AU2004237901A1 - Skipping programme portions during replay - Google Patents

Skipping programme portions during replay Download PDF

Info

Publication number
AU2004237901A1
AU2004237901A1 AU2004237901A AU2004237901A AU2004237901A1 AU 2004237901 A1 AU2004237901 A1 AU 2004237901A1 AU 2004237901 A AU2004237901 A AU 2004237901A AU 2004237901 A AU2004237901 A AU 2004237901A AU 2004237901 A1 AU2004237901 A1 AU 2004237901A1
Authority
AU
Australia
Prior art keywords
data
programme
television
hard disk
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2004237901A
Other versions
AU2004237901B2 (en
Inventor
Nigel Bodkin
Robin Crossley
Nick James
Xavier Willame
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky CP Ltd
Original Assignee
British Sky Broadcasting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU63076/00A external-priority patent/AU779736B2/en
Application filed by British Sky Broadcasting Ltd filed Critical British Sky Broadcasting Ltd
Priority to AU2004237901A priority Critical patent/AU2004237901B2/en
Publication of AU2004237901A1 publication Critical patent/AU2004237901A1/en
Application granted granted Critical
Publication of AU2004237901B2 publication Critical patent/AU2004237901B2/en
Priority to AU2008240321A priority patent/AU2008240321B8/en
Assigned to SKY CP LIMITED reassignment SKY CP LIMITED Request for Assignment Assignors: BRITISH SKY BROADCASTING LTD.
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/83Generation or processing of protective or descriptive data associated with content; Content structuring
    • H04N21/84Generation or processing of descriptive data, e.g. content descriptors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/41Structure of client; Structure of client peripherals
    • H04N21/426Internal components of the client ; Characteristics thereof
    • H04N21/42607Internal components of the client ; Characteristics thereof for processing the incoming bitstream
    • H04N21/4263Internal components of the client ; Characteristics thereof for processing the incoming bitstream involving specific tuning arrangements, e.g. two tuners
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/433Content storage operation, e.g. storage operation in response to a pause request, caching operations
    • H04N21/4334Recording operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/435Processing of additional data, e.g. decrypting of additional data, reconstructing software from modules extracted from the transport stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/43Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
    • H04N21/443OS processes, e.g. booting an STB, implementing a Java virtual machine in an STB or power management in an STB
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/40Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
    • H04N21/47End-user applications
    • H04N21/472End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content
    • H04N21/47214End-user interface for requesting content, additional data or services; End-user interface for interacting with content, e.g. for content reservation or setting reminders, for requesting event notification, for manipulating displayed content for content reservation or setting reminders; for requesting event notification, e.g. of sport results or stock market
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/80Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
    • H04N21/81Monomedia components thereof
    • H04N21/812Monomedia components thereof involving advertisement data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/76Television signal recording
    • H04N5/78Television signal recording using magnetic recording
    • H04N5/782Television signal recording using magnetic recording on tape
    • H04N5/783Adaptations for reproducing at a rate different from the recording rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Software Systems (AREA)
  • Finance (AREA)
  • Strategic Management (AREA)
  • Databases & Information Systems (AREA)
  • Human Computer Interaction (AREA)
  • Television Signal Processing For Recording (AREA)

Description

-1- N AUSTRALIA 0 00 PATENTS ACT 1990 COMPLETE SPECIFICATION FOR A STANDARD PATENT o ORIGINAL
(N
Name of Applicant/s: British Sky Broadcasting Ltd.
Actual Inventor/s: Nigel Bodkin and Xavier Willame and Robin Crossley and Nick James Address for Service is: SHELSTON IP Margaret Street Telephone No: (02) 9777 1111 SYDNEY NSW 2000 Facsimile No. (02) 9241 4666 CCN: 3710000352 Attorney Code: SW Invention Title: SKIPPING PROGRAMME PORTIONS DURING REPLAY Details of Original Application No. 63076/00 dated 09 Aug 2000 The following statement is a full description of this invention, including the best method of performing it known to me/us:- File: 34557AUP02 500489492 1.DOC/5844 la SKIPPING PROGRAMME PORTIONS DURING REPLAY The inventions relates to improvements in receivers for television 00 O signals. This application is a divisional application of Australian Patent Application No. 63076/00 the subject matter of which is incorporated herein in its entirety by cross-reference.
(Ni Back2round of the Invention O Any discussion of the prior art throughout the specification should in no way be considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.
A Hard Disk Recorder (HDR) is known which comprises a television receiver and a hard disk for recording received television programmes. The HDR is arranged to be connected to the telephone network in order to receive through the telephone network television programme schedule information for display on a television screen. A telephone link must be established with the provider of the programme schedule data every time the programme schedule data is to be updated. Such updating may be performed at regular intervals, say once a day. The programme schedule data may be used by a user to program the HDR in order to record a desired television programme.
The requirement to establish a link with the HDR via a telephone network is undesirable. This is because the HDR may not always "on line" for reasons such as costs, or because the telephone connection is to be used otherwise. Accordingly, the available programme schedule data may be out of date. If a user relies on the programme schedule information when 0 programming his HDR to record a desired programme, he may unknowingly 0rely on out-of-date programme schedule data, which in turn may result in the
O
desired programme not being recorded.
Also, due to the ever increasing variety of television channels and programmes, it is getting more likely that there will be a clash in the programme schedule of television programmes which the user would wish to N record. Currently known video cassette recorders (VCRs) and HDRs fail to address this problem.
An HDR is also known which allows the recording of a broadcast television programme, while simultaneously replaying the same television programme offset in time. This is useful, for example, when a viewer misses the start of his favourite programme by a few minutes but nevertheless does not wish to wait until the programme has been recorded completely before he can start playing back the recorded programme. However, in the case of live programmes such as live sport events, the knowledge that the "real" live event is running exerts a strong emotional pull. At present, the user has the choice of catching up with the live broadcast simply by switching to the live broadcast, thereby ignoring the missed period, or by watching the programme offset in time.
In addition, some parts of a recorded television programme may not be of interest to the viewer. For example, the viewer may not be interested in advertisements. Users of VCRs who not interested in advertisement breaks, for example during a movie, respond to this simply by fast-forwarding during Sthe advertisements. Also, when watching a series of recorded video clips, the user may not be interested in some of the clips but can only jump forward to 00 the next clip of interest by fast-forwarding the video tape. This clearly is inconvenient. To record parts of programmes in which the viewer is not interested, in any case, is a waste of hard disk storage capacity.
(Ni Advertisements broadcast during interruptions of a television N programme are generally geared to appeal to the potential viewers of the television programme. Since this is not a very exact science, it may be that in certain environments the broadcast advertisements do not appeal to the viewers at all, or do at least not use the full potential of the advertisement breaks. The prior art has not addressed this problem.
Accordingly, it is desirable to at least address these and other problems of the prior art.
Summary of the Invention According to one aspect of the invention there is provided a receiver for receiving television signals representative of a television programme, and information signals indicative of the start and/or the end of a predetermined portion of the television programme, the receiver further comprising: a recorder for recording programme data representative of received television signals and indicator data pointing to the start and/or end of said predetermined portion, and for playing back recorded data for display on a screen of the television programme represented thereby; and O user operable control means operable to cause the recorder to skip to the start and/or end of the predetermined portion of the television programme, as 00 indicated by the corresponding indicator data, during playback of the recorded data.
According to another aspect of the invention, there is provided a (Ni Sreceiver for receiving signals representative of television programmes in a N plurality of channels, the receiver comprising: a first tuner for receiving signals in a first channel; a second tuner for simultaneously receiving signals in a second channel; and a recorder for recording data representative of signals in the first and the second channel received simultaneously by the first tuner and the second tuner.
According to another aspect of the invention, there is provided a receiver for receiving signals in a plurality of channels, the signals being representative of television programmes and programme schedule data which defines events in terms of channels, programmes and broadcast times, the receiver comprising: a decoder for separating the signals representative of the television programmes from the signals representative of the programme schedule data; a recorder for recording data representative of the television programmes; means for producing output signals defining an image of events in the programme schedule for displaying on a television screen, which schedule is in accordance with the received signals representative of the programme scheduling data; and a user operable selector operable to select events identified in the image of events and responding to such user selection to cause the 0 recorder to record data representative of the television programmes corresponding to the selected events.
0O According to another aspect of the invention there is provided a receiver for receiving signals representative of a television programme, and for outputting simultaneously a signal representative of the television programme (Ni shifted in time, the receiver comprising a recorder for recording data N representative of the television programme, and for playing back data representative of the time-shifted television programme, wherein the receiver is operable to output signals representative of the television programme at an increased frame rate so as to reduce the time shift.
Preferably, the receiver may comprise a first data buffer for buffering data representative of the television programme to be recorded by the recorder; a second data buffer for buffering data being played back from the recorder; and a processor for selectively causing data to be transferred from the first data buffer to the recorder at a first data rate or from the recorder to the second data buffer at a second data rate, wherein the second data rate is higher than the first data rate to cause the receiver to output signals representative of the television programme at the increased frame rate so as to reduce the time shift. The first data rate is in accordance with the bandwidth of received signals, and the second data rate is in accordance with a user-selected frame rate.
According to another aspect of the invention there is provided a receiver for receiving signals in a plurality of channels, the signals comprising television signals representative of a television programme, and information 0 signals indicative of a predetermined portion of the television programme, the 0receiver comprising: a decoder circuit for generating control signals responsive 0 to receipt of the information signals; and a recorder for receiving the control signals, and for recording data representative of the received television signals, the recorder being responsive to the control signals to interrupt recording of data representative of the received television signals during reception of television N signals representative of the predetermined portion of the television programme.
The information signal may comprise a first information signal representative of the start of the predetermined portion of the television programme, and a second information signal representative of the end of the predetermined portion, wherein the decoder is arranged to generate a first control signal in response to the first information signal, and a second control signal in response to the second information signal, and the recorder is arranged to interrupt the recording of data representative of received television signals responsive to the first control signal, and to resume the recording of data representative of received television signals responsive to the second control signal.
Alternatively, the information signals and the control signals may be indicative of the duration of the predetermined portion of the television programme, wherein the recorder is arranged to respond to one of the control signals by interrupting the recording of data representative of received television signals for the duration indicated by the one control signal.
0 According to another aspect of the invention there is provided a receiver for receiving signals in a plurality of channels, the signals comprising 00 television signals representative of a television programme, and information signals indicative of a predetermined portion of the television programme, the receiver comprising: a decoder circuit for generating control signals responsive (Ni to receipt of the information signals; a storage medium for storing video data for N display on a television screen; and output means for receiving the control signals, and for outputting selectively for display on a television screen received television signals or video signals representative of the video data from the storage medium, the output means being responsive to the control signals to output the video signals during reception of television signals representative of the predetermined portion of the television programme.
The information signal may comprise a first information signal representative of the start of the predetermined portion of the television programme, and a second information signal representative of the end of the predetermined portion, the decoder is arranged to generate a first control signal in response to the first information signal, and a second control signal in response to the second information signal, and the output means is arranged to output the video signals in response to the first control signal, and to output the television signals in response to the second control signal.
Alternatively, the information signals and the control signals may be indicative of the duration of the predetermined portion of the television programme, wherein the output means is arranged to respond to one of the o control signals by outputting the video signals for the duration indicated by the one control signal.
00 In the foregoing the recorder may comprise a hard disk or an optical storage medium and the storage medium may comprise a hard disk or a CD.
5 Unless the context clearly requires otherwise, throughout the C€3 description and the claims, the words 'comprise', 'comprising', and the like N, are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to".
Brief Description of the Drawings An embodiment of the invention will now be described, by way of example only, with reference to the accompanying drawings, in which: Figure 1 is a schematic diagram of a television receiver system; Figure 2 is a functional block diagram of a Hard Disk Recorder
(HDR);
Figure 3 is a functional diagram showing interaction between hardware and software of the HDR of Figure 2; Figure 4 is a schematic illustration of a remote control which may be used to control the HDR; Figure 5 is a functional block diagram of a hard disk arrangement; Figure 6 is a schematic representation of a "services" screen; Figure 7 is a schematic representation of a "TV guide" screen; Figure 8 is a schematic representation of a "planner" screen; Figure 9 is a schematic representation of a "system setup" screen; and Figure 10 is a schematic representation of an "advertisements" screen.
00 Detailed Description of an Embodiment of the Invention 1. System Overview Referring now to Figure 1 of the accompanying drawings, a television system 1 comprises a television 2 a hard disk recorder 3 (HDR), and a satellite dish 4. The HDR 3 comprises a satellite receiver which is connected to the satellite dish 4 for reception of signals from a satellite (not shown). The HDR receives signals from the satellite dish 4, including television signals, in a plurality of channels.
2. Hard Disk Recorder (HDR) Overview Figure 2 of the accompanying drawings shows the HDR 3 in greater detail. Signals from the dish antenna 4 (shown in Figure 1) are input to first and second tuners 10a and 10b and from there to a quadrature phase shift key (QPSK) demodulator 11. The first and second tuners 10a and 10Ob are tunable into the same or different channels for simultaneous reception of the same or different television programmes. Demodulated signals are error-corrected by way of a forward error corrector circuit 12. The HDR 3 comprises a hard disk 13 which receives from the forward error corrector circuit 12 compressed video and audio data forming television programmes for recording and subsequent playback thereof, as will be described in greater detail hereinbelow. The received signals comprise digitally encoded data. It is envisaged that the data will be compressed using for example the DVB/MPEG 2 standards which permit both programme data and additional data (for 0 example interactive service data) to be transmitted in a single channel.
DVB/MPEG 2 enables high compression ratios to be achieved. The hard disk 00 13 receives and stores compressed data. The data is decompressed only after retrieval from the hard disk 13.
5 Satellite (and indeed cable) programmes are usually scrambled to C€3 prevent unauthorised access by non-authorised subscribers. The HDR 3 Stherefore comprises a conditional access control circuit 14 which co-operates with a smart card 14a to determine whether the viewer has subscribed to a particular channel and is therefore authorised to access the channel. Parental control over channel access is also provided, at least in part, by the access control circuit 14. The HDR 3 further comprises a descrambling circuit which is controlled by the access control circuit 14 to enable the descrambling of the signal by authorised subscribers.
Descrambled data is supplied to a transport/demultiplexer 16 which separates the data into video data, audio data, user services data, programme scheduling data, etc. for distribution to various locations within the HDR 3.
The HDR 3 also comprises a video decompression and processing circuit 18 utilizing a dedicated video RAM 17, and an audio decompression and processing circuit 19, operating according to the MPEG standard, for example. The video and audio decompression and processing circuits 18 and 19 receive demultiplexed signals directly from the transport/demultiplexer 16, or from the hard disk 13. Decompressed video signals are input to a SCART interface 20 for direct input to the TV 2 and to a PAL encoder 21 where they O 11 Sare encoded into the PAL format for modulation by a UHF modulator 22 for output to the UHF input of the TV if so desired.
00 The HDR 3 is controlled by a processor 23 which communicates with the various units of the system via a bus 24. The processor 23 has associated with it ROM 25 (optionally including a CD-ROM drive 25a), RAM 26
C,
(comprising both dynamic RAM and static RAM) and a flash (non-volatile and writable) memory 27.
The processor 23 controls operation of the HDR 3 by tuning the tuners and 10b to receive signals for the desired channels from the dish antenna 4 by controlling the demultiplexing, descrambling and decompression so that the desired programme and/or interactive service data is displayed on the screen of the TV 2, and by controlling the hard disk 13 to record desired television programmes or to play back previously recorded television programmes. Viewer selection of desired programmes and customer services is controlled by way of a remote control unit 28 which in response to viewer manipulation thereof transmits control signals to a receiver 29 for input to the processor. The remote control unit 28 also allows for the control of the operation of the hard disk 13 to record television programmes, to play back recorded television programmes, to program the recording of television programmes, etc. The remote control unit 28 will be described in greater detail hereinafter.
The HDR 3 further comprises a high-speed data interface 30 and an RS232 interface 31 providing a serial link. The high-speed data interface 12 Sand the RS 232 interface may be connected to a PC and/or a games console 8 and/or other digital equipment (not shown). The high speed data interface 00 enables the HDR 3 to be connected to other devices (not shown) for example to enable reception of services transmitted via other media such as broadband cable and digital terrestrial broadcast. The HDR 3 further comprises a modem (Ni interface 32 for connecting a telephone network.
C 3. Interaction between Hardware and Software of the HDR Operation of the HDR 3 is controlled by software that makes the processor 23 responsive to control signals from the remote control unit 28 and to data included in the signal received by the dish antenna 4 and/or stored in the memory units 25 to 27. A schematic representation of the interaction between hardware and software in the HDR 3 is shown in Figure 3 of the accompanying drawings. The data in an incoming signal is separated by the transport/demultiplexer 16 into video data and information data. The information data is distributed around the hardware and software, as will be described in greater detail hereinafter. The video data and the audio data is demultiplexed and output in suitable form for supply to the TV 2 or to the hard disk 13 by the MPEG video and audio circuits 18 and 19. When information is to be displayed either with or instead of the video data, data representing the information is output in suitable form for supply to the TV via an on-screen display (OSD) driver 33 and the video circuit 18. Signals from the OSD driver 33 and the video circuit 18 are combined as appropriate before being supplied to the TV 2.
13 0 Operation of the software and hardware of the HDR 3 is based around an operating system 35. The conditional access controller 14 has associated 00 software 36 which interfaces with the operating system. The processor 23 has its own base operating system 37 which interfaces to the HDR operating 5 system 35. Applications such as an intelligent electronic programme guide C€3 (IEPG) 39 and other applications 40 including interactive services interface to N the operating system 35 via an applications interface 41 and associated application interpreter 42.
The software for conditional access applications such as the IEPG 39 are installed permanently within non-volatile memory, e.g. the ROM 25, of the HDR 3, but variable information such as new access codes and TV programme scheduling details is stored in the RAM 26 and updated regularly via signals received from the dish antenna 4. Demodulated signals from the demodulator 11 are input to the transport/demultiplexer 16 which examines the data to decide where it should be sent. From time to time significant changes may be made to conditional access codes or to the manner in which the IEPG 39 displays programme information. Also, programmes for additional applications, say an interactive shopping or banking service for example, are also supplied via the satellite for the HDR 3. Such application data is routed by the transporter/demultiplexer 16 directly to the appropriate areas 40 of the memory 26, 27.
Operating data 43 is supplied on a substantially continuous basis in every channel. The operating data 43 includes conditional access data 44 0 14 0 associated with a channel and/or programmes therein which enables the A conditional access controller 14 to determine whether or not access should be 00 allowed to a particular programme by descrambling the data therefor.
Additionally, operating data relating to interactive services is transmitted in dedicated interactive service channels which carry control and information (Ni data for use by the hardware and software of the processor 23 and the N, associated memory devices 25 to 27. Thus, the operating data 43 depicted in Figure 3 also includes interactive service programs and information 46 (for example relating to personal banking services) and indeed any other data 47 required on a substantially continuous or regular basis for the aforementioned interactive services.
The transport/demultiplexer 16 is arranged to supply the operating data 43 to the processor 23. The data is acted upon by the operating system 35, the conditional access and/or other operating software. The processor 23 responds to the data by sending appropriate commands or signals to other units within the system. Control data is also transferred between the processor 23 and such units as the transporter/demultiplexer 16, the hard disk 13, the video and audio decompressors 18, 19, the remote control receiver 29 and the high-speed data interface 30 via respective drivers 48 to 53.
The combined hardware and software of the HDR 3 enables the data in received channels to be decoded for display or recording of viewer selected programmes. The scrambling is controlled on a continuous basis and the HDR can be updated with new descrambling codes as and when required.
0 Data for interactive services is supplied and updated substantially continuously and programmes relating to newly selected interactive services 0O are downloaded into the HDR 3.
Operation of the HDR 3 in receiving and decoding data representing television programmes and data defining scheduling and other information (Ni related to the programmes is described in detail in our International (PCT) r, patent application published as WO 96/37996, aforementioned. Operation of the HDR 3 in providing interactive services is described in our International (PCT) application published as WO 97/23997, aforementioned.
Within the Digital Video Broadcasting (DVB) standards for digital TV transmission there exists a standard for the transmission of schedule information such that it can be decoded and presented correctly to subscribers in the form of an Electronic Programme Guide (EPG).
This DVB standard is known generally as the SI standard and can be found in the specification: ETS 300 468, ETSI Digital Broadcasting Systems for Television, Sound and Data Services; Specification for Service Information (SI) in Digital Video Broadcasting (DVB) Systems 2nd edition.
Guidelines for using the specification are given in ETSI ETR 211 DVB SI Guidelines.
In order to allow broadcasters to utilise any proprietary features of their EPGs the SI standard includes methodology for extending the format of the service information (SI) stream by the inclusion of private data tables and V 16 0 descriptors. The HDR 3 is, of course, designed to support the mandatory parts of the SI specification.
00 4. Remote Control Figure 4 illustrates the remote control 28 for the control of the HDR 3.
A manipulation of the keys on the remote control 28 causes the remote control 28 to transmit to the HDR 3 corresponding command signals.
N, The remote control comprises an on/off key 98, a manipulation of which causes the HDR 3 to be switched on or off. Also, the remote control 28 comprises a playback key 99, a record key 100, a pause key 101, a stop key 102, a fast forward key 103, and a fast rewind key 104. Manipulation of the playback key 99 causes the HDR 3 to playback a recorded television programme from the hard disk 13. Manipulation of the record key 100 causes a television programme to be recorded on the hard disk 13. A manipulation of the pause key 101 causes the HDR 3 to halt a currently played back television programme, as described above, while a manipulation of the stop key 102 causes the playback to be stopped. The fast forward key 103 and the fast rewind key 104 allow a user to operate the HDR 3 in fast forward or fast rewind modes, as will be described in detail hereinafter.
In addition, the remote control 28 comprises a menu key 105, a TV guide key 106, a services key 107, and an interactive services key 108. A manipulation of one of these keys 105 to 108 causes the HDR 3 to display a corresponding menu screen, as discussed above. Furthermore, the remote control 28 comprises an "up" key 109, a "down" key 110, a "right" key 111, Sand a "left" key 112. Manipulation of these keys allows a user to select displayed menu items. An operation associated with a selected menu item is 00 executed by manipulation of an execute key 113. Alternatively, a selected menu item is marked as selected by manipulation of a select key 114.
5 Similarly, the remote control 28 comprises colour keys 115 of different (Ni Scolours. Manipulation of one of the colour keys 115 allows a user to select a menu item which is indicated on a displayed menu screen to be associated with the colour of the manipulated colour key, as will be described in detail hereinbelow.
Also, the remote control 28 comprises number keys 116 whose manipulation causes the HDR 3 to tune to a channel corresponding to the number entered through the number keys 116.
S18 0 5. The Hard Disk Since the first and second tuners 10a and 10b can be tuned to receive 00 different channels, it is possible for a first television programme in one channel to be displayed on the TV 2, while at the same time a second 5 television programme in another channel is recorded on the hard disk 13.
C€3 Furthermore, as will be explained below, two different television programmes N may be recorded simultaneously on the hard disk 13.
The hard disk 13 of the HDR 3 is similar to hard disks used in computer systems for storing large amounts of data. The hard disk 13 has a capacity of several gigabytes 10-20 gigabytes) and receives video and audio data for storage in the compressed form in which it is received, for example, in accordance with the DVB/MPEG 2 standards as discussed above.
This allows for the storage of several hours of television programmes hours) on the hard disk 13. The hard disk 13 comprises two storage areas, one for the storage of television programme data, and the other for storing "metadata" which is used to control the hard disk 13, as will be discussed in greater detail hereinbelow. The operation of the hard disk 13 is controlled by the processor 23. The processor 23 sends control commands to the hard disk 13, to start/stop the recording of a television programme, to play back a recorded television programme, etc.
Referring now to Figure 5 of the accompanying drawings, a schematic block diagram of the arrangement of the hard disk 13 is shown. The hard disk 13 has three data channels through two of which data is received for storage 0 19 0 on the hard disk 13 and through one of which it is output for subsequent displaying of television pictures. The three data channels consist of two data 00 input channels 54 and 55 and one data output channel 56. Each of the data channels has associated with it a data buffer 57, 58 and 59, respectively. Each of the data buffers 57, 58 and 59 comprises a RAM of sufficient size to store several seconds of data 8 megabytes). The operation of the data buffers I 57, 58 and 59 as well as that of the hard disk 13 are controlled by the processor 23.
The hard disk 13 is operable to manage simultaneous reception of data through the data channels 54 and 55 and output of data through the data channel 56. Data received through the data channels 54 and 55 is not stored directly on the hard disk 13 as it is received but is buffered by the buffers 57 and 58, respectively. Likewise, data to be output through the data channel 56 is not output directly as it is read from the hard disk 13 but is buffered in the buffer 59.
The hard disk 13 is capable of managing a data rate which is higher than the rate at which data can be transferred through at least two of the three channels 54, 55 and 56. That is, the hard disk 13 is capable of managing a data rate at least as high as the rate of data transmitted through all three channels 54, 55 and 56 combined. Thereby, the hard disk 13 is capable of simultaneously storing data received through both the input channels 54 and and outputting data through the output channel 56.
0 This is achieved by buffering the received data and the data to be output in the buffers 57, 58 and 59, and by switching between them in order to
OO
transfer data from the input buffers 57 and 58 to the hard disk 13, or to transfer data from the hard disk 13 to the buffer 59. Although hard disks
S
5 comprising separate heads for writing and reading are available, in the interest (Ni of cost the hard disk 13 comprises one single head for both writing onto and N reading from the hard disk 13. Therefore, while the hard disk 13 at any point in time stores/reads data associated with only one of the three data channels 54, 55 and 56, it sequentially stores/reads data associated with the three channels 54, 55 and 56, thereby "virtually" dealing with the three data channels simultaneously.
The switching is controlled by the processor 23 by arbitrating between any three of the buffers 57, 58 and 59 at a frequency which is in accordance with their buffer size so as to prevent a data overflow and thereby data loss.
For example, if the buffers 57, 58 and 59 are capable of storing 30 seconds of received data each, and the HDR 3 is operated to record two simultaneous television programmes received through the channels 54 and 55, then the hard disk 13 is operated to receive alternately data from the buffers 57 and 58 at an alternation cycle of 30 seconds or less, transferring the buffer content to the hard disk 13 each time the processor switches from one of the buffers 57, 58 to the other. Accordingly, it is possible to record simultaneous/overlapping television programmes received by the first and second tuners 10a, 10b in different channels.
21 O The buffering of incoming as well as outgoing data by the data buffers 57, 58 and 59 means that the hard disk 13 does not need to be synchronised to 00 a particular input or output data rate. Instead, the hard disk 13 always reads and stores data at the same constant data rate. The amount of data stored on or read from the hard disk 13 is determined by the duration for which the hard (Ni disk 13 is switched through for data transfer to the respective one of the data buffers 57, 58 or 59. During such time data is transferred from or to the respective data buffer at the constant data rate. While the reception data rate through the channels 54 and 55 or the output data rate through the channel 56 may vary (for example depending on the bandwidth of received television signals, or depending on the playback mode), the rate of data transferred between any of the buffers 57, 58 and 59 and the hard disk 13 is constant and determined by the data rate the hard disk 13 is capable to manage.
The hard disk 13 is controlled by the processor 23 to operate in different playback modes, including forward and backward modes, in which a recorded programme can played back at the normal frame rate or at a reduced frame rate slow motion). The hard disk 13 is also operable in a fast forward and a fast rewind mode, in which a recorded television programme can be played back at an increased frame rate. The viewer may select any of these modes by giving appropriate commands via the remote control 28.
5.1 Skipping Undesired Programme Parts In a skip mode, the processor responds to signals from the remote control 28 by controlling the hard disk 13 to skip forwards and backwards 22 o through recorded programmes, to skip back to the beginning of a recorded programme, or to skip forward to the next recorded programme. For this 00 purpose, the beginning of a recorded television programme on the hard disk 13 is marked by storing metadata in the form of an indicator pointing at and r 5 thereby marking the beginning of the programme.
(Ni The indicator data along with other metadata data used for controlling the hard disk 13 is stored in a metadata area of the hard disk 13. The indicator data is based on the standard time codes which is transmitted with television programme signals.
During playback the viewer may wish to pause a programme part way through while he goes and does something else. When the viewer operates the remote control 28 to give a command to pause the playback, the processor 23 generates an indicator signal and causes the hard disk 13 to store corresponding indicator data in the form of a time code in the metadata area on the hard disk 13. When the viewer wishes to resume the viewing of the programme, an appropriate command via the remote control 28 causes the processor 23 to control the hard disk 13 to read the stored time code and to skip to the corresponding hard disk position to resume playback of the programme from that position. In other words, the HDR 3 "remembers" when the viewing of a recorded television programme was interrupted and resumes the playback of the remaining television programme accordingly.
Programmes may be broadcast which include "skip" signals indicating the start and/or the end of parts of the programmes (for example parts of 0 23 0 programmes separated by advertising breaks). These skip signals are time code-based and are transmitted in each channel together with the television 00 signals. When the HDR records a television programme that includes skip signals in the television signals, the HDR 3 causes the hard disk 13 to store skip codes representative of the skip signals as a list of successive skip codes (Ni in the metadata area on the hard disk 13. During playback of such a television programme a "skip" mode may be selected (by user manipulation of the remote control) in which the processor 23 responds to the stored skip codes to control how programme signals are read from the hard disk 13. Thus, for example, the skip codes might identify time codes for the start and end of advertising breaks in a programme and the processor 23 may be arranged to respond to the skip codes by controlling the hard disk 13 to output television signals for the programme until the frame corresponding to the start time code is reached and then to continue outputting signals from the frame corresponding to the end time code. In this way advertising breaks may be skipped during playback of a recorded programme.
5.2 Halting a Television Programme and Catching-Up Again The HDR 3 is operable to display a television programme which is currently being received through one of the tuners 10a, 10b in two different playback modes. In the first display mode, the television programme is displayed "directly" without being recorded on the hard disk 13. In the second playback mode, the currently received television programme is recorded on the hard disk 13 and the recorded television programme is played back from 24 0 the hard disk 13. The resulting time shift between the played back television programme and the television programme as it is recorded is marginal and is
O
O
not perceptible by a viewer.
Starting from either of these playback modes, the hard disk 13 is r- 5 operable to simulate the halting of a currently displayed television programme (Ni and to resume playback of the programme any time after the moment at which
O
O
it was halted. If the user wishes to halt the current television programme while the HDR 3 is in the first playback mode, he may do so, for example, by manipulating the pause button on the remote control 28. The processor 23 is arranged to respond to a "pause" signal from the remote control 28 by controlling the hard disk 13 to start recording the current television programme. In the second playback mode, the hard disk 13 simply carries on recording.
When "pause" is selected, the processor 23 "freezes" the current television picture frame by causing the same frame to be repeatedly output to the TV 2. When the user wishes to resume watching the television programme, he may do so by again manipulating the pause button on the remote control 28. The processor 23 responds to this second pause signal by causing the hard disk 13 to output the recorded data for the halted television programme from the moment at which the user first manipulated the pause button.
The hard disk 13 continues recording the television programme as it is received by one of the tuners 10a or 10b. In other words, the hard disk 13 can 0 simultaneously record a concurrently received television programme and play back the television programme offset in time by the period for which the 00 television programme was halted. (The manner in which the hard disk records and plays back simultaneously is described above in connection with Figure The strong emotional pull of a broadcast live event, for example a live N sports event, makes it desirable to be able to catch up with the actual live broadcast after it has been halted. One possibility of catching up is, of course, to switch from playing back the recorded programme shifted in time to displaying the programme as it is received by one of the tuners 10a or (and simultaneously recorded by the hard disk 13 in the second playback mode), thereby ignoring the period during which the displaying of the television programme was halted.
Another possibility is to catch up by skipping advertising breaks or any other parts of the television programme in which the viewer is not interested.
As discussed above, the HDR 3 is arranged to receive broadcast signals that indicate the start and/or end of advertising breaks or predetermined parts of the television programme (such as the half-time break of a football match), and to store corresponding data pointing at the start and/or the end of such programme parts on the hard disk 13 together with the data representing the television programme. On receipt of an appropriate command from the remote control 28, the processor 23 reads this data from the hard disk 13, and in response thereto jumps to the next point of the recorded television 26 programme, for example to the end of an advertisement break. If there is more than one advertisement break inside the period in which the live 00 broadcast was halted, then this operation can be repeated by the user by giving the same command during any advertisement break or any other undesired r 5 part of the television programme that can be skipped in this manner.
(Ni SThe HDR 3 is also able to catch-up dynamically. To this end during playback the recorded television programme is played back at an increased speed relative to the "live" speed. For example, if a broadcast was halted for one minute, and the television programme recorded during that one minute was replayed from the hard disk 13 at 125% of its normal (live) speed, then the time offset caused by the halt would be overcome in four minutes. The playback speed is increased by retrieving data from the hard disk 13 at an increased rate and by "dropping" frames of the television picture to be displayed during playback. The rate of data retrieval is increased by transferring more data from the hard disk 13 to the data buffer 59 (see Figure e.g. by switching the hard disk 13 to the buffer 59 more frequently and/or for longer periods of time (see the discussion of Figure 5 hereinabove). The catching-up rate, i.e. the playback speed can be selected by the viewer via the remote control 28. This dynamic catching-up can be combined with the above described skipping of advertisement breaks or other undesired parts of television programmes, thus allowing the viewer to catch-up even more quickly.
27 When the catching-up is finished, in the first playback mode, the HDR 3 switches from outputting television signals from the hard disk 13 to 00 outputting television signals as received by one of the tuners 10a or 10b. In the second playback mode, the HDR 3 operates the hard disk 13 to switch to 5 normal playback speed.
¢€3 5.3 Substituting Broadcast Advertisements The HDR 3 also is operable to play back pre-recorded advertisements from the hard disk 13 instead of advertisements received from the broadcaster.
This feature is of interest when the HDR 3 is to be used in public premises, for example in pubs or sports bars during the transmission of sports events. In this latter example, it may be desirable to show, say, beer advertisements which may tempt the addressed customer immediately to purchase a specific brand of beer.
The HDR 3 is arranged to receive signals transmitted by the broadcaster indicating the start and the end of advertisement breaks. On receipt of a signal by the HDR 3 indicating the start of an advertisement break, the processor 23 causes the hard disk 13 to replay a pre-recorded advertisement sequence which is displayed on the TV 2 instead of the television programme as received by one of the tuners 10a or 10b. Once the HDR 3 receives another signal indicating the end of the advertisement break, the processor 23 causes the hard disk 13 to terminate the playback of the prerecorded advertisement sequence, such that the television programme as received by one of the tuners 10a or 10b is displayed again on the TV 2.
0 28 o Furthermore, the HDR 3 is arranged to use the signals indicating the Sstart and the end of advertisement breaks not to record advertisement breaks 00 during the recording of a selected television programme. In this case, during the recording of a programme, the processor 23 controls the hard disk 13 to halt the recording on receipt of a signal indicating the start of an (Ni advertisement break. Subsequently, on receipt of a signal indicating the end of an advertisement break, the processor 23 controls the hard disk 13 to resume the recording.
Instead of using one signal each for indicating the start and the end of an advertisement break, the HDR 3 may be arranged to process to the same effect signals indicating the start and the duration of an advertisement break.
In this alternative embodiment, the processor 23 switches back to the television programme as received, or operates the hard disk 13 to resume the recording, at the end of the indicated duration of the advertisement break.
Accordingly, no separate signals to indicate the end of advertisement breaks are required.
5.4 Programme Scheduling Information The data in each channel is in compressed form, for example in accordance with the DVB/MPEG-2 standard as discussed hereinabove. DVB allows both video data and other data to be combined in a single channel. In addition to the aforementioned operating data 43 (see Figure 3) for use in controlling access to channels, the data in a channel can include brief programme scheduling data representative of so-called event information 29 0 tables (EITs) defining the scheduling of programmes in each channel as scheduling events. The programme schedule data is used by the HDR 3 to
O
control the operation of the hard disk 13. When the HDR 3 is preprogrammed to record a selected television programme, the HDR 3 operates the hard disk 13 to start and to stop the recording in accordance with the scheduling data which comprises the start and the end time of the selected (NI television programme. Since the scheduling data is updated regularly, the recording is started and stopped in accordance with the updated programme schedule, thus guaranteeing that a selected programme is actually recorded even in case of a change of programme schedule, because such change is reflected in the programme schedule data in each channel.
The scheduling data may be stored in the RAM 26 and, once stored, the scheduling information is available effectively instantaneously for controlling the operation of the hard disk 13. As discussed above, the scheduling data is transmitted regularly (say every 30 seconds) so that the HDR 3 will be updated substantially continuously. The information is brief to enable each channel to carry the scheduling data without excessive overheads in terms of bandwidth requirements in each channel and memory requirements in the HDR.
In addition, it is envisaged that a dedicated IEPG channel will transmit more detailed programme scheduling information. The information transmitted via this dedicated channel is updated more frequently (say every 3 seconds) and cover a longer period of time one week). As a o consequence, an up-to-date television programme schedule of a complete week will always be available. As will be explained in greater detail below, 00 the HDR 3 is arranged to display the programme scheduling information on the TV 2. Also, a viewer can interact with the HDR 3 to program recordings of television programmes, view a desired part of the available programme
",N
schedule, etc., on the basis of the information received via the dedicated IEPG channel.
Accordingly, while the programme scheduling data in each channel is used by the HDR 3 to operate the hard disk 13 to record a pre-programmed television programme in a selected channel at the correct up-to-date time, the programme scheduling data in the dedicated IEPG channel is used to display the programme schedule for several of the channels over a predetermined period of time (which in turn is used for programming the HDR 3 as will be described hereinbelow).
6. Operation of the HDR The programme schedule information represented by the digital signals in the IEPG channel received via the satellite dish 4 can be displayed under viewer control via the remote control 28 on the TV 2. Selection of the menu key 105 causes the HDR 3 to output for display a main menu screen.
(Similarly, selecting the TV guide key 106, the services key 107 or the interactive service key 108 will cause the HDR 3 to select an appropriate control menu screen for display to enable viewer interaction in respect of V 31 those services as described in our aforementioned international application WO97/23997).
00 A schematic representation of the services menu screen is shown in Figure 6. On top of the screen, menu items 60, 61 and 62 represent the 5 available control menus, of which item 61 corresponding to the currently C€3 displayed control menu is highlighted. One of the other two control menus can be selected and displayed by pressing the TV guide key 106 or the interactive service key 108 on the remote control 28, or by pressing the "left" or the "right" key 111/117, selection of which causes menu item 60 or 62 to be highlighted, respectively.
Similarly, menu items 63, 64, 65 and 66 of the services control menu can be selected by using the "down" or the "up" key 109/110 on the remote control 28, causing the currently selected menu item 65 to be highlighted, followed by pressing the "execute" key 113.
6.1 Display of TV Programme Schedule Figure 7 shows in simplified form a TV programme schedule screen which is displayed on the TV screen after selection of the "TV guide" item in Figure 5. Signals representing the TV programme schedule are received by the HDR 3 via the satellite dish 4 in a dedicated IEPG channel, as described above. The left-hand side column 67 in Figure 7 lists the available channels, while the right-hand side column 68 lists the television programmes for each channel in chronological order. If not all available channels can be displayed on the screen, the viewer can cause the HDR 3 to display them by operating 0 32 Sthe "up" or "down" key 109/110 on the remote control 28, thereby causing the HDR 3 to make the screen to scroll up or down, respectively. Also, if the 00 viewer wishes to move backward or forward in time to display earlier or subsequent television programmes, he can do so by operating the "left" or the "right" key 111/112 on the remote control 28, respectively.
(Ni Likewise, the viewer may select one of the displayed television Sprogrammes by using the "down", "left" and "right" keys 109-112 on the remote control. The currently selected programme "The Doors" is highlighted. If the viewer wished to select "Voyager" instead, he would have to operate the "down" key 110. If he wished to select "Deep Space Nine", he would have to operate the "down" key 110 followed by the "right" key 111.
6.2 Planner If a selection of a programme is followed by an operation of the "record" key 100, then data representative of the selected programme is stored in the RAM 26. The selection of a programme and the resulting storage of data representative of the selected programme causes the HDR 3 to record on the hard disk 13 the selected programme at the time when it is scheduled to be broadcast. As discussed above, the hard disk 13 is operated to record the selected programme in accordance with the programme schedule data in the selected channel.
The data stored in the RAM 26 in response to a programme selection represents information concerning the title of the selected programme, its start and end times, as well as status information as to whether a selected 33 0 programme is still to be recorded, whether it has been recorded or partrecorded and is still to be viewed, or whether a recorded programme has been 00 partially viewed. All this information is displayable on the TV screen by sending an appropriate command to the HDR 3 via the remote control 28 which causes the HDR 3 to retrieve the corresponding data from the RAM 26 (Ni to display the information it represents. The displayed information will be referred to hereinafter as the "planner" because it allows a user to plan his personal television schedule by making appropriate selections.
The planner information is stored on the hard disk 13 in form of data representing a list of successive programmes over time. The processor 23 operates the hard disk 13 to record a television programme at the time stored in association with the first television programme to be recorded in this list.
In response thereto, the status information associated with this programme is updated to indicate that the programme has been recorded. The processor operates the hard disk 13 again at the time associated with the next programme in the list to be recorded, and so on.
A planner screen is illustrated schematically in Figure 6. When the planner screen is selected to be displayed on the TV 2, for example by a selection of the menu item 65 in Figure 5, the processor 28 retrieves the data representing the planner information from the RAM 26 and causes the HDR 3 to display a planner screen as shown in of Figure 8.
Referring back to Figure 7, the movie "The Doors" is highlighted to indicate a user selection. Upon operation of the "execute" key 113 on the S34 o remote control 28, information associated with "The Doors" is stored in the RAM 26, namely the date on which the "The Doors" is scheduled to be 00 broadcast, the channel on which it is broadcast "Channel the start and end time of the broadcast, as well as the name of the programme ("The Doors").
r 5 Manipulation of the appropriate key on the remote control 28 causes the HDR (Ni 3 to display the planner screen of Figure 8. The names of the television N, programmes in the planner (reference numeral 71) are displayed together with the names of channels (reference numeral 72). In addition, status information (reference numeral 73) is displayed, indicative of whether a programme is stored on the hard disk 13 and has been viewed ("Trainspotting"), whether a programme has been partially viewed ("Get Carter"), whether a stored programme is yet to be viewed ("Friends"), or whether a programme is yet to be recorded on the hard disk 13 ("The Doors" and "Silverstone Grand Prix").
Signals representative of such status information are generated automatically by the processor 28, and the data representative thereof is stored in the memory RAM 26 on selection of a programme. The data in the RAM 26 is updated by the processor 28 once a status change has occurred, e.g. when a recorded and previously unviewed programme has been viewed.
The planner screen of Figure 8 can be used to control several of the functions of the HDR 3. For instance, a recorded programme can be replayed from the hard disk 13 by selecting the desired programme using the "up" and "down" keys 109, 110 and then by operating the "playback" key 99 on the remote control 28. In case of a partially-viewed programme (such as "Get SCarter"), the viewer may resume viewing such programme by giving the same commands (selection followed by manipulation of the "playback" key 99).
00 The processor 23 then operates the hard disk 13 to jump to the point where the viewing was interrupted and resumes the playback (by operation of the HDR 3 as described above in greater detail).
(Ni Also, any of the programmes listed in the planner screen as recorded on the hard disk 13 (such as "Friends") can be deleted from the hard disk 13 by selecting the same and then operating a "delete" key on the remote control 28. Such "delete" key in this embodiment is a colour key whose colour is indicated in box 74 in Figure 8. Also, a programme listed in the planner as to be recorded (such as "The Doors" or "Silverstone Grand Prix") can be deleted by selecting the programme followed by operating another colour key on the remote control 28 corresponding to the colour indicated by box The planner screen as shown in Figure 8 furthermore allows for the execution of a "link" command by selecting one of the listed programmes followed by manipulating the colour key on the remote control corresponding to the colour shown in box 76. The link command allows for programmes related to the one selected to be included into the planner programme list for recording.
A programme may be related in some way to other programmes to be transmitted at different times and/or on different channels by the same TV service company. Obviously, programmes in daily or weekly serials are related to each other. Other relationships are less obvious. For example, a TV 0 36 service company may wish to run a season of James Bond movies over a number of different channels with each movie being shown one or more 00 times. Broadcasting in the digital domain makes it possible to include in the data for the showings of each movie, together with further data linking that movie to other movies in the season. The processor 23 is arranged to respond (Ni to such linking data by displaying prompts when the viewer selects one movie by executing the link command. The prompts alert the viewer to other movies in the season and ask the viewer whether he/she wishes any of the other movies to be included in the planner for recording.
Alternatively, the HDR 3 may be arranged to make such selection automatically without prompting the user to confirm the selection. In this case, the automatically selected programmes may simply be included in the planner. Alternatively, they may be listed in a separate screen similar to the planner screen of Figure 8.
7. System Set-up Figure 9 shows a system set-up screen as displayed when the system set-up item 64 of Figure 6 is selected. In this embodiment, three set-up parameters are listed. A first parameter 80 is shown as highlighted and allows for a selection of whether or not advertisements received from the broadcaster are substituted with pre-recorded advertisements, as described above. A selection is performed by highlighting the parameter 80 by using the "up" and "down" keys 109, 110, and by manipulating the "left" and "right" keys 111, 112 on the remote control 28 which causes a menu item 81 associated with the 37 Sparameter 80 to switch between the settings "yes" and Similarly, parameter 82 allows for a selection of whether or not advertisements not to be 00 recorded during recording of a programme, as described above. A parameter 83 enables the user to activate or deactivate an automatic selection for recording of programmes linked to a programme previously selected by the (Ni user, as described above. The thus selected parameters are saved in the RAM 26 by selecting the parameter 84 and manipulating the "execute" key 113 on the remote control 28. The settings may be reset by manipulating the colour key on the remote control 28 which corresponds to the colour displayed in the box 8. Advertisement Selection When the "adverts" icon 66 of Figure 6 is selected, an advertisement selection screen is displayed as shown in Figure 10 of the accompanying drawings. The advertisement selection screen allows for selection of the category of advertisements which will be played back from the hard disk 13 if the "replace adverts" setting (parameter 80 in Figure 9) is activated (see above). The selection of the desired advertisement category is performed by manipulating the "down", "right" and "left" keys 109-112 on the remote control 28 to highlight a desired category. In the advertisement selection screen in Figure 10, the category "Motoring" is highlighted (indicated by box The highlighted category can then be activated, for example, by manipulating the "execute" key 113 on the remote control 28. An activated category is marked by a tick 91. More than one category can be activated at S38 Sthe same time. In the example of Figure 10, the categories "food drink" and S"motoring" are activated.
00 It should be noted that the present invention is not limited to the embodiment as described above. It is envisaged that various modifications and variations to the above described embodiment can be made without (c falling outside the scope of the present invention as determined from the claims.

Claims (9)

  1. 01. A receiver for receiving television signals representative of a television programme, and information signals indicative of the start and/or the end of a predetermined portion of the television programme, the receiver further comprising: Sa recorder for recording programme data representative of received television signals and indicator data pointing to the start and/or end of said predetermined portion, and for playing back recorded data for display on a screen of the television programme represented thereby; and user operable control means operable to cause the recorder to skip to the start and/or end of the predetermined portion of the television programme, as indicated by the corresponding indicator data, during playback of the recorded data.
  2. 2. The receiver of claim 1, wherein the indicator data comprises a time code of the start and/or end of said predetermined portions.
  3. 3. The receiver of claim 2, wherein the time code is included in said information signals.
  4. 4. The receiver of any one of claims 1 to 3, wherein the information signals are received with the television signals.
  5. The receiver of any one of claims 1 to 4, wherein the indicator data is stored as metadata separate from the programme data.
  6. 6. The receiver of any one of claims 1 to 5, wherein the television programme includes a plurality of said predetermined portions separated by one 00 o or more advertising breaks, and the user operable control means is operable to cause the recorder to skip said one or more advertising breaks, as indicated by the indicator data, during playback of the recorded data. e¢3 N
  7. 7. The receiver of any one of claims 1 to 6, wherein the recorder comprises a hard disk.
  8. 8. The receiver of any one of claims 1 to 6, wherein the recorder comprises an optical storage medium.
  9. 9. A receiver according to claim 1 substantially as described herein with reference to the accompanying drawings. DATED this 8th day of December, 2004 Shelston IP Attorneys for: BRITISH SKY BROADCASTING LTD.
AU2004237901A 1999-08-09 2004-12-08 Skipping programme portions during replay Ceased AU2004237901B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2004237901A AU2004237901B2 (en) 1999-08-09 2004-12-08 Skipping programme portions during replay
AU2008240321A AU2008240321B8 (en) 1999-08-09 2008-10-30 Receiver for television signals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB9918772 1999-08-09
GB0001326 2000-01-20
AU63076/00A AU779736B2 (en) 1999-08-09 2000-08-09 Improvements in receivers for television signals
AU2004237901A AU2004237901B2 (en) 1999-08-09 2004-12-08 Skipping programme portions during replay

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
AU63076/00A Division AU779736B2 (en) 1999-08-09 2000-08-09 Improvements in receivers for television signals

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2008240321A Division AU2008240321B8 (en) 1999-08-09 2008-10-30 Receiver for television signals

Publications (2)

Publication Number Publication Date
AU2004237901A1 true AU2004237901A1 (en) 2005-01-13
AU2004237901B2 AU2004237901B2 (en) 2008-08-07

Family

ID=40292455

Family Applications (2)

Application Number Title Priority Date Filing Date
AU2004237901A Ceased AU2004237901B2 (en) 1999-08-09 2004-12-08 Skipping programme portions during replay
AU2008240321A Expired AU2008240321B8 (en) 1999-08-09 2008-10-30 Receiver for television signals

Family Applications After (1)

Application Number Title Priority Date Filing Date
AU2008240321A Expired AU2008240321B8 (en) 1999-08-09 2008-10-30 Receiver for television signals

Country Status (1)

Country Link
AU (2) AU2004237901B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4390904A (en) * 1979-09-20 1983-06-28 Shelton Video Editors, Inc. Automatic circuit and method for editing commercial messages from television signals
US5668971A (en) * 1992-12-01 1997-09-16 Compaq Computer Corporation Posted disk read operations performed by signalling a disk read complete to the system prior to completion of data transfer
US5696866A (en) * 1993-01-08 1997-12-09 Srt, Inc. Method and apparatus for eliminating television commercial messages
TW465235B (en) * 1998-09-17 2001-11-21 United Video Properties Inc Electronic program guide with digital storage

Also Published As

Publication number Publication date
AU2008240321A1 (en) 2008-11-27
AU2008240321B8 (en) 2012-02-02
AU2004237901B2 (en) 2008-08-07
AU2008240321B2 (en) 2011-09-15

Similar Documents

Publication Publication Date Title
AU779736B2 (en) Improvements in receivers for television signals
US7684681B1 (en) Receivers for television signals
EP2827583B1 (en) Image recording and reproducing apparatus and method
KR102023766B1 (en) Systems and methods for interactive program guides with personal video recording features
EP2265021B1 (en) Method and apparatus for recording television programmes and television signal receiver
EP2105013B1 (en) Systems and methods for viewing substitute media while fast forwarding past an advertisement
JP5099879B2 (en) Interactive television system with automatic switching from broadcast media to streaming media
CA2666635C (en) Systems and methods for interactive program guides with personal video recording features
KR100982063B1 (en) Display controlling device and method thereof and video display controlling device and method thereof
US20080152300A1 (en) Systems and methods for inserting advertisements during commercial skip
WO2001093576A9 (en) Method and apparatus for recording streaming video data upon selection of alternative subject matter
US20060150225A1 (en) Methods and systems for retaining and displaying pause buffer indicia across channel changes
GB2394618A (en) Video recorder catch up
CA2573345C (en) Improvements in receivers for television signals
AU2004237901B2 (en) Skipping programme portions during replay
AU2004237900B2 (en) Interruptible recorder
NZ529223A (en) Improvements in receivers for television signals
JP2002191005A (en) Program video recording and reproducing device and program video recording and reproducing method
WO2006123292A2 (en) Presentation of content at a client device
JP2007201766A (en) Data broadcast receiver

Legal Events

Date Code Title Description
CB Opposition lodged by

Opponent name: FOXTEL MANAGEMENT PTY LTD

CH Opposition withdrawn

Opponent name: FOXTEL MANAGEMENT PTY LTD

FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: SKY CP LIMITED

Free format text: FORMER OWNER(S): BRITISH SKY BROADCASTING LTD.

MK14 Patent ceased section 143(a) (annual fees not paid) or expired