AU2005201994A1 - Screw threaded fastener and fastening system - Google Patents

Screw threaded fastener and fastening system Download PDF

Info

Publication number
AU2005201994A1
AU2005201994A1 AU2005201994A AU2005201994A AU2005201994A1 AU 2005201994 A1 AU2005201994 A1 AU 2005201994A1 AU 2005201994 A AU2005201994 A AU 2005201994A AU 2005201994 A AU2005201994 A AU 2005201994A AU 2005201994 A1 AU2005201994 A1 AU 2005201994A1
Authority
AU
Australia
Prior art keywords
fastener
screw threaded
threaded fastener
batten
longitudinal axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2005201994A
Inventor
Mark Doneddu
David James Alexander Roberts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITW AFC Pty Ltd
Original Assignee
ITW AFC Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPO5029A external-priority patent/AUPO502997A0/en
Application filed by ITW AFC Pty Ltd filed Critical ITW AFC Pty Ltd
Priority to AU2005201994A priority Critical patent/AU2005201994A1/en
Publication of AU2005201994A1 publication Critical patent/AU2005201994A1/en
Priority to AU2009201262A priority patent/AU2009201262B2/en
Abandoned legal-status Critical Current

Links

Description

AUSTRALIA
PATENTS ACT 1990 DIVISIONAL APPLICATION NAME OF APPLICANT: ITW AFC Pty Ltd ADDRESS FOR SERVICE: DAVIES COLLISON CAVE Patent Attorneys 1 Nicholson Street Melbourne, Victoria 3000.
INVENTION TITLE: "SCREW THREADED FASTENER AND FASTENING SYSTEM" The following statement is a full description of this invention, including the best method of performing it known to us: SCREW THREADED FASTENER AND FASTENING SYSTEM Technical Field This invention relates to the fastening of material to thin metal structures. It will be convenient to hereinafter describe the invention with particular reference to the fixing of roofing or cladding material to battens of thin material section, but the invention has wider application. The invention is concerned with fastening systems of the foregoing kind and is also concerned with a fastening screw for use in such a system.
In the context of this specification the expression "thin metal" is to be understood as referring to metal having a thickness not significantly greater than one millimetre, and more generally in the range 0.4 to 0.8 mm..
Background It is common practice to secure metal roofing material to thin metal battens by means of self-tapping threaded fasteners of the kind having a drilling tip. Selection of such a fastener from the available range of such fasteners is largely determined by the speed with which the fastening operation can be achieved, but the security or strength of the fastened assembly may be compromised in the process. Fastenings of the aforementioned kind have been found to fail particularly in situations involving relatively high wind loading.
It has been discovered that such failures are due at least in part to the distorting effect of the thread form of conventional fasteners on the thin metal battens.
Summary Of The Invention It is an object of the present invention to provide a screw threaded fastener having a modified thread form which enables relatively rapid fastening PAOPER\RSH\ 1260891 O-div.do- OAS)A)s -3of one member to another and which provides a secure fastening between those members. It is a further object of the invention to provide a fastening system which is highly resistant to failure.
According to a first aspect of the invention there is provided a screw threaded fastener for driving into thin metal, including an elongate shank having a longitudinal axis, a drilling tip at one end of the shank and a head at the opposite end, and a screw thread extending over a part of the length of the shank, wherein the screw head includes a leading flank having an angular disposition relative to the longitudinal axis whereby it slopes outwardly relative to the longitudinal axis in a direction away from the drilling tip and a trailing flank directed outwardly relative to the longitudinal axis at a different angular disposition to that of the leading flank, wherein the angular disposition of the trailing flank is closer to 900 than is the angular disposition of the leading flank, and the shank includes a drilling portion which terminates at the drilling tip, wherein the drilling portion has two flutes formed therein on diametrically opposite sides of the longitudinal axis, each flute extends from the drilling tip generally in the direction of the longitudinal axis, and the screw thread is tapered over a plurality of turns forming a part of its length whereby a crest diameter of the screw thread progressively increases from a minimum in the vicinity of the drilling portion to a maximum value towards the head of the fastener.
A screw threaded fastener according to the invention is characterised in that the angle subtended between the longitudinal axis of the screw and the trailing flank of the screw thread is greater than the corresponding angle subtended between said longitudinal axis and the leading flank of the screw thread and wherein the trailing flank angle is closer to 900 than is the leading flank angle.
This angular disposition of the trailing flank relative to the leading flank of the screw thread, in use of the fastener, reduces the angle between the trailing flank and the adjacent thin metal section of a batten surrounding the fastener. This has P \OPER\RS ,2435430-2spa dom.1310,1O4 -4a lesser distorting effect on the thin metal batten under pull-out loads on the fastener to that produced by the screw thread of a conventional fastener wherein the leading and trailing flanks slope at substantially the same angle relative to the longitudinal axis of the fastener.
In an example arrangement according to the invention the trailing flank angle is substantially 830 as compared with substantially 600 for the leading flank angle. In each case the angle is the inner subtended angle of the relevant flank so that in the example referred to the angle subtended between the two flanks is substantially 370 It will be appreciated from the foregoing that in the example referred to the trailing flank slopes outwardly from the fastener axis in a direction towards the tip of the fastener shank.
The maximum cross sectional dimension of the drilling portion, which portion may be substantially cylindrical, may be selected to suit requirements, but it is preferably substantially equal to the root diameter of the thread of the fastener.
In some circumstances the aforementioned dimension could be less than the root diameter.
According to a second aspect of the invention there is provided a fastening system including, at least one thin metal batten having a support wall, a sheet of roofing or cladding material, and at least one screw threaded fastener as described above, wherein said fastener extends through said sheet and its screw thread is threadably engaged in the support wall of the batten thereby to attach the sheet to the batten, wherein the trailing flank of the thread extends outwardly approximately parallel to an adjacent surface of the support wall of the batten surrounding the fastener, whereby said trailing flank subtends an angle relative to said adjacent surface of no more than about 100.
It will be convenient to hereinafter describe the invention with particular reference to the accompanying drawings which show an example embodiment of the invention. The particularity of those drawings and related description is not to be understood as superseding the preceding broad description of the invention.
Brief Description Of The Drawings Figure 1 illustrates a typical prior art fastening system.
Figure 2 is an end view of two overlapped thin metal battens for explaining a problem which particular example fasteners according to the invention can overcome.
Figure 3 diagrammatically illustrates the distortion in a thin metal batten of a failed assembly of a prior art fastener in the batten.
Figure 4 is a partial sectional view of a prior art fastener thread form in a thin metal batten.
Figure 5 is a similar view to Figure 4 illustrating how the prior art threadform can cause the distortion that leads to failure under high pull-out loads.
Figure 6 is a partial sectional view of an example fastener according to the invention in a thin metal batten.
Figure 7 is an elevational cross sectional view of an example thread form according to the invention.
Figure 8 shows an example fastener according to the invention, and Figure 9 is a plan view from the drilling tip end of an example fastener according to the invention.
Detailed Description of Preferred Embodiments Including Best Mode Figure 1 illustrates a typical fastening system in which a sheet 1 of roofing material is secured to a thin metal batten 2 by means of a conventional self-tapping screw threaded fastener 3 having a drilling tip 4. The batten 2 is of a typical construction having a body of inverted channel configuration comprising a top wall 5 and a pair of spaced side walls 6. A laterally extending flange 7 is provided along the lower edge of each side wall 6 and, as shown, it is usual to turn back the outer edge 8 of the flange 7 for strengthening purposes. As is well known, sheets of roofing material are generally corrugated or otherwise formed to have alternating ribs and valleys of various shapes. The roofing sheet 1 shown in Figure 1 is of that construction and as shown the fastener 3 passes through the upper wall 9 of a rib 10 whereas the lower wall 11 of a valley bears against the batten top (support) wall Battens 2 are generally supplied in standard lengths and it will occur that two or more battens are required to span a required distance. In such cases it is usual practice to overlap adjacent ends of two battens 2 as shown diagrammatically by Figure 2. As will be apparent from Figure 2 the double thickness of the flanges 7 prevents the top wall 5 of the upper most batten 2 engaging the top wall 5 of the lowermost batten 2, and a gap G is thereby formed between the walls 5. The gap G can create a problem when a fastener 3 is being driven into the battens 2 at the region of the overlap. It will sometimes happen that the fastener 3 enters into threaded engagement with the uppermost wall 5 before the tip 4 penetrates into or through the lowermost wall 5, and in that event the uppermost wall 5 will be forced upwards relative to the lowermost wall 5 thereby increasing the size of the gap G and adversely affecting the appearance of the roof construction.
Quite separate from the foregoing problem however, there is a problem of inadequate pull-out resistance in conventional assemblies of the general kind shown by Figure 1, and that problem exists both outside and inside overlaps as referred to above.
Inspection of failed assemblies has revealed a condition of the kind diagrammatically illustrated by Figure 3. That figure shows part of the top or support wall 5 of a batten 2 and the hole 12 which is formed through the wall by the drilling tip 4 of a fastener 3. The hole 12 is formed so as to have a diameter which is related to the thread of the fastener 3, and is typically of substantially the same diameter at either the root diameter or the pitch diameter of the fastener thread.
As shown by Figure 3 the section 13 of the wall 5 which surrounds the hole 12 tends to lift and fracture at a number of zones 14 with the result that the fastener 3 no longer secures the roofing material 1 to the batten 2.
Experiments have revealed that such failure of the fastening is due, at least in part, to the thread form used with conventional fasteners 3. An example of that thread form is shown by Figures 4 and 5, and it is a characteristic of that thread form that the leading and trailing flanks 15 and 16 respectively of the thread slope at substantially the same angle relative to the fastener axis 17.
When an upward pull is applied to the fastener 3, for example as a result of high wind loading, the trailing flank 16 presses against the under surface 18 of the wall 5 and that is thought to be the cause of the upward distortion of the wall section 13. Tests have indicated that such upward distortion promotes the fracture at the zones 14 as shown by Figure 3, and also indicate that the relatively large angle A subtended between the thread flank 16 and the wall surface 18 is a major cause of the problem. It is generally the case that the angle A is approximately 300 It is against the foregoing background that the thread forms shown by Figures 6 to 8 have been developed. For convenience of comparison parts of a fastener 103 shown by Figures 6 to 9 which correspond to parts of the conventional fastener 3 will be given like reference numerals except that those numerals will be in the number series 100 to 199.
A significant feature of the thread forms shown by Figures 6 to 8 is the relatively "flat" (approximately 900) disposition of the trailing flank 116 by comparison with the leading flank 115. In the particular example shown in Figure 7 the angle B subtended between the trailing flank 116 and the fastener axis 117 is approximately 830, whereas the corresponding angle C subtended by the leading flank 115 is approximately 600. That particular thread form is suited to manufacture by means of a thread rolling technique, and other different but nevertheless satisfactory thread forms could be produced by use of other techniques, such as thread cutting. Regardless of how the thread is formed it is preferred that the angle B is closer to 900 than is the angle C, and in some circumstances angle B could be 900 In general however, it is preferred that angle B is in the range 800 to 900 so as to minimise angle A as shown by Figure 4.
Tests conducted with fasteners having the thread form of Figure 7 reveal a substantial improvement over fasteners having a conventional thread form, such as the thread form 'shown by Figures 4 and 5. Resistance to pullout under a static load is 30% greater than that of conventional fasteners, and the improvement is as high as 200% in the case of a cyclic load intended to simulate strong or cyclonic wind conditions.
It is preferred that the drilling portion 104 of the fastener 103 is of the kind having a substantially cylindrical cross sectional shape and having two diametrically opposed flutes 119, each of which extends generally in the axial direction of the fastener 103. The terminal end of the tip 104 may be formed by two sloping end faces 120 and a substantially straight cutting edge 121 is formed at the junction between each face 120 and a respective one of the flutes 119. Drill tips of that general configuration are known.
In the particular example shown by Figure 8 the fastener 103 has an elongate shank 122 and a head 123 at the end of that shank remote from the drill tip 104. It will be appreciated that the head 123 can be of a form distinctly different to that shown by Figure 8. The shank 122 as shown is formed of three major portions, a threaded portion X, a drilling portion Y and a head portion Z, but it is to be understood that the head portion Z could be omitted so that the thread extends up to the head 123. Assuming the unthreaded head portion Z is provided it can be of any suitable length, and will usually have a diameter substantially the same as the root diameter 124 of the thread (see Figure 7).
As shown, that the threaded portion X is tapered over part of its length adjacent the drilling portion Y. That is, the thread crest diameter in the section marked in Figure 8 and having a plurality of tumrns progressively increases from a minimum adjacent the drilling portion Y to a maximum remote from the drilling portion Y. The minimum diameter could be substantially zero thread height, and the maximum is preferably the standard crest diameter of the thread in the remainder of the shank portion X. Such a tapered arrangement promotes proper co-action between the threaded portion X and the hole 12 formed by the drill tip 104.
It is further preferred that the drilling portion Y is relatively long so as to cope with the existence of a relatively large gap G as previously discussed with reference to Figure 2. A long drilling portion Y increases the probability that a hole will be formed through the lowermost wall 5 of overlapped battens 2 before the threaded portion X enters the hole previously formed in the uppermost wall 5 (Figure By way of example, a fastener having a thread crest diameter (standard or maximum) of approximately 6 millimetres may have a drilling portion approximately 12 millimetres in length, but other crest diameter to length relationships could be adopted.
The flutes 119 need not extend the full length of the drilling portion Y. In an example fastener according to the invention each flute 119 has a length in the range of two thirds to three quarters the length of the drilling portion Y.
It will be appreciated from the foregoing description that a fastener incorporating the features of the invention provides a major advantage over conventional fasteners of the same general kind. The significantly improved resistance to pull-out is a very important benefit, and that benefit is augmented by the fact that the particular fastener described is easy to use and enables rapid fastening of the members with which it is associated. A fastening system involving use of the fastener is accordingly a major improvement over conventional systems.
Finally, it is to be understood that various alterations, modifications and/or additions may be introduced into the constructions and arrangements of parts previously described without departing from the ambit of the invention as defined by the following claims.

Claims (17)

1. A screw threaded fastener for driving into thin metal, including an elongate shank having a longitudinal axis, a drilling tip at one end of the shank and a head at the opposite end, and a screw thread extending over a part of the length of the shank, wherein the screw head includes a leading flank having an angular disposition relative to the longitudinal axis whereby it slopes outwardly relative to the longitudinal axis in a direction away from the drilling tip and a trailing flank directed outwardly relative to the longitudinal axis at a different angular disposition to that of the leading flank, wherein the angular disposition of the trailing flank is closer to 900 than is the angular disposition of the leading flank, and the shank includes a drilling portion which terminates at the drilling tip, wherein the drilling portion has two flutes formed therein on diametrically opposite sides of the longitudinal axis, each flute extends from the drilling tip generally in the direction of the longitudinal axis, and the screw thread is tapered over a plurality of turns forming a part of its length whereby a crest diameter of the screw thread progressively increases from a minimum in the vicinity of the drilling portion to a maximum value towards the head of the fastener.
2. A screw threaded fastener as claimed in claim 1 wherein the angular disposition of the trailing flank relative to the longitudinal axis is an angle in the range 800 to 900.
3. A screw threaded fastener as claimed in claim 2 wherein the angular disposition of the trailing flank relative to the longitudinal axis is an angle in the range 830 to 900.
4. A screw threaded fastener as claimed in claim 3 wherein the angular disposition of the trailing flank relative to the longitudinal axis is substantially 900. A screw threaded fastener as claimed in claim 3 wherein the angular P:\OPER\RSHI 2608910div.ddoc- 105/O0)5 11 disposition of the trailing flank relative to the longitudinal axis is substantially 830 and the angular disposition of the leading flank relative to the longitudinal axis is substantially
6. A screw threaded fastener as claimed in any one of claims 1 to 5 wherein the drilling portion has a maximum cross sectional dimension which is substantially equal to a root diameter of the screw thread of the fastener.
7. A screw threaded fastener as claimed in any one of claims 1 to 5 wherein the drilling portion has a maximum cross sectional dimension which is less than a root diameter of the screw thread of the fastener.
8. A screw threaded fastener as claimed in any one of claims 1 to 7 wherein the drilling portion is substantially cylindrical.
9. A screw threaded fastener as claimed in any one of claims 1 to 8 wherein the minimum crest diameter in the vicinity of the drilling portion is of substantially zero thread height.
10. A screw threaded fastener as claimed in any one of claims 1 to 9 wherein the drilling portion has a length which is substantially twice the crest diameter of the thread.
11. A screw threaded fastener as claimed in any one of claims 1 to 10 wherein the drilling portion has a length of approximately 12mm such that the drilling portion has a length greater than a gap formed between two overlapping thin metal battens of identical cross section with a base wall and opposed side walls divergent from the base wall. P:\OPER\RSH 126891O-div.doc. 1/05/O05
12- 12. A screw threaded fastener as claimed in any one of claims 1 to 11 wherein the flutes in the drilling portion have a length which is in the range of two thirds to three quarters of the length of the drilling portion.
13. A fastening system including at least one thin metal batten having a support wall, a sheet of roofing or cladding material, and at least one screw threaded fastener according to any one of claims 1 to 10, wherein said fastener extends through said sheet and its screw thread is threadably engaged in the support wall of the batten thereby to attach the sheet to the batten, wherein the trailing flank of the thread extends outwardly approximately parallel to an adjacent surface of the support wall of the batten surrounding the fastener, whereby said trailing flank subtends an angle relative to said adjacent surface of no more than about 100.
14. A fastening system as claimed in claim 13 wherein said subtended angle is substantially 70 A fastening system as claimed in claim 13 wherein said subtended angle is between 00 and 70
16. A fastening system as claimed in claim 13 which includes a second thin metal batten having an end which overlaps an end of said at least one batten whereby a gap exists between corresponding support walls of the overlapped battens, wherein said screw threaded fastener is threadably engaged in each said support wall of the overlapped battens and the drilling portion has a length which is greater than said gap.
17. A screw threaded fastener as claimed in any one of claims 1 to 12 when used to secure sheet material to a thin metal batten with the fastener being driven into a wall of the batten. P OPER\RS1H,243S430.21p doc.14/05/04 13-
18. A method of fixing sheet material to a thin metal batten comprising driving screw threaded fasteners as claimed in any one of claims 1 to 10 through the sheet material and into a support wall of the thin metal batten such that the drilling portion forms a hole in the support wall and the screw thread then threadedly engages therein, wherein the threaded engagement with the support wall of the batten provides resistance to pull-out when the sheet material is exposed to cyclonic wind conditions.
19. A screw threaded fastener substantially as hereinbefore described with reference to figures 6 to 9. A fastening system substantially as hereinbefore described with reference to figures 6 to 9. DATED this 1 0 t h day of May 2005 ITW AFC Pty Ltd by their Patent Attorneys DAVIES COLLISON CAVE
AU2005201994A 1997-02-11 2005-05-10 Screw threaded fastener and fastening system Abandoned AU2005201994A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2005201994A AU2005201994A1 (en) 1997-02-11 2005-05-10 Screw threaded fastener and fastening system
AU2009201262A AU2009201262B2 (en) 1997-02-11 2009-03-31 Screw threaded fastener and fastening system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPO5029 1997-02-11
AUPO5029A AUPO502997A0 (en) 1997-02-11 1997-02-11 Fastening screw and fastening system
AU53013/98A AU729658C (en) 1997-02-11 1998-02-09 Screw threaded fastener and fastening system
AU2005201994A AU2005201994A1 (en) 1997-02-11 2005-05-10 Screw threaded fastener and fastening system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU53013/98A Division AU729658C (en) 1997-02-11 1998-02-09 Screw threaded fastener and fastening system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2009201262A Division AU2009201262B2 (en) 1997-02-11 2009-03-31 Screw threaded fastener and fastening system

Publications (1)

Publication Number Publication Date
AU2005201994A1 true AU2005201994A1 (en) 2005-06-02

Family

ID=25629947

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005201994A Abandoned AU2005201994A1 (en) 1997-02-11 2005-05-10 Screw threaded fastener and fastening system

Country Status (1)

Country Link
AU (1) AU2005201994A1 (en)

Similar Documents

Publication Publication Date Title
AU2009201262B2 (en) Screw threaded fastener and fastening system
AU2017248574B2 (en) Weldless building structures
US4621963A (en) Fastener for roof assemblies and the like
CA1283566C (en) Self drilling threaded insert for drywall
US8419332B2 (en) Non-dimpling fastener
US5375957A (en) Impact drivable fastener
US5816012A (en) Dual threaded fastener and metal component assembly
US5947670A (en) Self-drilling fastener
EP0129404B1 (en) Fixings including screws and clamp plates
US4778319A (en) Self-tapping screw
US9004835B2 (en) Weldless building structures
WO2006043169A1 (en) Screw and fastening system for profiled sheeting
AU2005201994A1 (en) Screw threaded fastener and fastening system
AU2005333514B8 (en) Pin fastener for achieving metal-to-metal connections
US20230265877A1 (en) Screw having a milling section embedded in the thread
WO2015035374A1 (en) Weldless building structures
US20220145922A1 (en) Self-drilling, anti-burr, threaded fastener
AU680319B2 (en) Fastener retention
GB2064698A (en) Punching or riveting screw fastener
AU2023204189A1 (en) A screw

Legal Events

Date Code Title Description
MK5 Application lapsed section 142(2)(e) - patent request and compl. specification not accepted