AU2003298281A1 - Deformable colour photographic silver halide material - Google Patents

Deformable colour photographic silver halide material Download PDF

Info

Publication number
AU2003298281A1
AU2003298281A1 AU2003298281A AU2003298281A AU2003298281A1 AU 2003298281 A1 AU2003298281 A1 AU 2003298281A1 AU 2003298281 A AU2003298281 A AU 2003298281A AU 2003298281 A AU2003298281 A AU 2003298281A AU 2003298281 A1 AU2003298281 A1 AU 2003298281A1
Authority
AU
Australia
Prior art keywords
silver halide
colour photographic
pct
layer
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2003298281A
Inventor
Markus Geiger
Cuong Ly
Arno Schmuck
Leon Vermeulen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AgfaPhoto GmbH
Original Assignee
AgfaPhoto GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AgfaPhoto GmbH filed Critical AgfaPhoto GmbH
Publication of AU2003298281A1 publication Critical patent/AU2003298281A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C11/00Auxiliary processes in photography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/91Photosensitive materials characterised by the base or auxiliary layers characterised by subbing layers or subbing means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/06Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein with non-macromolecular additives
    • G03C1/08Sensitivity-increasing substances
    • G03C1/10Organic substances
    • G03C1/12Methine and polymethine dyes
    • G03C1/14Methine and polymethine dyes with an odd number of CH groups
    • G03C1/16Methine and polymethine dyes with an odd number of CH groups with one CH group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03517Chloride content
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03535Core-shell grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/005Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein
    • G03C1/035Silver halide emulsions; Preparation thereof; Physical treatment thereof; Incorporation of additives therein characterised by the crystal form or composition, e.g. mixed grain
    • G03C2001/03594Size of the grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/3022Materials with specific emulsion characteristics, e.g. thickness of the layers, silver content, shape of AgX grains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C7/00Multicolour photographic processes or agents therefor; Regeneration of such processing agents; Photosensitive materials for multicolour processes
    • G03C7/30Colour processes using colour-coupling substances; Materials therefor; Preparing or processing such materials
    • G03C7/392Additives
    • G03C7/39208Organic compounds
    • G03C7/3924Heterocyclic
    • G03C7/39244Heterocyclic the nucleus containing only nitrogen as hetero atoms
    • G03C7/3926Heterocyclic the nucleus containing only nitrogen as hetero atoms four or more nitrogen atoms

Description

WO 2004/046823 PCT/EP2003/050816 1 DEFORMABLE COLOUR PHOTOGRAPHIC SILVER HALIDE MATERIAL Field of the invention 5 The present invention relates to a deformable material for producing a deformed image without significant image degradation and is suitable for large formats and automatic processing. Background of the invention. 10 Deformable materials with colour and/or black and white motives, particularly those made of plastic, are used e.g. as protective and/or decorative foils particularly in the furniture industry, in which they are used as design elements to cover low 15 priced and/or light weight carrier materials and/or carrier materials that are critical to the conditions of their use; the configuration of deformable material and carrier material replacing much more expensive and/or heavier and/or less easier to handle and/or less resistant materials such as real wood, stainless steel 20 or marble. The manufacture of deformed plastic pieces with any kind of representations like images, designs, patterns, letters' and so forth, usually proceeds by printing on an undeformed flat foil of a thermoplastic polymer and is then deformed using heat and pressure. 25 The results obtained are unsatisfactory, because the printed pieces after deformation exhibit a loss in image quality, that is visible at all parts where the deformation has led to an elongation of the deformed material. In particular a significant loss in image quality is observed after deformation at curved parts and 3o still more so at sharp edges, which is particularly noticeable as a bright line and/or increased granularity following the curves and/or edges in homogeneously coloured dark areas, which is unacceptable, particularly in the case of decorated furniture. Furthermore, the printing processes require complicated prepress 35 steps and are therefore expensive and are not suitable for the manufacture of individual designs with small production runs. Photographic layers, which were laminated onto a.support, have, for example, been disclosed in EP-A 0 250 657, US 3,871,119, EP-A 0 490 416 and EP-A 0 276 506 for the manufacture of materials 40 for identity cards and in EP-A 1 189 108 have been disclosed for materials with a broader colour gamut. The layers can subsequently be covered with a protective foil, as disclosed, for example, in US 4,370,397 and GB 2,121,812.
WO 2004/046823 PCT/EP2003/050816 2 The disclosed ID-cards are all flat, so that there are no requirements regarding deformability and their suitability or otherwise therefor was not disclosed. Furthermore, as laminatable photographic layers those with 5 special binders have been disclosed, although neither of these options produces an optimum image quality. In particular the graininess realized with state of the art laminatable materials is unacceptably high. The DTR materials that are also known to be laminatable, are not suitable for the furniture industry, because 10 the two-sheet process has not been adapted to the large format automated processing needed in this field. Representations like images, designs, patterns, letters and so forth, of the highest quality can be realized with colour photographic materials, comprising on a support at least one blue is sensitive silver halide emulsion layer containing at least one yellow coupler, at least one green-sensitive silver halide emulsion layer containing at least one magenta coupler and at least one red sensitive silver halide emulsion layer containing at least one cyan coupler. As a support for reflective material, paper coated on 20 both sides with polyethylene and for transparent materials longitudinally and laterally stretched polyester is usually used. The deformation according to the present invention of such colour photographic materials is not possible. The deformability of special photographic materials consisting 25 of a support, an optional adhesive layer and a black and white silver halide emulsion photographic layer with special binders was disclosed in FR 968 638 and GB 739,477. According to FR 968 638 gelatin cannot be used as a binder, because cracking occurred upon bending. 30 The known deformable photographic materials as disclosed in FR 968 638 and GB 739 477 did not fulfil the present quality requirements for photographically produced images and the bending behaviour was unsatisfactory. GB 2,321,977 and the corresponding W098/35269 disclose a 33 mouldable photographic material comprising a thermoplastic base sheet, a primer layer providing a key for a light sensitive layer, and a protective thermoplastic foil, the foil being bonded to the light sensitive layer with an optical quality adhesive. Furthermore, no deformable photographic materials are known, 40 which are satisfactory for both a long exposure and for a digital exposure, such as, for example, required in the furniture industry, to enable the exposure of large formats. Analogue long exposures are desirable so that inexpensive exposure configurations can be WO 2004/046823 PCT/EP2003/050816 3 used, but digital exposure is being increasingly required, because it is much faster and because rolls of film are much easier to expose continuously. Furthermore, different designs can be much more easily realized in production, since no film is necessary as 5 an intermediate step. Nowadays new designs are usually produced by computer and can be directly used in digital exposure to realize optimal image quality. Digital exposure proceeds pixel-wise, line-wise or area-wise with high intensity strongly focussed beam of light beam e.g. from 10 lasers, light emitting diodes (LED), DMD (digital micromirror devices) apparatuses, cathode ray tubes and such like and with short to very short exposure times per pixel. A pixel is the smallest image area on the copying material, which can be addressed by the exposure apparatus. Conventional silver halide emulsions 15 exhibit a too low sensitivity, due to an unsatisfactory reciprocity, which results in a too low contrast and-insufficient maximum density at such short exposure times. A similar reciprocity failure is also observed at exposure times above 10 s (long exposure times), which are necessary for 20 analogue exposure of large formats. Objects of the invention. It is therefore an object of the present invention to provide 25 a deformable colour photographic material, which enables high quality representations like images, designs, patterns, letters and so forth to be realized, which undergo the desired deformation by heat and/or pressure without significant visible loss in image quality. A further advantage of the present invention compared to 30 printing processes is the possibility to produce even single pieces as a proof or demonstration example. Further aspects and advantages of the invention will become apparent from the description hereinafter. 35 Summary of the invention It has been surprisingly found, that the deformable colour photographic recording material of the present invention is suitable for digital exposure and gives high quality images, said 4o colour photographic silver halide material comprising on a deformable plastic support at least one blue-sensitive silver halide emulsion layer containing at least one yellow coupler, at least one green-sensitive silver halide emulsion layer containing WO 2004/046823 PCT/EP2003/050816 4 at least one magenta coupler and at least one red-sensitive silver halide emulsion layer containing at least one cyan coupler. Surprisingly it has been found, at variance with the disclosure in FR 968 638, that gelatin can be successfully used in 5 the materials used in the process according to the present invention. The reason why the use of gelatin failed according to FR 968 638, but surprisingly was very successful for the present invention, may be the difference between single layer black and white materials like those described in FR 968 638, that 10 essentially only contain silver halide crystals dispersed in the binder, and multilayer colour photographic materials according to the present invention, that also comprise softer materials like couplers in their layers. Aspects of the present invention are realized with a 15 deformable colour photographic silver-halide material, the colour photographic silver halide material comprising on a deformable plastic support at least one blue-sensitive silver halide emulsion layer containing at least one yellow coupler, at least one green sensitive silver halide emulsion layer containing at least one 20 magenta coupler and at least one red-sensitive silver halide emulsion layer containing at least one cyan coupler. Aspects of the present invention are also realized with a process for producing a deformed image comprising the steps of: exposing the above-mentioned colour photographic silver halide 25 material; conventionally processing the exposed colour photographic material to produce an image; and deforming the colour photographic material. Detailed description of the invention. 30 Definitions The term deformation (also known as moulding) used in disclosing the present invention refers to three-dimensional 35 deformation in which an initially flat object e.g. a plate or a sheet is deformed to a three dimensional shape using a shaping tool to which pressure and/or heat is applied, in the course of which at least a part of the initially flat object is elongated (stretched), the shape being maintained upon cooling and/or upon releasing the 40 pressure. The out-of-plane deformation is usually of a greater measure than the thickness of the initially flat object, the thickness being defined as the distance between the surface to which the tool is applied and the opposite surface of the initially WO 2004/046823 PCT/EP2003/050816 5 flat object. The term deformable as used in qualifying colour photographic silver halide material is the ability to undergo deformation as defined above. The term to deform means the process of deformation. 5 The term deformable plastic as used in disclosing the present invention includes all polymers, which can be deformed, without fracturing, exhibiting cracks or thermally decomposing. . The term deformable plastic includes all polymers, that are available in foil form and that are not stretched. 10 The term conventional processing as used in disclosing the present invention means chromogenic chemical colour processing as used for the processing of conventional photographic materials such as color papers, color films or display materials and is further specified in the following description. 15 The terms immediate and fast hardeners mean that the hardener is capable of hardening gelatin immediately after coating or at least several days after coating to such an extent that no further changes in sensitometry and swelling behaviour due to the presence of hardener occur. By swelling is meant the difference between wet 20 layer thickness and dry layer thickness upon aqueous processing of the material. The term silver nitrate (equivalent to AgX present) is used in the examples to characterize the silver halide emulsions means the weight of silver nitrate in a given amount of silver halide 25 emulsion that results when the quantity of silver halide in the emulsion is hypothetically converted into the equivalent weight of silver nitrate. Process for producing a deformed image 30 Aspects of the present invention are realized with a process for producing a deformed image comprising the steps of: exposing the colour photographic silver halide material, according to the present invention; conventionally processing the exposed colour 35 photographic material to produce an image; and deforming the colour photographic material. There are commonly used apparatus available for exposure and conventional processing of the photographic material of the present inventions that are able to process long and wide sheets as well as 40 wide rolls of the material as are needed e.g. in the furniture industry. Exposure preferably is carried out digitally and proceeds preferably from the side remote from the support, but in the case WO 2004/046823 PCT/EP2003/050816 6 of a transparent or slightly coloured support exposure can also be carried out through the support if a loss in sharpness is tolerable. To avoid light scattering and resulting loss in sharpness in s the case of a transparent or translucent support, it is preferred to place a dark sheet in contact with the side of the material remote from the light source upon exposure. The same effect can be achieved when the material comprises an antihalation layer, that is bleached during the chemical processing of the material. Suitable 10 absorbing material for said antihalation layer is described in Research Disclosure 38 957, 1996, VIII., from page 610, herein incorporated by reference. The antihalation layer has to be arranged on the side of the emulsion layers remote from the light source. 15 In a preferred embodiment of the invention the support is provided on the image side between the silver halide layers and the support with a layer reflecting white light and on the opposite side with a non-bleachable black antihalation layer as described in US 4 224 402, herein incorporated by reference. 20 After image-wise exposure the colour photographic material is appropriately processed. Details of processing and the chemicals required therefor together with exemplary colour photographic materials are to be found in Research Disclosure 37254, part 10 (1995) page 294 and in Research Disclosure 37038, parts XVI to 25 XXIII (1995), from page 95, herein incorporated by reference. Conventional processing of the colour photographic material comprises the steps of chromogenic development, bleaching and fixing and for colour reversal materials in addition a reversal step and a black and white development. The bleaching and fixing 30 steps can be carried out within one bleach/fixing step. Processes and the compounds especially suitable for the process of the present invention are commonly known in the art and described e.g. in Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, Vol. A20, p 68 to 98, herein incorporated by reference, in 35 particular the color negative paper processes such as EP-2 (Eastman Kodak) and AP 92 (Agfa) for silver bromide chloride emulsions and RA-4 (Eastman Kodak) and AP 94 (Agfa) processes for predominantly silver chloride emulsions. In another preferred embodiment of the process, according to 40 the present invention, the conventional processing of the colour photographic material is carried out with development times between 15 and 130 s. Longer development times are necessary, if, for WO 2004/046823 PCT/EP2003/050816 7 example, silver-rich materials are processed in order to attain a particularly high colour density. Deformable plastic support 5 Deformable plastics are those which can be deformed, without fracturing, exhibiting cracks or thermally decomposing. All polymers, that are available in foil form and that are not stretched fall under the term deformable plastics. 10 A good reference point for the temperature necessary for deformation is the glass transition temperature (Tg). Deformation is usually done between the glass transition temperature and the melting point of the deformable plastic. The pressure needed for deformation can easily be tested; the higher the deformation 15 temperature is with respect to the glass transition temperature, the lower the pressure needed. Just below the melting point only a very low pressure is needed. The time needed for the deformation can also be easily tested and adjusted. A higher temperature and/or a higher pressure results in a shorter time. 20 Suitable support materials, e.g. foils, films or sheets, are preferably taken from the group of plastics knows as thermoplastics and include poly(vinylchloride) (PVC), polycarbonate (PC), non oriented polyester, acrylonitrile-butadiene-styrene (ABS), polyolefin, copolymers and mixtures of said polymers. Suitable 25 copolymers include vinylchloride copolymer, in particular ABS copolymerized with vinylchloride and polyolefin copolymer. According to a preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, deformable plastic support is a polycarbonate, 30 poly(vinylchloride), vinylchloride copolymer or a polyester; or a copolyester based on PET. Suitable polycarbonates for use in the colour photographic material of the present invention, contain repeating units represented by the formula 35 R R 3 -O X O--CO R 2 R 4 wherein X represents -S-, -S0 2 -, -C(R 5 , R 6 )- or -C[=C(R 7
,R
8 ) I-; R 1 ,
R
2 , R 3 , R 4 , R 7 and R 8 independently represent a hydrogen atom, or an alkyl- or aryl- group; and R 5 and R 6 independently represent a WO 2004/046823 PCT/EP2003/050816 8 hydrogen atom or an alkyl- or aryl- group or together represent the atoms necessary to form a cycloaliphatic ring, e.g. a cyclohexane ring. The polycarbonates preferably have weight averaged molecular weights between 10,000 and 500,000. Polycarbonates based on 5 bisphenol A are particularly preferred. Poly(vinylchloride) for use in the colour photographic material of the present invention, preferably contain at least 50% by weight vinylchloride units and optionally contain further hydrophobic units. Preferred comonomers are vinylidene chloride, 10 vinyl acetate, acrylonitrile, styrene, butadiene, chloroprene, dichlorobutadiene, vinyl fluoride, vinylidene fluoride and trifluroethylene. The poly(vinylchloride) preferably contains 60 to 65% by weight of chlorine. A PVC support used in the colour photographic material of the present invention, can contain 15 plasticizers, but for ecological reasons and for reasons of stability of the photographic material preferably contains no plasticizers. Furthermore, the PVC can contain stabilizers and antioxidants with inorganic heavy metal salts, metal soaps (particularly of Ba, Cd, Pb, Zn and Ca), dibutyl and dioctyl tin 20 compounds and epoxidized soya oil. Further optional ingredients of PVC include lubricants, impact modifier, process aids, fillers, fire retardants, smoke repressants, blowing agents, colourants, antistatic agents, viscosity modifier, biostabilizers and UV absorber. 25 Suitable polyesters include condensation products of aromatic, aliphatic or cycloaliphatic dicarboxylic acids with aliphatic or alicyclic glycols, whereby the dicarboxylic acids have preferably 4 to 20 C-atoms and the glycols preferably 2 to 24 C-atoms. The polyesters can also be modified by adding small quantities of other 30 monomers. Preferred polyesters are poly(ethylene terephthalate) (PET) or copolyesters based on PET (CoPET) like the preferred CoPET Eastar PETG Copolyester 6763 delivered by Eastman (PETG). However, stretched (oriented) polyesters are unsuitable, because they form micro-cracks upon deformation. 35 Suitable polyolefins include polypropylene, polyethylene and polymethylpentene either individually or as mixtures. Preferred polyolefins include copolymers of propylene and/or ethylene with hexene and/or butene and/or octene. Preferred deformable plastics for deformable colour 40 photographic materials, according to the present invention, are PVC, vinylchloride copolymer and PC, because they bend well and the photographic layer is particularly little affected. PC is WO 2004/046823 PCT/EP2003/050816 9 particularly preferred due to its high tensile strength and ensures a good storage stability. The support can be a single layer foil, but can also consist of a compound arrangement of several plastic foils. All plastic s foils must be of a deformable plastic. The thickness of the support is preferably between 0.05 and 0.75 mm. The support can be coated with one or several layers to provide the support with e.g. a colour layer or an adhesive layer. Depending upon the desired effect, the support can be white, 10 transparent, translucent or coloured with dyes or pigments and may also have structure or roughness on either or both sides. Structure or roughness in the foil is preferably realized during its manufacture. The support may contain pigments or other colorants. An 15 opaque, white colour can be realized by coextrusion of white pigments such as titanium dioxide. Suitable colorants include dyes such as Ultramarine Blue. To improve the adhesion of hydrophilic layers of colour photographic materials on hydrophobic supports, it is preferred to 20 pretreat the support with a hydrophilizing process, for example corona (air ionization at about 10 to 20 kV) treatment. Furthermore, a subbing layer between the support and the layer of the layer configuration of the colour photographic material closest to the support is also preferred. 25 In a preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, the deformable colour photographic material further contains a subbing layer containing 1.3 to 80% by weight of a proteinaceous colloid, 0 to 85% by weight of colloidal silica and 0 3o to 30% by weight of a siloxane, which can form a reaction product with the colloidal silica. In a further preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, the deformable colour photographic material, further contains a subbing layer on the same 35 side of the support as the silver halide emulsion layers. Particularly preferred is a subbing layer that further contains 1.0 to 70% by weight of an ionogenic polyester-polyurethane, which is coated from an aqueous dispersion, in which isocyanate groups in its structure have reacted with an ionomer compound, which contains 40 at least one active hydrogen atom and a carboxylate or sulphonate salt group, and in which the number of salt groups is sufficiently high to render the polyester-polyurethane dispersible in an aqueous WO 2004/046823 PCT/EP2003/050816 10 medium. Preferred proteinaceous colloids are gelatin and casein, with gelatin being particularly preferred. Suitable anionic polyester-polyurethanes are disclosed in US 3,397,989, US 4,388,403 and DE-OS 3 630 045, herein incorporated by s reference, with those with carboxylate and sulphonate groups, such as disclosed in US 3,397,989, being particularly preferred. The polyester-polyurethanes preferably contain a linear polyester with OH-end groups and a molecular weight between 300 and 2,000. The polyester-polyurethanes are preferably employed as an aqueous 10 dispersion, with a particularly preferred dispersion containing the reaction products of the following components with respect to the end dispersion: 23% by weight of a polyester based on adipic acid and hexandiol with an average molecular weight of 840, 14% by weight 4,4'-diisocyanatodicyclohexylmethane, 2% by weight 15 dimethylolpropionic acid and 1.5% by weight of trimethylamin, with the composition further containing 7.5% by weight N-Methyl pyrrolidon and 52% by weight water. Said particularly preferred dispersion is called hereinafter dispersion (D-1). Suitable polyester-polyurethane dispersions include 20 Dispercoll@ products from BAYER. Suitable colloidal silica's include products marketed under the trade names LUDOX@ (Du Pont), SYTON@ (Du Pont) and KIESELSOLE@ (Bayer). Their average particle size is preferably between 5 and 100 nm. 25 Suitable siloxanes are_ epresented by the formula: in which'RI represents a polymerizable group or has a OH- and/or
NH
2 - group which can react with the protein-containing colloid, particularly a group which contains a reactive halogen, an epoxy 3o group or an a, P-ethylenically unsaturated group. Examples of R 1 are: ClCH 2 CONH-A-; BrCH 2 CONH-A-; CH 2
=CH(CH
3 )COO-A-;
CH
2
=CHSO
2
CH
2 0CH 2
SO
2 NH-A-; CH 2 =CHCONH-A-; CH 2
=C(CH
3 )CONH-A-; C1 _N N/ -NH-A N CI in which A represents an alkylene group, or 0 35 CH--CH-Y- WO 2004/046823 PCT/EP2003/050816 11 and in which Y represents a bivalent hydrocarbon chain, which can be interrupted by oxygen. R 2 , R 3 and R 4 independently represent an optionally substituted hydrocarbon group such as methyl or ethyl. Suitable siloxane compounds include:
OC
2
H
5 SL-l Cl-CH 2
-CO-NH-(CH
2 )s---SI--OC 2
H
5 5
OC
2
H
5 OC2H, SL-2 Br-CH 2
-CO-NH-(CH
2 )3--Si-OC 2
H
5
OC
2
H
5 C2H5 SL-3 CI N NH-(CH2)s--i-OC2H. N N
OC
2 H, C1
OC
2 H6 H I SL-4 CH 2 =CH-S0 2
(CH
2
)
2 -0-(CH 2
)
2
-SO
2
-(CH
2
)
2
-N-(CH
2 )i-Si-OC2H. 0C 2
H
5
OCH
3 SL-5
CH-C-C--O-(CH
2 )--Si-OCH 3
CH
3 0
OCH
3 SL-6 ? C 2 H5 CHFCH- -NH-(CH 2 )i- i-OC 2 H O OC2H6 10 0
OC
2 H, SL-7 CH-C-C-NH-(CH2)Si-C 2 H I IlI I
CH
3 0
OC
2 H,
SCH
3 SL-8
H
2 C-CH-CH2-0--(CH 2 )--si-OCH \/ I O OCH3 WO 2004/046823 PCT/EP2003/050816 12 The adhesion of the subbing layer to the support can be improved by corona-pretreatment of the support. A surfactant (wetting agent)can be added to the subbing layer coating composition to improve the wetting of the subbing layer. 5 Suitable wetting agents include those containing saponines and products marketed under the trade names TERGITOL@ (supplied by Union Carbide Corp. and Niacet Corp.) or Manoxol@ (supplied by e.g. Rohm and Haas). In respect of support materials and subbing layers EP-A 0 276 10 506 and EP-A 490 416 are herein incorporated by reference. In a further preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, the deformable plastic support is laminatable e.g. by coating the backside of the support with an adhesive layer suitable 15 for pressure and/or heat adhesion processes. Such pressure sensitive adhesive layers are preferably covered with a protective foil. The adhesive layer, with or without protective foil, can be applied to the support at any time before lamination, thus even before the coating of the support with light-sensitive layers. It 20 is preferred to apply the adhesive layer after processing the colour photographic material. Provision of a protective foil on the image side of the support 2S In a preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, the outermost on the image side of the deformable colour photographic material is provided with a protective foil, preferably via an adhesive layer, which, for example, protects the 30 image from scratching and environmental effects due to oxygen, UV light and water. The protective foil provided on the image side of the support preferably comprises homopolymers such as PVC, PC, a polyalkylene or a polyester like PET or CoPET, in particular PVC. The protective foil can also comprise block copolymers with polymer 35 subunits that are preferably selected from the aforementioned homopolymers; mixed copolymers obtained by mixed polymerization of at least two monomers, in particular of at least two different vinyl monomers such as a vinylchloride, an alkylene or a styrene; or blends of at least two polymers selected from the aforementioned 40 homopolymers and/or block copolymers and / or mixed copolymers. In a preferred embodiment of the present invention, the adhesive layer is a polyalkylene foil (adhesive foil), in particular a polyethylene foil, that can be laminated in direct WO 2004/046823 PCT/EP2003/050816 13 contact to the protective foil or that is adhered to the protective foil using a glue layer. Preferably the protective foil and/or the adhesive layer and/or the glue layer if present contain a UV-absorber such as 5 hydroxybenzophenone or hydroxybenzotriazole. Preferred UV-absorber are those known under the trade name Tinuvin and are delivered by Ciba-Geigy. Suitable protective foils, adhesives and glues include those disclosed in EP-A 0 348 310, US 4,456,667, US 4,455,359, US 4,378,392, US 4,370,397, US 3,871,119 and GB-A 2,321,977 herein 10 incorporated by reference. The protective foil can consist of a single polymer composition or can be a mixture or a laminate of the same or different polymers, taken from the group of PVC, PC, PET, CoPET or a polyalkylene. It is preferred, that at least one of the polymers used for the protective foil is of the same plastic 15 material that is used for the support. In a preferred embodiment of the protective foil .used for the material, according to the present invention, the protective foil has a Tg that is similar to the Tg of the deformable plastic support. Particularly preferred adhesive foils of polyethylene 20 have a melting point of ca. 90 to 100*C. In a further preferred embodiment of the protective foil used for the material, according to the present invention, the protective foil can be coloured and/or printed with any kind of design, image or text. 25 The sandwich of protective foil, optionally a glue layer and the adhesive layer is preferably laminated to the image side of the photographic material using a roller laminator. According to a preferred embodiment of the process, according to the present invention, the deformable colour photographic silver 30 halide material is provided with a protective foil before deforming the colour photographic material with a work piece. Deformation of the colour photographic material 35 The deformation of the colour photographic material is usually carried out after conventional processing of the exposed colour photographic material, but can also be performed before processing and even before exposure. However, it is preferred to carry out the deformation after conventional processing of the exposed colour 40 photographic material. According to a preferred embodiment of the process, according to the present invention, the deforming step comprising the application of heat and pressure and wherein at least part of the WO 2004/046823 PCT/EP2003/050816 14 deformable colour photographic material is elongated during the process. The tool used in the deformation step can, for example be a mould into which the heated plastic is sucked, blown or pressed. In the furniture industry, for example, the piece of furniture to 5 which the colour photographic material is to be applied, can itself be the shaping tool. In this case the shaping tool is termed the "work piece". The colour photographic material is thereby pressed onto the piece of furniture (the work piece), for example with the aid of a membrane press, and thereby intimately attached to the 10 piece of furniture. In this process the work piece covered with the photographic material is pressed onto an elastic membrane (usually made of rubber) which itself is placed on top of a tank completely filled with hot water of about 95*C or filled with hot oil to enable the process, according to the present invention, to 15 be carried out at higher temperatures. According to a preferred embodiment of the process, according to the present invention, the deforming step comprises deforming the deformable colour photographic material by vacuum deformation. Adhesion of the deformed colour photographic material to the 20 piece of furniture is preferably supplemented with an adhesive. In the case of very soft materials deformable at room temperature (25*C) a pressure adhesive is sufficient (e.g. a contact adhesive). The piece of furniture, e.g. a piece of chipwood, has only been taken as an example. The deformable colour photographic material, 25 according to the present invention, can easily been used in other technical areas, e.g. the automotive industry, by just replacing the work piece and using adhesives that are known to work for the material the work piece is made of. According to a preferred embodiment of the process, according 30 to the present invention, the deforming step comprises deforming the deformable colour photographic material by injection moulding, wherein the photographic material is placed in a die mould and the injected plastic material deforms the deformable colour photographic material and forms a single entity with the deformable 35 colour photographic material. In a preferred embodiment of the process, according to the present invention, the deforming step comprises deforming the deformable colour photographic material in contact with a work piece. Usually the support side of the deformable colour 40 photographic material is applied to the work piece e.g. a piece of furniture. In this case it is preferable that the image side of the processed colour photographic material is provided with a transparent protective foil as described above just before the WO 2004/046823 PCT/EP2003/050816 15 deformation step so as to prevent damage during the deformation step. If the support is clear or at least transparent and not too strongly coloured, the silver halide emulsion-side of the s deformable colour photographic material can be applied to the work piece. In such cases, in addition to the usual cold and hot-melt adhesives, a gelatin solution containing a gelatin-hardening agent can also be used as an adhesive. Instead of adhering the silver halide emulsion-side directly to the work piece, a preferably 10 reflective, e.g. white or opaque protective foil can be placed in between the silver halide emulsion side of the colour photographic material and the work piece. In a preferred embodiment of the present invention, the adhesion of the deformed photographic material to the work piece is is further improved, particularly at the corners and edges of the work piece and where the deformed material ends, e. g. at the corners and the edges on the back side of a piece of furniture. This can be carried out by pretreatment of the work piece, particularly at the corners and edges, with a glue before the deformation; or 20 processing the work piece coated with th'e deformable photographic material with a hot-knife and/or applying glue after deformation and if necessary after having cut-off surplus photographic material to seal the corners and edges and to prevent peeling of the deformed material. 25 Colour photographic material In a preferred embodiment of the deformable colour photographic silver halide material, according to the present 3o invention, a colour photographic silver halide material is provided able to undergo deformation without significant image degradation, the colour photographic silver halide material comprising on a deformable plastic support at least one blue-sensitive silver halide emulsion layer containing at least one yellow coupler, at 35 least one green-sensitive silver halide emulsion layer containing at least one magenta coupler and at least one red-sensitive silver halide emulsion layer containing at least one cyan coupler.
WO 2004/046823 PCT/EP2003/050816 16 In a further preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, the silver halide emulsions have an overall silver chloride content of at least 70 mol% to enable short development 5 times, a silver chloride content of at least 98 mol% being particularly preferred. Silver halide emulsions which are substantially free from silver iodide are preferred, emulsions with less than 1 mol% iodide and in particular emulsions with less than 0.1 mol% iodide being particularly preferred. 10 At least one silver halide emulsion used in the material, according to the present invention, preferably contains silver halide crystals that are doped with at least one dopant. It is particularly preferred, that at least one blue-, at least one green- and at least one red-sensitive silver halide emulsion layer 15 in each case comprises at least one silver halide emulsion whose silver halide crystals are doped with at least one dopant. Suitable dopants and processes for their addition are to be found in Research Disclosure 37038, parts XV-B (1995), from page 90 herein incorporated by reference. For silver halide crystals with a high 20 silver chloride content the preferred dopants are 'r-, Rh- and Hg salts. The silver halide emulsions used in the colour photographic material of the present invention, are preferably prepared by a simple double jet process, a double jet process with separate 25 preprecipitation (formation of crystal nuclei) and precipitation thereon or a combined double jet recrystallization process. At least one silver halide emulsion preferably contains silver halide crystals with at least two different zones (structured crystals), in which the outermost zone has a higher molar content 30 of silver bromide than the rest of the crystal. The nucleus of the structured crystals is preferably prepared by a double jet process with a silver nitrate solution and a halide solution, predominantly chloride, and precipitation thereon preferably occurs by recrystallization of a fine-grained silver bromide-chloride 35 emulsion (Lippmann emulsion) with a molar silver bromide content of at least 5 percent. According to a preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, at least one silver halide emulsion contains structured 4o crystals with a silver chloride content of at least 70 mol% and with at least two different zones, the outermost zone having a higher molar content of silver bromide than the rest of the crystal.
WO 2004/046823 PCT/EP2003/050816 17 According to another preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, at least one blue-, at least one green- and at least one red-sensitive silver halide emulsion layer in each case 5 comprises at least one silver halide emulsion which contains the structured crystals. According to another preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, the green-sensitive silver halide emulsion layer 10 and/or the red-sensitive silver halide emulsion layer contains at least one silver halide emulsion with silver halide crystals having an average grain size (volume averaged, diameter of a sphere with an equivalent volume) of at least 0.40 pm. According to another preferred embodiment of the deformable 13 colour photographic silver halide material, according to the present invention, the silver halide emulsions contain one or more binders, with the binders being at least 80% by weight of gelatin being particularly preferred. In a preferred embodiment of the colour photographic material, 2o according to the present invention, yellow couplers, purple couplers and blue-green couplers represented by formulae (IV), (V), (VI), (XIV), (VII) and (VIII) are used. Yellow coupler: R 3 0 0 - R 4 R R ( 5' 1 2 25 R H R wherein RI represents alkyl, alkoxy, aryl or hetero-aryl groups,
R
2 represents alkoxy or aryloxy groups or halogen,
R
3 represents -C0 2
R
6 , -CONR 6
R
7 , -NHCO 2
R
6 , -NHSO 2
-R
6 , -SO 2
NR
6
R
7 , 30 -SO 2
NHCOR
6 , -NHCOR 6 groups, Cl
R
4 represents hydrogen or a substituent,
R
5 represents hydrogen or a group which can be split off during coupling,
R
6 , R 7 independently represent hydrogen or alkyl or aryl groups and 35 one of the R 2 , R 3 and R 4 group is a ballast group. Magenta coupler: WO 2004/046823 PCT/EP2003/050816 18 R R' R 8 R / \ / \ N N'1 N NH (V; N NH V) R 9 R 9 wherein
R
8 and R 9 independently represent hydrogen or alkyl, aralkyl, aryl, aryloxy, alkylthio, arylthio, amino, anilino, acylamino, 5 cyano, alkoxycarbonyl, alkylcarbamoyl or alkylsulfamoyl groups, wherein these groups are optionally further substituted and wherein at least one of these groups contains a ballast group, and RIO represents hydrogen or a group which can split off during 10 chromogenic coupling.
R
8 is preferably a tert.-butyl group; R 10 is preferably chlorine. H /C N R (R") N N 0 (XIV) R br wherein r is an integer from 1 to 5; q is 1, 2 or 3; Rc represents a group which can split off during chromogenic coupling; Ra 15 represents halogen or alkoxy or acylamino groups; and Rb represents halogen or cyano, thiocyanato, alkoxy, alkyl, acylamino or alkoxycarbamyl groups. Rc is preferably hydrogen or a group which can split off as an anion under the basic conditions of chromogenic coupling. 20 Particularly preferred, Rc represents -S-aryl or -N=N-aryl, wherein aryl preferably is a phenyl or naphthyl group, that is optionally substituted by halogen, like chlorine or bromine or CI-C 18 -alkyl or CI-Ci8-alkoxy groups. 25 WO 2004/046823 PCT/EP2003/050816 19 Cyan coupler: OH CI NHCOCH-O R 14 I 112 R1 R R 13 (VII) C1 wherein R 11 , R 12 , R 1 3 and R 1 4 independently represent hydrogen or a j CI-C 6 -alkyl group. R 1 1 is preferably a CH 3 or C 2
H
5 ; R1 2 is preferably a C 2
-C
6 -alkyl group; and R 1 3 and R 14 are preferably t
C
4 H9 or t-C 5 Hii. OH R i I (VIII)
R
1 -- S(O) -- CCONH / \ NH-R 117 R R is wherein R 15 represents alkyl, alkenyl, aryl or hetero-aryl groups; 10 R 1 6 , R 17 independently represent hydrogen, alkyl, alkenyl, aryl or hetero-aryl groups; R 18 represents hydrogen or a group which can split off during chromogenic coupling; R 1 9 represents -COR 2 0 , -C0 2
R
20 , -C0NR 20
R
21 , -S0 2
R
20 , -S0 2
NR
20
R
21 , -CO-CO 2
R
20 , -COCONR 20
R
21 or a group with the formula 23 N /22 24 R wherein R 20 represents alkyl, alkenyl, aryl or hetero-aryl groups;
R
2 1 represents hydrogen or R 2 0 ; R 2 2 represents -N= or -C(R 2 5 )=; R 2 3 ,
R
2 4 and R 2 5 independently represent -OR 2 1 , -SR 2 1 , -NR 2 0
R
2 1 , -R 2 1 or Cl; and p is 1 or 2. 20 The following groups of couplers according to formula (VIII) are preferred: (1) couplers in which p = 1 and R 15 to R 25 have the meaning given above. (2) couplers in which p = 2, R 1 9 represents -CO-R 2 6 , R 2 6 represents 25 alkenyl or hetero-aryl groups and R 1 5 to R 1 8 have the meanings given above. (3) couplers in which p = 2, R 1 9 represents -S0 2
R
2 7 , -SO 2
N(R
27
)
2 , -C0 2
R
2 7 , -COCO 2
-R
2 7 , or -COCO-N(R 2 7 )2, R 27 represents alkyl, aryl, alkenyl or hetero-aryl groups and R 1 5 to R 1 8 have the 30 meanings given above.
WO 2004/046823 PCT/EP2003/050816 20 (4) couplers in which p = 2, R 1 9 represents a group with the formula 23 and R 1 5 to RIB and R 22 to R 2 4 have the meanings given above. s (5) couplers in which p = 2 and R 19 represents a group with the formula 0 -1 S/ 28 Ra
R
2 8 represents hydrogen, Cl, CN, Br, F, -COR 2 9 , -CONHR 2 9 or C0 2
R
2 9 and R 2 9 represents alkyl or aryl groups. 10 (6) couplers in which p = 2 and R 19 represents a group with the formula o R' wherein RI represents halogen, CN, -CF 3 or alkoxycarbonyl groups; RII represents hydrogen or has the same meaning as RI; 15 and R 1 5 to R 18 have the meanings given above. (7) couplers in which p = 2 and R 1 9 represents -COR 2 0 ; R 2 0 represents alkyl, aryl or hetero-aryl groups and R 15 to R 18 have the meanings given above. (8) couplers in which p = 2 and R 19 represents a group with the 20 formula o 0 -C- C--R wherein RI represents -ORI 1 or -NRIIIRIV; R 11 and R 11 I represent an optionally substituted CI-C 6 -alkyl group; RIV represents hydrogen or has the same meaning as R 111 ; and R 15 25 to R18 have the meanings given above. In the formula (VIII) and the Compounds (1) to (8) the substituents have the following preferred meanings: R 15 represents alkyl or aryl groups; R 1 6 and R 1 7 independently represent H or alkyl or aryl 30 groups; R 18 represents H, Cl, alkoxy, aryloxy, alkylthio or WO 2004/046823 PCT/EP2003/050816 21 arylthio groups; R 22 represents -N=; and R 23 and R 24 independently represent -OR 2 1 , -NR 2 0
R
2 1 or -Cl. In formula (VIII) and the Compounds (1) to (8) the substituents have the following particularly preferred meanings: R 15 is a group 5 according to one of formulae (15-1), (15-2) and (15-3): (15-1) R wherein R represents an alkyl group with at least 8 C atoms; R (15-2) R 11XQ 10 wherein RI represents alkyl, alkenyl, alkoxy, aryloxy, acyloxy, acylamino, sulfonyloxy, sulfamoylamino, sulfonamido, ureido, hydroxycarbonyl, hydroxy', carbonylamino, carbamoyl, alkylthio, arylthio, alkylamino, arylamino groups or hydrogen; RII represents an alkyl or 15 aryl group; X represents S, NH or NRIII and R 11 represents an alkyl or aryl group; (15-3) R/ wherein RI represents an optionally substituted alkyl group;
R
16 represents an alkyl group, in particular CI-C 4 -alkyl group; R17 20 represents H; and R 20 represents an alkyl or aryl group. Particularly preferred couplers are group (6) couplers according to formula (VIII) in which R15 is represented by formula (15-1); group (7) couplers according to formula (VIII) in which R 1 5 is represented by formula (15-2); group (8) couplers according to 25 formula (VIII) in which R15 is represented by formula (15-3); and group (8) couplers according to formula (VIII) and R15 is a group with 8 to 18 carbon atoms. Alkyl- and alkenyl- groups can be straight chain, branched, cyclic and optionally substituted. Aryl- and hetero-aryl- groups 3o are optionally substituted and the aryl group is preferably a phenyl group. Possible substituents for the alkyl, alkenyl, aryl and hetero-aryl groups are: alkyl, alkenyl, aryl, hetero-aryl, alkoxy, aryloxy, alkenyloxy, hydroxy, alkylthio, arylthio, halogen, cyano, acyl, acyloxy or acylamino groups, wherein an acyl group can 35 be derived from an aliphatic, olefinic or aromatic carbonic, WO 2004/046823 PCT/EP2003/050816 22 carboxylic, carboxylamino, sulfonic, sulfonamido, sulfinic, phosphoric, phosphonic or phosphorous acid. Examples of cyan couplers according to formula (VII) are: s VII-1 with R 11 = C 2
H
5 , R 12 = n-C 4
H
9 , R 13 = R 1 4 = t-C 4
H
9 , VII-2 with Ri 1 = R12 = C 2
H
5 , R 13 = R 1 4 = t-C 5
H
1 , VII-3 with Rll = C 2
H
5 , R 12 = n-C 3
H
7 , R 13 = R 1 4 = t-C5HII, VII-4 with R 11 = CH 3 , R 12 = C 2
H
5 , R 13 = R 14 = t-C 5
H
1 i. Examples of cyan couplers according to formula (VIII) with p = 2 10 are: No. R 16
R
17
R
15 R19 R 1 8 VIII-1 -C 2
H
5 H -Cl - O -C 12
H
25 -CIk. -0 -C 0 VIII-2 -C 2
H
5 H / \ o, 7 t -H
O-C
8 Hjirt S VIII-3 -C 6
H
13 H
-OCH
2
CH
2 O-C 8 H C
SCH
2 COOH VIII-4 -Phenyl H -Cl
______CISH
3 1 0 VIII-5 -CH 3
-CH
3
-C
1 6
H
3 3 -Cl VIII-6 -Phenyl H -C 12
H
27 0 O-CH, -SCH 2
CH
2 -C N COOH VIII-7 -C 2
H
5 H 0 N -O-CH 2 -O -O-C~AS -- _ COOCH3 VIII-8 C 1 2
H
2 5 H 0 -Cl -O-O C2H, -C
NH-CH,
WO 2004/046823 PCT/EP2003/050816 23 No. R16 R 1 7
R
15 Rg R 1 8 VIII-10 -CH3 -CH3 o
O-C
13 H3i 0T OH 0O-C 2
H
5 VIII-11 -C 2
H
5 H 0 -Cl 10-C H 1 O 2 25 -- CH=CH-Cl VIII-12 -phenyl H -C 1 6
H
3 3 H VIII-13
-C
1 2
H
2 5 H -- CH=CH- 2? -CH VIII-14 -C 4
H
9 H /
-OCH
2
COOCH
3 -C-CH=CHC=
C
16
H
3 1 t-HC;--NH VIII-15 -CH 3
-CH
3 0 -Cl / \ II -C-CH-CH
O-CH
17 H 5
C
2 -o VIII-16 -C 2
H
5 H -SO2-C4H9 -Cl --o-Cl2H2, VIII-17 -C 2
H
5 H -CO-0-C 4
H
9 -i -Cl -- o ~-ClH25 VIII-18 -C3H7-i H ,C4H9 -OCH 2 -CO-CO-N.CA OCH ______C4H___COOCH3 VIII-19 -phenyl H -CH 2
?H-C
8
H
7 -S0 2
-NH-C
4
H
9 -t H VIII-20 -C 6
H
1 3 H O-CH -S0 2 Q CH 3 H VIII-21 -CH 3
-CH
3 0 -CO-CO-OC 2
H
5 -Cl O-Cl 2
H
2 _ VIII-22 -C 4
H
9 H / -S0 2
-CH
3 -Cl VIII-23 -phenyl - -C 1 2
H
2 5 -S0 2
-C
4
H
9
-SCH
2
CH
2 phenyl
COOH
WO 2004/046823 PCT/EP2003/050816 24 No. R 1 6
R
1 7 ] RIB Rig R, 1 8 VIII-24 -C 1 2
H
2 5 *H / \ OCH -CO-0-C 2
H
5 -ci VIII-25 -C 2
H
5 H 0 -Cl VIII-26 -CH 3 H 0 - 1 H -cJl VIII-27 -C 2
H
5 H 0 -C Examples of cyan couplers according to formula (VIII) with p = 2 and
R
23
R
1 9 =<l2 5 are: WO 2004/046823 PCT/EP2003/050816 25 Mr. Rl 6
R
1 7 p 1 5 R23 R 2 4
R
2 2
R
1 8 VIII-28 -C 2
H
5 H -(C 4 11 9
)
2
-N(C
4
H
9
)
2 -N= -C
O-C
12 Ha VIII-29 -C 2
H
5 H CH, H-- -Cl 1 12 5
-NH-CI-
2
CH-C
4 H: -NH-CH,-CH-C 4 H, VIIT-30 -C 2
H
5 E -OCH 3
-OCH
3 -N- -Cl
O-C
2
H
2 VIII-31 -C 6
H
1 3 H -Cl -NHl-C 4
H
9
-C(NHC
4
H
9 )= H CaH,-t VIII-32 -phonyl 2 -C 1 2
H
2 5
-OCH
3
-N(C
4
B
9
)
2 -N= -OCH 2 COOC VIII-33 -CH3 -CH 3 -Nl-C 4
E
9 -Nl-C 4
H
9 - -Cl /p \C (N (C2H5) 2) C H,
C
1 15 31 VIII-34 H H -OCH 3 -NH-C4H9 -N= -S-CH 2 CH2
O-C
1 3
H
2 7 -i Cl VIII-35 -CH 3 /H -Cl CH -N= -Cl I O C4Hrt-N(CCHCH) WO 2004/046823 PCT/EP2003/050816 26 Examples of cyan couplers according to formula (VIII) with p = 1 are: Nr. R16 R17 R15 R 1 9
R
18 V I I I -3 6 -C 2 H 5 H /-C H 2 -C l CI VII-37 -C 4
H
9 H -CO-C 3
F
7 -Cl 0-CHy-CH-C 4 H, -a _
C
2
H
5 VIII-38 -C6H13 H C -OCH 2
CH
2
-S-CH
2 COOR
-
& O- C j3H I7 - O
-
-Co / CI VIII-39 -CH3 -CH 3 H
____C
15 H31 H-CO OH 3 VIII-40 -Phenyl H -CH H-CSHa -CI CH -NH-SO 2 CHa WO 2004/046823 PCT/EP2003/050816 27 N. RIG R 1 7
R
1 5 R19 R18 VIII-41 -C 2
H
5 H /\NH-C 4 H. R -o ~-cl 2
H
2 6 N H-C 4 H, VIII-42 -C 1 2
H
2 5 H 0-C4H9 COOH /\ C 4 Hq-t NSCH-CI cO
________N(C
2 H,), VIII-43 -C 4
E
9 Hi -C 1 2
H
2 5
NHC
4
H
9 -Cl N -(I \NHC 4 H. VIII-44 -C 2
H
5 H /.-S0 2
-C
4
H
9 -cl -- o-Cl 2
H
25 VIII-45 -C 3
H
7 -i H -C 1 6
H
3 3 CONO C -0-CH 2
-COO-CH
3 VIII-46 -CH 2
C
2
CH
2
CH
2
-
/ CO-NH-3 C1 -C 1 5 H3 1 WO 2004/046823 PCT/EP2003/050816 28 Nr. R1 L1 15RiRI VIII-47 -C 2
H
5
-C
2 ,1 5 / 6 ~ Co--o-C 4 H9-i H VIII-48 -phenyl. H -C 1 2
H
2 5
-CO--CO-N(C
4
HI
9
)
2 0 .- \ NH-g _____ ______HOOC-CH 2 11K VIII-49 -C 12
H
25 R /~0 -CO-CH=CH-CO- -Cl \ 5;, NC 2
H
5
)
2 ______
-C
2 H6 VIII-5D -C 2 11 5 H -ci-O c VIII-51 -CGH 13 H NH-C 4
,H
9 H VTTT-52 -C 4
H
9 NH3H-1 / \\ -cl VIII-53 -CH 3 H -0 (-lHr C-HC- OC3-Cl WO 2004/046823 PCT/EP2003/050816 29 xr. jie R1 R5Ri 8 VIII-54 -Phenyl Hi -C25 H~I I CH, -Co-I VIII-55 -C 2
H
5 H / 4 8 t- /-C1 CI - H CHC 4 H, VIII-56 -C 2
H
5 H N-0 CI VIII-57 ':37 H -O~-lN T c-i)cI 0 V111-60 -C 2
H
5 H \ & O-C 6 H25 Hl
-CH
WO 2004/046823 PCT/EP2003/050816 30 Examples of group (6) cyan couplers according to formula (viii) with p =2 are: No. R 16
R
17 R519R 18 VIII-61 '-C 2
H
5 H /0 - -C1 a O-C 2
H
2 5 -n /C- CI VIII-62
-CH
3 H 0 -Cl / 'a O-C 2
H
25 -n -c-/ & CN VIII-63 -C 2
H.
5 H 0-0-CH 2
-OO
/\O-C
2
H
2 ,-n -s / 1 NH-CH 2
-CH
2 0-OH 3 VIII-64 -C 2
H
5 H C H 13 -n 0~/ -Cl -0 -" C C- CI VIII-65 -C 2
H
5 H CH 13 -n 0 -01 -0-, C 4 H.-n - - C 5 Examples of group (7)cyan couplers according to formula (VIII) with p = 2 are: NO. R 1 6
R
17 R519R 18 VIII-66 -C 2
H
5 H 0-Cl / '\S-C 2
H
2 ,-n -C / '\ CI VIII-67 -C 2
H,
5 Hf / 0 -0-CH 2
-CH
2 -- S-C 16
H
33 -n -6 / ' CO-NH-OH 3 CN V 11-68
-C
12
H
2 5 - H \ CH3 0 C1 ______ ______CH 3
S
WO 2004/046823 PCT/EP2003/050816 31 No. R 1 6
R
7
R
1 5
R
1 9
R
1 8 VIII-69 , -C 2
H
5 H / -Cl
--
S-C
2
H
2
,
5 -n/ -C 0 VII1-70 -C 2
H
5 H /
CF
3 C1 - S-C 2
H
2 -n _9/\ VIII-71 -C 2
H
5 H /CH CF C C1 SCH-n 1 ,C 3 _ _ _ _ _ _ 0 0 VIII-72 -C 2
H
5 H
N(CH
2
CH(CH
3
)
2
)
2 C1 / \ S-CH 17 -n VIII-73 -C 2
H
5 H ~ C.H 1 .-n 0 Cl
'"/:C
4 H.-n Examples of group (8)cyan couplers according to formula (VIII) with p = 2 are: No. R 16
R
1 7 R5R 19 R1 VIII-74 -C 2
H
5 Hi / \ C0 2 -- nC 4 H.-n -Cl -C\ VIII-75 -C 2 11 5 H CAH -cl -- S-CH 7 -n 0 O H 3 -C ____ _ _ ___ ___ ___ ___ ___0 WO 2004/046823 PCT/EP2003/050816 32 NO. R 1 6
R
1 7
R
1 5 Rig R 1 8 VIII-76 -Cri 3 H / (CH 2
)
2
CH(CH
3
)
2 Cl -- a ~S-C 2
H
2 -n LI VIII-77 -C 2
H
5 H N((0H 2
)
2
.ON-)
2 -Cl
/\S-C
2
H
2 ,-n I VIII-78 -C 2
!!
5 H ,C0 2 .. C 3 H7- -O-CH 2
-CO
/ 'aS-Cl 2
H
2
,
5 -n /\NH-CH- 2
-CH
2 -CCH VIII-79 -C 2
!!
5 H ~ - H N(C 6
H
13 -n) 2 Cl C=0o VIII-80 -C!! 3 H C.H 13 -n C0 2 7CH 3 Cl -s OCH-n / VII1-81 -C 2
!!
5 H / SCH-nCl HN 00
N.:Z-
WO 2004/046823 PCT/EP2003/050816 33 No. R 16
R
17
R
15 R19
R
18 VIII-82 -C 2
H
5 H
CO-CH
3
-O-CH
2
-CO
S-C
1 2
H
2 5 -n
NH-CH
2
-CH
2 O-CH 3 -C" VIII-83 -C 2
H
5 H 00 2 -CH3 -O-CH 2
-CH
2 /a S- 1 Hn CO-NH-CH3 The preparation of cyan couplers according to formula (VIII) proceeds analogously to the syntheses disclosed in US 5,686,235 herein incorporated by reference. Examples of magenta couplers according to formula (V) are: CI
C(CH
3
)
3 HN NN R9 Coupler R9 V-1 -C13H27 V -2
-(CH
2
)
3
SO
2
C
1 2
H
2 5 V -3
-(CH
2 )O
NHCOOCHCH
2 O N\N SO2 C12FH25
-
2 V -4
-(CH
2
)
3 0 / NHCOO(CH 2
)
2 O / \ OCHl 3 t-C 4
H
WO 2004/046823 PCT/EP2003/050816 34 Coupler
R,
9 V -5 -(C 2 \ -Q
NHSO
2 / \ t-C 8 Hl 7 0C 4
H
9 v -6
-(CH
2
)
3 0 / & NHSO 2 / t-C 8 H 17
O(CH
2
)
3 C00H V -7 -(CH 2
)
2 NHC0C 1 3 1 2 7 -(CH )NHCO HO ~ ~so 2 v -9
-(H
2 3 0/ ~NHCOCH-CH 2 -/\ N/ so 2 -C 23 -c I \-/
C
1 2 H 25 V -10
-(C
2 )0 \NHCOCH-CH 2 / \ OCH 2
CH
2 OH
C
12
H
25 t-C 4
H
9 v -11 t-C 8 H 17
-CH
2 CH 2
NHSO
2 /
OCH
2 COOH V -12 -CH 2
CH
2
NHSO
2
CI
6
H
3 3 V -13 -CH 2
CH
2
NHCONHC
12
H
2 5 V -14 -(CH 2
)
3 NHS0 2
C
1 2
H
25 V -15 t-C 8
H
17
-CH
2
CH
2
NHSO
2 / 0C 4
H
9 v -16 t-C 8
H
17
-CH
2
CH
2
NHSO
2 /
CH
3 O-CH 2 C00H WO 2004/046823 PCT/EP2003/050816 35 Coupler R * -17 t-C 8 H 17 -CH 2 CH2NSO 2 / 21
(CH
2
)
2 CH COOH * -18 -C(CH )C00HO /'' S Ci 0
H
21 V -19 -CH 2
CH
2 NHCOCHO /\OCH 2
CH
2 OH I C 1 2
H
25 t-C 4
H
9 V -20
-CH
2
CH
2
-NHCO-(CH
2
)
3 0 / \ C 1 2
H
2 . V -21 -CH 2
CH
2
NHCOOC
1 2
H
2 5 and V -22 t-C 4
H
9 S(0H 2
)
2 COQH N N
C
1 3 H / -23 -C H 9 Ii N4 9
C
16
H
23 S0 2 NH
O.-(CH
2 3 8 V -24 N NH
C
16
H
33 S0 2 NH / -O(CH 2
)
3
/-
WO 2004/046823 PCT/EP2003/050816 36 V -25 t-C 4
H
9 O / COOH NN NH
C
1 2
H
2 0/
O(CH
2
)
3
CONH(CH
2
)
2 Examples of magenta couplers according to formula (VI) are: t-C 4
H
9 CI NN NH R Coupler R9 VI-1 Vl \NHCO(CH 2
)
2
COOC
1 4
H
2 9 VI -2 t-C 5 H
-(CH
2
)
3 0 / NHCOCHO t-CSH 11
C
2 H, VI -3
-(CH
2
)
3 0 / NHCOOCHON S 2
C
2
H
6 VI -4
-(CH
2
)
3 0 / NHCO(CH 2 )O / t-C5H t-C 5Hi VI -5
-CH
2
CH
2
NHCO(CH
2
)
3 0/t-CH t-C5HI VI -6
-(CH
2 )O / NHCOCHO t-CH 1 , 2HaI -C H
C;
2
H
5 -C 5 11 WO 2004/046823 PCT/EP2003/050816 37 Coupler , VI 7
-CH
2
CH
2 NHCOO-CHCH
-
/-\ S0
C
12
H
25 V-B
-CH
2
CH
2 NHCOCHO / \ ) t-C 5 H,,
C
2 H 5 t-C 5
H
1 , VI -9 -CH 2
CH
2
NHCQC
1 3
H
2 7 Vi -:L 0
-CH
2
CH
2 NHCOCHO / t-0 5
H
1
I
C
49 t-C 5
H
1 ,l VI -11 - (CH 2 ) 3 S0 2
C
1 2
H
2 5 VI -12 0C 4 A
-CHCHNHSO
2 / t-C 8
H
1 7 VI -13 -CH-CH 2
S
2
CAH
2 U1 3 VI -14
-CH
2
CH
2 NHCOC HO -/- \ t-C 5
H
11
C
2 H 6 t-C 5
H
11 VI -15
-CH
2
CH
2 NHCOCHO / N NSO 2 1 -0 \
C
1 2
H
25 VI -16 0C 14
H
2 2 ~\ NHCOCHO ~
C
6
H
13 VI -17 tCH /\NHCOCHO / \ C.H,3 and WO 2004/046823 PCT/EP2003/050816 38 vi -18 H 3 C CI N NHtCH 1
CHCH
2 NHCOCHO / t-C 5
H
11
OH
3
LC
6
H
13 VI -19 i-C 3
H
7 cI NN NHt-C
H
1
CH
2
CH
2 NHCOCHO / \ t-C 5
H
11 VI -20 i-C 3
H
7 CI
(CH
2
)
3 S0 2
C
1 6
H
3 VI -21 CH 3 CI N' NNH OCH CH 00 H9 T H-CH2 NHSO 2
CH
3 t-C 8 Hl 7 VI -22 N \NHt-H 1 N H\ HNCOH / 4- 5 1 I )
C
4
H
9 WO 2004/046823 PCT/EP2003/050816 39 VI -24 N t-C 4
H
9 N NH OCH 4He
(CH
2
)
3 NHCOCH-O /
CH
3 Examples of magenta couplers according to formula (XIV) are: Cl /\H R
C
1 3
H
2 7 CO-N N _ H Cl Cl Cl s Coupler Rc (XIV-1l) -H (XIV-2)
-
C
4
H
9 -t Cl
C
4
H
9 0 C8H -t (XIV-5)
-
2 WO 2004/046823 PCT/EP2003/050816 40 C 12 H 2 30 (XIV- 6) -: / \ (XIV-7) - 0 jf lOCeH 17 (XIV-8) -0-P OCBH1 -NH-S S 2 -C 41H19 (XIV- 9) so 2 -N (XIV-1O)
-NQ
CXIV- 11) pN (XIV-13) WO 2004/046823 PCT/EP2003/050816 41 Cl - 'I C 1 H 2-0-CO N' Coupler (XIV-14) H
O-CH
2
CH.-SO
2
CH
3 (XIV-15) - /\ c8 H17 (XIV-16) - C 4
H
9 -t Cl (XIV-17) - /\ CO-NH-C 4H Cl /\ H Rc Cl N R7 C 1 4 H 0 N _ SO -CH3 WO 2004/046823 PCT/EP2003/050816 42 Coupler (XIV-18) H (XIV-19) O H 3 CO-CF3 (XIV-20) N\ C H 1 -t -NH R c t-O H, 0-S -OH-CO-NH /
U
4
H
9 ClCl O0H 3 CouplerR (XIV-2 1) H (XIV-22) ' CH9 041190 (XIV-23) -L /\ C4H9-t WO 2004/046823 PCT/EP2003/050816 43 NI-NH R c N cC' coupler R (XIV-24) 1225
-S-C'
2 2 5 (XIV-25) C' O LNH C B H 17 0 NH s t- H CO-NH I - O 1N 0 1 (XIV-26) Cl ci I O c8 H17 OCH N H Rc C 6 H3-SO 2, I N \)-IN IO-CO-CH3 S0 2 -CH3 WO 2004/046823 PCT/EP2003/050816 44 CouplerR (XIV-27) H N= -N (XIV-28) (XIV-2 9) NH0 C1\1 CH3 CH3 Coupler R (XIV-30) H (XIV-31)
SCH
WO 2004/046823 PCT/EP2003/050816 45 cl C 1 7 H35CO-NH NN 0 N Cl, CN Coupler R (XIV-32) C8 170 (XIV-33) -i OC8H1 (XIV-34)s C12H25 Cl NH R c NqH-CO-CH-0 / C 5
H
1 -t
I
C
2 H1 5 WO 2004/046823 PCT/EP2003/050816 46 (XIV-35) H NJ (XIV-36) (XIV-37)
-CH
3 Cl NHN=N-Y C13H27 NN C '1 C, Coupler y 0GB3 (XIV-38) / \ 3 (XIV-39) / \ NHCO-C (CH 3 ) 3 Cl OCH (CH 3 ) 2 /\ NH NN /\ OCHC(CH 3 ) 2 (XIV-40) NN -~Cl WO 2004/046823 PCT/EP2003/050816 47 Cl NH N=N. 0 7 (XIV-41) NN 0 O C1 Cl C1Hl 37 Cl Cl N=N - OCH3 (XIV-42)
C
17 1 35 CONH Cl Cl CN Cl HN (XIV-43) 7 CH-CO-NH NN O Cl Cl HO C 4
H
9 -t Cl Examples of yellow couplers according to formula (IV) are: WO 2004/046823 PCT/EP2003/050816 48 IV-1I OH3 o 0 0
H
3 C N o
NH-CO-C
17
H-
33 -NH IV-2 CHS o 0 0 NH 0 0F~ NH-CO-0 1 7 H 33 = NH O3C
H
3 IV-3 *H o 0 0
H
3 C -' NH / t-0 5
H
1 1
H
3 C CH, 0 0 N -== o NHFC-C-H-O -b / t-CSH 1 1 O3 H 3 IV- 4 o 0 0
H
3 C y NH ~ t H3Ct-0 5
H
11
H
3 30 OH 3 NH F-OO-CH-O t-CH,
H
3 O L0 O2H
OH
3 IV-5Q 0 0 0
H
3 C NH / t-o 5
H
1 ,
H
3 0 OCH 3 0H NC - NH-CO-(CH2)r- \ t-0 5
H
11
OH
3 WO 2004/046823 PCT/EP2003/050816 49 IV-6 CH 3
H
3 C NH/ t0H 1 0 NH-OC- / t-C 5 Hi IV-7 *H
H
3 C -NH / t-C 5 1 - 0 ~NH-CO-CH-O 6 -SI o5I - I \ / -0H IV-8 1H3 o 0 0
H
3 C OH 3 CH 3( N~ S0 2
-NH-COC
2 H, H.1c{ NH
CH
3 IV-9
IC
16
H
33 o 0 0
H
3 C N ' H C H O 3 N s o = S0 2
-NH-COC
2 H, CH3 IV-10CH o 0 0
H
3 C NH /\t-C
H
1
H
3 C > o == F= o NH-CO-CH-O \5/ t-Csl N-N
C
2 H
C
4
HO
WO 2004/046823 PCT/EP2003/050816 50 IV-11 CH 0 0 0
H
3 0 NH H N O N-COCH-CH 2
-SO-C
1 2 H N-N CH 3
C
4
H
9 IV-12
CH
3 H 3 c NH
H
3 C H OH O NI+CO -CHgSga NH-CO-O -H-S 2
-C
2
H
25 H 3 IV-13 CH H 3 c -y- NH O N O= NH-CO-CtH 2 ~S0CH N CH 3
H
3 C-O
CH
3 IV -14 CH O 0 O NH CI O O NI-CO-OH-OH 3 H 3 C-O CH 3 IV-15 CH O 0 O NH t-CH, O H O NFH-CO H-Ot-CH N 0 WO 2004/046823 PCT/EP2003/050816 51 IV-1 6 C0H 3 NH /\t-CSH 1
OH
3 1 =N 0 N H-C -C H-0 b -t-0H 11 IV-1 7 0 8
H
17 (t) H 3 C -N CH 3 0 0 N H-S0 2
-C
4
H
9 NH IV-18 NH-SO 2
C
0
H
33 o 0 0 H 3 c NH~
H
3 0 OH 3 oH N>
OCH
3 NH IV-19 NH-S0 2
-C
0
H
3 . 0 0 0
H
3 C >? NH~ \
HCOH
3 N 0 )= 0 CI 50 WO 2004/046823 PCT/EP2003/050816 52 IV-20
CH
3 H 0 0 H 0 3
H
3 0 N COOC 1 2
H
25
CH
3 IV-21
CH
3 o 0 0 3 NH /
H
3 C CH 3 , N COOClHS2
CH
3 IV-22 CH o 0 0 0 N O COO1aH
H
3 C NH
CH
3 IV-23
CH
3 o 0 0
H
3 C I - NH
-
\ OOO ~ OH 3 N C OO 1 2
H
25
H
3 C NH
CH
3 IV-24
,C
12
H
25 0 0 0
H
3 0 C~ rNH '
H
3 0
OH
3 N S0 2
CH
3 HC NH
OH
3 WO 2004/046823 PCT/EP2003/050816 53 IV-25
C
1 6
H
33 0 0 0 H 3 C -T -N H - \ H c CH 3 N N
H
3 C-0 CHI IV-2 6
OH
3 o 0 0 HANH/ o=> 0- NH-CO-0 17
H
33
OH
3 CC3 IV-27 o 0 0 NH /\t-C H 0 0 NH-C0-CH0O t- 5 11 I - C 2 Hr IV-28 ICH NH / \HI == = 0 NH-CO-OH-O 4
H
9 HI
CHH
WO 2004/046823 PCT/EP2003/050816 54 IV-30Q H 0 0 0 I~3 H 3 NH t-C H 1 0=N 7=0 NH-CO-(OH 2 )T-- \ t-O5H 11 OH 3 IV-31 o 0 0
H
3 C NH~ o N
CONHO
2 H, NH 11ci IV-32 o 0 0
H
3 C -NH ' \ H0 H 3 ==
H
3 c '-0 00H 2
OH
3 IV-33IC 0 0 0
H
3 C N H I \
H
3
H
3 N 0 '- 0 S0 2 -NH-C 1
H
33 O H 3 WO 2004/046823 PCT/EP2003/050816 55 IV-34 11 CH 3 O 0 0
H
3 0 NH/ \
H
3 N
OH
3 O S0 2 NH-C,,H H 3C CH
H
3
CH
3 IV-35 CH NH SO-NH-C,,H
H
3 0 r 1 33
OH
3 N H C O
O-CH
3 H3C
CH
3 IV-36 C4H O 0 0
H
3 C NH Ht-0Hl,
H
3 C OH N NH-CO -CH,-O t-C 5
H
1 N H C 2 -0 IV-37 C 4
H
9 o 0 0 HOO 3 NH C HC
H
3 o O NH-COC 15
H
31 N HSC 2 - N IV-38
C
8
H
17 0 0 0 NHCI
COH
3
O-CH
7
H
5
C
2 -O N WO 2004/046823 PCT/EP2003/050816 56 IV-39 IB1 H0 0 H 0 o 0~ O- 8 HIT -N IV-4 0 ,0 8 H 1 7 o 0 0
H
5 2 N NH o = N 0 0 8
H
17 -t H 5
C
2 -0 \ / IV- 41 C 4 Hq-t
H
3 C N H - \ HO3 o = - NH-00 2
-
1 6
H
33 HS C 2 -0 \ / IV-42 OCH H-IS NH~ HO3 o NH-S0 2 -C,,H 3 1 IV-43 C0H o 0 0 0 0 H 3 NHNHS-0 6 3 OH 3 WO 2004/046823 PCT/EP2003/050816 57 IV-44 CH O 0 0
H
3 C 0 NH / NS2C, 33H 0 N0S 2
-
1 N IV-45 H o 0 0 H 3cNHI/NH NH-S0 2 -cl 2
H
25 H0CH 3 CH 3
OH
3 IV-4 6 *I o 0 0
H
3 0 NH0 0C 4
H
9
H
3 C H oH3 N ~
NH-SO
2 / Hsio N - C 8
H
17 -t IV-47 H 3 O HOc OH. 0 N 0
C
8
H
7 "t IV-48 0
,OCH
3 0_,CH HS0 2 N H / H- 2 SN N
H
3 0-O
OH
3 WO 2004/046823 PCT/EP2003/050816 58 IV-4 9 CHS O 0 0
HSC
2 NH~ N O = 7)=0 NH-OO-NH-C 1 6
H
3 . N
H
3 C-0
CH
8 IV-50
'CH
3 O 0 0 H3C NHH 0 NN H-CO-N H-C,,H,,
CH
3 IV-51 0 0 C
(CH
3
)
3 C NH /C 2
H
5 O N= NHCO-COQ-9\Nt-CHi 0 -0 IV-52 CH
(CH
3
)
3 C )-l N H 0OH/ 3 NCC 73 IV-53 0 0 Ci (CHA)C
%
1 NH.. 0H NWOOCHO 25tC 1 H3C
CH
3
-P
61 WO 2004/046823 PCT/EP2003/050816 59 According to a preferred embodiment of the deformable colour photographic silver halide material, according to the present invention, the blue-sensitive silver halide emulsion layer contains 5 a blue sensitizer represented by formula (IX): R 31 R 32 R R N N R3 1313N 37 M R 38 wherein XI and X 2 independently represent S or Se, R 31 to R 3 6 independently represent hydrogen, halogen or an alkyl-, alkoxy, aryl or hetero-aryl group or R 3 1 and R 3 2 ; R 3 2 and R 3 3 ; R 3 4 and R 3 5 , 10 R 3 5 and R 3 6 together represent the atoms necessary to form an anellated benzo-, naphtho- or heterocyclic ring, R 37 and R 38 independently represent an alkyl-, sulfoalkyl-, carboxyalkyl,
(CH
2
)ISO
2
R
3 9 S0 2 -alkyl, - (CH 2 ) lSO 2
R
3 9 CO-alkyl, - (CH 2 ) 1
COR
39
SO
2 -alkyl or -(CH 2 )l-COR 39 CO-alkyl group, R 39 represents -N~- or -NH-, 1 is a is whole number between 1 and 6 and M is an optional counter-ion providing charge compensation.
R
31 to R36 preferably independently represent hydrogen, F, Cl, Br or alkyl, CF 3 , OCH 3 or phenyl groups; or R 3 1 and R 3 2 ; R 3 2 and
R
3 3 ; R 3 4 and R 3 5 ; or R 3 5 and R 3 6 together represent the atoms 20 necessary to form an anellated benzo- or naphtho-ring. Particularly suitable blue sensitizers include the following compounds, in which "Et" represents Ethyl: IX-1 IX-2 S ' C I CF3 N H 0 H 0 9 EO "O 0- Et. 'Et 0 Et Et WO 2004/046823 PCT/EP2003/050816 60 IX-3 I X-4 s s C~H 3 Csc N S N N 0 0~y o~ 0 16S0 EtJ 1 NEt 0 Ab I Et IX-5 IX-6 F 0 N %*N 0 NN 00' Et0 w IX-7 1X 8 N HN N. 02q H EtNNEt 0 Etsi NE 0 0 * E 0~0 Et IX-9 IX-10 0 0 0 Et' qE 0 S Et' AE 0 E t qN -E t 0o N0 0 00
N~
WO 2004/046823 PCT/EP2003/050816 61 IX-1 I IX-12 SQ Cl \ CJ 0 1-/ 0- . o24 0.-j O O Etqh+Et 0 0 Et IX-13 IX-14 SQ F ,s sQ F H 0v 0 O' O Et Et 0 O i i Et N H IX-15 IX-16 0.- a 0 S Et0 Et O) O 00 N 0 00b l Et IX-17 IX-18 s CI F 0 O Et' H O Et 0 O O Et +Et Et WO 2004/046823 PCT/EP2003/050816 62 IX-21 IX-22 (, . Et IX-23 IX-24 C1 I QQF F s yQ F 0- ~H O O.O Et 21 *-Et 0 O 00 00 N Et IX-25 IX-26 BrF C Q Br 0 . Nr 00 Et Et WO 2004/046823 PCT/EP2003/050816 63 IX-27 IX-28 Br-Qy)Br Q 4 y CI H H N N 0 0 Et t Et 0 IX-29 IX-30 -F 0 0 O- OO O Et tEt 0 N ' IX-31 IX-32 U-Q CF3 0CF, N N 4_ N O HO 0O.._ N ,CH3 Na 0 0 IX-33 IX-34 NA 0. ~ 0 6b 0 00 Et Et In a preferred embodiment of the present invention, the colour s photographic material contains at least one blue-sensitive layer comprising a blue sensitizer according to formula (IX) wherein: X 1 WO 2004/046823 PCT/EP2003/050816 64 and X 2 represent S, R 3 5 represents a trifluormethyl group or a halogen atom, in particular a chlorine atom, R 32 and R 3 3 together represent the atoms necessary to form an anellated benzo-, naphtho or heterocyclic ring, particularly an anellated benzo-ring and R 37 5 and R 3 8 independently represent sulfoalkyl-, carboxyalkyl, - (CH2) IS0 2
R
3 9
SO
2 -alkyl, - (CH2) S0 2
R
39 CO-alkyl-, - (CH 2 ) lCOR 3 9 SO2 alkyl, -(CH 2 )1-COR 3 9 CO-alkyl, particularly sulfoalkyl groups. Suitable red sensitizers include compounds according to formula (X) and (XI): 10
R
49 RR (X) R 4 2 s R4
R
43 N R44 RR R47 R 51R48 M R 41
R
49
R
50 R46 (XI) R 4 2
R
4 5
R
4 N N R44
R
47 R1 R4 M wherein R 41 to R 4 6 independently represent hydrogen, halogen or an is alkyl-, alkoxy, aryl or hetero-aryl group; or R 4 1 and R 42 ; R 4 2 and
R
4 3 ; R 44 and R 4 5 ;or R 4 5 and R 4 6 together represent the atoms necessary to form an anellated benzo-, naphtho- or heterocyclic ring, R 4 7 and R 4 8 independently represent an alkyl-, sulfoalkyl-, carboxyalkyl,-(CH2) 1 S0 2 YSO2-alkyl, -(CH2) 1
SO
2 YCO-alkyl, 20 (CH 2 )lCOYSO 2 -alkyl or -(CH2) 1 -COYCO-alkyl group, Y represents -N or -NH-, R 4 9 and R50 independently represent a hydrogen atom or an alkyl- or an aryl group, R 51 represents a hydrogen atom, a halogen atom or an alkyl group and M represents an optional counter-ion providing charge compensation. 25 R 41 to R 4 6 preferably independently represent hydrogen, F, Cl, Br or alkyl, CF 3 , OCH3 or phenyl groups; or R 41 and R 4 2 ; R 4 2 and
R
4 3 ; R 44 and R 4 5 ; or R 4 5 and R 4 6 together represent the atoms necessary to form an anellated benzo- or naphtho-ring.
WO 2004/046823 PCT/EP2003/050816 65 Examples of red sensitizers are given below, wherein "Et" represents Ethyl: X-1 X-2 CHa HaC H
H
3 QH CH Et - Et H Cf CH SS Cl N N 0 X-3 X-4 HCC.H C H0 O H 3
CH
3 Et Et Et rS1 X-5 X-6 OH3 H 3 0 OH 3 Et r Et N3 H X-7 X-8 H
-~O
3 r S -C- i N ~ N N Nq
H
3 O r Ha WO 2004/046823 PCT/EP2003/050816 66 X-9 X-10
H
3 C CH 3 HF Et Et Et Ci Et X-11 X-12 Et Et N HST Et X-1 3 H 3 C CH 3H N t - E E C GCH Et EtN Et - Et X-15 X-16 Et Et Et Et Xi-I X1-2 Q C 3 CH 3 H 3 C CH 3 Et CH 3Et CH3 XI-3 XI-4 H 3 CHe H Et Et 0 WO 2004/046823 PCT/EP2003/050816 67 XI-5 XI-6 NCI 0L+ 0Et I- Et H C CH 3 H C Et Et Et Et XI-9
H
3 C OH Q 3JCH 3Q Et 0HON Et _ Et ~ N eHNH XI-11 XI-12
H
3 C OH 3 ,
H
3 C-CH
H
3 C H 3 C OH 0I5 Et
OH
3 Et C OH 3 WO 2004/046823 PCT/EP2003/050816 68 XI-13 XI-14 H C
H
3 HC ICFI sH CH NN Et Br Et Et Et 0 XI-15 XI-16 HC OH H H 3
C
3 H3 C 3Ca N N Et CH
O
3 Et CH H 3 XI-17 XI-28
H
3 C PhCH 3 HsC -Et |- CA ErQCH S Et OH 3 Ett XI-19 XI-20
H
3 C H0 O H H 3 C OH 3 Et OH 3 Et OH 3 WO 2004/046823 PCT/EP2003/050816 69 XI-21 XI-22 Et CH Et ~ CH 3 XI-23 XI-24 3
CH
3 H H Et
~H
3 Et r H 3 XI-25
H
3 C OH 3 Cp. 3 3Ph N Et - H 3 In a further preferred embodiment of the present invention, the deformable colour photographic silver halide material contains a 5 layer containing at least one compound represented by formula (XII) RrN HS (XII), in which R52 represents H, CH 3 or OCH 3 ; R53 represents H, OH, CH 3 , 10 OCH 3 , NHCO-R 5 4 , COOR 5 4 , SO 2
NH
2 , NHCONH 2 or NHCONH-CH 3 ; and R 5 4 represents a Ci-C4-alkyl group. Compounds according to formula (XII) are preferably present in a light-sensitive layer in a quantity of 50 to 5000 mg per kg Ag, particularly preferably in a quantity of 200 to 2000 mg per kg Ag. 15 Preferred compounds according to formula (XII) are given below: R52 R53 XII-1 H H XII-2 H o-OCH3 XII-3 H m-OCH3 WO 2004/046823 PCT/EP2003/050816 70
R
52 53 XII-4 H p-OCH 3 XII-5 H o-OH XII-6 H m-OH XII-7 H p-OH XII-8 H m-NHCOCH 3 XII-9 H p-COOC2H5 XII-10 H p-COOH XII-11 H m-NHCONH 2 XII-12 H p-SO 2
NH
2 XII-13 o-OCH 3 p-OCH 3 XII-14 H m-NHCONHCH 3 In a particularly preferred embodiment of the present invention, the colour photographic material contains a compound according to formula (XII) in a blue-sensitive silver halide 5 emulsion layer. In a preferred embodiment of the present invention, the colour photographic material contains at least one layer containing a compound according to formula (XIII): - S (R"). I />- SH 10 _O N (XIII), in which R55 represents a substituent and n is 1, 2 or 3. Preferably 55 R represents a polar group, in particular a sulfo group, a sulfonate group, or a substituted or unsubstituted sulfonamido group. The is sulfonamido group can be bonded through the S- or the N-atom of the group. Compounds according to formula (XIII) are preferably present in a red-sensitive silver halide emulsion layer in a quantity of 100 to 5000 mg per kg Ag, particularly preferably in a quantity of 500 20 to 3000 mg per kg Ag. Stabilizers according to formula (XIII) are particularly preferred in which R55 represents
R
5 6
R
5 7 WO 2004/046823 PCT/EP2003/050816 71 and; R 5 6 and R 57 independently represent H, Cl or CI-C4-alkyl, phenyl or chlorophenyl groups. Particularly preferred compounds according to formula (XIII) include: C
NHSO
2 N SH (XIII-) In a particularly preferred embodiment of the present invention, the red-sensitive layer contains at least one compound according to formula (XII) and at least one compound according to formula (XIII). 10 The main ingredients of photographic emulsion layers are binders, silver halide crystals and colour couplers. Details over suitable binders are to be found in Research Disclosure 37254, part 2 (1995) page 286, herein incorporated by reference. The mostly hydrophobic colour couplers, as well as other 15 hydrophobic ingredients in the layer, are usually dissolved or dispersed in high boiling point organic solvents. These solutions or dispersions are then emulsified in an aqueous binder solution (usually gelatin) and remain in the layers after drying as fine droplets (0.05 to 0.8 pim in diameter). 20 Suitable high boiling point organic solvents, methods for incorporation in the layers of a photographic material and other methods to incorporate chemical compounds in photographic layers are to be found in Research Disclosure 37254, part 6 (1995) page 292, herein incorporated by reference. 25 The light-insensitive layers generally coated between the light-sensitive layers with different spectral sensitivities can contain ingredients, which hinder undesirable diffusion of developer oxidation products from one light-sensitive layer to another such layer with different spectral sensitization. 30 Suitable compounds (white couplers, scavengers for developer oxidation products (also called DOP scavengers, Dox scavengers, interlayer scavengers or just scavengers) are to be found in Research Disclosure 37254, part 7 (1995) page 292 and in Research Disclosure 37038, part III, page 84 herein incorporated by 35 reference. The colour photographic material may further contain UV-light absorbing compounds, brighteners, spacing agents, filter dyes, formaldehyde captors, anti-fading agents, antioxidants, Dmin-dyes, WO 2004/046823 PCT/EP2003/050816 72 additives to improve the dye, coupler and white image area stability, additives to reduce colour fog, plasticizers (latices), biocides and polyvinylpyrrolidone. Such additives and other additives can be contained in the emulsion and interlayers, but can 5 also be contained in additional layers between the support and emulsion layers and/or on the non-emulsion layer-bearing side of the support. Suitable compounds are to be found in Research Disclosure 37254, part 8 (1995) page 292 and in Research Disclosure 37038, parts IV, V, VI, VII, X, XI and XIII (1995), from page 84 10 herein incorporated by reference. The layers of the colour photographic material are usually hardened i.e. the binders used, preferably gelatin, is crosslinked by a suitable chemical process. Immediate or fast hardeners are preferably employed. Suitable immediate and fast hardeners are to is be found in Research Disclosure 37254, part 9 (1995), page 294 and in Research Disclosure 37038, part XII (1995), page 86, herein incorporated by reference. The outermost layers of the photographic material and in particular the outermost layer on the image side can be embossed and/or 20 coloured and/or printed with any kind of design, image or text. Industrial application The process for producing a deformed image, according to the 25 present invention, can be used to apply any kind of representations like images, designs, patterns, letters and so forth to a wide variety of work pieces including pieces of furniture. The invention is illustrated hereinafter by way of comparative 30 and invention examples. The percentages and ratios given in these examples are by weight unless otherwise indicated. The following compounds were used in the EXAMPLES: H SOs S N EST-1: N.N k CH + H 35
NH
4 WO 2004/046823 PCT/EP2003/050816 73 H~ EST-2: N 0( N 0 EST-3: / H\ NH'NH -~~ N ' N H EST- 4:S EST-5: S S CDC H3 He 3 u 0 0 INN 0Q N N S I H I S2
CH
3 H CH 3 GB-i 0 N ON C16H
OH
3 0 0 a H
H
3 C N-SjN CH H 2
OCH
3 0 0 GB-3
N
WO 2004/046823 PCT/EP2003/050816 74 0 y - 0 CIN N GS-1: II I (OHti 2
)
3 (OH 2
)
3
S
3
SO
3 - 1v3 K C H 5 0 - -0 N N K GS-2: I (C H 2
)
2
(?H
2
)
2 IO3 3- (0 2
H
5
)
3 NH 0 0 GS-3: 03so Na' 0 0 S0 3 H SC-i ~t-C 8 Hl 7 t-c 8
H
17 OH OH CH3 CH3 SC-2
C
6
H
13 0 O6I 0 3 CH 3
OH
WO 2004/046823 PCT/EP2003/050816 75 t-H 9C OHOCC H ST-i H L CHL~j n _1,5 H
H
3 C
CH
3 0 CH5 ST-2 H 3 C 025 HO
C
1 2
H
25 OH C 4
H
9 -s N
C
4 HG-t OH C 4
H
9 -t UV-2 ):: 0 4
H
9 -t OH CIAO 5 () ON UV-3N
CH
3 SO.Na W-1 & NN SO 3 Na N'y N(CH 2
CH
2 0H), MOQS N SO 3 N
(HOCH
2
CH,)
2 N Na 3 S NH I"N oJNqa
SO
3 Na WO 2004/046823 PCT/EP2003/050816 76 PREPARATION OF SILVER HALIDE EMULSIONS Lippmann emulsion (EmM1): s The following solutions were prepared: Solution 01 deionized water 1100 g gelatin 140 g n-decanol 1 g NaCl 4 g Solution 02 deionized water 1860 g NaCl 360 g Solution 03 deionized water 1800 g AgNO 3 1000 g Solutions 02 and 03 at 400C were simultaneously added at a constant rate to Solution 01 in a precipitation vessel at a pAg of 7.7 and a 10 pH of 5.3 with vigorous stirring over a period of 30 minutes. During the precipitation the pAg-value was maintained by adding a sodium chloride solution and the pH maintained by adding dilute sulphuric acid to the precipitation vessel. A silver chloride emulsion was obtained with an average silver chloride grain size 15 of 0.09 pm. The weight ratio of gelatin to silver nitrate was 0.14. The emulsion was then subjected to ultrafitration at 50*C and redispersed with sufficient gelatin and deionized water to yield a dispersion containing 200g of silver chloride per kg dispersion, a weight ratio of gelatin to silver nitrate (equivalent 20 to AgX present) of 0.3 and an average silver chloride grain size of 0.13 pm. Lippmann emulsion (EmM2): 25 Lippmann emulsion EmM2 was prepared as described for EmMl except that Solution 04 was used instead of Solution 02. Solution 04 deionized water 1860 g NaCl 324 g KBr 73.2 g
K
2 IrCl 6 1420 pg The emulsion obtained contained 90 mol% silver chloride, 10 mol% 30 silver bromide and 500 x 10~9 mol Ir4+ per mol silver chloride.
WO 2004/046823 PCT/EP2003/050816 77 BLUE-SENSITIVE EMULSIONS EmB1-EmB4: EmBl: The following solutions were prepared: Solution 11 deionized water 1100 g gelatin 136 g n-decanol I g NaCl 4 g EmM1 36 g Solution 12 deionized water 1860 g NaCl 360 g
K
2 IrCl 6 14.2 pg Solution 13 demonized water 1800 g AgNO 3 1000 g Solutions 12 and 13 at 50*C were simultaneously added to Solution 10 11 in a precipitation vessel at a pAg of 7.7 with vigorous stirring over a period of 150 minutes. During the precipitation the pAg value was maintained by adding a sodium chloride solution and a pH of 5.3 was maintained by adding dilute sulphuric acid to the precipitation vessel. The addition rate of both Solutions 12 and 15 13 was so regulated that in the first 100 minutes it increased linearly from 2 mL/min to 16 mL/min and during the final 50 minutes was held constant at 20 mL/min. A silver chloride emulsion was thereby obtained with an average silver chloride grain size of 0.85 pm. The weight ratio of gelatin to silver nitrate (equivalent to 20 AgX) was 0.14. The emulsion was then subjected to ultrafiltration at 50*C and redispersed with sufficient gelatin and deionized water to yield a dispersion containing 200g of silver chloride per kg dispersion and a weight ratio of gelatin to silver nitrate (equivalent to AgX present) of 0.56. The emulsion thereby obtained -9 4+ 25 contained 5 x 10 mol Ir per mole of silver chloride. The emulsion was then chemically ripened at a pH of 5.3 with 0.13 x 10-6 mol ammonium tetrachloroaurate and 5.4 x 10 6 mol sodium thiosulphate per mole of silver chloride for 180 minutes at a temperature of 47 0 C. After chemical ripening the following 3o ingredients were added per mole of silver chloride at 40*C: 0.32 mmol of the spectral sensitizing compound (IX-21), 0.5 mmol of the WO 2004/046823 PCT/EP2003/050816 78 stabilizing compound EST-1, 0.5 mmol of the stabilizing compound EST-2 and finally 0.6 mmol of potassium bromide. EmB2: 5 The precipitation, desalting and redispersion were carried out as described for EmBl. The emulsion thereby obtained contained 5 x 10 mol Ir per mole silver chloride. After chemical ripening at a pH of 5.3 with 0.13 x 10-6 mol 10 ammonium tetrachloroaurate and 5.4 x 10-6 mol sodium thiosulphate per mole of silver chloride for 180 minutes at 47 0 C, the following ingredients were added per mole of silver chloride at 40OC: 0.32 mmol of the spectral sensitizing compound (IX-11), 0.5 mmol of the stabilizing compound (XII-8) and finally 0.6 mmol of potassium 15 bromide. EmB3: The precipitation, desalting and redispersion were carried out 20 as described for EmB1 except that 9.6 mg mercury(II) chloride was added to solution 12. The emulsion thereby obtained contained 5 x 109 mol Ir 4 + and 6 x 106 mol Hg 2 + per mole silver chloride. After chemical ripening at pH of 5.5 with 0.60 x 10-6 mol ammonium tetrachloroaurate and 10.0 x 10-6 mol sodium thiosulphate 25 per mole of silver chloride for 180 minutes at 60*C, the following ingredients were added per mole of silver chloride at 40*C: 0.32 mmol of the spectral sensitizing compound (IX-11), 0.5 mmol of the stabilizing compound (XII-8) and finally 0.6 mmol of potassium bromide. 30 EmB4: The precipitation, desalting and redispersion were carried out as described for EmBl except that Solution 12 did not contain 35 K 2 IrCl 6 . The emulsion was mixed at 40 0 C with 50 g of Lippmann Emulsion EmM2 within 20 minutes before chemical sensitization. The emulsion thereby produced contained 10 mmol silver bromide and 5 x 10~9 mol Ir4+ per mole silver chloride, which was localised in the outermost zone (the shell) of the emulsion crystals. 40 After chemical ripening at a pH of 5.3 with 0.01 x 10-6 mol ammonium tetrachloroaurate and 5.0 x 10-6 mol thiourea per mole of silver chloride for 180 minutes at 45 0 C, the following ingredients WO 2004/046823 PCT/EP2003/050816 79 were added per mole of silver chloride at 40*C: 0.32 mmol of the spectral sensitizing compound (IX-11) and 0.5 mmol of the stabilizing compound (XII-14). 5 GREEN-SENSITIVE EMULSIONS EmG1-EmG4: EmG1: The following solutions were prepared: 10 Solution 21 deionized water 1100 g gelatin 136 g n-decanol 1 g NaCl 4 g EmMl 480 g Solution 22 deionized water 1860 g NaCl 360 g K2IrCl6 14.2 g RhCl 3 .3H 2 0 3.8 g Solution 23 deionized water 1800 g AgNO 3 1000 g Solutions 22 and 23 at 48*C were simultaneously added to Solution 21 in a precipitation vessel at a pAg of 7.7 with intensive stirring over a period of 75 minutes. During the precipitation the is pAg-value was maintained by adding a sodium chloride solution and a pH-value of 5.3 was maintained by adding dilute sulphuric acid to the precipitation vessel. The addition rate of both solutions 22 and 23 was so regulated that in the first 50 minutes it increased linearly from 4 mL/min to 36mL/min and during the final 25 minutes 20 was held constant at 40 mL/min. A silver chloride emulsion was thereby obtained with an average silver chloride grain size of 0.37 pm. The weight ratio of gelatin to silver nitrate (equivalent to AgX) was 0.14. The emulsion was then subjected to ultrafitration at 50 0 C, washed and redispersed with sufficient gelatin and 25 deionized water to yield a dispersion containing 200g of silver chloride per kg dispersion, 5 x 10~9 mol Ir4 and 2.5 x 10~9 mol Rh3+ per mol silver chloride and a weight ratio of gelatin to silver nitrate (equivalent to AgX present) of 0.56. The emulsion was then chemically ripened at a pH of 5.3 with 30 0.82 x 10-6 mol ammonium tetrachloroaurate and 2.74 x 106 mol sodium thiosulphate per mole of silver chloride for 240 minutes at WO 2004/046823 PCT/EP2003/050816 80 a temperature of 45 0 C. After chemical ripening the following ingredients were added per mole AgCl at 40*C: 1.2 mmol of the green sensitizing compound (GS-1), 2.4 mmol of the stabilizing compound EST-3, 1.2 mmol of the stabilizing compound (XII-1) and finally 10 5 mmol of potassium bromide. EmG2: The precipitation, desalting and redispersion were carried out 10 as described for EmG1 except that the amount of EmM1 in Solution 21 was reduced from 480 g to 195 g. After desalting and redispersion the silver chloride crystals had an average diameter of 0.50 pn. After chemical ripening at a pH of 5.3 with 0.45 x 10-6 mol ammonium tetrachloroaurate and 1.52 x 10-6 mol sodium thiosulphate 15 per mole of silver chloride for 220 minutes at 45*C, the following ingredients were added per mole AgCl at 40*C: 0.6 mmol of the green sensitizing compound (GS-1), 1.2 mmol of the stabilizing compound (EST-1), 0.6 mmol of the stabilizing compound (XII-1) and finally 10 mmol of potassium bromide. 20 EmG3: The precipitation, desalting and redispersion were carried out as described for EmG2. After chemical ripening at pH of 5.5 with 25 0.95 x 10-6 mol ammonium tetrachloroaurate and 2.35 x 10-6 mol sodium thiosulphate per mole of silver chloride for 220 minutes at 50*C, the following ingredients were added per mole AgCl at 40*C: 0.6 mmol of the green sensitizing compound (GS-2), 1.2 mmol of the stabilizing compound (XII-8) and finally 10 mmol of potassium 30 bromide. EmG4: The precipitation, desalting and redispersion were carried out 35 as described for EmG2 except that Solution 22 did not contain
K
2 IrC16. The emulsion was mixed at 40 0 C with 50 g of Lippmann Emulsion EmM2 within 20 minutes before chemical sensitization. The emulsion thereby produced contained 10 mmol silver bromide and 5 x 10~9 mol 4o Ir per mole silver chloride, which was localised in the outermost zone of the emulsion crystals.
WO 2004/046823 PCT/EP2003/050816 81 After chemical ripening at pH of 5.3 with 0.02 x 10-6 mol ammonium tetrachloroaurate and 1.4 x 10-6 mol thiourea per mole silver chloride for 220 minutes at 50*C, the following ingredients were added per mole AgCl at 40*C: 0.6 mmol of the green sensitizing 5 compound (GS-3) and 1.2 mmol of the stabilizing compound (XII-14). RED-SENSITIVE EMULSIONS EmR1-EmR4: EmR1: 10 The precipitation, desalting and redispersion were carried out as described for EmGl. The emulsion was chemically ripened at a pH of 5.3 with 2.2 x 10-6 mol ammonium tetrachloroaurate and 9.0 x 10-6 mol sodium thiosulphate per mole silver chloride for 280 minutes at 15 a temperature of 55 0 C. After chemical ripening the following ingredients were added per mole AgCl at 40*C: 150 p1mol of the spectral sensitizing compound (X-1), 5.0 mmol of the stabilizing compound EST-4 and finally 10 mmol of potassium bromide. 20 EmR2: The precipitation, desalting and redispersion were carried out as described for EmG2. The emulsion was chemically ripened at a pH of 5.3 with 1.2 x 10-6 mol ammonium tetrachloroaurate and 5.0 x 10-6 2s mol sodium thiosulphate per mole of silver chloride for 256 minutes at a temperature of 55 0 C. After chemical ripening the following ingredients were added per mole AgCl at 40*C: 75 pmol of the spectral sensitizing compound (X-1), 2.5 mmol of the stabilizing compound EST-4 and finally 10 mmol of potassium bromide. 30 EmR3: The precipitation, desalting and redispersion were carried out as described for EmR2. The emulsion was chemically ripened at a pH of 35 5.5 with 1.8 x 10-6 mol ammonium tetrachloroaurate and 7.5 x 10-6 mol sodium thiosulphate per mole of silver chloride for 330 minutes at a temperature of 50 0 C. After chemical ripening the following ingredients were added per mole AgCl at 40*C: 75 pmol of the spectral sensitizing compound (X-2), 1.2 mmol of the stabilizing 40 compound (XII-8), 0.4 mmol of the stabilizing compound (EST-5) and finally 10 mmol of potassium bromide.
WO 2004/046823 PCT/EP2003/050816 82 EmR4: The precipitation, desalting and redispersion were carried out as described for EmG4. 5 The emulsion was mixed at 40 0 C with 50 g of Lippmann Emulsion EmM2 within 20 minutes before chemical sensitization. The emulsion thereby produced contained 10 mmol silver bromide and 5 x 10-9 mol Ir4+ per mole silver chloride, which was concentrated in the outermost zone of the emulsion crystals. 10 The emulsion was chemically ripened at a pH of 5.3 with 0.10 x 10-6 mol ammonium tetrachloroaurate and 6.3 x 10-6 mol thiourea per mole of silver chloride for 300 minutes at a temperature of 50 0 C. After chemical ripening the following ingredients were added per mole AgCl at 50*C: 75 pmol of the spectral sensitizing compound (X 15 4) and 1.2 mmol of the stabilizing compound (XII-14). EXAMPLE 1 A colour photographic material, suitable for photographic 20 processing, was prepared by coating the following layers in the following order onto a PVC plastic foil. The silver halide coverage is given as equivalent quantities of silver nitrate. LAYER ASSEMBLY 101: 25 Support: 220 pm thick PVC toned white with TiO 2 (comprising no plastizisers) - corona pretreated Subbing layer: 0.4 g/m gelatin 2 1.5 ml/m 40 % aqueous dispersion of dispersion D-1 2 6.0 ml/m 30 % aqueous dispersion of colloidal silica (average particle size 0.025 pm, ph of 8) 0.1 ml/m 5 % aqueous solution of wetting agent Tergitol 4 (supplied by Niacet Corporation) 0.1 g/m2 silane SL-1 26.0 g/m2 deionized water Layer 2: (blue-sensitive layer) Blue-sensitized silver halide emulsion EmBI (99,94 mol-% chloride, 0.06 mol-% bromide, average grain size 0.85 prm) equivalent to 0.48 g/m2 AgNO 3 1.00 g/m2 gelatin WO 2004/046823 PCT/EP2003/050816 83 0.20 g/m2 yellow coupler GB-1 0.40 g/m2 yellow coupler GB-3 0.30 g/m2 tricresylphosphate (TKP) 0.10 g/m2 stabilizer ST-1 Layer 3: (interlayer) 1.00 g/m2 gelatin 0.06 g/m2 Dox-scavenger SC-1 0.06 g/m2 Dox-scavenger SC-2 0.12 g/m2 TKP Layer 4: (green-sensitive layer) Green-sensitized silver halide emulsion EmGi (99 mol % chloride, 1 mol-% bromide, average grain size 0.37 pm) equivalent to 0.35 g/m2 AgNO3. 0.76 g/m2 gelatin 0.44 g/m2 magenta coupler XIV-43 0.07 g/m2 stabilizer ST-2 0.14 g/m2 stabilizer SC-2 0.18 g/m 2 TKP Layer 5: (UV-protection layer) 1.05 g/m2 gelatin 0.35 g/m2 UV-Absorber UV-1 0.20 g/m2 UV-Absorber UV-2 0.13 g/m2 UV-Absorber UV-3 0.06 g/m2 Dox-scavenger SC-1 0.06 g/m2 Dox-scavenger SC-2 0.33 g/m2 TKP Layer 6: (red-sensitive layer) Red-sensitized silver halide emulsion EmRl (99.0 mol % chloride, 1 mol-% bromide, average grain size 0.37 pm) equivalent to 0.33 g/m2 AgNO 3 0.81 g/m2 gelatin 0.42 g/m2 cyan coupler VII-2 0.20 g/m TKP 0.20 g/m2 dibutyl phthalate Layer 7: (UV-protection layer) 0.54 g/m2 gelatin 0.35 g/m2 UV-Absorber UV-1 WO 2004/046823 PCT/EP2003/050816 84 0.10 g/m2 UV-Absorber UV-2 0.05 g/m 2 UV-Absorber UV-3 0,15 g/m2 TKP Layer 8: (protective layer) 0.90 g/m2 gelatin 0.05 g/m2 brightener W-1 .0.07 g/m2 polyvinylpyrrolidone 1.20 ml/m2 silicon oil 2.50 mg/m2 spacing agent of poly(methylmethacrylate), average particle size 0.8 pm 0.30 g/m2 immediate hardening agent H-1 EXAMPLES 2 to 4 The layer assemblies of the colour photographic materials of 5 EXAMPLES 2 to 4 with layer assemblies of 102, 103 and 104 respectively were prepared analogously to that of EXAMPLE 1. The layer assemblies are summarized in Table 1: Table 1: Layer assembly Emulsion Comment Layer 2 Layer 4 Layer 6 101 EmB1 EmGl EmRl INVENTION EXAMPLE 1 102 EmB2 EmG2 EmR2 INVENTION EXAMPLE 2 103 EmB3 EmG3 EmR3 INVENTION EXAMPLE 3 104 EmB4 EmG4 EmR4 INVENTION EXAMPLE 4 10 Table 2 gives the particle size M*, the type and quantity of doping agent, the stabilizers and sensitizers used in the silver halide emulsion layers given in Table 1. The Hg-, Ir- and Rh-quantities are molar ratios with respect to silver halide. 15 WO 2004/046823 PCT/EP2003/050816 85 Table 2: Layer Emulsions assem bly Layer 2 Layer 4 Layer 6 M* Added ingredients M* Added ingredients M* Added ingredients [pml [pm] [pm] 101 0.85 5 x 10 Ir(IV) 0.37 5 x 10 Ir(IV) 0.37 5 x 10~ Ir(IV) EST-1 2.5 x 10~9Rh(III) 2.5 x 10~9 nI EST-2 EST-3 EST-4 IX-21 XII-1 X-1 GS-1 102 0.85 5 x 10 Ir(IV) 0.50 5 x 10 Ir (IV) 0.50 5 x 10~ Ir(IV) XII-8 2.5 x 109 Rh(III) 2.5 x 10 9Rh(III) IX-11 EST-1 EST-4 XII-1 X-1 GS-1 103 0.85 5 x 10 Ir (IV) 0.50 5 x 10 Ir (IV) 0.50 5 x 10 Ir(IV) 6 x10 Hg (II) 2.5 x 10 9Rh(III) 2.5 x 10 9Rh(III) XII-8 XII-8 EST-5 IX-11 GS-2 XII-8 RS-2 104 0.85 5 x 10 Ir (IV)* 0.50 5 x 10 Ir (IV)* 0.50 5 x 10 Ir(IV)* XII-14 2,5 x 10 9Rh(III) 2,5 x 109 Rh(III) IX-11 XII-14 XII-14 I _ GS-3 RS-3 * Iridium is localized in the outermost zone (shell) of the grain 5 Chemical processing of photographic materials of EXAMPLES 1 to 4 All the EXAMPLES were processed as follows: a) developed for 45 s at 35*C with a colour developer with the 10 following composition: 9.0 g triethanolamine 4.0 g N,N-diethylhydroxylamine 0.05 g diethylenglycol 5.0 g 3 -methyl-4-amino-N-ethyl-N-methansulfonamidoethyl anilin-sulphate 0.2 g potassium sulphite 0.05 g triethylenglycol 22 g potassium carbonate 0.4 g potassium hydroxide WO 2004/046823 PCT/EP2003/050816 86 2.2 g ethylendiamine-tetra-acetic acid disodium salt 2.5 g potassium chloride 0.3 g 1,2-dihydroxybenzol-3,4,6-trisulfonic acid trisodium salt made up with water to 1000 mL; pH = 10.0 b) bleaching/fixing for 45 s at 35*C with a bleacher/fixer bath with the following composition: 75 g ammonium thiosulphate 13.5 g sodium hydrogen sulphite 2.0 g ammonium acetate 57 g ethylene-diamine-tetra-acetic acid iron ammonium salt 9.5 g 25% aqueous ammonia 5 made up with acetic acid to 1000 ml; pH = 5.5 c)washing with deionized water at 33*C for 2 minutes d)drying 10 Evaluation of sensitometric properties of colour photographic materials of EXAMPLES 1 to 4 The sensitometric evaluation results are presented in Table 3 in 15 the form of the following parameters: Dmin Minimum density of the material without exposure according to X-Rite Status A E: sensitivity x 1000 at a density of Dmin + 0.6; the light exposure amount log I x t needed to achieve the required density depends on the color filter set between the exposure unit and the material; therefore the sensitivity is given as relative values Gamma-value Gl: threshold gradation x 100, i.e. 100 times the slope of the sensitometric curve between a density of Dmin + 0.10 and a density of Dmin + 0.85 Gamma-value G2: middle gradation x 100, i.e. 100 times the slope of the sensitometric curve between a density of WO 2004/046823 PCT/EP2003/050816 87 Dmin + 0.85 and a density of Dmin + 1.60 ANALOGUE EXPOSURE: The sensitometric properties of the colour photographic material 5 upon analogue exposure were determined by exposing it through a graduated grey wedge with a density change per density step of 0.1 with a halogen lamp with a constant exposure (light intensity x time) for exposure times of 0.04 s, 0.82 s, 4.91 s and 76 s. io DIGITAL EXPOSURE: The sensitometric properties of the colour photographic material upon digital exposure were determined by exposing it with an digital printer with the following technical specifications: 15 Red laser: wavelength of 683 mu Green laser: wavelength of 543 nm Blue laser: wavelength of 458 nm Optical resolution: 400 dpi 20 Exposure time: approx. 131 ns per pixel (pixel exposure time) Number of colour steps attained: 256 per channel First an area of the sample was so exposed at an pixel exposure 25 time of 131 ns with an intensity I, that the density D after processing was ca. 0.6 (according to X-Rite Status A). Then the light intensity was so reduced or increased that the logarithm of the exposure, log (I x t) was 0.1 lower or 0.1 higher than the I previous exposure step. This procedure was followed until in total 30 29 steps were exposed. The lowest step corresponded to a zero light intensity (Dmin).
WO 2004/046823 PCT/EP2003/050816 88 Table 3: Layer Exposure Relative G1 G2 assembly time sensitivity, E Y M C Y M C Y M C 101 131 ns 1208 980 962 150 152 156 220 268 290 101 40 ms 1228 1242 1244 163 163 171 248 314 372 101 0.82 s 1201 1219 1246 173 175 188 241 356 407 101 4.91 s 1165 1149 1174 170 172 184 327 345 389 101 76.0 s 1088 989 959 155 155 154 234 312 306 102 131 ns 1012 1008 1057 165 168 170 261 275 305 102 40 ms 1220 1180 1210 166 173 176 269 286 320 102 0.82 s 1174 1135 1250 174 186 188 307 326 367 102 4.91 s 1152 1100 1246 177 186 193 310 326 380 102 76.0 s 1132 1052 1200 174 180 190 326 328 390 103 131 ns 1094 1102 1150 179 175 169 273 280 315 103 40 ms 1225 1215 1200 192 181 173 290 304 322 103 0.82 s 1200 1210 1240 197 182 172 300 312 332 103 4.91 s 1180 1180 1240 198 178 173 286 294 331 103 76.0 s 1125 1125 1170 193 168 168 262 268 332 104 131 ns 1200 1185 1174 166 163 175 252 281 335 104 40 ms 1350 1320 1300 169 165 183 259 290 354 104 0.82 s 1348 1330 1355 171 168 182 270 310 364 104 4.91 s 1348 1328 1366 173 168 183 160 296 364 104 76.0 s 1347 1312 1350 173 167 178 278 312 350 In digital exposure high sensitivities are not necessary, because 5 commercial laser units have surplus powers . In analog exposure reduction in heat development is desirable and hence the use of lower intensity lamps, which again means that high sensitivities are important. Furthermore, high sensitivities are required for exposing large formats, to reduce the exposure time and thereby 10 increase the productivity. The results in Table 3 show that all of the colour photographic materials investigated exhibited acceptable performances for digital (131 ns) or long time exposures (76 s). Layer assemblies 102 and 103, however, possess higher 15 sensitivities for long time exposures than layer configuration 101 and layer configuration 104 exhibited the highest sensitivities.
WO 2004/046823 PCT/EP2003/050816 89 Higher G1- and G2-values lead to images with higher contrasts and hence to better images. For analog exposure Gi-values between 1.7 and 1.9 are preferred and G2-values between 250 and 400. For digital exposure the shoulder gradation G2 should be as high as s possible to increase the image quality. However, even when, as in the case of layer configuration 101, the G1- and G2-values fall outside these ranges for analogue exposure, the colour photographic material is still usable although with slightly lower image brilliance. 10 Layer configurations 102 to 104, on the other hand, are usable without loss in image quality in the whole exposure range and are supremely suitable for both digital and long time exposures. It has been surprisingly found that the deformable colour photographic recording materials of the present invention are 15 suitable for digital exposure and give high quality images. Particularly good results have been realized with colour photographic materials containing stabilizers according to formula (XII). Furthermore, it has been found advantageous to use blue sensitizers according to formula (IX) and red sensitizers according 20 to formula (X), and in particular to use silver halide emulsions with a higher silver halide grain size. EXAMPLES 5 to 7 25 The layer assemblies of the photographic materials of EXAMPLES 5 to 7 with layer assemblies 105, 106 and 107 respectively were prepared analogously to that of EXAMPLE 4 (layer assembly 104) with the difference that the PVC support was replaced by the following supports: 30 EXAMPLE 5: polyethylene coated paper (photographic support supplied by Schoeller; weight 258 g/m2; 35 g/m2 polyethylene containing about 11 % by weight of TiO 2 pigments are coated on the front-side (the side the photographic 35 layers are applied to); 28 g/m2 polyethylene are coated on the back-side; and the back-side of the coated paper is provided with an antistatic layer. EXAMPLE 6: PC foil (175 pim thick; supplied by General Electric) EXAMPLE 7: PET foil (175 pm thick; longitudinally and laterally 40 stretched); such a foil is commonly used as a support for display materials.
WO 2004/046823 PCT/EP2003/050816 90 EXAMPLE 8 Layer assembly 108 consisted only of 220 pm thick PVC toned white 5 with TiO 2 (comprising no plastizisers) - corona pretreated. IMAGE QUALITY AND DEFORMATION TEST Layer assemblies 104 to 107 were digitally exposed as 10 described above with an image comprising black characters of varying size (height 3 mm to 10 mm) and chemical processed as described for EXAMPLES 1 to 4. On layer assembly 108 an image comprising black characters of varying size (height 3 mm to 10 mm) was produced by conventional 15 offset printing. A transparent PVC sheet of 80 pm precoated on one side with a polyethylene sheet 75 pm thick was laid onto the thus prepared image and laminated with the polyethylene in contact with the topcoat of the image layer of layer assemblies 104 to 108. A roller 20 laminator was used for pressing together the superposed materials at a temperature of 104*C measured within the sandwich. After lamination the following deformation test was applied to layer assemblies 104 to 108. A membrane press was used to press the photographic material onto a work-piece that was pretreated 25 with a wood glue and the test was run at a temperature of 95*C. The work-piece in the form of a drawer-front was made of chip-wood and had grooves in the form of half-pipes on its front, the half-pipes having a diameter of 0.8 cm. On deformation, the photographic material lying over the halfpipes is pressed in the halfpipe and 30 thereby stretched. The material is also stretched at the front edges and cornes of the work-piece. At the back-side of the work piece, overhanging material is cut off. The test pieces were evaluated qualitatively with the following results: 35 DEFORMATION RESULTS Layer assembly (104) could easily be deformed and exhibited neither cracks nor micro-cracks. Layer assembly (105) could not be deformed (exhibited cracks and 40 micro-cracks). Layer assembly (106) could be deformed, but needed longer then layer assembly 104; it exhibited neither cracks nor micro-cracks.
WO 2004/046823 PCT/EP2003/050816 91 Layer assembly (107) could not be deformed, (exhibited micro cracks). Layer assembly (108) could easily be deformed and exhibited neither cracks nor micro-cracks. 5 Since layer assemblies (105) and (107) failed the deformation test they were not suitable for the present invention and hence were not further evaluated. IMAGE QUALITY RESULTS 10 The image quality was evaluated with the naked eye by looking at the black characters in the deformed part of the test pieces. Layer assembly (104) showed no loss in image quality at the deformed parts. 15 Layer assembly (106) showed minor losses in image quality that were barely visible as a small loss in density (dark grey instead of black) of the characters in the deformed parts. Layer assembly (108) showed a significant loss in image quality in form of a clearly visible brightening of the characters in the 20 deformed parts. Along the edges and corners grey and even white lines appear within the characters. From the test results it is evident, that PVC and PC are preferred supports for the photographic material of the present invention. 25 The advantage of PVC is it's ease of deformation. The XXX material (108) gave a poor image quality upon deformation and cannot be used according to the present invention. The present invention may include any feature or combination of 30 features disclosed herein either implicitly or explicitly or any generalisation thereof irrespective of whether it relates to the presently claimed invention. In view of the foregoing description it will be evident to a person skilled in the art that various modifications may be made within the scope of the invention.

Claims (19)

1. A deformable colour photographic silver halide material, said colour photographic silver halide material comprising on a 5 deformable plastic support at least one blue-sensitive silver halide emulsion layer containing at least one yellow coupler, at least one green-sensitive silver halide emulsion layer containing at least one magenta coupler and at least one red sensitive silver halide emulsion layer containing at least one 10 cyan coupler.
2. Material according to claim 1, wherein the silver halide emulsions have an overall silver chloride content of at least 70 mol%. 15
3. Material according to claim 2, wherein the silver halide emulsions have an overall silver chloride content of at least 98 mol%. 20
4. Material according to claim 1, wherein the silver halide crystals of at least one silver halide emulsion contains structured crystals with a silver chloride content of at least 70 mol% and with at least two different zones, the outermost zone having a higher molar content of silver bromide than the 25 rest of the crystal.
5. Material according to claim 1, wherein said support is provided with a subbing layer comprising 1.3 to 80% by weight of a proteinaceous colloid, 0 to 85% by weight of colloidal 30 silica and 0 to 30% by weight of a siloxane, which can form a reaction product with said colloidal silica.
6. Material according to claim 5, wherein said subbing layer is provided on the same side of said support as the silver halide 35 emulsion layers.
7. Material according to claim 1, wherein said green-sensitive silver halide emulsion layer and/or said red-sensitive silver halide emulsion layer contain at least one silver halide 40 emulsion with silver halide crystals having an average grain size of at least 0.4 pm. WO 2004/046823 PCT/EP2003/050816 93
8. Material according to claim 1, wherein said silver halide emulsion layers contain one or more binders.
9. Material according to claim 8, wherein said binders in said 5 silver halide emulsion layers are at least 80% by weight gelatin.
10. Material according to claim 1, wherein said colour photographic material contains at least one light-sensitive 10 layer containing a compound represented by formula (XII): 52 R /N RW3 -- N HS (XII), in which RS2 represents H, CH 3 or OCH 3 , R53 represents H, OH, 15 CH 3 , OCH 3 , NHCO-R , COOR , SO 2 NH 2 , NHCONH 2 or NHCONH-CH 3 ; and R54 represents CI-C 4 -Alkyl.
11. Material according to claim 1, wherein said blue-sensitive silver halide emulsion layer contains a blue sensitizer 20 represented by formula (IX): 2 3 R 3 X 2 R - (IX) R 33 3 R N N R 37 M R wherein X 1 and X 2 independently represent S or Se, R 3 1 to R 3 6 independently represent hydrogen, halogen or an alkyl-, alkoxy, 25 aryl or hetero-aryl group or R 3 1 and R 3 2 ; R 3 2 and R 3 3 ; R 3 4 and R 3 5 ; R 3 5 and R 3 6 together represent the atoms necessary to form an anellated benzo-, naphtho- or heterocyclic ring, R 37 and R 38 independently represent an alkyl-, sulfoalkyl-, carboxyalkyl, (CH 2 ) ISO 2 R 39 SO 2 -alkyl, - (CH 2 ) IS0 2 R 39 CO-alkyl, - (CH 2 ) lCOR 3 9SO 2 30 alkyl or -(CH 2 )1-COR 3 9 CO-alkyl group, R 3 9 represents -N~- or NH-, 1 is a whole number between 1 and 6 and M is an optional counter-ion providing charge compensation. WO 2004/046823 PCT/EP2003/050816 94
12. Material according to claim 1, wherein said deformable plastic support is a polycarbonate, poly(vinylchloride), vinylchloride copolymer or a polyester; or a copolyester based on PET. 5
13. Material according to claim 1, wherein the outermost layer on the image side of said colour photographic material is provided with a protective foil. 10
14. A process for producing a deformed image comprising the steps of: exposing the colour photographic silver halide material according to claim 1; conventionally processing said exposed colour photographic material to produce an image; and deforming said colour photographic material. 15
15. Process according to claim 14, wherein said deforming step comprises the application of heat and pressure and wherein at least part of the material is elongated. 20
16. Process according to claim 14, wherein said deforming step comprises deforming said deformable colour photographic material in contact with a work piece.
17. Process according to claim 14, wherein said deformable colour 25 photographic silver halide material is provided with a protective foil before deforming said colour photographic material with a work piece.
18. Process according to claim 14, wherein said deforming step 30 comprises deforming said colour photographic material by vacuum deformation.
19. Process according to claim 14, wherein said deforming step comprises deforming said colour photographic material by 35 injection moulding.
AU2003298281A 2002-11-15 2003-11-12 Deformable colour photographic silver halide material Abandoned AU2003298281A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02102599 2002-11-15
EP02102599.4 2002-11-15
PCT/EP2003/050816 WO2004046823A1 (en) 2002-11-15 2003-11-12 Deformable colour photographic silver halide material

Publications (1)

Publication Number Publication Date
AU2003298281A1 true AU2003298281A1 (en) 2004-06-15

Family

ID=32319664

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003298281A Abandoned AU2003298281A1 (en) 2002-11-15 2003-11-12 Deformable colour photographic silver halide material

Country Status (6)

Country Link
EP (1) EP1567914A1 (en)
JP (1) JP2006506673A (en)
CN (1) CN1816772A (en)
AU (1) AU2003298281A1 (en)
CA (1) CA2505762A1 (en)
WO (1) WO2004046823A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2734825A (en) * 1953-06-16 1956-02-14 morgan
JPH07119964B2 (en) * 1986-12-02 1995-12-20 富士写真フイルム株式会社 Silver halide color photographic light-sensitive material and color photographic print
JPH0699195B2 (en) * 1989-04-12 1994-12-07 株式会社イナックス Method for manufacturing curved-type photo porcelain
DE69119561T2 (en) * 1990-11-30 1996-12-19 Agfa Gevaert Nv Image receiving material with subbed polycarbonate or propylene
JPH0545799A (en) * 1991-08-19 1993-02-26 Fuji Photo Film Co Ltd Photographic film product and image forming method
GB2321977B (en) * 1997-02-10 2001-10-03 Andrew Cunnigham Thomson Mouldable photographic material
US6277547B1 (en) * 1999-09-30 2001-08-21 Eastman Kodak Company Flexible silver halide packaging material
DE10055094A1 (en) * 2000-11-07 2002-05-29 Agfa Gevaert Ag Silver halide material used in digital film, comprises silver halide emulsions containing a magenta, a cyan and a yellow coupler, and a light-sensitive silver halide layer

Also Published As

Publication number Publication date
CN1816772A (en) 2006-08-09
EP1567914A1 (en) 2005-08-31
JP2006506673A (en) 2006-02-23
WO2004046823A1 (en) 2004-06-03
CA2505762A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
EP0282896B1 (en) Silver halide emulsion and photographic light-sensitive material using the same
EP0928988B1 (en) Color paper with improved wet abrasion sensitivity
US6821719B2 (en) Process for producing a deformed image without significant image degradation
AU2003298281A1 (en) Deformable colour photographic silver halide material
US5415991A (en) Stable, rapidly-developable silver halide photographic material
US6818390B2 (en) Deformable color photographic silver halide material
EP0573854A1 (en) Color photographic materials and methods with stabilized silver chloride emulsions
JP2002156735A (en) Image forming element and method for forming the same
EP0444933B1 (en) Silver halide photographic light-sensitive material
US20040161712A1 (en) Deformable colour photographic silver halide material
EP1033616A1 (en) Silver halide emulsion
EP1602008A1 (en) Process for producing a deformed image without significant image degradation
EP0270078A2 (en) Silver halide color photographic material and color photographic print
WO2004046825A1 (en) Deformable colour photographic silver halide material.
GB2359896A (en) Colour photographic silver halide print media
GB2359371A (en) Photographic base with oriented polyolefin and opacifying layers
US7241563B2 (en) Silver halide color photographic light-sensitive material
US5443946A (en) Silver halide color photographic material and method for forming color image
EP1800184A4 (en) Silver halide color photographic light-sensitive material
EP1803030A1 (en) Silver halide color light-sensitive material
JPS62178252A (en) Processing method for silver halide photographic sensitive material
JPH05165144A (en) Silver halide photographic sensitive material
WO2004086141A1 (en) Color material and silver halide color photographic lightsensitive material
JPS62178261A (en) Silver halide color photographic sensitive material
JPS61251850A (en) Silver halide photographic sensitive material

Legal Events

Date Code Title Description
MK1 Application lapsed section 142(2)(a) - no request for examination in relevant period