AU2005203502A1 - Identification tag - Google Patents

Identification tag Download PDF

Info

Publication number
AU2005203502A1
AU2005203502A1 AU2005203502A AU2005203502A AU2005203502A1 AU 2005203502 A1 AU2005203502 A1 AU 2005203502A1 AU 2005203502 A AU2005203502 A AU 2005203502A AU 2005203502 A AU2005203502 A AU 2005203502A AU 2005203502 A1 AU2005203502 A1 AU 2005203502A1
Authority
AU
Australia
Prior art keywords
radiation
tag
signal
acoustic
modulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2005203502A
Inventor
Ian Forster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marconi Data Systems Ltd
Original Assignee
Marconi Data Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9911878.8A external-priority patent/GB9911878D0/en
Application filed by Marconi Data Systems Ltd filed Critical Marconi Data Systems Ltd
Priority to AU2005203502A priority Critical patent/AU2005203502A1/en
Publication of AU2005203502A1 publication Critical patent/AU2005203502A1/en
Abandoned legal-status Critical Current

Links

Description

AUSTRALIA
Patents Act 1990 COMPLETE SPECIFICATION STANDARD PATENT Applicant(s): MARCONI DATA SYSTEMS LTD Invention Title: IDENTIFICATION TAG The following statement is a full description of this invention, including the best method of performing it known to me/us: -2- IDENTIFICATION TAG The present invention relates to an identification tag, in particular but not exclusively to an identification tag which is responsive to interrogation using radio wave radiation.
Identification tags are conventionally in the order of a few cm's in size and are used in a number of applications, for example personnel wearable tags and anti-theft tags. Such antitheft tags are often designed to be interrogated by radio radiation, for example using radio wave radiation having a frequency of several hundred kilohertz; the tags are conventionally attached to items of merchandise in retailing premises so that unauthorised passage of the tags past associated interrogating apparatus triggers an alarm.
Personnel wearable tags are often worn by authorised personnel and are used to provide selective access to facilities, for example equipment and buildings. The personnel tags are frequently in the form of magnetic swipe cards which are interrogated by swiping them physically past magnetic sensors.
Antitheft tags-are described in a UK Patent Application No. GB 2306080A, the tags utilising field effect transistor (FET) technology for mixing interrogating radiation at frequencies of fl and f 2 and thereby generating corresponding mixed radiation at frequencies of f 1 2 for use in detecting presence of the tags.
Moreover, marker tags for use in surveillance systems are described in a European Patent Application No. EP 0 142 380 A2. The marker tags each comprise a passive distributed resonant inductor-capacitor circuit exhibiting two electrical resonances, the resonances being detectable for determining presence of the tags.
Furthermore, an identification device is described in a US Patent No. US 5 734 332. The device includes an inactive code carrier, for example a standing acoustic wave component, a frequency mixing section and a double antenna input. The device is operable to receive interrogating radiation at two different frequencies and generate two corresponding received signals. The signals are mixed in the frequency mixing section to generate an intermediate signal having a frequency corresponding to a difference in frequency between the received signals. The intermediate signal is coupled to the acoustic wave device which applies a coded modulation to the intermediate signal. The modulated intermediate signal is then recombined with the received signals to provide a -3composite signal for emission from the device. Emitted radiation corresponding to the composite signal is detected by equipment interrogating the device, thereby establish presence and identity of the device.
Conventional identification tags suffer from one or more of the following problems: they do not provide a sufficiently unique response in some applications; this can result in unauthorised personnel gaining access to buildings and equipment; in anti-theft applications, interrogation equipment associated with the tags are triggered spuriously by objects providing a similar response to that provided by the tags; and it is sometimes difficult to uniquely identify tags adapted to be interrogated by non contact interrogation methods, for example using radio wave radiation; and it is not straightforward to modify identification codes recorded on the tags, for example where the identification tags are affixed to items of merchandise as they proceed through their manufacturing processes, the tags being used for recordal of completed manufacturing processes applied to the items or for quality control purposes.
There is thus a problem of providing each card with an associated unique signature whilst also making it susceptible to non-contact interrogation methods and unsusceptible to counterfeiting.
The inventor has appreciated that it is desirable to improve the reliability of conventional identification tags and associated interrogation equipment by arranging for the equipment to emit a specific form of interrogating radiation and for the tags to be selectively responsive to the radiation. Moreover, the inventor has appreciated that it would be desirable to improve the conventional tags so that information can be recorded on them more easily.
It is to be understood that, if any prior art publication is referred to herein, such reference does not constitute an admission that the publication forms a part of the common general knowledge in the art, in Australia or any other country.
Therefore, according to the present invention, there is provided an identification tag comprising: transponding means for receiving interrogating radiation and for emitting modulated radiation in response; and modulating means for modulating the received interrogating radiation in a manner indicative of tag identity to generate the modulated radiation, the transponding means including first and second structures for receiving first and second radiation components of the interrogating radiation and generating corresponding first and second signals respectively, said first and second components being at mutually different frequencies, the modulating means including a coupling structure operative to receive the second signal and generate corresponding acoustic radiation and to couple the acoustic radiation to the first structure, the acoustic radiation modulating the first signal in the first structure to generate the modulated radiation, the coupling structure comprising a piezo-electric film for generating the acoustic radiation in response to the second signal.
The invention provides at least one of the following advantages: the tag is capable of being more reliably identified by a manner in which the modulated radiation is modulated; and the tag is capable of having its identification characteristics modified by altering the first structure.
In many applications for identification tags, small size tag and low tag cost are important criteria. Preferably, the coupling structure incorporates a piezo-electric film for generating the acoustic radiation in response to the second signal. This provides the advantage of being a potentially cheap and compact manner to implement the coupling structure.
Acoustic radiation is defined as being mechanical vibrational radiation propagating within a medium.
Advantageously, the film can be of polyvinyl difluoride (PVDF) material which provides a benefit of being mechanically robust.
Conveniently, the tag is operative to be interrogated by radio radiation in a range of frequencies from around 50 MHz to 3 GHz. Thus, the first and second structures can comprise radio antennae for receiving the interrogating radiation and emitting the modulated radiation. This provides the advantage that the tag is capable of being physically compact when designed to respond to radiation at this frequency range.
In a first embodiment of the invention, the first structure can incorporate a circular electrode region and the second structure can include a loop antenna.
Conveniently, the first structure is spatially within the second structure. This provides the advantage of being a potentially compact arrangement for receiving the interrogating radiation and emitting the modulated radiation.
In a second embodiment of the invention, the first structure can comprise a plurality of electrically interconnected and radially disposed elongate conducting segment tracks, each track operative to function as an acoustic resonator having an associated modal vibrational response and to modulate the first component with the modal response corresponding to a segment track stimulated into resonance by the acoustic vibrations, thereby providing the tag with a signature code modulated onto the modulated radiation. This provides the advantage that the modulated radiation is capable of being modulated by a complex signature by which the tag can be more reliably identified.
In a third embodiment of the invention, the first structure can comprise a launcher electrode connected to the second structure, an interdigitated surface acoustic wave structure and a dipole antenna connected to the interdigitated structure, the launcher electrode operative to couple the second signal to generate surface acoustic waves, the interdigitated structure operative to receive the waves which modulate its electrical characteristics, and the dipole antenna is operative to receive the first component and to generate the first signal which the interdigitated structure is arranged to modulate to provide the modulated radiation. This provides the advantage that the interdigitated structure is capable of modulating the modulated radiation with a signature code, the signature code determined by the manner in which surface acoustic waves propagate through the interdigitated structure.
In a second aspect, the present invention provides a method for wireless communication comprising: receiving interrogating radiation including first and second radiation components; generating first and second signals corresponding respectively to the first and second radiation components; generating an acoustic radiation using the second signal; modulating the first signal using the acoustic radiation to generate modulated radiation; and emitting the modulated radiation.
In a third aspect, the present invention provides a device capable of wireless communication, comprising: a first structure configured to receive a first component of an interrogating radiation and generate a first signal; a second structure configured to receive a second component of the interrogating radiation and generate a second signal; a coupling structure configured to receive the second signal and generate corresponding acoustic radiation and couple the acoustic radiation to the first structure, the acoustic radiation modulating the first signal in the first structure to generate a modulated radiation that is emitted from the device.
Embodiments of the invention will now be described, by way of example only, with reference to the following diagrams in which: Figure 1 is a schematic illustration of a generic identification tag according to the invention; Figure 2 is an illustration of an identification tag according to a first embodiment of the invention; Figure 3 is an illustration of an identification tag according to a second embodiment of the invention; and Figure 4 is an illustration of an identification tag according to a third embodiment of the invention.
Referring to Figure 1, there is shown an identification tag indicated by 100.
The tag 100 incorporates a support structure which conveniently comprises, for example, a plastic material and is in the form of a small rectangular card having physical dimensions of 85 mm length, 54 mm width and approximately 1 mm thickness.
The tag 100 incorporates a first structure 110 for receiving radiation, and a second structure 120 for both receiving and emitting radiation. The tag 100 also comprises a filter structure 122 having an input T 1 coupled to the first structure 110 and an output T2 coupled to an input J1 of a converter structure 130. The structure 130 includes an output J2 which is coupled to an input P1 of an encoder-modulator structure 140. The encoder structure 140 incorporates a second port P2 which is connected to the second structure 120.
The structures 110 to 140 are fabricated into or onto the tag 100.
Operation of the tag 100 will now be described with reference to Figure 1. An interrogating apparatus (not shown) emits interrogating radiation 200 towards the tag 100. The radiation 200 incorporates first and second radiation components having frequencies of fl and f 2 respectively, f, arranged to be considerably less than f 2 for example f, 13.56 MHZ and f 2 2.45 GHz. The first and second components are continuous wave radiation. It will be appreciated that the invention is equally applicable if the components are modulated. The first structure 110 receives the radiation 200 and converts it to generate a corresponding signal SL comprising signal components SL1 and SL2 corresponding to the first and second radiation components respectively. The signal SL propagates from the structure 110 to the filter structure 122 whereat the component SL2 is removed by filtration and the component SL1 propagates to the output T2 wherefrom it propagates to the input J1. The converter structure 130 converts the component SL1 into corresponding acoustic radiation by piezo-electric coupling which propagates to the encoder structure 140.
The second structure 120 also receives the interrogating radiation 200 and converts it to a corresponding received signal SL which also comprises primarily the component SL2 and a small residual of the component SLI on account of transducing characteristics exhibited by the second structure 120. The component SL2 propagates from the second structure 120 to the encoder structure 140 whereat it is modulated by the component SL1 coupled to the encoder structure 140 from the converter structure 130; this generates a modulated signal Sm in the encoder structure 140 which propagates back to the second structure 120 whereat it is emitted as emitted radiation 210 which is subsequently received at the interrogating apparatus (not shown). The apparatus identifies presence of the tag 100 by virtue of modulation applied by the tag 100 to the signal component SL2.
As will be described for the embodiments of the invention shown in Figures 2, 3 and 4, the encoder structure 140 can provide a specific type of response unique to the tag 100. Moreover, the type of response can be customized for the tag 100 by a number -8of different methods. On account of the tag 100 converting the signal component SLI from an electrical signal to corresponding acoustic radiation at the converter structure 130, the tag 100 can be regarded to as a "multi-technology tag".
Embodiments of the invention will now be described where the structures 110 to 140 referred to above are implemented in different manners.
Referring now to Figure 2, there is shown a first embodiment of the invention, namely a tag indicated by 300. There is also shown a cross-sectional view indicated by 310; the view 310 is a cross-section along a line A-A'on the tag 300.
The tag 300 comprises a multilayer assembly incorporating, in sequence, a metal foil backing layer 320, a bulk plastic structural layer 330, a piezo-electric layer 340 and a conductive electrode layer indicated by 350. The tag 300 is in the form of a rectangular card having a length of 85 mm, a width of 54 mm and a thickness of approximately 1 mm in directions of arrows 360, 370, 380 respectively. The arrows 360, 370 are associated with the tag indicated by 300, and the arrow 380 is associated with the view 310. The metal foil layer 320 provides a ground plane and comprises aluminium metal; it is in a range of 50 jtm to 150 gtm thick. The piezo-electric layer 340 is in a range of 100 im to 250 jtm thick and comprises a piezo-electric polymer material such as polyvinyl difluoride (PVDF). The structural layer 330 comprises a polymer such as polyvinyl chloride (PVC) and is in a range of 500 im to 800 jim thick.
In a central region of the tag 300, the layer 330 includes a void 390, thereby forming a cavity within the tag 300. Top and bottom walls of the cavity are formed by the layers 340, 320 respectively. The void 390 is circular in form, having a diameter in a range of mm to 30 mm, and is arranged to align with a circular electrode structure 400 formed into the electrode layer 350. The-circular structure 400 is of a similar diameter to the void 390.
The electrode layer 350 also comprises a spiral antenna structure indicated by 410 formed by a single track 420 having a width of 1 mm and incorporating 3 2 concentric turns. A first end of the track 420 terminates at an edge of the tag 300 and a second end thereof terminates by connecting onto the circular structure 400. The electrode layer 350 is in a range of 1 gim to 50 gim thick. The antenna structure 410 has a perimeter in the form of a square perimeter with side lengths of approximately 40 mm.
-9- The structures 400, 410 are formed into the electrode layer 350 by one or more of lithographic processes, selective etching processes and conducting ink silk screen printing processes.
Operation of the tag 300 will now be described with reference to Figure 2. An interrogating apparatus (not shown) emits interrogating radiation comprising a first radiation component at 13.56 MHZ and a second radiation component at 2.45 GHz.
The tag 300 receives the interrogating radiation at the antenna structure 410 and also at the circular electrode structure 400.
The antenna structure 410 functions both as an antenna for receiving the radiation and also as an inductive impedance which forms a tuned circuit in combination with a capacitor formed by the structure 400 and the backing layer 320 across the void 390. The tuned circuit is tuned to substantially 13.56 MHZ thereby coupling the first radiation component received at the structure 410 to the circular structure 400 to generate a fluctuating 13.56 MHZ electric filed across the piezo-electric layer 340 and the void 390. The electric field results in stimulation of acoustic vibrations within the layer 340 on account of its piezo-electric characteristics. The acoustic vibrations modulate physical dimensions of the circular structure 400 which is capable of flexing and stretching on account of the void 390 permitting the layer 340 to be compliant in the vicinity of the void 390.
The circular structure 400 receives the interrogation radiation and, on account of its physical size, is primarily receptive to the second radiation component at 2.45 GHz. The structure 400 reflects the second component although its reflectivity is modulated by the acoustic vibrations changing its dimensions periodically.
Thus, the structure 400 receives the second radiation component and reflects it in modulated form as reflected radiation. The reflected radiation comprises a carrier component at 2.45 GHz together with sideband components principally at (2.45 GHz 13.56 MHZ) and (2.45 GHz 13.56 MHZ). The interrogating apparatus receives the reflected radiation and determines whether or not the tag 300 is within its detection range by whether or not it receives the sideband components with sufficient amplitude to exceed a threshold level preset into the apparatus.
The antenna structure 410 can incorporate fewer than or more than 3V2 turns thereby providing each tag 300 with a unique acoustic vibrational signature frequency to which it is most responsive. Alternatively, the thickness of the layer 330 or the area of the structure 400 can be modified to affect tuning thereby providing a unique signature frequency; for example, the area of the structure 400 can be trimmed using laser ablation electrode trimming techniques.
Because the interrogating apparatus is expecting a specific response to its interrogating radiation when interrogating the tag 300, namely generation of the two sideband components, the apparatus will not easily be triggered by spurious ambient radiation or general reflection from passive conducting objects, for example coins or keys; this provides enhanced reliability of specific tag detection. Few, if any, simple metallic parts are capable of generating sideband components specifically in response to receiving interrogating radiation comprising radiation components at 13.45 MHZ and 2.54 GHz. This enhanced reliability is advantageous, for example, where the tag 300 is employed as an electronic access key in security sensitive areas where unauthorised access must be avoided.
Comparing the tag 300 with the tag 100: the antenna structure 410 is equivalent to the first structure 110; the circular structure 400 is equivalent to the second structure 120; a combination of the antenna structure 410 and the capacitor arising between the circular structure 400 and the backing layer 320, thereby forming a 13.45 MHZ tuned filter circuit, is equivalent to the filter structure 122; the layer 340 in the vicinity of the void 390 where the layer 340 can flex and thereby convert electrical signals to acoustic vibrations is equivalent to the converter structure 130; and the circular structure 400 exhibiting a reflection characteristic which is modifiable by acoustic vibrations within the layer 340 is equivalent to the encoder structure 140.
Referring now to Figure 3, there is shown an identification tag according to a second embodiment of the invention; the tag is indicated by 500. The tag 500 is identical to the tag 300 except that the circular structure 400 is replaced by a radial electrode structure indicated by 520. The structure 520 comprises twelve radially disposed electrode segments, for example a segment 522, of mutually different radial lengths but electrically connected at their radial centre as shown. The track 420 is connected at a peripheral region to a longest segment of the structure 520. The -11segments are arranged in a sequence where they become increasingly longer in a clock-wise sense around the structure 520. Incorporation of the void 390 permits the segments to vibrate more freely. In the tag 500, the void 390 is of rectangular form.
Incorporation of the segments imparts a complex mechanical vibrational modal spectrum to the structure 520, each segment giving rise to an associated series of mechanical resonances.
This series corresponds to an encoded signature of the tag 500 by which it can be identified.
The vibrational spectrum is modifiable by mass loading the segments, for example by inkjet printing ink dots onto them, or by selectively laser ablating material from specific segments.
This permits such tags 500 to be uniquely customisable.
In operation, interrogating radiation directed by an interrogating apparatus (not shown) to the tag 500 includes a lower frequency signal component and a higher frequency signal component, for example a higher frequency component at 2.45 GHz.
By sweeping the lower frequency component over a range of frequencies, acoustic resonance modes exhibited by the segments can be sequentially detected in reflected radiation from the structure 520 which is received back at the apparatus. This permits the apparatus to map resonance modes of the tag 500 and thereby determine whether or not the tag 500 has associated with it a particular unique encoded signature.
The tag 500 exploits the structure 520 efficiently in a number of ways, namely the structure 520 functions: as an antenna for receiving interrogating radiation and reflecting the radiation; as a tuning capacitor in co-operation with the backing layer 320; and as a piezo-electric resonator providing a complex resonance mode spectrum constituting a signature code for the tag 500.
The tag 500 thereby provides the advantage that it can be interrogated at high speed, for example within 500 jtsec. Moreover, if necessary, the interrogating radiation can comprise a high frequency component and several lower frequency components, thereby enabling resonance modes of the structure 520 to be excited simultaneously, thereby permitting more rapid interrogation of the tag 500 to determine its signature.
Furthermore, as described above, the tag 500 can be easily customized after -12manufacture by selective mass loading applied to the structure 520, for example by inkjet printing as described above. This customisation represents a technical development on the tag 300 which exhibits a simpler mechanical resonance mode spectrum for its structure 400.
The tag 500 is characterised in that its signature code arises from its modal resonance frequency response. It is also practicable to provide an identification tag having an associated signature code determined by its time response to interrogating radiation; this will now be described.
Referring to Figure 4, there is shown an identification tag according to a third embodiment of the invention; the tag is indicated by 700. The tag 700 is identical to the tag 300 except that the circular structure 400 is replaced by a surface acoustic wave (SAW) structure indicated by 710 and the void 390 is of a rectangular form in the tag 700. The SAW structure 710 comprises an acoustic wave launcher electrode 720, an interdigitated electrode structure 730 and a bow-tie dipole antenna 740.
The launcher electrode 720 is of an elongate rectangular form and is electrically connected to the track 420 of the antenna structure 410. The structure 410 is disposed symmetrically about a central point in the tag 700. The launcher electrode 720 is offset from a central point in the tag 700 and its elongate axis is parallel or perpendicular to perimeter edges of the tag 700.
The interdigitated structure 730 comprises two mutually parallel elongate electrodes 750,760 disposed symmetrically about the central point in the tag 700.
Perpendicular to elongate axes of the electrodes 750, 760 are interdigitated tracks, for example a track 762, which intermesh and are connected to their respective electrodes 750, 760. Each electrode 750, 760 is electrically connected to thirteen interdigitated tracks. The electrodes 750, 760 are mutually electrically isolated.
The antenna 740 comprises two substantially triangular electrodes 772, 774, each connected at a corner thereof to a central region of the electrodes 750, 760 respectively. The triangular electrodes 772, 774 are located on opposite sides of the electrodes 750, 760 relative to the interdigitated tracks. Inclusion of the void 390 in the tag 700 ensures that the layer 340 is compliant in the vicinity of the structure 730, thereby assisting surface acoustic wave propagation in the structure 730.
Operation of the tag 700 will now be described with reference to Figure 4. An interrogating apparatus (not shown) emits interrogating radiation to the tag 700. The -13interrogating radiation comprises first and second radiation components, the first component comprising bursts of 50 MHZ radiation of 1 psec duration and at a repetition frequency of 5 kHz, and the second component comprising 2.45 GHz continuous-wave radiation. The interrogating radiation is received at both the antenna structure 410 and at the antenna 740.
The antenna 410 provides an inductive impedance which forms a tuned circuit in combination with a capacitance provided by the launcher electrode 720 in combination with the backing layer 320; the tuned circuit is electrically resonant at MHZ. As a consequence, the antenna 410 is selectively responsive to the first component of the interrogating radiation. Reception of the first component results in a corresponding electrical signal appearing at the electrode 720 which stimulates surface acoustic waves on the layer 340 which propagate in a direction towards the interdigitated structure 730, and also in a direction towards a perimeter edge of the tag 700 whereat they are absorbed.
The acoustic waves are spatially divided into groups of waves on the layer 340 because the first component is temporally divided into bursts, each burst giving rise to a corresponding group of waves.
Each group has a spatial width in its direction of propagation comparable to inter-track spacing in the structure 730. Thus, each group generated propagates to and through the structure 730 and modulates the inter-track spacing, thereby modifying and hence modulating electrical characteristics of the dipole antenna 740. In consequence of the repetition frequency being relatively low, namely 5 kHz, only one group of waves propagates at any instant of time on the layer 340.
The antenna 740 receives the second component of the interrogating radiation and generates a corresponding electrical signal which propagates through the electrodes 750, 760 and their associated tracks and then is re-emitted as reflected radiation from the antenna 740. The antenna 740 is relatively insensitive to the first component of the interrogating radiation on account of its physical dimensions. As a consequence of the tracks of the electrodes 750,760 being affected by groups of surface acoustic waves propagating therethrough, the reflected radiation is modulated by the bursts present in the first component of the interrogating radiation; this results in the generation of sideband radiation components in the reflected radiation.
-14- The interrogating apparatus (not shown) determines the presence of the tag 700 by detecting the sideband components in the reflected radiation received thereat; the sideband components are affected as the groups of acoustic waves propagate through the structure 730. Reflection of the interrogating radiation from simple metallic objects does not result in reflected radiation including such sideband components. This enables the interrogating apparatus to distinguish presence of the tag 700 from passive reflectors such as simple metallic objects.
The tag 700 can be customized so as to provide it with a signature code to distinguish it uniquely from similar tags. This can be achieved by selectively removing tracks connected to the electrodes 750, 760 using laser cutting techniques, for example by laser ablation, or ion milling techniques. Alternatively, when the tag 700 is manufactured, the tracks can be arranged to be initially disconnected from their respective electrodes 750, 760 by small gaps; these gaps can be selectively bridged by printing conductive ink dots thereonto, thereby selectively connecting tracks and thus providing the tag 700 with its signature code. Moreover, the ink dots can also serve as customising dots which are readable using optical scanning apparatus, for example bar code readers.
The signature code is read out sequentially when a group of waves propagates through the structure 730. Thus, a spatial distribution of conductive ink dots on the structure 730 or a spatial distribution of laser cuts on tracks is output in the sidebands of reflected radiation from the tag 700 when a group of waves propagates through the structure 730, thereby providing the tag 700 with its signature code.
The tags 300, 500, 700 are usable in a number of applications, for example: for use as personnel-wearable personal identification tags; for use as anti-theft tags as affixed to valuable merchandise in shops or valuable books and manuscripts in libraries; for use as validatable entrance tickets, for example as an alternative to conventional tickets incorporating holographic images for verification purposes.
It will be appreciated by those skilled in the art that variations can be made to the tags 100, 300, 500, 700 without departing from the scope of the invention. Thus, the tags 100, 300, 500, 700 can have physical dimensions different to those described with reference to Figures 1 to 4. Moreover, the tags 100, 300, 500, 700 can be incorporated as a integral part of products, for example books. Furthermore, alternative materials can be used for the layers 320, 330, 340, 350 provided that they function in a related manner to the materials used for layers 320, 330, 340, 350. Likewise, alternative structures can be substituted for the structures 400, 520, 730 provided that they are capable of modulating radiation received thereat by a signal generated in the antenna 410. For example, the antenna structure 410 and the circular structure 400 may be substituted with thin film structures receptive to modulated optical radiation but also capable of emitting radio wave radiation in response; this provides the advantage that the tag could be interrogated with one type of radiation and respond with another type of radiation, thereby counteracting cross-talk problems in associated interrogating apparatus. Alternatively, the antenna structure 410 can be replaced with a dipole antenna.
Moreover, the tags 100, 300, 500, 700 can be modified to incorporate a power source, for example a solar cell or miniature power cell, together with an amplifier for providing amplification, thereby enabling the tags to operate at greater distances from an associated interrogating source. The amplifier, conveniently, incorporates a signal storage element and operates in pseudo-continuous mode to counteract occurrence of spontaneous self oscillation within the tag.
The tag 700 is also capable of being adapted to operate as a non-contact interrogatable strain sensor. The tag 700 can be made thinner, for example 300 gim thick, and affixed to objects which are subjected to stress and require monitoring.
When the objects are metallic, for example a metal drive shaft of a road vehicle or a metal turbine blade, the backing layer 320 is not required because the objects themselves provide an earth plane for the adapted tag 700. Since each adapted tag provides a signature code corresponding thereto, a single interrogating apparatus can be used to collect strain data from a plurality of the adapted tags functioning as strain sensors affixed to various parts of objects. For example, an adapted version of the tag 700 can be affixed to each blade of a rotor, thereby permitting an interrogating apparatus to monitor strain individually on each blade. This characteristic of the tag 700 arises from strain modulating interdigitated electrode spacings thereof, thereby modifying its signature code in a manner indicative of strain.

Claims (47)

1. An identification tag comprising: transponding means for receiving interrogating radiation and for emitting modulated radiation in response; and modulating means for modulating the received interrogating radiation in a manner indicative of tag identity to generate the modulated radiation, the transponding means including first and second structures for receiving first and second radiation components of the interrogating radiation and generating corresponding first and second signals respectively, said first and second components being at mutually different frequencies, the modulating means including a coupling structure operative to receive the second signal and generate corresponding acoustic radiation and to couple the acoustic radiation to the first structure, the acoustic radiation modulating the first signal in the first structure to generate the modulated radiation, the coupling structure comprising a piezo-electric film for generating the acoustic radiation in response to the second signal.
2. A tag according to Claim 1 wherein the film is of piezo-electric polyvinyl difluoride (PVDF) material.
3. A tag according to Claim 1 or 2 wherein the film is in the range of 100 ptm to 250 im thick.
4. A tag according to any one of Claims 1 to 3 wherein the first and second structures comprise radio antenna for receiving and interrogating radiation and emitting the modulated radiation.
A tag according to Claim 4 wherein the first structure includes a dipole antenna or circular electrode region and the second structure includes a loop antenna.
6. A tag according to Claim 4 or 5 wherein the first structure is spatially within the second structure. -17-
7. A tag according to Claim 4, 5 or 6 wherein the first and second structures comprise conductive tracks or conductive regions formed onto a surface of the tag.
8. A tag according to Claim 7 wherein the first and second structures are formed onto a piezo-electric film on the tag, the film operative to generate the acoustic radiation in response to the second signal.
9. A tag according to Claim 4 wherein the first structure comprises a plurality of electrically interconnected and radially disposed elongate conducting segment tracks, each track operative to function as an acoustic resonator having an associated modal vibrational response and to modulate the first component with the modal response corresponding to a segment track stimulated into resonance by the acoustic vibrations, thereby providing the tag with a signature code modulated onto the modulated radiation.
10. A tag according to Claim 9 wherein the signature code is customisable by selectively mass loading or selectively trimming the segment tracks.
11. A tag according to Claim 10 wherein the segment tracks are selectively mass loadable by printing ink thereonto.
12. A tag according to Claim 11 wherein the segment tracks are selectively trimmable by laster cutting techniques.
13. A tag according to Claim 4 wherein the first structure comprises a launcher electrode connected to the second structure, an interdigitated surface acoustic wave structure and a dipole antenna connected to the interdigitated structure, the launcher electrode operative to couple the second signal to generate surface acoustic waves, the interdigitated structure operative to receive the waves which modulate its electrical characteristics, and the dipole antenna is operative to receive the first component and to generate the first signal which the interdigitated structure is arranged to modulate to provide the modulated radiation. -18-
14. A tag according to Claim 13 wherein the interdigitated structure incorporates interdigitated tracks which are selectively connectable to provide the modulated radiation with a signature code for the tag.
15. A tag according to Claim 14 wherein the tracks are connectable by printing conductive ink thereonto or disconnectable by laser cutting techniques.
16. A tag according to Claim 11, 12, 14 or 15 wherein modifications to the tracks to customise the tag are optically readable by an optical scanning device.
17. A tag according to Claim 1 wherein the modulating means and transponding means are operative to co-operate to form a filter for selectively isolating the second signal from the interrogating radiation for use in generating the modulated radiation.
18. A tag according to any one of Claims 1 to 17 comprising a plurality of layers, the layers comprising in sequence a backing layer, a structural layer, a piezo-electric layer and an electrode layer, the transponding means and the modulating means formed substantially into the piezo-electric layer and the electrode layer.
19. A tag according to Claim 18 wherein the structural layer incorporates a void region aligned to a region of the piezo-electric layer in which acoustic waves substantially propagate.
A tag according to Claim 19 wherein the backing layer is conductive.
21. A personal wearable identity card incorporating a tag according to any preceding claim.
22. An anti-theft tag for counteracting theft of items attached thereto, the anti-theft tag incorporating a tag according to any one of Claims 1 to
23. A combination comprising: a tag according to any one of Claims 1 to 22; and t -19- an apparatus for interrogating the tag, the apparatus operative to emit interrogating radiation to the tag, said interrogating radiation comprising first and Z second radiation components, and operative to receive modulated radiation emitted t from the tag in response to the interrogating radiation and to determine identity of the tag from radiation components present in the modulated radiation corresponding to the N, first radiation component modulated by the second radiation component.
24. A strain sensor incorporating a tag according to Claim 13, the sensor operative Sto sense strain coupled to the tag causing change in the interdigitated structure and inducing corresponding changes induced by the modulated radiation.
A method for wireless communication comprising: receiving interrogating radiation including first and second radiation components; generating first and second signals corresponding respectively to the first and second radiation components; generating an acoustic radiation using the second signal; modulating the first signal using the acoustic radiation to generate modulated radiation; and emitting the modulated radiation.
26. The method of Claim 25, further comprising using a piezoelectric film to generate the acoustic radiation from the second signal.
27. The method of Claim 25, further comprising using radio antennae to receive the interrogating radiation and emit the modulated radiation.
28. The method of Claim 27, further comprising forming the radio antennae by forming a conductive track or conductive region on a surface.
29. The method of Claim 28, wherein the conductive track or conductive region is formed on a piezoelectric film that is operative to generate the acoustic radiation in response to the second signal.
The method of Claim 27, wherein at least one of the radio antennae comprises a plurality of electrically interconnected and radially disposed elongate conducting segment tracks, each track operative to function as an acoustic resonator having an associated modal vibrational response, the method further comprising modulating the first signal with the modal response corresponding to a segment track stimulated into resonance by the acoustic vibrations.
31. The method of Claim 30, further comprising selectively mass loading one or more of the segment tracks to customize information conveyed by the modulated radiation.
32. The method of Claim 31, wherein selectively mass loading includes printing ink onto one or more of the segment tracks.
33. The method of Claim 30, further comprising selectively trimming one or more of the segment tracks to customize information conveyed by the modulated radiation.
34. The method of Claim 33, wherein selectively trimming includes laser cutting one or more of the segment tracks.
The method of Claim 27, further comprising generating surface acoustic waves from the second signal using a launcher electrode and communicating the surface acoustic waves to an interdigitated acoustic wave structure, the surface acoustic waves modulating the electrical characteristics of the interdigitated structure and a radio antenna connected thereto, the method further comprising receiving the first component via the radio antenna and generating the first signal, wherein the interdigitated structure modulates the first signal to provide the modulated radiation.
36. The method of Claim 35, further comprising selectively connecting an interdigitated track to the acoustic wave structure to determine information that is conveyed in the modulated radiation. -21-
37. The method of Claim 36, wherein selectively connecting includes printing conductive ink that connects the interdigitated track to the acoustic wave structure.
38. The method of Claim 35, further comprising selectively disconnecting an interdigitated track from the acoustic wave structure by laser cutting.
39. The method of any one of Claims 31 to 34 or 36 to 38, further comprising optically scanning the tracks to identify modifications to the tracks that customize the information conveyed by the modulated radiation.
The method of Claim 35, further comprising sensing a strain that causes a change in the interdigitated structure and induces a corresponding change in the modulated radiation.
41. The method of Claim 25, further comprising: forming a device having a plurality of layers, the layers comprising in sequence a conductive backing layer, a structural layer, a piezoelectric layer and an electrode layer; and incorporating a void region in the structural layer, wherein the void region is aligned to a region of the piezoelectric layer in which acoustic waves substantially propagate.
42. A device capable of wireless communication, comprising: a first structure configured to receive a first component of an interrogating radiation and generate a first signal; a second structure configured to receive a second component of the interrogating radiation and generate a second signal; a coupling structure configured to receive the second signal and generate corresponding acoustic radiation and couple the acoustic radiation to the first structure, the acoustic radiation modulating the first signal in the first structure to generate a modulated radiation that is emitted from the device. -22-
43. The device of Claim 42, wherein the coupling structure includes a piezoelectric film that generates the acoustic radiation in response to the second signal.
44. The device of Claim 42, wherein the first and second components of the interrogating radiation are different types of radiation.
The device of Claim 44, wherein the interrogating radiation includes an optical radiation component and a radio wave component.
46. The device of Claim 44, wherein the first and second structures are comprised of thin film structures that are receptive to optical radiation and capable of emitting radio wave radiation.
47. The device of Claim 42, further comprising a power source and an amplifier for amplifying the modulated radiation emitted from the device, the amplifier including a signal storage element and operating in a pseudo-continuous mode to counteract occurrence of spontaneous self-oscillation within the device. DATED this 5th Day of August 2005 MARCONI DATA SYSTEMS LTD By their Patent Attorneys GRIFFITH HACK
AU2005203502A 1999-05-22 2005-08-05 Identification tag Abandoned AU2005203502A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2005203502A AU2005203502A1 (en) 1999-05-22 2005-08-05 Identification tag

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9911878 1999-05-22
GBGB9911878.8A GB9911878D0 (en) 1999-05-22 1999-05-22 Identification tag
PCT/GB2000/001878 WO2000072255A1 (en) 1999-05-22 2000-05-15 Identification tag
AU2005203502A AU2005203502A1 (en) 1999-05-22 2005-08-05 Identification tag

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU45985/00A Division AU781037B2 (en) 1999-05-22 2000-05-15 Identification tag

Publications (1)

Publication Number Publication Date
AU2005203502A1 true AU2005203502A1 (en) 2005-09-01

Family

ID=35006425

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005203502A Abandoned AU2005203502A1 (en) 1999-05-22 2005-08-05 Identification tag

Country Status (1)

Country Link
AU (1) AU2005203502A1 (en)

Similar Documents

Publication Publication Date Title
AU781037B2 (en) Identification tag
US7417541B2 (en) Identification band with regions having electro-magnetically detectable regions
US9953192B2 (en) RFID tag communication triggered by sensed energy
KR101038190B1 (en) System and method for selectivel reading rfid devices
CN101472835B (en) Methods and systems for object identification and for authentication
USRE37956E1 (en) Radio frequency identification tag and method
US5726630A (en) Detection of multiple articles
US6894614B2 (en) Radio frequency detection and identification system
AU2009238209B9 (en) Radio frequency transponder
US20060226969A1 (en) Method and apparatus for a privacy enabling radio frequency identification (RFID) reader
WO1997038364A1 (en) A conformable intelligent tag
CN1193388A (en) Improvements relating to magnetic tags or markers
JPH07500704A (en) Binary coded multi-frequency high frequency identification tag
SE532227C2 (en) Sensor device with RFID devices
US7535424B2 (en) Passive wireless keyboard powered by key activation
GB2246492A (en) Tag identification system having different resonant frequencies
AU2005203502A1 (en) Identification tag
JP2009290632A (en) Floor installation antenna for rfid tag communication and rfid reader/writer using the same
KR200257683Y1 (en) Alarming and Surveillance System for Products
NL2003047C2 (en) DEVICE FOR DETERMINING THE STATUS OF CONTROL DOCUMENTS.
EP2000824A2 (en) Method for forming a radio frequency responsive target and apparatus for verifying the authenticity of same
JPH04115086U (en) Mobile object identification device
JP2018022356A (en) Identifying body
JPH07306987A (en) System for preventing unauthorized lending of article
JPH0785204A (en) Code reader

Legal Events

Date Code Title Description
MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application