellular hsp90

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/002422 Division WO2004081037A1 (en) 2003-03-12 2004-03-09 Inhibitors of extracellular hsp90

Publications (2)

Publication Number Publication Date
AU2005221470A1 AU2005221470A1 (en) 2005-10-27
AU2005221470B2 true AU2005221470B2 (en) 2010-05-20

Family

ID=37401216

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005221470A Expired AU2005221470B2 (en) 2003-03-12 2005-10-11 Inhibitors of extracellular hsp90

Country Status (1)

Country Link
AU (1) AU2005221470B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154858A1 (en) * 2011-05-09 2012-11-15 Whitehead Institute For Biomedical Research Chaperone interaction assays and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015925A1 (en) * 2000-08-22 2002-02-28 Kyowa Hakko Kogyo Co., Ltd. Methof of regulating apoptosis and apoptosis-regulatory polypeptide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002015925A1 (en) * 2000-08-22 2002-02-28 Kyowa Hakko Kogyo Co., Ltd. Methof of regulating apoptosis and apoptosis-regulatory polypeptide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERRARINI, M., et al. International Journal of Cancer. 1992, vol 51, p613-619. *

Also Published As

Publication number Publication date
AU2005221470A1 (en) 2005-10-27

Similar Documents

Publication Publication Date Title
US9068987B2 (en) Inhibitors of extracellular HSP90
EP1603941B1 (en) Inhibitors of extracellular hsp90
US20090215175A1 (en) Modulation of the poliovirus receptor function
EP2130552B1 (en) Pharmaceutical composition comprising anti-grp78 antibody as active ingredient
ES2595091T3 (en) Pharmaceutical compositions with soluble CEA resistance
US20120058117A1 (en) Neuropilin-1 inhibitors
RU2746413C1 (en) Antibody specifically binding with muc1 and its application
EP1382615A1 (en) MCAM inhibitors
JP2013522167A (en) uPAR binder and method of using the same
JP2019515645A (en) Protein A binding polypeptides, anti-EphA2 antibodies, and methods of using them
US9150655B2 (en) Anti-C-met antibody and methods of use thereof
AU2005221470B2 (en) Inhibitors of extracellular hsp90
US20090155272A1 (en) Targeted pharmaceuticals and ligands
JP2009536217A (en) Immunoglobulin-binding cell surface determinants in the treatment of B cell disorders
JP2005519120A (en) Personalized anti-cancer antibody
CN115947859A (en) Humanized antinuclear antibodies for targeting necrosis in cancer therapy

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired