AU2003249789B2 - Recovering nickel - Google Patents

Recovering nickel Download PDF

Info

Publication number
AU2003249789B2
AU2003249789B2 AU2003249789A AU2003249789A AU2003249789B2 AU 2003249789 B2 AU2003249789 B2 AU 2003249789B2 AU 2003249789 A AU2003249789 A AU 2003249789A AU 2003249789 A AU2003249789 A AU 2003249789A AU 2003249789 B2 AU2003249789 B2 AU 2003249789B2
Authority
AU
Australia
Prior art keywords
process defined
precipitation
nickel
seed
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
AU2003249789A
Other versions
AU2003249789A1 (en
Inventor
Anthony Chamberlain
Geoffrey Tindall
B. Wedderburn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WMC Resources Ltd
Original Assignee
WMC Resources Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2002950815A external-priority patent/AU2002950815A0/en
Application filed by WMC Resources Ltd filed Critical WMC Resources Ltd
Priority to AU2003249789A priority Critical patent/AU2003249789B2/en
Publication of AU2003249789A1 publication Critical patent/AU2003249789A1/en
Application granted granted Critical
Publication of AU2003249789B2 publication Critical patent/AU2003249789B2/en
Priority to AU2009212926A priority patent/AU2009212926A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

WO 2004/016816 PCT/AU2003/001037 RECOVERING NICKEL The present invention relates to a process for recovering valuable metals, such as nickel, from liquors 5 obtained by processing laterite ores and concentrates of the ores that are contaminated with high levels of iron. The term "processing laterite ores and concentrates" is understood herein to include processing 10 by any one or more of heap leaching, pressure leaching, bacterial oxidation leaching, and atmospheric tank leaching. The present invention relates particularly, 15 although by no means exclusively, to a process for recovering nickel and cobalt from liquors obtained by acid leaching ores and concentrates of the ores that are contaminated with high levels of iron. 20 In this context, the term "high levels of iron" is understood to mean levels of iron whereby the mole ratio of Fe:Ni is greater than 2:1. It is known that nickel can be recovered from 25 such liquors containing nickel by contacting the liquors with H 2 S to precipitate nickel sulphides (and mixed sulphides in situations where nickel and other valuable metals such as cobalt are in the liquors). 30 However, it is also known that iron will co precipitate as a sulphide under conventional H 2 S precipitation conditions and that such co-precipitation is undesirable from the viewpoint of'optimising recovery of nickel (and cobalt). 35 It is known that iron can be removed from liquors prior to nickel (and cobalt) precipitation by using (a) - 2 high temperatures (180-220*C) to selectively precipitate iron as hematite (b) low temperatures (90-120*C) to precipitate iron as goethite, and low temperatures (70 150 0 C) to precipitate iron as jarosite. However, high 5 temperature precipitation is capital intensive, requiring autoclaves and flash vessels, and low temperature precipitation results in high nickel losses as a result of nickel adsorption onto iron species. 10 The applicant has developed a process that is capable of recovering very high levels (greater than 99%) of nickel from nickel liquors with very low levels of co precipitation of iron. 15 According to the present invention there is provided a process for recovering a valuable metal in the form of nickel from a leach liquor obtained by processing laterite ores and concentrates that are contaminated with iron by any leaching process including one or more of heap 20 leaching, pressure leaching, bacterial oxidation leaching, and atmospheric tank leaching, the leach liquor containing the valuable metal and iron in solution, which process includes the following steps after the leach process of: 25 (a) processing the leach liquor by reducing ferric ions to ferrous ions in the leach liquor using a suitable gaseous reductant; (b) neutralizing the processed leach liquor to 30 reduce the free acid concentration in solution to levels suitable for nickel precipitation while maintaining iron in the ferrous state; and (a) (c) precipitating the valuable metal using the 35 reductant and seed particles under process conditions, including one or more of seed particle size, seed composition, and N:Melbo umetIases\t .AU.MPecisXAncded pags 2009.5-74oc temperature, that are selected to maximise nickel precipitation and to minimize iron precipitation. 5 Preferably the reduction step (a) includes reducing ferric ions to ferrous ions using the reductant in the presence of an initial concentration of 40-90 g/Il free acid. 10 The reductant may be any suitable reductant. One suitable reductant is NaHS. Preferably the gaseous reductant is H 2 8. 15 Preferably the neutralisation step (b) increases the pH of the solution to 2. Preferably the valuable metals are nickel and 20 cobalt. Preferably the laterite ores are ores that contain nickel in a chlorite mineral phase. 25 Preferably the process conditions for the precipitation step (c) include operating at a partial pressure of the gaseous reductant of less than 60 psi. More preferably the gas partial pressure is less 30 than 40 psi. More preferably the gas partial pressure is less than 30 psi. N:\M4N--AC-APate fW6 999tp4846iAU II\ AMended pqcs 2009
-
5 -7,doc WO 2004/016816 PCT/AU2003/001037 -4 It is preferred particularly that the gas partial pressure be less than 25 psi. Preferably the process conditions for the 5 precipitation step (c) include operating at a liquor temperature of at least 50"C. More preferably the liquor temperature is at least 60 0 C. 10 Preferably the seed particles for the precipitation step (c) have a particle size of P 50 less than 100 micron. 15 More preferably the particle size of the seed particles is P 50 less than 80 micron. It is preferred particularly that the particle size of the seed particles be P 50 less than 60 micron. 20 Preferably the seed particle concentration for the precipitation step (c) is greater than 30g/l. More preferably the seed particle concentration 25 is greater than 40g/l. Preferably the ratio of iron and the valuable metal in the leach liquor supplied to step (a) is greater than 2:1. 30 More preferably the ratio is greater than 3:1. More preferably the ratio is greater than 5:1. 35 The present invention is based on extensive experimental work carried out by the applicant to recover nickel and cobalt from laterite ores. The experimental WO 2004/016816 PCT/AU2003/001037 -5 work included the following work. EXPERIMENTAL 5 Initial sulphide precipitation test work using a gaseous reductant in the form of H 2 S gas in the presence of seed particles was carried out on synthetic liquor generated by dissolving technical grade sulphate salts in tap water. 10 The initial test work included test work for optimal precipitation conditions using the synthetic liquor. 15 The initial test work investigated the following precipitation parameters to determine their effect on nickel and cobalt recovery and nickel/iron separation: * Temperature 20 e H 2 S pressure e Seed particle size e Seed concentration, The initial test work for optimal precipitation 25 conditions was conducted under the following conditions: e Agitation = 750 rpm with twin axial turbines * Sampling time = 15, 30 and 60 minutes (in some instances a 120 minute sample was also taken). 30 0 Seed chemistry = synthetic NiS, Ni:S = 0.95 Once the optimal conditions for sulphide precipitation were determined, further tests were conducted using liquors generated from heap leaching of 35 laterite ores from a range of different sources. The different sources are referred to as GA-Ev, GA-Tr, GL-Ka, and GL-Ak in the following description.
WO 2004/016816 PCT/AU2003/001037 -6 The heap leach liquors were spiked with nickel and cobalt sulphate salts to increase the nickel and cobalt concentration in solution to -4 and 0.2 g/l respectively to simulate recycling of liquor to the heap. 5 Analysis of the liquors used in the test work is given in Table 1. Table 1 - Liquor Compositions 10 Lig. Source | Ni Co _Fe M Cr uAl Mn Cu Zn uFA Synthetic 4.04 198 24.9 5.94 526 8.00 706 1 5 1.0 GA-Ev 4.16 204 26.0 4.58 593 4.46 470 5 5 80 GA-Tr 4.02 196 22.6 3.62 749 3.91 511 4 3 86 GA-Ka 4.20 200 16.4 13.4 108 0.272 313 3 73 45 GA-Ak 4.25 210 27.2 4.82 518 4.88 455 3 3 73 Assays are in mg/L D denotes assays in g/L Sulphide product assays were all back calculated 15 to discount the seed component. RESULTS Effect of Temperature on Mixed Sulphide.Precipitation 20 Temperature influences the precipitation process through its influence on H 2 S solubility and the dissociation equilibrium constant for H 2 S. 25 The kinetics of precipitation are also influenced by temperature. The effect of temperature on metal precipitation was determined under the following conditions: 30 Seed P 50 - 109 microns
H
2 S pressure - 30 psi Seed concentration - 30 g/L Residence Time - 60 minutes WO 2004/016816 PCT/AU2003/001037 -7 The detailed results for Tests 1 to 4 from these tests are summarised in Figure 1. 5 The results show that increasing the temperature increased metal precipitation. Metal precipitation increased dramatically between 40 0 C and 60 0 C and there was only a marginal increase in metal precipitation between 80*C and 95*C after 60 minutes. The Ni:Fe mole ratio 10 ranged from 7 to 10 between 60 and 95 0 C and appears to reach a maximum at 80 0 C and then decrease again at 95 0 C. Precipitation of aluminium, magnesium, manganese and chromium were low (<1%) under the conditions 15 investigated. Effect of Seed Charge In commercial operations seed particles are added 20 to facilitate precipitation. It is expected that as the seed surface area increases the kinetics of precipitation increases, thereby resulting in a lower S2- concentration in solution, and enabling better selectivity for nickel and cobalt over iron. 25 The surface area of seed particles can be increased by increasing the mass of seed in the reactor or by seeding with solids with a smaller average particle size. The influence of both factors was investigated. 30 Detailed results are summarised in Figures 2 and 3. The results show that nickel and cobalt recovery increased with the mass of seed added and with a decreasing average seed particle size. Both these 35 observations are consistent with nickel and cobalt recovery increasing with increasing seed surface area.
WO 2004/016816 PCT/AU2003/001037 -8 When the seed particle size was reduced from P 50 = 109 microns to P 5 o = 45 microns nickel recovery increased from 98.2 to 99.5% while cobalt recovery increased from 99.0 to 99.7%. 5 Using the finer seed had little effect on the Ni:Fe mole ratio in the product which appeared to decrease slightly from 7.0 to 6.7. This change in the Ni:Fe ratio is probably not significant within the errors of the 10 experiment. When the seed concentration was increased from 30 to 50g/l a similar increase in nickel and cobalt recoveries was observed. However, significantly, the 15 Ni:Fe mole ratio in the product decreased from 7.0 to 4.7 due to iron precipitation increasing from 2.2 to 3.2%. These results are inconsistent with those observed with the finer seed. A possible explanation is that the test using the higher seed concentration (Test 10) was 20 conducted significantly later than all the other tests and oxidation of the ferrous ions in the feed liquor appears to have resulted in a higher ferric ion concentration in this solution relative to the previous tests. This is supported by the higher free acid concentration in 25 solution at the end of Test 10 (-17g/l as opposed to -8g/l previously) and the higher sulphur concentration (62% S as opposed to 48% S) in the sulphide product. Both these observations are consistent with H 2 S reacting with Fe(III) in solution according to the following reaction. 30 2Fe(III) + H 2 S 2Fe(II) + 2H* + S Reaction 1 35 The above reaction produces free acid and elemental sulphur as observed in test 10. The presence of Fe(III) in solution would also be expected to have WO 2004/016816 PCT/AU2003/001037 -9 resulted in higher iron precipitation, reducing the Ni:Fe mole ration in the sulphide product. Effect of Hydrogen Sulphide Pressure 5 Previous test work indicated that H 2 S pressure between 30 and 60 psi had a strong influence on metal precipitation. In the current test work the effect of H 2 S pressure was investigated further. 10 Precipitation tests were conducted at 80 0 C, 30 g/l seed, with a P_ 0 of 109 microns. The results are presented in Figure 4. 15 The results show that nickel recovery increased from 97.1 to 99.8% while cobalt recovery increased from 96.8 to 99.7% as H2S pressure increased from 20 to 40 psi while the Ni:Fe mole ratio of the product decreased from 11.3 to 6.6. This corresponds to iron precipitation 20 increasing from 1.3 to 2.3%. These results are all consistent with S2 concentration in solution increasing with H 2 S partial pressure resulting in greater metal recovery and lower 25 selectivity. Column Heap Leach Liquors From the above series of tests the following 30 optimal conditions required for precipitating nickel and cobalt from heap leach liquors were determined: * H 2 S Pressure 20 psi e Seed charge 30 g/l 35 . Temperature 80 0 C e Seed P5 0 45 microns.
WO 2004/016816 PCT/AU2003/001037 - 10 Initially, heap leach liquors were partially neutralised to remove excess free acid and then treated with H 2 S to precipitate nickel and cobalt without a pre reduction stage. This resulted in low nickel and cobalt 5 precipitation and the product was contaminated with iron and elemental sulphur. In addition, the liquor free acid also increased sharply, according to reaction 1. A second batch of liquors was generated and 10 treated in the following sequence of process stages, as discussed below: e Pre-reduction * Neutralisation 15 0 Sulphide Precipitation Pre-Reduction Stage The following pre-reduction stage was selected 20 with the objective of reducing all Fe(III) to Fe(II): Temperature 80 0 C
H
2 S pressure 20 psi Reaction time 90 minutes 25 Initial free acid 40-90 g/l H 2 SO4 The results are summarised in Table 2. Table 2 - Results of Pre-Reduction with H 2 S 30 Sample % Precipitation Final Aq. Assays (g/L) Ni Co Cu Zn Cr Fe(Il) Fe F.A GL-Ev 0.25 0.01 94 0.24 0.02 26.7 26.7 101 GL-Tr 0.67 0.01 87 0.46 0.02 22.2 22.1 104 GL-Kaa 0.08 0.01 81 0.01 0.003 16.7 17.3 58.2 GL-Ak 0.13 0.005 76 0.30 0.12 26.4 26.6 95 The Fe(III) was effectively reduced to Fe(II) WO 2004/016816 PCT/AU2003/001037 - 11 under the conditions employed. Nickel and cobalt precipitation were minimal. Nickel precipitation ranged from 0.083 to 0.67% while 5 cobalt precipitation was less than 0.01%. Copper was the only element which showed significant precipitation, with copper concentrations in solution reduced to less than 1 mg/l. 10 The concentrations of the other elements assayed (Fe, Zn, Cr, Mg, Mn and Al) were not significantly altered by the pre-reduction stage with precipitation consistently being less than 0.5% and typically less than 0.1%. 15 As a result of the Fe(III) reduction the free acid concentration increased and elemental sulphur was generated. 20 The observed increase in free acid concentration in solution was in good agreement with the calculated increase in free acid concentration based on reaction 1 stoichiometry. 25 Residue assays showed sulphur as the main constituent (>80%). The results show that the Fe(III) could be effectively reduced to Fe(II) using H 2 S in the presence of 30 relatively high free acid (40-90 g/l) with minimal nickel and cobalt losses. This is a positive outcome. Neutralisation Stage 35 The liquors generated from the pre-reduction stage were treated with limestone to increase the solution pH to -2 in the neutralisation stage.
WO 2004/016816 PCT/AU2003/001037 - 12 The feed liquor compositions supplied to the neutralisation stage are given in Table 3. 5 Table 3 - Liquor Compositions to Neutralisation Stage Lig. Source "Ni Co DFe IMg Cr DAl Mn Cu Zn DFA GL-Ev 4.27 210 26.7 4.80 622 5.12 497 0.4 5 101 GL-Tr 4.07 197 22.1 3.83 758 4.32 519 0.5 3 104 GL-Ka 4.43 197 17.3 14.2 119 0.347 330 0.6 77 58 GL-Ak 4.14 196 26.6 4.94 565 5.45 470 0.7 3 95 Assays are in mg/L D denotes assays in g/L 10 The liquors were neutralised by being treated with limestone (P 80 =250 microns) at ambient temperature. The results of the neutralisation tests are summarised in Table 4. 15 Table 4 - Results of Liquor Neutralisation Sample % Precipitation Final Aq. Assays (g/L) Ni Co Fe Zn Cr Fe(II) Fe pH GL-Ev 0.37 0.07 0.11 3 0.1 26.8 27.9 2 GL-Tr 0.40 0.16 0.01 14 1 22.0 22.5 2 GL-Ka 0.26 0.05 0.17 0.2 4 15.6 17.3 2 GL-Ak 0.33 0.15 0.10 9 2 26.1 28.3 2 Nickel and cobalt losses by precipitation were low - ranging from 0.2 to 0.4% and 0.05% to 0.16%, 20 respectively. The copper concentration in solution was reduced to below the copper detection limit of 0.1 mg/l. 25 Precipitation of the remaining impurities (Al, Mn, Cr, Fe and Zn) was low, generally less than 1%. The iron essentially remained in the Fe(II) state enabling sulphide precipitation 'from the liquor to be 30 undertaken.
WO 2004/016816 PCT/AU2003/001037 - 13 The residues were mainly composed of gypsum (indicated by high calcium and sulphur assays). 5 Limestone consumption was very high, ranging from 13 to 24 kg/kg (Ni + Co) - due to the high free acid concentration in the solution. Overall nickel and cobalt losses across pre 10 reduction and neutralisation stages were low, ranging from 0.3 to 1.1% and 0.06 to 0.17%, respectively. Sulphide Precipitation Stage 15 Following the pre-reduction and neutralisation stages the clarified liquors were treated with H 2 S to precipitate nickel and cobalt under the following conditions. 20 * H 2 S Pressure 20 psi e Seed charge 30 g/l " Temperature 80 0 C e Seed P 50 45 microns. 25 The composition of the liquors used in the sulphide precipitation stage are summarised in Table 5. Table 5 - Liquor Compositions to Sulphide Precipitation Stage 30 Sample Liquor Assay mg/L) Ni Co Fe Cu Cr Al Mn Zn Mg GL-Ev 4250 210 27940 0.2 621 5080 497 5 4780 GL-Tr 4050 197 22510 0.2 750 4260 519 3 3810 GL-Ka 4420 197 17280 0.2 114 347 330 77 14220 GL-Ak 1 4130 196 28340 0.4 554 5410 470 3 4930 The results of sulphide precipitation are summarised in Table 6.
WO 2004/016816 PCT/AU2003/001037 - 14 Table 6 - Results of Sulphide Precipitation Liquor % Precipitation Solids Assays (%) Solids __ Ni Co Fe Ni Co Fe Cr Al Zn S gNi:Fe GI-Ev 99.2 99.0 1.7 47.6 2.3 5.0 0.13 0.05 0.03 30.8 9.0 GL-Tr 99.3 99.8 1.9 47.5 2.5 4.3 0.08 0.03 0.01 29.7 10.6 GL-Ka 99.3 99.6 2.7 48.7 2.3 4.6 0.02 0.01 0.73 31.3 10.1 GL-Ak 99.4 99.8 1.3 47.0 2.4 4.0 0.10 0.04 <0.01 32.1 11.2 # Mole Ratio 5 Despite the relatively low H 2 S partial pressure, nickel and cobalt recoveries were high (>99%). In optimisation test work the same H 2 S pressure and 10 temperature yielded recoveries of -97% for nickel and cobalt. The higher recoveries observed with the heap leach solutions is attributed to using a finer seed P 5 0 =45 15 microns compared to P 5 o=109 microns for the synthetic solutions. The sulphate levels were similar for synthetic and real liquors (-100 g/1 S042-) and were not expected to have resulted in significant differences in nickel and cobalt precipitation. 20 The solids contained between 4.0 and 5.0% Fe with the Ni:Fe mole ratio ranging between 9.0 and 11.2. These results are in good agreement with the 25 results obtained under similar conditions in the optimisation test work. The results showed that the Ni:Fe mole ratio could be upgraded from a range of 0.14-0.24 in solution to 30 9.0-11.2 in the sulphide product representing approximately a 50 fold upgrade of the nickel values with respect to iron.
WO 2004/016816 PCT/AU2003/001037 - 15 Aluminium and chromium showed increased precipitation as the concentration of these metals in solution increased. However the concentrations of 5 aluminium and chromium in the product remained low. These results are summarised in Figure 5. The aluminium concentration in the product generally increased with aluminium concentration in 10 solution. Aluminium does not form stable sulphides in solution and the increase in aluminium concentration in the product appears to be through adsorption/entrainment with the sulphide. 15 The chromium concentration in the product also increased with chromium concentration in solution. This effect is much stronger with the increase in chromium in the product increasing more steeply with chromium in the PLS compared to aluminium and could indicate that chromium 20 precipitated as opposed to being adsorbed/entrained. Zinc concentration in solution was reduced to between 2 and 3 mg/l. The sulphide products were generally low in zinc (less than 0.03%) due to the 25 relatively low zinc concentration in solution (3-5 mg/l). Only the sulphide generated from the GL-Ka ore contained significant zinc at 0.73% due to the feed solution having a higher zinc tenor (77 mg/1). 30 Copper concentration in the products was low due to copper removal in previous unit operations with copper in the product ranging between 0.01 and 0.03%. Manganese and magnesium concentrations in the 35 products were consistently low at less than 50 ppm and less than 500 ppm, respectively, reflecting the high selectivity of sulphide precipitation against these WO 2004/016816 PCT/AU2003/001037 - 16 elements. CONCLUSIONS 5 From the test work the following conclusions can be drawn. 1. Nickel and cobalt precipitation increased as liquor temperature increased from 40 0 C to 95 0 C. The Ni/Fe 10 separation appeared to reach a maximum at 80 0 C. Aluminium, chromium, manganese and magnesium precipitation were not affected over the temperature range investigated. 15 2. Increased seed surface area increased nickel and cobalt recovery. 3. Increasing the partial pressure of H 2 S from 20 to 40 psi increased nickel recovery from 97.1 to 99.8% and 20 the cobalt recovery from 96.8 to 99.7%. The Ni:Fe mole ratio in the product decreased from 11 to 6.7. From the test work conducted on the heap leach liquors the following conclusions can be drawn. 25 1. Liquors can be treated with H 2 S gas in a pre reduction stage to reduce Fe(III) to Fe(II) with low nickel and cobalt losses (ranging from 0.08% - 0.67% and <0.1%, respectively). Copper was the only 30 impurity significantly removed during pre-reduction with copper concentration in solution being reduced below 1 mg/l. 2. The neutralisation stage effectively increased the pH 35 of the liquor from the pre-reduction stage to -2 while maintaining iron in the Fe(II) state. Nickel and cobalt losses during the neutralisation stage WO 2004/016816 PCT/AU2003/001037 - 17 were 0.2%-0.4% and 0.05%-0.16%, respectively. The residues were mainly gypsum. Impurity removal during neutralisation was generally less than 1%. 5 3. Sulphide precipitation was successful in precipitating greater than 99% of the nickel and cobalt, producing a precipitate with a Ni:Fe mole ratio between 9 and 11.2, from solutions containing ~ .4g/L nickel and 17-27 g/l iron. Chromium and to a 10 lesser extent aluminium were present in the sulphide product in minor quantities. Zinc concentration in solution was reduced to -3 mg/l. Many modifications may be made to the present 15 invention described above without departing from the spirit and scope of the invention.

Claims (20)

1. A process for recovering a valuable metal in the form of nickel from a leach liquor obtained by processing 5 laterite ores and concentrates that are contaminated with iron by any leaching process including one or more of heap leaching, pressure leaching, bacterial oxidation leaching, and atmospheric tank leaching, the leach liquor containing the valuable metal and iron in solution, which process 10 includes the following steps after the leach process of: (a) processing the leach liquor by reducing ferric ions to ferrous ions in the leach liquor using a suitable gaseous reductant; 15 (b) neutralizing the processed leach liquor to reduce the free acid concentration in solution to levels suitable for nickel precipitation while maintaining iron in the ferrous state; and 20 (c) precipitating the valuable metal using the reductant and seed particles under process conditions, including one or more of seed particle size, seed composition, and 25 temperature, that are selected to maximise nickel precipitation and to minimise iron precipitation.
2. The process defined in claim 1 wherein the 30 reduction step (a) includes reducing ferric ions to ferrous ions using the reductant in the presence of an initial concentration of 40-90 g/l free acid.
3. The process defined in claim 1 or claim 2 35 wherein the gaseous reductant is 123.
4. The process defined in any one of the preceding NWb-~ O~d60-69T6 .U IMpeci~memded pa"e 2 OOM5-7.doc - 19 claims wherein the neutralisation step (b) increases the pH of the solution to 2.
5. -The process defined in any one of the preceding 5 claims wherein the valuable metals are nickel and cobalt.
6. The process defined in any one of the preceding claims wherein the laterite ores are ores that contain nickel in a chlorite mineral phase. 10
7. -The process defined in any one of the preceding claims wherein the process conditions for the precipitation step (c) include operating at a partial pressure of the gaseous reductant of less than 60 psi. 15
8. The process defined in claim 7 wherein the gas partial pressure is less than 40 psi.
9 - The process defined in claim 8 wherein the gas 20 partial pressure is less than 30 psi.
10. -The process defined in claim 9 wherein the gas partial pressure be less than 25 psi. 25
11. The process defined in any one of the preceding claims wherein the process conditions for the precipitation step (c) include operating at a liquor temperature of at least 50 0 C. 30
12. The process defined in claim 11 wherein the liquor temperature is at least 60 0 C.
13. The process defined in any one of the preceding claims wherein the seed particles for the precipitation 35 step (c) have a particle size of P 50 less than 100 micron.
14. The process defined in claim 13 wherein the N:\Melbourn\Ca\Punt\4 6M AU ad~eW~ d pge 209--7.d - 20 particle size of the seed particles is P 50 less than 80 micron.
15. The process defined in claim 14 wherein the 5 particle size of the seed particles be Pso less than 60 micron.
16. -The process defined in any one of claims 13 to 15 wherein the seed particle concentration for the 10 precipitation step (c) is greater than 30g/l.
17. -The process defined in claim 14 wherein the seed particle concentration is greater than 40g/l. 15
18. The process defined in any one of the preceding claims wherein the ratio of iron and the valuable metal in the leach liquor supplied to step (a) is greater than 2:1.
19. The process defined in claim 18 wherein the ratio 20 is greater than 3:1.
20. The process defined in claim 19 wherein the ratio is greater than 5:1. NMidbour u ueMb60-4699946846.AU- ISpdsmemed pmu 2009-S-7 ice
AU2003249789A 2002-08-15 2003-08-15 Recovering nickel Expired - Fee Related AU2003249789B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003249789A AU2003249789B2 (en) 2002-08-15 2003-08-15 Recovering nickel
AU2009212926A AU2009212926A1 (en) 2002-08-15 2009-09-03 Recovering nickel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2002950815A AU2002950815A0 (en) 2002-08-15 2002-08-15 Recovery nickel
AU2002950815 2002-08-15
AU2003249789A AU2003249789B2 (en) 2002-08-15 2003-08-15 Recovering nickel
PCT/AU2003/001037 WO2004016816A1 (en) 2002-08-15 2003-08-15 Recovering nickel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
AU2009212926A Division AU2009212926A1 (en) 2002-08-15 2009-09-03 Recovering nickel

Publications (2)

Publication Number Publication Date
AU2003249789A1 AU2003249789A1 (en) 2004-03-03
AU2003249789B2 true AU2003249789B2 (en) 2009-06-04

Family

ID=34275454

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003249789A Expired - Fee Related AU2003249789B2 (en) 2002-08-15 2003-08-15 Recovering nickel

Country Status (1)

Country Link
AU (1) AU2003249789B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010292916B2 (en) * 2009-09-09 2016-07-28 Sherritt International Corporation Recovering metal values from a metalliferrous material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722480A (en) * 1954-06-21 1955-11-01 Chemical Construction Corp Catalytic precipitation of nickel, cobalt and zinc sulfides from dilute acid solutions
US4110400A (en) * 1977-08-01 1978-08-29 Amax Inc. Selective precipitation of nickel and cobalt sulfides from acidic sulfate solution
GB2049646A (en) * 1979-05-10 1980-12-31 Inco Ltd Separation process
SU704231A1 (en) * 1977-05-11 1981-07-30 Государственный Научно-Исследо-Вательский Институт Цветных Метал-Лов "Гинцветмет" Method of processing ferrous nickel-cobalt laterite ores
JPS56136940A (en) * 1980-03-28 1981-10-26 Mitsubishi Metal Corp Recovering method for copper, nickel and cobalt in solution leached from manganese nodule with sulfuric acid
US4410498A (en) * 1980-11-05 1983-10-18 Falconbridge Nickel Mines Limited Acid leaching of nickel from serpentinic laterite ores
JPS6043446A (en) * 1983-08-13 1985-03-08 Mitsubishi Metal Corp Method for recovering nickel from acidic aqueous solution containing nickel ion
US4547348A (en) * 1984-02-02 1985-10-15 Amax Inc. Conditioning of laterite pressure leach liquor
CN1309194A (en) * 2000-11-28 2001-08-22 华东理工大学 Process for regenerating waste etching liquid containing Ni and FeCl3 and recovering Ni
WO2001086010A1 (en) * 2000-05-10 2001-11-15 Kronos Titan Gmbh & Co. Ohg Method for eliminating nickel ions and lead ions from ferrous salt solutions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2722480A (en) * 1954-06-21 1955-11-01 Chemical Construction Corp Catalytic precipitation of nickel, cobalt and zinc sulfides from dilute acid solutions
SU704231A1 (en) * 1977-05-11 1981-07-30 Государственный Научно-Исследо-Вательский Институт Цветных Метал-Лов "Гинцветмет" Method of processing ferrous nickel-cobalt laterite ores
US4110400A (en) * 1977-08-01 1978-08-29 Amax Inc. Selective precipitation of nickel and cobalt sulfides from acidic sulfate solution
GB2049646A (en) * 1979-05-10 1980-12-31 Inco Ltd Separation process
JPS56136940A (en) * 1980-03-28 1981-10-26 Mitsubishi Metal Corp Recovering method for copper, nickel and cobalt in solution leached from manganese nodule with sulfuric acid
US4410498A (en) * 1980-11-05 1983-10-18 Falconbridge Nickel Mines Limited Acid leaching of nickel from serpentinic laterite ores
JPS6043446A (en) * 1983-08-13 1985-03-08 Mitsubishi Metal Corp Method for recovering nickel from acidic aqueous solution containing nickel ion
US4547348A (en) * 1984-02-02 1985-10-15 Amax Inc. Conditioning of laterite pressure leach liquor
WO2001086010A1 (en) * 2000-05-10 2001-11-15 Kronos Titan Gmbh & Co. Ohg Method for eliminating nickel ions and lead ions from ferrous salt solutions
CN1309194A (en) * 2000-11-28 2001-08-22 华东理工大学 Process for regenerating waste etching liquid containing Ni and FeCl3 and recovering Ni

Also Published As

Publication number Publication date
AU2003249789A1 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
CA2856341C (en) Method for producing high-purity nickel sulfate
JP3946633B2 (en) Recovery of valuable nickel and valuable cobalt from sulfide flotation concentrate by chloride-assisted oxidative pressure leaching in sulfuric acid
CA2356048C (en) Process for the recovery of nickel and/or cobalt from a concentrate
CA2624612C (en) Method for processing nickel bearing raw material in chloride-based leaching
US4410498A (en) Acid leaching of nickel from serpentinic laterite ores
Eksteen et al. Leaching and ion exchange based recovery of nickel and cobalt from a low grade, serpentine-rich sulfide ore using an alkaline glycine lixiviant system
US20020012621A1 (en) Process for the recovery of nickel and / or cobalt from a concentrate
EP1841891A1 (en) Extraction of nickel and cobalt from a resin eluate stream
WO2004101833A1 (en) A process for the recovery of value metals from material containing base metal oxides
AU2014270210B2 (en) Method for recovering metals
US20210354997A1 (en) Method for preparing a high-purity hydrated nickel sulphate
USRE37251E1 (en) Chloride assisted hydrometallurgical extraction of metal
US20060169104A1 (en) Recovering nickel
CA2854778A1 (en) Recovery of zinc and manganese from pyrometalurgy sludge or residues
AU2003249789B2 (en) Recovering nickel
US20220267877A1 (en) Co-Processing of Copper Sulphide Concentrate with Nickel Laterite Ore
AU2009212926A1 (en) Recovering nickel
CN112626337B (en) Cobalt-containing copper raffinate treatment process
US11584975B1 (en) Integrated pressure oxidative leach of copper sulphidic feed with copper heap leach
AU2005321748A1 (en) Extraction of nickel and cobalt from a resin eluate stream
AU3499699A (en) Process for the extraction of nickel and/or cobalt values from a solution
MXPA97009729A (en) Hydrometalurgical extraction of nickel and cobalt assisted by chloride, from sulf minerals

Legal Events

Date Code Title Description
CB Opposition filed

Opponent name: MINARA RESOURCES LIMITED

CH Opposition withdrawn

Opponent name: MINARA RESOURCES LIMITED

MK4 Application lapsed section 142(2)(d) - no continuation fee paid for the application