AU2003227107B2 - Treatment of hazardous waste material - Google Patents

Treatment of hazardous waste material Download PDF

Info

Publication number
AU2003227107B2
AU2003227107B2 AU2003227107A AU2003227107A AU2003227107B2 AU 2003227107 B2 AU2003227107 B2 AU 2003227107B2 AU 2003227107 A AU2003227107 A AU 2003227107A AU 2003227107 A AU2003227107 A AU 2003227107A AU 2003227107 B2 AU2003227107 B2 AU 2003227107B2
Authority
AU
Australia
Prior art keywords
mixture
binder
magnesium oxide
acid
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
AU2003227107A
Other versions
AU2003227107A1 (en
Inventor
Jon Doumbos
David Garman
Geoff Richardson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dolomatrix Australia Ltd
Original Assignee
Dolomatrix Australia Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AUPS2007A external-priority patent/AUPS200702A0/en
Application filed by Dolomatrix Australia Ltd filed Critical Dolomatrix Australia Ltd
Priority to AU2003227107A priority Critical patent/AU2003227107B2/en
Publication of AU2003227107A1 publication Critical patent/AU2003227107A1/en
Application granted granted Critical
Publication of AU2003227107B2 publication Critical patent/AU2003227107B2/en
Assigned to Dolomatrix Australia Pty Ltd reassignment Dolomatrix Australia Pty Ltd Request to Amend Deed and Register Assignors: DOLOMATRIX INTERNATIONAL LIMITED
Anticipated expiration legal-status Critical
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

WO 03/093190 PCT/AU03/00503 1 TREATMENT OF HAZARDOUS WASTE MATERIAL Field of the Invention The present invention relates to settable binder compositions that can be used to incorporate, capture or encapsulate hazardous waste materials. Particularly though not exclusively the invention relates to a method of capturing hazardous waste materials including heavy metals such as cadmium, mercury, lead, nickel and chromium residues; a variety of forms of arsenic including sulfide, trioxide and pentoxide; and other hazardous and non-hazardous materials.
Background Art Arsenic and arsenic containing compositions have been widely used in Australia as sheep and cattle dips, and have also been used in pesticides. Mercury and mercury containing compositions have also been widely used in Australia and other countries.
With the phasing out of arsenic and mercury compounds (due to their toxicity), a large stockpile of waste arsenic and mercury components exists.
Organo nickel and chromium, and nickel and chromium containing compositions are widely used in Australia and other countries. Metal plating and anodising processes use these compounds, and the processes generate waste nickel and chromium residues which are quite concentrated and are stored in drums. The residue is hazardous and toxic and a large stockpile of waste nickel and chromium components exists.
A variety of organic waste materials, some of which are hazardous, are produced as by- products of various industrial processes. These organic wastes include contaminated oils and greases, organo-chlorine compounds including pesticides, and chlorinated aromatic compounds including chlorobenzene and polychlorinated biphenyl compounds.
The above mentioned waste materials and toxic components are housed in drums that have a limited life. The components in the drum are typically in the form of a contaminated liquid or sludge that is almost impossible to safely encapsulate. The sludge contains a variety of contaminants such as rust from the drum, waste particles, solids, and a 3 0 variety of liquids.
Radioactive materials and components are also hazardous substances and it is difficult to find an acceptable method of their disposal. Various proposals have been trialled for encasement or encapsulation of radioactive materials which can then be WO 03/093190 PCT/AU03/00503 2disposed of by burial in uninhabited areas.
Attempts to encapsulate hazardous waste materials in concrete have met with limited success as concrete and cement do not bind well in the presence of such contaminants.
However, concrete or concrete-like products would be otherwise ideal for encasement as the concrete is hard, has a very long life, and can be moulded prior to setting.
US 6,200,381 discloses a settable binder composition consisting essentially of a mixture of a calcium carbonate and a caustic magnesium oxide. The mixture may be derived from a naturally-occurring dolomite which has been calcined to cause preferential decarbonisation of the magnesium carbonate by liberating carbon dioxide, without substantially decarbonising the calcium carbonate. This calcination results in a mixture of magnesium oxide, magnesium carbonate and calcium carbonate (MgO, MgCO 3 and CaCO 3 Alternatively, a synthetic blend may be formed by mixing calcium carbonate with preformed caustic magnesium oxide. Various additives and fillers may be included in the binder to modify the properties of the set composition.
The resulting product was found to have high compressive strength and other properties which make it ideal for manufacturing building products such as bricks, blocks, pavers, tiles, etc.
W098/54107 describes a method of encapsulating hazardous waste materials using essentially the same settable composition containing calcium carbonate and a caustic magnesium oxide. Tests conducted on the encapsulated material indicate that virtually none of the hazardous waste material was leached out of the set composition, which has a concrete-like appearance.
The presence of the calcium carbonate in these settable binder compositions: helps to control the setting rate, ie., the higher the amount of calcium carbonate the slower the setting rate. The control of setting rate is important in the manufacture of building materials, where a "working time", or time during which the set is slower, is required in order to allow placement into moulds.
(ii) modifies certain physical properties of the set composition, including lowering the shrinkage and brittleness of the final product.
In some situations successful waste encapsulation is not reliant on having high, unconfined compressive strength, nor is low shrinkage or increased working time to allow placement in moulds required. Working time can be controlled sufficiently by adding extra water when forming a slurry from the mixture of the hazardous waste PCT/AU2003/000503 2 q Tedy L 2I 6 4 -3material and the binder composition. While the absence of the calcium carbonate is accompanied by a significant reduction in the unconfined compressive strength of the set composition, disposal regulations relating to the treatment of waste do not require a high strength product containing encapsulated waste materials.
Summary of the Invention In a first aspect the present invention provides a method of incorporating a material in a settable binder, the method comprising the steps of: mixing the material with the binder, as a slurry or for subsequent formation into a slurry, the binder including a source of caustic magnesium oxide; adding an organic acid additive to the material, the binder or a mixture thereof; after steps and adding a setting agent to the slurry that enhances setting of the binder.
The inventors have surprisingly discovered that when the setting agent is added after the mixing of the material and the binder (mixed either dry and then slurried or mixed while in a wet slurry formn), a superior setting of the material can be obtained to minimise leaching of incorporated material from the resultant set binder.
When mixed in a slurry it is surmised that the setting agent is more evenly dispersed and, as a result, once the binder has set, the resulting product has better physical 2 0 strength properties compared with the situation where the setting agent is added prior to the formation of a slurry of material and binder. In the latter situation, a more unevenly set product can be the result.
In the present invention the inventors have surprisingly discovered that the increase in the strength of the product achieved by adding the setting agent after the mixing of.
the material and the binder can yield a product with lower shrinkage and brittleness, and thus compensate for any absence of calcium carbonate in the binder.
Slurries also have the added advantage of being easier to physically handle by stirring, pumping or pouring etc compared with dry mixtures or relatively dry paste-like mixtures.
Preferably the setting agent comprises between 0.1 to 30% by weight of the caustic magnesium oxide in the mixture.
Preferably the'setting agent is selected from the group comprising: sulfates and chlorides.
PCT/AU2003/000503 -4 Preferably the setting agent is selected from the group comprising metal sulfates, such as magnesium sulfate, iron sulfate and aluminium sulfate.
Alternatively, preferably the setting agent is selected from the group comprising metal chlorides, such as iron chloride and sodium chloride.
the slurry is an aqueous slurry.
Preferably the material is a hazardous material or component thereof such as a waste material. Such wastes can include toxic or poisonous substances which are harmful to living beings.
Preferably the additive is selected frm the group: citric acid, lemon acid, acetic acid, glycolic acid, oxalic acid, other di or poly carboxylic acids, tartarie acid, salicylic acid, ethylenedianiine tetra acetic acid (EDTA) and other tetra acids.
In a second aspect the present invention provides a settable binder composition comprising only a caustic magnesium oxide binder mixed with a setting agent for the binder.
isThe expression "comprising only a caustic magnesium oxide binder" means that only this material is present to act as a binder. It does not exclude the addition of other components to the composition such as fillers, carbonation agents, acidifying agents ae.
However, surprisingly the inventors have discovered there is no need for any other binding agents or products, representing an advance over known binder compositions (eg. US 6,200,3 8 1) and a simpler binder composition.
Preferably the settable binder composition of the second aspect has a setting agent as defined in the first aspect.
In a third aspect the present invention provides a method of incorporating a hazardous waste material or components thereof in a settable binder, the method ,Comprising the steps of: -mixing the hazardous waste material with a settable binder composition, as a slurry or for subsequent formation into a slurry, the composition comprising only a caustic magnesium oxide binder and a setting agent for the binder; and.
-allowing the slurry to set to incorporate the waste material or components thereof.
Preferably the method of the third aspect is otherwise as defined in the first aspect.
Once again, the expression "comprising only a caustic magnesium oxide binder" means that only this material is present to act -as a binder. It does not exclude the addition of other components to the composition such as fillers, carbonation agents, WO 03/093190 PCT/AU03/00503 5 acidifying agents etc. However surprisingly in this method the inventors have discovered there is no need for any other binding agents or products, representing an advance over known binder compositions (eg. US 6,200,381) and a simpler binder composition and method.
The term "caustic magnesium oxide" includes a magnesium composition which comprises magnesium carbonate and a decarbonated magnesium oxide. The term can also cover a pure magnesium oxide or a magnesium oxide mixed with other minor substances.
The term also covers a magnesium carbonate which has been treated, for instance, by heating, to liberate carbon dioxide, thereby forming a composition which is partially calcined. The exact structure of the composition, and of the caustic magnesium oxide, is not known but the term will be used to include the structure formed by heating magnesium carbonate to partially decarbonate it, especially at the temperature ranges described. The term "a source of caustic magnesium oxide" can refer to a supply of a caustic magnesium oxide which is combined with other components naturally (for example in a dolomitic ore ie. a calcium and magnesium carbonate ore found in nature) or artificially (for example in a supply of calcined magnesium carbonate obtainable commercially with around purity).
Modes for Carrying Out the Invention In practising preferred forms of the present invention, the caustic magnesium oxide is preferably obtained by partially calcining magnesite (notably having less than calcium carbonate and in some cases no calcium carbonate) at a temperature typically within the range of 500°C to 1000 0 C to form a crystalline magnesium oxide (MgO). Calcination is preferably performed at temperatures within the range 500°C to 800°C for higher reactivity. This results in caustic magnesium oxide typically retaining between 2% and 50% of the carbon dioxide and is highly reactive.
References to "encapsulation" are intended to include "microencapsulation" of hazardous and non-hazardous waste materials. The waste materials are microencapsulated by the settable binder composition of the present invention in such a 3 0 manner that the particles of the waste material are substantially immobilised within the matrix of the set composition. Tests for measuring the leach rate of the waste materials from the set composition, based on the standard Toxicity Characteristic Leaching WO 03/093190 PCT/AU03/00503 6 Procedure (TCLP) in accordance with US-EPA 1311 method, show that the leach rate is well within environmentally acceptable limits.
Various additives can be added to the settable binder. The additive or additives may accelerate the formation of strong binding agents, and may assist in the recrystallisation of the settable binder composition to make it set. In the setting process, various added fillers other than the material or waste material to be encapsulated (which can include organic fillers, inorganic fillers, solid and liquid fillers and the like) can be trapped in the set binder.
Another desirable additive is one that acts as a source of carbonation in the composition to assist in the setting process. A carbonate which can decompose or react to liberate carbon dioxide is preferred. One suitable additive can be a metal carbonate such as sodium carbonate. Another suitable additive can include a carboxylic or polycarboxylic acid which can react to liberate carbon dioxide. Another advantage of sodium carbonate is that it will carbonate any completely oxidised fillers which may be used (for instance coal ash).
Other additives may include citric acid, lemon acid, acetic acid, glycolic acid, oxalic acid, other di or poly carboxylic acids, or other acidifying agents. Possible substitutes for the citric acid include tartaric acid, salicylic acid, ethylenediamine tetra acetic acid (EDTA) or other tetra acids. These additives may be added at between 0.01% 30%, more typically 0.01% to If the additives (such as citric acid or lemon acid) are solids, they are suitably pre-ground and powdered to enable them to be efficiently blended with the remainder of the composition. A grind size <63 micrometres can be used. Another acidifying agent may comprise sulfuric acid and this may be added to the water mixture in up to 5% by weight.
In practising the method of the invention, the settable binder includes a source of caustic magnesium oxide. The method first involves mixing the selected waste material (or components thereof) with the binder in a fluid slurry by stirring or other agitation. If dry initially, the selected waste can be first mixed dry with the binder and then subsequently formed into a slurry, or, if the selected waste is present in a slurry initially, the binder can be added to it. In either case a setting agent is then added to the slurry of waste and binder to enhance setting of the binder. In one preferred example the setting agent is aluminium sulfate, although other sulfates can also be used, for example magnesium sulfate or iron sulfate. In other preferred embodiments, the setting WO 03/093190 PCT/AU03/00503 7 agent can be iron chloride or sodium chloride. The aluminium sulfate may be commercially available aluminium sulfate having water of crystallisation or being anhydrous. Additionally, a salt such as sodium chloride can be provided.
Optionally the organic acid additives (such as citric acid) are added to the mixture of waste material and settable binder and normally prior to the addition of the settable binder. It should be noted that in some situations all of the reagents such as a setting agent (eg. aluminium sulfate) and the optional organic acid (eg. citric acid) can be combined together with the waste material in a slurry prior to addition of a settable binder (that includes caustic magnesium oxide). Examples of such situations are given in the following Examples 1A to 13A inclusive examples). This methodology does produce a product which satisfactorily meets the leachability standards required for environmental disposal. However, in other examples in accordance with the invention, just the optional organic acid (eg. citric acid) is combined together with the waste material in a slurry prior to addition of a settable binder (which includes caustic magnesium oxide).
This step is then followed by the addition of the setting agent (eg. aluminium sulfate).
Examples of such situations are given in the following Examples 1B to 13B inclusive examples), all of which demonstrate a satisfactory compliance with leachability standards required for environmental disposal of the resulting product.
In the .present invention, the settable binder composition used need only comprise a caustic magnesium oxide binder and a setting agent for the binder. In preferred embodiments the setting agent comprises between 0.1 to 30% by weight of the caustic magnesium oxide in the mixture.
Additives can be pre-mixed and added to the composition. The amount of pre-mix added can vary for instance from about 1% 10% or more. It appears that when fillers of small size (for example below 70 micrometres) are used, the amount of pre-mix added should be larger (about while fillers of larger size allow less pre-mix to be added (eg. 3% If the pre-mix comprises aluminium sulfate, an organic acid and a salt, it is preferred that is present between 40% 99%; is present between 0% 60% and (c) is present between 0% It has been found that quantities of the organic acid, preferably citric acid, can be used in the binder composition to effect encapsulation of waste materials. When used, this acid is normally added to the waste material or other material to be WO 03/093190 PCT/AU03/00503 8 -8encapsulated prior to addition of the binder caustic magnesium oxide. It is thought that the acid performs at least two functions: it appears to act primarily as a chelating agent to trap ionic species and render them less mobile for subsequent encapsulation by the caustic magnesium oxide; and it appears to act as a set modifier to control the heat of reaction when water, caustic magnesium oxide and a suitable setting agent react.
Whilst not wishing to be bound by theory, it appears that several chemical reactions are likely to be occurring simultaneously, often synergistically, but clearly also dependent on the type of waste material. For heavy metals and other ionic cations, a chelating mechanism is likely to be occurring rapidly. Citric acid is a rapid and effective chelating agent. As the leachable chemicals are typically ionic and mobile, chelation is an effective method of lowering the mobility of the leachable species. The presence of a metal salt, eg. aluminium sulfate, is likely to react with the citric acid or itself be chelated with the ionic waste, further lowering the mobility and possible the solubility of the chelate. The process of microencapsulation is then completed by the reaction of the chelate and metal sulfate with the caustic magnesium oxide. The inherently strong bonding capability of the caustic magnesium oxide with both organic (eg. the chelated ionic species) and inorganic (eg. the metal salts and other fillers in the waste material) compounds ensures substantially complete immobilisation of the waste material components.
It is possible that a competitive reaction to chelation and microencapsulation is occurring in the formation of metal oxide salts. The metal oxide salts are typically quite insoluble and may be sufficiently insoluble in their own right to pass TCLP (Toxicity Characteristic Leaching Procedure in accordance with US-EPA 1311 method) testing in some instances. For example, it has been found during the treatment of lower level mercury waste that the omission of the citric acid still resulted in an effective settable composition, micorencapsulating the waste and passing TCLP requirements. However, in many instances it appears to be necessary to firstly form a chelate to effect suitable microencapsulation.
Work on iron sulfates and chlorides has provided similar results. For arsenic compounds and other non-ionic chemicals, chelation is apparently not as significant in the encapsulation reaction. The encapsulation mechanism is more likely due to WO 03/093190 PCT/AU03/00503 9 absorption of the waste material into the highly reactive' caustic magnesium oxide matrix. The absorption may also give lower waste leachate due to the formation of chemical bonds that are move covalent than ionic in nature. The exact mechanism of how caustic magnesium oxide bonds to organic and non-ionic materials is not well understood in the scientific literature.
Examples Embodiments of the invention will now be described and illustrated by the following non-limiting examples.
MERCURY
Example 1A. Mercury contaminated soil containing up to 500ppm mercury was encapsulated in the following manner. Mercury contaminated soil, 5 0 0g, from a chloralkali industry, and water was mixed to form a thick homogeneous slurry. Citric acid 25g, was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 50g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 12 5 g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example lB. In this example all experimental conditions were the same as for Example 1A except that aluminium sulfate 50g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 0.02mg/L mercury, which is below the allowed limit of 0.2 mg/L, making the encapsulated composition safe for an unlined tip.
COPPER, NICKEL, MANGANESE LEAD Example 2A. Copper sludge having TCLP results for the untreated waste of: copper 12.5 mg/L, nickel 53.7 mg/L, manganese 23.5 mg/L and lead 61.2 mg/L was encapsulated in the following manner. Copper sludge, 3 00 g, and water was mixed to form a thick homogeneous slurry. Citric acid 20g, was dissolved into the mixture WO 03/093190 PCT/AU03/00503 10 and all stirred until homogeneous. Aluminium sulfate 20g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 100g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 2B. In this example all experimental conditions were the same as for Example 2A except that aluminium sulfate 20g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of <1.0 mg/L copper, <1.0 mg/L nickel, <2.4 mg/L manganese and <1.0 mg/L lead which are significantly below the allowed limits, making the encapsulated composition safe for an unlined tip.
COPPER
Example 3A. Semiconductor waste containing up to 50% copper oxide was encapsulated in the following manner. Copper sludge, 500g, from the semiconductor industry, and water was mixed to form a thick homogeneous slurry. Citric acid was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 250g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 3B. In this example all experimental conditions were the same as for Example 3A except that aluminium sulfate 3 0 g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 0.4mg/L copper, which is significantly below the allowed limit, making the encapsulated composition safe for an unlined tip.
WO 03/093190 PCT/AU03/00503 11
LEAD
Example 4A. Semiconductor waste having TCLP results for the untreated waste of: Lead 7.28 mg/L was encapsulated in the following manner. Waste, 500g, from the semiconductor industry, and water was mixed to form a thick homogeneous slurry.
Citric acid 5g, was dissolved into the mixture and all stirred until homogeneous.
Aluminium sulfate 16g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 1 6 6g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 4B. In this example all experimental conditions were the same as for Example 4A except that aluminium sulfate 16g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 1.73 mg/L lead which is below the allowed limit of 5 mg/L, making the encapsulated composition safe for an unlined tip.
Example 5A. A contaminated lead waste from the lead recycling industry was encapsulated in the following manner. Waste, 190g, from lead recycling industry, and water was mixed to form a thick homogeneous slurry. Citric acid 30g, was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 33g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 330g, and additional water as required were added to form a thick just pourable mixture.
The composition set in a few hours and was tested after 14 days.
Example 5B. In this example all experimental conditions were the same as for Example 5A except that aluminium sulfate 33g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
WO 03/093190 PCT/AU03/00503 12 The TCLP leachate showed a leach of 0.4mg/L lead, which is below the allowed limit of 5 mg/L, making the encapsulated composition safe for an unlined tip.
COPPER LEAD Example 6A. Plating sludge containing 12,634 mg/kg copper and 23,869 mg/kg lead was encapsulated in the following manner. Plating sludge, 180g, from Resource Technology Corporation, Laramie WY, catalog #CRM010-100, and water was mixed to form a thick homogeneous slurry. Citric acid 27g, was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 45g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 450g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 6B. In this example all experimental conditions were the same as for Example 6A except that aluminium sulfate 45 g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of O.lmg/L copper and 0.4mg/L lead which are significantly below the allowed limits, making the encapsulated composition safe for an unlined tip.
CRESOLS PHENOLS Example 7A. Certified Superfund soil having TCLP results for the untreated waste of: total cresols 495 mg/L, 2,4,6-trichlorophenol 27.5 mg/L, pentachlorophenol 27mg/L, 2,4-D 24.9 mg/L Certified Superfund soil, 202.5g, from Resource Technology Corporation, Laramie WY, catalog #CRM 401-225, sand 697.5g and water was mixed to form a thick homogeneous slurry. Citric acid 27g, was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 90g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 900g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
WO 03/093190 PCT/AU03/00503 13 Example 7B. In this example all experimental conditions were the same as for Example 7A except that aluminium sulfate 90g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 60mg/L total cresols, and not detected for each of 2,4,6-trichlorophenol, pentachlorophenol, 2,4-D, which are all significantly below the allowed limits, making the encapsulated composition safe for an unlined tip.
ARSENIC, CADMIUM LEAD Example 8A. Incinerator ash having TCLP results for the untreated waste of: arsenic 31mg/L, cadmium 65 mg/L and lead 29 mg/L was encapsulated in the following manner. Metals in ash, 405g, from Resource Technology Corporation, Laramie WY, catalog #CRM205-225, and water was mixed to form a thick homogeneous slurry. Citric acid 36g, was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 90g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 900g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 8B. In this example all experimental conditions were the same as for Example 8A except that aluminium sulfate 90g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 0.1 lmg/L arsenic, <0.05 mg/L cadmium and 0.05 mg/L lead which are all significantly below the allowed limits of 5 mg/L, 1 mg/L and mg/L respectively, making the encapsulated composition safe for an unlined tip.
WO 03/093190 PCT/AU03/00503 14 POLYCHLORINATED BIPHENYL (PCB) Example 9A. Polychlorinated biphenyl (PCB) in oil, containing 35.2 mg/Kg Arochlor was encapsulated in the following manner. Polychlorinated biphenyl (PCB) in oil 28g, from Resource Technology Corporation, Laramie WY, catalog #CRM920-010, sand 121g, soil 301g and water was mixed to form a thick homogeneous slurry. Citric acid 12g, was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 20g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 200g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 9B. In this example all experimental conditions were the same as for Example 9A except that aluminium sulfate 20g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed PCBs were undetectable, indicating successful solidification and stabilization, making the encapsulated composition safe for an unlined tip.
ARSENIC
Example 10A. Arsenic trioxide 27g, from EM Science, Gibbstown NJ Catalog #AX 1745-2, sand 873g and water was mixed to form a thick homogeneous slurry. Citric acid 45g and sodium carbonate 45g, were dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 90g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 900g, and additional water as required were added to form a thick just pourable mixture was achieved. The composition set in a few hours and was tested after 14 days.
Example 10B. In this example all experimental conditions were the same as for Example 10A except that aluminium sulfate 90g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just WO 03/093190 PCT/AU03/00503 15 pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 1.3mg/L arsenic, which is below the allowed limit of 5 mg/L, making the encapsulated composition safe for an unlined tip.
Example 11A. Arsenic trioxide fume 1000g, from the gold mining industry, and caustic magnesium oxide 2000g were dry mixed. Citric acid 60g and aluminium sulfate 200g were dissolved in water and added to the dry mix and all stirred until homogeneous to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 11 B. In this example all experimental conditions were the same as for Example 11A except that aluminium sulfate 200g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 1.6mg/L arsenic, which is below the allowed limit of 7 mg/L, making the encapsulated composition safe for an unlined tip.
Example 12A. Arsenic, tin and antimony fume 1000g, from the tin mining industry, and water was mixed to form a thick homogeneous slurry. Citric acid 60g, was dissolved into the mixture and all stirred until homogeneous. Aluminium sulfate 240g, was dissolved into the mixture and all stirred until homogeneous. Caustic magnesium oxide 2000g, and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 12B. In this example all experimental conditions were the same as for Example 12A except that aluminium sulfate 240g was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
WO 03/093190 PCT/AU03/00503 16 The TCLP leachate showed a leach of 3.7mg/L arsenic, which is below the allowed limit of 7 mg/L, making the encapsulated composition safe for an unlined tip.
CHROMIUM
Example 13A. Chromium waste, containing 16 18% chromium from the foundry industry, 1 part, and water was mixed to form a thick homogeneous slurry. Citric acid, aluminium sulfate and caustic magnesium oxide 4 parts and additional water as required were added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
Example 13B. In this example all experimental conditions were the same as for Example 13A except that the aluminium sulfate part was dissolved into the mixture after the addition of caustic magnesium oxide rather than beforehand or simultaneously, and the mixture then stirred until homogeneous. Additional water as required was added to form a thick just pourable mixture. The composition set in a few hours and was tested after 14 days.
The TCLP leachate showed a leach of 1.6mg/L chromium, which is below the allowed limit of 5 mg/L, making the encapsulated composition safe for an unlined tip.
It is to be understood that the preceding examples are provided for illustrative purposes only, and are not intended to limit the scope of the invention in any way. Furthermore, it should be appreciated that various other changes and modifications can be made to the embodiments, in addition to those already described, without departing from the basic inventive concepts. All such variations and modifications are to be considered within the scope of the present invention, the nature of which is to be determined from the foregoing description.
It is to be understood that, if any prior art information is referred to herein, such reference does not constitute an admission that the information forms a part of the common general knowledge in the art, in Australia or any other country.

Claims (9)

1. A method of incorporating a material in a settable binder, the method comprising the steps of: mixing the material with the binder, as a slurry or for subsequent formation into a slurry, the binder including a source of caustic magnesium oxide; adding an organic acid additive to the material, the binder oT a mixture thereof; after steps and adding a setting agent to the slurry that enhances setting of the binder.
2. A method as claimed in claim I wherein the setting agent comprises between 0.1 to 30% by weight of the caustic magnesium oxide in the mixture.
3. A method as claimed in claim 1 or claim 2 wherein the setting agent is s elected from the group comprising: sulfates and chlorides.
4. A method as claimed in claim 3 wherein the setting agent is selected from the group comprising metal sulfates, such as magnesium sulfate, iron sulfate and aluminium sulfate.
A method as claimed in claim 3 wherein the setting agent is selected from the group comprising metal chlorides, such as iron chloride and sodium chloride.
6. A method as claimed in any one of the preceding claims wherein the slurry is an aqueous slurry.
7. A method as claimed in any one of the preceding claims wherein the material is a hazardous material or component thereof.
8. A method as claimed in any one of the preceding claims wherein the organic acid additive is selected from the group: citric acid, lemon acid, acetic acid, glycolic acid, oxalic acid, other di or poly carboxylic acids, tartaric acid, salicylic acid, ethylenediamine tetra acetic acid (EDTA) and other tetra acids. 18
9. A method substantially as herein described with reference to the accompanying Examples. Dated this 5th day of November 2004 DOLOMATRIX INTERNATIONAL LIMITED By its Patent Attorneys GRIFFITH HACK
AU2003227107A 2002-04-29 2003-04-29 Treatment of hazardous waste material Expired AU2003227107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003227107A AU2003227107B2 (en) 2002-04-29 2003-04-29 Treatment of hazardous waste material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AUPS2007A AUPS200702A0 (en) 2002-04-29 2002-04-29 Treatment of hazardous waste material
AUPS2007 2002-04-29
AU2003227107A AU2003227107B2 (en) 2002-04-29 2003-04-29 Treatment of hazardous waste material
PCT/AU2003/000503 WO2003093190A1 (en) 2002-04-29 2003-04-29 Treatment of hazardous waste material

Publications (2)

Publication Number Publication Date
AU2003227107A1 AU2003227107A1 (en) 2003-11-17
AU2003227107B2 true AU2003227107B2 (en) 2005-11-17

Family

ID=34137005

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2003227107A Expired AU2003227107B2 (en) 2002-04-29 2003-04-29 Treatment of hazardous waste material

Country Status (1)

Country Link
AU (1) AU2003227107B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571292A1 (en) * 1992-05-20 1993-11-24 Ecole Centrale De Nantes Process for reducing the nocuosness of particulate wastes
WO1998054107A1 (en) * 1997-05-29 1998-12-03 Periclase Pty. Ltd. Encapsulation of hazardous waste materials
US6200381B1 (en) * 1995-12-05 2001-03-13 Periclase Pty. Ltd. Settable composition and uses therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0571292A1 (en) * 1992-05-20 1993-11-24 Ecole Centrale De Nantes Process for reducing the nocuosness of particulate wastes
US6200381B1 (en) * 1995-12-05 2001-03-13 Periclase Pty. Ltd. Settable composition and uses therefor
WO1998054107A1 (en) * 1997-05-29 1998-12-03 Periclase Pty. Ltd. Encapsulation of hazardous waste materials

Also Published As

Publication number Publication date
AU2003227107A1 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
US7585270B2 (en) Treatment of hazardous waste material
CA2291244C (en) Encapsulation of hazardous waste materials
US4142912A (en) Landfill material
AU711292B2 (en) Process for rendering ash inert
US4948516A (en) Method of disposing of wastes containing heavy metal compounds
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
KR101801496B1 (en) Insolubilizing material for specific hazardous substance and method for insolubilizing specific hazardous substance with same
JP6787142B2 (en) Heavy metal pollution control material and heavy metal pollution control method using the pollution control material
CN105130160A (en) Method of synergistically solidifying sludge containing arsenic and other heavy metals through smelting waste residue
JP6485514B2 (en) Heavy metal pollution control material and heavy metal pollution control method using the pollution control material
JP5315096B2 (en) Heavy metal insolubilization method and heavy metal insolubilization solidification material
KR101722308B1 (en) Insolubilizing agent for specific toxic substances, method for insolubilizing specific toxic substances using same, and soil improvement method
AU2003227107B2 (en) Treatment of hazardous waste material
CA3146034A1 (en) Treatment of polluted aqueous liquids
JP2002322475A (en) Neutral solidifying agent for soil
US5076850A (en) Process for treating metal chlorides
KR20070107762A (en) Making a solid material from an alkaline hydroxide
JP6465604B2 (en) Insolubilized slurry
JP4400732B2 (en) Soil toxic substance elution reducing material and soil treatment method using the same
JP2010053327A (en) Solidifying material for oil-contaminated soil, high organic volcanic ash, and oil-containing waste fluid
JP2005162862A (en) Heavy metal elution controller and method for controlling heavy metal elution
EP0989965A1 (en) Encapsulation of hazardous waste materials
JP2001009418A (en) Treatment of combustion ash containing heavy metal
JP2003079760A (en) Resource recovering method for polyviphenyl chloride oil, decomposition treating agent for polyviphenyl chloride oil and recycled material
NZ502186A (en) Encapsulation of hazardous waste materials in a settable composition

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
HB Alteration of name in register

Owner name: DOLOMATRIX AUSTRALIA PTY LTD

Free format text: FORMER NAME(S): DOLOMATRIX INTERNATIONAL LIMITED

MK14 Patent ceased section 143(a) (annual fees not paid) or expired