AU2005205759A1 - Durable two-part polyurethane floor coating - Google Patents
Durable two-part polyurethane floor coating Download PDFInfo
- Publication number
- AU2005205759A1 AU2005205759A1 AU2005205759A AU2005205759A AU2005205759A1 AU 2005205759 A1 AU2005205759 A1 AU 2005205759A1 AU 2005205759 A AU2005205759 A AU 2005205759A AU 2005205759 A AU2005205759 A AU 2005205759A AU 2005205759 A1 AU2005205759 A1 AU 2005205759A1
- Authority
- AU
- Australia
- Prior art keywords
- polyhydroxypolyacrylate
- acid
- composition
- units derived
- monomer units
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Landscapes
- Paints Or Removers (AREA)
Description
AUSTRALIA
PATENTS ACT 1990 COMPLETE SPECIFICATION NAME OF APPLICANT(S):: Rohm and Haas Company ADDRESS FOR SERVICE: DAVIES COLLISON CAVE Patent Attorneys 1 Nicholson Street, Melbourne, 3000, Australia INVENTION TITLE: Durable two-part polyurethane floor coating The following statement is a full description of this invention, including the best method of performing it known to me/us:- 5102 b4 This invention relates to an aqueous, solvent-containing durable two-part polyurethane floor coating system.
Two-component aqueous, solvent-containing polyurethane coating systems have been disclosed in the prior art, see, U.S. Pat. No. 5,614,584. However, the coatings described in the prior art typically employ neutralizers for the acidic groups on the polyol component that make the coating unsuitable for use as a floor coating.
The problem addressed by the present invention is the need for an aqueous, solvent-containing two-part polyurethane floor coating system that C produces a durable floor coating.
STATEMENT OF THE INVENTION The present invention provides a two-component floor coating composition comprising: an aqueous solution of a polyhydroxypolyacrylate having acid groups neutralized with a tertiary amine containing at least two hydroxy groups; said aqueous solution comprising an organic solvent; and an aliphatic polyisocyanate.
The present invention further provides a method for coating a floor using the two-component floor coating composition.
DETAILED DESCRIPTION OF THE INVENTION Percentages are weight percentages based on the entire composition, unless specified otherwise. As used herein the term "(meth)acrylic" refers to acrylic or methacrylic, and "(meth)acrylate" refers to acrylate or methacrylate.
The term "acrylic polymers" refers to polymers of acrylic monomers, acrylic acid methacrylic acid (MAA) and their esters, and copolymers comprising at least 40% of acrylic monomers. Esters of AA and MAA include, but are not limited to, methyl methacrylate (MMA), ethyl methacrylate (EMA), butyl methacrylate (BMA), hydroxyethyl methacrylate (HEMA), methyl acrylate (MA), ethyl acrylate butyl acrylate hydroxyethyl acrylate (HEA), and hydroxypropyl acrylate (HPA), as well as other alkyl esters of AA or MAA.
D Preferably, acrylic polymers have at least 45% of monomer residues derived from tJj (meth)acrylic acid or (meth)acrylate monomers, and most preferably at least The term "vinyl monomer" refers to a monomer suitable for addition polymerization and containing a single polymerizable carbon-carbon double bond. "Vinyl monomers" include, but are not limited to, acrylic monomers, 7 styrene (STY) and alpha-methylstyrene
(AMS).
SAn "acid-functional monomer" is a monoethylenically unsaturated 9 monomer containing a carboxylic acid group. Suitable carboxylic acid monomers n include monoethylenically unsaturated (C 3 -Cg)carboxylic acid monomers, including monocarboxylic and dicarboxylic acids. For example, unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, a-ethacrylic acid, 6,6dimethylacrylic acid, vinylacetic acid, allylacetic acid, ethylidineacetic acid, propylidineacetic acid, crotonic acid, acryloxypropionic acid and alkali and metal salts thereof. Suitable dicarboxylic acid monomers include, for example, maleic acid, maleic anhydride, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, methylenemalonic acid and alkali and metal salts.thereof. Other suitable acidic monoethylenically unsaturated monomers include the partial esters of unsaturated aliphatic dicarboxylic acids (alkyl half esters); for example, the alkyl half esters ofitaconic acid, fumaric acid and maleic acid wherein the alkyl group contains 1 to 6 carbon atoms (methyl acid itaconate, butyl acid itaconate, ethyl acid fumarate, butyl acid fumarate and methyl acid maleate). Preferably, the monoethylenically unsaturated (C 3 -Cg)carboxylic acid monomers are selected from one or more of acrylic acid and methacrylic acid.
A "hydroxy-functional monomer" is a monoethylenically unsaturated monomer containing a hydroxyl functional group. In one preferred embodiment, a hydroxy-functional monomer is a hydroxyalkyl (meth)acrylate. The hydroxyalkyl group contains at least one hydroxyl group. Examples of these include, among others, HEA, HEMA, HPA, HPMA (hydroxypropyl methacrylate) and HBA (hydroxybutyl acrylate). Another example of a hydroxy-functional monomer is a vinyl alcohol.
n For the purposes of this invention, a tertiary amine containing at least two D hydroxyl groups is used to neutralize acid groups in the polyol component of the bJo coating composition. This compound has no primary or secondary amino groups.
Preferred tertiary amine compounds include, trialkanolamines, alkyldialkanolamines, and reaction products of secondary diamines with alkylene oxides. Examples of trialkanolamines include triethanolamine and 7 triisopropanolamine. Examples of alkyldialkanolamines include alkyldiethanolamines methyldiethanolamine (MDEA)) and 3 alkyldiisopropanolamines. Preferably, the alkyl group in an alkyldialkanolamine r) is a Ci-C 4 unsubstituted alkyl group. Examples of reaction products of secondary D diamines with alkylene oxides include 1,4-bis(2-hydroxyethyl)piperazine.
Preferably, the coating composition is substantially free of primary and secondary amines.
The polyol component of the coating composition comprises an aqueous polyhydroxypolyacrylate, an acrylic polymer having hydroxyl functionality.
Preferably, the polymer comprises at least 30% of monomer units derived from hydroxy-functional monomers, more preferably at least 35%, and most preferably at least 40%. Preferably, the polymer has no more than 80% of monomer units derived from hydroxy-functional monomers, more preferably no more than Preferably, the polymer comprises no more than 10% of monomer units derived from acid-functional monomers, more preferably no more than Preferably, the polymer comprises at least 5% of monomer units derived from acid-functional monomers, more preferably at least In one embodiment of the invention, the polymer comprises at least 20% of monomer units derived from styrene or alphamethylstyrene, more preferably at least 30%; preferably the polymer contains no more than 60% of monomer units derived from styrene or alpha-methylstyrene, and more preferably no more than 50%. Preferably, the polymer comprises monomer units derived from styrene.
Preferably, the polyhydroxypolyacrylate is made by solution polymerization. Preferred solvents for solution polymerization include glycol ethers and carbonates. Examples of these solvents include di(propylene glycol) monomethylether, di(propylene glycol) dimethyl ether, di(propropylene glycol), propylene glycol, di(ethylene glycol), ethylene glycol, di(ethylene glycol) D diethylether, di(ethylene glycol) dimethyl ether, ethylene glycol monoethyl ether, b ethylene glycol monobutyl ether, di(ethylene glycol) monoethyl ether, di(ethylene glycol) monobutyl ether, ethylene carbonate, propylene carbonate and diethyl carbonate. Di(propylene glycol) monomethylether (available from Dow Corp.
under the name DowanolTM DPM) is especially preferred. The solution of 7 polyhydroxypolyacrylate obtained from the solution polymerization is combined with the tertiary amine containing at least two hydroxylgroups to neutralize the D acid functional groups on the polymer, and other ingredients are added to r produce the polyol component of the coating composition. The other ingredients D include surfactant fluoro surfactants), defoamer silicone-based defoamer) and water. Preferably, the organic solvent is present in an amount no more than 25% in the final aqueous polyhydroxypolyacrylate solution, and preferably there is at least 2% organic solvent in the final aqueous polyhydroxypolyacrylate solution.
Preferably, the number-average molecular weight of the polyhydroxypolyacrylate, measured by gel permeation chromatography, is no greater than 20,000, more preferably no greater than 10,000, and most preferably no greater than 5,000. Preferably, Mn for the polyhydroxypolyacrylate is at least 500, and most preferably at least 1,000.
The polyol and isocyanate components of the coating composition are mixed before use to form a dispersion of the isocyanate in the polyol component.
Preferably, the resulting mixture is applied to the floor within 2 hours.
Preferred isocyanates are aliphatic isocyanates that are soluble or dispersible in water. Particularly preferred are hydrophilically-modified polymeric isocyanates formed from hexamethylene diisocyanate (HDI), those with an isocyanate equivalent weight from 200 to 320. Hydrophilically-modified polymeric isocyanates can be made from hydrophilic polyols or by incorporation of acidic or charged functional groups. Commercial examples of such hydrophilicallymodified polymeric isocyanates based on HDI are Bayhydur TM 302 and BayhydurTM XP-7148, available from Bayer Corp.
Q EXAMPLES D Preparation of Polyhydroxypolyacrylate Resins: tjI The polymerization solvent (DowanolTM DPM) was charged into the reaction flask and heated above 70 0 C. An initiator charge (0.3 weight percent based on monomer) and monomer charge of monomer mix) were added to the reaction flask and heated to 160C. The monomer and initiator feeds were started after 15 minutes and added over 3 hr. Residual monomer levels reduced with additional initiator. The polymer was cooled to 75 0 C and the aqueous Sneutralizer was added. MDEA is methyldiethanolamine and DMEA is N,N- Sdimethyl-2-ethanolamine. The aqueous polymer solution was held at 50 0 C for D 15- 20 minutes before being cooled down to room temperature.
Samples were prepared for gel permeation chromatography in tetrahydrofuran (Fisher Scientific Co., certified grade, stabilized) and polymer solutions were filtered using 0.45 pm filter. Separations were carried out on a liquid chromatograph consisting of an Agilent T M 1100 Model isocratic pump (Waldbronn, Germany), a Gilson T M 234 Model autoinjector (Villiers le Bel, France), an EppendorFM CH-430 Model column oven (Madison, WI) and WatersTM 410 Model differential refractometer (Milford, MA) both operated at OC. System control, data acquisition, and data processing were performed using version 2.0 of Cirrus® software (Polymer Laboratories, Church Stretton, UK).
SEC separations were performed in THF (certified grade) 1ml/min using SEC column set composed of three PLgel columns (300x7.5mm ID) packed with polystyrene-divinylbenzene gel (pore size marked as 100A, 10 3 A and 104 A, particle size 5 pm) purchased from Polymer Laboratories (Church Stretton, UK). 100 tL of sample solution with concentration C=2mg/mL was subjected for SEC separation.
"Apparent" molecular weights of analyzed samples were calculated using sample GPC chart and calibration curve of PS standards (3 rd order fit).
Tabha 1: ExaMnle 1-6 1 2 3 4 5 6 -DowanolO DPM 287.2 287.1 1287.0 287.41 287. 287.r -1 Monomer mix DowanolO DPM 8.3 8.3 0.3 8.1 81 A.
Sty 215.3 215.3 215.3 215.3 215.3 215.3 AA 41.0 41.0 41.1 41.1 41.1 41.0 HEMA 256.4 256.4 [256.4 256.4 256.4 256.4 Initiator cti-t-butylperoxide 25.3 _25.4 25.425.34 253I5.
Dowanol® DPM 25.1 25.1 J25.2 [25.1 25.4 25.1 Initiator chase____ di-t-butylperoxide 4.2 4.2 .21 4.2 4. 4.
Dowanol@ DPM 20.1 1 20.1 1 20.2 Neutralizer
KOH
Ammonia Triethylamine
DMEA
MDEA
triethanolamine Water solids 29.6 752.7 32.9 2239 34.8 57.6 620.4 603.0 33.7 34.3 210 2618 20.1 1 20.1 1 50.7 67.9 85.2 601.8 580.0 580.9 34.2 34.5 34.3 2517 2243 1966 Table 2: Example 7-10 7 8 9 287.1 1 287.2 1 287.1 1287.3 Monomer mix DowanolO DPM 8.1 8.2 8.1 18.1 Sty 215.4 215.4 215.3 215.4 AA 41.0 41.0 41.0 41.1 HPA 256.4 256.4 256.4 256.4 Initiator charge di-t-butylperoxide 25.3 I25.3 I25.4 25.5 Dowanol@ DPM 25.14 25.3 25.0 125.2 Initiator chase di-t-butylperoxide 4.2 I4.3 I4.2 4.3 -Dowanol@ DPM 20.3 20.2 20.1 120.2 Neutralizer____ KOH 31.0 Ammonia 35.0 578 Triethylamine triethanolamine I t r T Water solids 690.2 33.7 620.0 34.3 3234 592.1 33.8 3124 85.2 580.1 34.1 2782 Tahla R: Exsample 11-14 11 12 13 14 Dowanol@ DPM 287.6 1287.2 287.2 287.2 Monomer mix Dowanol® DPM 8.1 13.1 13.0 -8.1 Sty 138.4 189.7 215.3 241.0 AA 41.0 41.0 41.0 41.0 BA 76.9 76.9 76.9 76.9 HEMA 256.4 205.1 179.5 53.9 Initiator charge____ di-t-butylperoxide 25.4 di-t-amy1 eroxide 30.3 30.2 Dowanols DPM 25.1 20.1 j20.0 25.0 Initiator chase____ di-t-butylperoxide 4.2 4.2 di-t-amylperoxide 5.1 5.0 Dowanol® DPM 20.1 20.1 20.0 20.1 Neutralizer____ triethanolamine 85.1 86.8 85. 0 -85.1 water 580.1 580.0 580.0 -580.0_ solids 34.5 33.5 33.9 34.9 M,2584 2726 2961 3264 TABLE 4: Example 15-18 15 16 17 18 Dowanol® DPM 287.1 287.1 287.1 287.2 Monomer mix Dowanol® DPM 8.4 8.1 8.5 8.2 Sty 215.3 205.0 179.4 128.2 AA 41.0 51.3 76.9 128.3 HEMA 256.4 256.4 256.4 256.5 Initiator charge di-t-butylperoxide 25.3 25. 5.r 25.3 Dowanol@ DPM 25.1 251W257 2.
Initiator chase di-t-butylperoxide 4.3 I4.2 I4.2 f4.2 Dowanol® DPM 20.1 20.0 20 2 2.1 Neutralizer____ triethanolamine 85.2 107.2 160.3 266.2 Water 580.1 543.3 502.8 400.3 solids 34.3 35.6 36.1 43.3 M,11966 2785 2171 1548 l Preparation of 2-Part Clear Coatings: D Part A of the 2-part clear coatings consisted of an aliphatic polyisocyanate that was 100% solids. Examples of suitable polyisocyanates include Bayhydur T M 302 and Bayhydur T M XP-4178 from Bayer.
SPart B solutions were prepared by adding the polyhydroxypolyacrylate resins in Examples 1-19 to an aqueous solution containing 0.05 parts BykTM 340 defoamer r) and 0.01 parts BykTM 025 fluorosurfactant wetting aid, both are additives sold by r) Byk Chemie. The solids level of the Part B solution was adjusted to obtain a Stotal solids level for the coating.
SParts A and B were mixed for.10 minutes using an overhead mixer and coatings of a thickness of 6 mils (wet) were drawn down onto vinyl composite floor tiles.
Film performance data are given in Tables 5 to 8. Gloss measurements were: taken after the films were allowed to dry for 24 hours. The method for determining the gloss is described in "Annual Book of ASTM Standards," Section Volume 15.04, Test Procedure ASTM D 1455 (2000). A Gardner Byk Micro- Tri-Gloss meter, catalog number 4520, was used to record 600and 200 gloss.
Water resistance was evaluated after the films were tack-free and after 1 day.
The method for determining the water resistance is described in "Annual Book of ASTM Standards," Section 15, Volume 15.04, Test Procedure ASTM D 1793 (2000). The following ratings were applied to the films after being exposed to a water drop for 1 hour and wiped off- Ex no effect, TrWh Trace whitening, Wh whitening, Hwh heavy whitening, Bl blisters. Pencil hardness data presented in Tables 5-8 were measured using ASTM D-3363 (2000) from the Annual Book of Standards, Volume 06.01. Tack time was measured using the Zapon Tack Tester to measure surface tack and rate of drying. A coat of 4.0 mils of test polish is applied to the surface of the tile and allowed to sit until apparent dryness (when the polish film appears dry). At this point, the tack tester {A piece of aluminum 1/16 inch thick (1.6 mm), 1 inch (2.54 cm) wide and 3.25 inches (8.3 cm) long is bent at an angle so that a 1 in 2 area may be set on the surface of the polish film. The angle of the bend is determined such that the tester will just balance when a 5 g weight is placed on the 1 in 2 surface on a dry flat substrate} is placed on the polish film (1 in 2 surface (6.5 cm2)). A 500 g weight is placed on the tack tester's 1 in 2 surface and allowed to sit for five seconds and then removed. If more than five seconds are required for the tester's foot to pull completely away from the polish film, the surface is considered not to be tack-free, and the test is repeated in one-minute intervals until the tack-free time is determined. The value is recorded in minutes from application time. Gel time was taken as the time required for the polish formulation to become a nonflowable gel.
TABLE 5: 42Sty/8AA50HEMA B yhydur'T' 302 resin neutralizer film gloss gel tack water pencil appearance 200/ time time resist- hard- 600 (hr) (hr) ance ness (tack/id) (ldf7d) 1 KOH heavy foam 27/64 1.3 2 Wh/wh B/HB 2 triethyl- hazy, foam 2 1/58 2 5 Wh/ex F/H amine in thick parts 3 ammonia clear* 31/70 1.5 5.5 TrWh/ex B/F 4 DMAE hazy, some 18/49 2.5 4.5 HWhI B/HB foam TrWh MDEA clear 44/74 2 4.5 HWhI B/HB TrWh 6 triethanol- clear 75/92 1.2 5.5 Ex/ex 2B/HB am ine I_ I *large amounts of foam observed upon gellation TABLE 6: 42Sty/8A.A/5OHPA Bayhydurr m 302 resin neutralizer film gloss gel tack water pencil appearance 20'/ time time resist- hard- 600 (hr) (hr) ance ness (ldf7d) 7 KOH foam in 28/65 1.5 2.5 HWh/ 5B/3B thick parts Wh 8 triethyl- hazy, some 15!5 1 2.3 >6.5 TrWhlex B/F amine foam 9 ammonia clear* 36/73 1.3 >7.5 TrWh/ex HB/F triethanol- clear 49/78 3.5 7 Ex/ex HB/HB amine *large amounts of foam observed upon gellation TABLE 7: Compositions with Varied HEMA Lvels Bayhydu t m XP-7 148 resin Percent film gloss gel tack water resist- pencil HEIVIA appearance 20'/ time time ance hard- 600 (hr) (hr) (tack/id) ness 11 50 clear 73/91 1.5 6 TrWhlex B/HB 12 40 clear 78/92 1.8 6.5 TrWh/TrWh 3B/B 13 35 clear 78/90 2 5.8 TrWhITrWh 3B/HB 14 30 clear 77/89 2.3 5.5 TrWhITrWh 4B/3B TABLE 8: Compositions with Varied AA Levels Bayhydur XP-7148 S resin Percent film gloss gel tack water pencil 1 AA appearance 20°/ time time resist- hardl) 600 (hr) (hr) ance ness S(tack/Id) (ld/7d) 8 clear 75/92 1.2 5.5 Ex/ex 2B/HB 16 10 clear 81/89 1.8 6.8 TrWh/ HB/HB TrWh 17 15 clear 51/80 2.5 5.5 WhB 2B/HB oC> -WhBl tn 18 25 hazy 4/23 1.2 >7 WhB1/ _WhBl In 0 Throughout this specification and the claims which follow, O unless the context requires otherwise, the word "comprise", C and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference to any prior art in this specification is not, and should not be taken as, an acknowledgement or any form of suggestion that that prior art forms part of the common general knowledge in Australia.
Claims (12)
1. A two-component floor coating composition comprising: an aqueous solution of a polyhydroxypolyacrylate having acid groups neutralized with a tertiary amine containing at least two hydroxy groups; said solution comprising an organic solvent; and an aliphatic polyisocyanate.
2. The composition of claim 1 in which the polyhydroxypolyacrylate 0 comprises at least 30% of monomer units derived from hydroxy-functional (N monomers.
3. The composition of claim 2 in which the polyhydroxypolyacrylate comprises no more than 10% of monomer units derived from acid-functional monomers.
4. The composition of claim 3 in which the acid groups in the polyhydroxypolyacrylate are neutralized with a trialkanolamine, a Ci-C4 unsubstituted alkyl dialkanolamine, or a reaction product of a secondary diamine with an alkylene oxide.
The composition of claim 4 in which the aliphatic polyisocyanate is soluble or dispersible in water.
6. A method of coating a floor; said method comprising applying the two-component floor coating composition of claim 1.
7. The method of claim 6 in which the polyhydroxypolyacrylate comprises at least 30% of monomer units derived from hydroxy-functional monomers, and the polyhydroxypolyacrylate comprises no more than 10% of monomer units derived from acid-functional monomers.
8. The method of claim 7 in which the acid groups in the polyhydroxypolyacrylate are neutralized with a trialkanolamine, a Ci-C4 unsubstituted alkyl dialkanolamine, or a reaction product of a secondary diamine with an alkylene oxide.
9. The method of claim 9 in which the aliphatic polyisocyanate is soluble or dispersible in water.
The method of claim 6 in which said polyhydroxypolyacrylate is prepared via solution polymerization and has a number-average molecular weight no greater than 10,000.
11. A two-component floor coating composition and/or a method of coating a floor, substantially as hereinbefore described with reference to the Examples.
12. The steps, features, compositions and compounds disclosed herein or referred to or indicated in the specification and/or claims of this application, individually or collectively, and any and all combinations of any two or more of said steps or features. DATED this THIRTYFIRST day of AUGUST 2005 Rohm and Haas Company by DAVIES COLLISON CAVE Patent Attorneys for the applicant(s) 5108
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US6877804P | 2004-09-10 | 2004-09-10 | |
US606068778 | 2004-09-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2005205759A1 true AU2005205759A1 (en) | 2006-03-30 |
Family
ID=36120172
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2005205759A Abandoned AU2005205759A1 (en) | 2004-09-10 | 2005-08-31 | Durable two-part polyurethane floor coating |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2005205759A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007146698A2 (en) * | 2006-06-08 | 2007-12-21 | 3M Innovative Properties Company | Water-based polyurethane floor coating composition |
-
2005
- 2005-08-31 AU AU2005205759A patent/AU2005205759A1/en not_active Abandoned
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007146698A2 (en) * | 2006-06-08 | 2007-12-21 | 3M Innovative Properties Company | Water-based polyurethane floor coating composition |
WO2007146698A3 (en) * | 2006-06-08 | 2008-02-14 | 3M Innovative Properties Co | Water-based polyurethane floor coating composition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5876802A (en) | Aqueous two-component polyurethane coating composition, process for its preparation, and its use in methods of producing a multicoat paint system | |
US7452952B2 (en) | Method of applying removable coating compositions | |
US7452935B2 (en) | Durable two-part polyurethane floor coating | |
US5670600A (en) | Aqueous two-component polyurethane coating composition, process for its preparation, and its use in processes for the production of a multicoat finish | |
US7875672B2 (en) | Two component waterborne polyurethane coatings for anti-graffiti application | |
US7122599B2 (en) | Coating compositions and polymeric moulding compounds having anti-adhesion and dirt repellency properties | |
US5759631A (en) | Coating composition based on a hydroxyl group-containing polyacrylate resin and its use in processes for producing a multicoat finish | |
US6855403B2 (en) | Multi-layer coating composition and method of preparation | |
CA2421074C (en) | Aqueous 2k pur systems | |
US5552477A (en) | Coating compound, a process for its preparation and its use for the production of coatings | |
US6652971B1 (en) | Hydroxy-functional (meth)acrylic copolymers and coating composition | |
AU710473B2 (en) | Coating composition based on a hydroxyl-containing polyacrylate resin and its use in processes for the production of a multilayer coating | |
AU2008280136B2 (en) | Self-crosslinking binders | |
EP1431355B1 (en) | Coating compositions having a plurality of triggered responses | |
AU2005205759A1 (en) | Durable two-part polyurethane floor coating | |
ES2262594T3 (en) | IN THE TECHNIQUE THE HYDROXY-FUNCTIONED ACRYLIC COOLED (MET) COPOLYMERS (MET) COATED COMPONENTS ARE KNOWN. | |
US7495053B2 (en) | Low-solvent, OH-functional dispersions | |
US20220153980A1 (en) | Organic resin carrying tertiary amine and carboxylic acid groups, and aqueous dispersion comprising same, for a two-component crosslinkable composition | |
US5476898A (en) | Copolymer solutions based on addition products of α, β-unsaturated carboxylic acid with glycidyl esters and copolymerisable α, β-unsaturated monomers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK1 | Application lapsed section 142(2)(a) - no request for examination in relevant period |