AU2005201838A1 - A pagewidth printhead assembly - Google Patents

A pagewidth printhead assembly Download PDF

Info

Publication number
AU2005201838A1
AU2005201838A1 AU2005201838A AU2005201838A AU2005201838A1 AU 2005201838 A1 AU2005201838 A1 AU 2005201838A1 AU 2005201838 A AU2005201838 A AU 2005201838A AU 2005201838 A AU2005201838 A AU 2005201838A AU 2005201838 A1 AU2005201838 A1 AU 2005201838A1
Authority
AU
Australia
Prior art keywords
printhead
assembly according
printhead assembly
core
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2005201838A
Other versions
AU2005201838B2 (en
Inventor
Kia Silverbrook
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Silverbrook Research Pty Ltd
Original Assignee
Silverbrook Research Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/AU2001/001515 external-priority patent/WO2002049845A1/en
Application filed by Silverbrook Research Pty Ltd filed Critical Silverbrook Research Pty Ltd
Publication of AU2005201838A1 publication Critical patent/AU2005201838A1/en
Application granted granted Critical
Publication of AU2005201838B2 publication Critical patent/AU2005201838B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

Q A PAGEWIDTH PRINTHEAD ASSEMBLY Field of the Invention The present invention relates to printers, and in particular to digital inkjet printers.
00 cn Co-Pending Applications oo Various methods, systems and apparatus relating to the present invention are C1 disclosed in the following co-pending applications filed by the applicant or assignee of the Spresent invention on 24 May 2000: S 10 PCT/AU00/00578 PCT/AU00/00579 PCT/AU00/00581 PCT/AU00/00580 PCT/AU00/00582 PCT/AU00/00587 PCT/AU00/00588 PCT/AU00/00589 PCT/AU00/00583 PCT/AU00/00593 PCT/AU00/00590 PCT/AU00/00591 PCT/AU00/00592 PCT/AU00/00584 PCT/AU00/00585 PCT/AU00/00586 PCT/AU00/00594 PCT/AU00/00595 PCT/AU00/00596 PCT/AU00/00597 PCT/AU00/00598 PCT/AU00/00516 PCT/AU00/00517 PCT/AU00/00511 Various methods, systems and apparatus relating to the present invention are disclosed in the following co-pending application, PCT/AU00/01445 filed by the applicant or assignee of the present invention on 27 November 2000. The disclosures of these copending applications are incorporated herein by cross-reference. Also incorporated by cross-reference, is the disclosure of a co-filed PCT application, PCT/AU01/00238 (deriving priority from Australian Provisional Patent Application No. PQ6059).
Background of the Invention Recently, inkjet printers have been developed which use printheads manufactured by micro-electro mechanical system(s) (MEMS) techniques. Such printheads have arrays of microscopic ink ejector nozzles formed in a silicon chip using MEMS manufacturing techniques.
Printheads of this type are well suited for use in pagewidth printers. Pagewidth printers have stationary printheads that extend the width of the page to increase printing speeds. Pagewidth printheads do not traverse back and forth across the page like conventional inkjet printheads, which allows the paper to be fed past the printhead more quickly.
ZG148-AU I I QTo reduce production and operating costs, the printheads are made up of separate
(N
>printhead modules mounted adjacent each other on a support beam in the printer. To ensure Sthat there are no gaps or overlaps in the printing produced by adjacent printhead modules it is necessary to accurately align the modules after they have been mounted to the support beam. Once aligned, the printing from each module precisely abuts the printing from 00 adjacent modules.
00 Unfortunately, the alignment of the printhead modules at ambient temperature will change when the support beam expands as it heats up during printhead operation.
Furthermore, if the printhead modules are accurately aligned when the support beam is at N, 10 the equilibrium operating temperature, there may be unacceptable misalignments in any printing before the beam has reached the operating temperature. Even if the printhead is not modularized, thereby making the alignment problem irrelevant, the support beam and printhead may bow because of different thermal expansion characteristics. Bowing across the lateral dimension of the support beam does little to affect the operation of the printhead.
However, as the length of the beam is its major dimension, longitudinal bowing is more significant and can affect print quality.
Summary of the Invention Accordingly, the present invention provides a printhead assembly for a digital inkjet printer, the printhead assembly including: a support member for attachment to the printer; a printhead adapted for mounting to the support member; the support member having an outer shell and a core element defining at least one ink reservoir such that the effective coefficient of thermal expansion of the support member is substantially equal to the coefficient of thermal expansion of the printhead.
Preferably, the outer shell is formed from at least two different metals laminated together and the printhead includes a silicon MEMS chip. In a further preferred form, the support member is a beam and the core element is a plastic extrusion defining four separate ink reservoirs. In a particularly preferred form, the metallic outer shell has an odd number of longitudinally extending layers of at least two different metals, wherein layers of the same metal are symmetrically disposed about the central layer.
ZG148-AU
I
-3- It will be appreciated that by laminating layers of uniform thickness of the same material on opposite sides of the central layer, and at equal distances therefrom, there is no tendency for the shell to bow because of a dominating effect from any of the layers.
However, if desired, bowing can also be eliminated by careful design of the shells cross section and variation of the individual layer thicknesses.
00 In some embodiments, the printhead is a plurality of printhead modules positioned 00 end to end along the beam.
c-I Brief Description of the Drawing.
c 10 A preferred embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawing in which: Figure 1 is a schematic cross section of a printhead assembly according to the present invention.
Detailed Description of the Preferred Embodiments.
Referring to the figure, the printhead assembly 1 includes a printhead 2 mounted to a support member 3. The support member 3 has an outer shell 4 and a core element defining four separate ink reservoirs 6, 7, 8 and 9. The outer shell 4 is a hot rolled trilayer laminate of two different metals. The first metal layer 10 is sandwiched between layers of the second metal 11. The metals forming the trilayer shell are selected such that the effective coefficient of thermal expansion of the shell as a whole is substantially equal to that of silicon even though the coefficients of the core and the individual metals may significantly differ from that of silicon. Provided that the core or one of the metals has a coefficient of thermal expansion greater than that of silicon, and another has a coefficient less than that of silicon, the effective coefficient can be made to match that of silicon by using different layer thicknesses in the laminate.
Typically, the outer layers 11 are made of invar which has a coefficient of thermal expansion of 1.3 x 106 The coefficient of thermal expansion of silicon is about 2.5 x 6 m/°C and therefore the central layer must have a coefficient greater than this to give the support beam an overall effective coefficient substantially the same as silicon.
ZG148-AU I I -4- The printhead 2 includes a micro moulding 12 that is bonded to the core element A silicon printhead chip 13 constructed using MEMS techniques provides the ink nozzles, chambers and actuators.
As the effective coefficient of thermal expansion of the support beam is substantially equal to that of the silicon printhead chip, the distortions in the printhead 00 assembly will be minimized as it heats up to operational temperature. Accordingly, if the 00 assembly includes a plurality of aligned printhead modules, the alignment between modules will not change significantly. Furthermore, as the laminated structure of the outer shell is symmetrical in the sense that different metals are symmetrically disposed around a central N 10 layer, there is no tendency of the shell to bow because of greater expansion or contraction of any one metal in the laminar structure. Of course, a non-symmetrical laminar structure could also be prevented from bowing by careful design of the lateral cross section of the shell.
The invention has been described herein by way of example only. Skilled workers in this field will readily recognise that the invention may be embodied in many other forms.
ZG1 48-AU

Claims (11)

1. A pagewidth printhead assembly for a printer, the printer having a page width, the assembly comprising: a longitudinal core; a pagewidth printhead mounted to the core; 00 the pagewidth printhead comprising two or more modular printheads; 00 the pagewidth printhead being stationary relative to the page width; Sthe core being contained within an outer laminated shell, the shell having an effective coefficient of thermal expansion substantially equal to that of the cI 10 printhead.
2. A printhead assembly according to claim 1, wherein: the core has formed in it one or more ink reservoirs.
3. A printhead assembly according to claim 1, wherein: the laminate of the outer shell is formed from at least three metals laminated together, the laminate having inner and outer layers which are of the same metal.
4. A printhead assembly according to claim 1, wherein: the printhead is fabricated from silicon.
A printhead assembly according to claim 4, wherein: the printhead is constructed using micro electromechanical techniques.
6. A printhead assembly according to claim 1, wherein: the core is an extrusion defining separate ink reservoirs.
7. A printhead assembly according to claim 1, wherein: the outer shell is a laminated structure having an odd number of longitudinally extending layers of at least two different metals wherein layers are arranged in a symmetrical arrangement.
ZG148-AU I S8. A printhead assembly according to claim 1, wherein: the modular printheads are positioned end to end along the core.
9. A printhead assembly according to claim 1, wherein: 00 the laminated shell comprises two or more different materials, each having a 00 different coefficient of thermal expansion.
A printhead assembly according to claim 6, wherein: N 10 the extrusion comprises adjacent reservoirs which collectively lead to one or more micro mouldings which are carried by the core.
11. A printhead assembly according to claim 9, wherein: the laminated shell comprises outer layers of invar. ZG148-AU
AU2005201838A 2000-03-06 2005-05-02 A pagewidth printhead assembly Ceased AU2005201838B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPQ6058 2000-03-06
PCT/AU2001/001515 WO2002049845A1 (en) 2000-12-21 2001-11-22 Array of abutting print chips in a pagewidth printhead

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU2001237148A Division AU2001237148B2 (en) 2000-03-06 2001-03-06 Thermal expansion compensation for printhead assemblies

Publications (2)

Publication Number Publication Date
AU2005201838A1 true AU2005201838A1 (en) 2005-05-19
AU2005201838B2 AU2005201838B2 (en) 2008-03-06

Family

ID=34578078

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2005201838A Ceased AU2005201838B2 (en) 2000-03-06 2005-05-02 A pagewidth printhead assembly

Country Status (1)

Country Link
AU (1) AU2005201838B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160945A (en) * 1991-05-10 1992-11-03 Xerox Corporation Pagewidth thermal ink jet printhead
JPH11179952A (en) * 1997-12-22 1999-07-06 Minolta Co Ltd Tandem type direct printing apparatus
AUPQ605800A0 (en) * 2000-03-06 2000-03-30 Silverbrook Research Pty Ltd Printehead assembly

Also Published As

Publication number Publication date
AU2005201838B2 (en) 2008-03-06

Similar Documents

Publication Publication Date Title
US7284824B2 (en) Printhead assembly with support member for pagewidth printhead
AU2005201838B2 (en) A pagewidth printhead assembly
AU2001237148B2 (en) Thermal expansion compensation for printhead assemblies

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired