AU2004321145A1 - Corner canvas and take-up shaft therefor, and corner awning device - Google Patents

Corner canvas and take-up shaft therefor, and corner awning device Download PDF

Info

Publication number
AU2004321145A1
AU2004321145A1 AU2004321145A AU2004321145A AU2004321145A1 AU 2004321145 A1 AU2004321145 A1 AU 2004321145A1 AU 2004321145 A AU2004321145 A AU 2004321145A AU 2004321145 A AU2004321145 A AU 2004321145A AU 2004321145 A1 AU2004321145 A1 AU 2004321145A1
Authority
AU
Australia
Prior art keywords
canvas
corner
shaft
take
outer roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2004321145A
Other versions
AU2004321145B2 (en
Inventor
Osamu Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of AU2004321145A1 publication Critical patent/AU2004321145A1/en
Application granted granted Critical
Publication of AU2004321145B2 publication Critical patent/AU2004321145B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0611Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with articulated arms supporting the movable end of the blind for deployment of the blind
    • E04F10/0618Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with articulated arms supporting the movable end of the blind for deployment of the blind whereby the pivot axis of the articulation is perpendicular to the roller
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0692Front bars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0603Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with telescopic arms
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0644Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with mechanisms for unrolling or balancing the blind
    • E04F10/0648Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building with mechanisms for unrolling or balancing the blind acting on the roller tube
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0685Covers or housings for the rolled-up blind
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F10/00Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins
    • E04F10/02Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins
    • E04F10/06Sunshades, e.g. Florentine blinds or jalousies; Outside screens; Awnings or baldachins of flexible canopy materials, e.g. canvas ; Baldachins comprising a roller-blind with means for holding the end away from a building
    • E04F10/0692Front bars
    • E04F10/0696Front bars with means to attach an auxiliary screen

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Awnings And Sunshades (AREA)
  • Tents Or Canopies (AREA)
  • Soil Working Implements (AREA)

Description

IN THE MATTER OF an Australian Application corresponding to PCT Application PCT/JP2004/009751 I, Tomokazu ADACHI, c/o Hiroe and Associates of 4-3, Usa 3-Chome, Gifu-City, 500-8368 JAPAN, hereby solemly and sincerely declares: that I am competent in the art and conversant with the English and Japanese languages; and that to the best of my knowledge and belief, the following document is a true and correct translation of the PCT application filed under No. PCT/JP20041009751. Date: January 4, 2007 Tomokazu ADACHI CORNER CANVAS AND TAKE-UP SHAFT THEREFORE, AND CORNER AWNING DEVICE FIELD OF THE INVENTION This invention relates to a corner canvas, a take-up shaft therefore, and a corner awning device, which are used for attractively covering corners of various buildings or framework structures. BACKGROUND OF THE INVENTION Conventionally, movable awning devices are configured with a combination of: a canvas take-up device, which winds or unwinds a canvas that generally extends forward at an angle from a wall, on or from a canvas take-up shaft that is supported by an outer wall of a building, by means of a manual lever or electric motor, etc., and a canvas tension device, which connects bi-foldable swing arms and the like with a front bar fixed at the front edge of the canvas (for example, see the following patents 1-11, and publications 1 and 2). Many of them are used for sun-shielding or rain-shielding at terraces or along the perimeters of shops, or for ornamental purposes for buildings or shops, and various technical improvements and modifications have been made for such devices. When the awning device is laid out along the perimeter of a building for an orthogonal corner shape as shown in Fig. 15 (A), a chamfered one as shown in Fig. 15 (B), at an obtuse angle as shown in Fig. 15 (C), and at an acute angle as illustrated in Fig. 15 (D), rectangular canvases (P) of various lengths are used around the perimeter that is orthogonal to either front wall WI, side wall W2, or oblique wall W3. List of Publication Information of Prior Art 1. JP Patent Publication No. S54-31768 2. JP Patent Publication No. S62-19774 3. JP Patent Publication No. S63-32250 4. JP Patent Publication No. H4-1220 5. JP Patent Publication No. H6-36156 6. JP Patent Publication No. H7-51545 7. JP Patent No. 2,937,748 8. JP Patent No. 3,129,680 1/75 9. JP Patent Laid-Open No. H11-270089 10. JP Patent Laid-Open No. 2000-120242 11. JP Patent Laid-Open No. 2001-123620 12. Japan awning association, "Awning sales manual", Pages 9-11, issued in January 2004. 13. "Technical Manual" (Awnings made in France) [online], Kabushiki-Kaisha Miyahan, "Searched on June 28, 2002 and June 9, 2004", Internet <URL:http://www.miyahan.co.jp/tecnicalm/index.html> DISCLOSURE OF THE INVENTION Problem I to be solved by the invention Conventional awning devices cannot effectively cover a corner space along the perimeter of the building, for example, a rectangular space ZI shown in Fig. 15 (A), an acute-angled space Z2 shown Figs. 15 (B) and (C), and an obtuse-angled space shown in Fig. 15 (D). The corner spaces Zl-Z3 shown in Figs. 15(A)-(C) can be covered if a canvas take-up shaft is installed at the corner of the front wall WI, and another canvas take-up shaft is installed by overlapping beneath or above the first take-up shaft, with the end of the take-up shaft projecting forward from the corner of the side wall 2 or oblique wall W3. However, using such a cheap technique, the decorativeness and appearance of the comer spaces of the perimeter of the building will be impaired. Particularly, corners of various buildings are, in many cases, faced with roads in two directions, at an intersection, and are thus located in a place seen by many in general public and may be used favorably (such as effective advertising) in a business such as a shop. Where the awning devices are set up at such an outstanding place without covering the corner spaces ZI - Z3, or set up with cheap techniques, they lack technical effectiveness or usability as movable awning devices. Thus, this invention provides a corner canvas and a take-up shaft therefore, and a corner awning device, which are able to deal with the above problem and further deal with various problems expected when providing the new products. 2/75 Means to Solve Problem 1 Corner canvas and its effect First, this invention provides a corner canvas having a substantially right-angled trapezoidal shape when extended, as a basic structure. Specifically, there is provided a corner canvas GI - G4 comprised of a rectangular canvas main body RI and a right-angled triangular canvas extension R2, R3 that extends from one side of said canvas main body. In other words, the comer canvas G I -G4 is a corner canvas having: a canvas top side 1, 1A and a canvas bottom side 2, 2A formed in parallel; a canvas oblique side 3, 5, 5A extending towards said canvas bottom side 2, 2A; and a canvas vertical side 4 formed substantially perpendicular to said canvas bottom side 2, 2A. As shown in Figs. 16 (A) - (D), two of the corner canvases G 1 -G4 are extended at one side and the other side of the corner of outer walls WI - W3 in side-to-side orthogonal relation as shown Fig. 16 (A), or they are extended in a layout as shown in Fig. 16 (B). In addition, when a corner of the building forms an obtuse angle or an acute angle, they are extended at an obtuse angle or an acute angle as shown Figs. 16 (C) and (D). As a result, the corner canvases GI - G4 are able to effectively and attractively cover corner spaces ZI - Z3 of the perimeter of the building. Further they are able to be marketed independently as a compatible corner canvas. In addition, corner canvases G2 - G4 as described in the following sections (al) - (a3) according to this invention, are provided as modified embodiments to improve the appearance by reducing a gap between the oblique sides of two canvases G2 - G4 when facing each other at the corner spaces ZI - Z3. (al) A corner canvas, wherein a canvas vertical side 6 extends vertically from one end of said canvas bottom side 2, and an elastic member 10 is attached proximate to the intersection point of said canvas vertical side 6 and said canvas oblique side 5. (a2) A corner canvas wherein a canvas oblique side 8 extends obliquely upward from one end of said canvas bottom side 2, and an elastic member 10 is attached proximate to the intersection point of said canvas oblique side 8 and a canvas oblique side 5. (a3) A comer canvas, wherein: a canvas top side IA and a canvas bottom side 2A are formed in parallel; a canvas oblique side 5A is extended out from said canvas bottom side 2A; a downward folding line 9 is formed from one end of a canvas top side 3/75 1 A to one end of said canvas bottom 2A; a canvas vertical side 4 is formed substantially vertical; a canvas oblique side 8A is formed obliquely upward from one end of said canvas bottom side 2A; an elastic member 10 is attached proximate to the intersection point of said canvas oblique side 8A and said canvas oblique side 5A. As such, the corner spaces ZI - Z3 of the perimeters of the buildings are covered attractively and effectively by installing two corner awning devices with said corner canvases G2 - G4 at the corner of front wall W 1, side wall W2 or oblique wall W3, and extending them, as shown in Figs. 20 (A)-(C) and (AA)-(CC). Further, as a means of preventing adhesive winding of the canvas extension RI, R2 of the corner canvas GI - G4, dependent inventions described in the following sections (bl) - (b3) are provided. (bl) A corner canvas, wherein edge cloths 86 are fixed in the peripheral area of said canvas oblique side 3, 5, 5A, the thickness of said edge cloths increasing continuously or step-by-step toward said canvas bottom sides 2, 2A from said canvas top side 1, IA. (b2) A corner canvas, wherein a sheet magnet 95 is fixed in the peripheral area of said canvas oblique side 3, 5, 5A. (b3) A corner canvas, wherein ribs 89 are incorporated therein a lengthwise, parallel arrangement extending from said canvas main body RI to said canvas extension R2, R3. Further, as a means of preventing in-plane deformation such as expansion and contraction or distortion of the corner canvas G1-G4 when wound, dependent inventions are provided as described in the following sections (cI) and (c2). (cl) A corner canvas, wherein cross passages 32 and 33 are formed on diagonal lines connecting four corners of said canvas main body RI, said cross passages 32 and 33 receiving tension members such as connection wires 34 and 35 or connection belts 87 and 88. (c2) A corner canvas, wherein said canvas main body RI is provided with tension members, such as connection belts 87 and 88 or 87A and 88A, or said connection wires 34 and 35 in the form of a letter X or V. Problem 2 to be solved by this invention To wind the corner canvas G I -G4 of this invention on a canvas take-up shaft having a conventional structure, the conventional take-up shaft and a front bar must be 4/75 installed with some part of the take-up shaft projected out from the corner of the building. In this manner, the canvas extension R2, R3 will be wound projecting from the corner of the building toward the corner space, and thus it will not only lose the decorativeness or appearance for the corner, but also lacks technical effectiveness and advantages as an awning device. Therefore, it has been necessary to develop corner awning devices Sl - S6 comprising: a take-up device MI, M2 of the corner canvas GI - G4, which is able to extend the corner canvas GI-G4 to the corner space ZI - Z3 as shown in Figs. 16 (A)-(D), and to wind them without protruding out from the corner of the building; and a canvas tension device KI - K6, which allows the corner canvas GI - G4 to be extended and tensionally supported or to be compactly stored into a place by the wall. Means to Solve the Problem 2 Corner canvas take-up shaft (system) and its effect As such, this invention provides various corner canvas take-up shafts J I - J13 configured as a main part to wind or unwind the corner canvas GI - G4. As the principle invention of the canvas take-up shaft JI - J13, the canvas take-up shaft comprises an inner shaft 12, 12A, 12B and an outer roller 13, wherein said outer roller 13 is slidably and rotatably fitted on said inner shaft 12, 12A, 12B, wherein said outer roller 13 winds a canvas main body RI thereon, and said inner shaft 12, 12A, 12B is exposed by a set back movement of said outer roller 13 winds a canvas extension R2, R3 thereon. According to the present corner canvas take-up shaft system, the inner shaft 12, 12A, 12B is moved forward (sliding) while rotating the outer roller 13 to unwind the corner canvas when the corner canvas GI - G4 is to be unwound. Thereby, the canvas take-up shaft JI - J13 of this invention can be installed at the corner of the building without protruding from the corner, and also it can wind the corner canvas GI - G4 without protruding from the shaft length of the canvas take-up shaft J I - J 13. In addition, to embody this invention, an inner shaft slidably and rotatably fitting in and supporting the outer roller 13 is provided as either of an inner rotation shaft 12, 12A, or an inner fixed shaft 12B. Thus various dependent inventions in the case of the inner rotation shaft 12, 12A are described in the following sections (d1) - (d12). 5/75 (dl) A corner canvas take-up shaft, wherein said canvas extension R2, R3 is wound on said inner rotation shaft 12 exposed by a rearward movement of said outer roller 13, and when said corner canvas GI-G4 is to be unwound, said outer roller 13 is moved forward while rotating to unwind said corner canvas GI-G4. (d2) A corner canvas take-up shaft, wherein a canvas outlet 14 is formed open in the front of said casing 11 for storing said corner canvas G 1 -G4; and an inner rotation shaft 12, 12A is bearing supported in said end caps 15, 16 fitted into said casing 11. Thereby, the corner canvas GI - G4 is wound and stored into the casing i1. (d3) A comer canvas take-up shaft, wherein: said end caps 15 and 16 are end brackets for bearing, and said inner rotation shaft 12 is bearing supported in the end brackets. In this case, the necessity of case 11 becomes optional. (d4) A corner canvas take-up shaft, wherein a worm gear 91 is fitted to the rear end portion of the outer roller 13, and a worm rack 92 engaging the worm gear 91 is mounted on an inner wall of the casing 11, which stores the comer canvas G I - G4. In the case of comprising such a rackwork, the outerwear roller 13 is securely moved forward and rearward. Therefore, there is no need to consider the deformation or distortion of canvas main body RI at the time of winding the corner canvas GI - G4. As a result it makes the need of connecting wires 34 and 35 or connecting belts 87 and 88, 87A and 88A optional. (d5) A corner canvas take-up shaft, wherein a coil spring 77 is incorporated in said inner rotation shaft 12, 12A, said coil spring 77 accumulating or releasing the forward/rearward rotation force of an outer roller 13 as elastic energy. (d6) A corner canvas take-up shaft, wherein: a fixed shaft 79 is inserted into a coil spring 77; one end of said coil spring 77 is fixed to a spring stopping socket 78 mounted on the fore end of said fixed shaft 79 and is inserted into an inner rotation shaft 12; the other end of said fixed shaft 79 is inserted through an end cap 19; and the other end of said coil spring 77 is fixed to said end cap 19 and the other end of said fixed shaft 79 is fixed to an end cap 16 of a casing 11. Where the above coil spring 77 of (d5), (d6) is incorporated, when the canvas tension unit K6 is a driving side, the elastic energy is accumulated and released effectively when the corner canvas G I - G4 is wound on or unwound from the canvas take-up shaft J9 being a driven side. (d7) A corner canvas take-up shaft, wherein: a casing I1 for storing said corner canvas G1 - G4 bears and supports said inner rotation shaft 12A, the shaft length of 6/75 which is 1/2 - 2/3 of the length of said casing 11; and a slide bearing 58 moves forward and rearward guided by said casing 11 attached to said outer roller 13. (d8) A corner canvas take-up shaft, wherein a manually or electrically operated drive unit is incorporated in one end of said inner rotation shaft 12, 12A to integrally forward/reverse rotate said inner rotation shaft 12, 12A and said outer roller 13. (d9) A corner canvas take-up shaft, wherein an electric motor 54 is incorporated in said inner rotation shaft 12, 12A to integrally forward or reverse-rotate said inner rotation shaft 12, 12A and said outer roller 13. (d10) A corner canvas take-up shaft, wherein a motor output shaft 541 and a fixed shaft 542 are formed at both the fore and the rear end of said electric motor 54; said motor output shaft 541 fitted in a bearing socket 55 fitted into an inner rotation shaft 12, 12A; and said fixed shaft 542 is fittingly fixed to an end cap 16 of a casing 11 or bearing portion 161 of said end brackets for bearing. By means of the driving device of sections (d8) - (dM0), winding the corner canvas GI on the canvas take-up shaft J-J6, and Jl-J13 and unwinding the corner canvas G 1 from the canvas take-up shaft J 1-J6, and J 11 -J 13 are achieved smoothly. (di) A corner canvas take-up shaft, wherein guide grooves 171 and guide projections 172 are formed along the axis of said inner rotation shaft 12, 12A. (d12) A corner canvas take-up shaft, wherein: end caps 24 and 25, 24A and 25A, 24B and 25B are fitted to said outer roller 13; the internal perimeter surface of said end caps 24 and 25, 24A and 25A, 24B and 25B has guide projections 261 and guide grooves 262 slidably engaging said guide grooves 171 and said guide projections 172. By means of the structures described above in sections (d11) and (d12), the forward and reverse rotation of the inner rotation shaft 12, 12A and the outer roller 13 is achieved integrally, which makes the forward and rearward movement of the outer roller 13 smooth. In addition, as inventions made by organically combining the above configurations, the structures described in the following sections (el) and (e2) are provided. (el) A corner canvas take-up shaft, wherein: a canvas outlet 14 is formed open in the front surface of a casing 11 for storing a corner canvas GI-G4; an inner rotation shaft 12, 12A having guide grooves 171 and guide projections 172 is bearing supported in end caps 15 and 16 fitted to said casing 11; an outer roller 13 is slidingly and rotatably fitted on and supported by said inner rotation shaft 12, 12A; guide projections 261 and guide grooves 262 slidably engaging said guide grooves 171 and said guide projections 172 are formed on the internal perimeter surface of end caps 24 and 25, 24A and 25A, 24B and 25B. 7/75 (e2) A corner canvas take-up shaft, wherein: a casing II for storing said corner canvas G 1 - G4 bearing supports an inner rotation shaft 12A forming guide grooves 171 and guide projections 172 in the axis length, the shaft length of said inner rotation shaft being 1/2 - 2/3 of the length of said casing 11; end caps 24 and 25, 24A and 25A, 24B and 25B are fitted to said outer roller 13; the internal perimeter surface of said end caps 24 and 25, 24A and 25A, 24B and 25B has a guide projections 261 and a guide grooves 262 slidably engaging said guide grooves 171 and said guide projections 172; and a slide bearing 58 moving forward and rearward by guided by said casing 11 is formed at the rear end of an outer roller 13. Now, various dependent inventions with respect to the inner rotation shaft 13 are described in the following sections (fl)-(fl 0). (fl) A corner canvas take-up shaft, wherein said canvas extension R2, R3 is wound on said inner fixed shaft 12B exposed by the rearward movement of said outer roller 13, and when said corner canvas GI-G4 is unwound said outer roller 13 is moved forward while rotating to unwind said corner canvas GI-G4. (f2) A corner canvas take-up shaft, wherein a spur gear 69 is fitted to the rear end of said outer roller 13, and a rod gear 70 engaging said spur gear 69 is mounted on an internal wall surface of said casing 11. Thereby, the forward and reverse rotation of the outerwear roller 13 are securely performed. (f3) A corner canvas take-up shaft wherein an end cap 25C is fitted to the rear end of said outer roller 13; an internal thread 252 is formed on the internal perimeter surface thereof, and a rack 93 or an external thread engaging said internal thread 252 is formed on said inner fixed shaft 12B. (f4) A corner canvas take-up shaft, wherein said end cap 25C is fitted into the rear end of said outer roller 13, an engaging projection is formed on the inside of said cap, and an external thread engaging said projection is formed on the outer perimeter surface of said inner fixed shaft 12B. When the rackwork or the engagement means as in the above sections (f3) and (f4) is provided, the forward and rearward movement of the outer roller 13 is securely performed. Therefore, there is no need to consider the deformation or distortion of canvas main body RI at the time of winding the corner canvas GI - G4. As a result it makes the need of connecting wires 34 and 35 or connecting belts 87 and 88, 87A and 88A optional 8/75 (f5) A corner canvas take-up shaft, wherein a coil spring or a whorl spring is incorporated in one end of a rod gear 70 for accumulating or releasing forward/reverse rotation force of an outer roller 13 as elastic energy. Thereby, the elastic energy is effectively accumulated and released where the canvas take-up shaft J7 is on a driving side. (f6) A corner canvas take-up shaft, wherein a whorl spring 83 is incorporated at the rear end of said outer roller 13 to accumulate or release forward/reverse rotary power as elastic energy. (f) A corner canvas take-up shaft wherein said canvas outlet 14 is formed open in the front of said casing 11 for storing said corner canvas G 1 - G4, and said inner fixed shaft 12B is fixed to said end cap 15, 16, 16A fitted to said casing 11. Thereby, the corner canvas GI - G4 is stored in the casing 11. (f8) A corner canvas take-up shaft, wherein said end cap 15, 16, 16A is a fixing end bracket, and said inner fixed shaft 12B is fixed to said end bracket. Thereby, the necessity of the casing 11 becomes optional. (f9) A corner canvas take-up shaft wherein said storing case 16A serving as an end cap is mounted at the rear end of casing 11, and said storing case 16A is provided with an electric drive unit of a drive gear 68 engaging said rod gear 70, or a manually or electrically operated drive unit to forward/reverse rotate said rod gear 70. By means of the above driving device, winding the corner canvas G I - G4 on the canvas take-up shaft 17, J8 and unwinding the corner canvas GI -G4 from the canvas take-up shaft J7, J8 are easily achieved. (flO) A comer canvas take-up shaft, wherein a pipe shaft 81 is projected from said end cap 25C fitted to the rear end of said outer roller 13, a whorl spring 83 is fitted onto said pipe shaft 81, a spring inner end 831 of said spring 83 engages said pipe shaft 81, and a spring outer end 832 of said spring 83 engages a slide case 84 fitted onto said pipe shaft 81. By means of the embodiments described above in sections (f6) and (f0), when the canvas tension unit K6 is the driving side, the elastic energy is accumulated and released effectively when the corner canvas GI - G4 is wound on or unwound from the canvas take-up shaft J9 as a driven side. In addition, as inventions made by organically combining the above configurations, the embodiments described in the following sections (gl) andd (g2) are provided. (gl) A corner canvas take-up shaft wherein a canvas outlet 14 is formed open in the front of a casing I I for storing a corner canvas GI-G4, an inner fixed shaft 12B is 9/75 fixed with an end cap 15, 16, 16A fitted into said casing 11, an outer roller 13 is slidably and rotatably fitted on and supported by said inner fixed shaft 12B, a spur gear 69 is fitted to the rear end of said outer roller 13, a rod gear 70 engaging said spur gear 69 is attached on an inner wall of said casing 11 for storing said corner canvas G1 -G4, and an electric drive unit for a driving gear 68 engaging said rod gear 70 is incorporated in said storing casing 16A, or a manually operated or electrically operated drive unit is configured for forward/reverse rotating said rod gear 70. (g2) A corner canvas take-up shaft wherein said canvas outlet 14 is formed open in the front of the casing 11 for storing said corner canvas G 1-G4, said inner fixed shaft 12B is fixed to said end cap 15, 16 fitted to said casing 11, said outer roller 13 is slidably and rotatably fitted on and supported by said inner fixed shaft 12B, said pipe shaft 81 is projected from said end cap 25C fitted to the rear end of said outer roller 13, a whorl spring 83 is fitted onto a pipe shaft 81, the inner spring end 831 of said whorl spring is locked to said pipe shaft 81, and the outer spring end 832 of said whorl spring 83 is locked to a slide case 84 fitted on said pipe shaft 81. Problem 3 to be solved by the Invention When the corner canvas G1-G4 is wound on said canvas take-up shaft J1-13, the canvas is wound in layers from the canvas top side 1, 1 A toward the canvas oblique side 2, 2A with a relatively wide breadth, on the external perimeter surface of the inner shaft 12, 12A, 12B, which is exposed with the rearward movement of the outer roller 13. The state of the wound canvas has a space like "a mortar" having a moderate longitudinal section and being laid along, projecting in the axis direction as it goes toward the external perimeter surface from the surface of the inner shaft 12, 12A, 12B, or a state having a space of a moderate-trapezoidal conical cone laid along. However, in reality, the imaginary space is affected by elasticity biasing force and tensioning force, tensile force caused by the canvas winding/unwinding operation, and thus it is expected that the canvas can be wound in unequal strength because it is pushed onto and partially contacted with the external perimeter surface of the inner shaft 12, 12A, 12B, or the canvas can be wound in a tapering form because it is affected by, for example, the obliquely rearward translation movement of the front bar 36, 36A. As a result, when the canvas extension R2, R3 wound with the rearward movement of the outer roller 13 is contacted with the exposed part of the inner shaft 12, 12A, 12B and is partially tightened, it is expected that a harmful effect may occur such 10/75 as partially damaging or dirtying the canvas extension R2, R3 by hindering the axis rearward movement of the outer roller 13, or by wearing the canvas extension R2, R3 on the external perimeter surface of the exposed inner shaft 12, 12A, 12B as it is wound. Means to Solve the Problem 3 Adhesive winding prevention equipment and its effect Thus, in this invention, to deal with the technical problem expected in the reduction of practice of the above corner canvas take-up shaft J I -J 13, there is provided means for preventing said canvas extension RI and R2 from adherently winding on the surface of said inner shaft 12, 12A, 12B exposed by the rearward movement of said outer roller 13. Thereby, the smooth forward/rearward movement of the outer roller 13 is ensured, and thus the wearing of the canvas extension R2, R3 is prevented. Various kinds of dependent inventions with respect to the above are described in the following sections (hl) - (hi 1). (hl) A corner canvas take-up shaft wherein said coil spring 90 is wound around the fore end of said inner shaft 12, 12A, 12B, said coil spring 90 is exposed as extending on the outer perimeter surface of said inner shaft 12, 12A, 12B with the rearward movement of said outer roller 13, and said canvas extension R2, R3 is wound on the outer perimeter surface of said inner shaft 12, 12A, 12B. Thereby the canvas extension R2, R3 is indirectly wound on the inner shaft 12,12A, 12B. (h2) A corner canvas take-up shaft wherein said outer roller 13 is made from nonmagnetic material, a sheet magnet 94 is fixed on the outer perimeter surface of said inner shaft 12, 12A, 12B exposed by the rearward movement of said outer roller 13, and a corner canvas G I -G4 with a sheet magnet 95 is wound on the outer perimeter surface. (h3) A corner canvas take-up shaft wherein a sheet magnet is fixed on the inner perimeter surface of said outer roller 13, said sheet magnet 94 is fixed on the external perimeter surface of said inner shaft 12, 12A, 12B fitted with and supporting said outer roller 13, the corner canvas GI-G4 with a sheet magnet 95 is wound on the external perimeter surface of the inner shaft. The canvas extension R2, R3 is wound with a moderate magnetic repellant force by incorporating a magnetic structure such as the one described above in sections 11/75 (h2) and (h3). In the case of section (h3), above, the forward/rearward movement of the outer roller 13 is smoothly achieved. (h4) A corner canvas take-up shaft wherein a slide rope 50 is provided in a tensioned condition along a guide groove 171 formed along the axis of said inner rotation shaft 12 and the outer perimeter surface of the inner rotation shaft 12 is raised by said slide ropes 50. (h5) A corner canvas take-up shaft wherein said slide rope 50 are passed through said inner rotation shaft 12, and both ends of said slide rope 50 are fixed to said outer roller 13 after being drawn from said inner rotation shaft 12 and bent over. (h6) A corner canvas take-up shaft wherein a rope passage 182, 192 for drawing and bending over said slide rope 50 is formed on said end caps 18A, 19A fitted to said inner rotation shaft 12, a guide projection 273 is formed on the inner perimeter surface of said end caps 24A, 25A fitted to said outer roller 13, and a rope passing hole 263 is formed on said guide projection 273. With a slide rope 50 of the embodiments described above in sections (h4) - (h6), the inner rotation shaft 12 is raised, and the slide rope 50 is drawn or stored in the shaft in synchronization with the forward/rearward movement of the outer roller 13. Therefore, it is also effective to prevent the wearing out of the canvas extension R2, R3. (h7) A corner canvas take-up shaft wherein a slide belt 56 or elastic belt 56A is provided in a tensioned condition along a guide projection 172 formed along the axis of said inner rotation shaft 12, 12A, and the outer perimeter surface of the inner rotation shaft 12, 12A is raised by said slide belt 56 or said elastic belt 56A. (h8) A corner canvas take-up shaft wherein said slide belt 56 is inserted through said inner rotation shaft 12, and both ends of said slide belts 56 are fixed to said outer roller 13 after being drawn from said inner rotation shaft 12 and bent over. (h9) A corner canvas take-up shaft wherein a belt passage 183, 193 is present to draw and turn out said slide belts 56 in said end caps 18B, 19B fitted into said inner rotation shaft 12, and a belt passage 265 is formed in end caps 24B, 25B fitted into said outer roller 13 to draw said slide belts 56. (h10) A corner canvas take-up shaft wherein the fore end of each elastic belt 56A is fixed to said end cap 18B fitted to the fore end of said inner rotation shaft 12, 12A, and the rear end of each elastic belt 56A is fixed to said end cap 25B fitted to the rear end of said outer roller 13. (hi 1) A corner canvas take-up shaft wherein a belt passage 183 are formed for turning the fore end of said elastic belt 56A in, and a belt passage 265 for drawing said elastic belt 56A is formed on said end caps 24B, 25B fitted to said outer roller 13. 12/75 Because the canvas extension R2, R3 is indirectly wound on the inner rotation shaft 12 via the slide belt 56 or the expansion and contraction belt 56A of the embodiments described above in sections (h7)-(hl1), the forward/rearward movement of the outer roller is not hindered. In addition, the slide belt 56 is drawn in synchronization with the movement of the outer roller 13, or the expansion and contraction belt 56A is contracted, and thus the wearing of the canvas extension R2, R3 is prevented. In addition, as means for smoothing the forward/rearward movement of the outer roller 13 with magnet repellant force, there is provided (ml) a corner canvas take-up shaft wherein a sheet magnet is fixed on the inner surface of said outer roller 13, another sheet magnet 94 is fixed on the outer perimeter surface of said inner shaft 12, 12A, 12B fitted with and supporting said outer roller 13, and said outer roller 13 is magnetically floated. Corner awning device and its effect Various kinds of corner awning devices SI - S6 are configured by organically combining the above corner canvas GI - G4, the canvas take-up device MI, M2 provided with the canvas take-up shaft JI - J13, and the canvas tension unit KI - K6. The corner awning devices Sl-S6 of this invention comprise a corner canvas GI - G4 having a substantially right-angled trapezoidal shape when extended, a canvas take-up shaft JI-J13 winding and unwinding said corner canvas, said canvas take-up shaft J1-J13 comprising an inner shaft 12, 12A, 12B and an outer roller 13, wherein said outer roller 13 is slidably and rotatably fitted on said inner shaft 12, 12A, 12B, a front bar 36, 36A supporting the bottom side of said corner canvas G1 - G4, and foldable swinging arms 44 and 45, NI and N2, TI and T2, VI and V2, wherein said front bar 36, 36A is pushed parallel obliquely forward parallel or drawn obliquely rearward by said foldable swinging arms 44 and 45, NI and N2, TI and T2, VI and V2. In other words, a corner awning device S1-S6 comprises a corner canvas G1 G4 having a substantially right-angled trapezoidal shape when extended, said corner canvas comprising a rectangular canvas main body RI and a canvas extension R2, R3 extended from one side of said canvas main body, a canvas take-up shaft JI-J13 winding and unwinding said corner canvas, said canvas take-up shaft JI-J13 comprising an inner shaft 12, 12A and 12B, and an outer roller 13 slidably and rotatably fitted on and supported with said inner shaft, a front bar 36, 36A supporting the bottom side of said corner canvas G1 - G4, and swinging arms 44 and 45, NI and N2, TI and T2, VI 13/75 and V2 pushing said front bar 36, 36A obliquely forward or drawing said front bar 36, 36A obliquely rearward to fold it. In the above case, it is preferable that tension members such as connection wires 34, 35 or connection belts 87 and 88, 87A and 88A are provided in a tensioned condition in the plane form of a letter X or V between said outer roller 13 and said front bar 36, 36A. Thereby, contortion or in-plane deformation when winding the corner canvas is prevented, and the rearward movement of the outer roller 13 becomes smooth. When the corner canvas Gl-G4 is wound for storage, said front bar 36, 36A is transferred parallel obliquely rearward by rotating said swinging arms 44 and 45, NI and N2, TI and T2, VI and V2 rearward, while said outer roller 13 rotates to wind said canvas main body RI and moves rearward with the sliding guidance of said inner shaft 12, 12A, 12B, and the canvas extension R2, R3 is wounded on said inner shaft 12, 12A, 12B exposed by the rearward movement of said outer roller 13. On the other hand, when said corner canvas GI -G4 is unwound to extend, said front bar 36, 36A is pushed parallel obliquely forward by rotating said swinging arms 44 and 45, NI and N2, TI and T2, VI and V2, said corner canvas GI-G4 wound on the canvas take-up shaft J1-J13 is unwound while said outer roller 13 is moved forward toward the fore end of said inner shaft 12, 12A, 12B, and thereby said canvas extension R2, R3 is extended over the corner space. When the swinging arms 44 and 45, NI and N2, TI and T2, VI and V2 rotate rearward, and the front bar 36, 36A is transferred parallel obliquely rearward, the outer roller 13 slides in the axis direction of the inner shaft 12, 12A, 12B by the tensile force of the tension member with the canvas main body RI wound on the outer roller 13. Thereby, corner spaces of the perimeters of various buildings can be covered effectively, while the awning devices can be stored compactly by the wall of a corner when stored. As a result, an epoch-making novel product is provided to the industry, which dramatically enhances ornamentality and external appearances in the corners of various buildings and which abounds in technical interests and utility as a corner awning device. Various dependent inventions wherein one corner awning device is installed at a corner of a building are described in the following sections (pI)-(pl5). (pl) A comer awning device supporting a pair of swinging arms 44 and 45, TI and T2 in parallel wherein the bottom ends of one of said swinging arms 44, TI are 14/75 attached adjacent a corner of a building while the fore end of the swinging arm is attached adjacent the intermediate part of said front bar 36, and the bottom end of the other swinging arm 45, T2 is attached at a position spaced-apart appropriately from said corner while the fore end of the swinging arm is attached adjacent the rear end of said front bar 36. (p2) A corner awning device wherein said swinging arm is a pair of said slidably expandable and contractible telescopic swinging arms Ti, T2 in parallel, said swinging arm comprising a rear arm 62 and a front arm 63 slidably fitted to and supported by each other, and being expandable and contractible with a coil spring 64 or rubber elastic body, etc., incorporated in said arm. (p3) A corner awning device wherein a slide rail 65 is slidably fitted on and supported by said front bar 36A, and said slide rail 65 is attached to the front ends of said swinging arms 44, 45. (p4) A corner awning device wherein a corner awning device supports a pair of said swinging arms 44 and 45 in parallel, said slide rail 65 is slidably fitted to and supported by said front bar 36A, the bottom end of one of said swinging arms 44 is attached adjacent the corner of the building while the fore end of said swinging arm 44 is attached adjacent the intermediate part or the fore end of said slide rail 65, and the bottom end of the other swinging arm 45 is attached at a position spaced-apart appropriately from adjacent said corner while the fore end of said swinging arm 45 is attached adjacent the rear end of said slide rail 65. (p5) A corner awning device wherein the spread angle of said swinging arms 44 and 45, TI and T2 is around 75-80 degrees maximum. (p6) A corner awning device wherein said swinging arms are a pair of two-phase swinging arms NI, N2 rotating in parallel with two-phase action, said arms NI, N2 comprising said rear arm 59 and fore arm 60 foldably connected to each other, the intermediate part of said swinging arms NI and N2 is connected with a connection rod 61, the bottom end of said rear arm 59 of said swinging arm NI is attached adjacent the corner of the building while the fore end of said front arm 60 is attached adjacent the intermediate part of said front bar 36, and the bottom end of said rear arm 59 of the other swinging arm N2 is attached to a place spaced apart appropriately from said corner position while the fore end of said front arm 60 is attached adjacent the rear end of said front bar 36. (p7) A corner awning device wherein said bottom end of the rear arm 59 is provided with a spring having a relatively weak spring elastic force, and the folding 15/75 joint of said rear arm 59 and front arm 60 is provided with a spring having relatively strong spring elastic force. (p8) A corner awning device wherein when said canvas G1 is wound on said canvas take-up shaft J1-J13, firstly a pair of said rear arms 59 is rotated obliquely rearward in parallel against their elastic biasing force, then the arms are folded with said front bar 36 translated obliquely rearward, and secondly a pair of said front links 60 is rotated obliquely rearward in parallel against their elastic biasing force with said front bar 36 translated obliquely rearward, and then said two-phase swinging arms NI and N2 are retracted into a folded position. (p9) A corner awning device, wherein when said corner canvas G 1-G4 wound on said canvas take-up shaft J1-J13 is unwound, firstly said front bar 36 is pushed to move obliquely forward in parallel by rotating a pair of said front arms 60 biased with rather strong spring elastic force to the predetermined spread angle in parallel, then said front bar 36 is pushed further obliquely forward in parallel by rotating a pair of said rear arms 59 biased with rather weak elastic force to the predetermined spread angle in parallel. (p10) A corner awning device wherein the angle between the bottom end and fore end of said two-phase swinging arms NI, N2 pressingly biasing said front bar 36 has a spread angle of about 70-80 degrees, the swinging angle of said front arm 59 is regulated not to exceed about 45-50 degrees, and the swinging angle between said connection rod 61 and said rear arm 60 is regulated not to exceed about 120 degrees. In the structures of the embodiments described above in sections (p6) - (plO), the corner canvas G1-G4 is effectively extended and stored by the two-phase swinging arms N and N2 actuated in two phases as shown Figs. 28 (A) - 29 (E) and Figs. 30 (A) - (E). In addition, the following embodiments describede in sections (ql) - (q3) are provided as dependent inventions in relation to combinations of the corner awning device SI - S6 of this present invention and an awning device Q of a rectangular canvas P. (ql) A corner awning device wherein the fore end of a canvas take-up shaft 51 of a rectangular canvas P is installed underneath or above the latter half of a corner canvas take-up shaft J I -J 13 in a overlapping manner to combine a corner awning device SI -S6 and an awning device Q comprising said rectangular canvas P and said canvas take-up shaft 51 thereof. 16/75 (q2) A corner awning device upper-winding said rectangular canvas P on said take-up shaft 51, and lower-winding said corner canvas GI-G4 on said canvas take-up shaft J1-J13. (q3) A corner awning device lower-winding said rectangular canvas P on said take-up shaft 51, and upper-winding said corner canvas G I -G4 on said canvas take-up shaft JI-JI3. By constructing embodiments as described in sections (ql) - (q3), the perimeter, including the corner spaces, of various buildings are covered effectively and integrally as if with a monolithic construction as shown Figs. 12 - 14 and 33. In particular, it is constructed so that the gap between the corner canvas GI - G4 and the rectangle canvas P when extended is minimized to the extent possible. The following sections (rl)-(rl5) describe various dependent inventions wherein two awning devices Sl-S6 are installed at one side and the other side of a corner of a building in a face-to-face relation each other to cover the perimeter, including the corner space, of the building. (r 1) A corner awning device, wherein two of said corner awning devices SI -S6 are each installed on one side of a corner of the building and the other side of the corner in face-to-face relation, and a corner canvas GI-G4 having a substantially right-angled trapezoidal shape is attached between said outer roller 13 of each corner canvas take-up shaft J 1-J13 and each front bar 36, 36A, and tensionally supported by tension members such as said connection wires 34, 35 or said connection belts 87 and 88, 87A and 88A in the form of a letter X or V. (r2) A corner awning device wherein two of said corner awning devices SI, S2 are each installed on one side of a corner of the building and the other side of the corner in face-to-face relation, said corner canvas G1-G4 is attached between said outer roller 13 of each corner canvas take-up shaft J1-13 and each front bar 36, and tensioningly supported by tension members such as said connection wires 34, 35 or said connection belts 87 and 88, 87A and 88A in the form of a letter X or V, and an appropriate position adjacent the lower end of said canvas oblique side 5, 5A of each corner canvas G2-G4 is connected each other with an elastic member 10. (r3) A corner awning device comprising said corner canvas G2 and said elastic member 10, wherein the canvas top side 1A is attached to said outer roller 13, said canvas bottom side 2 is attached to said front bar 36, and said elastic member 10 is attached proximate to the intersection point of said canvas vertical side 6 and the canvas oblique side 5. 17/75 (r4) A corner awning device comprising said corner canvas G3 wherein said canvas top side IA is attached to said outer roller 13, said canvas bottom side 2 is attached to said front bar 36, and said elastic member 10 is attached proximate to the intersection point of said canvas vertical side 8 and said canvas oblique side 5. (r5) A corner awning device comprising said corner canvas G4 wherein said canvas top side IA is attached to said outer roller 13, said canvas bottom side 2A is attached to said front bar 36, and said elastic member 10 is attached proximate to the intersection point of said canvas vertical side 8A and said canvas oblique side 5A. (r6) A corner awning device comprising said corner canvas take up shaft J 1-6, and J11-J13 comprising said inner rotation shaft 12, 12A and said outer roller 13 slidably and rotatably fitted onto and supported by said inner rotation shaft 12, 12A, and a manually operated or electric drive device incorporated at the corner of the fore ends of both said canvas take-up shafts JI-J6, and J11-I13 in a face-to-face relation for forward and reverse rotating both inner rotation shafts 12, 12A interlockingly. By the structure of the embodiments described above in sections (r2) - (r6), the perimeter including the corner spaces of a building is covered effectively as shown Figs. 20 (A) - (C), (AA)-(CC). (r7) A corner awning device wherein each of two of said corner awning devices S3 having a pair of said telescopic swinging arms TI, T2 is installed on one side of a corner of the building and the other side of the corner in face-to-face relation, said corner canvas GI-G4 having a substantially right-angled trapezoidal shape is attached between said outer roller 13 of each corner canvas take-up shaft J I -J 13 and each front bar 36, 36A, and tensionally supported by tension members such as said connection wires 34 and 35 or said connection belts 87 and 88, 87A and 88A in the form of a letter X or V; and the fore ends of front bar 36 are fixed to each other. (r8) A corner awning device wherein when said corner canvas GI is wound by interlocking said canvas take-up shafts J1-J13, each telescopic swinging arm TI, T2 rotates rearward in parallel against the elastic biasing force while said rear arm 62 and front arm 63 of said swinging arms TI, T2 rotate rearward with relative telescopic movement while said front bars 36 integrally connected to one another are moved linearly in parallel toward a place by the wall that exists obliquely rearward. (r9) A corner awning device wherein when said canvas take-up shafts JI-J 13 rotate interlockingly for unwinding, each telescopic swinging arm TI, T2 is rotated in the spread direction obliquely forward with telescopic sliding movement by the elastic biasing force, and said front bars 36 integrally connected to one another are pushed linearly with parallel movement obliquely forward. 18/75 By the structure of the embodiments described above in sections (r7) - (r9), the perimeter including the corner spaces of a building is covered effectively as shown in Fig. 32 (A), and the structure can be stored compactly by the wall. (rI0) A corner awning device S4 wherein said slide rail 65 is slidably fitted into and supported by said front bar 36A, the fore ends of swinging arms 44, 45 are attached to the intermediate part or the fore end of said slide rail 65, and rear end of said slide rail 65, two of said awning devices S4 are installed on one side and the other side of the corner of the building respectively in a face-to-face symmetrical position, said corner canvas G I -G4 having a substantially right-angled trapezoidal shape is attached between said outer roller 13 and front bar 36A of each corner canvas take-up shaft J1-J13 and tensionally supported by tension members such as said connection wires 34, 35 or said connection belts 87 and 88, 87A and 88A in the form of a letter X or V; and the fore ends of said front bars 36A are fixed and connected to each other. (rI 1) A corner awning device wherein when said corner canvas GI is wound by interlocking said canvas take-up shafts J1-JI3, a pair of said swinging arms 44, 45 rotates rearward against an elastic biasing force and temporarily slides said slide rail 65 rearward relative to said front bar 36A then slides it forward while it draws said integrally connected front bars 36A toward a corner area for storage on the wall surface. (r12) A corner awning device wherein when said canvas take-up shaft JI-J13 is interlockingly rotated for unwinding, a pair of said swinging arms 44, 45 are rotated parallel in the spread direction obliquely forward by an elastic biasing force, said front bar 36A is pushed linearly toward the corner space in parallel, and thus said corner canvas GI is extended over the corner space. (r13) A corner awning device comprising said slide rail 65 provided with said guide roller 66, said slide rail being slidably fitted in and supported by said front bar 36A. (r14) A corner awning device wherein a guide groove 361 of said guide roller 66 is formed in the frame of said front bar 36A, and said guide roller 66 is bearing supported, spacing each other, by said rail projection 651 projected from said slide rail 65. By the structures of the embodiments described in sections (r0) - (r14), the perimeter including the corner spaces of a building is covered effectively as shown in Fig. 36, and the structure can be stored compactly by the wall. (r15) A corner awning device wherein said swinging arms are bi-foldable swinging arms V1, V2 that bend and stretch, said swinging arms VI, V2 are each 19/75 formed with said rear arm 59 and said front arm 60, both of which are bi-foldably connected with each other; said swinging arms VI, V2 are connected with each other by a connection rod 61 between bi-fodlable joints thereof, the bottom end of said rear arm 59 of said swinging arm VI is attached adjacent a corner of a building, the fore end of said front arm 60 of said swinging arm VI is attached toward the fore end of said front bar 36; the bottom end of said rear arm 59 of the other swinging arms V2 is attached on a position adequately spaced apart from the corner, the fore end of said front arm 60 is attached toward the intermediate portion of a front bar 36, wherein two of said awning devices S5 are installed on a building corner position in face-to-face-relation, said substantially right angled trapezoidal corner canvas GI-G4 is attached between said outer roller 13 of each corner canvas take-up shaft JI-J13,and said front bar 36, 36A, tension members such as said connection wires 34, 35 or said connection belts 87 and 88 or 87A, 88A are tensionally supported in the plan form of a letter X or V; and the fore ends of front bars 36 are fixed to be connected with one another. (r16) The corner awning device wherein when said canvas G1 is wound by interlocking said canvas take-up shafts J1-J13, said bi-foldable swinging arms VI and V2 each rotate rearward bi-folding toward obliquely rearward overcoming the spread biasing force, while said front bar 36 integrally connected with each other moves linearly rearward in parallel to the line dividing the corner space equally with parallel movement toward said front wall WI and side wall W2 respectively, then said bi-foldable swinging arms VI, V2 are folded into place by the wall, and said front bars 36 integrally connected are drawn toward the corner to be stored on the wall. (rI 7) A corner awning device wherein when said canvas take-up shafts J I -J 13 interlockingly rotate to unwind the corner canvas G1, said bi-foldable swinging arms VI, V2 each rotate forwardly in the spread direction by the elastic biasing force and push said front lever 36 integrally connected obliquely forward in parallel, and thus said corner canvas G1 is extended over the corner space. Since both bi-foldable arms VI, V2 expand and contract as if frog leaping as described above in sections (rl 5)-(rI 7), they can achieve the technical interests, and the perimeter, including the corner spaces, of a building can be covered effectively, or they can be stored compactly by the wall as shown in Figs. 37(A), (C), Figs. 38(A), (C). (r18) A corner awning device of claims 84-88, 92-94 comprising said corner canvas take up shaft J 1 -J6, J I1-J13 comprising said inner rotation shaft 12, 12A and said outer roller 13 slidably and rotatably fitted onto and supported by said inner rotation shaft 12, 12A, wherein a manually or electrically operated drive unit for interlockingly forward/reverse rotating both inner rotation shafts 12, 12A is 20/75 incorporated at the corner where the fore ends of said canvas take-up shafts JI-J6, J II -J 13 face each other. (r19) A corner awning device, wherein a corner decollation panel 67A is attached to said front bar 36, 36A, which is connected with another front bar of another awning device in face-to-face relation. Thereby, the function of shop advertisements or signboards is achieved not only when extended, but also when stored. (r20) A corner awning device wherein a pair of said swinging arms 44 and 45, NI and N2, TI and T2, VI and V2 is rotated in parallel by a manual or electric drive device. (r21) A corner awning device, wherein a worm gear 761, 762 is fixed to the bottom ends of said swinging arms 44 and 45, TI and T2, VI and V2, respectively, and a rotation shaft 73 provided with worms 741, 742 engaging with said worm gears 761, 762 is extended between brackets 46A and 47A supporting the bottom ends of said swinging arms 44 and 45, TI and T2, VI and V2. By the embodiments described above in sections (r20) and (r21), the corner awning device SI - S6 wherein the canvas tension unit K6 (KI - K5) is a driving side can be provided. BRIEF DESCRIPTION OF DRAWINGS: Figs. 1-14 show an awning device provided with a pair of swinging arms rotatable in parallel to each other according to a first embodiment and its components. In these drawings, the corner canvas is shown in transparent if necessary for illustrating the back side of the structure although the corner canvas is usually opaque. A canvas take-up shaft incorporated in a casing is also shown through the casing if necessary. Some drawings show the awning devices three-dimensionally as if they are horizontally attached on a rectangular base, a band plate, or an L-shaped frame for illustrative purposes. In many cases the extended canvas is attached in an appropriately forward tilting manner rather than in a horizontal manner. Figs. I and 2 are perspective views showing two awning devices extended in a orthogonal face-to-face relation at one corner of a building, one of which is installed at the corner of the front wall, with the other installed at the corner of the side wall. Figs. 3 and 4 are perspective views of one awning device installed at a corner of a front wall, Fig. 3 showing the awning device seen from below, and Fig. 4 showing the awning device seen from above. 21/75 Figs. 5 and 6 are exploded perspective views showing the components of the canvas take-up device, Fig. 5 showing the components of the canvas take-up shaft, such as a casing, an inner rotation shaft, an outer roller, and in the lower right of Fig. 5, the enlarged end of the outer roller is shown upside down, and Fig. 6 showing components such as an outer roller, a corner canvas, a front bar, and in the sides of the lowest of Fig. 6, enlarged ends of the connection wires inserted into the crossing holes of the canvas main body. Figs. 7 (A)-(C) show the basic structure of the corner canvas and each part thereof, (A) showing a canvas plan view, and (B) and (C) showing enlarged vertical longitudinal sectional views of each part of the canvas that has wires inserted. Fig.8 shows a cross-sectional plan view of enlarged main parts of the canvas take-up device. Figs. 9 (A) and (B) are vertical longitudinal side-views of Fig. 8, Fig. 9 (A) showing a sectional view of the canvas take-up device, and (B) showing a sectional view of the driving device. Figs. 10 (A)-(D) and Figs. 11 (A)-(D) are plan views and perspective views showing the process for winding a corner canvas. The opposite order will be the process for extending the corner canvas. Figs. 12-14 are perspective views showing two extended awning devices of this invention installed in an orthogonal face-to-face relation at a corner, and two extended conventional awning devices, wherein the fore part of each conventional awning device is attached beneath the rear part of each awning device of this invention to overlap each other. Of these drawings, Fig. 12 shows the devices seen upwardly from below, Fig. 13 shows the devices seen downwardly from above, and Fig. 14 shows a perspective view of the canvas. Figs. 15 (A)-(D) are schematic plan views showing rectangular canvases extended near a corner of a building. Figs. 16 (A)-(D) are schematic plan views showing corner canvases of this invention and rectangular canvases of the prior art covering the corner space of the building. Of these figures, the corner in Fig. (A) is orthogonal, the corner in Fig. (B) is beveled, the corner in Fig. (C) has an obtuse angle, and the corner in Fig. (D) has an acute angle. Fig. 17 (A) is a perspective view showing a canvas take-up shaft provided with an electric driving means according to the second embodiment, and Fig. 17 (B) is its exploded perspective view. Figs. 18 (A) and (B) are a plan view and a perspective view showing a substantial part of the manually operated unit that interlocks two canvas take-up shafts. 22/75 Figs. 19 (A) - (C) are plan views showing a pair of corner canvases of the second-fourth examples in a face-to-face relationship. Figs. 20 (A) - (C), and (AA)-(CC) are perspective views, seen is two ways, of two sets of awning devices provided with comer canvases shown in Figs. 20 (A)-(C) when extended in a face-to-face relation. Fig. 21 is a perspective view showing a third example of the canvas take-up shaft, wherein Fig. 21 (A) shows the outer roller when moved forward to the first half of the casing and Fig. 21 (B) shows the outer roller when moved rearward to the latter half of the casing. Figs. 22-24 show a forth example of the canvas take-up shaft provided with a slide rope, and Fig. 22 is a perspective view of the take-up shaft, the intermediate part of which is cut off. Figs. 23 (A) - (C) show each component of the take-up shaft, wherein Fig. 23 (A) is a half sectional view of the vicinity of the end, Fig. 23 (B) is a longitudinal sectional view taken along X-X of Fig. 23 (A), and Fig. 23 (C) is a longitudinal sectional view taken along Y-Y. Fig. 24 is an exploded perspective view showing components of the canvas take-up shaft. Figs. 25-27 show a fifth example of the canvas take-up shaft provided with slide belts, wherein Fig. 25 is a perspective view of the take-up shaft, the intermediate part of which is cut off. Figs. 26 (A) - (C) show each component of the take-up shaft, wherein Fig. 26 (A) is a half sectional view of the vicinity of the end, Fig. 26 (B) is a longitudinal sectional view taken along X-X of Fig. 26 (A), and Fig. 26 (C) is a longitudinal sectional view taken along Y-Y of Fig. 26(A). Fig.27 is an exploded perspective view showing components of the canvas take-up shaft. Figs. 28 - 30 show a second embodiment of the corner awning device provided with two-phase swinging arms, wherein in the perspective views of Figs. 28 (A)-(C) and Figs. 29 (D)-(E) and the plane views of Fig. 30 (A)-(E), processes for taking-up and extending the corner canvas in two phases are shown, and Figs. (A)- (E) show processes for taking-up the canvas and, in the opposite order, show the process for extending the canvas. Figs. 31 and 32 show a third embodiment of the corner awning device provided with telescopic swinging arms, wherein Fig. 31(A) is a perspective view showing the 23/75 substantial parts thereof and Fig. 31 (B) is an exploded perspective view of the telescopic swinging arms. Figs. 32 (A) - (C) are plan views showing each stage when the canvas is fully extended, half extended, and wound to be stored. Figs. 33 - 36 show a fourth embodiment of the corner awning device provided with a slide rail attached to the front end of the swinging arms, wherein Fig. 33 is a perspective view of a combination of the awning device of this invention and an awning device of the prior art, wherein an ornamental panel is attached to the front bar. Fig. 34 is a perspective view of the canvas, and a front bar of the front side is shown separately in the right of the lower part. Fig. 35 is a perspective view showing the longitudinal section of a substantial part of the front bar. Fig. 36 is a plan view showing each stage when the canvas is wound to be stored, half extended and fully extended. Figs. 37 and 38 show a fifth embodiment of the comer awning device provided with bi-foldable swinging arms, wherein the perspective views of Figs. 37 (A)-(C) and the plane views of Fig. 38 (A)-(C) show processes for taking-up the canvas and, in the opposite order, show the process for extending the canvas. Figs. 39 (A) and (B) - Figs. 41(A) and (B) are exploded views showing the sixth-eighth example of the canvas take-up shafts, each drive unit and the components thereof, wherein in the case of the sixth example shown in Figs. 39 (A) and (B), the outer roller moves with the guidance of a worm rack. Figs. 40 (A) and (B) show the seventh example, wherein the outer roller itself rotates by means of the electric driving means. Figs. 41 (A) and (B) show the eighth example, wherein the outer roller is moved with the guidance of the rack formed on the inner rigid shaft. Figs. 42 - 45 are exploded perspective views showing a sixth embodiment of the corner awning device in which the canvas tension device is the drive side, and components thereof, wherein Fig. 42 shows the awning device seen from below and Fig. 43 shows the awning device seen from the above. Figs. 44 (A) and (B) show a perspective view of the canvas tension device and an exploded view showing the drive unit thereof, respectively. Figs. 45 (A) and (B) are an exploded view showing the ninth example of the canvas take-up shaft provided with a coil spring, and a perspective view showing the components thereof, respectively. 24/75 Figs. 46 (A) and (B) are an exploded view showing the tenth example of the canvas take-up shaft provided with a whorl spring, and a perspective view showing the components thereof. Fig.47 is an exploded perspective view showing the eleventh example of the canvas take-up shaft provided with elastic belts. Figs. 48 (A) and (B) are perspective views showing the twelfth example of a canvas take-up shaft provided with a coil spring, wherein Fig. 48 (A) shows an outer roller when moved forward, and Fig. 48 (B) shows the outer roller when moved rearward. Fig.49 is a perspective view showing a sheet magnet incorporated on the first half of the inner shaft and the edge of the canvas oblique side for magnetic levitation by magnetic repellant force. Figs. 50 (A) - (C) are perspective views showing the corner canvas that has the edge cloths adjacent the oblique side of the canvas extension, the edge cloth continuously getting thicker toward the canvas bottom side, wherein Fig. (A) shows the corner canvas when extended, Fig. (B) shows the corner canvas when wound on the canvas take-up shaft, and Fig. (C) shows a sectional view when wound. Fig.51 is a perspective view showing the condition that band-plate ribs are incorporated in a lengthwise, parallel arrangement. Figs. 52 (A) and (B) are perspective views showing a corner canvas provided with connection belts sewn thereon in the form of a letter X, wherein Fig. 52 (A) shows the connection belts fixed intersectingly to each other, and Fig. 52 (B) shows the connection belts separately. Fig. 53 shows the connection belts fixed on the canvas main body in the form of a letter V. EXPLANATIONS OF THE LETTERS AND NUMERALS: SI - S6 Corner awning device M1, M2 Canvas take-up device KI - K6 Canvas tension device JI - J13 Canvas take-up shaft WI Front wall W2 Side wall W3 Oblique wall GI - G4 Corner canvas RI Canvas main body R2, R3 Canvas extension P Rectangular canvas Q Awning device of prior art LI, L2 Double folding swinging arm N1, N2 Two-phase swinging arm TI, T2 Telescopic swinging arm V1, V2 Double folding swinging arm 1,1A Canvas top side 2,2A Canvas bottom side 3, 5,5A, 8, 8A Canvas oblique side 25/75 4, 6 Canvas perpendicular side 7 Through hole 9 Canvas downward folding line 10. Elastic member 11 Casing 12,12A Inner rotation shaft 12B Inner fixed shaft 13 Outerwear roller 14 Canvas outlet 15,16 End cap 16A Storing case 151,161 Bearing 171 Guide groove 172 Guide projection 18, 18A, 18B, 19, 19A-19C End cap 190, 192 Through holes 181,191 Spindle 182,192 Rope passage 183,193 Belt passage 20 Worm gear 21 Worm 23 Worm rotation shaft 23 Hook 24, 24A-24C, 25, 25A-25C End cap 241, 251 Through hole 252 Internal thread 261 Guide projection 262 Guide groove 263 Hole 264 Guide groove 265 Belt passage 27 fitting groove 271,272 Engagement slot 28,29 Passage 30, 31, 43 Wire 32,33 Cross passage 321,331 Front face outlet 322,332 Rear face outlet 34,35 Connection wire 341,351 Engagement piece 341,352 Clamp 36,36A Front bar 37, 38 Fitting groove 39,40 Engagement hole 41 Decoration skirt 42 Passage 44, 45 Swinging link 441, 451 Folding portion 46, 46A, 47, 47A Bracket 48,49 Bracket 50 Slide rope 51 Take-up shaft 52 Casing 53 Front bar 54 Electric motor 541 Output shaft 542 Shank 55 Bearing socket 551 Axial bore 56 Slide belt 56A Elastic belt 561,562 Clip 57 Corner cap 571 Bearing 58 Slide bearing 59 60 Rear arm 60 Front arm 61 Connection rod 62 Rear arm 63 64 Front arm 64 Coil spring 65 Slide rail 66 rollers 67 Connector 67A Decorative panel 68 Driving gear 69 Spur gear 70 Rod gear 701 Rotation shaft 71 Bearing nut 711 Hole 72 Middle bracket 73 Rotation shaft 741,742 Worm 751, 752 Bevel gear 761,762 Worm gear 77 Coil spring 771, 772 Fore/rear end 78 Spring stopping socket 781, 782 Holes 79 Rigid shaft 791, 792 Fore/rear end 81 Pipe shaft 811 Slit 82 Cover plate 821 Hole 83 Spiral spring 831, 832 Spring end 84 Slide case 841 Hole 842 locking portion 85 Washer 86 Edge cloth 87,88, 87A, 88A Connection belt 89 Rib 90 Coil spring 91 Worm gear 92 Worm rack 93 Rack 94, 95 Sheet magnet 26/75 THE BEST MODE FOR CARRYING OUT THE INVENTION Corner awning devices Sl-S6 are configured by organically combining: a canvas take-up device MI, M2 winding and unwinding a corner canvas G I -G4; and a canvas tension device Kl-K6 extending and tensionally supporting said canvas GI-G4. Of these, awning devices SI-S5 of the first - fifth embodiments shown in Figs. 1 - 4, Figs. 10 - 14, Fig. 20, Figs. 28 - 34, and Figs. 36 - 38 are embodiments in which a manual or electric drive unit is configured in a canvas take-up device M1, and a canvas tension device K 1-K5 is a driven side. On the contrary, in the awning device S6 of the sixth embodiment shown in Fig. 42 and Fig. 43, a manual or electric drive unit is configured in the canvas extension device K6, and the canvas take-up device M2 is the driven side. First embodiment of corner awning device Now, I will explain the awning device SI of the first embodiment comprising the canvas take-up device MI of the first example and the canvas extension device KI of the first example with reference to the attached Figs. 1-14. The first example of canvas take-up device and its take-up shaft Prior to explanation of the canvas take-up device Ml, I will explain the canvas take-up shaft J1 of the first example shown in Figs. 5, 8 and 9, which is a substantial part of the canvas take-up device MI. Reference character II refers to a casing for storing a wound corner canvas G 1, wherein a canvas take-up shaft JI is incorporated therein, the casing being attached on an outer wall WI -W3 in proximity to a corner of various buildings or frame structures (hereinafter "buildings"), and being fixed indirectly on the outer wall WI-W3 through an appropriate supporting bracket (not shown), or being fixed on brackets of the bottom end of various swinging arms described later. The canvas take-up shaft JI is comprised of a hollow inner rotation shaft 12, and an cylindrical outer roller 13 fitted on (or inserted into) and supported by the rotation shaft 12 slidably along the axis of the rotation shaft. Reference character 14 refers to a canvas outlet formed open in the front surface of the casing 11, and reference numerals 15 and 16 refer to end caps fitted onto both the fore and the rear end of the casing 11, the end cap having bearings 151 and 161 27/75 projected from the inner surface thereof. Reference numerals 171 and 172 indicate guide grooves and guide projections respectively, both formed along the axis direction on each one-fourth of the outer circumference of the inner rotation shaft 12 in parallel to other grooves and projections. Reference numbers 18 and 19 refer to end caps fitted onto both the fore and the rear end of the inner rotation shaft 12. The cap main body is formed in substantially the same shape as the internal surface of the inner rotation shaft 12. Spindles 181 and 191 penetratingly fixed to the cover portion of the cap are fitted into the bearings 151 and 161 rotatably. Reference number 20 indicates a worm-gear fittingly fixed to the spindle 181 of the end cap 18. Reference character 21 refers to a worm engaging with the worm gear 20. Its worm rotation shaft 22 is bearing supported vertically by the end cap 18. A hook 23 is formed at the bottom end of the rotation shaft 22. Reference numerals 24 and 25 refer to hollow end caps fitted into both the fore and the rear end of the outer roller 13. A guide projection 261 and a guide groove 262 are formed in parallel to each other on the internal surface of the cap main body. The end caps 24 and 25 are slidably fitted on the guide grooves 171 and guide projections of the inner rotation shaft 12. Thereby, the inner rotation shaft 12 and the outer roller 13 integrally rotate and the outer roller 13 moves forward or rearward slidably guided by the inner rotation shaft 12. Reference numeral 27 indicates a fitting groove formed on the bottom part of the outer roller along the axial direction. References 271 and 272 refer to engaging holes formed in the outer roller at the fore and the rear part of the fitting groove 27, and perpendicular to the fitting groove 27. In addition, in the above embodiment, when end caps 15, 16 themselves are mounted on the wall WI-W3 with some projection from the wall as end brackets for bearing the canvas take-up shaft J 1, the necessity for the casing I I will be optional. Corner canvas Now, I will explain the configuration of the first example of the corner canvas GI on the basis of the plainly extended form as shown in Fig. 7. A corner canvas GI is made of a textile like that for tents (i.e., fabric or synthetic resin), formed into a right-angled trapezoidal shape when extended, and comprised of a rectangular canvas main body RI and a right-angled triangle canvas extension R2 extended from one side of said canvas main body. 28/75 As for the geometry, the top side I of the canvas GI (hereinafter, a canvas top side) and the bottom side 2 of the canvas GI (hereinafter, a canvas bottom side) are formed in parallel to each other. An oblique side 3 extends from the canvas bottom side 2 towards the canvas top side 1 at about a 45 degree angle of inclination (hereinafter, a canvas oblique side). A vertical side 4 (hereinafter, a canvas vertical side) is formed substantially perpendicular to the canvas bottom side 2. Although the angle of inclination of the canvas oblique side 3 is based on around 45 degrees in principle, in some cases it can be wider, for example, 60 degrees, or 75 degrees as shown in Fig. 19(C). Reference numerals 28 and 29 refer to pouched passages formed on the canvas top side I and the canvas bottom side 2, the passages having fixing members such as wires 30, 31 or ropes inserted therein. References numbers 32 and 33 indicate pouched cross passages formed on the diagonal lines of canvas main body RI, which are lines that obliquely connect the four corners, the passages having tension members such as wires 34 and 35 or connection belts or ropes inserted therein. Engagement pieces 341 and 351 of the fore ends of those wires are drawn upward from outlets 321 and 331 of the front face of the cross passages 32 and 33. The rear ends of the wires and their fasteners 342 and 352 are drawn downward from outlets 322 and 332 of the rear face of the cross passages 32 and 33. Then, to attach the corner canvas GI on the canvas take-up shaft JI, firstly, the engagement pieces 341 and 351 of fore ends of the connection wires 34, 35 drawn from the front face outlets 321, 331 are fitted into engagement holes 271, 272 of the outer roller 13 to be engaged as shown in Fig. 8 or 9 (A). The canvas top side I having the wire 30 is then fitted into a fitting groove 27 of the outer roller 13 to be fixed. Reference numeral 36 indicates a front bar for fixing the canvas bottom side 2, the front bar having fitting grooves 37, 38 formed on the upper part of the front-bar frame and the upper part of the front part of the front-bar frame in the longitudinal direction. Reference characters 39 and 40 are engagement holes drilled adjacent the intermediate part of the upper part and the rear end of the upper part of front bar 36. Then, the rear ends of the connection wires 34 and 35 drawn from the rear face outlet 322 and 332 are inserted into the engagement holes 39 and 40, and the fasteners 342 and 352 are fixed with screws where the drawn corner canvas GI is disposed in an appropriately tensioned condition. Subsequently, the canvas bottom side 2 having a wire inserted is fitted into the engagement groove 37 of the front bar 36 to be fixed. 29/75 Reference number 41 indicates a decorative skirt hanging down from the front bar 36, the decorative skirt being fixed to the front bar by fitting into the engagement groove 38 after a wire 43 is inserted into the pouched passage 42 formed on the upper edge of the front bar. Thereby, the canvas take-up device M1 of the corner canvas GI is configured. First example of canvas tension device Now, a canvas tension device KI of the first example is explained below. Reference numbers 44 and 45 refer to a pair of swinging arms in parallel to each other. These are pivotally supported with a bias so that they manually translate the front bar 36 toward the corner space obliquely forward. Brackets 46 and 47 pivoting the arm bottom ends with pins are fixed adjacent the corner of the building and the fore end of the canvas take-up shaft J 1, and adjacent the interlineate of the canvas take-up shaft J1, on the outer wall WI -W3, the underside of the casing 11, or at the supporting bar (not shown) fixed across the wall. Reference numerals 48 and 49 indicate brackets for pivoting the fore ends of the swinging arms 44 and 45 with pins, the brackets being fixed on the back of the rear end of the front bar 36, and on the back adjacent the intermediate part of the front bar 36, spaced apart from each other by the same distance as the distance between the bracket 46 and the bracket 47. A spring (not shown) with appropriate elasticity is incorporated in the pivot portion of either or both of the fore ends and rear ends of the swinging arms 44, 45. By the elastic biasing force of the spring(s), the pair of swinging arms 44 and 45 rotates in parallel to each other in the spreading direction and pushes and translates the front bar 36 toward the corner space obliquely forward. On the other hand, when the corner canvas G 1 is wound, the pair of swinging links 44 and 45 is driven and rotates against the elastic biasing force, and thus retracts and translates the front bar 36 toward a place by the wall obliquely rearward. In addition, the swinging arms 44 and 45 are mounted in parallel to each other spacing an appropriate distance to rotate in synchronization with each other in one direction. When the distance between the swinging arms 44 and 45 is less than the arm length, it is preferable to form a refraction part closer to the bottom end of each arm. These refraction parts 441, 451 allow the swinging arms 44, 45 to be compactly stored by the wall. 30/75 Effect of corner awning device To wind the corner canvas GI on the canvas take-up shaft JI, firstly a user engages an operating lever to a hook 23 (not shown), and rotates it manually. Then an inner roller shaft 12 and an outer roller 13 integrally rotate through engaged gears 20 and 21, and wind the canvas so that the face of the canvas is wound inside and the rear face of the canvas is wound on the outside. That is, the corner canvas GI is wound under the rooller as shown in Figs. 10(B) and 10(C), or Figs. 11 (B) and 11 (C). The swinging arms 44 and 45 are driven and rotate rearwardly against the elastic biasing force, and translate the front bar 36 obliquely rearward. At the same time, the tensioning force of the canvas tension device KI affects the outer roller 13 through canvas GI, and the tensile force of connection wires 34, 35 affects the outer roller 13, and then these effects are transmitted into rearward sliding force of the outer roller 13. Thereby the outer roller 13 is moved rearward along the axis of the inner rotation shaft 12. Then, the canvas main part RI is wound on the outer roller 13 gradually, and the canvas extension R2 is wound on the external perimeter surface of the inner rotation shaft 12 exposed with the outer roller 13 moved rearward, as shown in Figs. 10 (A) - 10 (C), and Figs. 11 (A) - 11 (C). Thus, the corner canvas GI is taken up without protruding from the shaft length of the canvas take-up shaft J 1, and the swinging arms 44, 45 are folded by the wall and overlaid with the front bar 36 to be stored compactly, as shown in Fig. 10 (D) and Fig. 11 (D). In this case, the connection wires 34, 35 cross-connect the front bar 36 and the outer roller 13, and the tensile force to move the outer roller 13 rearward occurs as the front bar 36 moves obliquely rearward. Therefore, it prevents the canvas main body RI from distortion or in-plane deformation when the corner canvas GI is taken up, and the canvas GI can thus be taken up in a smooth and regular manner. In this regard, if the front bar 36 and the outer roller are not cross-connected through connection wires 34, 35, the canvas main body RI is susceptible to distortion or in-plane deformation with the effect of, for example, hardness and softness of the canvas textile, stretching property, knitting density. As a result, it is expected that the corner canvas GI will be taken up irregularly, and the smooth rearward movement of the outer roller 13 impaired. 31/75 Now, to the contrary to the above, to extend the corner canvas G I wound on the canvas take-up shaft I over a corner space along the periphery of the building, a user rotates the operational assembly in the opposite direction from the above. Then, the elastic biasing force of the two swinging arms 44, 45 folded by the wall is released, and the swinging arms 44, 45 are rotated toward the spreading direction by the pressure biasing force, thereby pushing and translating the front bar 36 over the corner space obliquely forward. At the same time, the inner rotation shaft 12 and the outer roller 13 integrally reverse rotate to unwind the corner canvas G1 wound on the canvas take-up shaft J1, and the sliding force for the forward movement of outer roller 13 caused by the elastic biasing force of swinging arms 44, 45 affecting the front bar 36, the tensioning force of the canvas GI, and the retraction force of wires 34, 35 retracted, operate so that the outer roller 13 is reverse rotated with the forward movement along the inner rotation shaft 12. In this manner, the corner canvas G1 is smoothly extended over the corner space obliquely forward by the extension of the front bar 36 with the elastic biasing force of the swinging arms 44, 45, by the integral reverse rotation of the inner rotation 12 and the outer roller 13, and by the forward movement of the outer roller 13. Thus, two of the awning devices SI are installed at the corner position of the front wall W1 and the side wall W2 in an orthogonally face-to-face relation, and the corner canvases G I each wound on the respective canvas take-up shaft J I are unwound. Thereby two corner canvases GL are drawn obliquely forward, extended in a face-to-face relation, and thus the corner spaces ZI-Z3 of the building are effectively covered. In addition, in the above case, although the inner rotation shaft 12 is rotated manually, the rotation shaft 22 as shown Figs. 5, 8 and 9(B) may be forward/reverse rotated by an electric motor (not shown), or a drive unit that engages with a spur gear, which may be mounted instead of the worm-gear 20, may be forward/reverse rotated by a electric motor (not shown). Combination with awning device of conventional structure In the rear half of awning device SI according to the present invention, an awning device Q having a conventional structure extending or taking up a rectangular canvas P is combined as shown in Fig. 12 - Fig. 14. 32/75 In Figs. 12-14, reference character 51 refers to a canvas take-up shaft mounted in a casing 52. The take-up shaft is attached with a rectangular canvas P. A canvas outlet is opened in the upper portion of the casing 52. Reference number 53 indicates a front bar for fixing the front edge of the canvas P. Reference characters LI, L2 indicate a pair of bi-foldable swinging arms biased by springs, wires or the like, to the direction spreading out the bi-foldable swinging arms LI, L2. In the awning device Q, a part in proximity to the end of the casing 52 is attached substantially overlaying beneath the latter half of the casing 11, and the bottom ends of the bi-foldable swinging arms LI, L2 are fixed on the outer wall WI -W3 and spaced apart from each other. Thus, when the canvas take-up shaft 51 is rotated for winding the canvas with a manual or electric motor, the rectangular canvas P is wound on the take-up shaft 51 with the back face of the canvas inside and the front face outside, and the bi-foldable swinging arms LI, L2 are bi-folded inwardly against their elastic biasing force and the front bar 53 translates toward the wall for storage. Therefore, a combination of the corner awning device SI of this invention and an awning device Q of the prior art effectively and integrally cover the peripheries of various buildings including the corner spaces as if they were one piece. In the above case, it is configured not to stand out the gap between the corner canvas GI and the rectangular canvas P when extended, by lower-winding the corner canvas GI and upper-winding the rectangular canvas P. However, the corner canvas GI may be upper-wound and the rectangular canvas P lower-wound by changing the layer of the casing II of the awning device SI of this invention and the casing 52 of the awning device Q to be upside-down. Second example of canvas take-up shaft Now, the structure of the canvas take-up shaft J2 of the second example, in which the inner rotation shaft 12 is driven electrically, is explained below in connection with Figs. 17 (A) and 17 (B). Reference character 54 indicates a cylindrical electrical motor inserted into the rear part of the inner rotation shaft 12. A motor output shaft 541 is projected from the fore end of the motor, and a fixed shaft 542 is projected from the rear end of the motor. Reference numeral 55 refers to a bearing socket having a projection and depression surface to be fitted in the inner rotation shaft 12. The motor output shaft 541 is engaged in an axial hole 551. 33/75 Reference character 19C refers to an end cap to be fitted in a rear end of the inner rotation shaft 12. The cylindrical hole 194 of the cap main body bearing supports the rear end of the main body of the electric motor 54. After the bearing socket 55 engages the motor output shaft 541, the electric motor 54 is inserted into the rear part of the inner rotation shaft 12. On the other hand, after the rear end of the main part of the electric motor is inserted into the end cap 19C, the cap C is fitted into the inner rotation shaft 12, and the shaft 542 of the electric motor 54 is fitted into the bearing 161 of the end cap 16 to be fixed. In this manner, the electric motor 54 is incorporated in the inner rotation shaft 12. Thus, when the eclectic motor is driven, the output shaft 541, the bearing socket 55 and the inner rotation shaft 12 integrally forward/reverse rotate, and thereby the processes of winding and unwinding the corner canvas G1 becomes automatic and requires less power. In the above case, an electric drive unit is incorporated in the rear part of the inner rotation shaft 12, while substantially the same structure can be incorporated in the fore part of the rotation shaft 12. Interlocking device of awning device In the above case, it is explained that two awning devices SI face each other at the comer of a building and that each canvas take-up shaft J1, J2 is rotated manually or electrically. A manually operated unit as shown in Figs. 18(A) and 18(B) may be adapted to interlock those awning devices. In Fig. 18(A), reference number 57 indicates a corner cap formed at a right angle. The inside of the corner cap is divided with the bearing 571. Casings 11 each having canvas take-up shafts J1 are each fitted into one side and the other side of the corner cap. Each spindle 181 of the inner rotation shafts 12 facing each other at a right angle is supported with a bearing 571. A rotation shaft 22 having a hook 23 is bearing-supported vertically at the rear part of the back of the bearing 571. A worm 21 fitted into the upper portion of the rotation shaft 22 engages the worm-gears 20 that engage the spindles 181 of the inner rotation shafts 12. In this manner, two canvas take-up shafts J1 facing the front wall WI and the side wall W2 are interlockingly forward/reverse-rotated, and thus winding and unwinding of two corner canvases GI are interlockingly achieved. 34/75 Although the above two canvas take-up shafts JI are installed in a face-to-face relation at a right angle at a corner of a building as shown in Figs. 18(A) and 18(B), similarly the canvas take-up shaft J1 can be applied at a corner having either obtuse angles or acute angles as shown Figs. 16(C) and 16(D), by forming the bending angle of the corner cap 57 into a cap shape having an obtuse angle or an acute angle. In addition, the rotation shaft 22 for the interlock can be forward/reverse-rotated by an electric motor (not shown). It should be understood that in the case of the canvas take-up shaft J2, in which an electric drive device as shown Figs. 17(A) and 17(B) is incorporated in the inner rotation shaft 12, the manual or electric interlocking device as shown Figs. 17 (A) and 17(B) are not required because two awning devices Si installed at a corner can be interlocked by electrically synchronizing them. Modified example of corner canvas In the case of the above canvas tension device K1, the spreading angle of the swinging arms 44, 45 is practically limited to 75-80 degrees, when the smoothness of the rearward movement of the outer roller 13 is considered. Therefore the length extended obliquely forward, of the corner canvas G1 is limited by the spreading angle of the swinging arms 44 and 45, and thus a gap of 20-30cm between canvases extended in a face-to-face relation is made. Thus, to make the gap between the oblique sides facing each other as narrow as possible without changing the spreading angle of the swinging arms 44 and 45, there is provided a corner canvas G2-G4 in 3 aspects as shown in Figs. 19 (A) - 19(C). Of these, in the case of a canvas G2 of Fig. 19(A), a canvas oblique side 5 parallel to a canvas oblique side 3 (shown in a phantom line) of the canvas G of the first example is formed based on the fore end of the outer roller 13. A canvas vertical line 6 is raised vertically from the fore end of the canvas G I, and a through hole 7 for the connection of two canvases is formed at a place of an obtuse angle where the sides 5 and 6 intersect. In addition, crossing through holes 32 and 33 are formed on the elongated canvas main body RI, and a canvas extension R3 is formed in a sideways trapezoidal shape with the fore end of the canvas bottom side cut vertically. In the case of a canvas G3 of Fig. 19(B), a canvas oblique side 5 is formed in the same manner as the above. An oblique side 8 extending obliquely upward from the fore end of the canvas bottom side is formed. Sides 5 and 8 form a substantially right 35/75 angle, and through hole 7 for the connection of two canvases is formed at a place of an obtuse angle where the sides 5 and 6 intersect. Thus, in the canvas G2 and G3 shown in Figs. 19(A) and 19(B), a portion protruded from a line connecting the fore end of the canvas top side IA fixed on the outer roller 13 and the fore end of the canvas bottom side 2 fixed on the front bar hangs down, if it is not held, when the canvas is extended or wound. Thus, as shown in Figs. 18(A) and 18(B), two canvas take-off shafts JI installed on the corner of the front wall WI and the side wall W2 are configured to be interlocked with each other, and then through holes 7 of the canvas extensions R3 of 2 canvases G2, G3 facing each other are connected through an elastic member 10 such as an elastic cord or a coil spring. Thereby, as shown in Figs. 20(A), 20(AA), 20(B), and 20(BB), the protruded portions are pulled toward each other by the elastic member 10, and the canvas main bodies RI and the canvas extensions R3 are interlockingly wound or unwound on the canvas take-up shafts J 1 in a tensioned condition due to the elastic bias of the swinging arms 44 and 45. As a result, compared with the case of the corner canvases G1, the gap between opposed canvas oblique sides 5 can be made still less. In addition, in a canvas G4 of Fig. 19(C), which is different from the ones in Figs. 19(A) and 19(B), the length of the front bar 36 is relatively shortened, and a canvas downward folding line 9, which is an oblique line connecting one end of the canvas bottom side 2A fixed on the front bar 36 and the end of the canvas top side IA fixed on the outer roller 13, is formed. In addition, the canvas oblique side 5A having an angle of 50 degrees toward the fore end of the canvas top side IA and the canvas oblique side 8A extending obliquely upward from the fore end of the canvas bottom side 2A form a right angle, and those opposed right angles are connected through an elastic member 10. Thereby, when the corner canvases G4 are wound, they are gradually downwardly folded from the canvas downward folding lina 9. On the contrary, when the canvas extensions R3 are wound on the inner rotation shafts 12 of the canvas take-up shafts J 1, they are wound so that the bottom end portions of the downwardly folded portions are raised to keep the extension surface tensed to be flush. In this manner, as shown in Figs 20 (C) and 20(CC), the canvas oblique sides 5A are tensely supported downwardly folded from the canvas downward folding lines in relatively steep condition, thereby the gap between canvas oblique sides facing each 36/75 other gets narrower, and the appearance of the corner space when the canvases are extended improves. Third example of canvas take-up shaft Now, the canvas take-up shaft J3 shown in Figs. 21(A) and 21(B) is explained below. This canvas take-up shaft J3 requires a casing, which the canvas take-up shaft J 1, J2 of the first or second example does not require. The fore end of the inner rotation shaft 12A having a shaft length that is 1/2-2/3 of the length of the casing 11 is supported with the end cap 15. The inner rotation shaft 12A is slidably and guidably inserted into the outer roller 13. Reference numeral 58 refers to a slide bearing fixed on the rear end of the outer roller 13. The slide bearing slides forward and rearward with the guidance of the inner wall surface of the casing 11. To wind the canvas G 1 -G4, the inner rotation shaft 12A and the outer roller 13 are integrally rotated, the swinging arms 44 and 45 are rotated in an arc rearward against the elastic biasing force, and the canvas G I -G4 is wound by the tensioning force of the canvas G I -G4 or the tensile force of the connection wires, with the rearward movement of the outer roller of the casing 11. On the other hand, when the canvas GI-G4 is extended, the front bar 36 is extended obliquely forward by the elastic biasing force of the swinging arms 44 and 45, the outer roller 13 reverse-rotating integrally with the inner rotation shaft 12A is moved toward the end of the casing 11, and the canvas G I -G4 wound on the canvas take-up shaft is drawn out and extended. Adherent winding preventing equipment of canvas extension The following canvas take-up shaft J4, J5 of the fourth example and the fifth example, or canvas take-up shafts J11-J13 described later are embodiments to solve the problem 3 discussed above. They are provided with a structure to prevent adherent winding when the canvas extension R2, R3 is wound, and to secure smooth rearward movement of the outer roller 13. 37/75 Fourth embodiment of canvas take-up shaft Now, a canvas take-up shaft J4 of the fourth example shown in FIGS. 22 - 24 is explained below. Reference number 50 indicates a slide rope made of synthetic resin having a moderate elastic property. Approximately four slide ropes are incorporated in the inner rotation shaft 12 along the axis of the inner rotation shaft. References characters 18A and 19A refer to end caps engaging both fore and rear ends of the inner rotation shaft 12. The end caps have rope passages 182 and 192 for turning each slide rope 50 out by bending the rope in the shape of the letter U, the rope passages being formed on 4 places on the external perimeter surface from the cap main body to the cover. Reference characters 24A and 25A refer to end caps engaging in both the fore and rear ends of the outer roller 13. Rope insertion holes 263 are formed inside of the end caps. In the cap main body, a guide groove 264, in which the guide projection 273 of the engaging groove 27 engages, is formed. To incorporate the slide ropes 50 into the canvas take-up shaft J4, first, the slide ropes are inserted along the rear side of the guide projection 172 of the inner rotation shaft 12 along the axis of the inner rotation shaft 12. Secondly the slide ropes are temporarily drawn from either of the rope passages 182, 192 of the end caps 18A, 19A fitted into the ends of the canvas take-up shaft. Then the slide ropes are bent over, and drawn along the guide groove 171 on the inner rotation shaft 12 upon turning them out. Further, the ends of the ropes from the holes 263 of the end caps 24A, 25A are drawn out, and fixed for retaining by fitting a clip on both ends of the ropes. The other slide ropes are incorporated in the same manner, whereby 4 of the slide ropes are put across the inside and outside of the canvas take-up shaft J4 along the axis of the canvas take-up shaft J4. Thus, when the outer roller 13 moves rearward, the slide ropes 50 of the fore end of the outer roller 13 are correspondingly drawn to the guide groove 171 of the inner rotation shaft 12, and the slide ropes 50 exposed on the rear end of the outer roller 13 are drawn to the inside of the inner rotation shaft 12. As a result, the canvas extension R2, R3 wound on the inner rotation shaft 12 exposed by the rearward movement of the outer roller 13 is indirectly wound on the external perimeter surface of the slide ropes 50, the external diameter of which is increased by the exposure of the upper portion in the axis direction. 38/75 Therefore, it prevents the canvas extension R2, R3 from adherence when wound, and thus ensures the smooth rearward movement of the outer roller 13. In addition, because the slide ropes 50 are drawn from the inside of the inner rotation shaft 12 by corresponding to the rearward movement of the outer roller 13, it prevents the canvas extension R2, R3 from wearing when wound on the external perimeter surface of the slide rope 50. Fifth embodiment of canvas take-up shaft Now, a canvas take-up shaft J5 of the fifth example shown in Figs. 25 - 27 is explained. Reference numeral 56 indicates a slide belt made of synthetic resin having a moderate elastic property. Approximately four of the slide belts are incorporated in the inner rotation shaft 12 extending along its axis. Reference characters 18B and 19B refer to end caps engaged in both the fore and the rear ends of the inner rotation shaft 12. Belt passages 183 and 193 for bending over each belt 56 in a U shape are formed on each one quarter of the external perimeter surface of the end cap from the cap main body to the cover portion. References characters 24B and 25B indicate end caps engaging both fore and rear ends of the outerwear roller 13, and each one quarter of the cap collar is formed with belt passages 265 for drawing the slide belts 56 formed on the cap main body along the axis of the inner shaft. Thus, the slide belts 56 along the inside of the guide projection 172 of the inner rotation shaft 12 are inserted along the axis of the inner rotation shaft 12; temporally drawn out from the inside of the belt passages 183, 193 of the end caps 18B, 19B; bent over; and drawn along the belt passage 265. Both ends of the belts are fixed with a clip 561, 562 for retention. The other slide belts 56 are incorporated in the same manner, and thereby four of the slide belts 56 are put across the inside outside of the canvas take-up shaft J5 along the axis of the inner shaft. As a result, the canvas extension R2, R3 wound on the inner rotation shaft 12 exposed by the rearward movement of the outer roller 13 is indirectly wound on the external perimeter surface of the slide belts 56 along the guide projections 172 of the inner rotation shaft 12, the external diameter of which is increased by the exposure of the upper portion along the axis of the inner rotation shaft. 39/75 As a result, the smooth forward movement of the outer roller 3 is ensured, and the wearing of the canvas extension R2, R3 is prevented. In addition, to motorize the inner rotation shaft 12 to operate the above canvas take-up shaft J4, J5 electrically, components such as an electric motor 54, a bearing socket 55, and end caps 19C shown in Figs. 17(A) and 17(B) are incorporated in the inner rotation shaft 12 as shown in Fig. 23(C) or Fig. 26(C), or an electric motor (not shown) is incorporated in one of the end caps 15, 16 of the casing. Second embodiment of corner awning device Now, an awning device S2 of the second embodiment shown in the perspective views of Figs. 28(A) - 28(C) and Figs. 29(D) and 29(F), and in the plan views of Figs. 30(A) - 30(F), is explained below. The awning device S2 is comprised of the canvas tension device K2 of the second example having a pair of two-phase swinging arms NI, N2 in parallel, which circularly rotate in a two-phase motion, and a canvas take-up device M1 having either one of the above canvas take-up shafts J 1-5 or either one of canvas take-up shafts J6-J8 explained later. The two-phase swinging arms NI and N2 are each comprised of rear arm 59 and front arm 60 connected foldably. The intermediate portions of the swinging arms are connected through a connection rod 61. The arm front ends are pivoted at the brackets 48 and 49 of the front bar 36. The brackets 46 and 47 of the bottom of the two-phase swinging arms N1, N2, that is, the bottom of the rear arm 59, are provided with a spring having a relatively low resilience, while the joint of the front arm 60 of the rear arm 59 is provided with a spring having a relatively strong resilience. Thus, when the corner canvas GI extended as shown in Figs. 28(A) or 30(A) is wound on the canvas take-up shaft J1-J5, firstly a pair of rear arms 59 biased by a low spring resilience starts being rotated arcuately rearward against the resilience bias, and folded by the wall through the swinging process shown in Figs. 28(A) - 28(C), or Figs. 30 (A) - 30(C), with the movement of the front bar 36 obliquely rearward in parallel. Furthermore, when the canvas take-up shaft J-15 rotates for winding, a pair of front links 60 biased by the strong spring resilience moves the front bar 36 obliquely rearward in parallel against the resilience bias, and the fore arm 60 is folded by the wall through the swinging process shown in Figs. 29(C) - 29(E), or in Figs. 30(C) - 30(E). 40/75 On the other hand, when the canvas take-up shaft J1-J5 is to be wound, first, a pair of the front arms 80 biased by a strong spring resilience is arcuately rotated in the forward spreading direction by the bias, pushing the front bar 36 obliquely forward in parallel. When the front arm 60 swings to the spreading angle as shown in Fig. 28(C) or Fig. 30(C), a pair of the rear arms 59 biased by a weak spring resilience rotates and swings to the spreading angle as shown in the Fig. 28(A) or Fig. 30(A), and thereby the front bar 36 is pushed further obliquely forward in parallel. In this manner, the corner canvas GI extends to the corner space and covers it. Thus, when the front bar is extended in two-phases towards the corner space obliquely forward by a linkage comprising two-phase swinging arms NI and N2 and a connection rod 61 for the arms, the front bar is able to push the front bar 36 further obliquely forward, compared with the case of the swinging arms 44 and 45 incorporated in the canvas tension device KI of the first example. In addition, in the above case, the angle connecting the bottom end and front end of the two-phase swinging arms N and N2 biasing the front bar 36 is adjusted to be around 70-80 degrees of the spreading angle as shown in Fig. 30(A), and the arms are controlled in their rotation by a stopper (not shown) as desired to be less than about 45-50 degrees of the swinging angle, and the swinging angle between the connection rod 61 and the rear arm 60 is to be less than about 120 degrees. In addition, the corner canvas G2-G4 may be extended or stored in such a manner that two of the awning devices S2 of the second embodiment are placed to face each other at the corner of the front wall WI and the side wall W2, and each canvas take-up shaft J I-J5 is constructed with an interlocking structure as shown in Figs. 18(A) and 18(B). Corner canvas G2-G4 of the second-fourth example as shown Figs. 19(A) 19(C), instead of the corner canvas GI of the first example, is connected via expansion and contraction members 10, and one of the canvas take-up devices MI and the other of the canvas take-up device MI are interlocked. Third embodiment of corner awning device Now, an awning device S3 of the third embodiment shown in perspective views in Figs. 3 1(A) and 3 1(B), and in plan views in Figs. 32(A) - 32(C), is explained below. The awning device S3 is comprised of the canvas tension device K3 of the third example provided with a pair of telescopic arms TI and T2 in parallel, which are free to expand and contract, a canvas take-up shaft Ml provided with either one of the 41/75 above described canvas take-up shafts J1-J5, or a canvas take-up shaft J6-J8 described later, wherein two of the awning devices are installed at the corner of the front wall WI and the corner of the side wall W2 in an orthogonally face-to-face relation. In the above case, one of the canvas take-up shafts J I - J5 and the other of the canvas take-up shafts J I - J5 are configured so that both ends of the front bars 36 are fixed orthogonally in a face-to-face relation, or fixed through the connection member 67 as shown Fig. 34. In the telescopic swinging arms T1, T2, the fore end of the rear arm 62 is slidably fitted in the fore arm 63, and configured to be expandable and contractible with a coil spring 64 or a rubber elastic body. The fore end of each front arm 63 is pivoted on the brackets 48, 49 of each front bar 36. A spring (not shown) biasing telescopic arms TI, T2 in the spreading direction is incorporated in the brackets 46, 47 of the bottom of the swinging arms TI, T2, as is the case with the canvas tension device Ki, K2 of the first and second examples. Thus, as shown in Fig. 32(A), when the corner canvases GI extended in one way and the other way are wound by interlocking the canvas take-up shafts J1-J5, each telescopic swinging arm TI, T2 is rotated rearward against the elastic biasing, and then the winding on the canvas take-up shafts JI-J5 is started, while one and the other front bars 36 translate toward the front wall WI or the side wall W2 with the rearward movement. However, because the fore ends of front bar 36 are integrated with each other, the telescopic swinging arms TI, T2 are rotated arcuately rearward, and are rotated rearward with expansion and contraction with the rear arm 62 and the front arm 63 sliding relatively, then folded by the wall as shown in Fig. 32(C), as simultaneously the integrated font bars 36 are drawn to the corner to be stored by the walls. On the other hand, as shown Fig. 32(C), when two canvas take up shafts JI-15 are unwindingly rotated interlockingly, each telescopic swinging arm TI, T2 is rotated with expansion and contraction in the spreading direction obliquely forward by the elastic biasing force, the integrated front bar 36 is pushed obliquely forward with parallel movement, and the corner canvas GI is extended to the corner. In this manner, the telescopic swinging arms TI, T2 of the canvas tension unit K3 are rotatably supported with bias, and make the arm length free for expansion and contraction, and thus a corner ornamental panel 67A orthogonal as shown in Fig. 33 is attached on the integrated front bar 36, which allows the corner ornamental panel 67A to have the function of advertisements for shops or sign-boards. 42/75 Fourth embodiment of corner awning device Now, a corner awning device S4 of the fourth embodiment shown in Figs. 33 36 is explained below. Reference number 65 corresponds to a slide rail comprising a guide-roller 66. As shown in Fig. 35, the slide rail is inserted in the front bar 36A to form a guide groove 361 of a guide roller 66 within the frame of the front bar. Brackets 48, 49 are fixed in the intermediate position of the slide rail 65, and in the end position of the slide rail 65 respectively. The front ends of swinging arms 44, 45 are pivoted on the brackets 48, 49 respectively. The guide-rollers 66 are bearing supported and spaced apart on the rail projection 651 projected in the front, central position of the slide rail 65, and retained by an engagement collar 362 formed in the back and upper/lower positions of the front bar 36. Thus, as shown in Fig. 34, when the corner canvases GI extended in one way and the other way are wound by interlocking canvas take-up shafts J1-35, each telescopic swinging arm 44, 45 is rotated rearward against the elastic biasing, and the winding on the canvas take-up shaft J1-J5 is started, while one and the other front bar 36 moves rearward, toward the front wall WI or the side wall W2 in parallel. In the above case, one of the canvas take-up shafts JI - J5 and the other of the canvas take-up shafts J1-J5 are configured so that the portion where both shafts meet is configured in an interlocking structure as shown in Fig. 18. Both ends of the front bars 36 are fixed orthogonally in a face-to-face relation, or fixed through the connection member 67 as shown Fig. 34. A spring (not shown) biasing swinging arms 44, 45 in the spreading direction is incorporated in the bracket 46, 47 of the bottom of the swinging arms 44, 45 as is the case with the canvas tension device KI-K3 of the first-third examples. Thus, as shown in Fig. 34, when the corner canvases GI extended in one way and the other way are wound by interlocking canvas take-up shafts J1-J5, each telescopic swinging arm 44, 45 is rotated rearward against the elastic biasing and the winding on the canvas take-up shaft JI-J5 is started, while one and the other front bar 36 moves rearward, toward the front wall W1 or the side wall W2 in parallel. However, because the fore ends of front bars 36A are integrated with each other, the swinging arms 44, 45 are rotated arcuately rearward, first by sliding the sliding rail 65 rearward temporarily on each front bar as shown in the intermediate stage of Fig. 36, and then by sliding it forward, and the swinging arms are folded by the wall as shown in 43/75 Fig. 36, as simultaneously the integrated font bars 36A are drawn to the corner to be stored by the wall. On the other hand, when both of the canvas take-up shafts J1-J5 are interlockingly rotated for unwinding, each swinging arm 44, 45 is rotated arcuately obliquely forward in the spreading direction by the elastic biasing force, which pushes and translates linearly the integrated front bars 36A over the corner spaces obliquely forward, and thus the corner canvases G 1 are extended over the corner spaces. In the above case, the bracket 48 of the fore end of the swinging arm 44 is attached adjacent the intermediate part of the slide rail slightly shorter than the length of the front bar 36A as shown in Fig. 34. However, if the length of the slide rail is about half, the bracket 48 is attached on a portion in proximity to the fore end of the slide rail 65. Fifth embodiment of corner awning device Now, an awning device S5 of the fifth embodiment shown in the perspective views of Figs. 37(A) - 37(C) and in the plane views of Figs. 38 (A) - 38(C) is explained. This awning device S5 is comprised of a combination of a canvas tension device K5 of the fifth example having double foldable swinging arms V1, V2 bending and stretching like a leapfrog, the canvas take-up device MI I having either one of the above described canvas take-up shafts J1-J5, or canvas take-up shafts J6-J8 described later, with two of the awning devices being configured in the comer place of the front wall W1, and the comer of the side wall W2, in an orthogonally face-to-face relation. In the above case, one of the canvas take-up shafts JI - J5 and the other of the canvas take-up shafts 31-J5 are configured so that the portion where both shafts meet is configured in an interlocking structure as shown in Fig. 18. Both ends of the front bars 36 are fixed orthogonally in a face-to-face relation, or fixed through the connection member 67 as shown Fig. 34. The bi-foldable swinging arms V1, V2 are each comprised of a rear arm 59 and a fore arm 60, both of which are bi-foldably connected. The swinging arms V1, V2 are connected by extending a connection rod 61 between the bi-foldable joints thereof. The fore end of the bi-foldable swinging arm VI that is closer to the corner is pivoted at the bracket 48 fixed toward the fore end of the front bar 36, while the fore end of the bi-foldable swinging arm V2 that is located rearward of the other arm is pivoted at the bracket fixed on the front bar 36 near the intermediate part. 44/75 In the brackets 46, 47 at the bottom end of the bi-foldable swinging arms VI, V2, that is, in the bottom end of the rear arms 59, a spring (not shown) biasing the arms in the spreading direction is incorporated. Also, in the bi-foldable joints of the rear arm 59 and the front arm 60, a spring (not shown) biasing the arms 59, 60 in the spreading direction is incorporated. Thus, as shown in Figs. 37(A) and 38(A), when the corner canvases GI extended to one and the other directions are wound by interlocking the canvas take-up shafts J1-J5, each bi-foldable swinging arm VI, V2 rotates obliquely rearward against the spreading biasing force while bi-folding, and at the same time moves the integrated front bar 36 linearly rearward toward in parallel to the line that divides the corner into two, and translates it toward the front wall WI and the side wall W2. Then the arms are folded by the wall while they draw the integrated front bar 36 to be stored by the wall. On the other hand, when both of the canvas take-up shafts J I -J4 are interlockingly rotated for unwinding, each bi-foldable swinging arm 44, 45 is rotated forward in the spreading direction by the elastic biasing force, which pushes and translates linearly the integrated front bar 36 obliquely forward, and thus the corner canvas GI is extended over the corner space. Sixth example of canvas take-up shaft A canvas take-up shaft J6 shown in the sixth example of Figs. 39(A) and 39(B) is explained below. This take-up shaft J6 is configured so that the outer roller 13 rotating integrally with the inner rotation shaft 12 moves forward/rearward in the axis direction by means of a rack work. Reference number 91 refers to a worm-gear fitted to the rear end of the end cap 25. Reference 92 indicates a worm rack formed on the internal surface of the back of the casing 11. The worm gear 91 engages the rack 92. Thus, when the inner rotation shaft 12 and the outer roller 13 are integrally rotated by means of a manually operated device, the outer roller starts moving in the axis direction with rotation via engagement of the worm gear 91 and the worm rack 92, while the outer roller 13 is moved forward/rearward with the sliding guidance by the inner rotation shaft 12 by the tension force of the canvas tension unit KI-K5 and the tensile force of the connection wires 34, 35. 45/75 Thereby, the canvas main body RI is wound on the outer roller 13, and the canvas extension R2, R3 is wound on the inner rotation shaft 12 exposed by the rearward movement of the outer roller 13. In addition, by winding the corner canvas G1 on the canvas take-up shaft J6, the take-up diameter varies, and then the circumferential speed of the take-up shaft J6 becomes gradually fast or slow. Thus, to secure the interlocking, it is preferable to gradually widen the space of the rack of the worm rack 92. In addition, in the above case, because the outer roller 13 is secured to be moved forward/rearward by the rackwork, the connection wires 34, 35 are not required. In addition, although structures other than the above described structure are shown as is the case with the canvas take-up shaft JI of the first example, a rackwork as described above can be incorporated in any of the canvas take-up shafts J2-J5 of the first-fifth examples. Seventh example of canvas take-up shaft A canvas take-up shaft J7 of the seventh example shown in Figs. 40(A) and 40(B) is explained below. This take-up shaft J7 is comprised of: an inner fixing member 12B supporting the outer roller 13 slidabley and rotatabley. An electric drive unit (a manually operated device is also acceptable) forward/reverse rotates the outer roller itself. In this regard, in the canvas take-up shaft JI - J6 of the first-sixth examples, the inner rotation shaft 12 and the outer roller 13 are integrally rotated by forward/reverse rotating the inner rotation shaft 12, 12A with a manually or electrically operated unit, while in the canvas take-up shaft J7 of the seventh example, the outer roller is provided with the drive unit that forward/reverse rotates the outer roller 13 itself. Therefore, it makes the rotation of the inner shaft unnecessary, and the inner shaft is just for guiding the outer roller 13 and enabling its rotation. The rotation of the shaft itself is not an issue. Upon consideration of these factors, the word "inner fixed shaft 12B" is adopted instead of the inner rotation shaft 12, 12A. Reference character 16A represents a storing case for the drive unit, also serving as a end cap fitted to the rear end of the casing 11, the fore/rear ends of the inner fixed shaft 12B are fittingly fixed at a bearing 153 of the end cap and a bearing 163 is projected from the storing case 16A. An electric motor (not shown) is mounted in the storing case 16A, and a drive gear 68 is fitted on the output shaft. 46/75 Reference characters 24C and 25C represent end caps respectively fitted into the fore and rear ends of the outer roller, and a spur gear 69 is fittingly fixed on the rear end of the end cap 25C. Reference numeral 70 represents three rod spur gears fittingly fixed on the gear rotation shaft 701. Reference number 71 represent a bearing nut fixed at the upper back corner of the casing 11. The gear rotation shaft 701 is passed through holes 711 at the offset corner, and three rod gears 70 are rotatably borne between the bearing nuts 71. The spur gear 69 fitted on the outer roller 13 engages the rod gear 70, and the rear end of the rod gear 70 engages the driving gear 68. Thus, the driving gear 68 drives by means of the electric motor to rotate the outer roller 13 via engagement of the rod gear 70 and the spur gear 69, while the outer roller 13 is moved forward and rearward with the sliding guide of the inner fixed shaft 12B by elastic bias force of the canvas tension device KI-K5, tension of the canvas G1, and tensile force of the connection wires 34 and 35. Thereby, the canvas main body RI is wound on the outer roller 13, and the canvas extensions R2, R3 are wound on the inner fixed shaft 12 exposed by the rearward movement of the outer roller 13. Eighth example of canvas take-up shaft A canvas take-up shaft J8 of the eighth example shown in Figs. 41(A) and 41(B) is explained below. This take-up shaft J8 serves to move forward and rearward the outer roller 13 in the axis direction by a rack work in the canvas take-up shaft J7 of the example 7. Reference number 92 indicates a rack projected from the inner fixed shaft 12B by spacing one another in an axis direction, the rack engaging an internal thread formed on the inner perimeter surface of the end cap 25C. Thus, the outer roller 13 is moved forward and rearward with the sliding guide of the inner fixed shaft 12B by the rotation of the outer roller 13 via the engagement of the rod gear 70 and the spur gear 69 when an electric motor drives, while the engagement of the internal thread 252 of the end cap 25C to the rack 93 of the inner fixed shaft 12B, and further by the elastic biasing force of the canvas tension device KI-K5, the tension force of the canvas GI, and the tensile force of the connection wires 34,35. 47/75 Thereby, the canvas main body RI is wound on the outer roller 13, and the canvas extensions R2, R3 are wound on the inner fixed shaft 12 exposed by the rearward movement of the outer roller 13. Although in the above case the rack 92 engaging the internal thread 252 is formed on the inner fixed shaft 12B in the axis direction, it is also possible to form a helical thread (not shown), e.g., an external thread, on the outer perimeter surface to move the outer roller 13 forward and rearward by the engagement of the two threads. In addition, instead of the internal screw 252, an engaging projection (not shown) may be formed on the inside of the end cap 25C to engage the external thread. In addition, in the case of the canvas take-up shaft J7, J8 of the above described seventh and eighth examples, a manually operated drive unit for directly driving the drive gear 68 or the rear end of the rod gear 70 may be incorporated in the storing case 16A. Similarly, if slide ropes or slide belts shown in the canvas take-up shaft J4, J5 of the fourth and fifth examples are incorporated in the canvas take-up shaft 17, J8, the adhesive winding at the time of the winding of the canvas extension RI, R2 will be prevented, and the smooth movement of the outer roller 13 will not be impaired as is the case of the canvas take-up shaft J4, J5. Sixth embodiment of corner awning device Now, a comer awning device S6 of the sixth embodiment shown in Figs. 42 45 is explained below. This is an embodiment in which a drive unit of the swinging arms 44, 45 is incorporated in the canvas tension device K6 of the sixth example, and the canvas take-up shaft J9 of the ninth example being the main part of the canvas take-up device M2 is made to be the driven side. The drive unit of the swinging arms 44, 45 shown in Fig. 44 is explained below. Reference characters 46A and 47A are associated with brackets pivoting the bottom end of the swinging arms 44 and 45. Reference number 72 represents an intermediate bracket attached on the front wall along the line connecting the bracket 46A with the bracket 47A. Reference number 73 indicates a rotation shaft crossed across the bottom ends of the swinging arms 44, 45. Worms 741 and 742, and a bevel gear 751, are placed in lateral bearings 461, 471, and 742 of brackets 46A, 47A, and 72 respectively, with the worms 741 and 742 inserted onto both ends of the rotation shaft 48/75 73. The bevel gear 751 is inserted onto the intermediate part of the rotation shaft 73, which passes though the lateral bearing. Reference numbers 761 and 762 indicate worm gears each fixed on the bottom end of spindles 442, 452 of swinging arms 44, 45, the worm gears being pivoted in vertical bearings 462, 472 and engaging with the worms 741, 742. Reference 752 refers to a bevel gear engaging a bevel gear 751. The bevel gear is fitted on the top end of the rotation shaft 22 fitted to bearing 722 of the middle bracket 72. A hook 23 is formed on the bottom end of rotation shaft 22. Thus, swinging arms 44 and 45 are interlockingly parallel-rotated by forward and reverse rotating the rotation shaft by attaching an operating lever on the hook 23. Ninth example of canvas take-up shaft Now, a canvas take-up shaft J9, which is the driven side shown in Fig. 45, is explained below. Reference number 77 indicates a coil spring inserted into the latter half of the inner rotation shaft 12. Reference number 78 refers to a disc-shaped spring-stopping socket. The fore end and the rear end of the coil spring 771 are inserted into a hole 782 made in an off center position of the spring stopping socket, and a hole 192 made in an off center position of the end cap 19, respectively. Reference number 79 indicates a fixed axle extending from a central hole 190 of the end cap 19 through a coil spring 77. The fore end 791 and rear end 792 of the axle are fitted into the central hole 781 of the socket 78, and the central hole of a bearing 161 of the end cap 16, respectively. Thus, when the inner rotation shaft 12 is rotated via outer roller 13, the coil spring 77 is compressed gradually via the end cap 19 of the rotation shaft 12, and then elastic energy is accumulated in the coil spring 77, or the accumulated elastic energy is released. Specifically, when winding of the canvas G1-G4 on the canvas take-up shaft J9 is completed, the elastic energy is released with some preload remaining. On the other hand, as the canvas GI-G4 is extended, the elastic energy is gradually accumulated in the coil spring 77, and the maximum elastic biasing force is accumulated therein at the completion of the extension. 49/75 Effect of awning device of sixth embodiment Thus, as shown in Figs. 42 and 43, to wind the extended comer canvas G 1-G4 on the canvas take-up shaft J9, an operating lever (not shown) engaged to a hook 23 of the manually operated unit is rotated. The rotation shaft 73 is rotated via the engagement of spur gears 752 and 751, while swinging arms 44 and 45 are arcuately rotated rearward via the engagement of the worms 741 and 742 and the worm gears 761 and 762, so that the front bar 36 is translated obliquely rearward. In the above case, tensioning force works on the front bar 36 with enough elastic energy to wind the extended corner canvas G1-G4. Therefore, when the restraint force by swinging links 44, 45 against the extended canvas GI-G4 fades, the elastic biasing force of the coil spring 77 with the maximum elastic energy accumulation at the completion of the extension is released. Thereby the inner rotation shaft 12 and the outer roller 13 are integrally rotated to wind the canvas top side I and 1A fixed on the outer roller 13. In this way, the swinging arms 44 and 45, which is the driven side, are rotated rearward and the front bar 36 is translated obliquely rearward while the tensile force of the connection wires 34, 35 is converted to the rearward sliding force of the outer roller 13 and the outer roller 13 is moved rearward in the axis direction of the inner rotation shaft 12. Thereby the canvas body part RI is wound on the outer roller 13, and the canvas extension R2, R3 is wound on the inner rotation shaft 12 exposed by the rearward movement of the outer roller 13. On the other hand, when the canvas G 1-G4 wound on the canvas take-up shaft J9 is to be extended toward the corner space of the building, the user rotates the operating lever in the opposite direction from the above. The two swinging arms 44 and 45 folded by the wall are arcuately rotated in the spreading direction thereof, and the front bar 36 attached to the fore ends of the arms is pushed and translated toward the corner space obliquely forward. In addition, the inner rotation shaft 12 and the outer roller 13 are integrally reverse rotated, the corner canvas G1 wound on the canvas take-up shaft J I is unwound, and the elastic energy is accumulated by compressing the coil spring 77. In addition, the sliding force to the outer roller 13 in the forward direction is actuated by the rotation force of the swinging arms 44, 45 affecting the front bar 36 and the tensile force of the connection wires 34, 35 unwound. Thereby the outer roller 13 is reverse rotated with forward movement along the inner rotation shaft 12. 50/75 In this manner the corner canvas GI is smoothly extended towards the corner space obliquely forward by the extension of the front bar 36 with the elastic biasing force of the swinging arms 44, 45, by the integral reverse rotation of the inner rotation member 12 and the outer roller 13, and by the forward movement of the outer roller 13. Tenth example of canvas take-up shaft Now, a canvas take-up shaft J 10 of the driven side of the tenth example shown Fig. 46 is explained. Reference character 25C refers to an end cap fittingly fixed on the rear end of the outer roller 13, the end cap having a pipe shaft 81 projected rearward thereon. Reference number 82 is a cover plate fitted onto the pipe shaft 81. Reference number 83 points to a whorl spring made of a spirally-wound leaf spring, the whorl spring fittingly supported by the pipe shaft 81. The spring end 831 of the whorl spring is fitted into a slit 811. Reference number 84 indicates a slide case fixed at the rear end of the outer roller 13, the slide case being fitted into a pipe shaft 81 as the storage case of the whorl spring 83, and being moved forward and rearward with the sliding guidance of the internal surface of the casing 11. Reference number 842 showns a locking portion, which is projected from a corner of the slide case 84, and which lockingly fixes an outer spring end 832 of the whorl spring 83. Reference number 85 refers to a retaining washer, which is fitted on a rear end of the pipe shaft 81, and which retains and supports the cover plate 82, the whorl spring 83, and the slide case 84, which are sequentially fitted on to the pipe shaft 81. Reference numbers 241 and 251 indicate through holes for the inner fixed shaft 12B. Reference number 821 is associated with a hole in the cover plates 82. Reference number 841 indicates a hole in a slide case. Thus, when the outer roller 13 slidably fitted on, supported, and guided by the inner fixed shaft 12B is rotated, the whorl spring 83 is gradually compressed via the end cap 25C of the outer roller 13, and the elastic energy is accumulated in the spring 83 or the accumulated elastic energy is released. Specifically, when the winding of the canvas G1-G4 on the canvas take-up shaft J 10 is completed, the elastic energy is released with some pre-load remaining. On the other hand, as the canvas GI-G4 is extended, the elastic energy is gradually accumulated in the coil spring 77, and the maximum elastic biasing force is accumulated therein at the completion of the extension. 51/75 In addition, in case that the canvas take-up shaft J7, J8 shown respectively in Figs. 40 and 41 is the driven side, the drive gear 68 is not required, and the winding and unwinding of the corner canvas Gl-G4 is achieved by accumulating or releasing the elastic energy in the whorl spring by driving the rotating rod gear 70 via the outer roller 13 by incorporating the whorl spring (not shown) in the storage case 16A as shown in Fig. 46(B). Modified example of the adhesive winding prevention means Eleventh example of canvas take-up shaft In Fig. 47 showing the canvas take-up shaft J11 of the eleventh example, the reference character 56A indicates an elastic belt made of rubber (which may also be a rope). Around four of the elastic belts are incorporated between the external perimeter surface of the inner rotation shaft 12 and the internal perimeter surface iof the outer roller 13. The elastic belts 56 are each inserted into and between a guide projection 172 of the external perimeter surface of the inner rotation shaft 12 and the internal perimeter surface of the outer roller 13, in the axis direction. The fore and rear ends of each elastic belt are drawn out along a belt passage 265 of end caps 24B and 25B. The fore end of each belt is turned inside through a belt passage 183 of the end cap 18B, and is retained with a clip 561 in the inside of the end cap 18B. Further, the rear end of each belt is drawn out from the belt passage 265 of the end cap 25B, and retained with a clip 562. Further, all of the elastic belts 56A are incorporated in the same manner as the above, and thereby four elastic belts 56A are disposed across the inner rotation shaft 12 in the axis direction. When the outer roller is moved rearward, correspondingly the elastic belts 56A are extended along the guide projections 172 of the inner rotation shaft 12 and exposed, and the canvas extension R2, R3 is indirectly wound on the external perimeter of the elastic belt. As a result, the smooth forward movement of the outer roller 13 is ensured, and the wear of the canvas extension R2, R3 is prevented. In addition, an elastic rope instead of the elastic belt 56A may be incorporated in the canvas take-up shaft J4 shown in Figs. 22-24. 52/75 Twelfth example of canvas take-up shaft Now, in Figs. 48(A) and 48(B) showing the canvas take-up shaft of the twelfth example, reference number 90 indicates a coil spring wound on the fore end of the inner rotation shaft 12, 12A or the inner rotation fixed shaft 12B. When the canvas is extended, the coil spring is housed in a compressed state in the fore end of the outer roller 13 moved forward as shown in Fig. 48(A). At the time of winding of the corner canvas G1-G4, as the outer roller 13 is moved rearward, the coil spring 90 is extended on the external perimeter surface of the inner shaft 12, 12A, 12B and exposed, and the canvas extension R2, R3 is thus indirectly wound on the external perimeter surface of the coil spring. Thereby, the smooth rearward and rearward movement of the outer roller 13 is ensured. Thirteenth example of canvas take-up shaft In Fig. 49 showing the canvas take-up shaft J13 of the thirteenth example, reference number 94 is a sheet magnet that is attached on the front half of the external perimeter surface, and reference number 95 is a sheet magnet fixed on the edge of the oblique side 3, 5, 5A of the corner canvas GI-G4. In addition, the outerwear roller 13 is made of nonmagnetic material. Thus, when the canvas extension R2, R3 are wound on the external perimeter surface of the inner shaft 12, 12A, 12B exposed by the rearward movement of the outer roller 13, adhesive winding is prevented because the canvas oblique side 3, 5, 5A is magnetically levitated with the magnetic force. In the above case, a sheet magnet 94 may be fixed across the overall length of the external perimeter surface of the inner shaft 12, 12A, 12B. In that case, the outer roller 13 is supported in a state of magnetic levitation against the inner shaft 12, 12A, 12B, and the sliding friction at the time of the forward and rearward movement of the outer roller 13 is eliminated or substantially reduced, which makes the forward and rearward movement of the outer roller 13 dramatically smoother. 53/75 Other modified examples of corner canvas Finally, some modifications of the corner canvas G I -G4 are explained below. In Figs. 50(A)- 50(C), Reference number 86 indicates an edge cloth fixed on the front surface of the canvas oblique side 3, 5, 5A, the thickness of the edge cloth increasing continuously toward the canvas bottom side 2, 2A from the canvas top side. Thus, when the canvas extension R2, R3 is wound into a roll on the external perimeter surface of the inner rotation shaft 12, 12A or the inner fixed shaft 12B exposed by the rearward movement of the outer roller 13, the sheet 86 is wound in a helically rising condition as shown in the cross-sectional view of Fig. 50(C). Thereby, it prevents the canvas extension R2, R3 from being adhesively wound on the external perimeter surface of the inner rotation shaft 12, 12A or the inner fixed shaft 12B, and thus the edge sheet 86 wound helically is utilized as a spacer, which ensures the smooth movement of the outer roller 13. Further, although the edge sheet 86 is formed to be continuously thicker in the thickness in the above manner, it may be formed to be thicker step-by-step, e.g., every winding or every two windings. In Fig. 51, reference number 89 refers to a band plate rim with spring elastic. The plurality of the band plates is fixed by sewing in the canvas in a length wise, parallel densely arrangement spaced apart from one another and extending from the canvas main body RI to the canvas extension R2, R3, or they are inserted into the inside of the pouch passage formed in a lengthwise, parallel arrangement. Thus, when the canvas GI-G4 provided with the ribs 89 is wound on the outer roller 13, they are wound with some clearance between the inner shaft 12 having a smaller diameter than the outer roller 13 and the external perimeter surface of the canvas extension R2, R3. Therefore, the smooth movement of the outer roller 13 is ensured, and the wear of the canvas extension R2, R3 is prevented. In Figs. 52(A) and 52(B), reference numbers 87 and 88 indicate connection belts fixed by sewing on the diagonal lines connecting the corners of the canvas main body RI. The ends of the belts, which project from the canvas RI, have holes 871, 872, 881 and 882. Thus, to attach the canvas top side 1, 1 A of the corner canvas G I -G4 and the canvas bottom side 2, 2A on the outer roller 13 and the front bar 36, 36A respectively, they are fixed by screwing a screw (not shown) into each engagement hole 271, 272, 39, 40. 54/75 Although the connection belts 87 and 88 are fixed on the canvas main body RI in the form of a letter of X in the above case, the connection belts 87A and 88B may be fixed by sewing in the inverted V as shown in Fig. 53, ropes may be used instead of the belts, or the connection wires 34, 35 are fixed in the form of a letter of X or V. INDUSTRIAL APPLICABILITY The present invention provides the corner canvas and the take-up shaft therefore, and corner awning device, as described above. Thus, an epoch-making novel product is provided to the industry, which dramatically enhances ornamentality and external appearance in the corners of various buildings and which abounds in the technical interests and utility as a corner awning device. 55/75

Claims (53)

1. A corner canvas having a substantially right-angled trapezoidal shape when extended.
2. A corner canvas comprising: a rectangular canvas main body R 1; a right-angled triangular canvas extension R2, R3 extended from one side of said canvas main body.
3. A corner canvas, wherein: a canvas top side 1, 1A and a canvas bottom side 2, 2A are formed in parallel; a canvas oblique side 3, 5, 5A extends towards said canvas bottom side 2, 2A; and a canvas vertical side 4 is formed substantially perpendicular to said canvas bottom side 2, 2A.
4. A corner canvas, wherein a canvas vertical side 6 extends vertically from one end of said canvas bottom side 2 of claim 3, and an elastic member 10 is attached proximate to the intersection point of said canvas vertical side 6 and said canvas oblique side 5.
5. A corner canvas, wherein a canvas oblique side 8 extending obliquely upward from one end of said canvas bottom side 2 of claim 3, and has an elastic member 10 in proximity to the intersection point of said canvas oblique side 8 and said canvas oblique side 5.
6. A corner canvas, wherein: said canvas top side IA of claim 3 and said canvas bottom side 2A are formed in parallel; a canvas oblique side 5A is extended out from said canvas bottom side 2A; a downward folding line 9 is formed from one end of said canvas top side IA to one end of said canvas bottom 2A; said canvas vertical side 4 is formed substantially vertical; a canvas oblique side 8 is formed obliquely upward from one end of said canvas bottom side 2A; a elastic member 10 is attached proximity to the intersection point of said canvas oblique side 8A and said canvas oblique side 5A. 56/75
7. A corner canvas, wherein edge cloths 86 are fixed in the peripheral area of said canvas oblique side 3, 5, 5A of claims 3 - 6, the thickness of said edge cloths increasing continuously or step-by-step toward said canvas bottom sides 2, 2A from said canvas top side 1, IA.
8. A corner canvas, wherein a sheet magnet 95 is fixed in the peripheral area of said canvas oblique side 3, 5, 5A of claims 3 - 6.
9. A corner canvas, wherein ribs 89 are incorporated therein in a lengthwise, parallel arrangement extending from said canvas main body RI to said canvas extension R2, R3 of claim 2.
10. A corner canvas, wherein cross passages 32 and 33 are formed on diagonal lines connecting four corners of said canvas main body RI of claim 2, said cross passages 32 and 33 receiving tension members such as connection wires 34 and 35 or connection belts 87 and 88.
11. A corner canvas, wherein said canvas main body RI of claim 2 is provided with tension members, such as connection belts 87 and 88 or 87A and 88A, or said connection wires 34 and 35, in the form of a letter X or V.
12. A canvas take-up shaft, wherein an outer roller 13 is slidably and rotatably fitted on an inner shaft 12, 12A, 12B, wherein said outer roller 13 winds said canvas main body R1 of claim 2 thereon, and said inner shaft 12, 12A, 12B is exposed by a set back movement of said outer roller 13 winds a canvas extension R2, R3 of claim 2 thereon.
13. A corner canvas take-up shaft of claim 12, moving forward while rotating said outer roller 13 to unwind said corner canvas when said corner canvas G 1 - G4 is to be unwound.
14. A corner canvas take-up shaft, wherein said inner shaft of claim 12 is said inner rotation shaft 12, 12A; and said outer roller 13 is slidably and rotatably fitted on and supported by said inner rotation shaft 12, 12A. 57/75
15. A corner canvas take-up shaft of claim 14, wherein said canvas extension R2, R3 of claim 2 is wound on said inner rotation shaft 12 exposed by a rearward movement of said outer roller 13; and when said corner canvas GI-G4 is to be unwound, said outer roller 13 is moved forward while rotating to unwind said corner canvas GI-G4.
16. A corner canvas take-up shaft of claim 14 or 15, wherein: a canvas outlet 14 is formed open in the front of said casing 11 for storing said corner canvas G I -G4; and an inner rotation shaft 12, 12A is bearing supported in said end caps 15, 16 fitted into said casing 11.
17. A corner canvas take-up shaft of claim 14 or 15, wherein: said end caps 15 and 16 of claim 16 are end brackets for bearing; and said inner rotation shaft 12 is bearing supported in said end brackets.
18. A corner canvas take-up shaft of claims 14-17, wherein: a warm gear 91 is fitted to the rear end of said outer roller 13; and a worm rack 92 engaging said worm gear 91 is mounted on an inner wall of the casing 11, which stores the corner canvas G 1 - G4.
19. The corner canvas take-up shaft, wherein a coil spring 77 is incorporated in said inner rotation shaft 12, 12A of claim 14-17, said coil spring 77 accumulating or releasing the forward/rearward rotation force of an outer roller 13 as elastic energy.
20. A corner canvas shaft, wherein: a fixed shaft 79 is inserted into a coil spring 77; one end of said coil spring 77 is fixed to a spring stopping socket 78 mounted on the fore end of said the fixed shaft 79 and is inserted into a inner rotation shaft 12; the other end of said fixed shaft 79 is inserted through an end cap 19; and the other end of said coil spring 77 is fixed to said end cap 19 and said other end of said fixed shaft 79 is fixed to an end cap 16 of a casing 11.
21. A corner canvas take-up shaft of claim 14 or 15, wherein a casing 11 for storing said corner canvas GI - G4 bears and supports said inner rotation shaft 12A, the shaft length of which is 1/2 - 2/3 of the length of said casing 11; and a slide bearing 58 moving forward and rearward by guided by said casing 11 attached to the rear end of said outer roller 13. 58/75
22. A corner canvas take-up shaft of claims 14-21, wherein a manually or electrically operated drive unit incorporated in one end of said inner rotation shaft 12, 12A to integrally forward/reverse rotate said inner rotation shaft 12, 12A and said outer roller 13.
23. A corner canvas take-up shaft of claims 14-22, wherein an electric motor 54 is incorporated in said inner rotation shaft 12, 12A to integrally forward/reverse rotate said inner rotation shaft 12, 12A and said outer roller 13.
24. A corner canvas take-up shaft, wherein: a motor output shaft 541 and a fixed shaft 542 are formed at the both fore and rear end of said electric motor 54 of claim 23; said motor output shaft 541 is fitted in a bearing socket 55 fitted into an inner rotation shaft 12, 12A; said fixed shaft 542 is fittingly fixed to an end cap 16 of a casing 11 or bearing portion 161 of said end brackets for bearing.
25. A corner canvas take-up shaft of claim 14-24, wherein guide grooves 171 and guide projections 172 are formed along the axis of said inner rotation shaft 12, 12A.
26. A corner canvas take-up shaft of claims 14-25, wherein: said end caps 24 and 25, 24A and 25A, 24B and 25B are fitted to said outer roller 13; the internal perimeter surface of said end caps 24 and 25, 24A and 25A, 24B and 25B has guide projections 261 and guide grooves 262 slidably engaging said guide grooves 171 and said guide projections 172 of claim 25.
27. A corner canvas take-up shaft, wherein: a canvas outlet 14 is formed open in the front surface of a casing 11 for storing a corner canvas G I -G4; an inner rotation shaft 12, 12A having guide grooves 171 and guide projections 172 is bearing supported in end caps 15 and 16 fitted to said casing 11; an outer roller 13 is slidingly and rotatably fitted on and supported by said inner rotation shaft 12, 12A; guide projections 261 and guide grooves 262 slidably engaging said guide grooves 171 and said guide projections 172 are formed on the internal perimeter surface of end caps 24 and 25, 24A and 25A, 24B and 25B. 59/75
28. A corner canvas take-up shaft, wherein: a casing II for storing a corner canvas GI G4 bearing supports an inner rotation shaft 12A forming guide grooves 171 and guide projections 172 in the axis length, the shaft length of said inner rotation shaft being 1/2 2/3 of the length of said casing 11; end caps 24 and 25, 24A and 25A, 24B and 25B are fitted to an outer roller 13; the internal perimeter surface of said end caps 24 and 25, 24A and 25A, 24B and 25B has a guide projections 261 and a guide grooves 262 slidably engaging said guide grooves 171 and said guide projections 172; and a slide bearing 58 moving forward and rearward by guided by said casing 11 is formed at the rear end of an outer roller 13.
29. A corner canvas take-up shaft of claim 27, wherein: a worm gear 91 is fitted to the rear end of said outer roller 13; and a worm wrack 92 engaging said worm gear 91 is mounted on an internal wall surface of said casing 11.
30. A comer canvas take-up shaft of claim 27 or 28, wherein said coil spring 77 is incorporated for accumulating or releasing forward/reverse rotatory power of said outer roller 13 as elastic energy.
31. The corner canvas take-up shaft of claim 30, wherein said fixed shaft 79 is inserted through said coil spring 77; said coil spring 77 engages said spring stopping socket 78 fixed to the end of said fixed shaft 79; said coil spring 77 is inserted through the inside of said inner rotation shaft 12; the other end of said fixed shaft 79 is inserted through said end cap 19; and the other end of said coil spring 77 is fixed to said end cap 19 and said coil spring is fixed on said end cap 16 of said casing 11.
32. A corner canvas take-up shaft, wherein: said inner shaft of claim 12 is an inner fixed shaft 12B; and an outer roller 13 is slidably and rotatably fitted on and supported by said inner rotation shaft 12B. 60/75
33. A corner canvas take-up shaft of claim 32, wherein said canvas extension R2, R3 of claim 2 is wound on said inner fixed shaft 12B exposed by the rearward movement of said outer roller 13; when said corner canvas GI-G4 is unwound, said outer roller 13 is moved forward while rotating to unwind said corner canvas G I -G4.
34. A corner canvas take-up shaft of claim 32 or 33, wherein: a spur gear 69 is fitted to the rear end of said outer roller 13; and a rod gear 70 engaging said spur gear 69 is mounted on a internal wall surface of said casing 11.
35. A corner canvas take-up shaft of claim 34, wherein: an end cap 25C is fitted to the rear end of said outer roller 13; an internal thread 252 is formed on the internal perimeter surface thereof; a rack 93 or an external thread engaging said internal thread 252 is formed on said inner fixed shaft 12B.
36. A corner canvas take-up shaft of claim 34, wherein: said end cap 25C is fitted into the rear end of said outer roller 13; an engaging projection is formed on the inside of said cap; and an external thread engaging said projection is formed on the outer perimeter surface of said inner fixed shaft 12B.
37. A corner canvas take-up shaft, wherein a coil spring or a whorl spring is incorporated in one end of said rod gear 70 of claim 34 for accumulating or releasing forward/reverse rotation force of an outer roller 13 as elastic energy.
38. A corner canvas take-up shaft of claim 32 or 33, wherein a whorl spring 83 is incorporated at the rear end of said outer roller 13 to accumulate or release forward/reverse rotatory power as elastic energy.
39. A corner canvas take-up shaft of claim 32 or 33, wherein: said canvas outlet 14 is formed open in the front of said casing 11 for storing said corner canvas GI-G4; said inner fixed shaft 12B is fixed to said end cap 15, 16, 16A fitted to said casing 11. 61/75
40. A corner canvas take-up shaft of claim 32 and 33, wherein: said end cap 15, 16, 16A of claim 39 is a fixing end bracket; and an inner fixed shaft 12B is fixed to said end bracket.
41. A corner canvas take-up shaft of claim 39, wherein: said storing case 16A served as an end cap is mounted at the rear end of casing 11; said storing case 16A is provided with a electric drive unit of a drive gear 68 engaging said rod gear 70 of claim 34, or a manually or electrically operated drive unit to forward/reverse rotate said rod gear 70.
42. A corner canvas take-up shaft of claim 38, wherein: a pipe shaft 81 is projected from said end cap 25C fitted to the rear end of said outer roller 13; a whorl spring 83 is fitted onto said pipe shaft 81; a spring inner end 831 of said spring 83 engages said pipe shaft 81; a spring outer end 832 of said spring 83 engages a slide case 84 fitted onto said pipe shaft 81.
43. A corner canvas take-up shaft, wherein a canvas outlet 14 is formed open in the front of a casing I I for storing a corner canvas GI-G4; an inner fixed shaft 12B is fixed to an end cap 15, 16, 16A fitted into said casing 11; an outer roller 13 is slidably and rotatably fitted on and supported by said inner fixed shaft 12B; a spur gear 69 is fitted to the rear end of said outer roller 13; a rod gear 70 engaging said spur gear 69 is attached on an inner wall of said casing 11 storing said corner canvas GI-G4; and a electric drive unit for a driving gear 68 engaging said rod gear 70 is incorporated in a storing casing 16A, or a manually operated or electrically operated drive unit forward/reverse rotating said rod gear 70 is configured.
44. A corner canvas take-up shaft of claim 43, wherein: said end cap 25C is fitted to the rear end of said outer roller 13; said internal thread 252 is formed on the internal perimeter surface of said end cap 25C; a rack 93 engaging said internal thread 252 is formed on said inner fixed shaft 12B.
45. A corner canvas take-up shaft, wherein: a canvas outlet 14 is formed open in the front of a casing 11 for storing a corner canvas G 1 -G4; 62/75 an inner fixed shaft 12B is fixed to an end cap 15, 16 fitted to said casing 11; an outer roller 13 is slidably and rotatably fitted on and supported by said inner fixed shaft 12B; a pipe shaft 81 is projected from an end cap 25C fitted to the rear end of said outer roller 13; a whorl spring 83 is fitted onto said pipe shaft 81; an inner spring end 831 of said whorl spring is locked to said pipe shaft 81; an outer spring end 832 of said whorl spring 83 is locked to a slide case 84 fitted on said pipe shaft 81.
46. A corner canvas take-up shaft of claims 12-14 or 32, wherein means for preventing said canvas extension RI and R2 of claim 2 from adherently winding on the surface of said inner shaft 12, 12A, 12B exposed by the rearward movement of said outer roller 13.
47. A corner canvas take-up shaft of claim 46, wherein: said coil spring 90 is wound around the fore end of said inner shaft 12, 12A, 12B; said coil spring 90 is exposed as extending on the outer perimeter surface of said inner shaft 12, 12A, 12B with the rearward movement of said outer roller 13; and said canvas extension R2, R3 of claim 2 is wounded on the outer perimeter surface of said inner shaft 12, 12A, 12B.
48. A corner canvas take-up shaft of claim 46, wherein: said outer roller 13 is made from nonmagnetic material; a sheet magnet 94 is fixed on the outer perimeter surface of said inner shaft 12, 12A, 12B exposed by the rearward movement of said outer roller 13; and said corner canvas G I -G4 with said sheet magnet 95of claim 8 is wounded on the outer perimeter surface.
49. The corner canvas take-up shaft of claim 46, wherein: a sheet magnet is fixed on the inner perimeter surface of said outer roller 13; said seat magnet 94 is fixed on the external perimeter surface of said inner shaft 12, 12A, 12B fitted with and supporting said outer roller 13; the corner canvas G 1 -G4 with said sheet magnet of claim 8 is wound on the external perimeter surface of the inner shaft. 63/75
50. A corner canvas take-up shaft of claim 27 or 46, wherein: a slide rope 50 is provided in a tensioned condition along a guide groove 171 formed along the axis of said inner rotation shaft 12; and the outer perimeter surface of said inner rotation shaft 12 is raised by said slide rope 50.
51. A corner canvas take-up shaft of claim 50, wherein said slide rope 50 is passed through said inner rotation shaft 12; and both ends of said slide lope 50 are fixed to said outer roller 13 after drawn from said inner rotation shaft 12 and bent over.
52. A corner canvas take-up shaft of claim 51, wherein: a rope passage 182, 192 for drawing and bending over said slide rope 50 is formed on said end caps 18A, 19A fitted to said inner rotation shaft 12; a guide projection 273 are formed on the inner perimeter surface of said end caps 24A, 25A fitted to said outer roller 13; and a rope passing hole 263 is formed on said guide projection
273. 53. A corner canvas take-up shaft of claim 27, 28 or 46, wherein slide belt 56 or elastic belts 56A are provided in a tensioned condition along said guide projection 172 formed along the axis of said inner rotation shaft 12, 12A; and the outer perimeter surface of the inner rotation shaft 12, 12A is raised by said slide belt 56 or said elastic belt 56A. 54. A corner canvas take-up shaft of claim 53, wherein said slide belt 56 is inserted thought said inner rotation shaft 12; and both ends of said slide belt 56 are fixed to said outer roller 13 after drawn from said inner rotation shaft 12 and bent over. 55. A corner canvas take-up shaft of claim 54, wherein a belt passage 183, 193 to draw and turn out said slide belt 56 in said end caps 18B, 19B fitted into said inner rotation shaft 12, and a belt passage 265 is formed in end caps 24B, 25B fitted into said outer roller 13 to draw said slide belt 56. 64/75 56. A corner canvas take-up shaft of claim 53, wherein: the fore end of each elastic belt 56A is fixed to said end cap 18B fitted to the fore end of said inner rotation shaft 12, 12A; and the rear end of each elastic belt 56A is fixed to said end cap 25B fitted to the rear end of said outer roller 13. 57. A corner canvas take-up shaft of claim 56, wherein: a belt passage 183 is formed for turning the fore end of said elastic belt 56A; and a belt passage 265 for drawing said elastic belt 56A is formed on said end caps 24B, 25B fitted to said outer roller 13. 58. A corner canvas take-up shaft of claim 12-14 or 32, wherein: a seat magnet is fixed on the inner surface of said outer roller 13; said sheet magnet 94 is fixed on the outer perimeter surface of said inner shaft 12, 12A, 12B fitted with and supporting said outer roller 13; and said outer roller 13 is magnetically levitated. 59. A corner awning device comprising: a corner canvas GI - G4 having a substantially right-angled trapezoidal shape when extended; a canvas take-up shaft il-113 winding and unwinding said corner canvas, said canvas take-up shaft J1-413 comprising an inner shaft 12, 12A, 12B and an outer roller 13, wherein said outer roller 13 is slidably and rotatably fitted on said inner shaft 12, 12A, 12B; a front bar 36, 36A supporting the bottom side of said corner canvas G I - G4; and foldable swinging arms 44 and 45, NI and N2, TI and T2, VI and V2, wherein said front bar 36, 36A is pushed parallel obliquely forward or drawn obliquely rearward by said foldable swinging arms 44 and 45, NI and N2, TI and T2, VI and V2. 60. A Corner awning device comprising: a corner canvas GI - G4 having a substantially right-angled trapezoidal shape when extended, said corner canvas comprising: a rectangular canvas main body RI; and a canvas extension R2, R3 extended from one side of said canvas main body; a canvas take-up shaft J 1 -J 13 winding and unwinding said corner canvas, said canvas take-up shaft J1-J13 comprising: 65/75 an inner shaft 12, 12A and 12B; and an outer roller 13 slidably and rotatably fitted on and supported with said inner shaft; a front bar 36, 36A supporting the bottom side of said corner canvas GI - G4; and swinging arms 44 and 45, NI and N2, TI and T2, VI and V2 pushing said front bar 36, 36A parallel obliquely forward or draw said front bar 36, 36A obliquely rearward to fold it. 61. A corner awning device, wherein tension members such as connection wires 34, 35 or connection belts 87 and 88, 87A and 88A are provided in a tensioned condition in the plane form of a letter X or V between said outer roller 13 and said front bar 36, 36A of claims 59 and 60. 62. The corner awning device of claim 59 or 60, wherein: when the corner canvas GI-G4 is wound to be stored, said front bar 36, 36A is transferred parallel obliquely rearward by rotating said swinging arms 44 and 45, NI and N2, TI and T2, VI and V2 rearward, while said outer roller 13 rotates to wind said canvas main body RI of claim 2 and moves rearward with the sliding guidance of said inner shaft 12, 12A, 12B; and the canvas extension R2, R3 is wounded on said inner shaft 12, 12A, 12B exposed by the rearward movement of said outer roller 13. 63. The corner awning device of claims 59, 60 or 62, wherein: when said corner canvas GI-G4 is unwound to extend, said front bar 36, 36A is pushed parallel obliquely forward by rotating said swinging arms 44 and 45, NI and N2, TI and T2, VI and V2; said corner canvas G I -G4 wound on the canvas take-up shaft JI-J13 is unwound while said outer roller 13 is moved forward toward the fore end of said inner shaft 12, 12A, 12B, and thereby said canvas extension R2, R3 is extended over the corner space. 64. The corner awing device of claim 62, wherein, when said front bar 36, 36A is transferred parallel obliquely rearward by rotating said swinging arm 44 and 45, NI and N2, TI and T2; and said canvas main body RI of claim 2 is wound on said outer roller 13 while said outer roller 13 is slided in the axis direction of said inner shaft 12, 12A, 12B by tensile force of said tension member of claim 61. 65. A corner awning device supporting a pair of said swinging arms 44 and 45, TI and T2 of claim 59 or 60 in parallel, wherein: the bottom end of said one of the swinging 66/75 arms 44, T1 is attached to adjacent a corner of a building while the fore end of the swinging arm is attached to adjacent the intermediate part of a front bar 36; and the bottom end of said swinging arm 45, T2 is attached to the position spaced apart appropriately from adjacent said corner while the fore end of the swinging arm is attached to adjacent the rear end of said front bar 36. 66. A corner awning device, wherein: said swinging arm of claim 65 is a pair of said slidably expandable and contractible telescopic swinging arms TI, T2 in parallel; said swinging arm comprising a rear arm 62 and a front arm 63 slidably fitted to and supported by each other, and being expandable and contractible with a coil spring 64 or rubber elastic body, etc., incorporated in said arm. 67. A corner awning device, wherein a slide rail 65 is slidably fitted on and supported by said front bar 36A of claim 59 or 60, said slide rail 65 is attached with the front end of said swinging arms 44, 45. 68. A corner awning device supporting a pair of said swinging arms 44 and 45 of claim 59, 60 or 67 in parallel, wherein a slide rail 65 is slidably fitted to and supported by said front bar 36A, the bottom end of one of said swinging arm 44 is attached to adjacent the corner of the building while the fore end of said swinging arm 44 is attached to adjacent the intermediate part or the fore end of said slide rail 65, and the bottom end of the other swinging arm 45 is attached to the position spaced apart appropriately from adjacent said corner while the fore end of said swinging arm 45 is attached to adjacent the rear end of said slide rail 65. 69. A corner awning device, wherein the spread angle of said swinging arms 44 and 45, TI and T2 of claims 65-68 is around 75-80 degrees maximum. 70. A corner awning device, wherein said swinging arms of claim 59 or 60 are a pair of two-phase swinging arms NI, N2 rotating in parallel with two-phase action, said arms NI, N2 comprising said rear arm 59 and fore arm 60 foldably connected each other, the intermediate part of said swinging arms NI and N2 is connected with a connection rod 61, the bottom end of said rear arm 59 of one of said swinging arm NI is attached to adjacent the corner of the building while the fore end of said front arm 60 is attached to adjacent the intermediate part of said front bar 36, and the bottom end of said rear arm 59 of the other swinging arm N2 is attached to a place spaced apart appropriately from 67/75 said corner position while the fore end of said front arm 60 is attached to adjacent the rear end of said front bar 36. 71. A corner awning device, wherein the bottom end of said rear arm 59 of claim 70 is provided with a spring having relatively weak spring elastic force, the folding joint of said rear arm 59 and front arm 60 is provided with a spring having relatively strong spring elastic force. 72. The corner awning device of claim 70 or 71, wherein, when said canvas GI is wound on said canvas take-up shaft J1-J13, firstly a pair of said rear arms 59 is rotated obliquely rearward in parallel against their elastic biasing force then the arms are folded with said front bar 36 translated obliquely rearward, second a pair of said front links 60 is rotated obliquely rearward in parallel against their elastic biasing force with said front bar 36 translated obliquely rearward, and then said two-phase swinging arms Ni and N2 are retracted into a folded position. 73. The corner awning device of claim 70 or 71, wherein, when said corner canvas GI-G4 wound said canvas take-up shaft J1-J13 is unwound, firstly said front bar 36 is pushed to move obliquely forward in parallel by rotating a pair of said front arms 60 biased with rather strong spring elastic force to the predetermined spread angle in parallel, then said front bar 36 is pushed further obliquely forward in parallel by rotating a pair of said rear arms 59 biased with rather weak elastic force to the predetermined spread angle in parallel. 74. The corner awning device of claims 70-73, wherein the angle between the bottom end and fore end of said two-phase swinging arms N1, N2 pressingly biasing said front bar 36 has a spread angle of about 70-80 degrees, the swinging angle of said front arm 59 is regulated not to exceed about 45-50 degrees, and the swinging angle between said connection rod 61 and said rear arm 60 is regulated not to exceed about 120 degrees. 75. A corner awning device, wherein the fore end of a canvas take-up shaft 51 of a rectangular canvas P is installed underneath or above the latter half of a corner canvas take-up shaft J1-J13 in a overlapping manner, to combine said corner awning device Sl-S6 of claim 59 or 60 and an awning device Q comprising said rectangular canvas P and said canvas take-up shaft 51 thereof. 68/75 76. A corner awning device upper-winding said rectangular canvas P on said take-up shaft 51 of claim 75, and lower-winding said corner canvas GI-G4 on said canvas take-up shaft JI-J13. 77. A corner awning device lower-winding said rectangular canvas P on said take-up shaft 51 of claim 75, and upper-winding said corner canvas GI-G4 on said canvas take-up shaft JI-J13. 78. A corner awning device, wherein two of said corner awning devices SI -S6 of claim 59 or 60 are each installed on one side of a corner of the building and the other side of the corner in face-to-face relation, a corner canvas GI-G4 having a substantially right-angled trapezoidal shape is attached between said outer roller 13 of each corner canvas take-up shaft J1-J13 and each front bar 36, 36A, and tensionally supported by tension members such as said connection wires 34, 35 or said connection belts 87 and 88, 87A and 88A in the form of a letter X or V. 79. A corner awning device, wherein two of said corner awning device S1, S2 of claim 65 or 70 are each installed on one side of a corner of the building and the other side of the corner in face-to-face relation, said corner canvas GI-G4 of claims 4-6 is attached between said outer roller 13 of each corner canvas take-up shaft Ji-Ji3 and each front bar 36, and tensioningly supported by tension members such as said connection wires 34, 35 or said connection belts 87 and 88, 87A and 88A in the form of a letter X or V, and an appropriate position adjacent the lower end of said canvas oblique side 5, 5A of each corner canvas G2-G4 is connected each other with an elastic member 10. 80. The corner awning device of claim 79, comprising said corner canvas G2 of claim 4, and said elastic member 10, wherein the canvas top side IA is attached to said outer roller 13, said canvas bottom side 2 is attached to said front bar 36, and said elastic member 10 is attached proximate to the intersection point of said canvas vertical side 6 and the canvas oblique side 5. 81. The corner awning device of claim 79 comprising said corner canvas G3 of claim 5, wherein said canvas top side 1A is attached to said outer roller 13, the canvas bottom side 2 is attached to said front bar 36, and said elastic member 10 is attached proximate to the intersection point of said canvas vertical side 8 and said canvas oblique side 5. 69/75 82. The corner awning device of claim 79 comprising said comer canvas G4 of claim 6, wherein: said canvas top side IA is attached to said outer roller 13; said canvas bottom side 2A is attached to said front bar 36; and said elastic member 10 is attached proximate to the intersection point of said canvas vertical side 8A and said canvas oblique side 5A. 83. A comer awning device of claims 78-82 comprising: said corner canvas take up shaft J I-J6, J 1 -J 13 comprising said inner rotation shaft 12, 12A and said outer roller 13 slidably and rotatably fitted onto and supported by said inner rotation shaft 12, 12A; and a manually operated or electric drive device incorporated at the corner of the fore ends of both said canvas take-up shaft J 1-J6, J I -J13 in a face-to-face relation for forward and reverse rotating both inner rotation shaft 12, 12A interlockingly. 84. A corner awning device, wherein: two of corner awning devices S3 having a pair of telescopic swinging arms TI, T2 are each installed on one side of a corner of the building and the other side of the corner in face-to-face relation; a corner canvas GI-G4 having a substantially right-angled trapezoidal shape is attached between an outer roller 13 of each corner canvas take-up shaft J I -J 13 and each front bar 36, 36A, and tensionally supported by tension members such as connection wires 34 and 35 or connection belts 87 and 88, 87A and 88A in the form of a letter X or V; and the fore ends of said front bars 36 are fixed to be connected with each other. 85. The corner awning device of claim 66, wherein when said corner canvas GI is wound by interlocking said canvas take-up shafts J1-J13 of claim 84, each telescopic swinging arm TI, T2 rotates rearward in parallel against the elastic biasing force while said rear arm 62 and front arm 63 of said swinging arms TI, T2 rotate rearward with relative telescopic movement, while said front bars 36 integrally connected each other are moved lineally in parallel toward a place by the wall existing obliquely rearward. 86. The corner awning device of claim 84 or 85, wherein: when said canvas take-up shafts J I-J 13 rotate interlockingly for unwinding, each telescopic swinging arms TI, T2 is rotated in the spread direction obliquely forward with telescopic sliding movement by the elastic biasing force; and said front bars 36 integrally connected each other are pushed lineally with parallel movement obliquely forward. 70/75 87. The corner awning device S4 of claim 67 or 68, wherein: said slide rail 65 is slidably fitted into and supported by said front bar 36A; the fore end of swinging arms 44, 45 are attached to the intermediate part or the fore end of said slide rail 65, and the rear end of said slide rail 65; two of said awning devices S4 are installed on one side and the other side of the corner of the building respectively in a face-to-face symmetrical position; said corner canvas GL-G4 having a substantially right-angled trapezoidal shape is attached between said outer roller 13 and front bar 36A of each corner canvas take-up shaft J1-J13 and tensionally supported by tension members such as said connection wires 34, 35 or said connection belts 87 and 88, 87A and 88A in the form of a letter X or V; and the fore ends of said front bars 36A are fixed to connect each other. 88. The corner awning device of claim 87, wherein: when said corner canvas GI is wound by interlocking said canvas take-up shafts J 1-J13; a pair of said swinging arms 44, 45 rotates rearward against elastic biasing force; temporarily slides said slide rail 65 rearward relative to said front bar 36A then slide it forward, while draws said integrally connected front bars 36A toward a corner area to store on the wall surface. 89. The corner awning device of claim 87 or 88, wherein: when said canvas take-up shafts J1 -J 13 are interlockingly rotated for unwinding; a pair of said swinging arms 44, 45 are rotate parallel in the spread direction obliquely forward by elastic biasing force, said front bar 36A is pushed linearly toward the corner space in parallel, and thus said corner canvas GI is extended over the corner space. 90. The corner awning device of claim 67 or 87 wherein said slide rail 65 provided with said guide roller 66 is slidably fitted in and supported by said front bar 36A. 91. The corner awning device of claim 90, wherein a guide groove 361 of said guide roller 66 is formed in the frame of said front bar 36A, and said guide roller 66 is bearing supported by said rail projection 651 projected from said slide rail 65. 92. A corner awning device S5, wherein: said swinging arms of claim 59 or 60 are bi-foldable swinging arms V1, V2 that bend and stretch; 71/75 said swinging arms VI, V2 are each formed with said rear arm 59 and said front arm 60, both of which are bi-foldably connected with each other; said swinging arms VI, V2 are connected with each other by a connection rod 61 between bi-fodlable joints thereof; the bottom end of said rear arm 59 of one of said swinging arm VI is attached on adjacent a corner of a building. the fore end of said front arm 60 of said swinging arm VI is attached toward the fore end of said front bar 36; the bottom end of said rear arm 59 of the other swinging arm V2 is attached on a position adequately spaced apart from the corner; the fore end of said front arm 60 is attached toward the intermediate portion of said front bar 36; wherein: two of said awning device S5 are installed on a building corner position in face-to-face-relation; said substantially right angled trapezoidal corner canvas G I -G4 is attached between said outer roller 13 of each corner canvas take-up shaft 1-J13 and said front bar 36, 36A; tension members such as connection wires 34, 35, or said connection belts 87 and 88 or 87A, 88A are tensionaly supported in the plan form of a letter X or V; and the fore ends of said front bars 36 are fixed to be connected with each other. 93. The corner awning device of claim 92, wherein when said canvas GI is wound by interlocking said canvas take-up shaft J I -J 13, said bi-foldable swinging arms VI and V2 each rotate rearward bi-folding toward obliquely rearward overcoming the spread basing force, while said front bar 36 integrally connected each other moves linearly rearward in parallel to along with the line dividing the corner space equally with parallel movement toward said front wall WI and side wall W2 respectively, then said bi-foldable swinging arms VI, V2 are folded to a place by the wall, and said front bars 36 integrally connected are drawn toward the corner to be stored on the wall. 94. The corner awning device of claim 92 or 93, wherein: when said canvas take-up shafts J1-J13 interlockingly rotate to unwind the corner canvas G1, said bi-foldable swinging arms VI, V2 each rotate forwardly in the spread direction by the elastic biasing force and push said front lever 36 integrally connected obliquely forward in parallel, and thus said corner canvas GI is extended over the corner space. 72/75 95. A corner awning device of claims 84-88, 92-94 comprising said corner canvas take up shaft J I-J6, J11-J13 comprising said inner rotation shaft 12, 12A and said outer roller 13 slidably and rotatably fitted onto and supported by said inner rotation shaft 12, 12A, wherein a manually or electrically operated drive unit for interlockingly forward/reverse rotating both inner rotation shafts 12, 12A is incorporated at the corner where the fore ends of said canvas take-up shafts J-16, J1-J13 face each other. 96. The corner awning device of claims 84-89, 92-94, wherein a corner decollation panel 67A is attached to said front bar 36, 36A, which is connected with another front bar of another awning device in face-to-face relation. 97. A corner awning device, wherein a pair of said swinging arms 44 and 45, NI and N2, TI and T2, VI and V2 of claim 59 or 60 are rotated in parallel by a manual or electric drive device. 98. The corner awning device of claim 97, wherein a worm gears 761, 762 are fixed to the bottom end of said swinging arms 44 and 45, TI and T2, VI and V2, respectively, a rotation shaft 73 provided with worms 741, 742 engaging with said worm gears 761, 762 is extended between brackets 46A and 47A supporting the bottom ends of said swinging arms 44 and 45, TI and T2, VI and V2. 99. A corner awning device, wherein said canvas take-up shaft of claim 59, 60, 63 or 95 is a corner canvas take-up shaft J1-15, J11-J13 of claim 27 or 28. 100. A corner awning device, wherein said canvas take-up shaft of claim 59, 60, 63 or 95 is a corner canvas take-up shaft J6 of claim 29. 101. A corner awning device, wherein said canvas take-up shaft of claim 59, 60, 63 or 95 is a corner canvas take-up shaft J9 of claim 30 or 31. 102. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft 17 of claim 34 or 43. 103. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft J8 of claim 35 or 44. 73/75 104. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft J10 of claim 45. 105. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft J12 of claim 47. 106. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft J13 of claim 49, 50 and 57. 107. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft J4 of claims 50-52. 108. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft J5 of claims 53-55. 109. A corner awning device, wherein said canvas take-up shaft of claim 59, 60 or 63 is a corner canvas take-up shaft J11 of claim 53, 56 and 57. 74/75
AU2004321145A 2004-07-01 2004-07-01 Corner canvas and take-up shaft therefor, and corner awning device Ceased AU2004321145B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/009751 WO2006003720A1 (en) 2004-07-01 2004-07-01 Corner canvas and take-up shaft therefor, and corner awning device

Publications (2)

Publication Number Publication Date
AU2004321145A1 true AU2004321145A1 (en) 2006-01-12
AU2004321145B2 AU2004321145B2 (en) 2008-10-23

Family

ID=35782536

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2004321145A Ceased AU2004321145B2 (en) 2004-07-01 2004-07-01 Corner canvas and take-up shaft therefor, and corner awning device

Country Status (7)

Country Link
EP (1) EP1767720A1 (en)
JP (1) JP4284629B2 (en)
CN (1) CN100504002C (en)
AU (1) AU2004321145B2 (en)
BR (1) BRPI0418949A (en)
HK (1) HK1110102A1 (en)
WO (1) WO2006003720A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719783A (en) * 2020-06-12 2020-09-29 温州砼程维禹科技有限公司 Container room with rotary built-in canopy

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8202460B2 (en) 2005-09-22 2012-06-19 International Business Machines Corporation Microelectronic substrate having removable edge extension element
EP1944426A1 (en) 2005-10-03 2008-07-16 Osamu Ito Movable awning device
WO2007043185A1 (en) 2005-10-11 2007-04-19 Osamu Ito Movable awning device and winding roller of external corner canvas
WO2007069341A1 (en) 2005-12-13 2007-06-21 Osamu Ito Combined awning device, and take-up roller for sheets of canvas
JP4817151B2 (en) * 2006-02-17 2011-11-16 収 伊藤 Movable awning device and compound awning device
DE102010024744B4 (en) * 2010-06-23 2012-02-23 Dimitrij Schkolnik Awning and awning arrangement for corner balconies
DE102010052470A1 (en) * 2010-11-26 2012-05-31 Weinor Gmbh & Co. Kg Awning with support and magnetic fixation
CN106996166A (en) * 2016-09-29 2017-08-01 广州泰若智能化科技有限公司 A kind of awning device and its operating method
JP6825973B2 (en) * 2017-04-21 2021-02-03 トーソー株式会社 Solar shielding device
CN109386161B (en) * 2017-08-07 2020-06-02 张华� Method for standard folding of flexible shed roof
CN109594495B (en) * 2018-10-26 2021-06-01 王树华 Device for reducing pedestrian running red light
HUE053621T2 (en) * 2019-01-21 2021-07-28 Buedenbender Arnd Frame with profile connectors comprising swivel joint
CN111091759A (en) * 2019-04-19 2020-05-01 广东小天才科技有限公司 Eye-protecting flat plate with flexible display screen
CN112951318A (en) * 2021-02-08 2021-06-11 戴玲玲 Adjustable high-altitude parabolic protection device for urban construction

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3814241Y1 (en) * 1961-08-28 1963-07-12
US3951159A (en) * 1974-12-05 1976-04-20 The Coleman Company, Inc. Tent structure
DE2908925C2 (en) * 1979-03-07 1981-03-12 Komet Stahlhalter- Und Werkzeugfabrik Robert Breuning Gmbh, 7122 Besigheim Fur cutter
DE3117997C2 (en) * 1981-05-07 1984-06-28 Kurt 7336 Uhingen Jüngling Vertical awning for trapezoidal windows
DE3346746C1 (en) * 1983-12-23 1985-03-21 Horst 4050 Mönchengladbach Rödelbronn Sun-shade
JPH0440336Y2 (en) * 1987-06-08 1992-09-22
JPH0440338Y2 (en) * 1987-06-08 1992-09-22
JPH0440337Y2 (en) * 1987-06-08 1992-09-22
JP3084798U (en) * 2001-09-19 2002-03-29 英雄 野崎 Rain shelter frame for mobile unit house
DE20207744U1 (en) * 2002-05-15 2003-07-03 Horstmann Rainer Sunshade for glass roof around a corner of a building has two triangular shades wound on the same diagonal roller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111719783A (en) * 2020-06-12 2020-09-29 温州砼程维禹科技有限公司 Container room with rotary built-in canopy

Also Published As

Publication number Publication date
BRPI0418949A (en) 2007-09-25
WO2006003720A1 (en) 2006-01-12
EP1767720A1 (en) 2007-03-28
CN101001998A (en) 2007-07-18
JPWO2006003720A1 (en) 2008-04-17
CN100504002C (en) 2009-06-24
AU2004321145B2 (en) 2008-10-23
JP4284629B2 (en) 2009-06-24
HK1110102A1 (en) 2008-07-04

Similar Documents

Publication Publication Date Title
US20100000689A1 (en) Corner canvas and corner awning device
AU2004321145A1 (en) Corner canvas and take-up shaft therefor, and corner awning device
EP1889983A1 (en) Composite awning device
US20080277073A1 (en) Movable awning device
US7789122B2 (en) Combined awning device and winding roller for a number of canvases
CN101326334B (en) Movable awning apparatus and winding roller of external angle screening cloth
US20090050277A1 (en) Movable awning device
GB2450198A (en) A retractable covering System
KR200423430Y1 (en) A prefabricated arbor
JP6339414B2 (en) Retractable tarp
DE102006059467A1 (en) Sun awning has an extending valance, wound around a valance shaft, with a center support surface to prevent shaft bending
JP4769958B2 (en) Corner awning equipment
KR101139907B1 (en) For anti-wrinkle sun shade hinge type tensioning device
CN211597443U (en) Automatic telescopic shielding device
KR200343875Y1 (en) a sun screen board projection apparatus
JP4769957B2 (en) Movable awning device
KR20140003970A (en) Parasol
CN212318666U (en) Single-rocker bidirectional synchronous tensioning device
KR20050060652A (en) A sun screen board projection apparatus
ITVI20120152A1 (en) PERFECT COVERAGE STRUCTURE, IN PARTICULAR OF THE SAIL TYPE.

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired