AU2003304170A1 - Nanocrystalline layers and improved mram tunnel junctions - Google Patents

Nanocrystalline layers and improved mram tunnel junctions

Info

Publication number
AU2003304170A1
AU2003304170A1 AU2003304170A AU2003304170A AU2003304170A1 AU 2003304170 A1 AU2003304170 A1 AU 2003304170A1 AU 2003304170 A AU2003304170 A AU 2003304170A AU 2003304170 A AU2003304170 A AU 2003304170A AU 2003304170 A1 AU2003304170 A1 AU 2003304170A1
Authority
AU
Australia
Prior art keywords
layer
tunnel junctions
nanocrystalline layers
improved mram
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2003304170A
Other versions
AU2003304170A8 (en
Inventor
Renu W. Dave
Jon M. Slaughter
Jijun Sun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of AU2003304170A1 publication Critical patent/AU2003304170A1/en
Publication of AU2003304170A8 publication Critical patent/AU2003304170A8/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49021Magnetic recording reproducing transducer [e.g., tape head, core, etc.]
    • Y10T29/49032Fabricating head structure or component thereof
    • Y10T29/49036Fabricating head structure or component thereof including measuring or testing
    • Y10T29/49043Depositing magnetic layer or coating
    • Y10T29/49044Plural magnetic deposition layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

An improved and novel device and fabrication method for a magnetic element, and more particularly a magnetic element with a crystallographically disordered seed layer and/or template layer seeding the nanocrystalline growth of subsequent layers, including a pinning layer, a pinned layer, and fixed layer.
AU2003304170A 2002-08-30 2003-07-24 Nanocrystalline layers and improved mram tunnel junctions Abandoned AU2003304170A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/232,111 US6801415B2 (en) 2002-08-30 2002-08-30 Nanocrystalline layers for improved MRAM tunnel junctions
US10/232,111 2002-08-30
PCT/US2003/023063 WO2004107370A2 (en) 2002-08-30 2003-07-24 Nanocrystalline layers and improved mram tunnel junctions

Publications (2)

Publication Number Publication Date
AU2003304170A1 true AU2003304170A1 (en) 2005-01-21
AU2003304170A8 AU2003304170A8 (en) 2005-01-21

Family

ID=31976922

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003304170A Abandoned AU2003304170A1 (en) 2002-08-30 2003-07-24 Nanocrystalline layers and improved mram tunnel junctions

Country Status (10)

Country Link
US (1) US6801415B2 (en)
EP (1) EP1547102B1 (en)
JP (1) JP2006506828A (en)
KR (1) KR101036124B1 (en)
CN (1) CN100339915C (en)
AT (1) ATE361536T1 (en)
AU (1) AU2003304170A1 (en)
DE (1) DE60313636T2 (en)
TW (1) TWI311754B (en)
WO (1) WO2004107370A2 (en)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6724652B2 (en) * 2002-05-02 2004-04-20 Micron Technology, Inc. Low remanence flux concentrator for MRAM devices
US7002228B2 (en) * 2003-02-18 2006-02-21 Micron Technology, Inc. Diffusion barrier for improving the thermal stability of MRAM devices
US7054119B2 (en) * 2003-06-18 2006-05-30 Hewlett-Packard Development Company, L.P. Coupled ferromagnetic systems having modified interfaces
US6893741B2 (en) * 2003-06-24 2005-05-17 Hitachi Global Storage Technologies Netherlands B.V. Magnetic device with improved antiferromagnetically coupling film
JP3818592B2 (en) * 2003-11-04 2006-09-06 Tdk株式会社 Magnetoresistive device and manufacturing method thereof, thin film magnetic head, head gimbal assembly, and hard disk device
KR100634501B1 (en) * 2004-01-29 2006-10-13 삼성전자주식회사 Magnetic memory devive and method of manufacturing the same
US7339769B2 (en) * 2004-03-02 2008-03-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor with antiferromagnetic exchange-coupled structure having underlayer for enhancing chemical-ordering in the antiferromagnetic layer
US6960480B1 (en) * 2004-05-19 2005-11-01 Headway Technologies, Inc. Method of forming a magnetic tunneling junction (MTJ) MRAM device and a tunneling magnetoresistive (TMR) read head
US7098495B2 (en) * 2004-07-26 2006-08-29 Freescale Semiconducor, Inc. Magnetic tunnel junction element structures and methods for fabricating the same
US6992910B1 (en) * 2004-11-18 2006-01-31 Maglabs, Inc. Magnetic random access memory with three or more stacked toggle memory cells and method for writing a selected cell
US7251110B2 (en) * 2005-01-18 2007-07-31 Hitachi Global Storage Technologies Netherlands B.V. GMR sensor having layers treated with nitrogen for increased magnetoresistance
US7672094B2 (en) * 2005-01-18 2010-03-02 Hitachi Global Storage Technologies Netherlands B.V. TMR sensor having an under-layer treated with nitrogen for increased magnetoresistance
US7267997B1 (en) 2005-04-29 2007-09-11 Samsung Electronics Co., Ltd. Process for forming magnetic memory structures
US7927948B2 (en) 2005-07-20 2011-04-19 Micron Technology, Inc. Devices with nanocrystals and methods of formation
US7575978B2 (en) 2005-08-04 2009-08-18 Micron Technology, Inc. Method for making conductive nanoparticle charge storage element
US7989290B2 (en) 2005-08-04 2011-08-02 Micron Technology, Inc. Methods for forming rhodium-based charge traps and apparatus including rhodium-based charge traps
US8582252B2 (en) * 2005-11-02 2013-11-12 Seagate Technology Llc Magnetic layer with grain refining agent
US20070121254A1 (en) * 2005-11-29 2007-05-31 Honeywell International Inc. Protective and conductive layer for giant magnetoresistance
US7635654B2 (en) * 2006-01-27 2009-12-22 Everspin Technologies, Inc. Magnetic tunnel junction device with improved barrier layer
US8063459B2 (en) * 2007-02-12 2011-11-22 Avalanche Technologies, Inc. Non-volatile magnetic memory element with graded layer
US7732881B2 (en) * 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US8535952B2 (en) * 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US8363457B2 (en) * 2006-02-25 2013-01-29 Avalanche Technology, Inc. Magnetic memory sensing circuit
US8018011B2 (en) * 2007-02-12 2011-09-13 Avalanche Technology, Inc. Low cost multi-state magnetic memory
US8084835B2 (en) * 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US8058696B2 (en) * 2006-02-25 2011-11-15 Avalanche Technology, Inc. High capacity low cost multi-state magnetic memory
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
US8508984B2 (en) * 2006-02-25 2013-08-13 Avalanche Technology, Inc. Low resistance high-TMR magnetic tunnel junction and process for fabrication thereof
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US8120949B2 (en) * 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US8542524B2 (en) * 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US7869266B2 (en) * 2007-10-31 2011-01-11 Avalanche Technology, Inc. Low current switching magnetic tunnel junction design for magnetic memory using domain wall motion
US8367506B2 (en) 2007-06-04 2013-02-05 Micron Technology, Inc. High-k dielectrics with gold nano-particles
US20090121266A1 (en) * 2007-11-13 2009-05-14 Freescale Semiconductor, Inc. Methods and structures for exchange-coupled magnetic multi-layer structure with improved operating temperature behavior
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
US8659852B2 (en) 2008-04-21 2014-02-25 Seagate Technology Llc Write-once magentic junction memory array
US7855911B2 (en) 2008-05-23 2010-12-21 Seagate Technology Llc Reconfigurable magnetic logic device using spin torque
US7852663B2 (en) 2008-05-23 2010-12-14 Seagate Technology Llc Nonvolatile programmable logic gates and adders
US7881098B2 (en) 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
US7985994B2 (en) 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8039913B2 (en) 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US8089132B2 (en) 2008-10-09 2012-01-03 Seagate Technology Llc Magnetic memory with phonon glass electron crystal material
US8045366B2 (en) 2008-11-05 2011-10-25 Seagate Technology Llc STRAM with composite free magnetic element
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7826181B2 (en) 2008-11-12 2010-11-02 Seagate Technology Llc Magnetic memory with porous non-conductive current confinement layer
US8289756B2 (en) 2008-11-25 2012-10-16 Seagate Technology Llc Non volatile memory including stabilizing structures
US7826259B2 (en) 2009-01-29 2010-11-02 Seagate Technology Llc Staggered STRAM cell
KR101144211B1 (en) * 2009-04-08 2012-05-10 에스케이하이닉스 주식회사 Magneto-resistance element
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
JP2012015213A (en) * 2010-06-29 2012-01-19 Sony Corp Storage element, manufacturing method thereof, and memory
US8508221B2 (en) 2010-08-30 2013-08-13 Everspin Technologies, Inc. Two-axis magnetic field sensor having reduced compensation angle for zero offset
US8345471B2 (en) 2010-10-07 2013-01-01 Hynix Semiconductor Inc. Magneto-resistance element and semiconductor memory device including the same
US9780299B2 (en) * 2015-11-23 2017-10-03 Headway Technologies, Inc. Multilayer structure for reducing film roughness in magnetic devices
US10347825B2 (en) 2017-02-17 2019-07-09 International Business Machines Corporation Selective deposition and nitridization of bottom electrode metal for MRAM applications
CN112670403B (en) 2019-10-16 2024-04-30 联华电子股份有限公司 Semiconductor structure

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264070A (en) * 1990-10-09 1993-11-23 Motorola, Inc. Method of growth-orientation of a crystal on a device using an oriented seed layer
JP2924785B2 (en) * 1996-04-25 1999-07-26 日本電気株式会社 Magnetoresistive element thin film and method of manufacturing the same
JPH1041132A (en) 1996-07-18 1998-02-13 Sanyo Electric Co Ltd Magnetic resistance effect film
US5861328A (en) 1996-10-07 1999-01-19 Motorola, Inc. Method of fabricating GMR devices
DE69820524T2 (en) * 1997-05-09 2004-09-23 Kabushiki Kaisha Toshiba, Kawasaki Magnetic element and magnetic head or memory element using this element
US6127045A (en) * 1998-05-13 2000-10-03 International Business Machines Corporation Magnetic tunnel junction device with optimized ferromagnetic layer
US6072671A (en) * 1998-07-31 2000-06-06 International Business Machines Corporation Write head with high thermal stability material
US6181537B1 (en) 1999-03-29 2001-01-30 International Business Machines Corporation Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
DE19941046C1 (en) * 1999-08-28 2001-01-11 Bosch Gmbh Robert Production of a magnetically sensitive layer arrangement used in GMR sensors comprises adjusting the temperature coefficient of the layer arrangement whilst the material of at least one layer is chemically modified
US6611405B1 (en) * 1999-09-16 2003-08-26 Kabushiki Kaisha Toshiba Magnetoresistive element and magnetic memory device
US6205052B1 (en) * 1999-10-21 2001-03-20 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
US6519121B1 (en) * 1999-11-22 2003-02-11 International Business Machines Corporation Spin valve sensor with composite pinned layer structure for improving biasing of free layer structure with reduced sense current shunting
US6727105B1 (en) * 2000-02-28 2004-04-27 Hewlett-Packard Development Company, L.P. Method of fabricating an MRAM device including spin dependent tunneling junction memory cells
US20020101689A1 (en) * 2000-04-05 2002-08-01 Xuefei Tang High sensitivity spin valve stacks using oxygen in spacer layer deposition
JP3694440B2 (en) * 2000-04-12 2005-09-14 アルプス電気株式会社 Method for manufacturing exchange coupling film, method for manufacturing magnetoresistive effect element using exchange coupling film, and method for manufacturing thin film magnetic head using magnetoresistance effect element
JP2001325704A (en) * 2000-05-15 2001-11-22 Nec Corp Magnetoresistive effect sensor, method for manufacturing the same, magnetic resistance detecting system and magnetic storage system
JP2001345494A (en) * 2000-05-30 2001-12-14 Sony Corp Magnetoresistance effect element and manufacturing method thereof, magnetoresistance effect type magnetic head and manufacturing method thereof, and magnetic recording/reproducing equipment
JP3839644B2 (en) * 2000-07-11 2006-11-01 アルプス電気株式会社 Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
US6538859B1 (en) * 2000-07-31 2003-03-25 International Business Machines Corporation Giant magnetoresistive sensor with an AP-coupled low Hk free layer
US6710987B2 (en) * 2000-11-17 2004-03-23 Tdk Corporation Magnetic tunnel junction read head devices having a tunneling barrier formed by multi-layer, multi-oxidation processes
JP3756757B2 (en) * 2000-12-01 2006-03-15 アルプス電気株式会社 Exchange coupling film, magnetoresistive element using the exchange coupling film, and thin film magnetic head using the magnetoresistive element
JP4423658B2 (en) * 2002-09-27 2010-03-03 日本電気株式会社 Magnetoresistive element and manufacturing method thereof

Also Published As

Publication number Publication date
EP1547102B1 (en) 2007-05-02
WO2004107370A3 (en) 2005-02-03
EP1547102A2 (en) 2005-06-29
US6801415B2 (en) 2004-10-05
KR20050036985A (en) 2005-04-20
TWI311754B (en) 2009-07-01
AU2003304170A8 (en) 2005-01-21
DE60313636D1 (en) 2007-06-14
WO2004107370A2 (en) 2004-12-09
JP2006506828A (en) 2006-02-23
CN100339915C (en) 2007-09-26
TW200405335A (en) 2004-04-01
DE60313636T2 (en) 2007-08-30
ATE361536T1 (en) 2007-05-15
US20040042128A1 (en) 2004-03-04
KR101036124B1 (en) 2011-05-23
CN1679121A (en) 2005-10-05

Similar Documents

Publication Publication Date Title
AU2003304170A1 (en) Nanocrystalline layers and improved mram tunnel junctions
WO2011032187A3 (en) Magnetic tunnel junction device and fabrication
AU2003235902A1 (en) Semiconductor substrate manufacturing method and semiconductor device manufacturing method, and semiconductor substrate and semiconductor device manufactured by the methods
WO2005027201A8 (en) Method of fabrication and device comprising elongated nanosize elements
EP1458031A3 (en) Hybrid ferromagnet/semiconductor spin device and fabrication method thereof
WO2006130696A3 (en) Technique for the growth and fabrication of semipolar (ga,al,in,b)n thin films, heterostructures, and devices
TW200507279A (en) Thin-film semiconductor substrate, method of manufacturing the same; apparatus for and method of crystallization;Thin-film semiconductor apparatus, method of manufacturing the same;
TW200633022A (en) Method of manufacturing an epitaxial semiconductor substrate and method of manufacturing a semiconductor device
AU2003243002A1 (en) Organic semiconductor element, production method therefor and organic semiconductor device
WO2004053929A3 (en) Semiconductor nanocrystal heterostructures
EP1173047A4 (en) Composite substrate, thin-film light-emitting device comprising the same, and method for producing the same
WO2005050712A3 (en) High-temperature memory systems
AU2003207185A1 (en) Organic semiconductor structure, process for producing the same, and organic semiconductor device
TW200637051A (en) Mask, mask manufacturing method, pattern forming apparatus, and pattern formation method
WO2006094241A3 (en) Thin-film device comprising an oxide semiconductor and method of selective annealing a blanket coated oxide semiconductor layer
WO2007041007A3 (en) Magnetic tunnel junction temperature sensors
HK1060158A1 (en) A method of depositing a thin film on a substrate,a substrate and a diamond film produced by the me thod
GB2393038B (en) Epitaxial substrate for compound semiconductor light-emitting device, method for producing the same and light-emitting device
DE60320191D1 (en) Ferromagnetic room temperature semiconductor and plasma assisted molecular beam epitaxy, as well as methods for its production
AU2003242193A1 (en) Ferromagnetic iv group based semiconductor, ferromagnetic iii-v group based compound semiconductor, or ferromagnetic ii-iv group based compound semiconductor, and method for adjusting their ferromagnetic characteristics
AU2002220666A1 (en) Method for depositing especially, crystalline layers and device for carrying out the method
NZ725497A (en) Magnetic materials and devices comprising rare earth nitrides
AU2002348934A1 (en) Microstructures
EP1489664A4 (en) Tunneling magnetoresistance device, semiconductor junction device, magnetic memory, and semiconductor light-emitting device
EP1513167A3 (en) Magnetoresistance effect film, magnetoresistance effect head and solid state memory

Legal Events

Date Code Title Description
MK6 Application lapsed section 142(2)(f)/reg. 8.3(3) - pct applic. not entering national phase