AU2003209424A1 - Apparatus and manufacturing method for border lighting - Google Patents

Apparatus and manufacturing method for border lighting

Info

Publication number
AU2003209424A1
AU2003209424A1 AU2003209424A AU2003209424A AU2003209424A1 AU 2003209424 A1 AU2003209424 A1 AU 2003209424A1 AU 2003209424 A AU2003209424 A AU 2003209424A AU 2003209424 A AU2003209424 A AU 2003209424A AU 2003209424 A1 AU2003209424 A1 AU 2003209424A1
Authority
AU
Australia
Prior art keywords
light emitting
set forth
lighting strip
tube
emitting elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2003209424A
Inventor
Mathew L Sommers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Current Lighting Solutions LLC
Original Assignee
Gelcore LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gelcore LLC filed Critical Gelcore LLC
Publication of AU2003209424A1 publication Critical patent/AU2003209424A1/en
Abandoned legal-status Critical Current

Links

Description

APPARATUS AND MANUFACTURING METHOD FOR BORDER LIGHTING
BACKGROUND OF THE INVENTION
The invention relates to the lighting arts. It is especially applicable to the illumination of border areas such as the sides of staircases and rooms, and will be described with particular reference thereto. However, the invention will also find application in other areas where a linear lighting apparatus is beneficial, such as in outdoor building border lighting and lighted signs.
Border lighting includes strips of lights or light-emitting material laid along borders of rooms, steps, staircases, and the like. Border lighting enhances safety and increases the brightness of an enclosed space. It can also have aesthetic value. Border lighting is also commonly used outdoors for applications such as safety lighting, lighted signage, and building outlining.
Border lighting strips typically have certain characteristics that differ from general lighting applications. Border lighting is usually not used as primary illumination, and so the luminous intensity requirements are somewhat relaxed. However, border lighting strips are often placed in areas where physical damage to the strip is likely. For example, a border lighting strip along a step of a staircase is likely to be occasionally stepped upon. Outdoor border lighting strips are exposed to the elements. Thus, physical sturdiness is an important quality, and a watertight sealing can also be advantageous. Another characteristic is that border lighting strips .are often used in substantial lengths. For example, installing border lighting along the boundaries of a typical room with dimensions of 18 feet by 15 feet will require approximately 66 feet of strip lighting, neglecting additions or subtractions due to doors, wall protrusions or recesses, and the like. Thus, manufacturing costs become a significant commercial factor, and a low manufacturing cost per unit length is desirable.
Presently, most border lighting is provided by neon border tube systems. However, neon tubes are very fragile, have high power consumption, and are difficult to install. Neon tubes typically require high voltages, thus requiring a specialized power supply , and the high voltages can raise safety concerns. The materials used in neon tubes can present environmental issues. Border lighting systems that use linear arrays of discrete light emitting devices (LEDs), such as light emitting diodes, are also known. In one prior art border lighting system, the LEDs are physically and electrically mounted to a printed circuit board (PCB) which is surrounded by a light-transmissive housing. The prior art LED-based border lighting systems have several disadvantages, including complex assembly, fragility, and reliability issues arising from the complexity and fragility. Past LED-based border lighting also requires a relatively large number of LEDs per unit length which increases manufacturing and operating costs.
Prior art border lighting using either neon tubes or LED elements affixed to a PCB support is physically rigid and inflexible. These lighting strips cannot be "bent" around corners in a flexible manner. The present invention contemplates an improved border lighting strip that overcomes the above-mentioned limitations and others.
BRIEF SUMMARY OF THE INVENTION
In accordance with one embodiment of the present invention, a border lighting strip is disclosed. An electrical cable includes a plurality of electrical conductors. A plurality of light emitting devices (LEDs) are arranged alongside the electrical cable and electrically connected thereto. A sheath at least partially made from a light transmissive material has a hollow region adapted to receive the LEDs. The sheath has an integrally formed cylindrical lens arranged to optically cooperate with the LEDs. In accordance with another embodiment of the present invention, a linear lamp is disclosed. An essentially hollow tube of translucent or transparent material has a plurality of light emitting elements arranged within. At least one electrical wire is arranged within the tube for supplying electrical power to the light emitting elements. In accordance with yet another embodiment of the present invention, a lighting strip is disclosed. A cord includes a plurality of parallel conductive wires and an insulating coating. A plurality of light emitting elements are affixed to the cord and arranged to receive electrical power therefrom. An at least partially light transmissive tube surrounds the plurality of light emitting elements and at least a portion of the cord.
In accordance with still yet another embodiment of the present invention, a method is disclosed for manufacturing a lighting strip. A plurality of light emitting devices are electrically connected to an electrical cable to form a linear light source. A transparent or translucent sheath is extruded. The sheath is adapted to receive the linear light source. The linear light source is inserted into the extruded sheath.
One advantage of the present invention is that it provides a rugged and durable border lighting, which can also be made water-tight.
Another advantage of the present invention is that it is manufactured in a simple and cost-effective manner.
Another advantage of the present invention is that it provides physically flexible border lighting. Yet another advantage of the present invention is that the light is spread using an optical component built into the protective tube housing to minimize the number of light emitting elements required per unit length.
Numerous additional advantages and benefits of the present invention will become apparent to those of ordinary skill in the art upon reading and understanding the following detailed description.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention may take form in various components and arrangements of components, and in various steps and arrangements of steps. The drawings are only for purposes of illustrating the preferred embodiments and are not to be construed as limiting the invention.
FIGURE 1 shows a perspective view of a length of border lighting that suitably practices an embodiment of the invention.
FIGURE 2 shows a cross-sectional view of the embodiment of FIGURE 1.
FIGURE 3 shows a cross-sectional view of the light transmissive extruded sheath of the embodiment of FIGURE 1.
FIGURE 4 shows a cross-sectional view of one of the plurality of light emitting elements of the embodiment of FIGURE 1 along with its mount. FIGURE 5 shows a cross-sectional view of another border lighting that suitably practices an embodiment of the invention.
FIGURE 6 schematically shows an exemplary strip light manufacturing process that suitably practices an embodiment of the invention. DETAILED DESCRIPTION OF THE INVENTION
With reference to FIGURES 1 , 2, 3, and 4, a length of an exemplary border lighting tube or lamp 10 is described. The light source 10 includes a plurality of light emitting elements 12 arranged alongside an electrical cable or cord 14. The cable 14 includes a plurality of electrically insulated wires, represented in FIGURE 2 by two thickened regions 14A, 14B corresponding to two wires. The exemplary light emitting elements 12 are light emitting diodes such as phosphide-based red light emitting diodes, blue or blue/green nitride- based light emitting diodes, phosphor-coated UV light emitting diodes emitting white or other colored light, or the like. Mixtures of light emitting diodes of various types on the cable 14 are also contemplated, as are other light emitting elements such as miniature incandescent lamps.
Each of the light emitting elements 12 preferably includes a lead frame having leads 12A, 12B for electrical connection to the light emitting element 12. The formation of the light emitting element 12, e.g. light emitting diode, and its connection to leads 12A, 12B of a lead frame can be performed in a large number of ways which are well known to those skilled in the art. The light emitting elements 12 are electrically powered by the cable 14 through leads 12A, 12B (FIGURE 2). The leads 12A, 12B are connected to the cable wires 14A, 14B, for example by crimping or soldering. Crimped connections are simple to implement and are advantageously rugged compared with many types of soldering bonds.
The tube lighting 10 also includes an at least partially light transmissive housing, tube, or sheath 16 which is essentially hollow and surroundingly receives the light emitting elements 12 and at least a portion of the electrical cable 14. The sheath 16 shields the light emitting elements 12 and the covered portion of the cable 14 from external influences, and is optionally watertight. However, the sheath 16 is at least partially light transmissive at least for light generated by the light emitting elements 12.
The light emitting elements 12 are advantageously supported inside the sheath 16 by a support, socket, or mount 22. In the exemplary embodiment of FIGURES 1 through 4 there is a separate mount 22 corresponding to each light emitting element 12. However, a mount that supports a plurality of light emitting elements is also contemplated. The exemplary mount 22 has an opening 24 through which the cable 14 passes. However, the mount 22 could also be connected to the cable 14 in other ways, such as by clamping or by the use of an adhesive.
As best seen in FIGURES 2 and 3, the housing, sheath, or tube 16 includes an integral optical element 18, which in the illustrated embodiment is a cylindrical lens 18, that optically cooperates with the light emitting elements 12 to distribute the emitted light using one or more selected operative modes. In one operative mode, the integral optical element 18 provides wave guiding that distributes the light along the tube. In another operative mode, the optical element 18 includes one or more refracting portions that refract light generated by the light emitting elements in a manner which enhances distribution of light perpendicular to the tube 16. It is also contemplated that the single cylindrical lens 18 provide both wave guiding and perpendicular refracting.
Those skilled in the art will recognize that forming the sheath 16 using a material having a high refractive index enhances the effectiveness of both the refracting and the wave guiding operative modes. Furthermore, the optical behavior is optionally not limited to a particular optical element 18 of the sheath 16. Rather, the entire sheath 16 or significant portions thereof beyond the optical element 18 optionally cooperate with the light emitting elements 12 to achieve a desired light distribution. Through the refractive and/or wave guiding activity of the optical element 18 with optional involvement of the sheath 16, the border tube 10 can be thickened more than would be otherwise cosmetically acceptable, and the number of light emitting elements 12 per unit length can be reduced.
In the embodiment illustrated in FIGURES 1 through 4, the light emitting elements 12 are arranged in a straight line facing a single direction. However, embodiments where the light emitting elements are arranged in a curved, spiral or other pattern are also contemplated. Furthermore, the sheath or tube 16 can be made from either a rigid or a flexible transparent or translucent material. A flexible sheath 16 results in a flexible linear border lighting 10 which can be arranged to follow corners and other turns within turning radius limits imposed by the sheath 16 or the cable 14. However, a rigid sheath 16 may be preferred for horizontal wall mounting and other applications. With reference to FIGURE 5, a strip light 100 that suitably practices another embodiment of the invention is shown in cross-section. The light source 100 includes a plurality of light emitting elements 112 arranged alongside an electrical cable 114. The cable 114 includes a plurality of electrically insulated wires, represented in FIGURE 5 by two thickened regions 114A, 114B corresponding to two wires. The exemplary light emitting elements 112 are light emitting diodes such as phosphide-based red light emitting diodes, blue or blue/green nitride-based light emitting diodes, phosphor-coated UV light emitting diodes emitting white or other colored light, or the like. Mixtures of light emitting diodes of various types on the cable 114 are also contemplated, as are other light emitting elements such as miniature incandescent lamps.
Each of the light emitting elements 112 preferably includes a lead frame having leads 112A, 112B for electrical connection to the light emitting element 112. The formation of the light emitting element 112, e.g. light emitting diode, and its connection to leads 112A, 112B of a lead frame can be performed in a large number of ways which are well known to those skilled in the art. The light emitting elements 112 are electrically powered by the cable 114 directly through contacts 112A, 112B, for example by crimping or soldering. Crimped connections are advantageously rugged compared with many types of soldering bonds. The tube lighting 100 also includes a translucent or transparent sheath 116 which is essentially hollow and surroundingly receives the light emitting elements 112 and at least a portion of the electrical cable 114. The sheath 116 shields the light emitting elements 112 and the covered portion of the cable 114 from external influences, and is optionally watertight. However, the sheath 116 is substantially light transmissive at least for light generated by the light emitting elements 112.
In the embodiment of FIGURE 5, the transparent or translucent housing, sheath, or tube 116 includes an integral optical element 118, which in the illustrated embodiment is a cylindrical lens 118, that optically cooperates with the light emitting elements 112 to distribute the emitted light using one or more selected operative modes. In one operative mode, the integral optical element 118 provides wave guiding that distributes the light along the tube. In another operative mode, the optical element 118 includes one or more refracting portions that refract light generated by the light emitting elements in a manner which enhances distribution of light perpendicular to the tube 116. It is also contemplated that the single cylindrical lens 118 provide both wave guiding and perpendicular refracting. Those skilled in the art will recognize that forming the sheath 116 using a material having a high refractive index enhances the effectiveness of both the refracting and the wave guiding operative modes. Furthermore, the optical behavior is optionally not limited to a particular optical element 18 of the sheath 116. Rather, the entire sheath 116 or significant portions thereof beyond the optical element 118 optionally cooperate with the light emitting elements 112 to achieve a desired light distribution. Through the refractive and/or wave guiding activity of the optical element 118 with optional involvement of the sheath 116, the border tube 100 can be thickened more than would be otherwise cosmetically acceptable, and the number of light emitting elements 112 per unit length can be reduced.
In the embodiment illustrated in FIGURE 5, the light emitting elements 112 are arranged in a straight line facing a single direction. However, embodiments where the light emitting elements are arranged in a curved, spiral or other pattern are also contemplated (not shown). Furthermore, the sheath or tube 116 can be made from either a rigid or a flexible transparent or translucent material. A flexible sheath 116 results in a flexible linear border lighting 100 which can be arranged to follow corners and other turns within turning radius limits imposed by the sheath 116 or the cable 114. However, a rigid sheath 116 may be preferred for horizontal wall mounting and other applications.
With reference to FIGURE 6, an exemplary manufacturing process 200 for manufacturing a border lighting strip such as the exemplary border lighting strip 10, 100 is described. In the case where the light emitting devices (LEDs) include a mount, e.g. the mount 22 of FIGURES 1, 2, and 4, an LED is attached 202 to a mount. The attaching.202 is repeated 204 for all the LEDs. The attaching 202 is advantageously both physical and electrical, with the latter accomplished by soldering, wire bonding, or the like. A mount is attached 208 to the cable by crimping, soldering, or the like, and the attaching 208 is repeated 210 for all the mounts. It will be appreciated that the order of the attachings 202, 208 is unimportant, i.e. the LEDs can be attached 202 to the mounts followed by attaching 208 of the mounts to the cable, or alternatively the mounts can be attached 208 to the cable and the LEDs attached 202 to the mounts. In most manufacturing situations, however, it will be preferred to attach 202 the LEDs to the mounts first. For manufacturing of the border lighting embodiment of FIGURE 5 wherein no mount is employed, the LEDs are directly attached to the cable using crimping, soldering, or the like, without the intercession of a mount. The electrical connecting 202, 204, 208, 210 of the LEDs to the cable forms a linear light source 214. The sheath, e.g. the sheath 16 of FIGURES 1 through 3 or the sheath 116 of FIGURE 5, can be formed by any suitable manufacturing process. A preferred method for the sheath formation is extrusion molding 216. Extrusion has a number of manufacturing advantages, including: providing a high degree of freedom in selecting the cross-sectional shape; providing the ability to form a wide range of materials including both flexible and rigid formed materials; and the providing the ability to generate an essentially infinitely variable extruded tube length. The linear light source 214 is inserted 218 into the extruded 216 sheath to form the border lighting 220.
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (26)

WHAT IS CLAIMED IS:
1. A border lighting strip comprising: an electrical cable including a plurality of electrical conductors; a plurality of light emitting devices (LEDs) arranged alongside the electrical cable and electrically connected thereto; and a sheath at least partially made from a light transmissive material, said sheath having a hollow region adapted to receive the LEDs, and an integrally formed cylindrical lens arranged to optically cooperate with the LEDs.
2. The border lighting strip as set forth in claim 1 , wherein the sheath includes: an extruded length of light transmissive material of high refractive index.
3. The border lighting strip as set forth in claim 1, wherein the sheath includes: an extruded length of a wave guiding material.
4. The border lighting strip as set forth in claim 1 , wherein the plurality of LEDs are arranged such that they face the same direction.
5. The border lighting strip as set forth in claim 4, wherein the cylindrical lens is arranged parallel to the cable such that the plurality of LEDs face the cylindrical lens.
6. The border lighting strip as set forth in claim 1, wherein each LED has associated therewith a lead frame which provides for electrical connection of the LED to the cable.
7. The border lighting strip as set forth in claim 1 , further including: a plurality of LED sockets that receive the LEDs and effectuate connection of the LEDs to the cable.
8. The border lighting strip as set forth in claim 1, further including: a plurality of crimps corresponding to the plurality of LED's which electrically and mechanically connect the LED's to the electrical cable.
9. The border lighting strip as set forth in claim 1 , wherein: the light emitting devices (LEDs) include light emitting diodes.
10. The border lighting strip as set forth in claim 9, wherein the light emitting diodes are selected from a group consisting of: phosphide-based red light emitting diodes, blue or blue/green nitride-based light emitting diodes, and phosphor-coated UV light emitting diodes emitting white or other colored light.
11. A linear lamp comprising: an essentially hollow tube of translucent or transparent material; a plurality of light emitting elements arranged within the tube; and at least one electrical wire arranged within the tube for supplying electrical power to the light emitting elements.
12. The linear lamp as set forth in claim 11 , wherein the tube includes: a wave guide portion that distributes light generated by the light emitting elements along the tube.
13. The linear lamp as set forth in claim 11 , wherein the tube includes: a refracting portion that spreads light generated by the light emitting elements in a plane perpendicular to the tube.
14. The linear lamp as set forth in claim 11 , further including: a plurality of conductors that electrically and mechanically connect the light emitting elements to the at least one electrical wire.
15. The linear lamp as set forth in claim 11, wherein: the tube of translucent or transparent material is flexible whereby the linear lamp is flexible and arrangeable in a non-straight orientation.
16. A lighting strip comprising: a cord including a plurality of parallel conductive wires and an insulating coating; a plurality of light emitting elements affixed to the cord and arranged to receive electrical power therefrom; and an at least partially light transmissive tube surrounding the plurality of light emitting elements and at least a portion of the cord.
17. The lighting strip as set forth in claim 16, wherein the tube further includes: an integral optical element that distributes light emitted by the plurality of light emitting elements along the lighting strip.
18. The lighting strip as set forth in claim 16, wherein the tube further includes: a lens integrally formed with the tube that optically communicates with the plurality of light emitting elements.
19. The lighting strip as set forth in claim 16, wherein the light emitting elements include light emitting diodes.
20. The lighting strip as set forth in claim 16, further including: at least one mount that attaches the light emitting elements to the cord.
21. The lighting strip as set forth in claim 16, wherein the tube is formed by an extrusion molding.
22. The lighting strip as set forth in claim 16, wherein the tube includes a color tinting.
23. A method for manufacturing a lighting strip, the method comprising: electrically connecting a plurality of light emitting devices to an electrical cable to form a linear light source; extruding a transparent or translucent sheath adapted to receive the linear light source; and inserting the linear light source into the extruded sheath.
24. The method as set forth in claim 23, wherein the extruding includes: extruding a cylindrical lens integrally with the extruding of the sheath.
25. The method as set forth in claim 23, wherein electrically connecting includes: attaching a mount to the electrical cable, which attaching includes an electrical connection between the mount and the cable; and physically and electrically bonding one of the light emitting devices to the mount.
26. The method as set forth in claim 23, wherein electrically connecting includes: crimping electrical leads of one of the light emitting devices to the electrical cable to establish an electrical connection therebetween; and repeating the crimping for each of the plurality of light emitting devices.
AU2003209424A 2002-01-29 2003-01-29 Apparatus and manufacturing method for border lighting Abandoned AU2003209424A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/683,635 2002-01-29

Publications (1)

Publication Number Publication Date
AU2003209424A1 true AU2003209424A1 (en) 2003-09-02

Family

ID=

Similar Documents

Publication Publication Date Title
US8215786B2 (en) Flexible perimeter lighting apparatus
CA2861157C (en) Diffused flexible led linear light assembly
CA2616007C (en) Light-emitting module
US8789971B2 (en) Integrally formed single piece light emitting diode light wire
CN203615157U (en) Light and lighting device
KR100781412B1 (en) A flexible light track for signage
KR101564128B1 (en) Integrally formed single piece light emitting diode light wire and uses thereof
US9909719B2 (en) LED linear light assemblies with transparent bottoms
US9395057B2 (en) Lighting device with flexibly coupled heatsinks
US6997575B2 (en) Apparatus and manufacturing method for border lighting
US9927092B2 (en) LED linear light assembly with reflectance members
CN203836632U (en) Straight pipe lamp and illuminating device
EP3953638A1 (en) A light-emitting device
AU2003209424A1 (en) Apparatus and manufacturing method for border lighting
CN113418152A (en) Wash pinup
CA2910815A1 (en) Led linear light assembly with reflectance members
CA2959316A1 (en) Diffused flexible led linear light assembly