AU2003205045A1 - Sucrose Monitor - Google Patents
Sucrose Monitor Download PDFInfo
- Publication number
- AU2003205045A1 AU2003205045A1 AU2003205045A AU2003205045A AU2003205045A1 AU 2003205045 A1 AU2003205045 A1 AU 2003205045A1 AU 2003205045 A AU2003205045 A AU 2003205045A AU 2003205045 A AU2003205045 A AU 2003205045A AU 2003205045 A1 AU2003205045 A1 AU 2003205045A1
- Authority
- AU
- Australia
- Prior art keywords
- concentration
- absorbance
- sugar
- sucrose
- radiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229930006000 Sucrose Natural products 0.000 title claims description 27
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 title claims description 25
- 239000005720 sucrose Substances 0.000 title claims description 23
- 235000000346 sugar Nutrition 0.000 claims description 35
- 229960004793 sucrose Drugs 0.000 claims description 26
- 238000002835 absorbance Methods 0.000 claims description 19
- 230000003287 optical effect Effects 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 150000008163 sugars Chemical class 0.000 claims description 14
- 230000005855 radiation Effects 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 7
- CZMRCDWAGMRECN-UHFFFAOYSA-N Rohrzucker Natural products OCC1OC(CO)(OC2OC(CO)C(O)C(O)C2O)C(O)C1O CZMRCDWAGMRECN-UHFFFAOYSA-N 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 2
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 125000000185 sucrose group Chemical group 0.000 claims 2
- 238000005259 measurement Methods 0.000 description 8
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 6
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 6
- 229960003237 betaine Drugs 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000000711 polarimetry Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- YTBRNEUEFCNVHC-UHFFFAOYSA-N 4,4'-dichlorobiphenyl Chemical compound C1=CC(Cl)=CC=C1C1=CC=C(Cl)C=C1 YTBRNEUEFCNVHC-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229960004903 invert sugar Drugs 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical compound [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
AUSTRALIA
Patents Act
ORIGINAL
COMPLETE
SPECIFICATION
STANDARD
PATENT
Application Number: 20032 Lodgement Date: 2 nd July 2003 Nominated Patentee: IWRX Pty Ltd invention Title: Sugar Monitor The following statement is a full description of this invention, including the best method of performing it known to the applicant.
SUGAR MONITOR This invention relates to a method and device for determining sugar concentrations in solution as part of a continuous process control.
Background to the invention Currently sugar mills do not conduct production line determination of sucrose concentration in processed cane sugar. Off line testing is usually conducted using polarimetry.
USA patent 3609324 discloses a method of determining sucrose concentration by measuring refractive index.
USA 3632446 discloses a method of making invert sugar in which the polarization of the solution is sensed. Polarimetry is also used in USA patent 5317150.
In USA patent 3713738 polarisation and refractive index are measured to obtain a sucrose purity measure.
US patent 6297057 by Matsushita uses angle of rotation to determine urine sugar levels.
It is an object of this invention to provide a method adapted for continuous production line sensing of sugars as well as a device for carrying out such a method.
Brief description of the invention To this end the present invention provides a method of continuously measuring the concentration of sugars in solution which includes the steps of a) passing a portion of the solution being processed through a flow cell b) irradiating the flow cell with infrared radiation c) measuring the absorption of radiation of at least one wavelength in the infrared region d) by reference to a predetermined calibration calculating the concentration of sugars e) displaying and or storing the calculations.
This invention is partly predicated on the discovery that the concentration of sugars can be linearised against absorption amplitude. The method preferably measures absorption at two wavelengths one of which is independent of sugar concentration and the difference between the two measurements is used to calculate sugars concentration. These wavelengths are selected from within the range 1800 to 2500nm [nanometers]. Absorption at about 2260 to 2320 nm is indicative of sucrose and a second measurement is taken at 2248nm as a reference because the absorbance at this wavelength is independent of sugars concentration because the absorbance intensity of water and sugar cross over at this wavelength. The difference in the two absorbance readings is indicative of sugars concentration. These wavelengths are suitable for cane sugar. For beet sugar which contains betaine with an absorption band near 2248nm a different reference wavelength is chosen. For Betaine containing sucrose two suitable cross over points where intensity is independent of concentration are 2190nm and 2330nm. A wavelength greater than the base line measurement is then chosen to use as the wavelength for measuring the sugar.
Throughout this specification sugars means mono- and di-saccharides and other oligo-sachharides including glucose, fructose, sucrose and lactose. The monosachharides show one I R peak and the disaccharides show a second peak. The instrument of this invention can be used to measure any one of the sugars.
The light source is preferably pulsed to compensate for drift in the electronic components and this can be achieved with a chopper to break a continuous beam or by using a pulsating lamp.
In another aspect the present invention provides a device for measuring sugars concentration which includes a) a flow cell having an inlet and an out let connectable to a process fluid flow line b) an infrared source adapted to radiate in the wavelength range of 1800 to 2500 nm located on one side of said flow cell c) a window on a side of said flow cell opposite said infra red source for receiving radiation d) pulsing means to create pulses of said infra red radiation e) an optical detector associated with said window to generate signals indicative of absorbance of the radiation at selected wavelengths f) a controller adapted to integrate the signals over a predetermined time period and treat the signals to a calibration routine to provide an output indicative of sugar concentration.
The wavelength can be selected from the light source by using any suitable means such as interference filters, tunable filters, diffraction gratings, interferometers etc.
Prior to this invention a production line sugar concentration meter was not available. The device can be used to measure sugar concentration in sugar producing plants but also in any food processing line where sugar concentration needs to be monitored such as in processing fruits or drinks or to monitor lactose levels in dairy based products.
The sugar meter of this invention shows a linear response from 0% to 70% w/v sucrose with a relative standard error of 0.35% at a measurement interval of Temperature changes do not effect the measurement and the instrument is operable in ambient temperatures of up to 80 0
C.
Detailed description of the invention A preferred embodiment of the invention is illustrated in the drawings in which Figure 1 is a side view looking axially along the flow path through the flow cell; Figure 2 is a view along the line A-A of figure 1; Figure 3 is a view along the line B-B of figure 1; Figure 4 is an isometric view of the device shown in figure 1; and Figure 5 is a view of the components of figure 4 by removing the housing; Figure 6 is graph showing absorbance for a 60% sucrose solution compared to the absorbance for water; Figure 7 is a graph showing the spectra for varying sucrose concentrations in the presence of betaine.
The device consists of a monochromator housing 10 attached to the analysis cell 13 which has an inlet 11 and an outlet 12. Optical windows 17 extend into the cell 13. The electronic controller is contained on a PCB 15. The space 29 may be filled with a dessicant to maintain the optical and electronic components moisture free.
The optical system comprises a source lamp 16, the optical windows 17 a flow through sampling cell 13, an optical spectrometer and an optical detector array all of which are optimised for performance in the 1800 to 2500 nanometre wavelength range.
The optical source 16 is an incandescent tungsten filament lamp but may be a light emitting diode. The light entering the detector system is pulsed and in the embodiment illustrated the pulses are created by breaking the light beam with a chopper 19 driven by an electric motor The optical spectrometer comprises an entrance slit 18, focusing spherical mirrors 21 and 22 and a diffraction grating 27 arranged in a crossed Czerny- Turner configuration although other configurations may be used. The spectrometer disperses the optical signal according to its wavelength. In this embodiment the diffraction grating 27 is fixed in position and an array detector is used to select the wavelengths of interest for measurement. It is preferred to measure 3 wavelengths.
In other embodiments a single element detector is used and the diffraction grating moved periodically to sequentially select the wavelengths of interest. The bandwidth of the measured optical signals is determined by the width of the entrance slit and the width of the detector element(s).
The optical detector is an array of photoconductive lead sulphide elements although other types of detector may be used.
Suqar Monitor Signal Processingq The optical source lamp is amplitude modulated at a fixed frequency (either electronically or mechanically) and the detector array signals are synchronously demodulated to improve the signal to noise ratio.
The detector array is maintained at a constant temperature below ambient by the use of a thermoelectric cooler, temperature sensing device and control loop to improve the sensitivity and reduce the effect of ambient temperature variations on sensitivity.
The demodulated detector array signals are representative of the intensity of the optical signals at the measured wavelengths. These intensity signals are converted to absorbance signals as follows: A -logio(li) Where Ai is the absorbance of the optical signal at the i th wavelength of the detector array and li is the intensity of the optical signal at the ith wavelength of the detector array.
Figure 6 illustrates the observation on which this invention is partly predicated.
There is a crossover point in sucrose and water spectra at 2248 nm at which the absorbance is independent of sucrose concentration. For cane sugar the difference in absorbance between 2248nm and 2280 nm is used to calculate sucrose concentration. The absorbance difference has a very high correlation to sucrose concentration(R>0.999).
Figure 7 is a similar graph of absorbance when betaine is also present. For betaine containing solutions (from Beet sugar) the baseline measurement are based on a crossover point at 2190nm or 2330nm. For Beet sugar both sucrose and betaine are measured simultaneously using a 3 wavelength detector.
The absorbance signals are integrated over a user specified time period to reduce noise.
The integrated absorbance signals are then applied to a calibration routine to estimate the sucrose concentration. The repeatability of the sucrose measurements in tests is 0.07% w/v.
The sucrose concentration is available for readout to the process control system over a serial communications link.
The response of the instrument to small increases in sugar concentration about 0.1% w/v increase between 180 to 200 minutes) indicates that the instrument is of practical use in sugar refining The continuous monitoring and control of the purity of feeds into vacuum pans has considerable benefit in sugar 6 manufacturing in terms of more consistent sugar quality, better exhaustion of molasses and maximizing throughput of the vacuum pans.
From the above description it can be seen that the present invention provides a unique method and apparatus for production line testing of sucrose concentration. Those skilled in the art will realize that the invention can be adapted to the monitoring of any sugar and can be used as a laboratory instrument even though it is adapted to production line testing in real time.
Claims (9)
1. A method of continuously measuring the concentration of a sugars in solution which includes the steps of a) passing a portion of the solution being processed through a flow cell b) irradiating the flow cell with infrared radiation c) measuring the absorption of radiation of at least one wavelength in the infrared region d) by reference to a predetermined calibration calculating the concentration of sugars displaying and or storing the calculations.
2. A method as claimed in claim 1 in which the infrared radiation is within the range of 1800 to 2500 nm and is pulsed.
3. A method as claimed in claim 1 in which the absorption is derived from infra red detector signals.
4. A method as claimed in claim 1 in which the sugar is sucrose sourced from cane sugar and absorbance is measured at 2248 nm and at a higher wavelength and the difference in absorbance is used as the basis for determining sucrose concentration.
A method as claimed in claim 1 in which the sugar is sucrose sourced from beet sugar and absorbance is measured at 2190nm or 2330nm and at a higher wavelength and the difference in absorbance is used as the basis for determining sucrose concentration.
6. A device for measuring sugars concentration which includes a) a flow cell having an inlet and an outlet connectable to a process fluid flow line b) an infrared source adapted to radiate in the wavelength range of 1800 to 2500 nm located on one side of said flow cell c) a window on a side of said flow cell opposite said infra red source for receiving radiation d) pulsing means to create pulses of said infra red radiation e) an optical detector associated with said window to generate signals indicative of absorbance of the radiation at selected wavelengths f) a controller adapted to integrate the signals over a predetermined time period and treat the signals to a calibration routine to provide an output indicative of sugars concentration
7. A device as claimed in claim 6 in which a chopper is used to create the light pulses.
8. A device as claimed in claim 6 in which an array detector is used to select the wavelengths to be measured.
9. A device as claimed in claim 6 in which a diffraction grating is movable to select wavelengths to be detected by a single element detector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2003205045A AU2003205045A1 (en) | 2002-07-03 | 2003-07-02 | Sucrose Monitor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPS3328A AUPS332802A0 (en) | 2002-07-03 | 2002-07-03 | Sucrose monitor |
AUPS3328 | 2002-07-03 | ||
AU2003205045A AU2003205045A1 (en) | 2002-07-03 | 2003-07-02 | Sucrose Monitor |
Publications (1)
Publication Number | Publication Date |
---|---|
AU2003205045A1 true AU2003205045A1 (en) | 2004-01-22 |
Family
ID=34218791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2003205045A Abandoned AU2003205045A1 (en) | 2002-07-03 | 2003-07-02 | Sucrose Monitor |
Country Status (1)
Country | Link |
---|---|
AU (1) | AU2003205045A1 (en) |
-
2003
- 2003-07-02 AU AU2003205045A patent/AU2003205045A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2437719C2 (en) | Apparatus and method for spectrophotometric analysis | |
EP2188604B1 (en) | Spectrometer for measuring moving sample material and the method | |
CA2286093C (en) | Method for standardizing raman spectrometers to obtain stable and transferable calibrations | |
LarraĆn et al. | A multipurpose portable instrument for determining ripeness in wine grapes using NIR spectroscopy | |
JP3686422B2 (en) | Measurement of tissue analyte by infrared rays | |
Rodriguez-Saona et al. | Rapid analysis of sugars in fruit juices by FT-NIR spectroscopy | |
US5886347A (en) | Analytical method for multi-component aqueous solutions and apparatus for the same | |
US6064897A (en) | Sensor utilizing Raman spectroscopy for non-invasive monitoring of analytes in biological fluid and method of use | |
US20020161289A1 (en) | Detector array for optical spectrographs | |
JP2517858B2 (en) | Nondestructive measurement method of fruit sugar content by near infrared transmission spectrum | |
RU2383881C2 (en) | Spectrometric measuring head for harvesting and other agricultural machines | |
US8106361B2 (en) | Method and device for determining an alcohol content of liquids | |
EP0743513B1 (en) | Spectrometry and Optical Measuring Method and Apparatus | |
Xie et al. | Applications of near-infrared systems for quality evaluation of fruits: A review | |
EP1199555A1 (en) | Analytical method and apparatus for liquid samples using near infrared spectroscopy | |
US5920069A (en) | Apparatus for automatic identification of gas samples | |
WO2010129877A1 (en) | Automated soil measurement device | |
BRPI0806880A2 (en) | OPTICAL CHEMICAL ANALYZER, AND METHOD FOR MEASURING CHEMICAL CONCENTRATIONS IN A DC OR PACKED PROCESS | |
IL151751A (en) | Apparatus and method for measuring and correlating characteristics of fruit with visible/near-red spectrum | |
WO2007044486A1 (en) | Spectroscopic determination of sucrose | |
Diessel et al. | Nanoliter serum sample analysis by mid-infrared spectroscopy for minimally invasive blood-glucose monitoring | |
EP1378744A1 (en) | Sugar monitor | |
AU2003205045A1 (en) | Sucrose Monitor | |
Sugiyama et al. | Visualization of sugar distribution of melons by hyperspectral technique | |
KR20010017743A (en) | The system evaluating a way and nondestructive fruit sweetness of using near infrared spectroscopy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MK4 | Application lapsed section 142(2)(d) - no continuation fee paid for the application |