AU2004203591A1 - Method and apparatus for controlling a railway consist - Google Patents

Method and apparatus for controlling a railway consist Download PDF

Info

Publication number
AU2004203591A1
AU2004203591A1 AU2004203591A AU2004203591A AU2004203591A1 AU 2004203591 A1 AU2004203591 A1 AU 2004203591A1 AU 2004203591 A AU2004203591 A AU 2004203591A AU 2004203591 A AU2004203591 A AU 2004203591A AU 2004203591 A1 AU2004203591 A1 AU 2004203591A1
Authority
AU
Australia
Prior art keywords
consist
measurements
model parameters
estimate
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2004203591A
Other versions
AU2004203591B2 (en
Inventor
Paul Kenneth Houpt
Harry Kirk Mathews Jr
Sunil Shirish Shah
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transportation IP Holdings LLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of AU2004203591A1 publication Critical patent/AU2004203591A1/en
Application granted granted Critical
Publication of AU2004203591B2 publication Critical patent/AU2004203591B2/en
Assigned to GE GLOBAL SOURCING LLC reassignment GE GLOBAL SOURCING LLC Request for Assignment Assignors: GENERAL ELECTRIC COMPANY
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0094Recorders on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0058On-board optimisation of vehicle or vehicle train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0072On-board train data handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/021Measuring and recording of train speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/57Trackside diagnosis or maintenance, e.g. software upgrades for vehicles or trains, e.g. trackside supervision of train conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2205/00Communication or navigation systems for railway traffic
    • B61L2205/02Global system for mobile communication - railways [GSM-R]

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Feedback Control In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

AUSTRALIA
Patents Act COMPLETE SPECIFICATION
(ORIGINAL)
Class Int. Class Application Number: Lodged: Complete Specification Lodged: Accepted: Published: Priority Related Art: Name of Applicant: General Electric Company Actual Inventor(s): Paul Kenneth Houpt, Harry Kirk Mathews Jr, Sunil Shirish Shah Address for Service and Correspondence: PHILLIPS ORMONDE FITZPATRICK Patent and Trade Mark Attorneys 367 Collins Street Melbourne 3000 AUSTRALIA Invention Title: METHOD AND APPARATUS FOR CONTROLLING A RAILWAY CONSIST Our Ref: 724767 POF Code: 88428/141848 The following statement is a full description of this invention, including the best method of performing it known to applicant(s): -1- 8ooe 130504 METHOD AND APPARATUS FOR CONTROLLING A RAILWAY CONSIST
BACKGROUND
The present invention relates generally to the field of controlling a railway consist and more specifically to the field of generating and tracking optimal consist driving profiles.
In freight train and other railway consist operations, fuel consumption constitutes a major operating cost to railroads and i s also t he u ltimate source o f any potentially harmful emissions. Reducing fuel consumption, therefore, directly increases railroad profit and directly reduces emissions. While modest fuel savings are possible by improving efficiencies of engines and other components in the locomotive propulsion chain, larger savings are generally expected to be achieved by improving strategies for how the train is driven. A train driving strategy specifying throttle or brake settings or desired consist speed as a function of distance along a route or as a function of time is referred to as a "driving plan." Train schedules are determined by a central dispatcher and are frequently changed, to account for variability from numerous sources, often as a train is en route to a next decision point. At heavy traffic times, the schedule may have no schedule slack time and can only be met by continuous operation at prevailing railroad speed limits.
Frequently, however, the schedule does have at least some schedule slack time, allowing the engineer to drive at average speeds well below the speed limits and still arrive at subsequent decision points on time. Under such circumstances, it is possible to calculate an optimal driving plan that exploits the schedule slack time and minimizes fuel consumption, or an alternative objective function, subject to constraints of meeting the schedule and obeying the speed limits.
-lA- 130504 Opportunities exist, therefore, to provide train drivers with tools for generating driving plans and controlling railway consists to exploit schedule slack time and improve railway consist efficiency and performance.
SUMMARY
The opportunities described above are addressed, in one embodiment of the present invention, by an apparatus for controlling a railway consist, the apparatus comprising: a consist model adapted for computing an objective function from a set of candidate driving plans and a set of model parameters; a parameter identifier adapted for calculating the model parameters from a set of consist measurements; and a trajectory optimizer adapted for generating the candidate driving plans and for selecting an optimal driving plan to optimize the objective function subject to a set of terminal constraints and operating constraints.
The present invention is also embodied as a method for controlling a railway consist, the method comprising: computing an objective function from a set of candidate driving plans and a set of model parameters; calculating the model parameters from a set of consist measurements; and generating the candidate driving plans and selecting an optimal driving plan to optimize the objective function subject to a set of terminal constraints and operating constraints.
DRAWINGS
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein: Figure 1 illustrates a block diagram in accordance with one embodiment of the present invention.
130504 Figure 2 illustrates a block diagram in accordance with another embodiment of the present invention.
Figure 3 illustrates a block diagram in accordance with a more specific embodiment of the embodiment of Figure 1.
Figure 4 illustrates a block diagram in accordance with another more specific embodiment of the embodiment of Figure 1.
DETAILED DESCRIPTION In accordance with one embodiment of the present invention, Figure 1 illustrates a block diagram of an apparatus 100 for controlling a railway consist 105. Apparatus 100 comprises a consist model 110, a parameter identifier 150, and a trajectory optimizer 170. In operation, consist model 110 computes an objective function 120 from a set of candidate driving plans 130 and from a set of model parameters 140.
Parameter identifier 150 calculates model parameters 140 from a set of consist measurements 160. Trajectory optimizer 170 then generates candidate driving plans 130 and selects.an optimal driving plan 180 to optimize objective function 120 subject to any terminal constraints and operating constraints.
As used herein, "optimize" refers to minimizing or maximizing, as appropriate.
Examples of objective function 120 include, without limitation, fuel consumption, travel time, integral squared input rate, summed squared input difference, and combinations thereof. "Fuel consumption" and "travel time" refer respectively to the amount of fuel consumed and to the amount of time spent over an entire route or over any prescribed portion or portions of a route. In a continuous time implementation of consist model 110, "integral squared input rate" refers to an integral with respect to time of a squared time derivative of a driving plan throttle setting. In a discrete time implementation of consist model 110, "summed squared input difference" refers to a summation of a squared backward difference of driving plan throttle settings.
130504 Minimizing penalizing) these functions of the input produces a smoother driving plan thereby improving train handling with respect to coupling slack management.
Examples of model parameters 140 include, without limitation, consist mass and consist drag force parameters including, without limitation, coefficients in polynomial approximations to consist drag force as a function of consist speed. Examples of consist measurements 160 include, without limitation, a consist position measurement, a consist speed measurement, a tractive effort signal, and a track slope (grade) signal. Examples of terminal constraints include, without limitation, time constraints for reaching prescribed places along the track train schedules).
Examples of operating constraints include, without limitation, maximum or minimum speed limits and maximum or minimum acceleration limits.
In a more specific embodiment in accordance with the embodiment of Figure 1, objective function 120 is a quantity or linear combination of quantities selected from the group consisting of fuel consumption, travel time, integral squared input rate, and summed squared input difference.
In another more specific embodiment in accordance with the embodiment of Figure 1, apparatus 100 further comprises a pacing control system 190 for generating throttle commands 200 from optimal driving plan 180 and consist measurements 160. In this embodiment, optimal driving plan 180 provides a speed set point and consist measurements 160 provide a speed feedback for a feedback control algorithm implemented in pacing control system 190.
In accordance with another embodiment of the present invention, Figure 2 illustrates a block diagram wherein apparatus 100 further comprises a display module 210. In operation, display module 210 displays a formatted driving plan 220 derived from optimal driving plan 180 and consist measurements 160. The train driver uses formatted driving plan 220 to decide which throttle or brake settings to apply.
130504 In accordance with a more specific embodiment of the embodiment of Figure 1, Figure 3 illustrates a block diagram wherein parameter identifier 150 comprises an extended Kalman filter 240: As used herein, "extended Kalman filter" refers to any apparatus for dynamic state estimation using a n on-linear process model including, without limitation, extended observers.
In a more detailed embodiment in accordance with the embodiment of Figure 3: extended Kalman filter 240 has an extended filter state vector comprising a consist position estimate, a consist speed estimate, and model parameters 140; and consist measurements 160 comprise a consist position measurement and a consist speed measurement.
In accordance with another more specific embodiment of the embodiment of Figure 1, Figure 4 illustrates a block diagram wherein parameter identifier 150 comprises a Kalman filter 250 and a least squares estimator 270. In operation, Kalman filter 250 generates filter outputs 260 from consist measurements 160. Least squares estimator 270 estimates model parameters 140 from filter outputs 260 and consist measurements 160.
In a more detailed embodiment in accordance with the embodiment of Figure 4: Kalman filter 250 has a filter state vector comprising a consist position estimate, a consist speed estimate, and a consist acceleration estimate; filter outputs 260 comprise the consist speed estimate and the consist acceleration estimate; and consist measurements 160 comprise a consist position measurement, a consist speed measurement, a tractive effort signal, and a track grade signal.
All of the above described elements of embodiments of the present invention may be implemented, by way of example, but not limitation, using singly or in combination any electric or electronic devices capable of performing the indicated functions.
Examples of such devices include, without limitation: analog devices; 'analog computation modules; digital devices including, without limitation, small-, medium-, I 130504 and large-scale integrated circuits, application specific integrated circuits (ASICs), and programmable logic arrays (PLAs); and digital computation modules including, without limitation, microcomputers, microprocessors, microcontrollers, and programmable logic controllers (PLCs).
In some implementations, the above described elements of the present invention are implemented as software components in a general purpose computer. Such software implementations produce a technical effect of controlling a railway consist so as to optimize a selected objective function.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
-6r 130504 Parts List 100 apparatus 105 railway consist 110 consist model 120 objective function 130 candidate driving plans 140 model parameters 150 parameter identifier 160 consist measurements 170 trajectory optimizer 180 optimal driving plan 190 pacing control system 200 throttle commands 210 display module 220 formatted driving plan 230 train driver 240 extended Kalman filter 250 Kalman filter 260 filter outputs 270 least squares estimator

Claims (6)

  1. 4. 130504 CLAIMS 1. An apparatus (100) for controlling a railway consist (105), said apparatus (100) comprising: a consist model (110) adapted for computing an objective function (120) from a set of candidate driving plans (130) and a set of model parameters (140); a parameter identifier (150) adapted for calculating said model parameters (140) from a set of consist measurements (160); and a trajectory optimizer (170) adapted for generating said candidate driving plans (130) and for selecting an optimal driving plan (180) to optimize s aid objective function (120) subject to a set of terminal constraints and operating constraints. 2. The apparatus (100) of claim 1 further comprising a pacing control system (190) adapted for generating a set of throttle commands (200) from said optimal driving plan (180) and said consist measurements (160). 3. The apparatus (100) of claim 1 further comprising a display module (210) adapted for displaying a formatted driving plan (220) from said optimal driving plan (180) and said consist measurements (160). 4. The apparatus (100) of claim 1 wherein said parameter identifier (150) comprises an extended Kalman filter (240) including an extended filter state vector comprising a consist position estimate, a consist speed estimate, and said model parameters (140); and said consist measurements (160) comprise a consist position measurement and a consist speed measurement. The apparatus (100) of claim 1 wherein said parameter identifier (150) comprises: -7- 130504 a Kalman filter (250) adapted for generating a set of filter outputs (260) from said consist measurements (160); and a 1 east s quares e stimator (270) adapted for e stimating s aid m odel p arameters (140) from said filter outputs (260) and said consist measurements (160).
  2. 6. The apparatus (100) of claim 1 wherein said objective function (120) is a quantity or linear combination of quantities selected from the group consisting of fuel consumption, travel time, integral squared input rate, and summed squared input difference.
  3. 7. A method for controlling a railway consist (105), said method comprising: computing an objective function (120) from a set of candidate driving plans (130) and a set of model parameters (140); calculating said model parameters (140) from a set of consist measurements (160); and generating said candidate driving plans (130) andselecting an optimal driving plan (180) to optimize said objective function (120) subject to a set of terminal constraints and operating constraints.
  4. 8. The method of claim 7 further comprising generating a set of throttle commands (200) from said optimal driving plan (180) and said consist measurements (160).
  5. 9. The method of claim 7 wherein said act of calculating said model parameters (140) comprises using an extended Kalman filter (240) including an extended filter state vector comprising a consist position estimate, a consist speed estimate, and said model parameters (140); and -8- 130504 said consist measurements (160) comprise a consist position measurement and a consist speed measurement. The method of claim 7 wherein said act of calculating said model parameters (140) comprises: using a Kalman filter (250) for generating a set of filter outputs (260) from said consist measurements (160); and using a least squares estimator (270) for estimating said model parameters (140) from said filter outputs (260) and said consist measurements (160).
  6. 11. The method of claim 10 wherein: said Kalman filter (250) hasa filter state vector comprising a consist position estimate, a consist speed estimate, and a consist acceleration estimate; said filter outputs (260) comprise said consist speed estimate and said consist acceleration estimate; and said consist measurements (160) comprise a consist position measurement, a consist speed measurement, a tractive effort signal, and a track grade signal. DATED: 3 AUGUST 2004 PHILLIPS ORMONDE FITZPATRICK ATTORNEYS FOR: GENERAL ELECTRIC COMPANY -9-
AU2004203591A 2003-09-24 2004-08-04 Method and apparatus for controlling a railway consist Ceased AU2004203591B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/670,891 2003-09-24
US10/670,891 US7127336B2 (en) 2003-09-24 2003-09-24 Method and apparatus for controlling a railway consist

Publications (2)

Publication Number Publication Date
AU2004203591A1 true AU2004203591A1 (en) 2005-04-07
AU2004203591B2 AU2004203591B2 (en) 2010-03-04

Family

ID=34313876

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2004203591A Ceased AU2004203591B2 (en) 2003-09-24 2004-08-04 Method and apparatus for controlling a railway consist

Country Status (5)

Country Link
US (1) US7127336B2 (en)
AU (1) AU2004203591B2 (en)
BR (1) BRPI0404116A (en)
CA (1) CA2481771C (en)
MX (1) MXPA04009235A (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10569792B2 (en) 2006-03-20 2020-02-25 General Electric Company Vehicle control system and method
US10308265B2 (en) 2006-03-20 2019-06-04 Ge Global Sourcing Llc Vehicle control system and method
US9233696B2 (en) * 2006-03-20 2016-01-12 General Electric Company Trip optimizer method, system and computer software code for operating a railroad train to minimize wheel and track wear
US20070225878A1 (en) * 2006-03-20 2007-09-27 Kumar Ajith K Trip optimization system and method for a train
US9733625B2 (en) * 2006-03-20 2017-08-15 General Electric Company Trip optimization system and method for a train
US8924049B2 (en) 2003-01-06 2014-12-30 General Electric Company System and method for controlling movement of vehicles
US20080201019A1 (en) * 2006-03-20 2008-08-21 Ajith Kuttannair Kumar Method and computer software code for optimized fuel efficiency emission output and mission performance of a powered system
US9156477B2 (en) 2006-03-20 2015-10-13 General Electric Company Control system and method for remotely isolating powered units in a vehicle system
US9689681B2 (en) 2014-08-12 2017-06-27 General Electric Company System and method for vehicle operation
US8473127B2 (en) * 2006-03-20 2013-06-25 General Electric Company System, method and computer software code for optimizing train operations considering rail car parameters
US8370007B2 (en) * 2006-03-20 2013-02-05 General Electric Company Method and computer software code for determining when to permit a speed control system to control a powered system
US9201409B2 (en) 2006-03-20 2015-12-01 General Electric Company Fuel management system and method
US8249763B2 (en) * 2006-03-20 2012-08-21 General Electric Company Method and computer software code for uncoupling power control of a distributed powered system from coupled power settings
US8998617B2 (en) 2006-03-20 2015-04-07 General Electric Company System, method, and computer software code for instructing an operator to control a powered system having an autonomous controller
US8126601B2 (en) 2006-03-20 2012-02-28 General Electric Company System and method for predicting a vehicle route using a route network database
US9266542B2 (en) * 2006-03-20 2016-02-23 General Electric Company System and method for optimized fuel efficiency and emission output of a diesel powered system
US8370006B2 (en) 2006-03-20 2013-02-05 General Electric Company Method and apparatus for optimizing a train trip using signal information
US8401720B2 (en) * 2006-03-20 2013-03-19 General Electric Company System, method, and computer software code for detecting a physical defect along a mission route
US8788135B2 (en) * 2006-03-20 2014-07-22 General Electric Company System, method, and computer software code for providing real time optimization of a mission plan for a powered system
US8398405B2 (en) 2006-03-20 2013-03-19 General Electric Company System, method, and computer software code for instructing an operator to control a powered system having an autonomous controller
US20080208401A1 (en) * 2006-03-20 2008-08-28 Ajith Kuttannair Kumar System, method, and computer software code for insuring continuous flow of information to an operator of a powered system
US9527518B2 (en) 2006-03-20 2016-12-27 General Electric Company System, method and computer software code for controlling a powered system and operational information used in a mission by the powered system
US20080167766A1 (en) * 2006-03-20 2008-07-10 Saravanan Thiyagarajan Method and Computer Software Code for Optimizing a Range When an Operating Mode of a Powered System is Encountered During a Mission
US8295993B2 (en) 2006-03-20 2012-10-23 General Electric Company System, method, and computer software code for optimizing speed regulation of a remotely controlled powered system
US20080183490A1 (en) * 2006-03-20 2008-07-31 Martin William P Method and computer software code for implementing a revised mission plan for a powered system
US7974774B2 (en) * 2006-03-20 2011-07-05 General Electric Company Trip optimization system and method for a vehicle
US8630757B2 (en) * 2006-03-20 2014-01-14 General Electric Company System and method for optimizing parameters of multiple rail vehicles operating over multiple intersecting railroad networks
US8768543B2 (en) * 2006-03-20 2014-07-01 General Electric Company Method, system and computer software code for trip optimization with train/track database augmentation
AU2016201882B2 (en) * 2006-03-20 2018-04-05 General Electric Company Trip optimization system and method for a train
US8290645B2 (en) 2006-03-20 2012-10-16 General Electric Company Method and computer software code for determining a mission plan for a powered system when a desired mission parameter appears unobtainable
CN101356089B (en) * 2006-05-19 2015-06-24 通用电气公司 System, method and computer software code for optimizing train operations considering rail car parameters
US9037323B2 (en) * 2006-12-01 2015-05-19 General Electric Company Method and apparatus for limiting in-train forces of a railroad train
US8494696B2 (en) * 2006-10-02 2013-07-23 General Electric Company System, method, and computer software code for improved fuel efficiency emission output, and mission performance of a powered system
US20080125924A1 (en) * 2006-10-02 2008-05-29 Wolfgang Daum System, method, and computer software code for optimized fuel efficiency emission output, and mission performance of a diesel powered system
US9580090B2 (en) 2006-12-01 2017-02-28 General Electric Company System, method, and computer readable medium for improving the handling of a powered system traveling along a route
US8229607B2 (en) * 2006-12-01 2012-07-24 General Electric Company System and method for determining a mismatch between a model for a powered system and the actual behavior of the powered system
US8180544B2 (en) * 2007-04-25 2012-05-15 General Electric Company System and method for optimizing a braking schedule of a powered system traveling along a route
US9120493B2 (en) * 2007-04-30 2015-09-01 General Electric Company Method and apparatus for determining track features and controlling a railroad train responsive thereto
US7395141B1 (en) * 2007-09-12 2008-07-01 General Electric Company Distributed train control
US8649963B2 (en) 2008-01-08 2014-02-11 General Electric Company System, method, and computer software code for optimizing performance of a powered system
US8190312B2 (en) * 2008-03-13 2012-05-29 General Electric Company System and method for determining a quality of a location estimation of a powered system
US8965604B2 (en) 2008-03-13 2015-02-24 General Electric Company System and method for determining a quality value of a location estimation of a powered system
US8155811B2 (en) * 2008-12-29 2012-04-10 General Electric Company System and method for optimizing a path for a marine vessel through a waterway
US20100174484A1 (en) * 2009-01-05 2010-07-08 Manthram Sivasubramaniam System and method for optimizing hybrid engine operation
US9834237B2 (en) 2012-11-21 2017-12-05 General Electric Company Route examining system and method
FR2958759B1 (en) * 2010-04-09 2012-11-16 Airbus Operations Sas METHOD AND DEVICE FOR RECLAIMING THE POSITION OF AN AIRCRAFT ON A FLIGHT
US8914168B2 (en) 2012-04-05 2014-12-16 Union Pacific Railroad Company System and method for automated locomotive startup and shutdown recommendations
US9682716B2 (en) 2012-11-21 2017-06-20 General Electric Company Route examining system and method
US9669851B2 (en) 2012-11-21 2017-06-06 General Electric Company Route examination system and method
BR102016006590B1 (en) 2016-03-24 2023-01-10 General Electric Company POWER CONTROL SYSTEM, METHOD FOR DICTATING POWER SETTINGS AND METHOD FOR CONTROLLING A VEHICLE SYSTEM
US10183684B2 (en) * 2016-03-31 2019-01-22 General Electric Company Multiple vehicle control system
US10985610B2 (en) 2016-04-01 2021-04-20 Enel X North America, Inc. High speed control systems and methods for economical optimization of an electrical system
US20170286882A1 (en) * 2016-04-01 2017-10-05 Demand Energy Networks, Inc. Control systems and methods for economical optimization of an electrical system
US10279823B2 (en) * 2016-08-08 2019-05-07 General Electric Company System for controlling or monitoring a vehicle system along a route
US10137912B2 (en) 2016-10-31 2018-11-27 General Electric Company System for controlling or monitoring a vehicle system along a route
DE102017212499A1 (en) * 2017-07-20 2019-01-24 Siemens Aktiengesellschaft Control method and control device for operating a rail vehicle
US11121552B2 (en) 2018-07-02 2021-09-14 Enel X North America, Inc. Demand setpoint management in electrical system control and related systems, apparatuses, and methods
US10859986B2 (en) 2018-12-28 2020-12-08 Enel X North America, Inc. Electrical system control for achieving long-term objectives, and related systems, apparatuses, and methods
US12015269B2 (en) 2020-12-11 2024-06-18 Enel X S.R.L. Methods, systems, and apparatuses for the reset of a setpoint for committed demand

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4344364A (en) * 1980-05-09 1982-08-17 Halliburton Company Apparatus and method for conserving fuel in the operation of a train consist
WO1990003622A1 (en) 1988-09-28 1990-04-05 Teknis Systems (Australia) Pty. Ltd. A system for energy conservation on rail vehicles
US6768944B2 (en) * 2002-04-09 2004-07-27 Intelligent Technologies International, Inc. Method and system for controlling a vehicle
US6263266B1 (en) * 1998-09-11 2001-07-17 New York Air Brake Corporation Method of optimizing train operation and training
WO1999014093A1 (en) 1997-09-12 1999-03-25 New York Air Brake Corporation Method of optimizing train operation and training
DE19935351A1 (en) 1999-07-29 2001-02-01 Abb Daimler Benz Transp Process for energy optimization in a vehicle / train with efficiency dependent on the operating point
DE19935349A1 (en) 1999-07-29 2001-02-01 Abb Daimler Benz Transp Method for energy optimization of the driving style in a vehicle / train using the kinetic energy
DE19935353A1 (en) 1999-07-29 2001-02-01 Abb Daimler Benz Transp Method for energy optimization in a vehicle / train with several drive systems
DE19935352A1 (en) 1999-07-29 2001-02-01 Abb Daimler Benz Transp Method for energy optimization of the driving style in a vehicle / train using a sliding optimization horizon
US6332106B1 (en) 1999-09-16 2001-12-18 New York Air Brake Corporation Train handling techniques and analysis
US6502033B1 (en) * 2000-10-05 2002-12-31 Navigation Technologies Corp. Turn detection algorithm for vehicle positioning
US6641090B2 (en) * 2001-01-10 2003-11-04 Lockheed Martin Corporation Train location system and method

Also Published As

Publication number Publication date
US7127336B2 (en) 2006-10-24
BRPI0404116A (en) 2005-05-24
MXPA04009235A (en) 2005-03-31
CA2481771C (en) 2011-01-04
CA2481771A1 (en) 2005-03-24
AU2004203591B2 (en) 2010-03-04
US20050065674A1 (en) 2005-03-24

Similar Documents

Publication Publication Date Title
AU2004203591B2 (en) Method and apparatus for controlling a railway consist
US7822491B2 (en) System for improving timekeeping and saving energy on long-haul trains
US8768543B2 (en) Method, system and computer software code for trip optimization with train/track database augmentation
AU2007289020B2 (en) Trip optimization system and method for a vehicle
US9162690B2 (en) System and method for controlling movement of vehicles
US9266542B2 (en) System and method for optimized fuel efficiency and emission output of a diesel powered system
US8538611B2 (en) Multi-level railway operations optimization system and method
US20070225878A1 (en) Trip optimization system and method for a train
US20070233335A1 (en) Method and apparatus for optimizing railroad train operation for a train including multiple distributed-power locomotives
US20080208401A1 (en) System, method, and computer software code for insuring continuous flow of information to an operator of a powered system
AU2007289021A1 (en) Method and apparatus for optimizing railroad train operation for a train including multiple distributed-power locomotives
WO2009146292A1 (en) System and method for optimizing speed regulation of a remotely controlled powered system
EP3718852A2 (en) Method for controlling a powered system based on mission plan
WO2008073547A2 (en) Trip optimization system and method for a diesel powered system
WO2008073546A2 (en) Method and apparatus for optimizing railroad train operation for a train including multiple distributed-power locomotives
CN108778862B (en) Method for providing brake selection advice to train driver and train driver advisory system
AU2012261786A1 (en) Trip optimization system and method for a train
AU2019200200A1 (en) Method for controlling a powered system based on mission plan
AU2013206474A1 (en) Method and apparatus for optimizing railroad train operation for a train including multiple distributed-power locomotives
AU2016202936B2 (en) Method and apparatus for optimizing railroad train operation for a train including multiple distributed-power locomotives
JP5469463B2 (en) Navigation optimization system and method for trains
RU2484994C2 (en) System and method for optimisation of train cruise
MX2008003359A (en) System and method for optimizing parameters of multiple rail vehicles operating over multiple intersecting railroad networks
MX2008003360A (en) Method and apparatus for optimizing railroad train operation for a train including multiple distributed-power locomotives

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
PC Assignment registered

Owner name: GE GLOBAL SOURCING LLC

Free format text: FORMER OWNER(S): GENERAL ELECTRIC COMPANY

MK14 Patent ceased section 143(a) (annual fees not paid) or expired